ggml.c 753 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. static void atomic_store(atomic_int * ptr, LONG val) {
  53. InterlockedExchange(ptr, val);
  54. }
  55. static LONG atomic_load(atomic_int * ptr) {
  56. return InterlockedCompareExchange(ptr, 0, 0);
  57. }
  58. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  59. return InterlockedExchangeAdd(ptr, inc);
  60. }
  61. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  62. return atomic_fetch_add(ptr, -(dec));
  63. }
  64. typedef HANDLE pthread_t;
  65. typedef DWORD thread_ret_t;
  66. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  67. (void) unused;
  68. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  69. if (handle == NULL)
  70. {
  71. return EAGAIN;
  72. }
  73. *out = handle;
  74. return 0;
  75. }
  76. static int pthread_join(pthread_t thread, void * unused) {
  77. (void) unused;
  78. int ret = (int) WaitForSingleObject(thread, INFINITE);
  79. CloseHandle(thread);
  80. return ret;
  81. }
  82. static int sched_yield (void) {
  83. Sleep (0);
  84. return 0;
  85. }
  86. #else
  87. #include <pthread.h>
  88. #include <stdatomic.h>
  89. typedef void * thread_ret_t;
  90. #include <sys/types.h>
  91. #include <sys/stat.h>
  92. #include <unistd.h>
  93. #endif
  94. typedef pthread_t ggml_thread_t;
  95. #ifdef GGML_USE_CPU_HBM
  96. #include <hbwmalloc.h>
  97. #endif
  98. #if defined(__APPLE__)
  99. #include <TargetConditionals.h>
  100. #endif
  101. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  102. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  103. #include <sys/wait.h>
  104. void ggml_print_backtrace(void) {
  105. /*
  106. #include <execinfo.h>
  107. #include <dlfcn.h>
  108. void * trace[100];
  109. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  110. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  111. */
  112. // backtrack_symbols does not show line numbers, use gdb instead
  113. char attach[32];
  114. snprintf(attach, sizeof(attach), "attach %d", getpid());
  115. int pid = fork();
  116. if (pid == 0) {
  117. execlp("gdb", "gdb", "--batch",
  118. "-ex", "set style enabled on",
  119. "-ex", attach,
  120. "-ex", "bt -frame-info source-and-location",
  121. "-ex", "detach",
  122. "-ex", "quit",
  123. (char *) NULL);
  124. } else {
  125. waitpid(pid, NULL, 0);
  126. }
  127. }
  128. #else
  129. void ggml_print_backtrace(void) {
  130. // platform not supported
  131. }
  132. #endif
  133. /*#define GGML_PERF*/
  134. #define GGML_DEBUG 0
  135. #define GGML_GELU_FP16
  136. #define GGML_GELU_QUICK_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  266. float ggml_table_f32_f16[1 << 16];
  267. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  268. switch (status) {
  269. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  270. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  271. case GGML_STATUS_SUCCESS: return "GGML status: success";
  272. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  273. }
  274. return "GGML status: unknown";
  275. }
  276. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  277. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  278. return GGML_FP16_TO_FP32(x);
  279. }
  280. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  281. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  285. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  286. return GGML_BF16_TO_FP32(x); // it just left shifts
  287. }
  288. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  289. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  290. return GGML_FP32_TO_BF16(x);
  291. }
  292. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  293. for (int64_t i = 0; i < n; i++) {
  294. y[i] = GGML_FP16_TO_FP32(x[i]);
  295. }
  296. }
  297. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  298. int64_t i = 0;
  299. #if defined(__F16C__)
  300. for (; i + 7 < n; i += 8) {
  301. __m256 x_vec = _mm256_loadu_ps(x + i);
  302. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  304. }
  305. for(; i + 3 < n; i += 4) {
  306. __m128 x_vec = _mm_loadu_ps(x + i);
  307. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  308. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  309. }
  310. #endif
  311. for (; i < n; i++) {
  312. y[i] = GGML_FP32_TO_FP16(x[i]);
  313. }
  314. }
  315. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  316. int64_t i = 0;
  317. #if defined(__AVX512F__)
  318. for (; i + 16 <= n; i += 16) {
  319. _mm512_storeu_ps(y + i,
  320. _mm512_castsi512_ps(
  321. _mm512_slli_epi32(
  322. _mm512_cvtepu16_epi32(
  323. _mm256_loadu_si256(
  324. (const __m256i *)(x + i))),
  325. 16)));
  326. }
  327. #elif defined(__AVX2__)
  328. for (; i + 8 <= n; i += 8) {
  329. _mm256_storeu_ps(y + i,
  330. _mm256_castsi256_ps(
  331. _mm256_slli_epi32(
  332. _mm256_cvtepu16_epi32(
  333. _mm_loadu_si128(
  334. (const __m128i *)(x + i))),
  335. 16)));
  336. }
  337. #endif
  338. for (; i < n; i++) {
  339. y[i] = GGML_BF16_TO_FP32(x[i]);
  340. }
  341. }
  342. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  343. int i = 0;
  344. #if defined(__AVX512BF16__)
  345. for (; i + 32 <= n; i += 32) {
  346. _mm512_storeu_si512(
  347. (__m512i *)(y + i),
  348. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  349. _mm512_loadu_ps(x + i))));
  350. }
  351. #endif
  352. for (; i < n; i++) {
  353. y[i] = GGML_FP32_TO_BF16(x[i]);
  354. }
  355. }
  356. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  357. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  358. }
  359. //
  360. // timing
  361. //
  362. #if defined(_MSC_VER) || defined(__MINGW32__)
  363. static int64_t timer_freq, timer_start;
  364. void ggml_time_init(void) {
  365. LARGE_INTEGER t;
  366. QueryPerformanceFrequency(&t);
  367. timer_freq = t.QuadPart;
  368. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  369. // and the uptime is high enough.
  370. // We subtract the program start time to reduce the likelihood of that happening.
  371. QueryPerformanceCounter(&t);
  372. timer_start = t.QuadPart;
  373. }
  374. int64_t ggml_time_ms(void) {
  375. LARGE_INTEGER t;
  376. QueryPerformanceCounter(&t);
  377. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  378. }
  379. int64_t ggml_time_us(void) {
  380. LARGE_INTEGER t;
  381. QueryPerformanceCounter(&t);
  382. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  383. }
  384. #else
  385. void ggml_time_init(void) {}
  386. int64_t ggml_time_ms(void) {
  387. struct timespec ts;
  388. clock_gettime(CLOCK_MONOTONIC, &ts);
  389. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  390. }
  391. int64_t ggml_time_us(void) {
  392. struct timespec ts;
  393. clock_gettime(CLOCK_MONOTONIC, &ts);
  394. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  395. }
  396. #endif
  397. int64_t ggml_cycles(void) {
  398. return clock();
  399. }
  400. int64_t ggml_cycles_per_ms(void) {
  401. return CLOCKS_PER_SEC/1000;
  402. }
  403. #ifdef GGML_PERF
  404. #define ggml_perf_time_ms() ggml_time_ms()
  405. #define ggml_perf_time_us() ggml_time_us()
  406. #define ggml_perf_cycles() ggml_cycles()
  407. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  408. #else
  409. #define ggml_perf_time_ms() 0
  410. #define ggml_perf_time_us() 0
  411. #define ggml_perf_cycles() 0
  412. #define ggml_perf_cycles_per_ms() 0
  413. #endif
  414. //
  415. // cross-platform UTF-8 file paths
  416. //
  417. #ifdef _WIN32
  418. static wchar_t * ggml_mbstowcs(const char * mbs) {
  419. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  420. if (!wlen) {
  421. errno = EINVAL;
  422. return NULL;
  423. }
  424. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  425. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  426. if (!wlen) {
  427. GGML_FREE(wbuf);
  428. errno = EINVAL;
  429. return NULL;
  430. }
  431. return wbuf;
  432. }
  433. #endif
  434. FILE * ggml_fopen(const char * fname, const char * mode) {
  435. #ifdef _WIN32
  436. FILE * file = NULL;
  437. // convert fname (UTF-8)
  438. wchar_t * wfname = ggml_mbstowcs(fname);
  439. if (wfname) {
  440. // convert mode (ANSI)
  441. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  442. wchar_t * wmode_p = wmode;
  443. do {
  444. *wmode_p++ = (wchar_t)*mode;
  445. } while (*mode++);
  446. // open file
  447. file = _wfopen(wfname, wmode);
  448. GGML_FREE(wfname);
  449. GGML_FREE(wmode);
  450. }
  451. return file;
  452. #else
  453. return fopen(fname, mode);
  454. #endif
  455. }
  456. //
  457. // cache line
  458. //
  459. #if defined(__cpp_lib_hardware_interference_size)
  460. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  461. #else
  462. #if defined(__POWER9_VECTOR__)
  463. #define CACHE_LINE_SIZE 128
  464. #else
  465. #define CACHE_LINE_SIZE 64
  466. #endif
  467. #endif
  468. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  469. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  470. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  471. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  472. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  473. [GGML_TYPE_I8] = {
  474. .type_name = "i8",
  475. .blck_size = 1,
  476. .type_size = sizeof(int8_t),
  477. .is_quantized = false,
  478. },
  479. [GGML_TYPE_I16] = {
  480. .type_name = "i16",
  481. .blck_size = 1,
  482. .type_size = sizeof(int16_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I32] = {
  486. .type_name = "i32",
  487. .blck_size = 1,
  488. .type_size = sizeof(int32_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I64] = {
  492. .type_name = "i64",
  493. .blck_size = 1,
  494. .type_size = sizeof(int64_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_F64] = {
  498. .type_name = "f64",
  499. .blck_size = 1,
  500. .type_size = sizeof(double),
  501. .is_quantized = false,
  502. .nrows = 1,
  503. },
  504. [GGML_TYPE_F32] = {
  505. .type_name = "f32",
  506. .blck_size = 1,
  507. .type_size = sizeof(float),
  508. .is_quantized = false,
  509. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  510. .vec_dot_type = GGML_TYPE_F32,
  511. .nrows = 1,
  512. },
  513. [GGML_TYPE_F16] = {
  514. .type_name = "f16",
  515. .blck_size = 1,
  516. .type_size = sizeof(ggml_fp16_t),
  517. .is_quantized = false,
  518. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  519. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  520. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  521. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  522. .vec_dot_type = GGML_TYPE_F16,
  523. .nrows = 1,
  524. },
  525. [GGML_TYPE_Q4_0] = {
  526. .type_name = "q4_0",
  527. .blck_size = QK4_0,
  528. .type_size = sizeof(block_q4_0),
  529. .is_quantized = true,
  530. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  531. .from_float = quantize_row_q4_0,
  532. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  533. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  534. .vec_dot_type = GGML_TYPE_Q8_0,
  535. #if defined (__ARM_FEATURE_MATMUL_INT8)
  536. .nrows = 2,
  537. #else
  538. .nrows = 1,
  539. #endif
  540. },
  541. [GGML_TYPE_Q4_1] = {
  542. .type_name = "q4_1",
  543. .blck_size = QK4_1,
  544. .type_size = sizeof(block_q4_1),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  547. .from_float = quantize_row_q4_1,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  549. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  550. .vec_dot_type = GGML_TYPE_Q8_1,
  551. #if defined (__ARM_FEATURE_MATMUL_INT8)
  552. .nrows = 2,
  553. #else
  554. .nrows = 1,
  555. #endif
  556. },
  557. [4] = { // GGML_TYPE_Q4_2
  558. .type_name = "DEPRECATED",
  559. .blck_size = 0,
  560. .type_size = 0,
  561. .is_quantized = false,
  562. .to_float = NULL,
  563. .from_float = NULL,
  564. .from_float_reference = NULL,
  565. .vec_dot = NULL,
  566. .vec_dot_type = GGML_TYPE_COUNT,
  567. .nrows = 1,
  568. },
  569. [5] = { // GGML_TYPE_Q4_3
  570. .type_name = "DEPRECATED",
  571. .blck_size = 0,
  572. .type_size = 0,
  573. .is_quantized = false,
  574. .to_float = NULL,
  575. .from_float = NULL,
  576. .from_float_reference = NULL,
  577. .vec_dot = NULL,
  578. .vec_dot_type = GGML_TYPE_COUNT,
  579. .nrows = 1,
  580. },
  581. [GGML_TYPE_Q5_0] = {
  582. .type_name = "q5_0",
  583. .blck_size = QK5_0,
  584. .type_size = sizeof(block_q5_0),
  585. .is_quantized = true,
  586. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  587. .from_float = quantize_row_q5_0,
  588. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  589. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  590. .vec_dot_type = GGML_TYPE_Q8_0,
  591. .nrows = 1,
  592. },
  593. [GGML_TYPE_Q5_1] = {
  594. .type_name = "q5_1",
  595. .blck_size = QK5_1,
  596. .type_size = sizeof(block_q5_1),
  597. .is_quantized = true,
  598. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  599. .from_float = quantize_row_q5_1,
  600. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  601. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  602. .vec_dot_type = GGML_TYPE_Q8_1,
  603. .nrows = 1,
  604. },
  605. [GGML_TYPE_Q8_0] = {
  606. .type_name = "q8_0",
  607. .blck_size = QK8_0,
  608. .type_size = sizeof(block_q8_0),
  609. .is_quantized = true,
  610. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  611. .from_float = quantize_row_q8_0,
  612. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  613. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  614. .vec_dot_type = GGML_TYPE_Q8_0,
  615. #if defined (__ARM_FEATURE_MATMUL_INT8)
  616. .nrows = 2,
  617. #else
  618. .nrows = 1,
  619. #endif
  620. },
  621. [GGML_TYPE_Q8_1] = {
  622. .type_name = "q8_1",
  623. .blck_size = QK8_1,
  624. .type_size = sizeof(block_q8_1),
  625. .is_quantized = true,
  626. .from_float = quantize_row_q8_1,
  627. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  628. .vec_dot_type = GGML_TYPE_Q8_1,
  629. .nrows = 1,
  630. },
  631. [GGML_TYPE_Q2_K] = {
  632. .type_name = "q2_K",
  633. .blck_size = QK_K,
  634. .type_size = sizeof(block_q2_K),
  635. .is_quantized = true,
  636. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  637. .from_float = quantize_row_q2_K,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  639. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  640. .vec_dot_type = GGML_TYPE_Q8_K,
  641. .nrows = 1,
  642. },
  643. [GGML_TYPE_Q3_K] = {
  644. .type_name = "q3_K",
  645. .blck_size = QK_K,
  646. .type_size = sizeof(block_q3_K),
  647. .is_quantized = true,
  648. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  649. .from_float = quantize_row_q3_K,
  650. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  651. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  652. .vec_dot_type = GGML_TYPE_Q8_K,
  653. .nrows = 1,
  654. },
  655. [GGML_TYPE_Q4_K] = {
  656. .type_name = "q4_K",
  657. .blck_size = QK_K,
  658. .type_size = sizeof(block_q4_K),
  659. .is_quantized = true,
  660. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  661. .from_float = quantize_row_q4_K,
  662. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  663. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  664. .vec_dot_type = GGML_TYPE_Q8_K,
  665. .nrows = 1,
  666. },
  667. [GGML_TYPE_Q5_K] = {
  668. .type_name = "q5_K",
  669. .blck_size = QK_K,
  670. .type_size = sizeof(block_q5_K),
  671. .is_quantized = true,
  672. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  673. .from_float = quantize_row_q5_K,
  674. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  675. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  676. .vec_dot_type = GGML_TYPE_Q8_K,
  677. .nrows = 1,
  678. },
  679. [GGML_TYPE_Q6_K] = {
  680. .type_name = "q6_K",
  681. .blck_size = QK_K,
  682. .type_size = sizeof(block_q6_K),
  683. .is_quantized = true,
  684. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  685. .from_float = quantize_row_q6_K,
  686. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  687. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  688. .vec_dot_type = GGML_TYPE_Q8_K,
  689. .nrows = 1,
  690. },
  691. [GGML_TYPE_IQ2_XXS] = {
  692. .type_name = "iq2_xxs",
  693. .blck_size = QK_K,
  694. .type_size = sizeof(block_iq2_xxs),
  695. .is_quantized = true,
  696. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  697. .from_float = NULL,
  698. .from_float_reference = NULL,
  699. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  700. .vec_dot_type = GGML_TYPE_Q8_K,
  701. .nrows = 1,
  702. },
  703. [GGML_TYPE_IQ2_XS] = {
  704. .type_name = "iq2_xs",
  705. .blck_size = QK_K,
  706. .type_size = sizeof(block_iq2_xs),
  707. .is_quantized = true,
  708. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  709. .from_float = NULL,
  710. .from_float_reference = NULL,
  711. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  712. .vec_dot_type = GGML_TYPE_Q8_K,
  713. .nrows = 1,
  714. },
  715. [GGML_TYPE_IQ3_XXS] = {
  716. .type_name = "iq3_xxs",
  717. .blck_size = QK_K,
  718. .type_size = sizeof(block_iq3_xxs),
  719. .is_quantized = true,
  720. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  721. .from_float = quantize_row_iq3_xxs,
  722. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  723. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  724. .vec_dot_type = GGML_TYPE_Q8_K,
  725. .nrows = 1,
  726. },
  727. [GGML_TYPE_IQ3_S] = {
  728. .type_name = "iq3_s",
  729. .blck_size = QK_K,
  730. .type_size = sizeof(block_iq3_s),
  731. .is_quantized = true,
  732. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  733. .from_float = quantize_row_iq3_s,
  734. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  735. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  736. .vec_dot_type = GGML_TYPE_Q8_K,
  737. .nrows = 1,
  738. },
  739. [GGML_TYPE_IQ2_S] = {
  740. .type_name = "iq2_s",
  741. .blck_size = QK_K,
  742. .type_size = sizeof(block_iq2_s),
  743. .is_quantized = true,
  744. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  745. .from_float = quantize_row_iq2_s,
  746. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  747. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  748. .vec_dot_type = GGML_TYPE_Q8_K,
  749. .nrows = 1,
  750. },
  751. [GGML_TYPE_IQ1_S] = {
  752. .type_name = "iq1_s",
  753. .blck_size = QK_K,
  754. .type_size = sizeof(block_iq1_s),
  755. .is_quantized = true,
  756. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  757. .from_float = NULL,
  758. .from_float_reference = NULL,
  759. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  760. .vec_dot_type = GGML_TYPE_Q8_K,
  761. .nrows = 1,
  762. },
  763. [GGML_TYPE_IQ1_M] = {
  764. .type_name = "iq1_m",
  765. .blck_size = QK_K,
  766. .type_size = sizeof(block_iq1_m),
  767. .is_quantized = true,
  768. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  769. .from_float = NULL,
  770. .from_float_reference = NULL,
  771. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  772. .vec_dot_type = GGML_TYPE_Q8_K,
  773. .nrows = 1,
  774. },
  775. [GGML_TYPE_IQ4_NL] = {
  776. .type_name = "iq4_nl",
  777. .blck_size = QK4_NL,
  778. .type_size = sizeof(block_iq4_nl),
  779. .is_quantized = true,
  780. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  781. .from_float = quantize_row_iq4_nl,
  782. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  783. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  784. .vec_dot_type = GGML_TYPE_Q8_0,
  785. .nrows = 1,
  786. },
  787. [GGML_TYPE_IQ4_XS] = {
  788. .type_name = "iq4_xs",
  789. #if QK_K == 64
  790. .blck_size = QK4_NL,
  791. #else
  792. .blck_size = QK_K,
  793. #endif
  794. .type_size = sizeof(block_iq4_xs),
  795. .is_quantized = true,
  796. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  797. .from_float = quantize_row_iq4_xs,
  798. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  799. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  800. #if QK_K == 64
  801. .vec_dot_type = GGML_TYPE_Q8_0,
  802. #else
  803. .vec_dot_type = GGML_TYPE_Q8_K,
  804. #endif
  805. .nrows = 1,
  806. },
  807. [GGML_TYPE_Q8_K] = {
  808. .type_name = "q8_K",
  809. .blck_size = QK_K,
  810. .type_size = sizeof(block_q8_K),
  811. .is_quantized = true,
  812. .from_float = quantize_row_q8_K,
  813. },
  814. [GGML_TYPE_BF16] = {
  815. .type_name = "bf16",
  816. .blck_size = 1,
  817. .type_size = sizeof(ggml_bf16_t),
  818. .is_quantized = false,
  819. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  820. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  821. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  822. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  823. .vec_dot_type = GGML_TYPE_BF16,
  824. .nrows = 1,
  825. }
  826. };
  827. // For internal test use
  828. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  829. GGML_ASSERT(type < GGML_TYPE_COUNT);
  830. return type_traits[type];
  831. }
  832. //
  833. // simd mappings
  834. //
  835. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  836. // we then implement the fundamental computation operations below using only these macros
  837. // adding support for new architectures requires to define the corresponding SIMD macros
  838. //
  839. // GGML_F32_STEP / GGML_F16_STEP
  840. // number of elements to process in a single step
  841. //
  842. // GGML_F32_EPR / GGML_F16_EPR
  843. // number of elements to fit in a single register
  844. //
  845. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  846. #define GGML_SIMD
  847. // F32 NEON
  848. #define GGML_F32_STEP 16
  849. #define GGML_F32_EPR 4
  850. #define GGML_F32x4 float32x4_t
  851. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  852. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  853. #define GGML_F32x4_LOAD vld1q_f32
  854. #define GGML_F32x4_STORE vst1q_f32
  855. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  856. #define GGML_F32x4_ADD vaddq_f32
  857. #define GGML_F32x4_MUL vmulq_f32
  858. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  859. #define GGML_F32x4_REDUCE(res, x) \
  860. { \
  861. int offset = GGML_F32_ARR >> 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vaddq_f32(x[i], x[offset+i]); \
  864. } \
  865. offset >>= 1; \
  866. for (int i = 0; i < offset; ++i) { \
  867. x[i] = vaddq_f32(x[i], x[offset+i]); \
  868. } \
  869. offset >>= 1; \
  870. for (int i = 0; i < offset; ++i) { \
  871. x[i] = vaddq_f32(x[i], x[offset+i]); \
  872. } \
  873. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  874. }
  875. #define GGML_F32_VEC GGML_F32x4
  876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  884. // F16 NEON
  885. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  886. #define GGML_F16_STEP 32
  887. #define GGML_F16_EPR 8
  888. #define GGML_F16x8 float16x8_t
  889. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  890. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  891. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  892. #define GGML_F16x8_STORE vst1q_f16
  893. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  894. #define GGML_F16x8_ADD vaddq_f16
  895. #define GGML_F16x8_MUL vmulq_f16
  896. #define GGML_F16x8_REDUCE(res, x) \
  897. do { \
  898. int offset = GGML_F16_ARR >> 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = vaddq_f16(x[i], x[offset+i]); \
  901. } \
  902. offset >>= 1; \
  903. for (int i = 0; i < offset; ++i) { \
  904. x[i] = vaddq_f16(x[i], x[offset+i]); \
  905. } \
  906. offset >>= 1; \
  907. for (int i = 0; i < offset; ++i) { \
  908. x[i] = vaddq_f16(x[i], x[offset+i]); \
  909. } \
  910. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  911. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  912. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  913. } while (0)
  914. #define GGML_F16_VEC GGML_F16x8
  915. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  916. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  917. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  918. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  919. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  920. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  921. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  922. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  923. #else
  924. // if FP16 vector arithmetic is not supported, we use FP32 instead
  925. // and take advantage of the vcvt_ functions to convert to/from FP16
  926. #define GGML_F16_STEP 16
  927. #define GGML_F16_EPR 4
  928. #define GGML_F32Cx4 float32x4_t
  929. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  930. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  931. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  932. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  933. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  934. #define GGML_F32Cx4_ADD vaddq_f32
  935. #define GGML_F32Cx4_MUL vmulq_f32
  936. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  937. #define GGML_F16_VEC GGML_F32Cx4
  938. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  939. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  940. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  941. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  942. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  943. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  944. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  945. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  946. #endif
  947. #elif defined(__AVX512F__)
  948. #define GGML_SIMD
  949. // F32 AVX512
  950. #define GGML_F32_STEP 64
  951. #define GGML_F32_EPR 16
  952. #define GGML_F32x16 __m512
  953. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  954. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  955. #define GGML_F32x16_LOAD _mm512_loadu_ps
  956. #define GGML_F32x16_STORE _mm512_storeu_ps
  957. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  958. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  959. #define GGML_F32x16_ADD _mm512_add_ps
  960. #define GGML_F32x16_MUL _mm512_mul_ps
  961. #define GGML_F32x16_REDUCE(res, x) \
  962. do { \
  963. int offset = GGML_F32_ARR >> 1; \
  964. for (int i = 0; i < offset; ++i) { \
  965. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  966. } \
  967. offset >>= 1; \
  968. for (int i = 0; i < offset; ++i) { \
  969. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  970. } \
  971. offset >>= 1; \
  972. for (int i = 0; i < offset; ++i) { \
  973. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  974. } \
  975. res = _mm512_reduce_add_ps(x[0]); \
  976. } while (0)
  977. // TODO: is this optimal ?
  978. #define GGML_F32_VEC GGML_F32x16
  979. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  980. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  981. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  982. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  983. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  984. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  985. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  986. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  987. // F16 AVX512
  988. // F16 AVX
  989. #define GGML_F16_STEP 64
  990. #define GGML_F16_EPR 16
  991. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  992. #define GGML_F32Cx16 __m512
  993. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  994. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  995. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  996. // so F16C guard isn't required
  997. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  998. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  999. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1000. #define GGML_F32Cx16_ADD _mm512_add_ps
  1001. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1002. #define GGML_F32Cx16_REDUCE(res, x) \
  1003. do { \
  1004. int offset = GGML_F32_ARR >> 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. offset >>= 1; \
  1009. for (int i = 0; i < offset; ++i) { \
  1010. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1011. } \
  1012. offset >>= 1; \
  1013. for (int i = 0; i < offset; ++i) { \
  1014. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1015. } \
  1016. res = _mm512_reduce_add_ps(x[0]); \
  1017. } while (0)
  1018. #define GGML_F16_VEC GGML_F32Cx16
  1019. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1020. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1021. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1022. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1023. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1024. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1025. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1026. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1027. #elif defined(__AVX__)
  1028. #define GGML_SIMD
  1029. // F32 AVX
  1030. #define GGML_F32_STEP 32
  1031. #define GGML_F32_EPR 8
  1032. #define GGML_F32x8 __m256
  1033. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1034. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1035. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1036. #define GGML_F32x8_STORE _mm256_storeu_ps
  1037. #if defined(__FMA__)
  1038. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1039. #else
  1040. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1041. #endif
  1042. #define GGML_F32x8_ADD _mm256_add_ps
  1043. #define GGML_F32x8_MUL _mm256_mul_ps
  1044. #define GGML_F32x8_REDUCE(res, x) \
  1045. do { \
  1046. int offset = GGML_F32_ARR >> 1; \
  1047. for (int i = 0; i < offset; ++i) { \
  1048. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1049. } \
  1050. offset >>= 1; \
  1051. for (int i = 0; i < offset; ++i) { \
  1052. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1053. } \
  1054. offset >>= 1; \
  1055. for (int i = 0; i < offset; ++i) { \
  1056. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1057. } \
  1058. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1059. _mm256_extractf128_ps(x[0], 1)); \
  1060. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1061. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1062. } while (0)
  1063. // TODO: is this optimal ?
  1064. #define GGML_F32_VEC GGML_F32x8
  1065. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1066. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1067. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1068. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1069. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1070. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1071. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1072. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1073. // F16 AVX
  1074. #define GGML_F16_STEP 32
  1075. #define GGML_F16_EPR 8
  1076. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1077. #define GGML_F32Cx8 __m256
  1078. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1079. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1080. #if defined(__F16C__)
  1081. // the _mm256_cvt intrinsics require F16C
  1082. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1083. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1084. #else
  1085. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1086. float tmp[8];
  1087. for (int i = 0; i < 8; i++) {
  1088. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1089. }
  1090. return _mm256_loadu_ps(tmp);
  1091. }
  1092. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1093. float arr[8];
  1094. _mm256_storeu_ps(arr, y);
  1095. for (int i = 0; i < 8; i++)
  1096. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1097. }
  1098. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1099. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1100. #endif
  1101. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1102. #define GGML_F32Cx8_ADD _mm256_add_ps
  1103. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1104. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1105. #define GGML_F16_VEC GGML_F32Cx8
  1106. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1107. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1108. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1109. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1110. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1111. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1112. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1113. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1114. #elif defined(__POWER9_VECTOR__)
  1115. #define GGML_SIMD
  1116. // F32 POWER9
  1117. #define GGML_F32_STEP 32
  1118. #define GGML_F32_EPR 4
  1119. #define GGML_F32x4 vector float
  1120. #define GGML_F32x4_ZERO 0.0f
  1121. #define GGML_F32x4_SET1 vec_splats
  1122. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1123. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1124. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1125. #define GGML_F32x4_ADD vec_add
  1126. #define GGML_F32x4_MUL vec_mul
  1127. #define GGML_F32x4_REDUCE(res, x) \
  1128. { \
  1129. int offset = GGML_F32_ARR >> 1; \
  1130. for (int i = 0; i < offset; ++i) { \
  1131. x[i] = vec_add(x[i], x[offset+i]); \
  1132. } \
  1133. offset >>= 1; \
  1134. for (int i = 0; i < offset; ++i) { \
  1135. x[i] = vec_add(x[i], x[offset+i]); \
  1136. } \
  1137. offset >>= 1; \
  1138. for (int i = 0; i < offset; ++i) { \
  1139. x[i] = vec_add(x[i], x[offset+i]); \
  1140. } \
  1141. res = vec_extract(x[0], 0) + \
  1142. vec_extract(x[0], 1) + \
  1143. vec_extract(x[0], 2) + \
  1144. vec_extract(x[0], 3); \
  1145. }
  1146. #define GGML_F32_VEC GGML_F32x4
  1147. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1148. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1149. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1150. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1151. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1152. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1153. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1154. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1155. // F16 POWER9
  1156. #define GGML_F16_STEP GGML_F32_STEP
  1157. #define GGML_F16_EPR GGML_F32_EPR
  1158. #define GGML_F16_VEC GGML_F32x4
  1159. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1160. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1161. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1162. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1163. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1164. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1165. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1166. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1167. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1168. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1169. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1170. #define GGML_F16_VEC_STORE(p, r, i) \
  1171. if (i & 0x1) \
  1172. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1173. r[i - GGML_ENDIAN_BYTE(0)]), \
  1174. 0, p - GGML_F16_EPR)
  1175. #elif defined(__wasm_simd128__)
  1176. #define GGML_SIMD
  1177. // F32 WASM
  1178. #define GGML_F32_STEP 16
  1179. #define GGML_F32_EPR 4
  1180. #define GGML_F32x4 v128_t
  1181. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1182. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1183. #define GGML_F32x4_LOAD wasm_v128_load
  1184. #define GGML_F32x4_STORE wasm_v128_store
  1185. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1186. #define GGML_F32x4_ADD wasm_f32x4_add
  1187. #define GGML_F32x4_MUL wasm_f32x4_mul
  1188. #define GGML_F32x4_REDUCE(res, x) \
  1189. { \
  1190. int offset = GGML_F32_ARR >> 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1193. } \
  1194. offset >>= 1; \
  1195. for (int i = 0; i < offset; ++i) { \
  1196. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1197. } \
  1198. offset >>= 1; \
  1199. for (int i = 0; i < offset; ++i) { \
  1200. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1201. } \
  1202. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1203. wasm_f32x4_extract_lane(x[0], 1) + \
  1204. wasm_f32x4_extract_lane(x[0], 2) + \
  1205. wasm_f32x4_extract_lane(x[0], 3); \
  1206. }
  1207. #define GGML_F32_VEC GGML_F32x4
  1208. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1209. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1210. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1211. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1212. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1213. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1214. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1215. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1216. // F16 WASM
  1217. #define GGML_F16_STEP 16
  1218. #define GGML_F16_EPR 4
  1219. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1220. float tmp[4];
  1221. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1222. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1223. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1224. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1225. return wasm_v128_load(tmp);
  1226. }
  1227. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1228. float tmp[4];
  1229. wasm_v128_store(tmp, x);
  1230. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1231. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1232. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1233. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1234. }
  1235. #define GGML_F16x4 v128_t
  1236. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1237. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1238. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1239. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1240. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1241. #define GGML_F16x4_ADD wasm_f32x4_add
  1242. #define GGML_F16x4_MUL wasm_f32x4_mul
  1243. #define GGML_F16x4_REDUCE(res, x) \
  1244. { \
  1245. int offset = GGML_F16_ARR >> 1; \
  1246. for (int i = 0; i < offset; ++i) { \
  1247. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1248. } \
  1249. offset >>= 1; \
  1250. for (int i = 0; i < offset; ++i) { \
  1251. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1252. } \
  1253. offset >>= 1; \
  1254. for (int i = 0; i < offset; ++i) { \
  1255. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1256. } \
  1257. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1258. wasm_f32x4_extract_lane(x[0], 1) + \
  1259. wasm_f32x4_extract_lane(x[0], 2) + \
  1260. wasm_f32x4_extract_lane(x[0], 3); \
  1261. }
  1262. #define GGML_F16_VEC GGML_F16x4
  1263. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1264. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1265. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1266. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1267. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1268. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1269. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1270. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1271. #elif defined(__SSE3__)
  1272. #define GGML_SIMD
  1273. // F32 SSE
  1274. #define GGML_F32_STEP 32
  1275. #define GGML_F32_EPR 4
  1276. #define GGML_F32x4 __m128
  1277. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1278. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1279. #define GGML_F32x4_LOAD _mm_loadu_ps
  1280. #define GGML_F32x4_STORE _mm_storeu_ps
  1281. #if defined(__FMA__)
  1282. // TODO: Does this work?
  1283. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1284. #else
  1285. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1286. #endif
  1287. #define GGML_F32x4_ADD _mm_add_ps
  1288. #define GGML_F32x4_MUL _mm_mul_ps
  1289. #define GGML_F32x4_REDUCE(res, x) \
  1290. { \
  1291. int offset = GGML_F32_ARR >> 1; \
  1292. for (int i = 0; i < offset; ++i) { \
  1293. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1294. } \
  1295. offset >>= 1; \
  1296. for (int i = 0; i < offset; ++i) { \
  1297. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1298. } \
  1299. offset >>= 1; \
  1300. for (int i = 0; i < offset; ++i) { \
  1301. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1302. } \
  1303. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1304. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1305. }
  1306. // TODO: is this optimal ?
  1307. #define GGML_F32_VEC GGML_F32x4
  1308. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1309. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1310. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1311. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1312. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1313. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1314. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1315. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1316. // F16 SSE
  1317. #define GGML_F16_STEP 32
  1318. #define GGML_F16_EPR 4
  1319. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1320. float tmp[4];
  1321. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1322. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1323. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1324. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1325. return _mm_loadu_ps(tmp);
  1326. }
  1327. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1328. float arr[4];
  1329. _mm_storeu_ps(arr, y);
  1330. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1331. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1332. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1333. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1334. }
  1335. #define GGML_F32Cx4 __m128
  1336. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1337. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1338. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1339. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1340. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1341. #define GGML_F32Cx4_ADD _mm_add_ps
  1342. #define GGML_F32Cx4_MUL _mm_mul_ps
  1343. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1344. #define GGML_F16_VEC GGML_F32Cx4
  1345. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1346. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1347. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1348. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1349. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1350. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1351. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1352. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1353. #endif
  1354. // GGML_F32_ARR / GGML_F16_ARR
  1355. // number of registers to use per step
  1356. #ifdef GGML_SIMD
  1357. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1358. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1359. #endif
  1360. //
  1361. // ggml context
  1362. //
  1363. struct ggml_context {
  1364. size_t mem_size;
  1365. void* mem_buffer;
  1366. bool mem_buffer_owned;
  1367. bool no_alloc;
  1368. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1369. int n_objects;
  1370. struct ggml_object* objects_begin;
  1371. struct ggml_object* objects_end;
  1372. struct ggml_scratch scratch;
  1373. struct ggml_scratch scratch_save;
  1374. };
  1375. struct ggml_context_container {
  1376. bool used;
  1377. struct ggml_context context;
  1378. };
  1379. struct ggml_compute_state_shared {
  1380. const struct ggml_cgraph* cgraph;
  1381. const struct ggml_cplan* cplan;
  1382. int64_t perf_node_start_cycles;
  1383. int64_t perf_node_start_time_us;
  1384. const int n_threads;
  1385. // synchronization primitives
  1386. atomic_int n_active; // num active threads
  1387. atomic_int node_n; // active graph node
  1388. atomic_int node_task; // active graph node task phase
  1389. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1390. void* abort_callback_data;
  1391. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1392. };
  1393. struct ggml_compute_state {
  1394. ggml_thread_t thrd;
  1395. int ith;
  1396. struct ggml_compute_state_shared* shared;
  1397. enum ggml_status ec;
  1398. };
  1399. //
  1400. // fundamental operations
  1401. //
  1402. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1403. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1404. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1405. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1406. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1407. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1408. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1409. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1410. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1411. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1412. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1413. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1414. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1415. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1416. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1417. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1418. assert(nrc == 1);
  1419. UNUSED(nrc);
  1420. UNUSED(bx);
  1421. UNUSED(by);
  1422. UNUSED(bs);
  1423. #if defined(GGML_SIMD)
  1424. float sumf = 0.0f;
  1425. const int np = (n & ~(GGML_F32_STEP - 1));
  1426. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1427. GGML_F32_VEC ax[GGML_F32_ARR];
  1428. GGML_F32_VEC ay[GGML_F32_ARR];
  1429. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1430. for (int j = 0; j < GGML_F32_ARR; j++) {
  1431. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1432. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1433. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1434. }
  1435. }
  1436. // reduce sum0..sum3 to sum0
  1437. GGML_F32_VEC_REDUCE(sumf, sum);
  1438. // leftovers
  1439. for (int i = np; i < n; ++i) {
  1440. sumf += x[i]*y[i];
  1441. }
  1442. #else
  1443. // scalar
  1444. ggml_float sumf = 0.0;
  1445. for (int i = 0; i < n; ++i) {
  1446. sumf += (ggml_float)(x[i]*y[i]);
  1447. }
  1448. #endif
  1449. *s = sumf;
  1450. }
  1451. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1452. assert(nrc == 1);
  1453. UNUSED(nrc);
  1454. UNUSED(bx);
  1455. UNUSED(by);
  1456. UNUSED(bs);
  1457. int i = 0;
  1458. ggml_float sumf = 0;
  1459. #if defined(__AVX512BF16__)
  1460. __m512 c1 = _mm512_setzero_ps();
  1461. __m512 c2 = _mm512_setzero_ps();
  1462. for (; i + 64 <= n; i += 64) {
  1463. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1464. m512bh(_mm512_loadu_si512((y + i))));
  1465. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1466. m512bh(_mm512_loadu_si512((y + i + 32))));
  1467. }
  1468. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1469. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1470. #elif defined(__AVX512F__)
  1471. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1472. __m512 c1 = _mm512_setzero_ps();
  1473. __m512 c2 = _mm512_setzero_ps();
  1474. for (; i + 32 <= n; i += 32) {
  1475. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1476. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1477. }
  1478. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1479. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1480. #undef LOAD
  1481. #elif defined(__AVX2__)
  1482. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1483. __m256 c1 = _mm256_setzero_ps();
  1484. __m256 c2 = _mm256_setzero_ps();
  1485. __m256 c3 = _mm256_setzero_ps();
  1486. __m256 c4 = _mm256_setzero_ps();
  1487. for (; i + 32 <= n; i += 32) {
  1488. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1489. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1490. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1491. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1492. }
  1493. __m128 g;
  1494. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1495. _mm256_add_ps(c2, c4));
  1496. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1497. _mm256_castps256_ps128(c1));
  1498. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1499. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1500. sumf += (ggml_float)_mm_cvtss_f32(g);
  1501. #undef LOAD
  1502. #endif
  1503. for (; i < n; ++i) {
  1504. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1505. GGML_BF16_TO_FP32(y[i]));
  1506. }
  1507. *s = sumf;
  1508. }
  1509. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1510. assert(nrc == 1);
  1511. UNUSED(nrc);
  1512. UNUSED(bx);
  1513. UNUSED(by);
  1514. UNUSED(bs);
  1515. ggml_float sumf = 0.0;
  1516. #if defined(GGML_SIMD)
  1517. const int np = (n & ~(GGML_F16_STEP - 1));
  1518. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1519. GGML_F16_VEC ax[GGML_F16_ARR];
  1520. GGML_F16_VEC ay[GGML_F16_ARR];
  1521. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1522. for (int j = 0; j < GGML_F16_ARR; j++) {
  1523. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1524. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1525. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1526. }
  1527. }
  1528. // reduce sum0..sum3 to sum0
  1529. GGML_F16_VEC_REDUCE(sumf, sum);
  1530. // leftovers
  1531. for (int i = np; i < n; ++i) {
  1532. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1533. }
  1534. #else
  1535. for (int i = 0; i < n; ++i) {
  1536. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1537. }
  1538. #endif
  1539. *s = sumf;
  1540. }
  1541. // compute GGML_VEC_DOT_UNROLL dot products at once
  1542. // xs - x row stride in bytes
  1543. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1544. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1545. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1546. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1547. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1548. }
  1549. #if defined(GGML_SIMD)
  1550. const int np = (n & ~(GGML_F16_STEP - 1));
  1551. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1552. GGML_F16_VEC ax[GGML_F16_ARR];
  1553. GGML_F16_VEC ay[GGML_F16_ARR];
  1554. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1555. for (int j = 0; j < GGML_F16_ARR; j++) {
  1556. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1557. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1558. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1559. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1560. }
  1561. }
  1562. }
  1563. // reduce sum0..sum3 to sum0
  1564. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1565. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1566. }
  1567. // leftovers
  1568. for (int i = np; i < n; ++i) {
  1569. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1570. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1571. }
  1572. }
  1573. #else
  1574. for (int i = 0; i < n; ++i) {
  1575. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1576. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1577. }
  1578. }
  1579. #endif
  1580. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1581. s[i] = sumf[i];
  1582. }
  1583. }
  1584. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1585. #if defined(GGML_SIMD)
  1586. const int np = (n & ~(GGML_F32_STEP - 1));
  1587. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1588. GGML_F32_VEC ax[GGML_F32_ARR];
  1589. GGML_F32_VEC ay[GGML_F32_ARR];
  1590. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1591. for (int j = 0; j < GGML_F32_ARR; j++) {
  1592. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1593. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1594. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1595. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1596. }
  1597. }
  1598. // leftovers
  1599. for (int i = np; i < n; ++i) {
  1600. y[i] += x[i]*v;
  1601. }
  1602. #else
  1603. // scalar
  1604. for (int i = 0; i < n; ++i) {
  1605. y[i] += x[i]*v;
  1606. }
  1607. #endif
  1608. }
  1609. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1610. #if defined(GGML_SIMD)
  1611. const int np = (n & ~(GGML_F16_STEP - 1));
  1612. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1613. GGML_F16_VEC ax[GGML_F16_ARR];
  1614. GGML_F16_VEC ay[GGML_F16_ARR];
  1615. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1616. for (int j = 0; j < GGML_F16_ARR; j++) {
  1617. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1618. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1619. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1620. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1621. }
  1622. }
  1623. // leftovers
  1624. for (int i = np; i < n; ++i) {
  1625. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1626. }
  1627. #else
  1628. // scalar
  1629. for (int i = 0; i < n; ++i) {
  1630. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1631. }
  1632. #endif
  1633. }
  1634. // xs and vs are byte strides of x and v
  1635. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1636. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1637. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1638. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1639. x[i] = (const float *) ((const char *) xv + i*xs);
  1640. v[i] = (const float *) ((const char *) vv + i*vs);
  1641. }
  1642. #if defined(GGML_SIMD)
  1643. const int np = (n & ~(GGML_F32_STEP - 1));
  1644. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1645. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1646. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1647. }
  1648. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1649. GGML_F32_VEC ay[GGML_F32_ARR];
  1650. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1651. for (int j = 0; j < GGML_F32_ARR; j++) {
  1652. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1653. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1654. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1655. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1656. }
  1657. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1658. }
  1659. }
  1660. // leftovers
  1661. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1662. for (int i = np; i < n; ++i) {
  1663. y[i] += x[k][i]*v[k][0];
  1664. }
  1665. }
  1666. #else
  1667. // scalar
  1668. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1669. for (int i = 0; i < n; ++i) {
  1670. y[i] += x[k][i]*v[k][0];
  1671. }
  1672. }
  1673. #endif
  1674. }
  1675. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1676. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1677. #if defined(GGML_USE_ACCELERATE)
  1678. vDSP_vsmul(y, 1, &v, y, 1, n);
  1679. #elif defined(GGML_SIMD)
  1680. const int np = (n & ~(GGML_F32_STEP - 1));
  1681. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1682. GGML_F32_VEC ay[GGML_F32_ARR];
  1683. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1684. for (int j = 0; j < GGML_F32_ARR; j++) {
  1685. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1686. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1687. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1688. }
  1689. }
  1690. // leftovers
  1691. for (int i = np; i < n; ++i) {
  1692. y[i] *= v;
  1693. }
  1694. #else
  1695. // scalar
  1696. for (int i = 0; i < n; ++i) {
  1697. y[i] *= v;
  1698. }
  1699. #endif
  1700. }
  1701. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1702. #if defined(GGML_SIMD)
  1703. const int np = (n & ~(GGML_F16_STEP - 1));
  1704. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1705. GGML_F16_VEC ay[GGML_F16_ARR];
  1706. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1707. for (int j = 0; j < GGML_F16_ARR; j++) {
  1708. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1709. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1710. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1711. }
  1712. }
  1713. // leftovers
  1714. for (int i = np; i < n; ++i) {
  1715. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1716. }
  1717. #else
  1718. // scalar
  1719. for (int i = 0; i < n; ++i) {
  1720. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1721. }
  1722. #endif
  1723. }
  1724. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1725. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1726. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1727. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1728. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1729. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1730. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1731. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1732. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1733. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1734. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1735. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1736. // TODO: optimize performance
  1737. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1738. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1739. static const float GELU_COEF_A = 0.044715f;
  1740. static const float GELU_QUICK_COEF = -1.702f;
  1741. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1742. inline static float ggml_gelu_f32(float x) {
  1743. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1744. }
  1745. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1746. const uint16_t * i16 = (const uint16_t *) x;
  1747. for (int i = 0; i < n; ++i) {
  1748. y[i] = ggml_table_gelu_f16[i16[i]];
  1749. }
  1750. }
  1751. #ifdef GGML_GELU_FP16
  1752. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1753. uint16_t t;
  1754. for (int i = 0; i < n; ++i) {
  1755. if (x[i] <= -10.0f) {
  1756. y[i] = 0.0f;
  1757. } else if (x[i] >= 10.0f) {
  1758. y[i] = x[i];
  1759. } else {
  1760. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1761. memcpy(&t, &fp16, sizeof(uint16_t));
  1762. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1763. }
  1764. }
  1765. }
  1766. #else
  1767. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1768. for (int i = 0; i < n; ++i) {
  1769. y[i] = ggml_gelu_f32(x[i]);
  1770. }
  1771. }
  1772. #endif
  1773. inline static float ggml_gelu_quick_f32(float x) {
  1774. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1775. }
  1776. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1777. // const uint16_t * i16 = (const uint16_t *) x;
  1778. // for (int i = 0; i < n; ++i) {
  1779. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1780. // }
  1781. //}
  1782. #ifdef GGML_GELU_QUICK_FP16
  1783. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1784. uint16_t t;
  1785. for (int i = 0; i < n; ++i) {
  1786. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1787. memcpy(&t, &fp16, sizeof(uint16_t));
  1788. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1789. }
  1790. }
  1791. #else
  1792. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1793. for (int i = 0; i < n; ++i) {
  1794. y[i] = ggml_gelu_quick_f32(x[i]);
  1795. }
  1796. }
  1797. #endif
  1798. // Sigmoid Linear Unit (SiLU) function
  1799. inline static float ggml_silu_f32(float x) {
  1800. return x/(1.0f + expf(-x));
  1801. }
  1802. #if defined(__ARM_NEON) && defined(__aarch64__)
  1803. // adapted from arm limited optimized routine
  1804. // the maximum error is 1.45358 plus 0.5 ulps
  1805. // numbers above 88.38 will flush to infinity
  1806. // numbers beneath -103.97 will flush to zero
  1807. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1808. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1809. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1810. const float32x4_t n = vsubq_f32(z, r);
  1811. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1812. vdupq_n_f32(0x1.7f7d1cp-20f));
  1813. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1814. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1815. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1816. const float32x4_t u = vmulq_f32(b, b);
  1817. const float32x4_t j = vfmaq_f32(
  1818. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1819. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1820. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1821. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1822. return vfmaq_f32(k, j, k);
  1823. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1824. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1825. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1826. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1827. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1828. }
  1829. // computes silu x/(1+exp(-x)) in single precision vector
  1830. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1831. const float32x4_t one = vdupq_n_f32(1.0f);
  1832. const float32x4_t zero = vdupq_n_f32(0.0f);
  1833. const float32x4_t neg_x = vsubq_f32(zero, x);
  1834. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1835. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1836. return vdivq_f32(x, one_plus_exp_neg_x);
  1837. }
  1838. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1839. // adapted from arm limited optimized routine
  1840. // the maximum error is 1.45358 plus 0.5 ulps
  1841. // numbers above 88.38 will flush to infinity
  1842. // numbers beneath -103.97 will flush to zero
  1843. inline static __m512 ggml_v_expf(__m512 x) {
  1844. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  1845. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  1846. const __m512 n = _mm512_sub_ps(z, r);
  1847. const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  1848. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  1849. const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
  1850. const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
  1851. const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
  1852. const __m512 u = _mm512_mul_ps(b, b);
  1853. const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  1854. _mm512_set1_ps(0x1.573e2ep-5f)), u,
  1855. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  1856. _mm512_set1_ps(0x1.fffdb6p-2f))),
  1857. u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
  1858. if (_mm512_kortestz(c, c))
  1859. return _mm512_fmadd_ps(j, k, k);
  1860. const __m512i g = _mm512_and_si512(
  1861. _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
  1862. _mm512_set1_epi32(0x82000000u));
  1863. const __m512 s1 =
  1864. _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
  1865. const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
  1866. const __mmask16 d =
  1867. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  1868. return _mm512_mask_blend_ps(
  1869. d, _mm512_mask_blend_ps(
  1870. c, _mm512_fmadd_ps(k, j, k),
  1871. _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
  1872. _mm512_mul_ps(s1, s1));
  1873. }
  1874. // computes silu x/(1+exp(-x)) in single precision vector
  1875. inline static __m512 ggml_v_silu(__m512 x) {
  1876. const __m512 one = _mm512_set1_ps(1);
  1877. const __m512 zero = _mm512_setzero_ps();
  1878. const __m512 neg_x = _mm512_sub_ps(zero, x);
  1879. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  1880. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  1881. return _mm512_div_ps(x, one_plus_exp_neg_x);
  1882. }
  1883. #elif defined(__AVX2__) && defined(__FMA__)
  1884. // adapted from arm limited optimized routine
  1885. // the maximum error is 1.45358 plus 0.5 ulps
  1886. // numbers above 88.38 will flush to infinity
  1887. // numbers beneath -103.97 will flush to zero
  1888. inline static __m256 ggml_v_expf(__m256 x) {
  1889. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  1890. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  1891. const __m256 n = _mm256_sub_ps(z, r);
  1892. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  1893. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  1894. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  1895. const __m256 k = _mm256_castsi256_ps(
  1896. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  1897. const __m256i c = _mm256_castps_si256(
  1898. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  1899. _mm256_set1_ps(126), _CMP_GT_OQ));
  1900. const __m256 u = _mm256_mul_ps(b, b);
  1901. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  1902. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  1903. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  1904. _mm256_set1_ps(0x1.fffdb6p-2f))),
  1905. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  1906. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  1907. return _mm256_fmadd_ps(j, k, k);
  1908. const __m256i g = _mm256_and_si256(
  1909. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  1910. _mm256_set1_epi32(0x82000000u));
  1911. const __m256 s1 =
  1912. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  1913. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  1914. const __m256i d = _mm256_castps_si256(
  1915. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  1916. _mm256_set1_ps(192), _CMP_GT_OQ));
  1917. return _mm256_or_ps(
  1918. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  1919. _mm256_andnot_ps(
  1920. _mm256_castsi256_ps(d),
  1921. _mm256_or_ps(
  1922. _mm256_and_ps(_mm256_castsi256_ps(c),
  1923. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  1924. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  1925. }
  1926. // computes silu x/(1+exp(-x)) in single precision vector
  1927. inline static __m256 ggml_v_silu(__m256 x) {
  1928. const __m256 one = _mm256_set1_ps(1);
  1929. const __m256 zero = _mm256_setzero_ps();
  1930. const __m256 neg_x = _mm256_sub_ps(zero, x);
  1931. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  1932. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  1933. return _mm256_div_ps(x, one_plus_exp_neg_x);
  1934. }
  1935. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  1936. #if defined(__FMA__)
  1937. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  1938. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  1939. #else
  1940. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  1941. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  1942. #endif
  1943. // adapted from arm limited optimized routine
  1944. // the maximum error is 1.45358 plus 0.5 ulps
  1945. // numbers above 88.38 will flush to infinity
  1946. // numbers beneath -103.97 will flush to zero
  1947. inline static __m128 ggml_v_expf(__m128 x) {
  1948. const __m128 r = _mm_set1_ps(0x1.8p23f);
  1949. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  1950. const __m128 n = _mm_sub_ps(z, r);
  1951. const __m128 b =
  1952. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  1953. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  1954. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  1955. const __m128i c =
  1956. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  1957. const __m128 u = _mm_mul_ps(b, b);
  1958. const __m128 j =
  1959. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  1960. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  1961. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  1962. if (!_mm_movemask_epi8(c))
  1963. return MADD128(j, k, k);
  1964. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  1965. _mm_set1_epi32(0x82000000u));
  1966. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  1967. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  1968. const __m128i d =
  1969. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  1970. return _mm_or_ps(
  1971. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  1972. _mm_andnot_ps(_mm_castsi128_ps(d),
  1973. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  1974. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  1975. }
  1976. // computes silu x/(1+exp(-x)) in single precision vector
  1977. inline static __m128 ggml_v_silu(__m128 x) {
  1978. const __m128 one = _mm_set1_ps(1);
  1979. const __m128 zero = _mm_setzero_ps();
  1980. const __m128 neg_x = _mm_sub_ps(zero, x);
  1981. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  1982. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  1983. return _mm_div_ps(x, one_plus_exp_neg_x);
  1984. }
  1985. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  1986. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1987. int i = 0;
  1988. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  1989. for (; i + 15 < n; i += 16) {
  1990. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  1991. }
  1992. #elif defined(__AVX2__) && defined(__FMA__)
  1993. for (; i + 7 < n; i += 8) {
  1994. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  1995. }
  1996. #elif defined(__SSE2__)
  1997. for (; i + 3 < n; i += 4) {
  1998. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  1999. }
  2000. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2001. for (; i + 3 < n; i += 4) {
  2002. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2003. }
  2004. #endif
  2005. for (; i < n; ++i) {
  2006. y[i] = ggml_silu_f32(x[i]);
  2007. }
  2008. }
  2009. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2010. int i = 0;
  2011. ggml_float sum = 0;
  2012. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2013. for (; i + 15 < n; i += 16) {
  2014. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2015. _mm512_set1_ps(max)));
  2016. _mm512_storeu_ps(y + i, val);
  2017. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2018. }
  2019. #elif defined(__AVX2__) && defined(__FMA__)
  2020. for (; i + 7 < n; i += 8) {
  2021. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2022. _mm256_set1_ps(max)));
  2023. _mm256_storeu_ps(y + i, val);
  2024. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2025. _mm256_castps256_ps128(val));
  2026. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2027. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2028. sum += (ggml_float)_mm_cvtss_f32(val2);
  2029. }
  2030. #elif defined(__SSE2__)
  2031. for (; i + 3 < n; i += 4) {
  2032. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2033. _mm_set1_ps(max)));
  2034. _mm_storeu_ps(y + i, val);
  2035. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2036. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2037. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2038. #else
  2039. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2040. val = _mm_add_ps(val, tmp);
  2041. tmp = _mm_movehl_ps(tmp, val);
  2042. val = _mm_add_ss(val, tmp);
  2043. #endif
  2044. sum += (ggml_float)_mm_cvtss_f32(val);
  2045. }
  2046. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2047. for (; i + 3 < n; i += 4) {
  2048. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2049. vdupq_n_f32(max)));
  2050. vst1q_f32(y + i, val);
  2051. sum += (ggml_float)vaddvq_f32(val);
  2052. }
  2053. #endif
  2054. for (; i < n; ++i) {
  2055. float val = expf(x[i] - max);
  2056. sum += (ggml_float)val;
  2057. y[i] = val;
  2058. }
  2059. return sum;
  2060. }
  2061. inline static float ggml_silu_backward_f32(float x, float dy) {
  2062. const float s = 1.0f/(1.0f + expf(-x));
  2063. return dy*s*(1.0f + x*(1.0f - s));
  2064. }
  2065. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2066. for (int i = 0; i < n; ++i) {
  2067. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2068. }
  2069. }
  2070. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2071. #ifndef GGML_USE_ACCELERATE
  2072. ggml_float sum = 0.0;
  2073. for (int i = 0; i < n; ++i) {
  2074. sum += (ggml_float)x[i];
  2075. }
  2076. *s = sum;
  2077. #else
  2078. vDSP_sve(x, 1, s, n);
  2079. #endif
  2080. }
  2081. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2082. ggml_float sum = 0.0;
  2083. for (int i = 0; i < n; ++i) {
  2084. sum += (ggml_float)x[i];
  2085. }
  2086. *s = sum;
  2087. }
  2088. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2089. float sum = 0.0f;
  2090. for (int i = 0; i < n; ++i) {
  2091. sum += GGML_FP16_TO_FP32(x[i]);
  2092. }
  2093. *s = sum;
  2094. }
  2095. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2096. float sum = 0.0f;
  2097. for (int i = 0; i < n; ++i) {
  2098. sum += GGML_BF16_TO_FP32(x[i]);
  2099. }
  2100. *s = sum;
  2101. }
  2102. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2103. #ifndef GGML_USE_ACCELERATE
  2104. float max = -INFINITY;
  2105. for (int i = 0; i < n; ++i) {
  2106. max = MAX(max, x[i]);
  2107. }
  2108. *s = max;
  2109. #else
  2110. vDSP_maxv(x, 1, s, n);
  2111. #endif
  2112. }
  2113. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2114. ggml_vec_norm_f32(n, s, x);
  2115. *s = 1.f/(*s);
  2116. }
  2117. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2118. float max = -INFINITY;
  2119. int idx = 0;
  2120. for (int i = 0; i < n; ++i) {
  2121. max = MAX(max, x[i]);
  2122. if (max == x[i]) { idx = i; }
  2123. }
  2124. *s = idx;
  2125. }
  2126. //
  2127. // data types
  2128. //
  2129. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2130. "NONE",
  2131. "DUP",
  2132. "ADD",
  2133. "ADD1",
  2134. "ACC",
  2135. "SUB",
  2136. "MUL",
  2137. "DIV",
  2138. "SQR",
  2139. "SQRT",
  2140. "LOG",
  2141. "SUM",
  2142. "SUM_ROWS",
  2143. "MEAN",
  2144. "ARGMAX",
  2145. "REPEAT",
  2146. "REPEAT_BACK",
  2147. "CONCAT",
  2148. "SILU_BACK",
  2149. "NORM",
  2150. "RMS_NORM",
  2151. "RMS_NORM_BACK",
  2152. "GROUP_NORM",
  2153. "MUL_MAT",
  2154. "MUL_MAT_ID",
  2155. "OUT_PROD",
  2156. "SCALE",
  2157. "SET",
  2158. "CPY",
  2159. "CONT",
  2160. "RESHAPE",
  2161. "VIEW",
  2162. "PERMUTE",
  2163. "TRANSPOSE",
  2164. "GET_ROWS",
  2165. "GET_ROWS_BACK",
  2166. "DIAG",
  2167. "DIAG_MASK_INF",
  2168. "DIAG_MASK_ZERO",
  2169. "SOFT_MAX",
  2170. "SOFT_MAX_BACK",
  2171. "ROPE",
  2172. "ROPE_BACK",
  2173. "CLAMP",
  2174. "CONV_TRANSPOSE_1D",
  2175. "IM2COL",
  2176. "CONV_TRANSPOSE_2D",
  2177. "POOL_1D",
  2178. "POOL_2D",
  2179. "UPSCALE",
  2180. "PAD",
  2181. "ARANGE",
  2182. "TIMESTEP_EMBEDDING",
  2183. "ARGSORT",
  2184. "LEAKY_RELU",
  2185. "FLASH_ATTN",
  2186. "FLASH_ATTN_EXT",
  2187. "FLASH_FF",
  2188. "FLASH_ATTN_BACK",
  2189. "SSM_CONV",
  2190. "SSM_SCAN",
  2191. "WIN_PART",
  2192. "WIN_UNPART",
  2193. "GET_REL_POS",
  2194. "ADD_REL_POS",
  2195. "UNARY",
  2196. "MAP_UNARY",
  2197. "MAP_BINARY",
  2198. "MAP_CUSTOM1_F32",
  2199. "MAP_CUSTOM2_F32",
  2200. "MAP_CUSTOM3_F32",
  2201. "MAP_CUSTOM1",
  2202. "MAP_CUSTOM2",
  2203. "MAP_CUSTOM3",
  2204. "CROSS_ENTROPY_LOSS",
  2205. "CROSS_ENTROPY_LOSS_BACK",
  2206. };
  2207. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2208. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2209. "none",
  2210. "x",
  2211. "x+y",
  2212. "x+y",
  2213. "view(x,nb,offset)+=y->x",
  2214. "x-y",
  2215. "x*y",
  2216. "x/y",
  2217. "x^2",
  2218. "√x",
  2219. "log(x)",
  2220. "Σx",
  2221. "Σx_k",
  2222. "Σx/n",
  2223. "argmax(x)",
  2224. "repeat(x)",
  2225. "repeat_back(x)",
  2226. "concat(x, y)",
  2227. "silu_back(x)",
  2228. "norm(x)",
  2229. "rms_norm(x)",
  2230. "rms_norm_back(x)",
  2231. "group_norm(x)",
  2232. "X*Y",
  2233. "X[i]*Y",
  2234. "X*Y",
  2235. "x*v",
  2236. "y-\\>view(x)",
  2237. "x-\\>y",
  2238. "cont(x)",
  2239. "reshape(x)",
  2240. "view(x)",
  2241. "permute(x)",
  2242. "transpose(x)",
  2243. "get_rows(x)",
  2244. "get_rows_back(x)",
  2245. "diag(x)",
  2246. "diag_mask_inf(x)",
  2247. "diag_mask_zero(x)",
  2248. "soft_max(x)",
  2249. "soft_max_back(x)",
  2250. "rope(x)",
  2251. "rope_back(x)",
  2252. "clamp(x)",
  2253. "conv_transpose_1d(x)",
  2254. "im2col(x)",
  2255. "conv_transpose_2d(x)",
  2256. "pool_1d(x)",
  2257. "pool_2d(x)",
  2258. "upscale(x)",
  2259. "pad(x)",
  2260. "arange(start, stop, step)",
  2261. "timestep_embedding(timesteps, dim, max_period)",
  2262. "argsort(x)",
  2263. "leaky_relu(x)",
  2264. "flash_attn(x)",
  2265. "flash_attn_ext(x)",
  2266. "flash_ff(x)",
  2267. "flash_attn_back(x)",
  2268. "ssm_conv(x)",
  2269. "ssm_scan(x)",
  2270. "win_part(x)",
  2271. "win_unpart(x)",
  2272. "get_rel_pos(x)",
  2273. "add_rel_pos(x)",
  2274. "unary(x)",
  2275. "f(x)",
  2276. "f(x,y)",
  2277. "custom_f32(x)",
  2278. "custom_f32(x,y)",
  2279. "custom_f32(x,y,z)",
  2280. "custom(x)",
  2281. "custom(x,y)",
  2282. "custom(x,y,z)",
  2283. "cross_entropy_loss(x,y)",
  2284. "cross_entropy_loss_back(x,y)",
  2285. };
  2286. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2287. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2288. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2289. "ABS",
  2290. "SGN",
  2291. "NEG",
  2292. "STEP",
  2293. "TANH",
  2294. "ELU",
  2295. "RELU",
  2296. "SIGMOID",
  2297. "GELU",
  2298. "GELU_QUICK",
  2299. "SILU",
  2300. "HARDSWISH",
  2301. "HARDSIGMOID",
  2302. };
  2303. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2304. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2305. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2306. // WARN:
  2307. // Mis-configuration can lead to problem that's hard to reason about:
  2308. // * At best it crash or talks nosense.
  2309. // * At worst it talks slightly difference but hard to perceive.
  2310. //
  2311. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2312. // Take care about compile options (e.g., GGML_USE_xxx).
  2313. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2314. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2315. static void ggml_setup_op_has_task_pass(void) {
  2316. { // INIT
  2317. bool * p = GGML_OP_HAS_INIT;
  2318. p[GGML_OP_ACC ] = true;
  2319. p[GGML_OP_MUL_MAT ] = true;
  2320. p[GGML_OP_MUL_MAT_ID ] = true;
  2321. p[GGML_OP_OUT_PROD ] = true;
  2322. p[GGML_OP_SET ] = true;
  2323. p[GGML_OP_GET_ROWS_BACK ] = true;
  2324. p[GGML_OP_DIAG_MASK_INF ] = true;
  2325. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2326. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2327. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2328. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2329. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2330. p[GGML_OP_ADD_REL_POS ] = true;
  2331. }
  2332. { // FINALIZE
  2333. bool * p = GGML_OP_HAS_FINALIZE;
  2334. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2335. }
  2336. }
  2337. //
  2338. // NUMA support
  2339. //
  2340. #define GGML_NUMA_MAX_NODES 8
  2341. #define GGML_NUMA_MAX_CPUS 512
  2342. struct ggml_numa_node {
  2343. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2344. uint32_t n_cpus;
  2345. };
  2346. struct ggml_numa_nodes {
  2347. enum ggml_numa_strategy numa_strategy;
  2348. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2349. uint32_t n_nodes;
  2350. uint32_t total_cpus; // hardware threads on system
  2351. uint32_t current_node; // node on which main process is execting
  2352. #if defined(__gnu_linux__)
  2353. cpu_set_t cpuset; // cpuset from numactl
  2354. #else
  2355. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2356. #endif
  2357. };
  2358. //
  2359. // ggml state
  2360. //
  2361. struct ggml_state {
  2362. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2363. struct ggml_numa_nodes numa;
  2364. };
  2365. // global state
  2366. static struct ggml_state g_state;
  2367. static atomic_int g_state_barrier = 0;
  2368. // barrier via spin lock
  2369. inline static void ggml_critical_section_start(void) {
  2370. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2371. while (processing > 0) {
  2372. // wait for other threads to finish
  2373. atomic_fetch_sub(&g_state_barrier, 1);
  2374. sched_yield(); // TODO: reconsider this
  2375. processing = atomic_fetch_add(&g_state_barrier, 1);
  2376. }
  2377. }
  2378. // TODO: make this somehow automatically executed
  2379. // some sort of "sentry" mechanism
  2380. inline static void ggml_critical_section_end(void) {
  2381. atomic_fetch_sub(&g_state_barrier, 1);
  2382. }
  2383. #if defined(__gnu_linux__)
  2384. static cpu_set_t ggml_get_numa_affinity(void) {
  2385. cpu_set_t cpuset;
  2386. pthread_t thread;
  2387. thread = pthread_self();
  2388. CPU_ZERO(&cpuset);
  2389. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2390. return cpuset;
  2391. }
  2392. #else
  2393. static uint32_t ggml_get_numa_affinity(void) {
  2394. return 0; // no NUMA support
  2395. }
  2396. #endif
  2397. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2398. if (g_state.numa.n_nodes > 0) {
  2399. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2400. return;
  2401. }
  2402. #if defined(__gnu_linux__)
  2403. struct stat st;
  2404. char path[256];
  2405. int rv;
  2406. // set numa scheme
  2407. g_state.numa.numa_strategy = numa_flag;
  2408. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2409. g_state.numa.cpuset = ggml_get_numa_affinity();
  2410. // enumerate nodes
  2411. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2412. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2413. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2414. if (stat(path, &st) != 0) { break; }
  2415. ++g_state.numa.n_nodes;
  2416. }
  2417. // enumerate CPUs
  2418. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2419. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2420. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2421. if (stat(path, &st) != 0) { break; }
  2422. ++g_state.numa.total_cpus;
  2423. }
  2424. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2425. // figure out which node we're on
  2426. uint current_cpu;
  2427. int getcpu_ret = 0;
  2428. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2429. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2430. #else
  2431. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2432. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2433. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2434. # endif
  2435. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2436. #endif
  2437. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2438. g_state.numa.n_nodes = 0;
  2439. return;
  2440. }
  2441. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2442. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2443. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2444. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2445. node->n_cpus = 0;
  2446. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2447. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2448. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2449. if (stat(path, &st) == 0) {
  2450. node->cpus[node->n_cpus++] = c;
  2451. GGML_PRINT_DEBUG(" %u", c);
  2452. }
  2453. }
  2454. GGML_PRINT_DEBUG("\n");
  2455. }
  2456. if (ggml_is_numa()) {
  2457. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2458. if (fptr != NULL) {
  2459. char buf[42];
  2460. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2461. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2462. }
  2463. fclose(fptr);
  2464. }
  2465. }
  2466. #else
  2467. GGML_UNUSED(numa_flag);
  2468. // TODO
  2469. #endif
  2470. }
  2471. bool ggml_is_numa(void) {
  2472. return g_state.numa.n_nodes > 1;
  2473. }
  2474. ////////////////////////////////////////////////////////////////////////////////
  2475. void ggml_print_object(const struct ggml_object * obj) {
  2476. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2477. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2478. }
  2479. void ggml_print_objects(const struct ggml_context * ctx) {
  2480. struct ggml_object * obj = ctx->objects_begin;
  2481. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2482. while (obj != NULL) {
  2483. ggml_print_object(obj);
  2484. obj = obj->next;
  2485. }
  2486. GGML_PRINT("%s: --- end ---\n", __func__);
  2487. }
  2488. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2489. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2490. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2491. }
  2492. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2493. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2494. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2495. }
  2496. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2497. size_t nbytes;
  2498. size_t blck_size = ggml_blck_size(tensor->type);
  2499. if (blck_size == 1) {
  2500. nbytes = ggml_type_size(tensor->type);
  2501. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2502. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2503. }
  2504. }
  2505. else {
  2506. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2507. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2508. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2509. }
  2510. }
  2511. return nbytes;
  2512. }
  2513. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2514. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2515. }
  2516. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2517. return type_traits[type].blck_size;
  2518. }
  2519. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2520. return type_traits[type].type_size;
  2521. }
  2522. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2523. assert(ne % ggml_blck_size(type) == 0);
  2524. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2525. }
  2526. double ggml_type_sizef(enum ggml_type type) {
  2527. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2528. }
  2529. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2530. return type_traits[type].type_name;
  2531. }
  2532. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2533. return type_traits[type].is_quantized;
  2534. }
  2535. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2536. return GGML_OP_NAME[op];
  2537. }
  2538. const char * ggml_op_symbol(enum ggml_op op) {
  2539. return GGML_OP_SYMBOL[op];
  2540. }
  2541. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2542. return GGML_UNARY_OP_NAME[op];
  2543. }
  2544. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2545. if (t->op == GGML_OP_UNARY) {
  2546. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2547. return ggml_unary_op_name(uop);
  2548. }
  2549. else {
  2550. return ggml_op_name(t->op);
  2551. }
  2552. }
  2553. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2554. return ggml_type_size(tensor->type);
  2555. }
  2556. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2557. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2558. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2559. }
  2560. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2561. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2562. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2563. }
  2564. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2565. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2566. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2567. }
  2568. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2569. return tensor->ne[3] == 1;
  2570. }
  2571. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2572. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2573. if (tensor->ne[i] > 1) {
  2574. return i + 1;
  2575. }
  2576. }
  2577. return 1;
  2578. }
  2579. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2580. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2581. return (t0->ne[0] == t1->ne[0]) &&
  2582. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2583. (t1->ne[3]%t0->ne[3] == 0);
  2584. }
  2585. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2586. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2587. return (t0->ne[1] == t1->ne[1]) &&
  2588. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2589. (t1->ne[3]%t0->ne[3] == 0);
  2590. }
  2591. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2592. enum ggml_type wtype = GGML_TYPE_COUNT;
  2593. switch (ftype) {
  2594. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2595. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2596. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2597. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2598. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2599. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2600. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2601. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2602. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2603. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2604. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2605. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2606. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2607. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2608. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2609. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2610. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2611. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2612. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2613. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2614. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2615. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2616. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2617. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2618. }
  2619. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2620. return wtype;
  2621. }
  2622. size_t ggml_tensor_overhead(void) {
  2623. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2624. }
  2625. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2626. return tensor->nb[0] > tensor->nb[1];
  2627. }
  2628. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2629. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2630. return
  2631. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2632. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2633. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2634. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2635. }
  2636. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2637. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2638. return
  2639. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2640. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2641. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2642. }
  2643. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2644. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2645. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2646. }
  2647. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2648. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2649. return
  2650. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2651. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2652. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2653. }
  2654. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2655. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2656. if (tensor->ne[i] == 0) {
  2657. // empty if any dimension has no elements
  2658. return true;
  2659. }
  2660. }
  2661. return false;
  2662. }
  2663. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2664. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2665. return
  2666. (t0->ne[0] == t1->ne[0] ) &&
  2667. (t0->ne[1] == t1->ne[1] ) &&
  2668. (t0->ne[2] == t1->ne[2] ) &&
  2669. (t0->ne[3] == t1->ne[3] );
  2670. }
  2671. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2672. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2673. return
  2674. (t0->nb[0] == t1->nb[0] ) &&
  2675. (t0->nb[1] == t1->nb[1] ) &&
  2676. (t0->nb[2] == t1->nb[2] ) &&
  2677. (t0->nb[3] == t1->nb[3] );
  2678. }
  2679. // check if t1 can be represented as a repeatition of t0
  2680. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2681. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2682. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2683. (t1->ne[0]%t0->ne[0] == 0) &&
  2684. (t1->ne[1]%t0->ne[1] == 0) &&
  2685. (t1->ne[2]%t0->ne[2] == 0) &&
  2686. (t1->ne[3]%t0->ne[3] == 0);
  2687. }
  2688. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2689. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2690. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2691. }
  2692. static inline int ggml_up32(int n) {
  2693. return (n + 31) & ~31;
  2694. }
  2695. //static inline int ggml_up64(int n) {
  2696. // return (n + 63) & ~63;
  2697. //}
  2698. static inline int ggml_up(int n, int m) {
  2699. // assert m is a power of 2
  2700. GGML_ASSERT((m & (m - 1)) == 0);
  2701. return (n + m - 1) & ~(m - 1);
  2702. }
  2703. // assert that pointer is aligned to GGML_MEM_ALIGN
  2704. #define ggml_assert_aligned(ptr) \
  2705. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2706. ////////////////////////////////////////////////////////////////////////////////
  2707. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2708. // make this function thread safe
  2709. ggml_critical_section_start();
  2710. static bool is_first_call = true;
  2711. if (is_first_call) {
  2712. // initialize time system (required on Windows)
  2713. ggml_time_init();
  2714. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2715. {
  2716. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2717. for (int i = 0; i < (1 << 16); ++i) {
  2718. union {
  2719. uint16_t u16;
  2720. ggml_fp16_t fp16;
  2721. } u = {i};
  2722. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2723. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2724. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2725. }
  2726. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2727. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2728. }
  2729. // initialize g_state
  2730. {
  2731. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2732. g_state = (struct ggml_state) {
  2733. /*.contexts =*/ { { 0 } },
  2734. /*.numa =*/ {
  2735. .n_nodes = 0,
  2736. .total_cpus = 0,
  2737. },
  2738. };
  2739. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2740. g_state.contexts[i].used = false;
  2741. }
  2742. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2743. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2744. }
  2745. #if defined(GGML_USE_CLBLAST)
  2746. ggml_cl_init();
  2747. #endif
  2748. ggml_setup_op_has_task_pass();
  2749. is_first_call = false;
  2750. }
  2751. // find non-used context in g_state
  2752. struct ggml_context * ctx = NULL;
  2753. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2754. if (!g_state.contexts[i].used) {
  2755. g_state.contexts[i].used = true;
  2756. ctx = &g_state.contexts[i].context;
  2757. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2758. break;
  2759. }
  2760. }
  2761. if (ctx == NULL) {
  2762. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2763. ggml_critical_section_end();
  2764. return NULL;
  2765. }
  2766. // allow to call ggml_init with 0 size
  2767. if (params.mem_size == 0) {
  2768. params.mem_size = GGML_MEM_ALIGN;
  2769. }
  2770. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2771. *ctx = (struct ggml_context) {
  2772. /*.mem_size =*/ mem_size,
  2773. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2774. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2775. /*.no_alloc =*/ params.no_alloc,
  2776. /*.no_alloc_save =*/ params.no_alloc,
  2777. /*.n_objects =*/ 0,
  2778. /*.objects_begin =*/ NULL,
  2779. /*.objects_end =*/ NULL,
  2780. /*.scratch =*/ { 0, 0, NULL, },
  2781. /*.scratch_save =*/ { 0, 0, NULL, },
  2782. };
  2783. GGML_ASSERT(ctx->mem_buffer != NULL);
  2784. ggml_assert_aligned(ctx->mem_buffer);
  2785. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2786. ggml_critical_section_end();
  2787. return ctx;
  2788. }
  2789. void ggml_free(struct ggml_context * ctx) {
  2790. if (ctx == NULL) {
  2791. return;
  2792. }
  2793. // make this function thread safe
  2794. ggml_critical_section_start();
  2795. bool found = false;
  2796. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2797. if (&g_state.contexts[i].context == ctx) {
  2798. g_state.contexts[i].used = false;
  2799. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2800. __func__, i, ggml_used_mem(ctx));
  2801. if (ctx->mem_buffer_owned) {
  2802. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2803. }
  2804. found = true;
  2805. break;
  2806. }
  2807. }
  2808. if (!found) {
  2809. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2810. }
  2811. ggml_critical_section_end();
  2812. }
  2813. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2814. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2815. }
  2816. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2817. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2818. ctx->scratch = scratch;
  2819. return result;
  2820. }
  2821. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2822. return ctx->no_alloc;
  2823. }
  2824. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2825. ctx->no_alloc = no_alloc;
  2826. }
  2827. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2828. return ctx->mem_buffer;
  2829. }
  2830. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2831. return ctx->mem_size;
  2832. }
  2833. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2834. size_t max_size = 0;
  2835. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2836. size_t bytes = ggml_nbytes(tensor);
  2837. max_size = MAX(max_size, bytes);
  2838. }
  2839. return max_size;
  2840. }
  2841. // IMPORTANT:
  2842. // when creating "opt" tensors, always save and load the scratch buffer
  2843. // this is an error prone process, but it is necessary to support inplace
  2844. // operators when using scratch buffers
  2845. // TODO: implement a better way
  2846. static void ggml_scratch_save(struct ggml_context * ctx) {
  2847. // this is needed to allow opt tensors to store their data
  2848. // TODO: again, need to find a better way
  2849. ctx->no_alloc_save = ctx->no_alloc;
  2850. ctx->no_alloc = false;
  2851. ctx->scratch_save = ctx->scratch;
  2852. ctx->scratch.data = NULL;
  2853. }
  2854. static void ggml_scratch_load(struct ggml_context * ctx) {
  2855. ctx->no_alloc = ctx->no_alloc_save;
  2856. ctx->scratch = ctx->scratch_save;
  2857. }
  2858. ////////////////////////////////////////////////////////////////////////////////
  2859. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2860. // always insert objects at the end of the context's memory pool
  2861. struct ggml_object * obj_cur = ctx->objects_end;
  2862. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2863. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2864. const size_t cur_end = cur_offs + cur_size;
  2865. // align to GGML_MEM_ALIGN
  2866. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2867. char * const mem_buffer = ctx->mem_buffer;
  2868. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2869. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2870. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2871. __func__, cur_end + size_needed, ctx->mem_size);
  2872. assert(false);
  2873. return NULL;
  2874. }
  2875. *obj_new = (struct ggml_object) {
  2876. .offs = cur_end + GGML_OBJECT_SIZE,
  2877. .size = size_needed,
  2878. .next = NULL,
  2879. .type = type,
  2880. };
  2881. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2882. if (obj_cur != NULL) {
  2883. obj_cur->next = obj_new;
  2884. } else {
  2885. // this is the first object in this context
  2886. ctx->objects_begin = obj_new;
  2887. }
  2888. ctx->objects_end = obj_new;
  2889. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2890. return obj_new;
  2891. }
  2892. static struct ggml_tensor * ggml_new_tensor_impl(
  2893. struct ggml_context * ctx,
  2894. enum ggml_type type,
  2895. int n_dims,
  2896. const int64_t * ne,
  2897. struct ggml_tensor * view_src,
  2898. size_t view_offs) {
  2899. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2900. // find the base tensor and absolute offset
  2901. if (view_src != NULL && view_src->view_src != NULL) {
  2902. view_offs += view_src->view_offs;
  2903. view_src = view_src->view_src;
  2904. }
  2905. size_t data_size = ggml_row_size(type, ne[0]);
  2906. for (int i = 1; i < n_dims; i++) {
  2907. data_size *= ne[i];
  2908. }
  2909. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2910. void * data = view_src != NULL ? view_src->data : NULL;
  2911. if (data != NULL) {
  2912. data = (char *) data + view_offs;
  2913. }
  2914. size_t obj_alloc_size = 0;
  2915. if (view_src == NULL && !ctx->no_alloc) {
  2916. if (ctx->scratch.data != NULL) {
  2917. // allocate tensor data in the scratch buffer
  2918. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2919. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2920. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2921. assert(false);
  2922. return NULL;
  2923. }
  2924. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2925. ctx->scratch.offs += data_size;
  2926. } else {
  2927. // allocate tensor data in the context's memory pool
  2928. obj_alloc_size = data_size;
  2929. }
  2930. }
  2931. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2932. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2933. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2934. #ifdef __clang__
  2935. // temporary until ggml_tensor::backend is removed
  2936. #pragma clang diagnostic push
  2937. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  2938. #endif
  2939. *result = (struct ggml_tensor) {
  2940. /*.type =*/ type,
  2941. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2942. /*.buffer =*/ NULL,
  2943. /*.ne =*/ { 1, 1, 1, 1 },
  2944. /*.nb =*/ { 0, 0, 0, 0 },
  2945. /*.op =*/ GGML_OP_NONE,
  2946. /*.op_params =*/ { 0 },
  2947. /*.flags =*/ 0,
  2948. /*.grad =*/ NULL,
  2949. /*.src =*/ { NULL },
  2950. /*.perf_runs =*/ 0,
  2951. /*.perf_cycles =*/ 0,
  2952. /*.perf_time_us =*/ 0,
  2953. /*.view_src =*/ view_src,
  2954. /*.view_offs =*/ view_offs,
  2955. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2956. /*.name =*/ { 0 },
  2957. /*.extra =*/ NULL,
  2958. /*.padding =*/ { 0 },
  2959. };
  2960. #ifdef __clang__
  2961. #pragma clang diagnostic pop
  2962. #endif
  2963. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2964. //ggml_assert_aligned(result->data);
  2965. for (int i = 0; i < n_dims; i++) {
  2966. result->ne[i] = ne[i];
  2967. }
  2968. result->nb[0] = ggml_type_size(type);
  2969. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2970. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2971. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2972. }
  2973. ctx->n_objects++;
  2974. return result;
  2975. }
  2976. struct ggml_tensor * ggml_new_tensor(
  2977. struct ggml_context * ctx,
  2978. enum ggml_type type,
  2979. int n_dims,
  2980. const int64_t * ne) {
  2981. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2982. }
  2983. struct ggml_tensor * ggml_new_tensor_1d(
  2984. struct ggml_context * ctx,
  2985. enum ggml_type type,
  2986. int64_t ne0) {
  2987. return ggml_new_tensor(ctx, type, 1, &ne0);
  2988. }
  2989. struct ggml_tensor * ggml_new_tensor_2d(
  2990. struct ggml_context * ctx,
  2991. enum ggml_type type,
  2992. int64_t ne0,
  2993. int64_t ne1) {
  2994. const int64_t ne[2] = { ne0, ne1 };
  2995. return ggml_new_tensor(ctx, type, 2, ne);
  2996. }
  2997. struct ggml_tensor * ggml_new_tensor_3d(
  2998. struct ggml_context * ctx,
  2999. enum ggml_type type,
  3000. int64_t ne0,
  3001. int64_t ne1,
  3002. int64_t ne2) {
  3003. const int64_t ne[3] = { ne0, ne1, ne2 };
  3004. return ggml_new_tensor(ctx, type, 3, ne);
  3005. }
  3006. struct ggml_tensor * ggml_new_tensor_4d(
  3007. struct ggml_context * ctx,
  3008. enum ggml_type type,
  3009. int64_t ne0,
  3010. int64_t ne1,
  3011. int64_t ne2,
  3012. int64_t ne3) {
  3013. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3014. return ggml_new_tensor(ctx, type, 4, ne);
  3015. }
  3016. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3017. ggml_scratch_save(ctx);
  3018. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3019. ggml_scratch_load(ctx);
  3020. ggml_set_i32(result, value);
  3021. return result;
  3022. }
  3023. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3024. ggml_scratch_save(ctx);
  3025. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3026. ggml_scratch_load(ctx);
  3027. ggml_set_f32(result, value);
  3028. return result;
  3029. }
  3030. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3031. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3032. }
  3033. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3034. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3035. assert(params_size <= GGML_MAX_OP_PARAMS);
  3036. memcpy(tensor->op_params, params, params_size);
  3037. }
  3038. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3039. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3040. return ((const int32_t *)(tensor->op_params))[i];
  3041. }
  3042. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3043. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3044. return ((const float *)(tensor->op_params))[i];
  3045. }
  3046. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3047. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3048. ((int32_t *)(tensor->op_params))[i] = value;
  3049. }
  3050. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3051. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3052. ((float *)(tensor->op_params))[i] = value;
  3053. }
  3054. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3055. memset(tensor->data, 0, ggml_nbytes(tensor));
  3056. return tensor;
  3057. }
  3058. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3059. const int n = ggml_nrows(tensor);
  3060. const int nc = tensor->ne[0];
  3061. const size_t n1 = tensor->nb[1];
  3062. char * const data = tensor->data;
  3063. switch (tensor->type) {
  3064. case GGML_TYPE_I8:
  3065. {
  3066. assert(tensor->nb[0] == sizeof(int8_t));
  3067. for (int i = 0; i < n; i++) {
  3068. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3069. }
  3070. } break;
  3071. case GGML_TYPE_I16:
  3072. {
  3073. assert(tensor->nb[0] == sizeof(int16_t));
  3074. for (int i = 0; i < n; i++) {
  3075. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3076. }
  3077. } break;
  3078. case GGML_TYPE_I32:
  3079. {
  3080. assert(tensor->nb[0] == sizeof(int32_t));
  3081. for (int i = 0; i < n; i++) {
  3082. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3083. }
  3084. } break;
  3085. case GGML_TYPE_F16:
  3086. {
  3087. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3088. for (int i = 0; i < n; i++) {
  3089. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3090. }
  3091. } break;
  3092. case GGML_TYPE_BF16:
  3093. {
  3094. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3095. for (int i = 0; i < n; i++) {
  3096. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3097. }
  3098. } break;
  3099. case GGML_TYPE_F32:
  3100. {
  3101. assert(tensor->nb[0] == sizeof(float));
  3102. for (int i = 0; i < n; i++) {
  3103. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3104. }
  3105. } break;
  3106. default:
  3107. {
  3108. GGML_ASSERT(false);
  3109. } break;
  3110. }
  3111. return tensor;
  3112. }
  3113. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3114. const int n = ggml_nrows(tensor);
  3115. const int nc = tensor->ne[0];
  3116. const size_t n1 = tensor->nb[1];
  3117. char * const data = tensor->data;
  3118. switch (tensor->type) {
  3119. case GGML_TYPE_I8:
  3120. {
  3121. assert(tensor->nb[0] == sizeof(int8_t));
  3122. for (int i = 0; i < n; i++) {
  3123. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3124. }
  3125. } break;
  3126. case GGML_TYPE_I16:
  3127. {
  3128. assert(tensor->nb[0] == sizeof(int16_t));
  3129. for (int i = 0; i < n; i++) {
  3130. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3131. }
  3132. } break;
  3133. case GGML_TYPE_I32:
  3134. {
  3135. assert(tensor->nb[0] == sizeof(int32_t));
  3136. for (int i = 0; i < n; i++) {
  3137. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3138. }
  3139. } break;
  3140. case GGML_TYPE_F16:
  3141. {
  3142. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3143. for (int i = 0; i < n; i++) {
  3144. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3145. }
  3146. } break;
  3147. case GGML_TYPE_BF16:
  3148. {
  3149. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3150. for (int i = 0; i < n; i++) {
  3151. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3152. }
  3153. } break;
  3154. case GGML_TYPE_F32:
  3155. {
  3156. assert(tensor->nb[0] == sizeof(float));
  3157. for (int i = 0; i < n; i++) {
  3158. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3159. }
  3160. } break;
  3161. default:
  3162. {
  3163. GGML_ASSERT(false);
  3164. } break;
  3165. }
  3166. return tensor;
  3167. }
  3168. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3169. const int64_t ne2 = tensor->ne[2];
  3170. const int64_t ne1 = tensor->ne[1];
  3171. const int64_t ne0 = tensor->ne[0];
  3172. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3173. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3174. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3175. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3176. if (i0) {
  3177. * i0 = i0_;
  3178. }
  3179. if (i1) {
  3180. * i1 = i1_;
  3181. }
  3182. if (i2) {
  3183. * i2 = i2_;
  3184. }
  3185. if (i3) {
  3186. * i3 = i3_;
  3187. }
  3188. }
  3189. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3190. if (!ggml_is_contiguous(tensor)) {
  3191. int64_t id[4] = { 0, 0, 0, 0 };
  3192. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3193. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3194. }
  3195. switch (tensor->type) {
  3196. case GGML_TYPE_I8:
  3197. {
  3198. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3199. return ((int8_t *)(tensor->data))[i];
  3200. }
  3201. case GGML_TYPE_I16:
  3202. {
  3203. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3204. return ((int16_t *)(tensor->data))[i];
  3205. }
  3206. case GGML_TYPE_I32:
  3207. {
  3208. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3209. return ((int32_t *)(tensor->data))[i];
  3210. }
  3211. case GGML_TYPE_F16:
  3212. {
  3213. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3214. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3215. }
  3216. case GGML_TYPE_BF16:
  3217. {
  3218. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3219. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3220. }
  3221. case GGML_TYPE_F32:
  3222. {
  3223. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3224. return ((float *)(tensor->data))[i];
  3225. }
  3226. default:
  3227. {
  3228. GGML_ASSERT(false);
  3229. }
  3230. }
  3231. return 0.0f;
  3232. }
  3233. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3234. if (!ggml_is_contiguous(tensor)) {
  3235. int64_t id[4] = { 0, 0, 0, 0 };
  3236. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3237. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3238. return;
  3239. }
  3240. switch (tensor->type) {
  3241. case GGML_TYPE_I8:
  3242. {
  3243. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3244. ((int8_t *)(tensor->data))[i] = value;
  3245. } break;
  3246. case GGML_TYPE_I16:
  3247. {
  3248. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3249. ((int16_t *)(tensor->data))[i] = value;
  3250. } break;
  3251. case GGML_TYPE_I32:
  3252. {
  3253. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3254. ((int32_t *)(tensor->data))[i] = value;
  3255. } break;
  3256. case GGML_TYPE_F16:
  3257. {
  3258. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3259. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3260. } break;
  3261. case GGML_TYPE_BF16:
  3262. {
  3263. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3264. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3265. } break;
  3266. case GGML_TYPE_F32:
  3267. {
  3268. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3269. ((float *)(tensor->data))[i] = value;
  3270. } break;
  3271. default:
  3272. {
  3273. GGML_ASSERT(false);
  3274. } break;
  3275. }
  3276. }
  3277. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3278. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3279. switch (tensor->type) {
  3280. case GGML_TYPE_I8:
  3281. return ((int8_t *) data)[0];
  3282. case GGML_TYPE_I16:
  3283. return ((int16_t *) data)[0];
  3284. case GGML_TYPE_I32:
  3285. return ((int32_t *) data)[0];
  3286. case GGML_TYPE_F16:
  3287. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3288. case GGML_TYPE_BF16:
  3289. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3290. case GGML_TYPE_F32:
  3291. return ((float *) data)[0];
  3292. default:
  3293. GGML_ASSERT(false);
  3294. }
  3295. return 0.0f;
  3296. }
  3297. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3298. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3299. switch (tensor->type) {
  3300. case GGML_TYPE_I8:
  3301. {
  3302. ((int8_t *)(data))[0] = value;
  3303. } break;
  3304. case GGML_TYPE_I16:
  3305. {
  3306. ((int16_t *)(data))[0] = value;
  3307. } break;
  3308. case GGML_TYPE_I32:
  3309. {
  3310. ((int32_t *)(data))[0] = value;
  3311. } break;
  3312. case GGML_TYPE_F16:
  3313. {
  3314. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3315. } break;
  3316. case GGML_TYPE_BF16:
  3317. {
  3318. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3319. } break;
  3320. case GGML_TYPE_F32:
  3321. {
  3322. ((float *)(data))[0] = value;
  3323. } break;
  3324. default:
  3325. {
  3326. GGML_ASSERT(false);
  3327. } break;
  3328. }
  3329. }
  3330. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3331. if (!ggml_is_contiguous(tensor)) {
  3332. int64_t id[4] = { 0, 0, 0, 0 };
  3333. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3334. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3335. }
  3336. switch (tensor->type) {
  3337. case GGML_TYPE_I8:
  3338. {
  3339. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3340. return ((int8_t *)(tensor->data))[i];
  3341. }
  3342. case GGML_TYPE_I16:
  3343. {
  3344. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3345. return ((int16_t *)(tensor->data))[i];
  3346. }
  3347. case GGML_TYPE_I32:
  3348. {
  3349. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3350. return ((int32_t *)(tensor->data))[i];
  3351. }
  3352. case GGML_TYPE_F16:
  3353. {
  3354. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3355. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3356. }
  3357. case GGML_TYPE_BF16:
  3358. {
  3359. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3360. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3361. }
  3362. case GGML_TYPE_F32:
  3363. {
  3364. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3365. return ((float *)(tensor->data))[i];
  3366. }
  3367. default:
  3368. {
  3369. GGML_ASSERT(false);
  3370. }
  3371. }
  3372. return 0.0f;
  3373. }
  3374. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3375. if (!ggml_is_contiguous(tensor)) {
  3376. int64_t id[4] = { 0, 0, 0, 0 };
  3377. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3378. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3379. return;
  3380. }
  3381. switch (tensor->type) {
  3382. case GGML_TYPE_I8:
  3383. {
  3384. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3385. ((int8_t *)(tensor->data))[i] = value;
  3386. } break;
  3387. case GGML_TYPE_I16:
  3388. {
  3389. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3390. ((int16_t *)(tensor->data))[i] = value;
  3391. } break;
  3392. case GGML_TYPE_I32:
  3393. {
  3394. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3395. ((int32_t *)(tensor->data))[i] = value;
  3396. } break;
  3397. case GGML_TYPE_F16:
  3398. {
  3399. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3400. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3401. } break;
  3402. case GGML_TYPE_BF16:
  3403. {
  3404. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3405. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3406. } break;
  3407. case GGML_TYPE_F32:
  3408. {
  3409. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3410. ((float *)(tensor->data))[i] = value;
  3411. } break;
  3412. default:
  3413. {
  3414. GGML_ASSERT(false);
  3415. } break;
  3416. }
  3417. }
  3418. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3419. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3420. switch (tensor->type) {
  3421. case GGML_TYPE_I8:
  3422. return ((int8_t *) data)[0];
  3423. case GGML_TYPE_I16:
  3424. return ((int16_t *) data)[0];
  3425. case GGML_TYPE_I32:
  3426. return ((int32_t *) data)[0];
  3427. case GGML_TYPE_F16:
  3428. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3429. case GGML_TYPE_BF16:
  3430. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3431. case GGML_TYPE_F32:
  3432. return ((float *) data)[0];
  3433. default:
  3434. GGML_ASSERT(false);
  3435. }
  3436. return 0.0f;
  3437. }
  3438. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3439. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3440. switch (tensor->type) {
  3441. case GGML_TYPE_I8:
  3442. {
  3443. ((int8_t *)(data))[0] = value;
  3444. } break;
  3445. case GGML_TYPE_I16:
  3446. {
  3447. ((int16_t *)(data))[0] = value;
  3448. } break;
  3449. case GGML_TYPE_I32:
  3450. {
  3451. ((int32_t *)(data))[0] = value;
  3452. } break;
  3453. case GGML_TYPE_F16:
  3454. {
  3455. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3456. } break;
  3457. case GGML_TYPE_BF16:
  3458. {
  3459. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3460. } break;
  3461. case GGML_TYPE_F32:
  3462. {
  3463. ((float *)(data))[0] = value;
  3464. } break;
  3465. default:
  3466. {
  3467. GGML_ASSERT(false);
  3468. } break;
  3469. }
  3470. }
  3471. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3472. return tensor->data;
  3473. }
  3474. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3475. assert(tensor->type == GGML_TYPE_F32);
  3476. return (float *)(tensor->data);
  3477. }
  3478. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3479. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3480. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3481. }
  3482. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3483. return tensor->name;
  3484. }
  3485. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3486. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3487. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3488. return tensor;
  3489. }
  3490. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3491. va_list args;
  3492. va_start(args, fmt);
  3493. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3494. va_end(args);
  3495. return tensor;
  3496. }
  3497. struct ggml_tensor * ggml_view_tensor(
  3498. struct ggml_context * ctx,
  3499. struct ggml_tensor * src) {
  3500. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3501. ggml_format_name(result, "%s (view)", src->name);
  3502. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3503. result->nb[i] = src->nb[i];
  3504. }
  3505. return result;
  3506. }
  3507. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3508. struct ggml_object * obj = ctx->objects_begin;
  3509. char * const mem_buffer = ctx->mem_buffer;
  3510. while (obj != NULL) {
  3511. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3512. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3513. }
  3514. obj = obj->next;
  3515. }
  3516. return NULL;
  3517. }
  3518. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3519. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3520. obj = obj->next;
  3521. char * const mem_buffer = ctx->mem_buffer;
  3522. while (obj != NULL) {
  3523. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3524. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3525. }
  3526. obj = obj->next;
  3527. }
  3528. return NULL;
  3529. }
  3530. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3531. struct ggml_object * obj = ctx->objects_begin;
  3532. char * const mem_buffer = ctx->mem_buffer;
  3533. while (obj != NULL) {
  3534. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3535. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3536. if (strcmp(cur->name, name) == 0) {
  3537. return cur;
  3538. }
  3539. }
  3540. obj = obj->next;
  3541. }
  3542. return NULL;
  3543. }
  3544. ////////////////////////////////////////////////////////////////////////////////
  3545. // ggml_dup
  3546. static struct ggml_tensor * ggml_dup_impl(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. bool inplace) {
  3550. bool is_node = false;
  3551. if (!inplace && (a->grad)) {
  3552. is_node = true;
  3553. }
  3554. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3555. result->op = GGML_OP_DUP;
  3556. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3557. result->src[0] = a;
  3558. return result;
  3559. }
  3560. struct ggml_tensor * ggml_dup(
  3561. struct ggml_context * ctx,
  3562. struct ggml_tensor * a) {
  3563. return ggml_dup_impl(ctx, a, false);
  3564. }
  3565. struct ggml_tensor * ggml_dup_inplace(
  3566. struct ggml_context * ctx,
  3567. struct ggml_tensor * a) {
  3568. return ggml_dup_impl(ctx, a, true);
  3569. }
  3570. // ggml_add
  3571. static struct ggml_tensor * ggml_add_impl(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a,
  3574. struct ggml_tensor * b,
  3575. bool inplace) {
  3576. GGML_ASSERT(ggml_can_repeat(b, a));
  3577. bool is_node = false;
  3578. if (!inplace && (a->grad || b->grad)) {
  3579. // TODO: support backward pass for broadcasting
  3580. GGML_ASSERT(ggml_are_same_shape(a, b));
  3581. is_node = true;
  3582. }
  3583. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3584. result->op = GGML_OP_ADD;
  3585. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3586. result->src[0] = a;
  3587. result->src[1] = b;
  3588. return result;
  3589. }
  3590. struct ggml_tensor * ggml_add(
  3591. struct ggml_context * ctx,
  3592. struct ggml_tensor * a,
  3593. struct ggml_tensor * b) {
  3594. return ggml_add_impl(ctx, a, b, false);
  3595. }
  3596. struct ggml_tensor * ggml_add_inplace(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a,
  3599. struct ggml_tensor * b) {
  3600. return ggml_add_impl(ctx, a, b, true);
  3601. }
  3602. // ggml_add_cast
  3603. static struct ggml_tensor * ggml_add_cast_impl(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a,
  3606. struct ggml_tensor * b,
  3607. enum ggml_type type) {
  3608. // TODO: support less-strict constraint
  3609. // GGML_ASSERT(ggml_can_repeat(b, a));
  3610. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3611. // currently only supported for quantized input and f16
  3612. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3613. a->type == GGML_TYPE_F16 ||
  3614. a->type == GGML_TYPE_BF16);
  3615. bool is_node = false;
  3616. if (a->grad || b->grad) {
  3617. // TODO: support backward pass for broadcasting
  3618. GGML_ASSERT(ggml_are_same_shape(a, b));
  3619. is_node = true;
  3620. }
  3621. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3622. result->op = GGML_OP_ADD;
  3623. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3624. result->src[0] = a;
  3625. result->src[1] = b;
  3626. return result;
  3627. }
  3628. struct ggml_tensor * ggml_add_cast(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a,
  3631. struct ggml_tensor * b,
  3632. enum ggml_type type) {
  3633. return ggml_add_cast_impl(ctx, a, b, type);
  3634. }
  3635. // ggml_add1
  3636. static struct ggml_tensor * ggml_add1_impl(
  3637. struct ggml_context * ctx,
  3638. struct ggml_tensor * a,
  3639. struct ggml_tensor * b,
  3640. bool inplace) {
  3641. GGML_ASSERT(ggml_is_scalar(b));
  3642. GGML_ASSERT(ggml_is_padded_1d(a));
  3643. bool is_node = false;
  3644. if (a->grad || b->grad) {
  3645. is_node = true;
  3646. }
  3647. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3648. result->op = GGML_OP_ADD1;
  3649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3650. result->src[0] = a;
  3651. result->src[1] = b;
  3652. return result;
  3653. }
  3654. struct ggml_tensor * ggml_add1(
  3655. struct ggml_context * ctx,
  3656. struct ggml_tensor * a,
  3657. struct ggml_tensor * b) {
  3658. return ggml_add1_impl(ctx, a, b, false);
  3659. }
  3660. struct ggml_tensor * ggml_add1_inplace(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * a,
  3663. struct ggml_tensor * b) {
  3664. return ggml_add1_impl(ctx, a, b, true);
  3665. }
  3666. // ggml_acc
  3667. static struct ggml_tensor * ggml_acc_impl(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a,
  3670. struct ggml_tensor * b,
  3671. size_t nb1,
  3672. size_t nb2,
  3673. size_t nb3,
  3674. size_t offset,
  3675. bool inplace) {
  3676. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3677. GGML_ASSERT(ggml_is_contiguous(a));
  3678. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3679. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3680. bool is_node = false;
  3681. if (!inplace && (a->grad || b->grad)) {
  3682. is_node = true;
  3683. }
  3684. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3685. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3686. ggml_set_op_params(result, params, sizeof(params));
  3687. result->op = GGML_OP_ACC;
  3688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3689. result->src[0] = a;
  3690. result->src[1] = b;
  3691. return result;
  3692. }
  3693. struct ggml_tensor * ggml_acc(
  3694. struct ggml_context * ctx,
  3695. struct ggml_tensor * a,
  3696. struct ggml_tensor * b,
  3697. size_t nb1,
  3698. size_t nb2,
  3699. size_t nb3,
  3700. size_t offset) {
  3701. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3702. }
  3703. struct ggml_tensor * ggml_acc_inplace(
  3704. struct ggml_context * ctx,
  3705. struct ggml_tensor * a,
  3706. struct ggml_tensor * b,
  3707. size_t nb1,
  3708. size_t nb2,
  3709. size_t nb3,
  3710. size_t offset) {
  3711. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3712. }
  3713. // ggml_sub
  3714. static struct ggml_tensor * ggml_sub_impl(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. struct ggml_tensor * b,
  3718. bool inplace) {
  3719. GGML_ASSERT(ggml_are_same_shape(a, b));
  3720. bool is_node = false;
  3721. if (!inplace && (a->grad || b->grad)) {
  3722. is_node = true;
  3723. }
  3724. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3725. result->op = GGML_OP_SUB;
  3726. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3727. result->src[0] = a;
  3728. result->src[1] = b;
  3729. return result;
  3730. }
  3731. struct ggml_tensor * ggml_sub(
  3732. struct ggml_context * ctx,
  3733. struct ggml_tensor * a,
  3734. struct ggml_tensor * b) {
  3735. return ggml_sub_impl(ctx, a, b, false);
  3736. }
  3737. struct ggml_tensor * ggml_sub_inplace(
  3738. struct ggml_context * ctx,
  3739. struct ggml_tensor * a,
  3740. struct ggml_tensor * b) {
  3741. return ggml_sub_impl(ctx, a, b, true);
  3742. }
  3743. // ggml_mul
  3744. static struct ggml_tensor * ggml_mul_impl(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a,
  3747. struct ggml_tensor * b,
  3748. bool inplace) {
  3749. GGML_ASSERT(ggml_can_repeat(b, a));
  3750. bool is_node = false;
  3751. if (!inplace && (a->grad || b->grad)) {
  3752. // TODO: support backward pass for broadcasting
  3753. GGML_ASSERT(ggml_are_same_shape(a, b));
  3754. is_node = true;
  3755. }
  3756. if (inplace) {
  3757. GGML_ASSERT(!is_node);
  3758. }
  3759. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3760. result->op = GGML_OP_MUL;
  3761. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3762. result->src[0] = a;
  3763. result->src[1] = b;
  3764. return result;
  3765. }
  3766. struct ggml_tensor * ggml_mul(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a,
  3769. struct ggml_tensor * b) {
  3770. return ggml_mul_impl(ctx, a, b, false);
  3771. }
  3772. struct ggml_tensor * ggml_mul_inplace(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a,
  3775. struct ggml_tensor * b) {
  3776. return ggml_mul_impl(ctx, a, b, true);
  3777. }
  3778. // ggml_div
  3779. static struct ggml_tensor * ggml_div_impl(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. struct ggml_tensor * b,
  3783. bool inplace) {
  3784. GGML_ASSERT(ggml_can_repeat(b, a));
  3785. bool is_node = false;
  3786. if (!inplace && (a->grad || b->grad)) {
  3787. is_node = true;
  3788. }
  3789. if (inplace) {
  3790. GGML_ASSERT(!is_node);
  3791. }
  3792. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3793. result->op = GGML_OP_DIV;
  3794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3795. result->src[0] = a;
  3796. result->src[1] = b;
  3797. return result;
  3798. }
  3799. struct ggml_tensor * ggml_div(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. struct ggml_tensor * b) {
  3803. return ggml_div_impl(ctx, a, b, false);
  3804. }
  3805. struct ggml_tensor * ggml_div_inplace(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a,
  3808. struct ggml_tensor * b) {
  3809. return ggml_div_impl(ctx, a, b, true);
  3810. }
  3811. // ggml_sqr
  3812. static struct ggml_tensor * ggml_sqr_impl(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a,
  3815. bool inplace) {
  3816. bool is_node = false;
  3817. if (!inplace && (a->grad)) {
  3818. is_node = true;
  3819. }
  3820. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3821. result->op = GGML_OP_SQR;
  3822. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3823. result->src[0] = a;
  3824. return result;
  3825. }
  3826. struct ggml_tensor * ggml_sqr(
  3827. struct ggml_context * ctx,
  3828. struct ggml_tensor * a) {
  3829. return ggml_sqr_impl(ctx, a, false);
  3830. }
  3831. struct ggml_tensor * ggml_sqr_inplace(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a) {
  3834. return ggml_sqr_impl(ctx, a, true);
  3835. }
  3836. // ggml_sqrt
  3837. static struct ggml_tensor * ggml_sqrt_impl(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a,
  3840. bool inplace) {
  3841. bool is_node = false;
  3842. if (!inplace && (a->grad)) {
  3843. is_node = true;
  3844. }
  3845. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3846. result->op = GGML_OP_SQRT;
  3847. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3848. result->src[0] = a;
  3849. return result;
  3850. }
  3851. struct ggml_tensor * ggml_sqrt(
  3852. struct ggml_context * ctx,
  3853. struct ggml_tensor * a) {
  3854. return ggml_sqrt_impl(ctx, a, false);
  3855. }
  3856. struct ggml_tensor * ggml_sqrt_inplace(
  3857. struct ggml_context * ctx,
  3858. struct ggml_tensor * a) {
  3859. return ggml_sqrt_impl(ctx, a, true);
  3860. }
  3861. // ggml_log
  3862. static struct ggml_tensor * ggml_log_impl(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a,
  3865. bool inplace) {
  3866. bool is_node = false;
  3867. if (!inplace && (a->grad)) {
  3868. is_node = true;
  3869. }
  3870. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3871. result->op = GGML_OP_LOG;
  3872. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3873. result->src[0] = a;
  3874. return result;
  3875. }
  3876. struct ggml_tensor * ggml_log(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a) {
  3879. return ggml_log_impl(ctx, a, false);
  3880. }
  3881. struct ggml_tensor * ggml_log_inplace(
  3882. struct ggml_context * ctx,
  3883. struct ggml_tensor * a) {
  3884. return ggml_log_impl(ctx, a, true);
  3885. }
  3886. // ggml_sum
  3887. struct ggml_tensor * ggml_sum(
  3888. struct ggml_context * ctx,
  3889. struct ggml_tensor * a) {
  3890. bool is_node = false;
  3891. if (a->grad) {
  3892. is_node = true;
  3893. }
  3894. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3895. result->op = GGML_OP_SUM;
  3896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3897. result->src[0] = a;
  3898. return result;
  3899. }
  3900. // ggml_sum_rows
  3901. struct ggml_tensor * ggml_sum_rows(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a) {
  3904. bool is_node = false;
  3905. if (a->grad) {
  3906. is_node = true;
  3907. }
  3908. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3909. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3910. ne[i] = a->ne[i];
  3911. }
  3912. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3913. result->op = GGML_OP_SUM_ROWS;
  3914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3915. result->src[0] = a;
  3916. return result;
  3917. }
  3918. // ggml_mean
  3919. struct ggml_tensor * ggml_mean(
  3920. struct ggml_context * ctx,
  3921. struct ggml_tensor * a) {
  3922. bool is_node = false;
  3923. if (a->grad) {
  3924. GGML_ASSERT(false); // TODO: implement
  3925. is_node = true;
  3926. }
  3927. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3928. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3929. result->op = GGML_OP_MEAN;
  3930. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3931. result->src[0] = a;
  3932. return result;
  3933. }
  3934. // ggml_argmax
  3935. struct ggml_tensor * ggml_argmax(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a) {
  3938. GGML_ASSERT(ggml_is_matrix(a));
  3939. bool is_node = false;
  3940. if (a->grad) {
  3941. GGML_ASSERT(false);
  3942. is_node = true;
  3943. }
  3944. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3945. result->op = GGML_OP_ARGMAX;
  3946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3947. result->src[0] = a;
  3948. return result;
  3949. }
  3950. // ggml_repeat
  3951. struct ggml_tensor * ggml_repeat(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a,
  3954. struct ggml_tensor * b) {
  3955. GGML_ASSERT(ggml_can_repeat(a, b));
  3956. bool is_node = false;
  3957. if (a->grad) {
  3958. is_node = true;
  3959. }
  3960. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3961. result->op = GGML_OP_REPEAT;
  3962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3963. result->src[0] = a;
  3964. return result;
  3965. }
  3966. // ggml_repeat_back
  3967. struct ggml_tensor * ggml_repeat_back(
  3968. struct ggml_context * ctx,
  3969. struct ggml_tensor * a,
  3970. struct ggml_tensor * b) {
  3971. GGML_ASSERT(ggml_can_repeat(b, a));
  3972. bool is_node = false;
  3973. if (a->grad) {
  3974. is_node = true;
  3975. }
  3976. if (ggml_are_same_shape(a, b) && !is_node) {
  3977. return a;
  3978. }
  3979. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3980. result->op = GGML_OP_REPEAT_BACK;
  3981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3982. result->src[0] = a;
  3983. return result;
  3984. }
  3985. // ggml_concat
  3986. struct ggml_tensor * ggml_concat(
  3987. struct ggml_context* ctx,
  3988. struct ggml_tensor* a,
  3989. struct ggml_tensor* b) {
  3990. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3991. bool is_node = false;
  3992. if (a->grad || b->grad) {
  3993. is_node = true;
  3994. }
  3995. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3996. result->op = GGML_OP_CONCAT;
  3997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3998. result->src[0] = a;
  3999. result->src[1] = b;
  4000. return result;
  4001. }
  4002. // ggml_abs
  4003. struct ggml_tensor * ggml_abs(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a) {
  4006. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4007. }
  4008. struct ggml_tensor * ggml_abs_inplace(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a) {
  4011. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4012. }
  4013. // ggml_sgn
  4014. struct ggml_tensor * ggml_sgn(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a) {
  4017. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4018. }
  4019. struct ggml_tensor * ggml_sgn_inplace(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a) {
  4022. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4023. }
  4024. // ggml_neg
  4025. struct ggml_tensor * ggml_neg(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a) {
  4028. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4029. }
  4030. struct ggml_tensor * ggml_neg_inplace(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a) {
  4033. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4034. }
  4035. // ggml_step
  4036. struct ggml_tensor * ggml_step(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a) {
  4039. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4040. }
  4041. struct ggml_tensor * ggml_step_inplace(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a) {
  4044. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4045. }
  4046. // ggml_tanh
  4047. struct ggml_tensor * ggml_tanh(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a) {
  4050. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4051. }
  4052. struct ggml_tensor * ggml_tanh_inplace(
  4053. struct ggml_context * ctx,
  4054. struct ggml_tensor * a) {
  4055. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4056. }
  4057. // ggml_elu
  4058. struct ggml_tensor * ggml_elu(
  4059. struct ggml_context * ctx,
  4060. struct ggml_tensor * a) {
  4061. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4062. }
  4063. struct ggml_tensor * ggml_elu_inplace(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a) {
  4066. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4067. }
  4068. // ggml_relu
  4069. struct ggml_tensor * ggml_relu(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a) {
  4072. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4073. }
  4074. struct ggml_tensor * ggml_relu_inplace(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a) {
  4077. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4078. }
  4079. // ggml_leaky_relu
  4080. struct ggml_tensor * ggml_leaky_relu(
  4081. struct ggml_context * ctx,
  4082. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4083. bool is_node = false;
  4084. if (!inplace && (a->grad)) {
  4085. is_node = true;
  4086. }
  4087. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4088. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4089. result->op = GGML_OP_LEAKY_RELU;
  4090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4091. result->src[0] = a;
  4092. return result;
  4093. }
  4094. // ggml_sigmoid
  4095. struct ggml_tensor * ggml_sigmoid(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a) {
  4098. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4099. }
  4100. struct ggml_tensor * ggml_sigmoid_inplace(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a) {
  4103. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4104. }
  4105. // ggml_gelu
  4106. struct ggml_tensor * ggml_gelu(
  4107. struct ggml_context * ctx,
  4108. struct ggml_tensor * a) {
  4109. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4110. }
  4111. struct ggml_tensor * ggml_gelu_inplace(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a) {
  4114. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4115. }
  4116. // ggml_gelu_quick
  4117. struct ggml_tensor * ggml_gelu_quick(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a) {
  4120. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4121. }
  4122. struct ggml_tensor * ggml_gelu_quick_inplace(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a) {
  4125. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4126. }
  4127. // ggml_silu
  4128. struct ggml_tensor * ggml_silu(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a) {
  4131. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4132. }
  4133. struct ggml_tensor * ggml_silu_inplace(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a) {
  4136. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4137. }
  4138. // ggml_silu_back
  4139. struct ggml_tensor * ggml_silu_back(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a,
  4142. struct ggml_tensor * b) {
  4143. bool is_node = false;
  4144. if (a->grad || b->grad) {
  4145. // TODO: implement backward
  4146. is_node = true;
  4147. }
  4148. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4149. result->op = GGML_OP_SILU_BACK;
  4150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4151. result->src[0] = a;
  4152. result->src[1] = b;
  4153. return result;
  4154. }
  4155. // ggml hardswish
  4156. struct ggml_tensor * ggml_hardswish(
  4157. struct ggml_context * ctx,
  4158. struct ggml_tensor * a) {
  4159. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4160. }
  4161. // ggml hardsigmoid
  4162. struct ggml_tensor * ggml_hardsigmoid(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a) {
  4165. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4166. }
  4167. // ggml_norm
  4168. static struct ggml_tensor * ggml_norm_impl(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a,
  4171. float eps,
  4172. bool inplace) {
  4173. bool is_node = false;
  4174. if (!inplace && (a->grad)) {
  4175. GGML_ASSERT(false); // TODO: implement backward
  4176. is_node = true;
  4177. }
  4178. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4179. ggml_set_op_params(result, &eps, sizeof(eps));
  4180. result->op = GGML_OP_NORM;
  4181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4182. result->src[0] = a;
  4183. return result;
  4184. }
  4185. struct ggml_tensor * ggml_norm(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a,
  4188. float eps) {
  4189. return ggml_norm_impl(ctx, a, eps, false);
  4190. }
  4191. struct ggml_tensor * ggml_norm_inplace(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a,
  4194. float eps) {
  4195. return ggml_norm_impl(ctx, a, eps, true);
  4196. }
  4197. // ggml_rms_norm
  4198. static struct ggml_tensor * ggml_rms_norm_impl(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a,
  4201. float eps,
  4202. bool inplace) {
  4203. bool is_node = false;
  4204. if (!inplace && (a->grad)) {
  4205. is_node = true;
  4206. }
  4207. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4208. ggml_set_op_params(result, &eps, sizeof(eps));
  4209. result->op = GGML_OP_RMS_NORM;
  4210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4211. result->src[0] = a;
  4212. return result;
  4213. }
  4214. struct ggml_tensor * ggml_rms_norm(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. float eps) {
  4218. return ggml_rms_norm_impl(ctx, a, eps, false);
  4219. }
  4220. struct ggml_tensor * ggml_rms_norm_inplace(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a,
  4223. float eps) {
  4224. return ggml_rms_norm_impl(ctx, a, eps, true);
  4225. }
  4226. // ggml_rms_norm_back
  4227. struct ggml_tensor * ggml_rms_norm_back(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a,
  4230. struct ggml_tensor * b,
  4231. float eps) {
  4232. bool is_node = false;
  4233. if (a->grad) {
  4234. // TODO: implement backward
  4235. is_node = true;
  4236. }
  4237. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4238. ggml_set_op_params(result, &eps, sizeof(eps));
  4239. result->op = GGML_OP_RMS_NORM_BACK;
  4240. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4241. result->src[0] = a;
  4242. result->src[1] = b;
  4243. return result;
  4244. }
  4245. // ggml_group_norm
  4246. static struct ggml_tensor * ggml_group_norm_impl(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a,
  4249. int n_groups,
  4250. bool inplace) {
  4251. bool is_node = false;
  4252. if (!inplace && (a->grad)) {
  4253. GGML_ASSERT(false); // TODO: implement backward
  4254. is_node = true;
  4255. }
  4256. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4257. result->op_params[0] = n_groups;
  4258. result->op = GGML_OP_GROUP_NORM;
  4259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4260. result->src[0] = a;
  4261. return result;
  4262. }
  4263. struct ggml_tensor * ggml_group_norm(
  4264. struct ggml_context * ctx,
  4265. struct ggml_tensor * a,
  4266. int n_groups) {
  4267. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4268. }
  4269. struct ggml_tensor * ggml_group_norm_inplace(
  4270. struct ggml_context * ctx,
  4271. struct ggml_tensor * a,
  4272. int n_groups) {
  4273. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4274. }
  4275. // ggml_mul_mat
  4276. struct ggml_tensor * ggml_mul_mat(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a,
  4279. struct ggml_tensor * b) {
  4280. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4281. GGML_ASSERT(!ggml_is_transposed(a));
  4282. bool is_node = false;
  4283. if (a->grad || b->grad) {
  4284. is_node = true;
  4285. }
  4286. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4287. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4288. result->op = GGML_OP_MUL_MAT;
  4289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4290. result->src[0] = a;
  4291. result->src[1] = b;
  4292. return result;
  4293. }
  4294. void ggml_mul_mat_set_prec(
  4295. struct ggml_tensor * a,
  4296. enum ggml_prec prec) {
  4297. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4298. const int32_t prec_i32 = (int32_t) prec;
  4299. ggml_set_op_params_i32(a, 0, prec_i32);
  4300. }
  4301. // ggml_mul_mat_id
  4302. /*
  4303. c = ggml_mul_mat_id(ctx, as, b, ids);
  4304. as -> [cols, rows, n_expert]
  4305. ids -> [n_experts_used, n_tokens] (i32)
  4306. b -> [cols, n_expert_used, n_tokens]
  4307. c -> [cols, n_expert_used, n_tokens]
  4308. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4309. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4310. */
  4311. struct ggml_tensor * ggml_mul_mat_id(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * as,
  4314. struct ggml_tensor * b,
  4315. struct ggml_tensor * ids) {
  4316. GGML_ASSERT(!ggml_is_transposed(as));
  4317. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4318. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4319. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4320. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4321. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4322. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4323. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4324. bool is_node = false;
  4325. if (as->grad || b->grad) {
  4326. is_node = true;
  4327. }
  4328. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4329. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4330. result->op = GGML_OP_MUL_MAT_ID;
  4331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4332. result->src[0] = as;
  4333. result->src[1] = b;
  4334. result->src[2] = ids;
  4335. return result;
  4336. }
  4337. // ggml_out_prod
  4338. struct ggml_tensor * ggml_out_prod(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a,
  4341. struct ggml_tensor * b) {
  4342. GGML_ASSERT(ggml_can_out_prod(a, b));
  4343. GGML_ASSERT(!ggml_is_transposed(a));
  4344. bool is_node = false;
  4345. if (a->grad || b->grad) {
  4346. is_node = true;
  4347. }
  4348. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4349. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4350. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4351. result->op = GGML_OP_OUT_PROD;
  4352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4353. result->src[0] = a;
  4354. result->src[1] = b;
  4355. return result;
  4356. }
  4357. // ggml_scale
  4358. static struct ggml_tensor * ggml_scale_impl(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a,
  4361. float s,
  4362. bool inplace) {
  4363. GGML_ASSERT(ggml_is_padded_1d(a));
  4364. bool is_node = false;
  4365. if (a->grad) {
  4366. is_node = true;
  4367. }
  4368. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4369. ggml_set_op_params(result, &s, sizeof(s));
  4370. result->op = GGML_OP_SCALE;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src[0] = a;
  4373. return result;
  4374. }
  4375. struct ggml_tensor * ggml_scale(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. float s) {
  4379. return ggml_scale_impl(ctx, a, s, false);
  4380. }
  4381. struct ggml_tensor * ggml_scale_inplace(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a,
  4384. float s) {
  4385. return ggml_scale_impl(ctx, a, s, true);
  4386. }
  4387. // ggml_set
  4388. static struct ggml_tensor * ggml_set_impl(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. struct ggml_tensor * b,
  4392. size_t nb1,
  4393. size_t nb2,
  4394. size_t nb3,
  4395. size_t offset,
  4396. bool inplace) {
  4397. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4398. bool is_node = false;
  4399. if (a->grad || b->grad) {
  4400. is_node = true;
  4401. }
  4402. // make a view of the destination
  4403. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4404. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4405. ggml_set_op_params(result, params, sizeof(params));
  4406. result->op = GGML_OP_SET;
  4407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4408. result->src[0] = a;
  4409. result->src[1] = b;
  4410. return result;
  4411. }
  4412. struct ggml_tensor * ggml_set(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a,
  4415. struct ggml_tensor * b,
  4416. size_t nb1,
  4417. size_t nb2,
  4418. size_t nb3,
  4419. size_t offset) {
  4420. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4421. }
  4422. struct ggml_tensor * ggml_set_inplace(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. struct ggml_tensor * b,
  4426. size_t nb1,
  4427. size_t nb2,
  4428. size_t nb3,
  4429. size_t offset) {
  4430. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4431. }
  4432. struct ggml_tensor * ggml_set_1d(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. struct ggml_tensor * b,
  4436. size_t offset) {
  4437. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4438. }
  4439. struct ggml_tensor * ggml_set_1d_inplace(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. struct ggml_tensor * b,
  4443. size_t offset) {
  4444. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4445. }
  4446. struct ggml_tensor * ggml_set_2d(
  4447. struct ggml_context * ctx,
  4448. struct ggml_tensor * a,
  4449. struct ggml_tensor * b,
  4450. size_t nb1,
  4451. size_t offset) {
  4452. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4453. }
  4454. struct ggml_tensor * ggml_set_2d_inplace(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * a,
  4457. struct ggml_tensor * b,
  4458. size_t nb1,
  4459. size_t offset) {
  4460. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4461. }
  4462. // ggml_cpy
  4463. static struct ggml_tensor * ggml_cpy_impl(
  4464. struct ggml_context * ctx,
  4465. struct ggml_tensor * a,
  4466. struct ggml_tensor * b) {
  4467. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4468. bool is_node = false;
  4469. if (a->grad || b->grad) {
  4470. // inplace is false and either one have a grad
  4471. is_node = true;
  4472. }
  4473. // make a view of the destination
  4474. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4475. if (strlen(b->name) > 0) {
  4476. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4477. } else {
  4478. ggml_format_name(result, "%s (copy)", a->name);
  4479. }
  4480. result->op = GGML_OP_CPY;
  4481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4482. result->src[0] = a;
  4483. result->src[1] = b;
  4484. return result;
  4485. }
  4486. struct ggml_tensor * ggml_cpy(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * a,
  4489. struct ggml_tensor * b) {
  4490. return ggml_cpy_impl(ctx, a, b);
  4491. }
  4492. struct ggml_tensor * ggml_cast(
  4493. struct ggml_context * ctx,
  4494. struct ggml_tensor * a,
  4495. enum ggml_type type) {
  4496. bool is_node = false;
  4497. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4498. ggml_format_name(result, "%s (copy)", a->name);
  4499. result->op = GGML_OP_CPY;
  4500. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4501. result->src[0] = a;
  4502. result->src[1] = result;
  4503. return result;
  4504. }
  4505. // ggml_cont
  4506. static struct ggml_tensor * ggml_cont_impl(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * a) {
  4509. bool is_node = false;
  4510. if (a->grad) {
  4511. is_node = true;
  4512. }
  4513. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4514. ggml_format_name(result, "%s (cont)", a->name);
  4515. result->op = GGML_OP_CONT;
  4516. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4517. result->src[0] = a;
  4518. return result;
  4519. }
  4520. struct ggml_tensor * ggml_cont(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a) {
  4523. return ggml_cont_impl(ctx, a);
  4524. }
  4525. // make contiguous, with new shape
  4526. GGML_API struct ggml_tensor * ggml_cont_1d(
  4527. struct ggml_context * ctx,
  4528. struct ggml_tensor * a,
  4529. int64_t ne0) {
  4530. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4531. }
  4532. GGML_API struct ggml_tensor * ggml_cont_2d(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. int64_t ne0,
  4536. int64_t ne1) {
  4537. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4538. }
  4539. GGML_API struct ggml_tensor * ggml_cont_3d(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a,
  4542. int64_t ne0,
  4543. int64_t ne1,
  4544. int64_t ne2) {
  4545. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4546. }
  4547. struct ggml_tensor * ggml_cont_4d(
  4548. struct ggml_context * ctx,
  4549. struct ggml_tensor * a,
  4550. int64_t ne0,
  4551. int64_t ne1,
  4552. int64_t ne2,
  4553. int64_t ne3) {
  4554. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4555. bool is_node = false;
  4556. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4557. ggml_format_name(result, "%s (cont)", a->name);
  4558. result->op = GGML_OP_CONT;
  4559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4560. result->src[0] = a;
  4561. return result;
  4562. }
  4563. // ggml_reshape
  4564. struct ggml_tensor * ggml_reshape(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a,
  4567. struct ggml_tensor * b) {
  4568. GGML_ASSERT(ggml_is_contiguous(a));
  4569. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4570. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4571. bool is_node = false;
  4572. if (a->grad) {
  4573. is_node = true;
  4574. }
  4575. if (b->grad) {
  4576. // gradient propagation is not supported
  4577. //GGML_ASSERT(false);
  4578. }
  4579. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4580. ggml_format_name(result, "%s (reshaped)", a->name);
  4581. result->op = GGML_OP_RESHAPE;
  4582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4583. result->src[0] = a;
  4584. return result;
  4585. }
  4586. struct ggml_tensor * ggml_reshape_1d(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a,
  4589. int64_t ne0) {
  4590. GGML_ASSERT(ggml_is_contiguous(a));
  4591. GGML_ASSERT(ggml_nelements(a) == ne0);
  4592. bool is_node = false;
  4593. if (a->grad) {
  4594. is_node = true;
  4595. }
  4596. const int64_t ne[1] = { ne0 };
  4597. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4598. ggml_format_name(result, "%s (reshaped)", a->name);
  4599. result->op = GGML_OP_RESHAPE;
  4600. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4601. result->src[0] = a;
  4602. return result;
  4603. }
  4604. struct ggml_tensor * ggml_reshape_2d(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a,
  4607. int64_t ne0,
  4608. int64_t ne1) {
  4609. GGML_ASSERT(ggml_is_contiguous(a));
  4610. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4611. bool is_node = false;
  4612. if (a->grad) {
  4613. is_node = true;
  4614. }
  4615. const int64_t ne[2] = { ne0, ne1 };
  4616. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4617. ggml_format_name(result, "%s (reshaped)", a->name);
  4618. result->op = GGML_OP_RESHAPE;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src[0] = a;
  4621. return result;
  4622. }
  4623. struct ggml_tensor * ggml_reshape_3d(
  4624. struct ggml_context * ctx,
  4625. struct ggml_tensor * a,
  4626. int64_t ne0,
  4627. int64_t ne1,
  4628. int64_t ne2) {
  4629. GGML_ASSERT(ggml_is_contiguous(a));
  4630. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4631. bool is_node = false;
  4632. if (a->grad) {
  4633. is_node = true;
  4634. }
  4635. const int64_t ne[3] = { ne0, ne1, ne2 };
  4636. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4637. ggml_format_name(result, "%s (reshaped)", a->name);
  4638. result->op = GGML_OP_RESHAPE;
  4639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4640. result->src[0] = a;
  4641. return result;
  4642. }
  4643. struct ggml_tensor * ggml_reshape_4d(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. int64_t ne0,
  4647. int64_t ne1,
  4648. int64_t ne2,
  4649. int64_t ne3) {
  4650. GGML_ASSERT(ggml_is_contiguous(a));
  4651. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4652. bool is_node = false;
  4653. if (a->grad) {
  4654. is_node = true;
  4655. }
  4656. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4657. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4658. ggml_format_name(result, "%s (reshaped)", a->name);
  4659. result->op = GGML_OP_RESHAPE;
  4660. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4661. result->src[0] = a;
  4662. return result;
  4663. }
  4664. static struct ggml_tensor * ggml_view_impl(
  4665. struct ggml_context * ctx,
  4666. struct ggml_tensor * a,
  4667. int n_dims,
  4668. const int64_t * ne,
  4669. size_t offset) {
  4670. bool is_node = false;
  4671. if (a->grad) {
  4672. is_node = true;
  4673. }
  4674. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4675. ggml_format_name(result, "%s (view)", a->name);
  4676. ggml_set_op_params(result, &offset, sizeof(offset));
  4677. result->op = GGML_OP_VIEW;
  4678. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4679. result->src[0] = a;
  4680. return result;
  4681. }
  4682. // ggml_view_1d
  4683. struct ggml_tensor * ggml_view_1d(
  4684. struct ggml_context * ctx,
  4685. struct ggml_tensor * a,
  4686. int64_t ne0,
  4687. size_t offset) {
  4688. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4689. return result;
  4690. }
  4691. // ggml_view_2d
  4692. struct ggml_tensor * ggml_view_2d(
  4693. struct ggml_context * ctx,
  4694. struct ggml_tensor * a,
  4695. int64_t ne0,
  4696. int64_t ne1,
  4697. size_t nb1,
  4698. size_t offset) {
  4699. const int64_t ne[2] = { ne0, ne1 };
  4700. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4701. result->nb[1] = nb1;
  4702. result->nb[2] = result->nb[1]*ne1;
  4703. result->nb[3] = result->nb[2];
  4704. return result;
  4705. }
  4706. // ggml_view_3d
  4707. struct ggml_tensor * ggml_view_3d(
  4708. struct ggml_context * ctx,
  4709. struct ggml_tensor * a,
  4710. int64_t ne0,
  4711. int64_t ne1,
  4712. int64_t ne2,
  4713. size_t nb1,
  4714. size_t nb2,
  4715. size_t offset) {
  4716. const int64_t ne[3] = { ne0, ne1, ne2 };
  4717. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4718. result->nb[1] = nb1;
  4719. result->nb[2] = nb2;
  4720. result->nb[3] = result->nb[2]*ne2;
  4721. return result;
  4722. }
  4723. // ggml_view_4d
  4724. struct ggml_tensor * ggml_view_4d(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a,
  4727. int64_t ne0,
  4728. int64_t ne1,
  4729. int64_t ne2,
  4730. int64_t ne3,
  4731. size_t nb1,
  4732. size_t nb2,
  4733. size_t nb3,
  4734. size_t offset) {
  4735. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4736. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4737. result->nb[1] = nb1;
  4738. result->nb[2] = nb2;
  4739. result->nb[3] = nb3;
  4740. return result;
  4741. }
  4742. // ggml_permute
  4743. struct ggml_tensor * ggml_permute(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a,
  4746. int axis0,
  4747. int axis1,
  4748. int axis2,
  4749. int axis3) {
  4750. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4751. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4752. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4753. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4754. GGML_ASSERT(axis0 != axis1);
  4755. GGML_ASSERT(axis0 != axis2);
  4756. GGML_ASSERT(axis0 != axis3);
  4757. GGML_ASSERT(axis1 != axis2);
  4758. GGML_ASSERT(axis1 != axis3);
  4759. GGML_ASSERT(axis2 != axis3);
  4760. bool is_node = false;
  4761. if (a->grad) {
  4762. is_node = true;
  4763. }
  4764. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4765. ggml_format_name(result, "%s (permuted)", a->name);
  4766. int ne[GGML_MAX_DIMS];
  4767. int nb[GGML_MAX_DIMS];
  4768. ne[axis0] = a->ne[0];
  4769. ne[axis1] = a->ne[1];
  4770. ne[axis2] = a->ne[2];
  4771. ne[axis3] = a->ne[3];
  4772. nb[axis0] = a->nb[0];
  4773. nb[axis1] = a->nb[1];
  4774. nb[axis2] = a->nb[2];
  4775. nb[axis3] = a->nb[3];
  4776. result->ne[0] = ne[0];
  4777. result->ne[1] = ne[1];
  4778. result->ne[2] = ne[2];
  4779. result->ne[3] = ne[3];
  4780. result->nb[0] = nb[0];
  4781. result->nb[1] = nb[1];
  4782. result->nb[2] = nb[2];
  4783. result->nb[3] = nb[3];
  4784. result->op = GGML_OP_PERMUTE;
  4785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4786. result->src[0] = a;
  4787. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4788. ggml_set_op_params(result, params, sizeof(params));
  4789. return result;
  4790. }
  4791. // ggml_transpose
  4792. struct ggml_tensor * ggml_transpose(
  4793. struct ggml_context * ctx,
  4794. struct ggml_tensor * a) {
  4795. bool is_node = false;
  4796. if (a->grad) {
  4797. is_node = true;
  4798. }
  4799. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4800. ggml_format_name(result, "%s (transposed)", a->name);
  4801. result->ne[0] = a->ne[1];
  4802. result->ne[1] = a->ne[0];
  4803. result->nb[0] = a->nb[1];
  4804. result->nb[1] = a->nb[0];
  4805. result->op = GGML_OP_TRANSPOSE;
  4806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4807. result->src[0] = a;
  4808. return result;
  4809. }
  4810. // ggml_get_rows
  4811. struct ggml_tensor * ggml_get_rows(
  4812. struct ggml_context * ctx,
  4813. struct ggml_tensor * a,
  4814. struct ggml_tensor * b) {
  4815. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4816. GGML_ASSERT(b->ne[3] == 1);
  4817. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4818. bool is_node = false;
  4819. if (a->grad || b->grad) {
  4820. is_node = true;
  4821. }
  4822. // TODO: implement non F32 return
  4823. enum ggml_type type = GGML_TYPE_F32;
  4824. if (a->type == GGML_TYPE_I32) {
  4825. type = a->type;
  4826. }
  4827. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4828. result->op = GGML_OP_GET_ROWS;
  4829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4830. result->src[0] = a;
  4831. result->src[1] = b;
  4832. return result;
  4833. }
  4834. // ggml_get_rows_back
  4835. struct ggml_tensor * ggml_get_rows_back(
  4836. struct ggml_context * ctx,
  4837. struct ggml_tensor * a,
  4838. struct ggml_tensor * b,
  4839. struct ggml_tensor * c) {
  4840. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4841. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4842. bool is_node = false;
  4843. if (a->grad || b->grad) {
  4844. is_node = true;
  4845. }
  4846. // TODO: implement non F32 return
  4847. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4848. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4849. result->op = GGML_OP_GET_ROWS_BACK;
  4850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4851. result->src[0] = a;
  4852. result->src[1] = b;
  4853. return result;
  4854. }
  4855. // ggml_diag
  4856. struct ggml_tensor * ggml_diag(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a) {
  4859. GGML_ASSERT(a->ne[1] == 1);
  4860. bool is_node = false;
  4861. if (a->grad) {
  4862. is_node = true;
  4863. }
  4864. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4865. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4866. result->op = GGML_OP_DIAG;
  4867. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4868. result->src[0] = a;
  4869. return result;
  4870. }
  4871. // ggml_diag_mask_inf
  4872. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a,
  4875. int n_past,
  4876. bool inplace) {
  4877. bool is_node = false;
  4878. if (a->grad) {
  4879. is_node = true;
  4880. }
  4881. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4882. int32_t params[] = { n_past };
  4883. ggml_set_op_params(result, params, sizeof(params));
  4884. result->op = GGML_OP_DIAG_MASK_INF;
  4885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4886. result->src[0] = a;
  4887. return result;
  4888. }
  4889. struct ggml_tensor * ggml_diag_mask_inf(
  4890. struct ggml_context * ctx,
  4891. struct ggml_tensor * a,
  4892. int n_past) {
  4893. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4894. }
  4895. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4896. struct ggml_context * ctx,
  4897. struct ggml_tensor * a,
  4898. int n_past) {
  4899. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4900. }
  4901. // ggml_diag_mask_zero
  4902. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. int n_past,
  4906. bool inplace) {
  4907. bool is_node = false;
  4908. if (a->grad) {
  4909. is_node = true;
  4910. }
  4911. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4912. int32_t params[] = { n_past };
  4913. ggml_set_op_params(result, params, sizeof(params));
  4914. result->op = GGML_OP_DIAG_MASK_ZERO;
  4915. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4916. result->src[0] = a;
  4917. return result;
  4918. }
  4919. struct ggml_tensor * ggml_diag_mask_zero(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. int n_past) {
  4923. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4924. }
  4925. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. int n_past) {
  4929. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4930. }
  4931. // ggml_soft_max
  4932. static struct ggml_tensor * ggml_soft_max_impl(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. struct ggml_tensor * mask,
  4936. float scale,
  4937. float max_bias,
  4938. bool inplace) {
  4939. GGML_ASSERT(ggml_is_contiguous(a));
  4940. if (mask) {
  4941. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  4942. GGML_ASSERT(ggml_is_contiguous(mask));
  4943. GGML_ASSERT(ggml_is_matrix(mask));
  4944. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  4945. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  4946. }
  4947. if (max_bias > 0.0f) {
  4948. GGML_ASSERT(mask);
  4949. }
  4950. bool is_node = false;
  4951. if (a->grad) {
  4952. is_node = true;
  4953. }
  4954. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4955. float params[] = { scale, max_bias };
  4956. ggml_set_op_params(result, params, sizeof(params));
  4957. result->op = GGML_OP_SOFT_MAX;
  4958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4959. result->src[0] = a;
  4960. result->src[1] = mask;
  4961. return result;
  4962. }
  4963. struct ggml_tensor * ggml_soft_max(
  4964. struct ggml_context * ctx,
  4965. struct ggml_tensor * a) {
  4966. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  4967. }
  4968. struct ggml_tensor * ggml_soft_max_inplace(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a) {
  4971. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  4972. }
  4973. struct ggml_tensor * ggml_soft_max_ext(
  4974. struct ggml_context * ctx,
  4975. struct ggml_tensor * a,
  4976. struct ggml_tensor * mask,
  4977. float scale,
  4978. float max_bias) {
  4979. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  4980. }
  4981. // ggml_soft_max_back
  4982. static struct ggml_tensor * ggml_soft_max_back_impl(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. struct ggml_tensor * b,
  4986. bool inplace) {
  4987. bool is_node = false;
  4988. if (a->grad || b->grad) {
  4989. is_node = true; // TODO : implement backward pass
  4990. }
  4991. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4992. result->op = GGML_OP_SOFT_MAX_BACK;
  4993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4994. result->src[0] = a;
  4995. result->src[1] = b;
  4996. return result;
  4997. }
  4998. struct ggml_tensor * ggml_soft_max_back(
  4999. struct ggml_context * ctx,
  5000. struct ggml_tensor * a,
  5001. struct ggml_tensor * b) {
  5002. return ggml_soft_max_back_impl(ctx, a, b, false);
  5003. }
  5004. struct ggml_tensor * ggml_soft_max_back_inplace(
  5005. struct ggml_context * ctx,
  5006. struct ggml_tensor * a,
  5007. struct ggml_tensor * b) {
  5008. return ggml_soft_max_back_impl(ctx, a, b, true);
  5009. }
  5010. // ggml_rope
  5011. static struct ggml_tensor * ggml_rope_impl(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. struct ggml_tensor * b,
  5015. int n_dims,
  5016. int mode,
  5017. int n_ctx,
  5018. int n_orig_ctx,
  5019. float freq_base,
  5020. float freq_scale,
  5021. float ext_factor,
  5022. float attn_factor,
  5023. float beta_fast,
  5024. float beta_slow,
  5025. float xpos_base,
  5026. bool xpos_down,
  5027. bool inplace) {
  5028. GGML_ASSERT(ggml_is_vector(b));
  5029. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5030. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5031. bool is_node = false;
  5032. if (a->grad) {
  5033. is_node = true;
  5034. }
  5035. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5036. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5037. memcpy(params + 5, &freq_base, sizeof(float));
  5038. memcpy(params + 6, &freq_scale, sizeof(float));
  5039. memcpy(params + 7, &ext_factor, sizeof(float));
  5040. memcpy(params + 8, &attn_factor, sizeof(float));
  5041. memcpy(params + 9, &beta_fast, sizeof(float));
  5042. memcpy(params + 10, &beta_slow, sizeof(float));
  5043. memcpy(params + 11, &xpos_base, sizeof(float));
  5044. memcpy(params + 12, &xpos_down, sizeof(bool));
  5045. ggml_set_op_params(result, params, sizeof(params));
  5046. result->op = GGML_OP_ROPE;
  5047. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5048. result->src[0] = a;
  5049. result->src[1] = b;
  5050. return result;
  5051. }
  5052. struct ggml_tensor * ggml_rope(
  5053. struct ggml_context * ctx,
  5054. struct ggml_tensor * a,
  5055. struct ggml_tensor * b,
  5056. int n_dims,
  5057. int mode,
  5058. int n_ctx) {
  5059. return ggml_rope_impl(
  5060. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5061. );
  5062. }
  5063. struct ggml_tensor * ggml_rope_inplace(
  5064. struct ggml_context * ctx,
  5065. struct ggml_tensor * a,
  5066. struct ggml_tensor * b,
  5067. int n_dims,
  5068. int mode,
  5069. int n_ctx) {
  5070. return ggml_rope_impl(
  5071. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5072. );
  5073. }
  5074. struct ggml_tensor * ggml_rope_custom(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. struct ggml_tensor * b,
  5078. int n_dims,
  5079. int mode,
  5080. int n_ctx,
  5081. int n_orig_ctx,
  5082. float freq_base,
  5083. float freq_scale,
  5084. float ext_factor,
  5085. float attn_factor,
  5086. float beta_fast,
  5087. float beta_slow) {
  5088. return ggml_rope_impl(
  5089. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5090. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5091. );
  5092. }
  5093. struct ggml_tensor * ggml_rope_custom_inplace(
  5094. struct ggml_context * ctx,
  5095. struct ggml_tensor * a,
  5096. struct ggml_tensor * b,
  5097. int n_dims,
  5098. int mode,
  5099. int n_ctx,
  5100. int n_orig_ctx,
  5101. float freq_base,
  5102. float freq_scale,
  5103. float ext_factor,
  5104. float attn_factor,
  5105. float beta_fast,
  5106. float beta_slow) {
  5107. return ggml_rope_impl(
  5108. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5109. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5110. );
  5111. }
  5112. struct ggml_tensor * ggml_rope_xpos_inplace(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a,
  5115. struct ggml_tensor * b,
  5116. int n_dims,
  5117. float base,
  5118. bool down) {
  5119. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  5120. }
  5121. // ggml_rope_back
  5122. struct ggml_tensor * ggml_rope_back(
  5123. struct ggml_context * ctx,
  5124. struct ggml_tensor * a,
  5125. struct ggml_tensor * b,
  5126. int n_dims,
  5127. int mode,
  5128. int n_ctx,
  5129. int n_orig_ctx,
  5130. float freq_base,
  5131. float freq_scale,
  5132. float ext_factor,
  5133. float attn_factor,
  5134. float beta_fast,
  5135. float beta_slow,
  5136. float xpos_base,
  5137. bool xpos_down) {
  5138. GGML_ASSERT(ggml_is_vector(b));
  5139. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5140. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5141. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5142. bool is_node = false;
  5143. if (a->grad) {
  5144. is_node = false; // TODO: implement backward
  5145. }
  5146. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5147. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5148. memcpy(params + 5, &freq_base, sizeof(float));
  5149. memcpy(params + 6, &freq_scale, sizeof(float));
  5150. memcpy(params + 7, &ext_factor, sizeof(float));
  5151. memcpy(params + 8, &attn_factor, sizeof(float));
  5152. memcpy(params + 9, &beta_fast, sizeof(float));
  5153. memcpy(params + 10, &beta_slow, sizeof(float));
  5154. memcpy(params + 11, &xpos_base, sizeof(float));
  5155. memcpy(params + 12, &xpos_down, sizeof(bool));
  5156. ggml_set_op_params(result, params, sizeof(params));
  5157. result->op = GGML_OP_ROPE_BACK;
  5158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5159. result->src[0] = a;
  5160. result->src[1] = b;
  5161. return result;
  5162. }
  5163. // ggml_clamp
  5164. struct ggml_tensor * ggml_clamp(
  5165. struct ggml_context * ctx,
  5166. struct ggml_tensor * a,
  5167. float min,
  5168. float max) {
  5169. bool is_node = false;
  5170. if (a->grad) {
  5171. GGML_ASSERT(false); // TODO: implement backward
  5172. is_node = true;
  5173. }
  5174. // TODO: when implement backward, fix this:
  5175. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5176. float params[] = { min, max };
  5177. ggml_set_op_params(result, params, sizeof(params));
  5178. result->op = GGML_OP_CLAMP;
  5179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5180. result->src[0] = a;
  5181. return result;
  5182. }
  5183. // ggml_conv_1d
  5184. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5185. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5186. }
  5187. GGML_API struct ggml_tensor * ggml_conv_1d(
  5188. struct ggml_context * ctx,
  5189. struct ggml_tensor * a,
  5190. struct ggml_tensor * b,
  5191. int s0,
  5192. int p0,
  5193. int d0) {
  5194. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5195. struct ggml_tensor * result =
  5196. ggml_mul_mat(ctx,
  5197. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5198. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5199. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5200. return result;
  5201. }
  5202. // ggml_conv_1d_ph
  5203. struct ggml_tensor* ggml_conv_1d_ph(
  5204. struct ggml_context * ctx,
  5205. struct ggml_tensor * a,
  5206. struct ggml_tensor * b,
  5207. int s,
  5208. int d) {
  5209. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5210. }
  5211. // ggml_conv_transpose_1d
  5212. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5213. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5214. }
  5215. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5216. struct ggml_context * ctx,
  5217. struct ggml_tensor * a,
  5218. struct ggml_tensor * b,
  5219. int s0,
  5220. int p0,
  5221. int d0) {
  5222. GGML_ASSERT(ggml_is_matrix(b));
  5223. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5224. GGML_ASSERT(a->ne[3] == 1);
  5225. GGML_ASSERT(p0 == 0);
  5226. GGML_ASSERT(d0 == 1);
  5227. bool is_node = false;
  5228. if (a->grad || b->grad) {
  5229. GGML_ASSERT(false); // TODO: implement backward
  5230. is_node = true;
  5231. }
  5232. const int64_t ne[4] = {
  5233. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5234. a->ne[1], b->ne[2], 1,
  5235. };
  5236. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5237. int32_t params[] = { s0, p0, d0 };
  5238. ggml_set_op_params(result, params, sizeof(params));
  5239. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5240. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5241. result->src[0] = a;
  5242. result->src[1] = b;
  5243. return result;
  5244. }
  5245. // ggml_conv_depthwise
  5246. struct ggml_tensor * ggml_conv_depthwise_2d(
  5247. struct ggml_context * ctx,
  5248. struct ggml_tensor * a,
  5249. struct ggml_tensor * b,
  5250. int s0,
  5251. int s1,
  5252. int p0,
  5253. int p1,
  5254. int d0,
  5255. int d1) {
  5256. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5257. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5258. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5259. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5260. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5261. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5262. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5263. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5264. return result;
  5265. }
  5266. // ggml_conv_2d
  5267. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5268. // a: [OC,IC, KH, KW]
  5269. // b: [N, IC, IH, IW]
  5270. // result: [N, OH, OW, IC*KH*KW]
  5271. struct ggml_tensor * ggml_im2col(
  5272. struct ggml_context * ctx,
  5273. struct ggml_tensor * a,
  5274. struct ggml_tensor * b,
  5275. int s0,
  5276. int s1,
  5277. int p0,
  5278. int p1,
  5279. int d0,
  5280. int d1,
  5281. bool is_2D,
  5282. enum ggml_type dst_type) {
  5283. if(is_2D) {
  5284. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5285. } else {
  5286. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5287. }
  5288. bool is_node = false;
  5289. if (a->grad || b->grad) {
  5290. GGML_ASSERT(false); // TODO: implement backward
  5291. is_node = true;
  5292. }
  5293. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5294. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5295. const int64_t ne[4] = {
  5296. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5297. OW,
  5298. is_2D ? OH : b->ne[2],
  5299. is_2D ? b->ne[3] : 1,
  5300. };
  5301. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5302. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5303. ggml_set_op_params(result, params, sizeof(params));
  5304. result->op = GGML_OP_IM2COL;
  5305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5306. result->src[0] = a;
  5307. result->src[1] = b;
  5308. return result;
  5309. }
  5310. // a: [OC,IC, KH, KW]
  5311. // b: [N, IC, IH, IW]
  5312. // result: [N, OC, OH, OW]
  5313. struct ggml_tensor * ggml_conv_2d(
  5314. struct ggml_context * ctx,
  5315. struct ggml_tensor * a,
  5316. struct ggml_tensor * b,
  5317. int s0,
  5318. int s1,
  5319. int p0,
  5320. int p1,
  5321. int d0,
  5322. int d1) {
  5323. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5324. struct ggml_tensor * result =
  5325. ggml_mul_mat(ctx,
  5326. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5327. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5328. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5329. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5330. return result;
  5331. }
  5332. // ggml_conv_2d_sk_p0
  5333. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5334. struct ggml_context * ctx,
  5335. struct ggml_tensor * a,
  5336. struct ggml_tensor * b) {
  5337. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5338. }
  5339. // ggml_conv_2d_s1_ph
  5340. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5341. struct ggml_context * ctx,
  5342. struct ggml_tensor * a,
  5343. struct ggml_tensor * b) {
  5344. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5345. }
  5346. // ggml_conv_transpose_2d_p0
  5347. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5348. return (ins - 1) * s - 2 * p + ks;
  5349. }
  5350. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5351. struct ggml_context * ctx,
  5352. struct ggml_tensor * a,
  5353. struct ggml_tensor * b,
  5354. int stride) {
  5355. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5356. bool is_node = false;
  5357. if (a->grad || b->grad) {
  5358. GGML_ASSERT(false); // TODO: implement backward
  5359. is_node = true;
  5360. }
  5361. const int64_t ne[4] = {
  5362. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5363. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5364. a->ne[2], b->ne[3],
  5365. };
  5366. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5367. ggml_set_op_params_i32(result, 0, stride);
  5368. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5370. result->src[0] = a;
  5371. result->src[1] = b;
  5372. return result;
  5373. }
  5374. // ggml_pool_*
  5375. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5376. return (ins + 2 * p - ks) / s + 1;
  5377. }
  5378. // ggml_pool_1d
  5379. struct ggml_tensor * ggml_pool_1d(
  5380. struct ggml_context * ctx,
  5381. struct ggml_tensor * a,
  5382. enum ggml_op_pool op,
  5383. int k0,
  5384. int s0,
  5385. int p0) {
  5386. bool is_node = false;
  5387. if (a->grad) {
  5388. GGML_ASSERT(false); // TODO: implement backward
  5389. is_node = true;
  5390. }
  5391. const int64_t ne[4] = {
  5392. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5393. a->ne[1],
  5394. a->ne[2],
  5395. a->ne[3],
  5396. };
  5397. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5398. int32_t params[] = { op, k0, s0, p0 };
  5399. ggml_set_op_params(result, params, sizeof(params));
  5400. result->op = GGML_OP_POOL_1D;
  5401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5402. result->src[0] = a;
  5403. return result;
  5404. }
  5405. // ggml_pool_2d
  5406. struct ggml_tensor * ggml_pool_2d(
  5407. struct ggml_context * ctx,
  5408. struct ggml_tensor * a,
  5409. enum ggml_op_pool op,
  5410. int k0,
  5411. int k1,
  5412. int s0,
  5413. int s1,
  5414. float p0,
  5415. float p1) {
  5416. bool is_node = false;
  5417. if (a->grad) {
  5418. GGML_ASSERT(false); // TODO: implement backward
  5419. is_node = true;
  5420. }
  5421. struct ggml_tensor * result;
  5422. const int64_t ne[3] = {
  5423. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5424. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5425. a->ne[2],
  5426. };
  5427. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5428. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5429. ggml_set_op_params(result, params, sizeof(params));
  5430. result->op = GGML_OP_POOL_2D;
  5431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5432. result->src[0] = a;
  5433. return result;
  5434. }
  5435. // ggml_upscale
  5436. static struct ggml_tensor * ggml_upscale_impl(
  5437. struct ggml_context * ctx,
  5438. struct ggml_tensor * a,
  5439. int ne0,
  5440. int ne1,
  5441. int ne2,
  5442. int ne3) {
  5443. bool is_node = false;
  5444. if (a->grad) {
  5445. GGML_ASSERT(false); // TODO: implement backward
  5446. is_node = true;
  5447. }
  5448. GGML_ASSERT(a->ne[0] <= ne0);
  5449. GGML_ASSERT(a->ne[1] <= ne1);
  5450. GGML_ASSERT(a->ne[2] <= ne2);
  5451. GGML_ASSERT(a->ne[3] <= ne3);
  5452. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5453. ne0,
  5454. ne1,
  5455. ne2,
  5456. ne3
  5457. );
  5458. result->op = GGML_OP_UPSCALE;
  5459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5460. result->src[0] = a;
  5461. return result;
  5462. }
  5463. struct ggml_tensor * ggml_upscale(
  5464. struct ggml_context * ctx,
  5465. struct ggml_tensor * a,
  5466. int scale_factor) {
  5467. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5468. }
  5469. struct ggml_tensor * ggml_upscale_ext(
  5470. struct ggml_context * ctx,
  5471. struct ggml_tensor * a,
  5472. int ne0,
  5473. int ne1,
  5474. int ne2,
  5475. int ne3) {
  5476. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5477. }
  5478. // ggml_pad
  5479. struct ggml_tensor * ggml_pad(
  5480. struct ggml_context * ctx,
  5481. struct ggml_tensor * a,
  5482. int p0, int p1, int p2, int p3) {
  5483. bool is_node = false;
  5484. if (a->grad) {
  5485. GGML_ASSERT(false); // TODO: implement backward
  5486. is_node = true;
  5487. }
  5488. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5489. a->ne[0] + p0,
  5490. a->ne[1] + p1,
  5491. a->ne[2] + p2,
  5492. a->ne[3] + p3);
  5493. result->op = GGML_OP_PAD;
  5494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5495. result->src[0] = a;
  5496. return result;
  5497. }
  5498. // ggml_arange
  5499. struct ggml_tensor * ggml_arange(
  5500. struct ggml_context * ctx,
  5501. float start,
  5502. float stop,
  5503. float step) {
  5504. GGML_ASSERT(stop > start);
  5505. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5506. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5507. result->op = GGML_OP_ARANGE;
  5508. ggml_set_op_params_f32(result, 0, start);
  5509. ggml_set_op_params_f32(result, 1, stop);
  5510. ggml_set_op_params_f32(result, 2, step);
  5511. return result;
  5512. }
  5513. // ggml_timestep_embedding
  5514. struct ggml_tensor * ggml_timestep_embedding(
  5515. struct ggml_context * ctx,
  5516. struct ggml_tensor * timesteps,
  5517. int dim,
  5518. int max_period) {
  5519. bool is_node = false;
  5520. if (timesteps->grad) {
  5521. GGML_ASSERT(false); // TODO: implement backward
  5522. is_node = true;
  5523. }
  5524. int actual_dim = dim;
  5525. if (dim % 2 != 0) {
  5526. actual_dim = dim + 1;
  5527. }
  5528. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5529. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5530. ggml_set_op_params_i32(result, 0, dim);
  5531. ggml_set_op_params_i32(result, 1, max_period);
  5532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5533. result->src[0] = timesteps;
  5534. return result;
  5535. }
  5536. // ggml_argsort
  5537. struct ggml_tensor * ggml_argsort(
  5538. struct ggml_context * ctx,
  5539. struct ggml_tensor * a,
  5540. enum ggml_sort_order order) {
  5541. bool is_node = false;
  5542. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5543. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5544. result->op = GGML_OP_ARGSORT;
  5545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5546. result->src[0] = a;
  5547. return result;
  5548. }
  5549. // ggml_top_k
  5550. struct ggml_tensor * ggml_top_k(
  5551. struct ggml_context * ctx,
  5552. struct ggml_tensor * a,
  5553. int k) {
  5554. GGML_ASSERT(a->ne[0] >= k);
  5555. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5556. result = ggml_view_4d(ctx, result,
  5557. k, result->ne[1], result->ne[2], result->ne[3],
  5558. result->nb[1], result->nb[2], result->nb[3],
  5559. 0);
  5560. return result;
  5561. }
  5562. // ggml_flash_attn
  5563. struct ggml_tensor * ggml_flash_attn(
  5564. struct ggml_context * ctx,
  5565. struct ggml_tensor * q,
  5566. struct ggml_tensor * k,
  5567. struct ggml_tensor * v,
  5568. bool masked) {
  5569. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5570. // TODO: check if vT can be multiplied by (k*qT)
  5571. bool is_node = false;
  5572. if (q->grad || k->grad || v->grad) {
  5573. is_node = true;
  5574. }
  5575. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5576. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5577. int32_t t = masked ? 1 : 0;
  5578. ggml_set_op_params(result, &t, sizeof(t));
  5579. result->op = GGML_OP_FLASH_ATTN;
  5580. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5581. result->src[0] = q;
  5582. result->src[1] = k;
  5583. result->src[2] = v;
  5584. return result;
  5585. }
  5586. // ggml_flash_attn_ext
  5587. struct ggml_tensor * ggml_flash_attn_ext(
  5588. struct ggml_context * ctx,
  5589. struct ggml_tensor * q,
  5590. struct ggml_tensor * k,
  5591. struct ggml_tensor * v,
  5592. struct ggml_tensor * mask,
  5593. float scale,
  5594. float max_bias) {
  5595. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5596. // TODO: check if vT can be multiplied by (k*qT)
  5597. if (mask) {
  5598. GGML_ASSERT(ggml_is_contiguous(mask));
  5599. GGML_ASSERT(mask->ne[2] == 1);
  5600. GGML_ASSERT(mask->ne[3] == 1);
  5601. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5602. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5603. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5604. }
  5605. if (max_bias > 0.0f) {
  5606. GGML_ASSERT(mask);
  5607. }
  5608. bool is_node = false;
  5609. if (q->grad || k->grad || v->grad) {
  5610. is_node = true;
  5611. }
  5612. // permute(0, 2, 1, 3)
  5613. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5614. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5615. float params[] = { scale, max_bias };
  5616. ggml_set_op_params(result, params, sizeof(params));
  5617. result->op = GGML_OP_FLASH_ATTN_EXT;
  5618. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5619. result->src[0] = q;
  5620. result->src[1] = k;
  5621. result->src[2] = v;
  5622. result->src[3] = mask;
  5623. return result;
  5624. }
  5625. void ggml_flash_attn_ext_set_prec(
  5626. struct ggml_tensor * a,
  5627. enum ggml_prec prec) {
  5628. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5629. const int32_t prec_i32 = (int32_t) prec;
  5630. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5631. }
  5632. // ggml_flash_ff
  5633. struct ggml_tensor * ggml_flash_ff(
  5634. struct ggml_context * ctx,
  5635. struct ggml_tensor * a,
  5636. struct ggml_tensor * b0,
  5637. struct ggml_tensor * b1,
  5638. struct ggml_tensor * c0,
  5639. struct ggml_tensor * c1) {
  5640. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5641. // TODO: more checks
  5642. bool is_node = false;
  5643. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5644. is_node = true;
  5645. }
  5646. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5647. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5648. result->op = GGML_OP_FLASH_FF;
  5649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5650. result->src[0] = a;
  5651. result->src[1] = b0;
  5652. result->src[2] = b1;
  5653. result->src[3] = c0;
  5654. result->src[4] = c1;
  5655. return result;
  5656. }
  5657. // ggml_flash_attn_back
  5658. struct ggml_tensor * ggml_flash_attn_back(
  5659. struct ggml_context * ctx,
  5660. struct ggml_tensor * q,
  5661. struct ggml_tensor * k,
  5662. struct ggml_tensor * v,
  5663. struct ggml_tensor * d,
  5664. bool masked) {
  5665. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5666. // TODO: check if vT can be multiplied by (k*qT)
  5667. // d shape [D,N,ne2,ne3]
  5668. // q shape [D,N,ne2,ne3]
  5669. // k shape [D,M,kvne2,ne3]
  5670. // v shape [M,D,kvne2,ne3]
  5671. const int64_t D = q->ne[0];
  5672. const int64_t N = q->ne[1];
  5673. const int64_t M = k->ne[1];
  5674. const int64_t ne2 = q->ne[2];
  5675. const int64_t ne3 = q->ne[3];
  5676. const int64_t kvne2 = k->ne[2];
  5677. GGML_ASSERT(k->ne[0] == D);
  5678. GGML_ASSERT(v->ne[0] == M);
  5679. GGML_ASSERT(v->ne[1] == D);
  5680. GGML_ASSERT(d->ne[0] == D);
  5681. GGML_ASSERT(d->ne[1] == N);
  5682. GGML_ASSERT(k->ne[2] == kvne2);
  5683. GGML_ASSERT(k->ne[3] == ne3);
  5684. GGML_ASSERT(v->ne[2] == kvne2);
  5685. GGML_ASSERT(v->ne[3] == ne3);
  5686. GGML_ASSERT(d->ne[2] == ne2);
  5687. GGML_ASSERT(d->ne[3] == ne3);
  5688. GGML_ASSERT(ne2 % kvne2 == 0);
  5689. bool is_node = false;
  5690. if (q->grad || k->grad || v->grad) {
  5691. // when using this operation (in backwards pass) these grads are set.
  5692. // we don't want to create (big) grad of our result, so is_node is false.
  5693. is_node = false;
  5694. }
  5695. // store gradients of q, k and v as continuous tensors concatenated in result.
  5696. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5697. const int64_t elem_q = ggml_nelements(q);
  5698. const int64_t elem_k = ggml_nelements(k);
  5699. const int64_t elem_v = ggml_nelements(v);
  5700. enum ggml_type result_type = GGML_TYPE_F32;
  5701. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5702. const size_t tsize = ggml_type_size(result_type);
  5703. const size_t offs_q = 0;
  5704. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5705. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5706. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5707. const size_t nelements = (end + tsize - 1)/tsize;
  5708. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5709. int32_t masked_i = masked ? 1 : 0;
  5710. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5711. result->op = GGML_OP_FLASH_ATTN_BACK;
  5712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5713. result->src[0] = q;
  5714. result->src[1] = k;
  5715. result->src[2] = v;
  5716. result->src[3] = d;
  5717. return result;
  5718. }
  5719. // ggml_ssm_conv
  5720. struct ggml_tensor * ggml_ssm_conv(
  5721. struct ggml_context * ctx,
  5722. struct ggml_tensor * s,
  5723. struct ggml_tensor * x,
  5724. struct ggml_tensor * c,
  5725. struct ggml_tensor * sq) {
  5726. GGML_ASSERT(ggml_is_3d(s));
  5727. GGML_ASSERT(ggml_is_matrix(x));
  5728. GGML_ASSERT(ggml_is_matrix(c));
  5729. GGML_ASSERT(ggml_is_matrix(sq));
  5730. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5731. const int64_t d_conv = c->ne[0];
  5732. const int64_t d_inner = c->ne[1];
  5733. const int64_t n_tokens = x->ne[1];
  5734. const int64_t n_kv = s->ne[2];
  5735. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5736. GGML_ASSERT( s->ne[1] == d_inner);
  5737. GGML_ASSERT( x->ne[0] == d_inner);
  5738. GGML_ASSERT(sq->ne[0] == n_kv);
  5739. GGML_ASSERT(sq->ne[1] == n_tokens);
  5740. bool is_node = false;
  5741. if (s->grad || x->grad || c->grad || sq->grad) {
  5742. GGML_ASSERT(false); // TODO: implement
  5743. is_node = true;
  5744. }
  5745. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5746. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5747. result->op = GGML_OP_SSM_CONV;
  5748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5749. result->src[0] = s;
  5750. result->src[1] = x;
  5751. result->src[2] = c;
  5752. result->src[3] = sq;
  5753. return result;
  5754. }
  5755. // ggml_ssm_scan
  5756. struct ggml_tensor * ggml_ssm_scan(
  5757. struct ggml_context * ctx,
  5758. struct ggml_tensor * s,
  5759. struct ggml_tensor * x,
  5760. struct ggml_tensor * dt,
  5761. struct ggml_tensor * A,
  5762. struct ggml_tensor * B,
  5763. struct ggml_tensor * C,
  5764. struct ggml_tensor * sq) {
  5765. GGML_ASSERT(ggml_is_contiguous(s));
  5766. GGML_ASSERT(ggml_is_contiguous(x));
  5767. GGML_ASSERT(ggml_is_contiguous(dt));
  5768. GGML_ASSERT(ggml_is_contiguous(A));
  5769. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5770. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5771. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5772. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5773. {
  5774. const int64_t d_state = s->ne[0];
  5775. const int64_t d_inner = s->ne[1];
  5776. const int64_t n_tokens = x->ne[1];
  5777. GGML_ASSERT(x->ne[0] == d_inner);
  5778. GGML_ASSERT(A->ne[0] == d_state);
  5779. GGML_ASSERT(A->ne[1] == d_inner);
  5780. GGML_ASSERT(B->ne[0] == d_state);
  5781. GGML_ASSERT(B->ne[1] == n_tokens);
  5782. GGML_ASSERT(C->ne[0] == d_state);
  5783. GGML_ASSERT(C->ne[1] == n_tokens);
  5784. }
  5785. bool is_node = false;
  5786. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5787. GGML_ASSERT(false); // TODO: implement
  5788. is_node = true;
  5789. }
  5790. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5791. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5792. result->op = GGML_OP_SSM_SCAN;
  5793. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5794. result->src[0] = s;
  5795. result->src[1] = x;
  5796. result->src[2] = dt;
  5797. result->src[3] = A;
  5798. result->src[4] = B;
  5799. result->src[5] = C;
  5800. result->src[6] = sq;
  5801. return result;
  5802. }
  5803. // ggml_win_part
  5804. struct ggml_tensor * ggml_win_part(
  5805. struct ggml_context * ctx,
  5806. struct ggml_tensor * a,
  5807. int w) {
  5808. GGML_ASSERT(a->ne[3] == 1);
  5809. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5810. bool is_node = false;
  5811. if (a->grad) {
  5812. GGML_ASSERT(false); // TODO: implement backward
  5813. is_node = true;
  5814. }
  5815. // padding
  5816. const int px = (w - a->ne[1]%w)%w;
  5817. const int py = (w - a->ne[2]%w)%w;
  5818. const int npx = (px + a->ne[1])/w;
  5819. const int npy = (py + a->ne[2])/w;
  5820. const int np = npx*npy;
  5821. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5822. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5823. int32_t params[] = { npx, npy, w };
  5824. ggml_set_op_params(result, params, sizeof(params));
  5825. result->op = GGML_OP_WIN_PART;
  5826. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5827. result->src[0] = a;
  5828. return result;
  5829. }
  5830. // ggml_win_unpart
  5831. struct ggml_tensor * ggml_win_unpart(
  5832. struct ggml_context * ctx,
  5833. struct ggml_tensor * a,
  5834. int w0,
  5835. int h0,
  5836. int w) {
  5837. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5838. bool is_node = false;
  5839. if (a->grad) {
  5840. GGML_ASSERT(false); // TODO: implement backward
  5841. is_node = true;
  5842. }
  5843. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5844. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5845. int32_t params[] = { w };
  5846. ggml_set_op_params(result, params, sizeof(params));
  5847. result->op = GGML_OP_WIN_UNPART;
  5848. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5849. result->src[0] = a;
  5850. return result;
  5851. }
  5852. // ggml_get_rel_pos
  5853. struct ggml_tensor * ggml_get_rel_pos(
  5854. struct ggml_context * ctx,
  5855. struct ggml_tensor * a,
  5856. int qh,
  5857. int kh) {
  5858. GGML_ASSERT(qh == kh);
  5859. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5860. bool is_node = false;
  5861. if (a->grad) {
  5862. GGML_ASSERT(false); // TODO: implement backward
  5863. is_node = true;
  5864. }
  5865. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5866. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5867. result->op = GGML_OP_GET_REL_POS;
  5868. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5869. result->src[0] = a;
  5870. return result;
  5871. }
  5872. // ggml_add_rel_pos
  5873. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5874. struct ggml_context * ctx,
  5875. struct ggml_tensor * a,
  5876. struct ggml_tensor * pw,
  5877. struct ggml_tensor * ph,
  5878. bool inplace) {
  5879. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5880. GGML_ASSERT(ggml_is_contiguous(a));
  5881. GGML_ASSERT(ggml_is_contiguous(pw));
  5882. GGML_ASSERT(ggml_is_contiguous(ph));
  5883. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5884. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5885. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5886. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5887. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5888. bool is_node = false;
  5889. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5890. is_node = true;
  5891. }
  5892. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5893. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5894. result->op = GGML_OP_ADD_REL_POS;
  5895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5896. result->src[0] = a;
  5897. result->src[1] = pw;
  5898. result->src[2] = ph;
  5899. return result;
  5900. }
  5901. struct ggml_tensor * ggml_add_rel_pos(
  5902. struct ggml_context * ctx,
  5903. struct ggml_tensor * a,
  5904. struct ggml_tensor * pw,
  5905. struct ggml_tensor * ph) {
  5906. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5907. }
  5908. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5909. struct ggml_context * ctx,
  5910. struct ggml_tensor * a,
  5911. struct ggml_tensor * pw,
  5912. struct ggml_tensor * ph) {
  5913. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5914. }
  5915. // gmml_unary
  5916. static struct ggml_tensor * ggml_unary_impl(
  5917. struct ggml_context * ctx,
  5918. struct ggml_tensor * a,
  5919. enum ggml_unary_op op,
  5920. bool inplace) {
  5921. bool is_node = false;
  5922. if (!inplace && (a->grad)) {
  5923. is_node = true;
  5924. }
  5925. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5926. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5927. result->op = GGML_OP_UNARY;
  5928. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5929. result->src[0] = a;
  5930. return result;
  5931. }
  5932. struct ggml_tensor * ggml_unary(
  5933. struct ggml_context * ctx,
  5934. struct ggml_tensor * a,
  5935. enum ggml_unary_op op) {
  5936. return ggml_unary_impl(ctx, a, op, false);
  5937. }
  5938. struct ggml_tensor * ggml_unary_inplace(
  5939. struct ggml_context * ctx,
  5940. struct ggml_tensor * a,
  5941. enum ggml_unary_op op) {
  5942. return ggml_unary_impl(ctx, a, op, true);
  5943. }
  5944. // ggml_map_unary
  5945. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5946. struct ggml_context * ctx,
  5947. struct ggml_tensor * a,
  5948. const ggml_unary_op_f32_t fun,
  5949. bool inplace) {
  5950. bool is_node = false;
  5951. if (!inplace && a->grad) {
  5952. is_node = true;
  5953. }
  5954. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5955. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5956. result->op = GGML_OP_MAP_UNARY;
  5957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5958. result->src[0] = a;
  5959. return result;
  5960. }
  5961. struct ggml_tensor * ggml_map_unary_f32(
  5962. struct ggml_context * ctx,
  5963. struct ggml_tensor * a,
  5964. const ggml_unary_op_f32_t fun) {
  5965. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5966. }
  5967. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5968. struct ggml_context * ctx,
  5969. struct ggml_tensor * a,
  5970. const ggml_unary_op_f32_t fun) {
  5971. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5972. }
  5973. // ggml_map_binary
  5974. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5975. struct ggml_context * ctx,
  5976. struct ggml_tensor * a,
  5977. struct ggml_tensor * b,
  5978. const ggml_binary_op_f32_t fun,
  5979. bool inplace) {
  5980. GGML_ASSERT(ggml_are_same_shape(a, b));
  5981. bool is_node = false;
  5982. if (!inplace && (a->grad || b->grad)) {
  5983. is_node = true;
  5984. }
  5985. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5986. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5987. result->op = GGML_OP_MAP_BINARY;
  5988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5989. result->src[0] = a;
  5990. result->src[1] = b;
  5991. return result;
  5992. }
  5993. struct ggml_tensor * ggml_map_binary_f32(
  5994. struct ggml_context * ctx,
  5995. struct ggml_tensor * a,
  5996. struct ggml_tensor * b,
  5997. const ggml_binary_op_f32_t fun) {
  5998. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5999. }
  6000. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6001. struct ggml_context * ctx,
  6002. struct ggml_tensor * a,
  6003. struct ggml_tensor * b,
  6004. const ggml_binary_op_f32_t fun) {
  6005. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6006. }
  6007. // ggml_map_custom1_f32
  6008. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6009. struct ggml_context * ctx,
  6010. struct ggml_tensor * a,
  6011. const ggml_custom1_op_f32_t fun,
  6012. bool inplace) {
  6013. bool is_node = false;
  6014. if (!inplace && a->grad) {
  6015. is_node = true;
  6016. }
  6017. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6018. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6019. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6020. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6021. result->src[0] = a;
  6022. return result;
  6023. }
  6024. struct ggml_tensor * ggml_map_custom1_f32(
  6025. struct ggml_context * ctx,
  6026. struct ggml_tensor * a,
  6027. const ggml_custom1_op_f32_t fun) {
  6028. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6029. }
  6030. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6031. struct ggml_context * ctx,
  6032. struct ggml_tensor * a,
  6033. const ggml_custom1_op_f32_t fun) {
  6034. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6035. }
  6036. // ggml_map_custom2_f32
  6037. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6038. struct ggml_context * ctx,
  6039. struct ggml_tensor * a,
  6040. struct ggml_tensor * b,
  6041. const ggml_custom2_op_f32_t fun,
  6042. bool inplace) {
  6043. bool is_node = false;
  6044. if (!inplace && (a->grad || b->grad)) {
  6045. is_node = true;
  6046. }
  6047. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6048. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6049. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6051. result->src[0] = a;
  6052. result->src[1] = b;
  6053. return result;
  6054. }
  6055. struct ggml_tensor * ggml_map_custom2_f32(
  6056. struct ggml_context * ctx,
  6057. struct ggml_tensor * a,
  6058. struct ggml_tensor * b,
  6059. const ggml_custom2_op_f32_t fun) {
  6060. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6061. }
  6062. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6063. struct ggml_context * ctx,
  6064. struct ggml_tensor * a,
  6065. struct ggml_tensor * b,
  6066. const ggml_custom2_op_f32_t fun) {
  6067. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6068. }
  6069. // ggml_map_custom3_f32
  6070. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6071. struct ggml_context * ctx,
  6072. struct ggml_tensor * a,
  6073. struct ggml_tensor * b,
  6074. struct ggml_tensor * c,
  6075. const ggml_custom3_op_f32_t fun,
  6076. bool inplace) {
  6077. bool is_node = false;
  6078. if (!inplace && (a->grad || b->grad || c->grad)) {
  6079. is_node = true;
  6080. }
  6081. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6082. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6083. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6085. result->src[0] = a;
  6086. result->src[1] = b;
  6087. result->src[2] = c;
  6088. return result;
  6089. }
  6090. struct ggml_tensor * ggml_map_custom3_f32(
  6091. struct ggml_context * ctx,
  6092. struct ggml_tensor * a,
  6093. struct ggml_tensor * b,
  6094. struct ggml_tensor * c,
  6095. const ggml_custom3_op_f32_t fun) {
  6096. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6097. }
  6098. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6099. struct ggml_context * ctx,
  6100. struct ggml_tensor * a,
  6101. struct ggml_tensor * b,
  6102. struct ggml_tensor * c,
  6103. const ggml_custom3_op_f32_t fun) {
  6104. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6105. }
  6106. // ggml_map_custom1
  6107. struct ggml_map_custom1_op_params {
  6108. ggml_custom1_op_t fun;
  6109. int n_tasks;
  6110. void * userdata;
  6111. };
  6112. static struct ggml_tensor * ggml_map_custom1_impl(
  6113. struct ggml_context * ctx,
  6114. struct ggml_tensor * a,
  6115. const ggml_custom1_op_t fun,
  6116. int n_tasks,
  6117. void * userdata,
  6118. bool inplace) {
  6119. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6120. bool is_node = false;
  6121. if (!inplace && a->grad) {
  6122. is_node = true;
  6123. }
  6124. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6125. struct ggml_map_custom1_op_params params = {
  6126. /*.fun =*/ fun,
  6127. /*.n_tasks =*/ n_tasks,
  6128. /*.userdata =*/ userdata
  6129. };
  6130. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6131. result->op = GGML_OP_MAP_CUSTOM1;
  6132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6133. result->src[0] = a;
  6134. return result;
  6135. }
  6136. struct ggml_tensor * ggml_map_custom1(
  6137. struct ggml_context * ctx,
  6138. struct ggml_tensor * a,
  6139. const ggml_custom1_op_t fun,
  6140. int n_tasks,
  6141. void * userdata) {
  6142. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6143. }
  6144. struct ggml_tensor * ggml_map_custom1_inplace(
  6145. struct ggml_context * ctx,
  6146. struct ggml_tensor * a,
  6147. const ggml_custom1_op_t fun,
  6148. int n_tasks,
  6149. void * userdata) {
  6150. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6151. }
  6152. // ggml_map_custom2
  6153. struct ggml_map_custom2_op_params {
  6154. ggml_custom2_op_t fun;
  6155. int n_tasks;
  6156. void * userdata;
  6157. };
  6158. static struct ggml_tensor * ggml_map_custom2_impl(
  6159. struct ggml_context * ctx,
  6160. struct ggml_tensor * a,
  6161. struct ggml_tensor * b,
  6162. const ggml_custom2_op_t fun,
  6163. int n_tasks,
  6164. void * userdata,
  6165. bool inplace) {
  6166. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6167. bool is_node = false;
  6168. if (!inplace && (a->grad || b->grad)) {
  6169. is_node = true;
  6170. }
  6171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6172. struct ggml_map_custom2_op_params params = {
  6173. /*.fun =*/ fun,
  6174. /*.n_tasks =*/ n_tasks,
  6175. /*.userdata =*/ userdata
  6176. };
  6177. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6178. result->op = GGML_OP_MAP_CUSTOM2;
  6179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6180. result->src[0] = a;
  6181. result->src[1] = b;
  6182. return result;
  6183. }
  6184. struct ggml_tensor * ggml_map_custom2(
  6185. struct ggml_context * ctx,
  6186. struct ggml_tensor * a,
  6187. struct ggml_tensor * b,
  6188. const ggml_custom2_op_t fun,
  6189. int n_tasks,
  6190. void * userdata) {
  6191. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6192. }
  6193. struct ggml_tensor * ggml_map_custom2_inplace(
  6194. struct ggml_context * ctx,
  6195. struct ggml_tensor * a,
  6196. struct ggml_tensor * b,
  6197. const ggml_custom2_op_t fun,
  6198. int n_tasks,
  6199. void * userdata) {
  6200. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6201. }
  6202. // ggml_map_custom3
  6203. struct ggml_map_custom3_op_params {
  6204. ggml_custom3_op_t fun;
  6205. int n_tasks;
  6206. void * userdata;
  6207. };
  6208. static struct ggml_tensor * ggml_map_custom3_impl(
  6209. struct ggml_context * ctx,
  6210. struct ggml_tensor * a,
  6211. struct ggml_tensor * b,
  6212. struct ggml_tensor * c,
  6213. const ggml_custom3_op_t fun,
  6214. int n_tasks,
  6215. void * userdata,
  6216. bool inplace) {
  6217. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6218. bool is_node = false;
  6219. if (!inplace && (a->grad || b->grad || c->grad)) {
  6220. is_node = true;
  6221. }
  6222. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6223. struct ggml_map_custom3_op_params params = {
  6224. /*.fun =*/ fun,
  6225. /*.n_tasks =*/ n_tasks,
  6226. /*.userdata =*/ userdata
  6227. };
  6228. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6229. result->op = GGML_OP_MAP_CUSTOM3;
  6230. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6231. result->src[0] = a;
  6232. result->src[1] = b;
  6233. result->src[2] = c;
  6234. return result;
  6235. }
  6236. struct ggml_tensor * ggml_map_custom3(
  6237. struct ggml_context * ctx,
  6238. struct ggml_tensor * a,
  6239. struct ggml_tensor * b,
  6240. struct ggml_tensor * c,
  6241. const ggml_custom3_op_t fun,
  6242. int n_tasks,
  6243. void * userdata) {
  6244. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6245. }
  6246. struct ggml_tensor * ggml_map_custom3_inplace(
  6247. struct ggml_context * ctx,
  6248. struct ggml_tensor * a,
  6249. struct ggml_tensor * b,
  6250. struct ggml_tensor * c,
  6251. const ggml_custom3_op_t fun,
  6252. int n_tasks,
  6253. void * userdata) {
  6254. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6255. }
  6256. // ggml_cross_entropy_loss
  6257. struct ggml_tensor * ggml_cross_entropy_loss(
  6258. struct ggml_context * ctx,
  6259. struct ggml_tensor * a,
  6260. struct ggml_tensor * b) {
  6261. GGML_ASSERT(ggml_are_same_shape(a, b));
  6262. bool is_node = false;
  6263. if (a->grad || b->grad) {
  6264. is_node = true;
  6265. }
  6266. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6267. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6269. result->src[0] = a;
  6270. result->src[1] = b;
  6271. return result;
  6272. }
  6273. // ggml_cross_entropy_loss_back
  6274. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6275. struct ggml_context * ctx,
  6276. struct ggml_tensor * a,
  6277. struct ggml_tensor * b,
  6278. struct ggml_tensor * c) {
  6279. GGML_ASSERT(ggml_are_same_shape(a, b));
  6280. GGML_ASSERT(ggml_is_scalar(c));
  6281. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6282. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6283. result->grad = NULL;
  6284. result->src[0] = a;
  6285. result->src[1] = b;
  6286. result->src[2] = c;
  6287. return result;
  6288. }
  6289. ////////////////////////////////////////////////////////////////////////////////
  6290. void ggml_set_param(
  6291. struct ggml_context * ctx,
  6292. struct ggml_tensor * tensor) {
  6293. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6294. GGML_ASSERT(tensor->grad == NULL);
  6295. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6296. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6297. }
  6298. // ggml_compute_forward_dup
  6299. static void ggml_compute_forward_dup_same_cont(
  6300. const struct ggml_compute_params * params,
  6301. struct ggml_tensor * dst) {
  6302. const struct ggml_tensor * src0 = dst->src[0];
  6303. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6304. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6305. GGML_ASSERT(src0->type == dst->type);
  6306. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6307. return;
  6308. }
  6309. const size_t nb00 = src0->nb[0];
  6310. const size_t nb0 = dst->nb[0];
  6311. const int ith = params->ith; // thread index
  6312. const int nth = params->nth; // number of threads
  6313. // parallelize by elements
  6314. const int ne = ggml_nelements(dst);
  6315. const int dr = (ne + nth - 1) / nth;
  6316. const int ie0 = dr * ith;
  6317. const int ie1 = MIN(ie0 + dr, ne);
  6318. if (ie0 < ie1) {
  6319. memcpy(
  6320. ((char *) dst->data + ie0*nb0),
  6321. ((char *) src0->data + ie0*nb00),
  6322. (ie1 - ie0) * ggml_type_size(src0->type));
  6323. }
  6324. }
  6325. static void ggml_compute_forward_dup_f16(
  6326. const struct ggml_compute_params * params,
  6327. struct ggml_tensor * dst) {
  6328. const struct ggml_tensor * src0 = dst->src[0];
  6329. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6330. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6331. return;
  6332. }
  6333. GGML_TENSOR_UNARY_OP_LOCALS
  6334. const int ith = params->ith; // thread index
  6335. const int nth = params->nth; // number of threads
  6336. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6337. ggml_compute_forward_dup_same_cont(params, dst);
  6338. return;
  6339. }
  6340. // parallelize by rows
  6341. const int nr = ne01;
  6342. // number of rows per thread
  6343. const int dr = (nr + nth - 1) / nth;
  6344. // row range for this thread
  6345. const int ir0 = dr * ith;
  6346. const int ir1 = MIN(ir0 + dr, nr);
  6347. if (src0->type == dst->type &&
  6348. ne00 == ne0 &&
  6349. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6350. // copy by rows
  6351. const size_t rs = ne00*nb00;
  6352. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6353. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6354. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6355. memcpy(
  6356. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6357. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6358. rs);
  6359. }
  6360. }
  6361. }
  6362. return;
  6363. }
  6364. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6365. if (ggml_is_contiguous(dst)) {
  6366. if (nb00 == sizeof(ggml_fp16_t)) {
  6367. if (dst->type == GGML_TYPE_F16) {
  6368. size_t id = 0;
  6369. const size_t rs = ne00 * nb00;
  6370. char * dst_ptr = (char *) dst->data;
  6371. for (int i03 = 0; i03 < ne03; i03++) {
  6372. for (int i02 = 0; i02 < ne02; i02++) {
  6373. id += rs * ir0;
  6374. for (int i01 = ir0; i01 < ir1; i01++) {
  6375. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6376. memcpy(dst_ptr + id, src0_ptr, rs);
  6377. id += rs;
  6378. }
  6379. id += rs * (ne01 - ir1);
  6380. }
  6381. }
  6382. } else if (dst->type == GGML_TYPE_F32) {
  6383. size_t id = 0;
  6384. float * dst_ptr = (float *) dst->data;
  6385. for (int i03 = 0; i03 < ne03; i03++) {
  6386. for (int i02 = 0; i02 < ne02; i02++) {
  6387. id += ne00 * ir0;
  6388. for (int i01 = ir0; i01 < ir1; i01++) {
  6389. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6390. for (int i00 = 0; i00 < ne00; i00++) {
  6391. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6392. id++;
  6393. }
  6394. }
  6395. id += ne00 * (ne01 - ir1);
  6396. }
  6397. }
  6398. } else if (type_traits[dst->type].from_float) {
  6399. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6400. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6401. size_t id = 0;
  6402. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6403. char * dst_ptr = (char *) dst->data;
  6404. for (int i03 = 0; i03 < ne03; i03++) {
  6405. for (int i02 = 0; i02 < ne02; i02++) {
  6406. id += rs * ir0;
  6407. for (int i01 = ir0; i01 < ir1; i01++) {
  6408. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6409. for (int i00 = 0; i00 < ne00; i00++) {
  6410. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6411. }
  6412. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6413. id += rs;
  6414. }
  6415. id += rs * (ne01 - ir1);
  6416. }
  6417. }
  6418. } else {
  6419. GGML_ASSERT(false); // TODO: implement
  6420. }
  6421. } else {
  6422. //printf("%s: this is not optimal - fix me\n", __func__);
  6423. if (dst->type == GGML_TYPE_F32) {
  6424. size_t id = 0;
  6425. float * dst_ptr = (float *) dst->data;
  6426. for (int i03 = 0; i03 < ne03; i03++) {
  6427. for (int i02 = 0; i02 < ne02; i02++) {
  6428. id += ne00 * ir0;
  6429. for (int i01 = ir0; i01 < ir1; i01++) {
  6430. for (int i00 = 0; i00 < ne00; i00++) {
  6431. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6432. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6433. id++;
  6434. }
  6435. }
  6436. id += ne00 * (ne01 - ir1);
  6437. }
  6438. }
  6439. } else if (dst->type == GGML_TYPE_F16) {
  6440. size_t id = 0;
  6441. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6442. for (int i03 = 0; i03 < ne03; i03++) {
  6443. for (int i02 = 0; i02 < ne02; i02++) {
  6444. id += ne00 * ir0;
  6445. for (int i01 = ir0; i01 < ir1; i01++) {
  6446. for (int i00 = 0; i00 < ne00; i00++) {
  6447. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6448. dst_ptr[id] = *src0_ptr;
  6449. id++;
  6450. }
  6451. }
  6452. id += ne00 * (ne01 - ir1);
  6453. }
  6454. }
  6455. } else {
  6456. GGML_ASSERT(false); // TODO: implement
  6457. }
  6458. }
  6459. return;
  6460. }
  6461. // dst counters
  6462. int64_t i10 = 0;
  6463. int64_t i11 = 0;
  6464. int64_t i12 = 0;
  6465. int64_t i13 = 0;
  6466. if (dst->type == GGML_TYPE_F16) {
  6467. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6468. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6469. i10 += ne00 * ir0;
  6470. while (i10 >= ne0) {
  6471. i10 -= ne0;
  6472. if (++i11 == ne1) {
  6473. i11 = 0;
  6474. if (++i12 == ne2) {
  6475. i12 = 0;
  6476. if (++i13 == ne3) {
  6477. i13 = 0;
  6478. }
  6479. }
  6480. }
  6481. }
  6482. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6483. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6484. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6485. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6486. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6487. if (++i10 == ne00) {
  6488. i10 = 0;
  6489. if (++i11 == ne01) {
  6490. i11 = 0;
  6491. if (++i12 == ne02) {
  6492. i12 = 0;
  6493. if (++i13 == ne03) {
  6494. i13 = 0;
  6495. }
  6496. }
  6497. }
  6498. }
  6499. }
  6500. }
  6501. i10 += ne00 * (ne01 - ir1);
  6502. while (i10 >= ne0) {
  6503. i10 -= ne0;
  6504. if (++i11 == ne1) {
  6505. i11 = 0;
  6506. if (++i12 == ne2) {
  6507. i12 = 0;
  6508. if (++i13 == ne3) {
  6509. i13 = 0;
  6510. }
  6511. }
  6512. }
  6513. }
  6514. }
  6515. }
  6516. } else if (dst->type == GGML_TYPE_F32) {
  6517. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6518. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6519. i10 += ne00 * ir0;
  6520. while (i10 >= ne0) {
  6521. i10 -= ne0;
  6522. if (++i11 == ne1) {
  6523. i11 = 0;
  6524. if (++i12 == ne2) {
  6525. i12 = 0;
  6526. if (++i13 == ne3) {
  6527. i13 = 0;
  6528. }
  6529. }
  6530. }
  6531. }
  6532. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6533. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6534. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6535. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6536. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6537. if (++i10 == ne0) {
  6538. i10 = 0;
  6539. if (++i11 == ne1) {
  6540. i11 = 0;
  6541. if (++i12 == ne2) {
  6542. i12 = 0;
  6543. if (++i13 == ne3) {
  6544. i13 = 0;
  6545. }
  6546. }
  6547. }
  6548. }
  6549. }
  6550. }
  6551. i10 += ne00 * (ne01 - ir1);
  6552. while (i10 >= ne0) {
  6553. i10 -= ne0;
  6554. if (++i11 == ne1) {
  6555. i11 = 0;
  6556. if (++i12 == ne2) {
  6557. i12 = 0;
  6558. if (++i13 == ne3) {
  6559. i13 = 0;
  6560. }
  6561. }
  6562. }
  6563. }
  6564. }
  6565. }
  6566. } else {
  6567. GGML_ASSERT(false); // TODO: implement
  6568. }
  6569. }
  6570. static void ggml_compute_forward_dup_bf16(
  6571. const struct ggml_compute_params * params,
  6572. struct ggml_tensor * dst) {
  6573. const struct ggml_tensor * src0 = dst->src[0];
  6574. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6575. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6576. return;
  6577. }
  6578. GGML_TENSOR_UNARY_OP_LOCALS
  6579. const int ith = params->ith; // thread index
  6580. const int nth = params->nth; // number of threads
  6581. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6582. ggml_compute_forward_dup_same_cont(params, dst);
  6583. return;
  6584. }
  6585. // parallelize by rows
  6586. const int nr = ne01;
  6587. // number of rows per thread
  6588. const int dr = (nr + nth - 1) / nth;
  6589. // row range for this thread
  6590. const int ir0 = dr * ith;
  6591. const int ir1 = MIN(ir0 + dr, nr);
  6592. if (src0->type == dst->type &&
  6593. ne00 == ne0 &&
  6594. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6595. // copy by rows
  6596. const size_t rs = ne00*nb00;
  6597. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6598. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6599. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6600. memcpy(
  6601. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6602. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6603. rs);
  6604. }
  6605. }
  6606. }
  6607. return;
  6608. }
  6609. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6610. if (ggml_is_contiguous(dst)) {
  6611. if (nb00 == sizeof(ggml_bf16_t)) {
  6612. if (dst->type == GGML_TYPE_BF16) {
  6613. size_t id = 0;
  6614. const size_t rs = ne00 * nb00;
  6615. char * dst_ptr = (char *) dst->data;
  6616. for (int i03 = 0; i03 < ne03; i03++) {
  6617. for (int i02 = 0; i02 < ne02; i02++) {
  6618. id += rs * ir0;
  6619. for (int i01 = ir0; i01 < ir1; i01++) {
  6620. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6621. memcpy(dst_ptr + id, src0_ptr, rs);
  6622. id += rs;
  6623. }
  6624. id += rs * (ne01 - ir1);
  6625. }
  6626. }
  6627. } else if (dst->type == GGML_TYPE_F16) {
  6628. size_t id = 0;
  6629. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6630. for (int i03 = 0; i03 < ne03; i03++) {
  6631. for (int i02 = 0; i02 < ne02; i02++) {
  6632. id += ne00 * ir0;
  6633. for (int i01 = ir0; i01 < ir1; i01++) {
  6634. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6635. for (int i00 = 0; i00 < ne00; i00++) {
  6636. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6637. id++;
  6638. }
  6639. }
  6640. id += ne00 * (ne01 - ir1);
  6641. }
  6642. }
  6643. } else if (dst->type == GGML_TYPE_F32) {
  6644. size_t id = 0;
  6645. float * dst_ptr = (float *) dst->data;
  6646. for (int i03 = 0; i03 < ne03; i03++) {
  6647. for (int i02 = 0; i02 < ne02; i02++) {
  6648. id += ne00 * ir0;
  6649. for (int i01 = ir0; i01 < ir1; i01++) {
  6650. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6651. for (int i00 = 0; i00 < ne00; i00++) {
  6652. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6653. id++;
  6654. }
  6655. }
  6656. id += ne00 * (ne01 - ir1);
  6657. }
  6658. }
  6659. } else if (type_traits[dst->type].from_float) {
  6660. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6661. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6662. size_t id = 0;
  6663. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6664. char * dst_ptr = (char *) dst->data;
  6665. for (int i03 = 0; i03 < ne03; i03++) {
  6666. for (int i02 = 0; i02 < ne02; i02++) {
  6667. id += rs * ir0;
  6668. for (int i01 = ir0; i01 < ir1; i01++) {
  6669. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6670. for (int i00 = 0; i00 < ne00; i00++) {
  6671. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6672. }
  6673. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6674. id += rs;
  6675. }
  6676. id += rs * (ne01 - ir1);
  6677. }
  6678. }
  6679. } else {
  6680. GGML_ASSERT(false); // TODO: implement
  6681. }
  6682. } else {
  6683. //printf("%s: this is not optimal - fix me\n", __func__);
  6684. if (dst->type == GGML_TYPE_F32) {
  6685. size_t id = 0;
  6686. float * dst_ptr = (float *) dst->data;
  6687. for (int i03 = 0; i03 < ne03; i03++) {
  6688. for (int i02 = 0; i02 < ne02; i02++) {
  6689. id += ne00 * ir0;
  6690. for (int i01 = ir0; i01 < ir1; i01++) {
  6691. for (int i00 = 0; i00 < ne00; i00++) {
  6692. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6693. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6694. id++;
  6695. }
  6696. }
  6697. id += ne00 * (ne01 - ir1);
  6698. }
  6699. }
  6700. } else if (dst->type == GGML_TYPE_BF16) {
  6701. size_t id = 0;
  6702. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6703. for (int i03 = 0; i03 < ne03; i03++) {
  6704. for (int i02 = 0; i02 < ne02; i02++) {
  6705. id += ne00 * ir0;
  6706. for (int i01 = ir0; i01 < ir1; i01++) {
  6707. for (int i00 = 0; i00 < ne00; i00++) {
  6708. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6709. dst_ptr[id] = *src0_ptr;
  6710. id++;
  6711. }
  6712. }
  6713. id += ne00 * (ne01 - ir1);
  6714. }
  6715. }
  6716. } else if (dst->type == GGML_TYPE_F16) {
  6717. size_t id = 0;
  6718. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6719. for (int i03 = 0; i03 < ne03; i03++) {
  6720. for (int i02 = 0; i02 < ne02; i02++) {
  6721. id += ne00 * ir0;
  6722. for (int i01 = ir0; i01 < ir1; i01++) {
  6723. for (int i00 = 0; i00 < ne00; i00++) {
  6724. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6725. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6726. id++;
  6727. }
  6728. }
  6729. id += ne00 * (ne01 - ir1);
  6730. }
  6731. }
  6732. } else {
  6733. GGML_ASSERT(false); // TODO: implement
  6734. }
  6735. }
  6736. return;
  6737. }
  6738. // dst counters
  6739. int64_t i10 = 0;
  6740. int64_t i11 = 0;
  6741. int64_t i12 = 0;
  6742. int64_t i13 = 0;
  6743. if (dst->type == GGML_TYPE_BF16) {
  6744. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6745. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6746. i10 += ne00 * ir0;
  6747. while (i10 >= ne0) {
  6748. i10 -= ne0;
  6749. if (++i11 == ne1) {
  6750. i11 = 0;
  6751. if (++i12 == ne2) {
  6752. i12 = 0;
  6753. if (++i13 == ne3) {
  6754. i13 = 0;
  6755. }
  6756. }
  6757. }
  6758. }
  6759. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6760. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6761. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6762. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6763. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6764. if (++i10 == ne00) {
  6765. i10 = 0;
  6766. if (++i11 == ne01) {
  6767. i11 = 0;
  6768. if (++i12 == ne02) {
  6769. i12 = 0;
  6770. if (++i13 == ne03) {
  6771. i13 = 0;
  6772. }
  6773. }
  6774. }
  6775. }
  6776. }
  6777. }
  6778. i10 += ne00 * (ne01 - ir1);
  6779. while (i10 >= ne0) {
  6780. i10 -= ne0;
  6781. if (++i11 == ne1) {
  6782. i11 = 0;
  6783. if (++i12 == ne2) {
  6784. i12 = 0;
  6785. if (++i13 == ne3) {
  6786. i13 = 0;
  6787. }
  6788. }
  6789. }
  6790. }
  6791. }
  6792. }
  6793. } else if (dst->type == GGML_TYPE_F16) {
  6794. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6795. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6796. i10 += ne00 * ir0;
  6797. while (i10 >= ne0) {
  6798. i10 -= ne0;
  6799. if (++i11 == ne1) {
  6800. i11 = 0;
  6801. if (++i12 == ne2) {
  6802. i12 = 0;
  6803. if (++i13 == ne3) {
  6804. i13 = 0;
  6805. }
  6806. }
  6807. }
  6808. }
  6809. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6810. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6811. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6812. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6813. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6814. if (++i10 == ne0) {
  6815. i10 = 0;
  6816. if (++i11 == ne1) {
  6817. i11 = 0;
  6818. if (++i12 == ne2) {
  6819. i12 = 0;
  6820. if (++i13 == ne3) {
  6821. i13 = 0;
  6822. }
  6823. }
  6824. }
  6825. }
  6826. }
  6827. }
  6828. i10 += ne00 * (ne01 - ir1);
  6829. while (i10 >= ne0) {
  6830. i10 -= ne0;
  6831. if (++i11 == ne1) {
  6832. i11 = 0;
  6833. if (++i12 == ne2) {
  6834. i12 = 0;
  6835. if (++i13 == ne3) {
  6836. i13 = 0;
  6837. }
  6838. }
  6839. }
  6840. }
  6841. }
  6842. }
  6843. } else if (dst->type == GGML_TYPE_F32) {
  6844. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6845. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6846. i10 += ne00 * ir0;
  6847. while (i10 >= ne0) {
  6848. i10 -= ne0;
  6849. if (++i11 == ne1) {
  6850. i11 = 0;
  6851. if (++i12 == ne2) {
  6852. i12 = 0;
  6853. if (++i13 == ne3) {
  6854. i13 = 0;
  6855. }
  6856. }
  6857. }
  6858. }
  6859. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6860. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6861. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6862. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6863. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  6864. if (++i10 == ne0) {
  6865. i10 = 0;
  6866. if (++i11 == ne1) {
  6867. i11 = 0;
  6868. if (++i12 == ne2) {
  6869. i12 = 0;
  6870. if (++i13 == ne3) {
  6871. i13 = 0;
  6872. }
  6873. }
  6874. }
  6875. }
  6876. }
  6877. }
  6878. i10 += ne00 * (ne01 - ir1);
  6879. while (i10 >= ne0) {
  6880. i10 -= ne0;
  6881. if (++i11 == ne1) {
  6882. i11 = 0;
  6883. if (++i12 == ne2) {
  6884. i12 = 0;
  6885. if (++i13 == ne3) {
  6886. i13 = 0;
  6887. }
  6888. }
  6889. }
  6890. }
  6891. }
  6892. }
  6893. } else {
  6894. GGML_ASSERT(false); // TODO: implement
  6895. }
  6896. }
  6897. static void ggml_compute_forward_dup_f32(
  6898. const struct ggml_compute_params * params,
  6899. struct ggml_tensor * dst) {
  6900. const struct ggml_tensor * src0 = dst->src[0];
  6901. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6902. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6903. return;
  6904. }
  6905. GGML_TENSOR_UNARY_OP_LOCALS
  6906. const int ith = params->ith; // thread index
  6907. const int nth = params->nth; // number of threads
  6908. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6909. ggml_compute_forward_dup_same_cont(params, dst);
  6910. return;
  6911. }
  6912. // parallelize by rows
  6913. const int nr = ne01;
  6914. // number of rows per thread
  6915. const int dr = (nr + nth - 1) / nth;
  6916. // row range for this thread
  6917. const int ir0 = dr * ith;
  6918. const int ir1 = MIN(ir0 + dr, nr);
  6919. if (src0->type == dst->type &&
  6920. ne00 == ne0 &&
  6921. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6922. // copy by rows
  6923. const size_t rs = ne00*nb00;
  6924. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6925. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6926. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6927. memcpy(
  6928. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6929. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6930. rs);
  6931. }
  6932. }
  6933. }
  6934. return;
  6935. }
  6936. if (ggml_is_contiguous(dst)) {
  6937. // TODO: simplify
  6938. if (nb00 == sizeof(float)) {
  6939. if (dst->type == GGML_TYPE_F32) {
  6940. size_t id = 0;
  6941. const size_t rs = ne00 * nb00;
  6942. char * dst_ptr = (char *) dst->data;
  6943. for (int i03 = 0; i03 < ne03; i03++) {
  6944. for (int i02 = 0; i02 < ne02; i02++) {
  6945. id += rs * ir0;
  6946. for (int i01 = ir0; i01 < ir1; i01++) {
  6947. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6948. memcpy(dst_ptr + id, src0_ptr, rs);
  6949. id += rs;
  6950. }
  6951. id += rs * (ne01 - ir1);
  6952. }
  6953. }
  6954. } else if (type_traits[dst->type].from_float) {
  6955. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6956. size_t id = 0;
  6957. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6958. char * dst_ptr = (char *) dst->data;
  6959. for (int i03 = 0; i03 < ne03; i03++) {
  6960. for (int i02 = 0; i02 < ne02; i02++) {
  6961. id += rs * ir0;
  6962. for (int i01 = ir0; i01 < ir1; i01++) {
  6963. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6964. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6965. id += rs;
  6966. }
  6967. id += rs * (ne01 - ir1);
  6968. }
  6969. }
  6970. } else {
  6971. GGML_ASSERT(false); // TODO: implement
  6972. }
  6973. } else {
  6974. //printf("%s: this is not optimal - fix me\n", __func__);
  6975. if (dst->type == GGML_TYPE_F32) {
  6976. size_t id = 0;
  6977. float * dst_ptr = (float *) dst->data;
  6978. for (int i03 = 0; i03 < ne03; i03++) {
  6979. for (int i02 = 0; i02 < ne02; i02++) {
  6980. id += ne00 * ir0;
  6981. for (int i01 = ir0; i01 < ir1; i01++) {
  6982. for (int i00 = 0; i00 < ne00; i00++) {
  6983. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6984. dst_ptr[id] = *src0_ptr;
  6985. id++;
  6986. }
  6987. }
  6988. id += ne00 * (ne01 - ir1);
  6989. }
  6990. }
  6991. } else if (dst->type == GGML_TYPE_F16) {
  6992. size_t id = 0;
  6993. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6994. for (int i03 = 0; i03 < ne03; i03++) {
  6995. for (int i02 = 0; i02 < ne02; i02++) {
  6996. id += ne00 * ir0;
  6997. for (int i01 = ir0; i01 < ir1; i01++) {
  6998. for (int i00 = 0; i00 < ne00; i00++) {
  6999. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7000. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7001. id++;
  7002. }
  7003. }
  7004. id += ne00 * (ne01 - ir1);
  7005. }
  7006. }
  7007. } else if (dst->type == GGML_TYPE_BF16) {
  7008. size_t id = 0;
  7009. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7010. for (int i03 = 0; i03 < ne03; i03++) {
  7011. for (int i02 = 0; i02 < ne02; i02++) {
  7012. id += ne00 * ir0;
  7013. for (int i01 = ir0; i01 < ir1; i01++) {
  7014. for (int i00 = 0; i00 < ne00; i00++) {
  7015. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7016. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7017. id++;
  7018. }
  7019. }
  7020. id += ne00 * (ne01 - ir1);
  7021. }
  7022. }
  7023. } else {
  7024. GGML_ASSERT(false); // TODO: implement
  7025. }
  7026. }
  7027. return;
  7028. }
  7029. // dst counters
  7030. int64_t i10 = 0;
  7031. int64_t i11 = 0;
  7032. int64_t i12 = 0;
  7033. int64_t i13 = 0;
  7034. if (dst->type == GGML_TYPE_F32) {
  7035. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7036. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7037. i10 += ne00 * ir0;
  7038. while (i10 >= ne0) {
  7039. i10 -= ne0;
  7040. if (++i11 == ne1) {
  7041. i11 = 0;
  7042. if (++i12 == ne2) {
  7043. i12 = 0;
  7044. if (++i13 == ne3) {
  7045. i13 = 0;
  7046. }
  7047. }
  7048. }
  7049. }
  7050. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7051. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7052. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7053. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7054. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7055. if (++i10 == ne0) {
  7056. i10 = 0;
  7057. if (++i11 == ne1) {
  7058. i11 = 0;
  7059. if (++i12 == ne2) {
  7060. i12 = 0;
  7061. if (++i13 == ne3) {
  7062. i13 = 0;
  7063. }
  7064. }
  7065. }
  7066. }
  7067. }
  7068. }
  7069. i10 += ne00 * (ne01 - ir1);
  7070. while (i10 >= ne0) {
  7071. i10 -= ne0;
  7072. if (++i11 == ne1) {
  7073. i11 = 0;
  7074. if (++i12 == ne2) {
  7075. i12 = 0;
  7076. if (++i13 == ne3) {
  7077. i13 = 0;
  7078. }
  7079. }
  7080. }
  7081. }
  7082. }
  7083. }
  7084. } else if (dst->type == GGML_TYPE_F16) {
  7085. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7086. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7087. i10 += ne00 * ir0;
  7088. while (i10 >= ne0) {
  7089. i10 -= ne0;
  7090. if (++i11 == ne1) {
  7091. i11 = 0;
  7092. if (++i12 == ne2) {
  7093. i12 = 0;
  7094. if (++i13 == ne3) {
  7095. i13 = 0;
  7096. }
  7097. }
  7098. }
  7099. }
  7100. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7101. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7102. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7103. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7104. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7105. if (++i10 == ne0) {
  7106. i10 = 0;
  7107. if (++i11 == ne1) {
  7108. i11 = 0;
  7109. if (++i12 == ne2) {
  7110. i12 = 0;
  7111. if (++i13 == ne3) {
  7112. i13 = 0;
  7113. }
  7114. }
  7115. }
  7116. }
  7117. }
  7118. }
  7119. i10 += ne00 * (ne01 - ir1);
  7120. while (i10 >= ne0) {
  7121. i10 -= ne0;
  7122. if (++i11 == ne1) {
  7123. i11 = 0;
  7124. if (++i12 == ne2) {
  7125. i12 = 0;
  7126. if (++i13 == ne3) {
  7127. i13 = 0;
  7128. }
  7129. }
  7130. }
  7131. }
  7132. }
  7133. }
  7134. } else if (dst->type == GGML_TYPE_BF16) {
  7135. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7136. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7137. i10 += ne00 * ir0;
  7138. while (i10 >= ne0) {
  7139. i10 -= ne0;
  7140. if (++i11 == ne1) {
  7141. i11 = 0;
  7142. if (++i12 == ne2) {
  7143. i12 = 0;
  7144. if (++i13 == ne3) {
  7145. i13 = 0;
  7146. }
  7147. }
  7148. }
  7149. }
  7150. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7151. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7152. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7153. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7154. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7155. if (++i10 == ne0) {
  7156. i10 = 0;
  7157. if (++i11 == ne1) {
  7158. i11 = 0;
  7159. if (++i12 == ne2) {
  7160. i12 = 0;
  7161. if (++i13 == ne3) {
  7162. i13 = 0;
  7163. }
  7164. }
  7165. }
  7166. }
  7167. }
  7168. }
  7169. i10 += ne00 * (ne01 - ir1);
  7170. while (i10 >= ne0) {
  7171. i10 -= ne0;
  7172. if (++i11 == ne1) {
  7173. i11 = 0;
  7174. if (++i12 == ne2) {
  7175. i12 = 0;
  7176. if (++i13 == ne3) {
  7177. i13 = 0;
  7178. }
  7179. }
  7180. }
  7181. }
  7182. }
  7183. }
  7184. } else {
  7185. GGML_ASSERT(false); // TODO: implement
  7186. }
  7187. }
  7188. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7189. static void ggml_compute_forward_dup_bytes(
  7190. const struct ggml_compute_params * params,
  7191. struct ggml_tensor * dst) {
  7192. const struct ggml_tensor * src0 = dst->src[0];
  7193. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7194. GGML_ASSERT(src0->type == dst->type);
  7195. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7196. return;
  7197. }
  7198. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7199. ggml_compute_forward_dup_same_cont(params, dst);
  7200. return;
  7201. }
  7202. GGML_TENSOR_UNARY_OP_LOCALS;
  7203. const size_t type_size = ggml_type_size(src0->type);
  7204. const int ith = params->ith; // thread index
  7205. const int nth = params->nth; // number of threads
  7206. // parallelize by rows
  7207. const int nr = ne01;
  7208. // number of rows per thread
  7209. const int dr = (nr + nth - 1) / nth;
  7210. // row range for this thread
  7211. const int ir0 = dr * ith;
  7212. const int ir1 = MIN(ir0 + dr, nr);
  7213. if (src0->type == dst->type &&
  7214. ne00 == ne0 &&
  7215. nb00 == type_size && nb0 == type_size) {
  7216. // copy by rows
  7217. const size_t rs = ne00 * type_size;
  7218. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7219. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7220. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7221. memcpy(
  7222. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7223. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7224. rs);
  7225. }
  7226. }
  7227. }
  7228. return;
  7229. }
  7230. if (ggml_is_contiguous(dst)) {
  7231. size_t id = 0;
  7232. char * dst_ptr = (char *) dst->data;
  7233. const size_t rs = ne00 * type_size;
  7234. if (nb00 == type_size) {
  7235. // src0 is contigous on first dimension, copy by rows
  7236. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7237. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7238. id += rs * ir0;
  7239. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7240. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7241. memcpy(dst_ptr + id, src0_ptr, rs);
  7242. id += rs;
  7243. }
  7244. id += rs * (ne01 - ir1);
  7245. }
  7246. }
  7247. } else {
  7248. //printf("%s: this is not optimal - fix me\n", __func__);
  7249. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7250. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7251. id += rs * ir0;
  7252. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7253. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7254. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7255. memcpy(dst_ptr + id, src0_ptr, type_size);
  7256. id += type_size;
  7257. }
  7258. }
  7259. id += rs * (ne01 - ir1);
  7260. }
  7261. }
  7262. }
  7263. return;
  7264. }
  7265. // dst counters
  7266. int64_t i10 = 0;
  7267. int64_t i11 = 0;
  7268. int64_t i12 = 0;
  7269. int64_t i13 = 0;
  7270. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7271. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7272. i10 += ne00 * ir0;
  7273. while (i10 >= ne0) {
  7274. i10 -= ne0;
  7275. if (++i11 == ne1) {
  7276. i11 = 0;
  7277. if (++i12 == ne2) {
  7278. i12 = 0;
  7279. if (++i13 == ne3) {
  7280. i13 = 0;
  7281. }
  7282. }
  7283. }
  7284. }
  7285. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7286. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7287. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7288. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7289. memcpy(dst_ptr, src0_ptr, type_size);
  7290. if (++i10 == ne0) {
  7291. i10 = 0;
  7292. if (++i11 == ne1) {
  7293. i11 = 0;
  7294. if (++i12 == ne2) {
  7295. i12 = 0;
  7296. if (++i13 == ne3) {
  7297. i13 = 0;
  7298. }
  7299. }
  7300. }
  7301. }
  7302. }
  7303. }
  7304. i10 += ne00 * (ne01 - ir1);
  7305. while (i10 >= ne0) {
  7306. i10 -= ne0;
  7307. if (++i11 == ne1) {
  7308. i11 = 0;
  7309. if (++i12 == ne2) {
  7310. i12 = 0;
  7311. if (++i13 == ne3) {
  7312. i13 = 0;
  7313. }
  7314. }
  7315. }
  7316. }
  7317. }
  7318. }
  7319. }
  7320. static void ggml_compute_forward_dup(
  7321. const struct ggml_compute_params * params,
  7322. struct ggml_tensor * dst) {
  7323. const struct ggml_tensor * src0 = dst->src[0];
  7324. if (src0->type == dst->type) {
  7325. ggml_compute_forward_dup_bytes(params, dst);
  7326. return;
  7327. }
  7328. switch (src0->type) {
  7329. case GGML_TYPE_F16:
  7330. {
  7331. ggml_compute_forward_dup_f16(params, dst);
  7332. } break;
  7333. case GGML_TYPE_BF16:
  7334. {
  7335. ggml_compute_forward_dup_bf16(params, dst);
  7336. } break;
  7337. case GGML_TYPE_F32:
  7338. {
  7339. ggml_compute_forward_dup_f32(params, dst);
  7340. } break;
  7341. default:
  7342. {
  7343. GGML_ASSERT(false);
  7344. } break;
  7345. }
  7346. }
  7347. // ggml_compute_forward_add
  7348. static void ggml_compute_forward_add_f32(
  7349. const struct ggml_compute_params * params,
  7350. struct ggml_tensor * dst) {
  7351. const struct ggml_tensor * src0 = dst->src[0];
  7352. const struct ggml_tensor * src1 = dst->src[1];
  7353. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7354. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7355. return;
  7356. }
  7357. const int ith = params->ith;
  7358. const int nth = params->nth;
  7359. #ifdef GGML_USE_CLBLAST
  7360. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7361. // TODO: OpenCL kernel support full broadcast
  7362. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7363. if (ith == 0) {
  7364. ggml_cl_add(src0, src1, dst);
  7365. }
  7366. return;
  7367. }
  7368. #endif
  7369. const int nr = ggml_nrows(src0);
  7370. GGML_TENSOR_BINARY_OP_LOCALS
  7371. GGML_ASSERT( nb0 == sizeof(float));
  7372. GGML_ASSERT(nb00 == sizeof(float));
  7373. // rows per thread
  7374. const int dr = (nr + nth - 1)/nth;
  7375. // row range for this thread
  7376. const int ir0 = dr*ith;
  7377. const int ir1 = MIN(ir0 + dr, nr);
  7378. if (nb10 == sizeof(float)) {
  7379. for (int ir = ir0; ir < ir1; ++ir) {
  7380. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7381. const int64_t i03 = ir/(ne02*ne01);
  7382. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7383. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7384. const int64_t i13 = i03 % ne13;
  7385. const int64_t i12 = i02 % ne12;
  7386. const int64_t i11 = i01 % ne11;
  7387. const int64_t nr0 = ne00 / ne10;
  7388. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7389. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7390. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7391. for (int64_t r = 0; r < nr0; ++r) {
  7392. #ifdef GGML_USE_ACCELERATE
  7393. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7394. #else
  7395. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7396. #endif
  7397. }
  7398. }
  7399. } else {
  7400. // src1 is not contiguous
  7401. for (int ir = ir0; ir < ir1; ++ir) {
  7402. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7403. const int64_t i03 = ir/(ne02*ne01);
  7404. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7405. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7406. const int64_t i13 = i03 % ne13;
  7407. const int64_t i12 = i02 % ne12;
  7408. const int64_t i11 = i01 % ne11;
  7409. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7410. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7411. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7412. const int64_t i10 = i0 % ne10;
  7413. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7414. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7415. }
  7416. }
  7417. }
  7418. }
  7419. static void ggml_compute_forward_add_f16_f32(
  7420. const struct ggml_compute_params * params,
  7421. struct ggml_tensor * dst) {
  7422. const struct ggml_tensor * src0 = dst->src[0];
  7423. const struct ggml_tensor * src1 = dst->src[1];
  7424. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7425. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7426. return;
  7427. }
  7428. const int ith = params->ith;
  7429. const int nth = params->nth;
  7430. const int nr = ggml_nrows(src0);
  7431. GGML_TENSOR_BINARY_OP_LOCALS
  7432. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7433. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7434. if (dst->type == GGML_TYPE_F32) {
  7435. GGML_ASSERT( nb0 == sizeof(float));
  7436. }
  7437. else {
  7438. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7439. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7440. }
  7441. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7442. // rows per thread
  7443. const int dr = (nr + nth - 1)/nth;
  7444. // row range for this thread
  7445. const int ir0 = dr*ith;
  7446. const int ir1 = MIN(ir0 + dr, nr);
  7447. if (nb10 == sizeof(float)) {
  7448. if (dst->type == GGML_TYPE_F16) {
  7449. for (int ir = ir0; ir < ir1; ++ir) {
  7450. // src0, src1 and dst are same shape => same indices
  7451. const int i3 = ir/(ne2*ne1);
  7452. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7453. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7454. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7455. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7456. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7457. for (int i = 0; i < ne0; i++) {
  7458. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7459. }
  7460. }
  7461. } else {
  7462. for (int ir = ir0; ir < ir1; ++ir) {
  7463. // src0, src1 and dst are same shape => same indices
  7464. const int i3 = ir/(ne2*ne1);
  7465. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7466. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7467. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7468. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7469. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7470. for (int i = 0; i < ne0; i++) {
  7471. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7472. }
  7473. }
  7474. }
  7475. }
  7476. else {
  7477. // src1 is not contiguous
  7478. GGML_ASSERT(false);
  7479. }
  7480. }
  7481. static void ggml_compute_forward_add_bf16_f32(
  7482. const struct ggml_compute_params * params,
  7483. struct ggml_tensor * dst) {
  7484. const struct ggml_tensor * src0 = dst->src[0];
  7485. const struct ggml_tensor * src1 = dst->src[1];
  7486. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7487. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7488. return;
  7489. }
  7490. const int ith = params->ith;
  7491. const int nth = params->nth;
  7492. const int nr = ggml_nrows(src0);
  7493. GGML_TENSOR_BINARY_OP_LOCALS
  7494. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7495. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7496. if (dst->type == GGML_TYPE_F32) {
  7497. GGML_ASSERT( nb0 == sizeof(float));
  7498. }
  7499. else {
  7500. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7501. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7502. }
  7503. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7504. // rows per thread
  7505. const int dr = (nr + nth - 1)/nth;
  7506. // row range for this thread
  7507. const int ir0 = dr*ith;
  7508. const int ir1 = MIN(ir0 + dr, nr);
  7509. if (nb10 == sizeof(float)) {
  7510. if (dst->type == GGML_TYPE_BF16) {
  7511. for (int ir = ir0; ir < ir1; ++ir) {
  7512. // src0, src1 and dst are same shape => same indices
  7513. const int i3 = ir/(ne2*ne1);
  7514. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7515. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7516. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7517. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7518. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7519. for (int i = 0; i < ne0; i++) {
  7520. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7521. }
  7522. }
  7523. } else {
  7524. for (int ir = ir0; ir < ir1; ++ir) {
  7525. // src0, src1 and dst are same shape => same indices
  7526. const int i3 = ir/(ne2*ne1);
  7527. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7528. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7529. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7530. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7531. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7532. for (int i = 0; i < ne0; i++) {
  7533. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7534. }
  7535. }
  7536. }
  7537. }
  7538. else {
  7539. // src1 is not contiguous
  7540. GGML_ASSERT(false);
  7541. }
  7542. }
  7543. static void ggml_compute_forward_add_f16_f16(
  7544. const struct ggml_compute_params * params,
  7545. struct ggml_tensor * dst) {
  7546. const struct ggml_tensor * src0 = dst->src[0];
  7547. const struct ggml_tensor * src1 = dst->src[1];
  7548. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7549. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7550. return;
  7551. }
  7552. const int ith = params->ith;
  7553. const int nth = params->nth;
  7554. const int nr = ggml_nrows(src0);
  7555. GGML_TENSOR_BINARY_OP_LOCALS
  7556. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7557. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7558. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7559. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7560. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7561. // rows per thread
  7562. const int dr = (nr + nth - 1)/nth;
  7563. // row range for this thread
  7564. const int ir0 = dr*ith;
  7565. const int ir1 = MIN(ir0 + dr, nr);
  7566. if (nb10 == sizeof(ggml_fp16_t)) {
  7567. for (int ir = ir0; ir < ir1; ++ir) {
  7568. // src0, src1 and dst are same shape => same indices
  7569. const int i3 = ir/(ne2*ne1);
  7570. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7571. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7572. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7573. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7574. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7575. for (int i = 0; i < ne0; i++) {
  7576. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7577. }
  7578. }
  7579. }
  7580. else {
  7581. // src1 is not contiguous
  7582. GGML_ASSERT(false);
  7583. }
  7584. }
  7585. static void ggml_compute_forward_add_bf16_bf16(
  7586. const struct ggml_compute_params * params,
  7587. struct ggml_tensor * dst) {
  7588. const struct ggml_tensor * src0 = dst->src[0];
  7589. const struct ggml_tensor * src1 = dst->src[1];
  7590. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7591. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7592. return;
  7593. }
  7594. const int ith = params->ith;
  7595. const int nth = params->nth;
  7596. const int nr = ggml_nrows(src0);
  7597. GGML_TENSOR_BINARY_OP_LOCALS
  7598. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7599. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7600. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7601. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7602. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7603. // rows per thread
  7604. const int dr = (nr + nth - 1)/nth;
  7605. // row range for this thread
  7606. const int ir0 = dr*ith;
  7607. const int ir1 = MIN(ir0 + dr, nr);
  7608. if (nb10 == sizeof(ggml_bf16_t)) {
  7609. for (int ir = ir0; ir < ir1; ++ir) {
  7610. // src0, src1 and dst are same shape => same indices
  7611. const int i3 = ir/(ne2*ne1);
  7612. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7613. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7614. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7615. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7616. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7617. for (int i = 0; i < ne0; i++) {
  7618. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7619. }
  7620. }
  7621. }
  7622. else {
  7623. // src1 is not contiguous
  7624. GGML_ASSERT(false);
  7625. }
  7626. }
  7627. static void ggml_compute_forward_add_q_f32(
  7628. const struct ggml_compute_params * params,
  7629. struct ggml_tensor * dst) {
  7630. const struct ggml_tensor * src0 = dst->src[0];
  7631. const struct ggml_tensor * src1 = dst->src[1];
  7632. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7633. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7634. return;
  7635. }
  7636. const int nr = ggml_nrows(src0);
  7637. GGML_TENSOR_BINARY_OP_LOCALS
  7638. const int ith = params->ith;
  7639. const int nth = params->nth;
  7640. const enum ggml_type type = src0->type;
  7641. const enum ggml_type dtype = dst->type;
  7642. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7643. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7644. // we don't support permuted src0 or src1
  7645. GGML_ASSERT(nb00 == ggml_type_size(type));
  7646. GGML_ASSERT(nb10 == sizeof(float));
  7647. // dst cannot be transposed or permuted
  7648. GGML_ASSERT(nb0 <= nb1);
  7649. GGML_ASSERT(nb1 <= nb2);
  7650. GGML_ASSERT(nb2 <= nb3);
  7651. GGML_ASSERT(ggml_is_quantized(src0->type));
  7652. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7653. // rows per thread
  7654. const int dr = (nr + nth - 1)/nth;
  7655. // row range for this thread
  7656. const int ir0 = dr*ith;
  7657. const int ir1 = MIN(ir0 + dr, nr);
  7658. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7659. for (int ir = ir0; ir < ir1; ++ir) {
  7660. // src0 indices
  7661. const int i03 = ir/(ne02*ne01);
  7662. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7663. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7664. // src1 and dst are same shape as src0 => same indices
  7665. const int i13 = i03;
  7666. const int i12 = i02;
  7667. const int i11 = i01;
  7668. const int i3 = i03;
  7669. const int i2 = i02;
  7670. const int i1 = i01;
  7671. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7672. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7673. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7674. assert(ne00 % 32 == 0);
  7675. // unquantize row from src0 to temp buffer
  7676. dequantize_row_q(src0_row, wdata, ne00);
  7677. // add src1
  7678. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7679. // quantize row to dst
  7680. if (quantize_row_q != NULL) {
  7681. quantize_row_q(wdata, dst_row, ne00);
  7682. } else {
  7683. memcpy(dst_row, wdata, ne0*nb0);
  7684. }
  7685. }
  7686. }
  7687. static void ggml_compute_forward_add(
  7688. const struct ggml_compute_params * params,
  7689. struct ggml_tensor * dst) {
  7690. const struct ggml_tensor * src0 = dst->src[0];
  7691. const struct ggml_tensor * src1 = dst->src[1];
  7692. switch (src0->type) {
  7693. case GGML_TYPE_F32:
  7694. {
  7695. if (src1->type == GGML_TYPE_F32) {
  7696. ggml_compute_forward_add_f32(params, dst);
  7697. }
  7698. else {
  7699. GGML_ASSERT(false);
  7700. }
  7701. } break;
  7702. case GGML_TYPE_F16:
  7703. {
  7704. if (src1->type == GGML_TYPE_F16) {
  7705. ggml_compute_forward_add_f16_f16(params, dst);
  7706. }
  7707. else if (src1->type == GGML_TYPE_F32) {
  7708. ggml_compute_forward_add_f16_f32(params, dst);
  7709. }
  7710. else {
  7711. GGML_ASSERT(false);
  7712. }
  7713. } break;
  7714. case GGML_TYPE_BF16:
  7715. {
  7716. if (src1->type == GGML_TYPE_BF16) {
  7717. ggml_compute_forward_add_bf16_bf16(params, dst);
  7718. }
  7719. else if (src1->type == GGML_TYPE_F32) {
  7720. ggml_compute_forward_add_bf16_f32(params, dst);
  7721. }
  7722. else {
  7723. GGML_ASSERT(false);
  7724. }
  7725. } break;
  7726. case GGML_TYPE_Q4_0:
  7727. case GGML_TYPE_Q4_1:
  7728. case GGML_TYPE_Q5_0:
  7729. case GGML_TYPE_Q5_1:
  7730. case GGML_TYPE_Q8_0:
  7731. case GGML_TYPE_Q2_K:
  7732. case GGML_TYPE_Q3_K:
  7733. case GGML_TYPE_Q4_K:
  7734. case GGML_TYPE_Q5_K:
  7735. case GGML_TYPE_Q6_K:
  7736. case GGML_TYPE_IQ2_XXS:
  7737. case GGML_TYPE_IQ2_XS:
  7738. case GGML_TYPE_IQ3_XXS:
  7739. case GGML_TYPE_IQ1_S:
  7740. case GGML_TYPE_IQ1_M:
  7741. case GGML_TYPE_IQ4_NL:
  7742. case GGML_TYPE_IQ4_XS:
  7743. case GGML_TYPE_IQ3_S:
  7744. case GGML_TYPE_IQ2_S:
  7745. {
  7746. ggml_compute_forward_add_q_f32(params, dst);
  7747. } break;
  7748. default:
  7749. {
  7750. GGML_ASSERT(false);
  7751. } break;
  7752. }
  7753. }
  7754. // ggml_compute_forward_add1
  7755. static void ggml_compute_forward_add1_f32(
  7756. const struct ggml_compute_params * params,
  7757. struct ggml_tensor * dst) {
  7758. const struct ggml_tensor * src0 = dst->src[0];
  7759. const struct ggml_tensor * src1 = dst->src[1];
  7760. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7761. GGML_ASSERT(ggml_is_scalar(src1));
  7762. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7763. return;
  7764. }
  7765. const int ith = params->ith;
  7766. const int nth = params->nth;
  7767. const int nr = ggml_nrows(src0);
  7768. GGML_TENSOR_UNARY_OP_LOCALS
  7769. GGML_ASSERT( nb0 == sizeof(float));
  7770. GGML_ASSERT(nb00 == sizeof(float));
  7771. // rows per thread
  7772. const int dr = (nr + nth - 1)/nth;
  7773. // row range for this thread
  7774. const int ir0 = dr*ith;
  7775. const int ir1 = MIN(ir0 + dr, nr);
  7776. for (int ir = ir0; ir < ir1; ++ir) {
  7777. // src0 and dst are same shape => same indices
  7778. const int i3 = ir/(ne2*ne1);
  7779. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7780. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7781. #ifdef GGML_USE_ACCELERATE
  7782. UNUSED(ggml_vec_add1_f32);
  7783. vDSP_vadd(
  7784. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7785. (float *) ((char *) src1->data), 0,
  7786. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7787. ne0);
  7788. #else
  7789. ggml_vec_add1_f32(ne0,
  7790. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7791. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7792. *(float *) src1->data);
  7793. #endif
  7794. }
  7795. }
  7796. static void ggml_compute_forward_add1_f16_f32(
  7797. const struct ggml_compute_params * params,
  7798. struct ggml_tensor * dst) {
  7799. const struct ggml_tensor * src0 = dst->src[0];
  7800. const struct ggml_tensor * src1 = dst->src[1];
  7801. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7802. GGML_ASSERT(ggml_is_scalar(src1));
  7803. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7804. return;
  7805. }
  7806. // scalar to add
  7807. const float v = *(float *) src1->data;
  7808. const int ith = params->ith;
  7809. const int nth = params->nth;
  7810. const int nr = ggml_nrows(src0);
  7811. GGML_TENSOR_UNARY_OP_LOCALS
  7812. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7813. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7814. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7815. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7816. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7817. // rows per thread
  7818. const int dr = (nr + nth - 1)/nth;
  7819. // row range for this thread
  7820. const int ir0 = dr*ith;
  7821. const int ir1 = MIN(ir0 + dr, nr);
  7822. for (int ir = ir0; ir < ir1; ++ir) {
  7823. // src0 and dst are same shape => same indices
  7824. const int i3 = ir/(ne2*ne1);
  7825. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7826. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7827. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7828. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7829. for (int i = 0; i < ne0; i++) {
  7830. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7831. }
  7832. }
  7833. }
  7834. static void ggml_compute_forward_add1_f16_f16(
  7835. const struct ggml_compute_params * params,
  7836. struct ggml_tensor * dst) {
  7837. const struct ggml_tensor * src0 = dst->src[0];
  7838. const struct ggml_tensor * src1 = dst->src[1];
  7839. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7840. GGML_ASSERT(ggml_is_scalar(src1));
  7841. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7842. return;
  7843. }
  7844. // scalar to add
  7845. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7846. const int ith = params->ith;
  7847. const int nth = params->nth;
  7848. const int nr = ggml_nrows(src0);
  7849. GGML_TENSOR_UNARY_OP_LOCALS
  7850. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7851. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7852. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7853. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7854. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7855. // rows per thread
  7856. const int dr = (nr + nth - 1)/nth;
  7857. // row range for this thread
  7858. const int ir0 = dr*ith;
  7859. const int ir1 = MIN(ir0 + dr, nr);
  7860. for (int ir = ir0; ir < ir1; ++ir) {
  7861. // src0 and dst are same shape => same indices
  7862. const int i3 = ir/(ne2*ne1);
  7863. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7864. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7865. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7866. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7867. for (int i = 0; i < ne0; i++) {
  7868. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7869. }
  7870. }
  7871. }
  7872. static void ggml_compute_forward_add1_q_f32(
  7873. const struct ggml_compute_params * params,
  7874. struct ggml_tensor * dst) {
  7875. const struct ggml_tensor * src0 = dst->src[0];
  7876. const struct ggml_tensor * src1 = dst->src[1];
  7877. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7878. GGML_ASSERT(ggml_is_scalar(src1));
  7879. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7880. return;
  7881. }
  7882. // scalar to add
  7883. const float v = *(float *) src1->data;
  7884. const int ith = params->ith;
  7885. const int nth = params->nth;
  7886. const int nr = ggml_nrows(src0);
  7887. GGML_TENSOR_UNARY_OP_LOCALS
  7888. const enum ggml_type type = src0->type;
  7889. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7890. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7891. // we don't support permuted src0
  7892. GGML_ASSERT(nb00 == ggml_type_size(type));
  7893. // dst cannot be transposed or permuted
  7894. GGML_ASSERT(nb0 <= nb1);
  7895. GGML_ASSERT(nb1 <= nb2);
  7896. GGML_ASSERT(nb2 <= nb3);
  7897. GGML_ASSERT(ggml_is_quantized(src0->type));
  7898. GGML_ASSERT(dst->type == src0->type);
  7899. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7900. // rows per thread
  7901. const int dr = (nr + nth - 1)/nth;
  7902. // row range for this thread
  7903. const int ir0 = dr*ith;
  7904. const int ir1 = MIN(ir0 + dr, nr);
  7905. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7906. for (int ir = ir0; ir < ir1; ++ir) {
  7907. // src0 and dst are same shape => same indices
  7908. const int i3 = ir/(ne2*ne1);
  7909. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7910. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7911. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7912. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7913. assert(ne0 % 32 == 0);
  7914. // unquantize row from src0 to temp buffer
  7915. dequantize_row_q(src0_row, wdata, ne0);
  7916. // add src1
  7917. ggml_vec_acc1_f32(ne0, wdata, v);
  7918. // quantize row to dst
  7919. quantize_row_q(wdata, dst_row, ne0);
  7920. }
  7921. }
  7922. static void ggml_compute_forward_add1_bf16_f32(
  7923. const struct ggml_compute_params * params,
  7924. struct ggml_tensor * dst) {
  7925. const struct ggml_tensor * src0 = dst->src[0];
  7926. const struct ggml_tensor * src1 = dst->src[1];
  7927. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7928. GGML_ASSERT(ggml_is_scalar(src1));
  7929. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7930. return;
  7931. }
  7932. // scalar to add
  7933. const float v = *(float *) src1->data;
  7934. const int ith = params->ith;
  7935. const int nth = params->nth;
  7936. const int nr = ggml_nrows(src0);
  7937. GGML_TENSOR_UNARY_OP_LOCALS
  7938. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7939. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7940. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7941. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7942. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7943. // rows per thread
  7944. const int dr = (nr + nth - 1)/nth;
  7945. // row range for this thread
  7946. const int ir0 = dr*ith;
  7947. const int ir1 = MIN(ir0 + dr, nr);
  7948. for (int ir = ir0; ir < ir1; ++ir) {
  7949. // src0 and dst are same shape => same indices
  7950. const int i3 = ir/(ne2*ne1);
  7951. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7952. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7953. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7954. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7955. for (int i = 0; i < ne0; i++) {
  7956. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7957. }
  7958. }
  7959. }
  7960. static void ggml_compute_forward_add1_bf16_bf16(
  7961. const struct ggml_compute_params * params,
  7962. struct ggml_tensor * dst) {
  7963. const struct ggml_tensor * src0 = dst->src[0];
  7964. const struct ggml_tensor * src1 = dst->src[1];
  7965. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7966. GGML_ASSERT(ggml_is_scalar(src1));
  7967. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7968. return;
  7969. }
  7970. // scalar to add
  7971. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  7972. const int ith = params->ith;
  7973. const int nth = params->nth;
  7974. const int nr = ggml_nrows(src0);
  7975. GGML_TENSOR_UNARY_OP_LOCALS
  7976. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7977. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7978. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7979. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7980. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7981. // rows per thread
  7982. const int dr = (nr + nth - 1)/nth;
  7983. // row range for this thread
  7984. const int ir0 = dr*ith;
  7985. const int ir1 = MIN(ir0 + dr, nr);
  7986. for (int ir = ir0; ir < ir1; ++ir) {
  7987. // src0 and dst are same shape => same indices
  7988. const int i3 = ir/(ne2*ne1);
  7989. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7990. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7991. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7992. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7993. for (int i = 0; i < ne0; i++) {
  7994. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7995. }
  7996. }
  7997. }
  7998. static void ggml_compute_forward_add1(
  7999. const struct ggml_compute_params * params,
  8000. struct ggml_tensor * dst) {
  8001. const struct ggml_tensor * src0 = dst->src[0];
  8002. const struct ggml_tensor * src1 = dst->src[1];
  8003. switch (src0->type) {
  8004. case GGML_TYPE_F32:
  8005. {
  8006. ggml_compute_forward_add1_f32(params, dst);
  8007. } break;
  8008. case GGML_TYPE_F16:
  8009. {
  8010. if (src1->type == GGML_TYPE_F16) {
  8011. ggml_compute_forward_add1_f16_f16(params, dst);
  8012. }
  8013. else if (src1->type == GGML_TYPE_F32) {
  8014. ggml_compute_forward_add1_f16_f32(params, dst);
  8015. }
  8016. else {
  8017. GGML_ASSERT(false);
  8018. }
  8019. } break;
  8020. case GGML_TYPE_BF16:
  8021. {
  8022. if (src1->type == GGML_TYPE_BF16) {
  8023. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8024. }
  8025. else if (src1->type == GGML_TYPE_F32) {
  8026. ggml_compute_forward_add1_bf16_f32(params, dst);
  8027. }
  8028. else {
  8029. GGML_ASSERT(false);
  8030. }
  8031. } break;
  8032. case GGML_TYPE_Q4_0:
  8033. case GGML_TYPE_Q4_1:
  8034. case GGML_TYPE_Q5_0:
  8035. case GGML_TYPE_Q5_1:
  8036. case GGML_TYPE_Q8_0:
  8037. case GGML_TYPE_Q8_1:
  8038. case GGML_TYPE_Q2_K:
  8039. case GGML_TYPE_Q3_K:
  8040. case GGML_TYPE_Q4_K:
  8041. case GGML_TYPE_Q5_K:
  8042. case GGML_TYPE_Q6_K:
  8043. case GGML_TYPE_IQ2_XXS:
  8044. case GGML_TYPE_IQ2_XS:
  8045. case GGML_TYPE_IQ3_XXS:
  8046. case GGML_TYPE_IQ1_S:
  8047. case GGML_TYPE_IQ1_M:
  8048. case GGML_TYPE_IQ4_NL:
  8049. case GGML_TYPE_IQ4_XS:
  8050. case GGML_TYPE_IQ3_S:
  8051. case GGML_TYPE_IQ2_S:
  8052. {
  8053. ggml_compute_forward_add1_q_f32(params, dst);
  8054. } break;
  8055. default:
  8056. {
  8057. GGML_ASSERT(false);
  8058. } break;
  8059. }
  8060. }
  8061. // ggml_compute_forward_acc
  8062. static void ggml_compute_forward_acc_f32(
  8063. const struct ggml_compute_params * params,
  8064. struct ggml_tensor * dst) {
  8065. const struct ggml_tensor * src0 = dst->src[0];
  8066. const struct ggml_tensor * src1 = dst->src[1];
  8067. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8068. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8069. // view src0 and dst with these strides and data offset inbytes during acc
  8070. // nb0 is implicitly element_size because src0 and dst are contiguous
  8071. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8072. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8073. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8074. size_t offset = ((int32_t *) dst->op_params)[3];
  8075. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8076. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8077. if (params->ith != 0) {
  8078. return;
  8079. }
  8080. // memcpy needs to be synchronized across threads to avoid race conditions.
  8081. // => do it in INIT phase
  8082. memcpy(
  8083. ((char *) dst->data),
  8084. ((char *) src0->data),
  8085. ggml_nbytes(dst));
  8086. }
  8087. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8088. return;
  8089. }
  8090. const int ith = params->ith;
  8091. const int nth = params->nth;
  8092. const int nr = ggml_nrows(src1);
  8093. const int nc = src1->ne[0];
  8094. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8095. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8096. // src0 and dst as viewed during acc
  8097. const size_t nb0 = ggml_element_size(src0);
  8098. const size_t nb00 = nb0;
  8099. const size_t nb01 = nb1;
  8100. const size_t nb02 = nb2;
  8101. const size_t nb03 = nb3;
  8102. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8103. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8104. GGML_ASSERT(nb10 == sizeof(float));
  8105. // rows per thread
  8106. const int dr = (nr + nth - 1)/nth;
  8107. // row range for this thread
  8108. const int ir0 = dr*ith;
  8109. const int ir1 = MIN(ir0 + dr, nr);
  8110. for (int ir = ir0; ir < ir1; ++ir) {
  8111. // src0 and dst are viewed with shape of src1 and offset
  8112. // => same indices
  8113. const int i3 = ir/(ne12*ne11);
  8114. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8115. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8116. #ifdef GGML_USE_ACCELERATE
  8117. vDSP_vadd(
  8118. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8119. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8120. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8121. #else
  8122. ggml_vec_add_f32(nc,
  8123. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8124. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8125. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8126. #endif
  8127. }
  8128. }
  8129. static void ggml_compute_forward_acc(
  8130. const struct ggml_compute_params * params,
  8131. struct ggml_tensor * dst) {
  8132. const struct ggml_tensor * src0 = dst->src[0];
  8133. switch (src0->type) {
  8134. case GGML_TYPE_F32:
  8135. {
  8136. ggml_compute_forward_acc_f32(params, dst);
  8137. } break;
  8138. case GGML_TYPE_F16:
  8139. case GGML_TYPE_BF16:
  8140. case GGML_TYPE_Q4_0:
  8141. case GGML_TYPE_Q4_1:
  8142. case GGML_TYPE_Q5_0:
  8143. case GGML_TYPE_Q5_1:
  8144. case GGML_TYPE_Q8_0:
  8145. case GGML_TYPE_Q8_1:
  8146. case GGML_TYPE_Q2_K:
  8147. case GGML_TYPE_Q3_K:
  8148. case GGML_TYPE_Q4_K:
  8149. case GGML_TYPE_Q5_K:
  8150. case GGML_TYPE_Q6_K:
  8151. case GGML_TYPE_IQ2_XXS:
  8152. case GGML_TYPE_IQ2_XS:
  8153. case GGML_TYPE_IQ3_XXS:
  8154. case GGML_TYPE_IQ1_S:
  8155. case GGML_TYPE_IQ1_M:
  8156. case GGML_TYPE_IQ4_NL:
  8157. case GGML_TYPE_IQ4_XS:
  8158. case GGML_TYPE_IQ3_S:
  8159. case GGML_TYPE_IQ2_S:
  8160. default:
  8161. {
  8162. GGML_ASSERT(false);
  8163. } break;
  8164. }
  8165. }
  8166. // ggml_compute_forward_sub
  8167. static void ggml_compute_forward_sub_f32(
  8168. const struct ggml_compute_params * params,
  8169. struct ggml_tensor * dst) {
  8170. const struct ggml_tensor * src0 = dst->src[0];
  8171. const struct ggml_tensor * src1 = dst->src[1];
  8172. assert(params->ith == 0);
  8173. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8174. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8175. return;
  8176. }
  8177. const int nr = ggml_nrows(src0);
  8178. GGML_TENSOR_BINARY_OP_LOCALS
  8179. GGML_ASSERT( nb0 == sizeof(float));
  8180. GGML_ASSERT(nb00 == sizeof(float));
  8181. if (nb10 == sizeof(float)) {
  8182. for (int ir = 0; ir < nr; ++ir) {
  8183. // src0, src1 and dst are same shape => same indices
  8184. const int i3 = ir/(ne2*ne1);
  8185. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8186. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8187. #ifdef GGML_USE_ACCELERATE
  8188. vDSP_vsub(
  8189. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8190. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8191. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8192. ne0);
  8193. #else
  8194. ggml_vec_sub_f32(ne0,
  8195. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8196. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8197. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8198. #endif
  8199. // }
  8200. // }
  8201. }
  8202. } else {
  8203. // src1 is not contiguous
  8204. for (int ir = 0; ir < nr; ++ir) {
  8205. // src0, src1 and dst are same shape => same indices
  8206. const int i3 = ir/(ne2*ne1);
  8207. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8208. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8209. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8210. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8211. for (int i0 = 0; i0 < ne0; i0++) {
  8212. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8213. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8214. }
  8215. }
  8216. }
  8217. }
  8218. static void ggml_compute_forward_sub(
  8219. const struct ggml_compute_params * params,
  8220. struct ggml_tensor * dst) {
  8221. const struct ggml_tensor * src0 = dst->src[0];
  8222. switch (src0->type) {
  8223. case GGML_TYPE_F32:
  8224. {
  8225. ggml_compute_forward_sub_f32(params, dst);
  8226. } break;
  8227. default:
  8228. {
  8229. GGML_ASSERT(false);
  8230. } break;
  8231. }
  8232. }
  8233. // ggml_compute_forward_mul
  8234. static void ggml_compute_forward_mul_f32(
  8235. const struct ggml_compute_params * params,
  8236. struct ggml_tensor * dst) {
  8237. const struct ggml_tensor * src0 = dst->src[0];
  8238. const struct ggml_tensor * src1 = dst->src[1];
  8239. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8240. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8241. return;
  8242. }
  8243. const int ith = params->ith;
  8244. const int nth = params->nth;
  8245. #if defined(GGML_USE_CLBLAST)
  8246. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8247. // TODO: OpenCL kernel support full broadcast
  8248. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8249. if (ith == 0) {
  8250. ggml_cl_mul(src0, src1, dst);
  8251. }
  8252. return;
  8253. }
  8254. #endif
  8255. const int64_t nr = ggml_nrows(src0);
  8256. GGML_TENSOR_BINARY_OP_LOCALS
  8257. GGML_ASSERT( nb0 == sizeof(float));
  8258. GGML_ASSERT(nb00 == sizeof(float));
  8259. if (nb10 == sizeof(float)) {
  8260. for (int64_t ir = ith; ir < nr; ir += nth) {
  8261. // src0 and dst are same shape => same indices
  8262. const int64_t i03 = ir/(ne02*ne01);
  8263. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8264. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8265. const int64_t i13 = i03 % ne13;
  8266. const int64_t i12 = i02 % ne12;
  8267. const int64_t i11 = i01 % ne11;
  8268. const int64_t nr0 = ne00 / ne10;
  8269. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8270. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8271. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8272. for (int64_t r = 0 ; r < nr0; ++r) {
  8273. #ifdef GGML_USE_ACCELERATE
  8274. UNUSED(ggml_vec_mul_f32);
  8275. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8276. #else
  8277. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8278. #endif
  8279. }
  8280. }
  8281. } else {
  8282. // src1 is not contiguous
  8283. for (int64_t ir = ith; ir < nr; ir += nth) {
  8284. // src0 and dst are same shape => same indices
  8285. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8286. const int64_t i03 = ir/(ne02*ne01);
  8287. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8288. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8289. const int64_t i13 = i03 % ne13;
  8290. const int64_t i12 = i02 % ne12;
  8291. const int64_t i11 = i01 % ne11;
  8292. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8293. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8294. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8295. const int64_t i10 = i0 % ne10;
  8296. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8297. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8298. }
  8299. }
  8300. }
  8301. }
  8302. static void ggml_compute_forward_mul(
  8303. const struct ggml_compute_params * params,
  8304. struct ggml_tensor * dst) {
  8305. const struct ggml_tensor * src0 = dst->src[0];
  8306. const struct ggml_tensor * src1 = dst->src[1];
  8307. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8308. switch (src0->type) {
  8309. case GGML_TYPE_F32:
  8310. {
  8311. ggml_compute_forward_mul_f32(params, dst);
  8312. } break;
  8313. default:
  8314. {
  8315. GGML_ASSERT(false);
  8316. } break;
  8317. }
  8318. }
  8319. // ggml_compute_forward_div
  8320. static void ggml_compute_forward_div_f32(
  8321. const struct ggml_compute_params * params,
  8322. struct ggml_tensor * dst) {
  8323. const struct ggml_tensor * src0 = dst->src[0];
  8324. const struct ggml_tensor * src1 = dst->src[1];
  8325. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8326. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8327. return;
  8328. }
  8329. const int ith = params->ith;
  8330. const int nth = params->nth;
  8331. const int64_t nr = ggml_nrows(src0);
  8332. GGML_TENSOR_BINARY_OP_LOCALS
  8333. GGML_ASSERT( nb0 == sizeof(float));
  8334. GGML_ASSERT(nb00 == sizeof(float));
  8335. if (nb10 == sizeof(float)) {
  8336. for (int64_t ir = ith; ir < nr; ir += nth) {
  8337. // src0 and dst are same shape => same indices
  8338. const int64_t i03 = ir/(ne02*ne01);
  8339. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8340. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8341. const int64_t i13 = i03 % ne13;
  8342. const int64_t i12 = i02 % ne12;
  8343. const int64_t i11 = i01 % ne11;
  8344. const int64_t nr0 = ne00 / ne10;
  8345. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8346. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8347. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8348. for (int64_t r = 0; r < nr0; ++r) {
  8349. #ifdef GGML_USE_ACCELERATE
  8350. UNUSED(ggml_vec_div_f32);
  8351. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8352. #else
  8353. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8354. #endif
  8355. }
  8356. }
  8357. } else {
  8358. // src1 is not contiguous
  8359. for (int64_t ir = ith; ir < nr; ir += nth) {
  8360. // src0 and dst are same shape => same indices
  8361. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8362. const int64_t i03 = ir/(ne02*ne01);
  8363. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8364. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8365. const int64_t i13 = i03 % ne13;
  8366. const int64_t i12 = i02 % ne12;
  8367. const int64_t i11 = i01 % ne11;
  8368. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8369. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8370. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8371. const int64_t i10 = i0 % ne10;
  8372. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8373. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8374. }
  8375. }
  8376. }
  8377. }
  8378. static void ggml_compute_forward_div(
  8379. const struct ggml_compute_params * params,
  8380. struct ggml_tensor * dst) {
  8381. const struct ggml_tensor * src0 = dst->src[0];
  8382. switch (src0->type) {
  8383. case GGML_TYPE_F32:
  8384. {
  8385. ggml_compute_forward_div_f32(params, dst);
  8386. } break;
  8387. default:
  8388. {
  8389. GGML_ASSERT(false);
  8390. } break;
  8391. }
  8392. }
  8393. // ggml_compute_forward_sqr
  8394. static void ggml_compute_forward_sqr_f32(
  8395. const struct ggml_compute_params * params,
  8396. struct ggml_tensor * dst) {
  8397. const struct ggml_tensor * src0 = dst->src[0];
  8398. assert(params->ith == 0);
  8399. assert(ggml_are_same_shape(src0, dst));
  8400. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8401. return;
  8402. }
  8403. const int n = ggml_nrows(src0);
  8404. const int nc = src0->ne[0];
  8405. assert( dst->nb[0] == sizeof(float));
  8406. assert(src0->nb[0] == sizeof(float));
  8407. for (int i = 0; i < n; i++) {
  8408. ggml_vec_sqr_f32(nc,
  8409. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8410. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8411. }
  8412. }
  8413. static void ggml_compute_forward_sqr(
  8414. const struct ggml_compute_params * params,
  8415. struct ggml_tensor * dst) {
  8416. const struct ggml_tensor * src0 = dst->src[0];
  8417. switch (src0->type) {
  8418. case GGML_TYPE_F32:
  8419. {
  8420. ggml_compute_forward_sqr_f32(params, dst);
  8421. } break;
  8422. default:
  8423. {
  8424. GGML_ASSERT(false);
  8425. } break;
  8426. }
  8427. }
  8428. // ggml_compute_forward_sqrt
  8429. static void ggml_compute_forward_sqrt_f32(
  8430. const struct ggml_compute_params * params,
  8431. struct ggml_tensor * dst) {
  8432. const struct ggml_tensor * src0 = dst->src[0];
  8433. assert(params->ith == 0);
  8434. assert(ggml_are_same_shape(src0, dst));
  8435. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8436. return;
  8437. }
  8438. const int n = ggml_nrows(src0);
  8439. const int nc = src0->ne[0];
  8440. assert( dst->nb[0] == sizeof(float));
  8441. assert(src0->nb[0] == sizeof(float));
  8442. for (int i = 0; i < n; i++) {
  8443. ggml_vec_sqrt_f32(nc,
  8444. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8445. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8446. }
  8447. }
  8448. static void ggml_compute_forward_sqrt(
  8449. const struct ggml_compute_params * params,
  8450. struct ggml_tensor * dst) {
  8451. const struct ggml_tensor * src0 = dst->src[0];
  8452. switch (src0->type) {
  8453. case GGML_TYPE_F32:
  8454. {
  8455. ggml_compute_forward_sqrt_f32(params, dst);
  8456. } break;
  8457. default:
  8458. {
  8459. GGML_ASSERT(false);
  8460. } break;
  8461. }
  8462. }
  8463. // ggml_compute_forward_log
  8464. static void ggml_compute_forward_log_f32(
  8465. const struct ggml_compute_params * params,
  8466. struct ggml_tensor * dst) {
  8467. const struct ggml_tensor * src0 = dst->src[0];
  8468. GGML_ASSERT(params->ith == 0);
  8469. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8470. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8471. return;
  8472. }
  8473. const int n = ggml_nrows(src0);
  8474. const int nc = src0->ne[0];
  8475. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8476. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8477. for (int i = 0; i < n; i++) {
  8478. ggml_vec_log_f32(nc,
  8479. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8480. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8481. }
  8482. }
  8483. static void ggml_compute_forward_log(
  8484. const struct ggml_compute_params * params,
  8485. struct ggml_tensor * dst) {
  8486. const struct ggml_tensor * src0 = dst->src[0];
  8487. switch (src0->type) {
  8488. case GGML_TYPE_F32:
  8489. {
  8490. ggml_compute_forward_log_f32(params, dst);
  8491. } break;
  8492. default:
  8493. {
  8494. GGML_ASSERT(false);
  8495. } break;
  8496. }
  8497. }
  8498. // ggml_compute_forward_sum
  8499. static void ggml_compute_forward_sum_f32(
  8500. const struct ggml_compute_params * params,
  8501. struct ggml_tensor * dst) {
  8502. const struct ggml_tensor * src0 = dst->src[0];
  8503. assert(params->ith == 0);
  8504. assert(ggml_is_scalar(dst));
  8505. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8506. return;
  8507. }
  8508. assert(ggml_is_scalar(dst));
  8509. assert(src0->nb[0] == sizeof(float));
  8510. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8511. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8512. ggml_float sum = 0;
  8513. ggml_float row_sum = 0;
  8514. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8515. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8516. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8517. ggml_vec_sum_f32_ggf(ne00,
  8518. &row_sum,
  8519. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8520. sum += row_sum;
  8521. }
  8522. }
  8523. }
  8524. ((float *) dst->data)[0] = sum;
  8525. }
  8526. static void ggml_compute_forward_sum_f16(
  8527. const struct ggml_compute_params * params,
  8528. struct ggml_tensor * dst) {
  8529. const struct ggml_tensor * src0 = dst->src[0];
  8530. assert(params->ith == 0);
  8531. assert(ggml_is_scalar(dst));
  8532. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8533. return;
  8534. }
  8535. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8536. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8537. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8538. float sum = 0;
  8539. float row_sum = 0;
  8540. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8541. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8542. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8543. ggml_vec_sum_f16_ggf(ne00,
  8544. &row_sum,
  8545. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8546. sum += row_sum;
  8547. }
  8548. }
  8549. }
  8550. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8551. }
  8552. static void ggml_compute_forward_sum_bf16(
  8553. const struct ggml_compute_params * params,
  8554. struct ggml_tensor * dst) {
  8555. const struct ggml_tensor * src0 = dst->src[0];
  8556. assert(params->ith == 0);
  8557. assert(ggml_is_scalar(dst));
  8558. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8559. return;
  8560. }
  8561. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8562. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8563. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8564. float sum = 0;
  8565. float row_sum = 0;
  8566. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8567. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8568. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8569. ggml_vec_sum_bf16_ggf(ne00,
  8570. &row_sum,
  8571. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8572. sum += row_sum;
  8573. }
  8574. }
  8575. }
  8576. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8577. }
  8578. static void ggml_compute_forward_sum(
  8579. const struct ggml_compute_params * params,
  8580. struct ggml_tensor * dst) {
  8581. const struct ggml_tensor * src0 = dst->src[0];
  8582. switch (src0->type) {
  8583. case GGML_TYPE_F32:
  8584. {
  8585. ggml_compute_forward_sum_f32(params, dst);
  8586. } break;
  8587. case GGML_TYPE_F16:
  8588. {
  8589. ggml_compute_forward_sum_f16(params, dst);
  8590. } break;
  8591. case GGML_TYPE_BF16:
  8592. {
  8593. ggml_compute_forward_sum_bf16(params, dst);
  8594. } break;
  8595. default:
  8596. {
  8597. GGML_ASSERT(false);
  8598. } break;
  8599. }
  8600. }
  8601. // ggml_compute_forward_sum_rows
  8602. static void ggml_compute_forward_sum_rows_f32(
  8603. const struct ggml_compute_params * params,
  8604. struct ggml_tensor * dst) {
  8605. const struct ggml_tensor * src0 = dst->src[0];
  8606. GGML_ASSERT(params->ith == 0);
  8607. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8608. return;
  8609. }
  8610. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8611. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8612. GGML_TENSOR_UNARY_OP_LOCALS
  8613. GGML_ASSERT(ne0 == 1);
  8614. GGML_ASSERT(ne1 == ne01);
  8615. GGML_ASSERT(ne2 == ne02);
  8616. GGML_ASSERT(ne3 == ne03);
  8617. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8618. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8619. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8620. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8621. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8622. float row_sum = 0;
  8623. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8624. dst_row[0] = row_sum;
  8625. }
  8626. }
  8627. }
  8628. }
  8629. static void ggml_compute_forward_sum_rows(
  8630. const struct ggml_compute_params * params,
  8631. struct ggml_tensor * dst) {
  8632. const struct ggml_tensor * src0 = dst->src[0];
  8633. switch (src0->type) {
  8634. case GGML_TYPE_F32:
  8635. {
  8636. ggml_compute_forward_sum_rows_f32(params, dst);
  8637. } break;
  8638. default:
  8639. {
  8640. GGML_ASSERT(false);
  8641. } break;
  8642. }
  8643. }
  8644. // ggml_compute_forward_mean
  8645. static void ggml_compute_forward_mean_f32(
  8646. const struct ggml_compute_params * params,
  8647. struct ggml_tensor * dst) {
  8648. const struct ggml_tensor * src0 = dst->src[0];
  8649. assert(params->ith == 0);
  8650. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8651. return;
  8652. }
  8653. assert(src0->nb[0] == sizeof(float));
  8654. GGML_TENSOR_UNARY_OP_LOCALS
  8655. assert(ne0 == 1);
  8656. assert(ne1 == ne01);
  8657. assert(ne2 == ne02);
  8658. assert(ne3 == ne03);
  8659. UNUSED(ne0);
  8660. UNUSED(ne1);
  8661. UNUSED(ne2);
  8662. UNUSED(ne3);
  8663. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8664. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8665. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8666. ggml_vec_sum_f32(ne00,
  8667. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8668. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8669. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8670. }
  8671. }
  8672. }
  8673. }
  8674. static void ggml_compute_forward_mean(
  8675. const struct ggml_compute_params * params,
  8676. struct ggml_tensor * dst) {
  8677. const struct ggml_tensor * src0 = dst->src[0];
  8678. switch (src0->type) {
  8679. case GGML_TYPE_F32:
  8680. {
  8681. ggml_compute_forward_mean_f32(params, dst);
  8682. } break;
  8683. default:
  8684. {
  8685. GGML_ASSERT(false);
  8686. } break;
  8687. }
  8688. }
  8689. // ggml_compute_forward_argmax
  8690. static void ggml_compute_forward_argmax_f32(
  8691. const struct ggml_compute_params * params,
  8692. struct ggml_tensor * dst) {
  8693. const struct ggml_tensor * src0 = dst->src[0];
  8694. assert(params->ith == 0);
  8695. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8696. return;
  8697. }
  8698. assert(src0->nb[0] == sizeof(float));
  8699. assert(dst->nb[0] == sizeof(float));
  8700. const int64_t ne00 = src0->ne[0];
  8701. const int64_t ne01 = src0->ne[1];
  8702. const size_t nb01 = src0->nb[1];
  8703. const size_t nb0 = dst->nb[0];
  8704. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8705. float * src = (float *) ((char *) src0->data + i1*nb01);
  8706. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8707. int v = 0;
  8708. ggml_vec_argmax_f32(ne00, &v, src);
  8709. dst_[0] = v;
  8710. }
  8711. }
  8712. static void ggml_compute_forward_argmax(
  8713. const struct ggml_compute_params * params,
  8714. struct ggml_tensor * dst) {
  8715. const struct ggml_tensor * src0 = dst->src[0];
  8716. switch (src0->type) {
  8717. case GGML_TYPE_F32:
  8718. {
  8719. ggml_compute_forward_argmax_f32(params, dst);
  8720. } break;
  8721. default:
  8722. {
  8723. GGML_ASSERT(false);
  8724. } break;
  8725. }
  8726. }
  8727. // ggml_compute_forward_repeat
  8728. static void ggml_compute_forward_repeat_f32(
  8729. const struct ggml_compute_params * params,
  8730. struct ggml_tensor * dst) {
  8731. const struct ggml_tensor * src0 = dst->src[0];
  8732. GGML_ASSERT(params->ith == 0);
  8733. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8734. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8735. return;
  8736. }
  8737. GGML_TENSOR_UNARY_OP_LOCALS
  8738. // guaranteed to be an integer due to the check in ggml_can_repeat
  8739. const int nr0 = (int)(ne0/ne00);
  8740. const int nr1 = (int)(ne1/ne01);
  8741. const int nr2 = (int)(ne2/ne02);
  8742. const int nr3 = (int)(ne3/ne03);
  8743. // TODO: support for transposed / permuted tensors
  8744. GGML_ASSERT(nb0 == sizeof(float));
  8745. GGML_ASSERT(nb00 == sizeof(float));
  8746. // TODO: maybe this is not optimal?
  8747. for (int i3 = 0; i3 < nr3; i3++) {
  8748. for (int k3 = 0; k3 < ne03; k3++) {
  8749. for (int i2 = 0; i2 < nr2; i2++) {
  8750. for (int k2 = 0; k2 < ne02; k2++) {
  8751. for (int i1 = 0; i1 < nr1; i1++) {
  8752. for (int k1 = 0; k1 < ne01; k1++) {
  8753. for (int i0 = 0; i0 < nr0; i0++) {
  8754. ggml_vec_cpy_f32(ne00,
  8755. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8756. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8757. }
  8758. }
  8759. }
  8760. }
  8761. }
  8762. }
  8763. }
  8764. }
  8765. static void ggml_compute_forward_repeat_f16(
  8766. const struct ggml_compute_params * params,
  8767. struct ggml_tensor * dst) {
  8768. const struct ggml_tensor * src0 = dst->src[0];
  8769. GGML_ASSERT(params->ith == 0);
  8770. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8771. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8772. return;
  8773. }
  8774. GGML_TENSOR_UNARY_OP_LOCALS
  8775. // guaranteed to be an integer due to the check in ggml_can_repeat
  8776. const int nr0 = (int)(ne0/ne00);
  8777. const int nr1 = (int)(ne1/ne01);
  8778. const int nr2 = (int)(ne2/ne02);
  8779. const int nr3 = (int)(ne3/ne03);
  8780. // TODO: support for transposed / permuted tensors
  8781. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8782. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8783. // TODO: maybe this is not optimal?
  8784. for (int i3 = 0; i3 < nr3; i3++) {
  8785. for (int k3 = 0; k3 < ne03; k3++) {
  8786. for (int i2 = 0; i2 < nr2; i2++) {
  8787. for (int k2 = 0; k2 < ne02; k2++) {
  8788. for (int i1 = 0; i1 < nr1; i1++) {
  8789. for (int k1 = 0; k1 < ne01; k1++) {
  8790. for (int i0 = 0; i0 < nr0; i0++) {
  8791. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8792. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8793. // ggml_vec_cpy_f16(ne00, y, x)
  8794. for (int i = 0; i < ne00; ++i) {
  8795. y[i] = x[i];
  8796. }
  8797. }
  8798. }
  8799. }
  8800. }
  8801. }
  8802. }
  8803. }
  8804. }
  8805. static void ggml_compute_forward_repeat(
  8806. const struct ggml_compute_params * params,
  8807. struct ggml_tensor * dst) {
  8808. const struct ggml_tensor * src0 = dst->src[0];
  8809. switch (src0->type) {
  8810. case GGML_TYPE_F16:
  8811. case GGML_TYPE_BF16:
  8812. case GGML_TYPE_I16:
  8813. {
  8814. ggml_compute_forward_repeat_f16(params, dst);
  8815. } break;
  8816. case GGML_TYPE_F32:
  8817. case GGML_TYPE_I32:
  8818. {
  8819. ggml_compute_forward_repeat_f32(params, dst);
  8820. } break;
  8821. default:
  8822. {
  8823. GGML_ASSERT(false);
  8824. } break;
  8825. }
  8826. }
  8827. // ggml_compute_forward_repeat_back
  8828. static void ggml_compute_forward_repeat_back_f32(
  8829. const struct ggml_compute_params * params,
  8830. struct ggml_tensor * dst) {
  8831. const struct ggml_tensor * src0 = dst->src[0];
  8832. GGML_ASSERT(params->ith == 0);
  8833. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8834. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8835. return;
  8836. }
  8837. GGML_TENSOR_UNARY_OP_LOCALS
  8838. // guaranteed to be an integer due to the check in ggml_can_repeat
  8839. const int nr0 = (int)(ne00/ne0);
  8840. const int nr1 = (int)(ne01/ne1);
  8841. const int nr2 = (int)(ne02/ne2);
  8842. const int nr3 = (int)(ne03/ne3);
  8843. // TODO: support for transposed / permuted tensors
  8844. GGML_ASSERT(nb0 == sizeof(float));
  8845. GGML_ASSERT(nb00 == sizeof(float));
  8846. if (ggml_is_contiguous(dst)) {
  8847. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8848. } else {
  8849. for (int k3 = 0; k3 < ne3; k3++) {
  8850. for (int k2 = 0; k2 < ne2; k2++) {
  8851. for (int k1 = 0; k1 < ne1; k1++) {
  8852. ggml_vec_set_f32(ne0,
  8853. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8854. 0);
  8855. }
  8856. }
  8857. }
  8858. }
  8859. // TODO: maybe this is not optimal?
  8860. for (int i3 = 0; i3 < nr3; i3++) {
  8861. for (int k3 = 0; k3 < ne3; k3++) {
  8862. for (int i2 = 0; i2 < nr2; i2++) {
  8863. for (int k2 = 0; k2 < ne2; k2++) {
  8864. for (int i1 = 0; i1 < nr1; i1++) {
  8865. for (int k1 = 0; k1 < ne1; k1++) {
  8866. for (int i0 = 0; i0 < nr0; i0++) {
  8867. ggml_vec_acc_f32(ne0,
  8868. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8869. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8870. }
  8871. }
  8872. }
  8873. }
  8874. }
  8875. }
  8876. }
  8877. }
  8878. static void ggml_compute_forward_repeat_back(
  8879. const struct ggml_compute_params * params,
  8880. struct ggml_tensor * dst) {
  8881. const struct ggml_tensor * src0 = dst->src[0];
  8882. switch (src0->type) {
  8883. case GGML_TYPE_F32:
  8884. {
  8885. ggml_compute_forward_repeat_back_f32(params, dst);
  8886. } break;
  8887. default:
  8888. {
  8889. GGML_ASSERT(false);
  8890. } break;
  8891. }
  8892. }
  8893. // ggml_compute_forward_concat
  8894. static void ggml_compute_forward_concat_f32(
  8895. const struct ggml_compute_params * params,
  8896. struct ggml_tensor * dst) {
  8897. const struct ggml_tensor * src0 = dst->src[0];
  8898. const struct ggml_tensor * src1 = dst->src[1];
  8899. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8900. return;
  8901. }
  8902. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8903. const int ith = params->ith;
  8904. const int nth = params->nth;
  8905. GGML_TENSOR_BINARY_OP_LOCALS
  8906. // TODO: support for transposed / permuted tensors
  8907. GGML_ASSERT(nb0 == sizeof(float));
  8908. GGML_ASSERT(nb00 == sizeof(float));
  8909. GGML_ASSERT(nb10 == sizeof(float));
  8910. for (int i3 = 0; i3 < ne3; i3++) {
  8911. for (int i2 = ith; i2 < ne2; i2 += nth) {
  8912. if (i2 < ne02) { // src0
  8913. for (int i1 = 0; i1 < ne1; i1++) {
  8914. for (int i0 = 0; i0 < ne0; i0++) {
  8915. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8916. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8917. *y = *x;
  8918. }
  8919. }
  8920. } // src1
  8921. else {
  8922. for (int i1 = 0; i1 < ne1; i1++) {
  8923. for (int i0 = 0; i0 < ne0; i0++) {
  8924. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8925. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8926. *y = *x;
  8927. }
  8928. }
  8929. }
  8930. }
  8931. }
  8932. }
  8933. static void ggml_compute_forward_concat(
  8934. const struct ggml_compute_params* params,
  8935. struct ggml_tensor* dst) {
  8936. const struct ggml_tensor * src0 = dst->src[0];
  8937. switch (src0->type) {
  8938. case GGML_TYPE_F32:
  8939. case GGML_TYPE_I32:
  8940. {
  8941. ggml_compute_forward_concat_f32(params, dst);
  8942. } break;
  8943. default:
  8944. {
  8945. GGML_ASSERT(false);
  8946. } break;
  8947. }
  8948. }
  8949. // ggml_compute_forward_abs
  8950. static void ggml_compute_forward_abs_f32(
  8951. const struct ggml_compute_params * params,
  8952. struct ggml_tensor * dst) {
  8953. const struct ggml_tensor * src0 = dst->src[0];
  8954. assert(params->ith == 0);
  8955. assert(ggml_are_same_shape(src0, dst));
  8956. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8957. return;
  8958. }
  8959. const int n = ggml_nrows(src0);
  8960. const int nc = src0->ne[0];
  8961. assert(dst->nb[0] == sizeof(float));
  8962. assert(src0->nb[0] == sizeof(float));
  8963. for (int i = 0; i < n; i++) {
  8964. ggml_vec_abs_f32(nc,
  8965. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8966. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8967. }
  8968. }
  8969. static void ggml_compute_forward_abs(
  8970. const struct ggml_compute_params * params,
  8971. struct ggml_tensor * dst) {
  8972. const struct ggml_tensor * src0 = dst->src[0];
  8973. switch (src0->type) {
  8974. case GGML_TYPE_F32:
  8975. {
  8976. ggml_compute_forward_abs_f32(params, dst);
  8977. } break;
  8978. default:
  8979. {
  8980. GGML_ASSERT(false);
  8981. } break;
  8982. }
  8983. }
  8984. // ggml_compute_forward_sgn
  8985. static void ggml_compute_forward_sgn_f32(
  8986. const struct ggml_compute_params * params,
  8987. struct ggml_tensor * dst) {
  8988. const struct ggml_tensor * src0 = dst->src[0];
  8989. assert(params->ith == 0);
  8990. assert(ggml_are_same_shape(src0, dst));
  8991. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8992. return;
  8993. }
  8994. const int n = ggml_nrows(src0);
  8995. const int nc = src0->ne[0];
  8996. assert(dst->nb[0] == sizeof(float));
  8997. assert(src0->nb[0] == sizeof(float));
  8998. for (int i = 0; i < n; i++) {
  8999. ggml_vec_sgn_f32(nc,
  9000. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9001. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9002. }
  9003. }
  9004. static void ggml_compute_forward_sgn(
  9005. const struct ggml_compute_params * params,
  9006. struct ggml_tensor * dst) {
  9007. const struct ggml_tensor * src0 = dst->src[0];
  9008. switch (src0->type) {
  9009. case GGML_TYPE_F32:
  9010. {
  9011. ggml_compute_forward_sgn_f32(params, dst);
  9012. } break;
  9013. default:
  9014. {
  9015. GGML_ASSERT(false);
  9016. } break;
  9017. }
  9018. }
  9019. // ggml_compute_forward_neg
  9020. static void ggml_compute_forward_neg_f32(
  9021. const struct ggml_compute_params * params,
  9022. struct ggml_tensor * dst) {
  9023. const struct ggml_tensor * src0 = dst->src[0];
  9024. assert(params->ith == 0);
  9025. assert(ggml_are_same_shape(src0, dst));
  9026. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9027. return;
  9028. }
  9029. const int n = ggml_nrows(src0);
  9030. const int nc = src0->ne[0];
  9031. assert(dst->nb[0] == sizeof(float));
  9032. assert(src0->nb[0] == sizeof(float));
  9033. for (int i = 0; i < n; i++) {
  9034. ggml_vec_neg_f32(nc,
  9035. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9036. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9037. }
  9038. }
  9039. static void ggml_compute_forward_neg(
  9040. const struct ggml_compute_params * params,
  9041. struct ggml_tensor * dst) {
  9042. const struct ggml_tensor * src0 = dst->src[0];
  9043. switch (src0->type) {
  9044. case GGML_TYPE_F32:
  9045. {
  9046. ggml_compute_forward_neg_f32(params, dst);
  9047. } break;
  9048. default:
  9049. {
  9050. GGML_ASSERT(false);
  9051. } break;
  9052. }
  9053. }
  9054. // ggml_compute_forward_step
  9055. static void ggml_compute_forward_step_f32(
  9056. const struct ggml_compute_params * params,
  9057. struct ggml_tensor * dst) {
  9058. const struct ggml_tensor * src0 = dst->src[0];
  9059. assert(params->ith == 0);
  9060. assert(ggml_are_same_shape(src0, dst));
  9061. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9062. return;
  9063. }
  9064. const int n = ggml_nrows(src0);
  9065. const int nc = src0->ne[0];
  9066. assert(dst->nb[0] == sizeof(float));
  9067. assert(src0->nb[0] == sizeof(float));
  9068. for (int i = 0; i < n; i++) {
  9069. ggml_vec_step_f32(nc,
  9070. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9071. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9072. }
  9073. }
  9074. static void ggml_compute_forward_step(
  9075. const struct ggml_compute_params * params,
  9076. struct ggml_tensor * dst) {
  9077. const struct ggml_tensor * src0 = dst->src[0];
  9078. switch (src0->type) {
  9079. case GGML_TYPE_F32:
  9080. {
  9081. ggml_compute_forward_step_f32(params, dst);
  9082. } break;
  9083. default:
  9084. {
  9085. GGML_ASSERT(false);
  9086. } break;
  9087. }
  9088. }
  9089. // ggml_compute_forward_tanh
  9090. static void ggml_compute_forward_tanh_f32(
  9091. const struct ggml_compute_params * params,
  9092. struct ggml_tensor * dst) {
  9093. const struct ggml_tensor * src0 = dst->src[0];
  9094. assert(params->ith == 0);
  9095. assert(ggml_are_same_shape(src0, dst));
  9096. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9097. return;
  9098. }
  9099. const int n = ggml_nrows(src0);
  9100. const int nc = src0->ne[0];
  9101. assert(dst->nb[0] == sizeof(float));
  9102. assert(src0->nb[0] == sizeof(float));
  9103. for (int i = 0; i < n; i++) {
  9104. ggml_vec_tanh_f32(nc,
  9105. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9106. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9107. }
  9108. }
  9109. static void ggml_compute_forward_tanh(
  9110. const struct ggml_compute_params * params,
  9111. struct ggml_tensor * dst) {
  9112. const struct ggml_tensor * src0 = dst->src[0];
  9113. switch (src0->type) {
  9114. case GGML_TYPE_F32:
  9115. {
  9116. ggml_compute_forward_tanh_f32(params, dst);
  9117. } break;
  9118. default:
  9119. {
  9120. GGML_ASSERT(false);
  9121. } break;
  9122. }
  9123. }
  9124. // ggml_compute_forward_elu
  9125. static void ggml_compute_forward_elu_f32(
  9126. const struct ggml_compute_params * params,
  9127. struct ggml_tensor * dst) {
  9128. const struct ggml_tensor * src0 = dst->src[0];
  9129. assert(params->ith == 0);
  9130. assert(ggml_are_same_shape(src0, dst));
  9131. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9132. return;
  9133. }
  9134. const int n = ggml_nrows(src0);
  9135. const int nc = src0->ne[0];
  9136. assert(dst->nb[0] == sizeof(float));
  9137. assert(src0->nb[0] == sizeof(float));
  9138. for (int i = 0; i < n; i++) {
  9139. ggml_vec_elu_f32(nc,
  9140. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9141. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9142. }
  9143. }
  9144. static void ggml_compute_forward_elu(
  9145. const struct ggml_compute_params * params,
  9146. struct ggml_tensor * dst) {
  9147. const struct ggml_tensor * src0 = dst->src[0];
  9148. switch (src0->type) {
  9149. case GGML_TYPE_F32:
  9150. {
  9151. ggml_compute_forward_elu_f32(params, dst);
  9152. } break;
  9153. default:
  9154. {
  9155. GGML_ASSERT(false);
  9156. } break;
  9157. }
  9158. }
  9159. // ggml_compute_forward_relu
  9160. static void ggml_compute_forward_relu_f32(
  9161. const struct ggml_compute_params * params,
  9162. struct ggml_tensor * dst) {
  9163. const struct ggml_tensor * src0 = dst->src[0];
  9164. assert(params->ith == 0);
  9165. assert(ggml_are_same_shape(src0, dst));
  9166. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9167. return;
  9168. }
  9169. const int n = ggml_nrows(src0);
  9170. const int nc = src0->ne[0];
  9171. assert(dst->nb[0] == sizeof(float));
  9172. assert(src0->nb[0] == sizeof(float));
  9173. for (int i = 0; i < n; i++) {
  9174. ggml_vec_relu_f32(nc,
  9175. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9176. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9177. }
  9178. }
  9179. static void ggml_compute_forward_relu(
  9180. const struct ggml_compute_params * params,
  9181. struct ggml_tensor * dst) {
  9182. const struct ggml_tensor * src0 = dst->src[0];
  9183. switch (src0->type) {
  9184. case GGML_TYPE_F32:
  9185. {
  9186. ggml_compute_forward_relu_f32(params, dst);
  9187. } break;
  9188. default:
  9189. {
  9190. GGML_ASSERT(false);
  9191. } break;
  9192. }
  9193. }
  9194. // ggml_compute_forward_sigmoid
  9195. static void ggml_compute_forward_sigmoid_f32(
  9196. const struct ggml_compute_params * params,
  9197. struct ggml_tensor * dst) {
  9198. const struct ggml_tensor * src0 = dst->src[0];
  9199. assert(params->ith == 0);
  9200. assert(ggml_are_same_shape(src0, dst));
  9201. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9202. return;
  9203. }
  9204. const int n = ggml_nrows(src0);
  9205. const int nc = src0->ne[0];
  9206. assert(dst->nb[0] == sizeof(float));
  9207. assert(src0->nb[0] == sizeof(float));
  9208. for (int i = 0; i < n; i++) {
  9209. ggml_vec_sigmoid_f32(nc,
  9210. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9211. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9212. }
  9213. }
  9214. static void ggml_compute_forward_sigmoid(
  9215. const struct ggml_compute_params * params,
  9216. struct ggml_tensor * dst) {
  9217. const struct ggml_tensor * src0 = dst->src[0];
  9218. switch (src0->type) {
  9219. case GGML_TYPE_F32:
  9220. {
  9221. ggml_compute_forward_sigmoid_f32(params, dst);
  9222. } break;
  9223. default:
  9224. {
  9225. GGML_ASSERT(false);
  9226. } break;
  9227. }
  9228. }
  9229. // ggml_compute_forward_gelu
  9230. static void ggml_compute_forward_gelu_f32(
  9231. const struct ggml_compute_params * params,
  9232. struct ggml_tensor * dst) {
  9233. const struct ggml_tensor * src0 = dst->src[0];
  9234. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9235. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9236. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9237. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9238. return;
  9239. }
  9240. const int ith = params->ith;
  9241. const int nth = params->nth;
  9242. const int nc = src0->ne[0];
  9243. const int nr = ggml_nrows(src0);
  9244. // rows per thread
  9245. const int dr = (nr + nth - 1)/nth;
  9246. // row range for this thread
  9247. const int ir0 = dr*ith;
  9248. const int ir1 = MIN(ir0 + dr, nr);
  9249. for (int i1 = ir0; i1 < ir1; i1++) {
  9250. ggml_vec_gelu_f32(nc,
  9251. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9252. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9253. #ifndef NDEBUG
  9254. for (int k = 0; k < nc; k++) {
  9255. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9256. UNUSED(x);
  9257. assert(!isnan(x));
  9258. assert(!isinf(x));
  9259. }
  9260. #endif
  9261. }
  9262. }
  9263. static void ggml_compute_forward_gelu(
  9264. const struct ggml_compute_params * params,
  9265. struct ggml_tensor * dst) {
  9266. const struct ggml_tensor * src0 = dst->src[0];
  9267. switch (src0->type) {
  9268. case GGML_TYPE_F32:
  9269. {
  9270. ggml_compute_forward_gelu_f32(params, dst);
  9271. } break;
  9272. default:
  9273. {
  9274. GGML_ASSERT(false);
  9275. } break;
  9276. }
  9277. }
  9278. // ggml_compute_forward_gelu_quick
  9279. static void ggml_compute_forward_gelu_quick_f32(
  9280. const struct ggml_compute_params * params,
  9281. struct ggml_tensor * dst) {
  9282. const struct ggml_tensor * src0 = dst->src[0];
  9283. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9284. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9285. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9286. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9287. return;
  9288. }
  9289. const int ith = params->ith;
  9290. const int nth = params->nth;
  9291. const int nc = src0->ne[0];
  9292. const int nr = ggml_nrows(src0);
  9293. // rows per thread
  9294. const int dr = (nr + nth - 1)/nth;
  9295. // row range for this thread
  9296. const int ir0 = dr*ith;
  9297. const int ir1 = MIN(ir0 + dr, nr);
  9298. for (int i1 = ir0; i1 < ir1; i1++) {
  9299. ggml_vec_gelu_quick_f32(nc,
  9300. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9301. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9302. #ifndef NDEBUG
  9303. for (int k = 0; k < nc; k++) {
  9304. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9305. UNUSED(x);
  9306. assert(!isnan(x));
  9307. assert(!isinf(x));
  9308. }
  9309. #endif
  9310. }
  9311. }
  9312. static void ggml_compute_forward_gelu_quick(
  9313. const struct ggml_compute_params * params,
  9314. struct ggml_tensor * dst) {
  9315. const struct ggml_tensor * src0 = dst->src[0];
  9316. switch (src0->type) {
  9317. case GGML_TYPE_F32:
  9318. {
  9319. ggml_compute_forward_gelu_quick_f32(params, dst);
  9320. } break;
  9321. default:
  9322. {
  9323. GGML_ASSERT(false);
  9324. } break;
  9325. }
  9326. }
  9327. // ggml_compute_forward_silu
  9328. static void ggml_compute_forward_silu_f32(
  9329. const struct ggml_compute_params * params,
  9330. struct ggml_tensor * dst) {
  9331. const struct ggml_tensor * src0 = dst->src[0];
  9332. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9333. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9334. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9335. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9336. return;
  9337. }
  9338. const int ith = params->ith;
  9339. const int nth = params->nth;
  9340. const int nc = src0->ne[0];
  9341. const int nr = ggml_nrows(src0);
  9342. // rows per thread
  9343. const int dr = (nr + nth - 1)/nth;
  9344. // row range for this thread
  9345. const int ir0 = dr*ith;
  9346. const int ir1 = MIN(ir0 + dr, nr);
  9347. for (int i1 = ir0; i1 < ir1; i1++) {
  9348. ggml_vec_silu_f32(nc,
  9349. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9350. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9351. #ifndef NDEBUG
  9352. for (int k = 0; k < nc; k++) {
  9353. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9354. UNUSED(x);
  9355. assert(!isnan(x));
  9356. assert(!isinf(x));
  9357. }
  9358. #endif
  9359. }
  9360. }
  9361. static void ggml_compute_forward_silu(
  9362. const struct ggml_compute_params * params,
  9363. struct ggml_tensor * dst) {
  9364. const struct ggml_tensor * src0 = dst->src[0];
  9365. switch (src0->type) {
  9366. case GGML_TYPE_F32:
  9367. {
  9368. ggml_compute_forward_silu_f32(params, dst);
  9369. } break;
  9370. default:
  9371. {
  9372. GGML_ASSERT(false);
  9373. } break;
  9374. }
  9375. }
  9376. // ggml_compute_forward_leaky_relu
  9377. static void ggml_compute_forward_leaky_relu_f32(
  9378. const struct ggml_compute_params * params,
  9379. struct ggml_tensor * dst) {
  9380. const struct ggml_tensor * src0 = dst->src[0];
  9381. assert(params->ith == 0);
  9382. assert(ggml_are_same_shape(src0, dst));
  9383. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9384. return;
  9385. }
  9386. const int n = ggml_nrows(src0);
  9387. const int nc = src0->ne[0];
  9388. float negative_slope;
  9389. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9390. assert(dst->nb[0] == sizeof(float));
  9391. assert(src0->nb[0] == sizeof(float));
  9392. for (int i = 0; i < n; i++) {
  9393. ggml_vec_leaky_relu_f32(nc,
  9394. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9395. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9396. }
  9397. }
  9398. static void ggml_compute_forward_leaky_relu(
  9399. const struct ggml_compute_params * params,
  9400. struct ggml_tensor * dst) {
  9401. const struct ggml_tensor * src0 = dst->src[0];
  9402. switch (src0->type) {
  9403. case GGML_TYPE_F32:
  9404. {
  9405. ggml_compute_forward_leaky_relu_f32(params, dst);
  9406. } break;
  9407. default:
  9408. {
  9409. GGML_ASSERT(false);
  9410. } break;
  9411. }
  9412. }
  9413. // ggml_compute_forward_silu_back
  9414. static void ggml_compute_forward_silu_back_f32(
  9415. const struct ggml_compute_params * params,
  9416. struct ggml_tensor * dst) {
  9417. const struct ggml_tensor * src0 = dst->src[0];
  9418. const struct ggml_tensor * grad = dst->src[1];
  9419. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9420. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9421. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9422. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9423. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9424. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9425. return;
  9426. }
  9427. const int ith = params->ith;
  9428. const int nth = params->nth;
  9429. const int nc = src0->ne[0];
  9430. const int nr = ggml_nrows(src0);
  9431. // rows per thread
  9432. const int dr = (nr + nth - 1)/nth;
  9433. // row range for this thread
  9434. const int ir0 = dr*ith;
  9435. const int ir1 = MIN(ir0 + dr, nr);
  9436. for (int i1 = ir0; i1 < ir1; i1++) {
  9437. ggml_vec_silu_backward_f32(nc,
  9438. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9439. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9440. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9441. #ifndef NDEBUG
  9442. for (int k = 0; k < nc; k++) {
  9443. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9444. UNUSED(x);
  9445. assert(!isnan(x));
  9446. assert(!isinf(x));
  9447. }
  9448. #endif
  9449. }
  9450. }
  9451. static void ggml_compute_forward_silu_back(
  9452. const struct ggml_compute_params * params,
  9453. struct ggml_tensor * dst) {
  9454. const struct ggml_tensor * src0 = dst->src[0];
  9455. switch (src0->type) {
  9456. case GGML_TYPE_F32:
  9457. {
  9458. ggml_compute_forward_silu_back_f32(params, dst);
  9459. } break;
  9460. default:
  9461. {
  9462. GGML_ASSERT(false);
  9463. } break;
  9464. }
  9465. }
  9466. static void ggml_compute_forward_hardswish_f32(
  9467. const struct ggml_compute_params * params,
  9468. struct ggml_tensor * dst) {
  9469. const struct ggml_tensor * src0 = dst->src[0];
  9470. assert(params->ith == 0);
  9471. assert(ggml_are_same_shape(src0, dst));
  9472. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9473. return;
  9474. }
  9475. const int n = ggml_nrows(src0);
  9476. const int nc = src0->ne[0];
  9477. assert(dst->nb[0] == sizeof(float));
  9478. assert(src0->nb[0] == sizeof(float));
  9479. for (int i = 0; i < n; i++) {
  9480. ggml_vec_hardswish_f32(nc,
  9481. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9482. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9483. }
  9484. }
  9485. static void ggml_compute_forward_hardswish(
  9486. const struct ggml_compute_params * params,
  9487. struct ggml_tensor * dst) {
  9488. const struct ggml_tensor * src0 = dst->src[0];
  9489. switch (src0->type) {
  9490. case GGML_TYPE_F32:
  9491. {
  9492. ggml_compute_forward_hardswish_f32(params, dst);
  9493. } break;
  9494. default:
  9495. {
  9496. GGML_ASSERT(false);
  9497. } break;
  9498. }
  9499. }
  9500. static void ggml_compute_forward_hardsigmoid_f32(
  9501. const struct ggml_compute_params * params,
  9502. struct ggml_tensor * dst) {
  9503. const struct ggml_tensor * src0 = dst->src[0];
  9504. assert(params->ith == 0);
  9505. assert(ggml_are_same_shape(src0, dst));
  9506. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9507. return;
  9508. }
  9509. const int n = ggml_nrows(src0);
  9510. const int nc = src0->ne[0];
  9511. assert(dst->nb[0] == sizeof(float));
  9512. assert(src0->nb[0] == sizeof(float));
  9513. for (int i = 0; i < n; i++) {
  9514. ggml_vec_hardsigmoid_f32(nc,
  9515. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9516. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9517. }
  9518. }
  9519. static void ggml_compute_forward_hardsigmoid(
  9520. const struct ggml_compute_params * params,
  9521. struct ggml_tensor * dst) {
  9522. const struct ggml_tensor * src0 = dst->src[0];
  9523. switch (src0->type) {
  9524. case GGML_TYPE_F32:
  9525. {
  9526. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9527. } break;
  9528. default:
  9529. {
  9530. GGML_ASSERT(false);
  9531. } break;
  9532. }
  9533. }
  9534. // ggml_compute_forward_norm
  9535. static void ggml_compute_forward_norm_f32(
  9536. const struct ggml_compute_params * params,
  9537. struct ggml_tensor * dst) {
  9538. const struct ggml_tensor * src0 = dst->src[0];
  9539. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9540. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9541. return;
  9542. }
  9543. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9544. const int ith = params->ith;
  9545. const int nth = params->nth;
  9546. GGML_TENSOR_UNARY_OP_LOCALS
  9547. float eps;
  9548. memcpy(&eps, dst->op_params, sizeof(float));
  9549. GGML_ASSERT(eps > 0.0f);
  9550. // TODO: optimize
  9551. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9552. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9553. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9554. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9555. ggml_float sum = 0.0;
  9556. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9557. sum += (ggml_float)x[i00];
  9558. }
  9559. float mean = sum/ne00;
  9560. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9561. ggml_float sum2 = 0.0;
  9562. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9563. float v = x[i00] - mean;
  9564. y[i00] = v;
  9565. sum2 += (ggml_float)(v*v);
  9566. }
  9567. float variance = sum2/ne00;
  9568. const float scale = 1.0f/sqrtf(variance + eps);
  9569. ggml_vec_scale_f32(ne00, y, scale);
  9570. }
  9571. }
  9572. }
  9573. }
  9574. static void ggml_compute_forward_norm(
  9575. const struct ggml_compute_params * params,
  9576. struct ggml_tensor * dst) {
  9577. const struct ggml_tensor * src0 = dst->src[0];
  9578. switch (src0->type) {
  9579. case GGML_TYPE_F32:
  9580. {
  9581. ggml_compute_forward_norm_f32(params, dst);
  9582. } break;
  9583. default:
  9584. {
  9585. GGML_ASSERT(false);
  9586. } break;
  9587. }
  9588. }
  9589. // ggml_compute_forward_group_rms_norm
  9590. static void ggml_compute_forward_rms_norm_f32(
  9591. const struct ggml_compute_params * params,
  9592. struct ggml_tensor * dst) {
  9593. const struct ggml_tensor * src0 = dst->src[0];
  9594. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9595. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9596. return;
  9597. }
  9598. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9599. const int ith = params->ith;
  9600. const int nth = params->nth;
  9601. GGML_TENSOR_UNARY_OP_LOCALS
  9602. float eps;
  9603. memcpy(&eps, dst->op_params, sizeof(float));
  9604. GGML_ASSERT(eps > 0.0f);
  9605. // TODO: optimize
  9606. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9607. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9608. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9609. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9610. ggml_float sum = 0.0;
  9611. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9612. sum += (ggml_float)(x[i00] * x[i00]);
  9613. }
  9614. const float mean = sum/ne00;
  9615. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9616. memcpy(y, x, ne00 * sizeof(float));
  9617. // for (int i00 = 0; i00 < ne00; i00++) {
  9618. // y[i00] = x[i00];
  9619. // }
  9620. const float scale = 1.0f/sqrtf(mean + eps);
  9621. ggml_vec_scale_f32(ne00, y, scale);
  9622. }
  9623. }
  9624. }
  9625. }
  9626. static void ggml_compute_forward_rms_norm(
  9627. const struct ggml_compute_params * params,
  9628. struct ggml_tensor * dst) {
  9629. const struct ggml_tensor * src0 = dst->src[0];
  9630. switch (src0->type) {
  9631. case GGML_TYPE_F32:
  9632. {
  9633. ggml_compute_forward_rms_norm_f32(params, dst);
  9634. } break;
  9635. default:
  9636. {
  9637. GGML_ASSERT(false);
  9638. } break;
  9639. }
  9640. }
  9641. static void ggml_compute_forward_rms_norm_back_f32(
  9642. const struct ggml_compute_params * params,
  9643. struct ggml_tensor * dst) {
  9644. const struct ggml_tensor * src0 = dst->src[0];
  9645. const struct ggml_tensor * src1 = dst->src[1];
  9646. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9647. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9648. return;
  9649. }
  9650. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9651. const int ith = params->ith;
  9652. const int nth = params->nth;
  9653. GGML_TENSOR_BINARY_OP_LOCALS
  9654. float eps;
  9655. memcpy(&eps, dst->op_params, sizeof(float));
  9656. // TODO: optimize
  9657. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9658. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9659. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9660. // src1 is same shape as src0 => same indices
  9661. const int64_t i11 = i01;
  9662. const int64_t i12 = i02;
  9663. const int64_t i13 = i03;
  9664. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9665. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9666. ggml_float sum_xx = 0.0;
  9667. ggml_float sum_xdz = 0.0;
  9668. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9669. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9670. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9671. }
  9672. //const float mean = (float)(sum_xx)/ne00;
  9673. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9674. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9675. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9676. // we could cache rms from forward pass to improve performance.
  9677. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9678. //const float rms = sqrtf(mean_eps);
  9679. const float rrms = 1.0f / sqrtf(mean_eps);
  9680. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9681. {
  9682. // z = rms_norm(x)
  9683. //
  9684. // rms_norm(src0) =
  9685. // scale(
  9686. // src0,
  9687. // div(
  9688. // 1,
  9689. // sqrt(
  9690. // add(
  9691. // scale(
  9692. // sum(
  9693. // sqr(
  9694. // src0)),
  9695. // (1.0/N)),
  9696. // eps))));
  9697. // postorder:
  9698. // ## op args grad
  9699. // 00 param src0 grad[#00]
  9700. // 01 const 1
  9701. // 02 sqr (#00) grad[#02]
  9702. // 03 sum (#02) grad[#03]
  9703. // 04 const 1/N
  9704. // 05 scale (#03, #04) grad[#05]
  9705. // 06 const eps
  9706. // 07 add (#05, #06) grad[#07]
  9707. // 08 sqrt (#07) grad[#08]
  9708. // 09 div (#01,#08) grad[#09]
  9709. // 10 scale (#00,#09) grad[#10]
  9710. //
  9711. // backward pass, given grad[#10]
  9712. // #10: scale
  9713. // grad[#00] += scale(grad[#10],#09)
  9714. // grad[#09] += sum(mul(grad[#10],#00))
  9715. // #09: div
  9716. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9717. // #08: sqrt
  9718. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9719. // #07: add
  9720. // grad[#05] += grad[#07]
  9721. // #05: scale
  9722. // grad[#03] += scale(grad[#05],#04)
  9723. // #03: sum
  9724. // grad[#02] += repeat(grad[#03], #02)
  9725. // #02:
  9726. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9727. //
  9728. // substitute and simplify:
  9729. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9730. // grad[#02] = repeat(grad[#03], #02)
  9731. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9732. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9733. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9734. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9735. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9736. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9737. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9738. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9739. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9740. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9741. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9742. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9743. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9744. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9745. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9746. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9747. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9748. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9749. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9750. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9751. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9752. // a = b*c + d*e
  9753. // a = b*c*f/f + d*e*f/f
  9754. // a = (b*c*f + d*e*f)*(1/f)
  9755. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9756. // a = (b + d*e/c)*c
  9757. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9758. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9759. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9760. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9761. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9762. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9763. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9764. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9765. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9766. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9767. }
  9768. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9769. // post-order:
  9770. // dx := x
  9771. // dx := scale(dx,-mean_xdz/mean_eps)
  9772. // dx := add(dx, dz)
  9773. // dx := scale(dx, rrms)
  9774. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9775. ggml_vec_cpy_f32 (ne00, dx, x);
  9776. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9777. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9778. ggml_vec_acc_f32 (ne00, dx, dz);
  9779. ggml_vec_scale_f32(ne00, dx, rrms);
  9780. }
  9781. }
  9782. }
  9783. }
  9784. static void ggml_compute_forward_rms_norm_back(
  9785. const struct ggml_compute_params * params,
  9786. struct ggml_tensor * dst) {
  9787. const struct ggml_tensor * src0 = dst->src[0];
  9788. switch (src0->type) {
  9789. case GGML_TYPE_F32:
  9790. {
  9791. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9792. } break;
  9793. default:
  9794. {
  9795. GGML_ASSERT(false);
  9796. } break;
  9797. }
  9798. }
  9799. // ggml_compute_forward_group_norm
  9800. static void ggml_compute_forward_group_norm_f32(
  9801. const struct ggml_compute_params * params,
  9802. struct ggml_tensor * dst) {
  9803. const struct ggml_tensor * src0 = dst->src[0];
  9804. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9805. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9806. return;
  9807. }
  9808. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9809. const int ith = params->ith;
  9810. const int nth = params->nth;
  9811. GGML_TENSOR_UNARY_OP_LOCALS
  9812. const float eps = 1e-6f; // TODO: make this a parameter
  9813. // TODO: optimize
  9814. int n_channels = src0->ne[2];
  9815. int n_groups = dst->op_params[0];
  9816. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9817. for (int i = ith; i < n_groups; i += nth) {
  9818. int start = i * n_channels_per_group;
  9819. int end = start + n_channels_per_group;
  9820. if (end > n_channels) {
  9821. end = n_channels;
  9822. }
  9823. int step = end - start;
  9824. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9825. ggml_float sum = 0.0;
  9826. for (int64_t i02 = start; i02 < end; i02++) {
  9827. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9828. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9829. ggml_float sumr = 0.0;
  9830. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9831. sumr += (ggml_float)x[i00];
  9832. }
  9833. sum += sumr;
  9834. }
  9835. }
  9836. const float mean = sum / (ne00 * ne01 * step);
  9837. ggml_float sum2 = 0.0;
  9838. for (int64_t i02 = start; i02 < end; i02++) {
  9839. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9840. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9841. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9842. ggml_float sumr = 0.0;
  9843. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9844. float v = x[i00] - mean;
  9845. y[i00] = v;
  9846. sumr += (ggml_float)(v * v);
  9847. }
  9848. sum2 += sumr;
  9849. }
  9850. }
  9851. const float variance = sum2 / (ne00 * ne01 * step);
  9852. const float scale = 1.0f / sqrtf(variance + eps);
  9853. for (int64_t i02 = start; i02 < end; i02++) {
  9854. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9855. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9856. ggml_vec_scale_f32(ne00, y, scale);
  9857. }
  9858. }
  9859. }
  9860. }
  9861. }
  9862. static void ggml_compute_forward_group_norm(
  9863. const struct ggml_compute_params * params,
  9864. struct ggml_tensor * dst) {
  9865. const struct ggml_tensor * src0 = dst->src[0];
  9866. switch (src0->type) {
  9867. case GGML_TYPE_F32:
  9868. {
  9869. ggml_compute_forward_group_norm_f32(params, dst);
  9870. } break;
  9871. default:
  9872. {
  9873. GGML_ASSERT(false);
  9874. } break;
  9875. }
  9876. }
  9877. // ggml_compute_forward_mul_mat
  9878. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9879. // helper function to determine if it is better to use BLAS or not
  9880. // for large matrices, BLAS is faster
  9881. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  9882. const struct ggml_tensor * src0 = dst->src[0];
  9883. const struct ggml_tensor * src1 = dst->src[1];
  9884. //const int64_t ne00 = src0->ne[0];
  9885. //const int64_t ne01 = src0->ne[1];
  9886. const int64_t ne10 = src1->ne[0];
  9887. const int64_t ne0 = dst->ne[0];
  9888. const int64_t ne1 = dst->ne[1];
  9889. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  9890. // all the experts for each batch element and the processing would become incredibly slow
  9891. // TODO: find the optimal values for these
  9892. if (dst->op != GGML_OP_MUL_MAT_ID &&
  9893. ggml_is_contiguous(src0) &&
  9894. ggml_is_contiguous(src1) &&
  9895. //src0->type == GGML_TYPE_F32 &&
  9896. src1->type == GGML_TYPE_F32 &&
  9897. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9898. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9899. return true;
  9900. }
  9901. return false;
  9902. }
  9903. #endif
  9904. static void ggml_compute_forward_mul_mat_one_chunk(
  9905. const struct ggml_compute_params * params,
  9906. struct ggml_tensor * dst,
  9907. const int64_t num_rows_per_vec_dot,
  9908. const int64_t ir0_start,
  9909. const int64_t ir0_end,
  9910. const int64_t ir1_start,
  9911. const int64_t ir1_end) {
  9912. const struct ggml_tensor * src0 = dst->src[0];
  9913. const struct ggml_tensor * src1 = dst->src[1];
  9914. GGML_TENSOR_BINARY_OP_LOCALS
  9915. const enum ggml_type type = src0->type;
  9916. const bool src1_cont = ggml_is_contiguous(src1);
  9917. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9918. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9919. // broadcast factors
  9920. const int64_t r2 = ne12 / ne02;
  9921. const int64_t r3 = ne13 / ne03;
  9922. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  9923. // threads with no work simply yield (not sure if it helps)
  9924. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  9925. return;
  9926. }
  9927. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9928. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9929. assert(ne12 % ne02 == 0);
  9930. assert(ne13 % ne03 == 0);
  9931. // block-tiling attempt
  9932. const int64_t blck_0 = 16;
  9933. const int64_t blck_1 = 16;
  9934. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  9935. // attempt to reduce false-sharing (does not seem to make a difference)
  9936. // 16 * 2, accounting for mmla kernels
  9937. float tmp[32];
  9938. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  9939. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  9940. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  9941. const int64_t i13 = (ir1 / (ne12 * ne1));
  9942. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  9943. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  9944. // broadcast src0 into src1
  9945. const int64_t i03 = i13 / r3;
  9946. const int64_t i02 = i12 / r2;
  9947. const int64_t i1 = i11;
  9948. const int64_t i2 = i12;
  9949. const int64_t i3 = i13;
  9950. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  9951. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9952. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9953. // the original src1 data pointer, so we should index using the indices directly
  9954. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9955. const char * src1_col = (const char*)wdata +
  9956. (src1_cont || src1->type != vec_dot_type
  9957. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  9958. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  9959. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  9960. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  9961. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9962. //}
  9963. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  9964. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  9965. }
  9966. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  9967. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  9968. }
  9969. }
  9970. }
  9971. }
  9972. }
  9973. static void ggml_compute_forward_mul_mat(
  9974. const struct ggml_compute_params * params,
  9975. struct ggml_tensor * dst,
  9976. struct ggml_compute_state * state) {
  9977. const struct ggml_tensor * src0 = dst->src[0];
  9978. const struct ggml_tensor * src1 = dst->src[1];
  9979. int64_t t0 = ggml_perf_time_us();
  9980. UNUSED(t0);
  9981. GGML_TENSOR_BINARY_OP_LOCALS
  9982. const int ith = params->ith;
  9983. const int nth = params->nth;
  9984. const enum ggml_type type = src0->type;
  9985. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9986. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9987. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  9988. GGML_ASSERT(ne0 == ne01);
  9989. GGML_ASSERT(ne1 == ne11);
  9990. GGML_ASSERT(ne2 == ne12);
  9991. GGML_ASSERT(ne3 == ne13);
  9992. // we don't support permuted src0 or src1
  9993. GGML_ASSERT(nb00 == ggml_type_size(type));
  9994. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9995. // dst cannot be transposed or permuted
  9996. GGML_ASSERT(nb0 == sizeof(float));
  9997. GGML_ASSERT(nb0 <= nb1);
  9998. GGML_ASSERT(nb1 <= nb2);
  9999. GGML_ASSERT(nb2 <= nb3);
  10000. // broadcast factors
  10001. const int64_t r2 = ne12 / ne02;
  10002. const int64_t r3 = ne13 / ne03;
  10003. UNUSED(r2);
  10004. UNUSED(r3);
  10005. // nb01 >= nb00 - src0 is not transposed
  10006. // compute by src0 rows
  10007. #if defined(GGML_USE_CLBLAST)
  10008. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10009. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10010. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10011. }
  10012. return;
  10013. }
  10014. #endif
  10015. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10016. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10017. const int64_t ne_plane = ne01*ne00;
  10018. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10019. UNUSED(desired_wsize);
  10020. if (params->type == GGML_TASK_TYPE_INIT) {
  10021. if (type != GGML_TYPE_F32) {
  10022. assert(params->wsize >= desired_wsize);
  10023. // parallelize by src0 rows
  10024. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10025. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10026. // broadcast src0 into src1 across 2nd,3rd dimension
  10027. const int64_t i03 = i13/r3;
  10028. const int64_t i02 = i12/r2;
  10029. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10030. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10031. ggml_to_float_t const to_float = type_traits[type].to_float;
  10032. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10033. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10034. }
  10035. }
  10036. }
  10037. }
  10038. return;
  10039. }
  10040. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10041. return;
  10042. }
  10043. // perform sgemm, parallelization controlled by blas lib
  10044. if (ith != 0) {
  10045. return;
  10046. }
  10047. //const int64_t tgemm0 = ggml_perf_time_us();
  10048. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10049. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10050. const int64_t i03 = i13/r3;
  10051. const int64_t i02 = i12/r2;
  10052. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10053. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10054. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10055. if (type != GGML_TYPE_F32) {
  10056. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10057. }
  10058. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10059. ne1, ne01, ne10,
  10060. 1.0f, y, ne10,
  10061. x, ne00,
  10062. 0.0f, d, ne01);
  10063. }
  10064. }
  10065. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10066. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10067. return;
  10068. }
  10069. #endif
  10070. #if GGML_USE_LLAMAFILE
  10071. const bool src1_cont = ggml_is_contiguous(src1);
  10072. if (src1_cont) {
  10073. for (int64_t i13 = 0; i13 < ne13; i13++)
  10074. for (int64_t i12 = 0; i12 < ne12; i12++)
  10075. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10076. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10077. nb01/ggml_type_size(src0->type),
  10078. (const char *)src1->data + i12*nb12 + i13*nb13,
  10079. nb11/ggml_type_size(src1->type),
  10080. (char *)dst->data + i12*nb2 + i13*nb3,
  10081. nb1/ggml_type_size(dst->type),
  10082. ith, nth,
  10083. params->type,
  10084. src0->type,
  10085. src1->type,
  10086. dst->type))
  10087. goto UseGgmlGemm1;
  10088. return;
  10089. }
  10090. UseGgmlGemm1:;
  10091. #endif
  10092. if (params->type == GGML_TASK_TYPE_INIT) {
  10093. if (ith != 0) {
  10094. return;
  10095. }
  10096. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10097. atomic_store(&state->shared->current_chunk, nth);
  10098. if (src1->type != vec_dot_type) {
  10099. char * wdata = params->wdata;
  10100. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10101. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10102. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10103. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10104. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10105. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10106. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10107. wdata += row_size;
  10108. }
  10109. }
  10110. }
  10111. }
  10112. return;
  10113. }
  10114. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10115. return;
  10116. }
  10117. #if GGML_USE_LLAMAFILE
  10118. if (src1->type != vec_dot_type) {
  10119. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10120. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10121. for (int64_t i13 = 0; i13 < ne13; i13++)
  10122. for (int64_t i12 = 0; i12 < ne12; i12++)
  10123. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10124. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10125. nb01/ggml_type_size(src0->type),
  10126. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10127. row_size/ggml_type_size(vec_dot_type),
  10128. (char *)dst->data + i12*nb2 + i13*nb3,
  10129. nb1/ggml_type_size(dst->type),
  10130. ith, nth,
  10131. params->type,
  10132. src0->type,
  10133. vec_dot_type,
  10134. dst->type))
  10135. goto UseGgmlGemm2;
  10136. return;
  10137. }
  10138. UseGgmlGemm2:;
  10139. #endif
  10140. #ifdef GGML_PERF
  10141. int chunks_executed = 0;
  10142. UNUSED(chunks_executed);
  10143. #endif
  10144. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10145. const int64_t nr0 = ne0;
  10146. // This is the size of the rest of the dimensions of the result
  10147. const int64_t nr1 = ne1 * ne2 * ne3;
  10148. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10149. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10150. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10151. // this check can be removed once they are extended to support odd numbered rows/cols too
  10152. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10153. num_rows_per_vec_dot = 1;
  10154. }
  10155. // Now select a reasonable chunk size.
  10156. int chunk_size = 16;
  10157. // We need to step up the size if it's small
  10158. if (nr0 == 1 || nr1 == 1) {
  10159. chunk_size = 64;
  10160. }
  10161. // distribute the work across the inner or outer loop based on which one is larger
  10162. // The number of chunks in the 0/1 dim.
  10163. // CEIL(nr0/chunk_size)
  10164. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10165. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10166. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10167. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10168. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10169. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10170. // distribute the thread work across the inner or outer loop based on which one is larger
  10171. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10172. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10173. }
  10174. // The number of elements in each chunk
  10175. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10176. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10177. //if (ith == 0)
  10178. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10179. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10180. int current_chunk = ith;
  10181. while (current_chunk < nchunk0 * nchunk1) {
  10182. const int64_t ith0 = current_chunk % nchunk0;
  10183. const int64_t ith1 = current_chunk / nchunk0;
  10184. const int64_t ir0_start = dr0 * ith0;
  10185. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10186. const int64_t ir1_start = dr1 * ith1;
  10187. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10188. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10189. #ifdef GGML_PERF
  10190. chunks_executed++;
  10191. #endif
  10192. if (nth >= nchunk0 * nchunk1) {
  10193. break;
  10194. }
  10195. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10196. }
  10197. #ifdef GGML_PERF
  10198. // These numbers are useful when trying to measure how well the threading scheduling works.
  10199. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10200. //float time = (ggml_perf_time_us() - t0);
  10201. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10202. #endif
  10203. }
  10204. // ggml_compute_forward_mul_mat_id
  10205. static void ggml_compute_forward_mul_mat_id(
  10206. const struct ggml_compute_params * params,
  10207. struct ggml_tensor * dst) {
  10208. const struct ggml_tensor * src0 = dst->src[0];
  10209. const struct ggml_tensor * src1 = dst->src[1];
  10210. const struct ggml_tensor * ids = dst->src[2];
  10211. GGML_TENSOR_BINARY_OP_LOCALS
  10212. const int ith = params->ith;
  10213. const int nth = params->nth;
  10214. const enum ggml_type type = src0->type;
  10215. const bool src1_cont = ggml_is_contiguous(src1);
  10216. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10217. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10218. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10219. // we don't support permuted src0 or src1
  10220. GGML_ASSERT(nb00 == ggml_type_size(type));
  10221. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10222. // dst cannot be transposed or permuted
  10223. GGML_ASSERT(nb0 == sizeof(float));
  10224. GGML_ASSERT(nb0 <= nb1);
  10225. GGML_ASSERT(nb1 <= nb2);
  10226. GGML_ASSERT(nb2 <= nb3);
  10227. // row groups
  10228. const int n_ids = ids->ne[0]; // n_expert_used
  10229. const int n_as = ne02; // n_expert
  10230. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10231. (char *) params->wdata :
  10232. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10233. struct mmid_row_mapping {
  10234. int32_t i1;
  10235. int32_t i2;
  10236. };
  10237. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10238. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10239. if (params->type == GGML_TASK_TYPE_INIT) {
  10240. if (ith != 0) {
  10241. return;
  10242. }
  10243. char * wdata = params->wdata;
  10244. if (src1->type != vec_dot_type) {
  10245. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10246. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10247. assert(src1->type == GGML_TYPE_F32);
  10248. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10249. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10250. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10251. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10252. wdata += row_size;
  10253. }
  10254. }
  10255. }
  10256. }
  10257. // initialize matrix_row_counts
  10258. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10259. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10260. // group rows by src0 matrix
  10261. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10262. for (int id = 0; id < n_ids; ++id) {
  10263. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10264. assert(i02 >= 0 && i02 < n_as);
  10265. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10266. matrix_row_counts[i02] += 1;
  10267. }
  10268. }
  10269. return;
  10270. }
  10271. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10272. return;
  10273. }
  10274. // compute each matrix multiplication in sequence
  10275. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10276. const int64_t cne1 = matrix_row_counts[cur_a];
  10277. if (cne1 == 0) {
  10278. continue;
  10279. }
  10280. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10281. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10282. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10283. const int64_t nr0 = ne01; // src0 rows
  10284. const int64_t nr1 = cne1; // src1 rows
  10285. // distribute the thread work across the inner or outer loop based on which one is larger
  10286. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10287. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10288. const int64_t ith0 = ith % nth0;
  10289. const int64_t ith1 = ith / nth0;
  10290. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10291. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10292. const int64_t ir010 = dr0*ith0;
  10293. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10294. const int64_t ir110 = dr1*ith1;
  10295. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10296. // threads with no work simply yield (not sure if it helps)
  10297. //if (ir010 >= ir011 || ir110 >= ir111) {
  10298. // sched_yield();
  10299. // continue;
  10300. //}
  10301. // block-tiling attempt
  10302. const int64_t blck_0 = 16;
  10303. const int64_t blck_1 = 16;
  10304. // attempt to reduce false-sharing (does not seem to make a difference)
  10305. float tmp[16];
  10306. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10307. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10308. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10309. const int64_t _i12 = ir1; // logical row index for this expert
  10310. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10311. const int id = row_mapping.i1; // selected expert index
  10312. const int64_t i11 = id % ne11;
  10313. const int64_t i12 = row_mapping.i2; // row index in src1
  10314. const int64_t i1 = id; // selected expert index
  10315. const int64_t i2 = i12; // row
  10316. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10317. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10318. // the original src1 data pointer, so we should index using the indices directly
  10319. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10320. const char * src1_col = (const char *) wdata +
  10321. (src1_cont || src1->type != vec_dot_type
  10322. ? (i11 + i12*ne11)*row_size
  10323. : (i11*nb11 + i12*nb12));
  10324. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10325. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10326. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10327. //}
  10328. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10329. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10330. }
  10331. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10332. }
  10333. }
  10334. }
  10335. }
  10336. #undef MMID_MATRIX_ROW
  10337. }
  10338. // ggml_compute_forward_out_prod
  10339. static void ggml_compute_forward_out_prod_f32(
  10340. const struct ggml_compute_params * params,
  10341. struct ggml_tensor * dst) {
  10342. const struct ggml_tensor * src0 = dst->src[0];
  10343. const struct ggml_tensor * src1 = dst->src[1];
  10344. // int64_t t0 = ggml_perf_time_us();
  10345. // UNUSED(t0);
  10346. GGML_TENSOR_BINARY_OP_LOCALS
  10347. const int ith = params->ith;
  10348. const int nth = params->nth;
  10349. GGML_ASSERT(ne0 == ne00);
  10350. GGML_ASSERT(ne1 == ne10);
  10351. GGML_ASSERT(ne2 == ne02);
  10352. GGML_ASSERT(ne02 == ne12);
  10353. GGML_ASSERT(ne3 == ne13);
  10354. GGML_ASSERT(ne03 == ne13);
  10355. // we don't support permuted src0 or src1
  10356. GGML_ASSERT(nb00 == sizeof(float));
  10357. // dst cannot be transposed or permuted
  10358. GGML_ASSERT(nb0 == sizeof(float));
  10359. // GGML_ASSERT(nb0 <= nb1);
  10360. // GGML_ASSERT(nb1 <= nb2);
  10361. // GGML_ASSERT(nb2 <= nb3);
  10362. // nb01 >= nb00 - src0 is not transposed
  10363. // compute by src0 rows
  10364. // TODO: #if defined(GGML_USE_CLBLAST)
  10365. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10366. bool use_blas = ggml_is_matrix(src0) &&
  10367. ggml_is_matrix(src1) &&
  10368. ggml_is_contiguous(src0) &&
  10369. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10370. #endif
  10371. if (params->type == GGML_TASK_TYPE_INIT) {
  10372. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10373. if (use_blas) {
  10374. return;
  10375. }
  10376. #endif
  10377. if (ith != 0) {
  10378. return;
  10379. }
  10380. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10381. return;
  10382. }
  10383. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10384. return;
  10385. }
  10386. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10387. if (use_blas) {
  10388. if (params->ith != 0) { // All threads other than the first do no work.
  10389. return;
  10390. }
  10391. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10392. // src0: (k,n)
  10393. // src1: (k,m)
  10394. // dst: (m,n)
  10395. //
  10396. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10397. // Also expressed as (major,minor)
  10398. // a: (m,k): so src1 transposed
  10399. // b: (k,n): so src0
  10400. // c: (m,n)
  10401. //
  10402. // However, if ggml_is_transposed(src1) is true, then
  10403. // src1->data already contains a transposed version, so sgemm mustn't
  10404. // transpose it further.
  10405. int n = src0->ne[0];
  10406. int k = src0->ne[1];
  10407. int m = src1->ne[0];
  10408. int transposeA, lda;
  10409. if (!ggml_is_transposed(src1)) {
  10410. transposeA = CblasTrans;
  10411. lda = m;
  10412. } else {
  10413. transposeA = CblasNoTrans;
  10414. lda = k;
  10415. }
  10416. float * a = (float *) ((char *) src1->data);
  10417. float * b = (float *) ((char *) src0->data);
  10418. float * c = (float *) ((char *) dst->data);
  10419. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10420. return;
  10421. }
  10422. #endif
  10423. // dst[:,:,:,:] = 0
  10424. // for i2,i3:
  10425. // for i1:
  10426. // for i01:
  10427. // for i0:
  10428. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10429. // parallelize by last three dimensions
  10430. // total rows in dst
  10431. const int64_t nr = ne1*ne2*ne3;
  10432. // rows per thread
  10433. const int64_t dr = (nr + nth - 1)/nth;
  10434. // row range for this thread
  10435. const int64_t ir0 = dr*ith;
  10436. const int64_t ir1 = MIN(ir0 + dr, nr);
  10437. // block-tiling attempt
  10438. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10439. const int64_t blck_1 = 16;
  10440. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10441. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10442. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10443. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10444. for (int64_t ir = bir; ir < bir1; ++ir) {
  10445. // dst indices
  10446. const int64_t i3 = ir/(ne2*ne1);
  10447. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10448. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10449. const int64_t i02 = i2;
  10450. const int64_t i03 = i3;
  10451. //const int64_t i10 = i1;
  10452. const int64_t i12 = i2;
  10453. const int64_t i13 = i3;
  10454. #if GGML_VEC_MAD_UNROLL > 2
  10455. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10456. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10457. const int64_t i11 = i01;
  10458. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10459. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10460. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10461. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10462. }
  10463. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10464. const int64_t i11 = i01;
  10465. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10466. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10467. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10468. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10469. }
  10470. #else
  10471. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10472. const int64_t i11 = i01;
  10473. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10474. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10475. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10476. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10477. }
  10478. #endif
  10479. }
  10480. }
  10481. }
  10482. //int64_t t1 = ggml_perf_time_us();
  10483. //static int64_t acc = 0;
  10484. //acc += t1 - t0;
  10485. //if (t1 - t0 > 10) {
  10486. // printf("\n");
  10487. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10488. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10489. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10490. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10491. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10492. //}
  10493. }
  10494. static void ggml_compute_forward_out_prod_q_f32(
  10495. const struct ggml_compute_params * params,
  10496. struct ggml_tensor * dst) {
  10497. const struct ggml_tensor * src0 = dst->src[0];
  10498. const struct ggml_tensor * src1 = dst->src[1];
  10499. // int64_t t0 = ggml_perf_time_us();
  10500. // UNUSED(t0);
  10501. GGML_TENSOR_BINARY_OP_LOCALS;
  10502. const int ith = params->ith;
  10503. const int nth = params->nth;
  10504. const enum ggml_type type = src0->type;
  10505. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10506. GGML_ASSERT(ne02 == ne12);
  10507. GGML_ASSERT(ne03 == ne13);
  10508. GGML_ASSERT(ne2 == ne12);
  10509. GGML_ASSERT(ne3 == ne13);
  10510. // we don't support permuted src0 dim0
  10511. GGML_ASSERT(nb00 == ggml_type_size(type));
  10512. // dst dim0 cannot be transposed or permuted
  10513. GGML_ASSERT(nb0 == sizeof(float));
  10514. // GGML_ASSERT(nb0 <= nb1);
  10515. // GGML_ASSERT(nb1 <= nb2);
  10516. // GGML_ASSERT(nb2 <= nb3);
  10517. GGML_ASSERT(ne0 == ne00);
  10518. GGML_ASSERT(ne1 == ne10);
  10519. GGML_ASSERT(ne2 == ne02);
  10520. GGML_ASSERT(ne3 == ne03);
  10521. // nb01 >= nb00 - src0 is not transposed
  10522. // compute by src0 rows
  10523. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10524. if (params->type == GGML_TASK_TYPE_INIT) {
  10525. if (ith != 0) {
  10526. return;
  10527. }
  10528. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10529. return;
  10530. }
  10531. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10532. return;
  10533. }
  10534. // parallelize by last three dimensions
  10535. // total rows in dst
  10536. const int64_t nr = ne1*ne2*ne3;
  10537. // rows per thread
  10538. const int64_t dr = (nr + nth - 1)/nth;
  10539. // row range for this thread
  10540. const int64_t ir0 = dr*ith;
  10541. const int64_t ir1 = MIN(ir0 + dr, nr);
  10542. // dst[:,:,:,:] = 0
  10543. // for i2,i3:
  10544. // for i1:
  10545. // for i01:
  10546. // for i0:
  10547. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10548. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10549. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10550. // dst indices
  10551. const int64_t i3 = ir/(ne2*ne1);
  10552. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10553. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10554. const int64_t i02 = i2;
  10555. const int64_t i03 = i3;
  10556. //const int64_t i10 = i1;
  10557. const int64_t i12 = i2;
  10558. const int64_t i13 = i3;
  10559. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10560. const int64_t i11 = i01;
  10561. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10562. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10563. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10564. dequantize_row_q(s0, wdata, ne0);
  10565. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10566. }
  10567. }
  10568. //int64_t t1 = ggml_perf_time_us();
  10569. //static int64_t acc = 0;
  10570. //acc += t1 - t0;
  10571. //if (t1 - t0 > 10) {
  10572. // printf("\n");
  10573. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10574. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10575. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10576. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10577. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10578. //}
  10579. }
  10580. static void ggml_compute_forward_out_prod(
  10581. const struct ggml_compute_params * params,
  10582. struct ggml_tensor * dst) {
  10583. const struct ggml_tensor * src0 = dst->src[0];
  10584. switch (src0->type) {
  10585. case GGML_TYPE_Q4_0:
  10586. case GGML_TYPE_Q4_1:
  10587. case GGML_TYPE_Q5_0:
  10588. case GGML_TYPE_Q5_1:
  10589. case GGML_TYPE_Q8_0:
  10590. case GGML_TYPE_Q2_K:
  10591. case GGML_TYPE_Q3_K:
  10592. case GGML_TYPE_Q4_K:
  10593. case GGML_TYPE_Q5_K:
  10594. case GGML_TYPE_Q6_K:
  10595. case GGML_TYPE_IQ2_XXS:
  10596. case GGML_TYPE_IQ2_XS:
  10597. case GGML_TYPE_IQ3_XXS:
  10598. case GGML_TYPE_IQ1_S:
  10599. case GGML_TYPE_IQ1_M:
  10600. case GGML_TYPE_IQ4_NL:
  10601. case GGML_TYPE_IQ4_XS:
  10602. case GGML_TYPE_IQ3_S:
  10603. case GGML_TYPE_IQ2_S:
  10604. {
  10605. ggml_compute_forward_out_prod_q_f32(params, dst);
  10606. } break;
  10607. case GGML_TYPE_F16:
  10608. {
  10609. GGML_ASSERT(false); // todo
  10610. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10611. } break;
  10612. case GGML_TYPE_F32:
  10613. {
  10614. ggml_compute_forward_out_prod_f32(params, dst);
  10615. } break;
  10616. default:
  10617. {
  10618. GGML_ASSERT(false);
  10619. } break;
  10620. }
  10621. }
  10622. // ggml_compute_forward_scale
  10623. static void ggml_compute_forward_scale_f32(
  10624. const struct ggml_compute_params * params,
  10625. struct ggml_tensor * dst) {
  10626. const struct ggml_tensor * src0 = dst->src[0];
  10627. GGML_ASSERT(ggml_is_contiguous(src0));
  10628. GGML_ASSERT(ggml_is_contiguous(dst));
  10629. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10630. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10631. return;
  10632. }
  10633. // scale factor
  10634. float v;
  10635. memcpy(&v, dst->op_params, sizeof(float));
  10636. const int ith = params->ith;
  10637. const int nth = params->nth;
  10638. const int nc = src0->ne[0];
  10639. const int nr = ggml_nrows(src0);
  10640. // rows per thread
  10641. const int dr = (nr + nth - 1)/nth;
  10642. // row range for this thread
  10643. const int ir0 = dr*ith;
  10644. const int ir1 = MIN(ir0 + dr, nr);
  10645. const size_t nb01 = src0->nb[1];
  10646. const size_t nb1 = dst->nb[1];
  10647. for (int i1 = ir0; i1 < ir1; i1++) {
  10648. if (dst->data != src0->data) {
  10649. // src0 is same shape as dst => same indices
  10650. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10651. }
  10652. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10653. }
  10654. }
  10655. static void ggml_compute_forward_scale(
  10656. const struct ggml_compute_params * params,
  10657. struct ggml_tensor * dst) {
  10658. const struct ggml_tensor * src0 = dst->src[0];
  10659. switch (src0->type) {
  10660. case GGML_TYPE_F32:
  10661. {
  10662. ggml_compute_forward_scale_f32(params, dst);
  10663. } break;
  10664. default:
  10665. {
  10666. GGML_ASSERT(false);
  10667. } break;
  10668. }
  10669. }
  10670. // ggml_compute_forward_set
  10671. static void ggml_compute_forward_set_f32(
  10672. const struct ggml_compute_params * params,
  10673. struct ggml_tensor * dst) {
  10674. const struct ggml_tensor * src0 = dst->src[0];
  10675. const struct ggml_tensor * src1 = dst->src[1];
  10676. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10677. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10678. // view src0 and dst with these strides and data offset inbytes during set
  10679. // nb0 is implicitly element_size because src0 and dst are contiguous
  10680. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10681. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10682. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10683. size_t offset = ((int32_t *) dst->op_params)[3];
  10684. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10685. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10686. if (params->ith != 0) {
  10687. return;
  10688. }
  10689. // memcpy needs to be synchronized across threads to avoid race conditions.
  10690. // => do it in INIT phase
  10691. memcpy(
  10692. ((char *) dst->data),
  10693. ((char *) src0->data),
  10694. ggml_nbytes(dst));
  10695. }
  10696. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10697. return;
  10698. }
  10699. const int ith = params->ith;
  10700. const int nth = params->nth;
  10701. const int nr = ggml_nrows(src1);
  10702. const int nc = src1->ne[0];
  10703. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10704. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10705. // src0 and dst as viewed during set
  10706. const size_t nb0 = ggml_element_size(src0);
  10707. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10708. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10709. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10710. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10711. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10712. GGML_ASSERT(nb10 == sizeof(float));
  10713. // rows per thread
  10714. const int dr = (nr + nth - 1)/nth;
  10715. // row range for this thread
  10716. const int ir0 = dr*ith;
  10717. const int ir1 = MIN(ir0 + dr, nr);
  10718. for (int ir = ir0; ir < ir1; ++ir) {
  10719. // src0 and dst are viewed with shape of src1 and offset
  10720. // => same indices
  10721. const int i3 = ir/(ne12*ne11);
  10722. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10723. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10724. ggml_vec_cpy_f32(nc,
  10725. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10726. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10727. }
  10728. }
  10729. static void ggml_compute_forward_set(
  10730. const struct ggml_compute_params * params,
  10731. struct ggml_tensor * dst) {
  10732. const struct ggml_tensor * src0 = dst->src[0];
  10733. switch (src0->type) {
  10734. case GGML_TYPE_F32:
  10735. {
  10736. ggml_compute_forward_set_f32(params, dst);
  10737. } break;
  10738. case GGML_TYPE_F16:
  10739. case GGML_TYPE_BF16:
  10740. case GGML_TYPE_Q4_0:
  10741. case GGML_TYPE_Q4_1:
  10742. case GGML_TYPE_Q5_0:
  10743. case GGML_TYPE_Q5_1:
  10744. case GGML_TYPE_Q8_0:
  10745. case GGML_TYPE_Q8_1:
  10746. case GGML_TYPE_Q2_K:
  10747. case GGML_TYPE_Q3_K:
  10748. case GGML_TYPE_Q4_K:
  10749. case GGML_TYPE_Q5_K:
  10750. case GGML_TYPE_Q6_K:
  10751. case GGML_TYPE_IQ2_XXS:
  10752. case GGML_TYPE_IQ2_XS:
  10753. case GGML_TYPE_IQ3_XXS:
  10754. case GGML_TYPE_IQ1_S:
  10755. case GGML_TYPE_IQ1_M:
  10756. case GGML_TYPE_IQ4_NL:
  10757. case GGML_TYPE_IQ4_XS:
  10758. case GGML_TYPE_IQ3_S:
  10759. case GGML_TYPE_IQ2_S:
  10760. default:
  10761. {
  10762. GGML_ASSERT(false);
  10763. } break;
  10764. }
  10765. }
  10766. // ggml_compute_forward_cpy
  10767. static void ggml_compute_forward_cpy(
  10768. const struct ggml_compute_params * params,
  10769. struct ggml_tensor * dst) {
  10770. ggml_compute_forward_dup(params, dst);
  10771. }
  10772. // ggml_compute_forward_cont
  10773. static void ggml_compute_forward_cont(
  10774. const struct ggml_compute_params * params,
  10775. struct ggml_tensor * dst) {
  10776. ggml_compute_forward_dup(params, dst);
  10777. }
  10778. // ggml_compute_forward_reshape
  10779. static void ggml_compute_forward_reshape(
  10780. const struct ggml_compute_params * params,
  10781. struct ggml_tensor * dst) {
  10782. // NOP
  10783. UNUSED(params);
  10784. UNUSED(dst);
  10785. }
  10786. // ggml_compute_forward_view
  10787. static void ggml_compute_forward_view(
  10788. const struct ggml_compute_params * params,
  10789. const struct ggml_tensor * dst) {
  10790. // NOP
  10791. UNUSED(params);
  10792. UNUSED(dst);
  10793. }
  10794. // ggml_compute_forward_permute
  10795. static void ggml_compute_forward_permute(
  10796. const struct ggml_compute_params * params,
  10797. const struct ggml_tensor * dst) {
  10798. // NOP
  10799. UNUSED(params);
  10800. UNUSED(dst);
  10801. }
  10802. // ggml_compute_forward_transpose
  10803. static void ggml_compute_forward_transpose(
  10804. const struct ggml_compute_params * params,
  10805. const struct ggml_tensor * dst) {
  10806. // NOP
  10807. UNUSED(params);
  10808. UNUSED(dst);
  10809. }
  10810. // ggml_compute_forward_get_rows
  10811. static void ggml_compute_forward_get_rows_q(
  10812. const struct ggml_compute_params * params,
  10813. struct ggml_tensor * dst) {
  10814. const struct ggml_tensor * src0 = dst->src[0];
  10815. const struct ggml_tensor * src1 = dst->src[1];
  10816. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10817. return;
  10818. }
  10819. GGML_TENSOR_BINARY_OP_LOCALS
  10820. const int64_t nc = ne00;
  10821. const int64_t nr = ggml_nelements(src1);
  10822. const enum ggml_type type = src0->type;
  10823. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10824. assert(ne0 == nc);
  10825. assert(ne02 == ne11);
  10826. assert(nb00 == ggml_type_size(type));
  10827. assert(ggml_nrows(dst) == nr);
  10828. const int ith = params->ith;
  10829. const int nth = params->nth;
  10830. // rows per thread
  10831. const int dr = (nr + nth - 1)/nth;
  10832. // row range for this thread
  10833. const int ir0 = dr*ith;
  10834. const int ir1 = MIN(ir0 + dr, nr);
  10835. for (int64_t i = ir0; i < ir1; ++i) {
  10836. const int64_t i12 = i/(ne11*ne10);
  10837. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10838. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10839. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10840. dequantize_row_q(
  10841. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10842. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10843. }
  10844. }
  10845. static void ggml_compute_forward_get_rows_f16(
  10846. const struct ggml_compute_params * params,
  10847. struct ggml_tensor * dst) {
  10848. const struct ggml_tensor * src0 = dst->src[0];
  10849. const struct ggml_tensor * src1 = dst->src[1];
  10850. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10851. return;
  10852. }
  10853. GGML_TENSOR_BINARY_OP_LOCALS
  10854. const int64_t nc = ne00;
  10855. const int64_t nr = ggml_nelements(src1);
  10856. assert(ne0 == nc);
  10857. assert(ne02 == ne11);
  10858. assert(nb00 == sizeof(ggml_fp16_t));
  10859. assert(ggml_nrows(dst) == nr);
  10860. const int ith = params->ith;
  10861. const int nth = params->nth;
  10862. // rows per thread
  10863. const int dr = (nr + nth - 1)/nth;
  10864. // row range for this thread
  10865. const int ir0 = dr*ith;
  10866. const int ir1 = MIN(ir0 + dr, nr);
  10867. for (int64_t i = ir0; i < ir1; ++i) {
  10868. const int64_t i12 = i/(ne11*ne10);
  10869. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10870. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10871. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10872. ggml_fp16_to_fp32_row(
  10873. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10874. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10875. }
  10876. }
  10877. static void ggml_compute_forward_get_rows_bf16(
  10878. const struct ggml_compute_params * params,
  10879. struct ggml_tensor * dst) {
  10880. const struct ggml_tensor * src0 = dst->src[0];
  10881. const struct ggml_tensor * src1 = dst->src[1];
  10882. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10883. return;
  10884. }
  10885. GGML_TENSOR_BINARY_OP_LOCALS
  10886. const int64_t nc = ne00;
  10887. const int64_t nr = ggml_nelements(src1);
  10888. assert(ne0 == nc);
  10889. assert(ne02 == ne11);
  10890. assert(nb00 == sizeof(ggml_bf16_t));
  10891. assert(ggml_nrows(dst) == nr);
  10892. const int ith = params->ith;
  10893. const int nth = params->nth;
  10894. // rows per thread
  10895. const int dr = (nr + nth - 1)/nth;
  10896. // row range for this thread
  10897. const int ir0 = dr*ith;
  10898. const int ir1 = MIN(ir0 + dr, nr);
  10899. for (int64_t i = ir0; i < ir1; ++i) {
  10900. const int64_t i12 = i/(ne11*ne10);
  10901. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10902. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10903. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10904. ggml_bf16_to_fp32_row(
  10905. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10906. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10907. }
  10908. }
  10909. static void ggml_compute_forward_get_rows_f32(
  10910. const struct ggml_compute_params * params,
  10911. struct ggml_tensor * dst) {
  10912. const struct ggml_tensor * src0 = dst->src[0];
  10913. const struct ggml_tensor * src1 = dst->src[1];
  10914. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10915. return;
  10916. }
  10917. GGML_TENSOR_BINARY_OP_LOCALS
  10918. const int64_t nc = ne00;
  10919. const int64_t nr = ggml_nelements(src1);
  10920. assert(ne0 == nc);
  10921. assert(ne02 == ne11);
  10922. assert(nb00 == sizeof(float));
  10923. assert(ggml_nrows(dst) == nr);
  10924. const int ith = params->ith;
  10925. const int nth = params->nth;
  10926. // rows per thread
  10927. const int dr = (nr + nth - 1)/nth;
  10928. // row range for this thread
  10929. const int ir0 = dr*ith;
  10930. const int ir1 = MIN(ir0 + dr, nr);
  10931. for (int64_t i = ir0; i < ir1; ++i) {
  10932. const int64_t i12 = i/(ne11*ne10);
  10933. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10934. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10935. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10936. ggml_vec_cpy_f32(nc,
  10937. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10938. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10939. }
  10940. }
  10941. static void ggml_compute_forward_get_rows(
  10942. const struct ggml_compute_params * params,
  10943. struct ggml_tensor * dst) {
  10944. const struct ggml_tensor * src0 = dst->src[0];
  10945. switch (src0->type) {
  10946. case GGML_TYPE_Q4_0:
  10947. case GGML_TYPE_Q4_1:
  10948. case GGML_TYPE_Q5_0:
  10949. case GGML_TYPE_Q5_1:
  10950. case GGML_TYPE_Q8_0:
  10951. case GGML_TYPE_Q8_1:
  10952. case GGML_TYPE_Q2_K:
  10953. case GGML_TYPE_Q3_K:
  10954. case GGML_TYPE_Q4_K:
  10955. case GGML_TYPE_Q5_K:
  10956. case GGML_TYPE_Q6_K:
  10957. case GGML_TYPE_IQ2_XXS:
  10958. case GGML_TYPE_IQ2_XS:
  10959. case GGML_TYPE_IQ3_XXS:
  10960. case GGML_TYPE_IQ1_S:
  10961. case GGML_TYPE_IQ1_M:
  10962. case GGML_TYPE_IQ4_NL:
  10963. case GGML_TYPE_IQ4_XS:
  10964. case GGML_TYPE_IQ3_S:
  10965. case GGML_TYPE_IQ2_S:
  10966. {
  10967. ggml_compute_forward_get_rows_q(params, dst);
  10968. } break;
  10969. case GGML_TYPE_F16:
  10970. {
  10971. ggml_compute_forward_get_rows_f16(params, dst);
  10972. } break;
  10973. case GGML_TYPE_BF16:
  10974. {
  10975. ggml_compute_forward_get_rows_bf16(params, dst);
  10976. } break;
  10977. case GGML_TYPE_F32:
  10978. case GGML_TYPE_I32:
  10979. {
  10980. ggml_compute_forward_get_rows_f32(params, dst);
  10981. } break;
  10982. default:
  10983. {
  10984. GGML_ASSERT(false);
  10985. } break;
  10986. }
  10987. //static bool first = true;
  10988. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10989. //if (first) {
  10990. // first = false;
  10991. //} else {
  10992. // for (int k = 0; k < dst->ne[1]; ++k) {
  10993. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10994. // for (int i = 0; i < 16; ++i) {
  10995. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10996. // }
  10997. // printf("\n");
  10998. // }
  10999. // printf("\n");
  11000. // }
  11001. // printf("\n");
  11002. // exit(0);
  11003. //}
  11004. }
  11005. // ggml_compute_forward_get_rows_back
  11006. static void ggml_compute_forward_get_rows_back_f32_f16(
  11007. const struct ggml_compute_params * params,
  11008. struct ggml_tensor * dst) {
  11009. const struct ggml_tensor * src0 = dst->src[0];
  11010. const struct ggml_tensor * src1 = dst->src[1];
  11011. GGML_ASSERT(params->ith == 0);
  11012. GGML_ASSERT(ggml_is_contiguous(dst));
  11013. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11014. if (params->type == GGML_TASK_TYPE_INIT) {
  11015. if (params->ith != 0) {
  11016. return;
  11017. }
  11018. memset(dst->data, 0, ggml_nbytes(dst));
  11019. }
  11020. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11021. return;
  11022. }
  11023. const int nc = src0->ne[0];
  11024. const int nr = ggml_nelements(src1);
  11025. GGML_ASSERT( dst->ne[0] == nc);
  11026. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11027. for (int i = 0; i < nr; ++i) {
  11028. const int r = ((int32_t *) src1->data)[i];
  11029. for (int j = 0; j < nc; ++j) {
  11030. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11031. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11032. }
  11033. }
  11034. }
  11035. static void ggml_compute_forward_get_rows_back_f32(
  11036. const struct ggml_compute_params * params,
  11037. struct ggml_tensor * dst) {
  11038. const struct ggml_tensor * src0 = dst->src[0];
  11039. const struct ggml_tensor * src1 = dst->src[1];
  11040. GGML_ASSERT(params->ith == 0);
  11041. GGML_ASSERT(ggml_is_contiguous(dst));
  11042. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11043. if (params->type == GGML_TASK_TYPE_INIT) {
  11044. if (params->ith != 0) {
  11045. return;
  11046. }
  11047. memset(dst->data, 0, ggml_nbytes(dst));
  11048. }
  11049. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11050. return;
  11051. }
  11052. const int nc = src0->ne[0];
  11053. const int nr = ggml_nelements(src1);
  11054. GGML_ASSERT( dst->ne[0] == nc);
  11055. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11056. for (int i = 0; i < nr; ++i) {
  11057. const int r = ((int32_t *) src1->data)[i];
  11058. ggml_vec_add_f32(nc,
  11059. (float *) ((char *) dst->data + r*dst->nb[1]),
  11060. (float *) ((char *) dst->data + r*dst->nb[1]),
  11061. (float *) ((char *) src0->data + i*src0->nb[1]));
  11062. }
  11063. }
  11064. static void ggml_compute_forward_get_rows_back(
  11065. const struct ggml_compute_params * params,
  11066. struct ggml_tensor * dst) {
  11067. const struct ggml_tensor * src0 = dst->src[0];
  11068. switch (src0->type) {
  11069. case GGML_TYPE_F16:
  11070. {
  11071. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11072. } break;
  11073. case GGML_TYPE_F32:
  11074. {
  11075. ggml_compute_forward_get_rows_back_f32(params, dst);
  11076. } break;
  11077. default:
  11078. {
  11079. GGML_ASSERT(false);
  11080. } break;
  11081. }
  11082. //static bool first = true;
  11083. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11084. //if (first) {
  11085. // first = false;
  11086. //} else {
  11087. // for (int k = 0; k < dst->ne[1]; ++k) {
  11088. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11089. // for (int i = 0; i < 16; ++i) {
  11090. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11091. // }
  11092. // printf("\n");
  11093. // }
  11094. // printf("\n");
  11095. // }
  11096. // printf("\n");
  11097. // exit(0);
  11098. //}
  11099. }
  11100. // ggml_compute_forward_diag
  11101. static void ggml_compute_forward_diag_f32(
  11102. const struct ggml_compute_params * params,
  11103. struct ggml_tensor * dst) {
  11104. const struct ggml_tensor * src0 = dst->src[0];
  11105. GGML_ASSERT(params->ith == 0);
  11106. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11107. return;
  11108. }
  11109. // TODO: handle transposed/permuted matrices
  11110. GGML_TENSOR_UNARY_OP_LOCALS
  11111. GGML_ASSERT(ne00 == ne0);
  11112. GGML_ASSERT(ne00 == ne1);
  11113. GGML_ASSERT(ne01 == 1);
  11114. GGML_ASSERT(ne02 == ne2);
  11115. GGML_ASSERT(ne03 == ne3);
  11116. GGML_ASSERT(nb00 == sizeof(float));
  11117. GGML_ASSERT(nb0 == sizeof(float));
  11118. for (int i3 = 0; i3 < ne3; i3++) {
  11119. for (int i2 = 0; i2 < ne2; i2++) {
  11120. for (int i1 = 0; i1 < ne1; i1++) {
  11121. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11122. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11123. for (int i0 = 0; i0 < i1; i0++) {
  11124. d[i0] = 0;
  11125. }
  11126. d[i1] = s[i1];
  11127. for (int i0 = i1+1; i0 < ne0; i0++) {
  11128. d[i0] = 0;
  11129. }
  11130. }
  11131. }
  11132. }
  11133. }
  11134. static void ggml_compute_forward_diag(
  11135. const struct ggml_compute_params * params,
  11136. struct ggml_tensor * dst) {
  11137. const struct ggml_tensor * src0 = dst->src[0];
  11138. switch (src0->type) {
  11139. case GGML_TYPE_F32:
  11140. {
  11141. ggml_compute_forward_diag_f32(params, dst);
  11142. } break;
  11143. default:
  11144. {
  11145. GGML_ASSERT(false);
  11146. } break;
  11147. }
  11148. }
  11149. // ggml_compute_forward_diag_mask_inf
  11150. static void ggml_compute_forward_diag_mask_f32(
  11151. const struct ggml_compute_params * params,
  11152. struct ggml_tensor * dst,
  11153. const float value) {
  11154. const struct ggml_tensor * src0 = dst->src[0];
  11155. const int ith = params->ith;
  11156. const int nth = params->nth;
  11157. const int n_past = ((int32_t *) dst->op_params)[0];
  11158. const bool inplace = src0->data == dst->data;
  11159. GGML_ASSERT(n_past >= 0);
  11160. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11161. if (ith != 0) {
  11162. return;
  11163. }
  11164. // memcpy needs to be synchronized across threads to avoid race conditions.
  11165. // => do it in INIT phase
  11166. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11167. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11168. memcpy(
  11169. ((char *) dst->data),
  11170. ((char *) src0->data),
  11171. ggml_nbytes(dst));
  11172. }
  11173. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11174. return;
  11175. }
  11176. // TODO: handle transposed/permuted matrices
  11177. const int n = ggml_nrows(src0);
  11178. const int nc = src0->ne[0];
  11179. const int nr = src0->ne[1];
  11180. const int nz = n/nr;
  11181. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11182. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11183. for (int k = 0; k < nz; k++) {
  11184. for (int j = ith; j < nr; j += nth) {
  11185. for (int i = n_past; i < nc; i++) {
  11186. if (i > n_past + j) {
  11187. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11188. }
  11189. }
  11190. }
  11191. }
  11192. }
  11193. static void ggml_compute_forward_diag_mask_inf(
  11194. const struct ggml_compute_params * params,
  11195. struct ggml_tensor * dst) {
  11196. const struct ggml_tensor * src0 = dst->src[0];
  11197. switch (src0->type) {
  11198. case GGML_TYPE_F32:
  11199. {
  11200. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11201. } break;
  11202. default:
  11203. {
  11204. GGML_ASSERT(false);
  11205. } break;
  11206. }
  11207. }
  11208. static void ggml_compute_forward_diag_mask_zero(
  11209. const struct ggml_compute_params * params,
  11210. struct ggml_tensor * dst) {
  11211. const struct ggml_tensor * src0 = dst->src[0];
  11212. switch (src0->type) {
  11213. case GGML_TYPE_F32:
  11214. {
  11215. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11216. } break;
  11217. default:
  11218. {
  11219. GGML_ASSERT(false);
  11220. } break;
  11221. }
  11222. }
  11223. // ggml_compute_forward_soft_max
  11224. static void ggml_compute_forward_soft_max_f32(
  11225. const struct ggml_compute_params * params,
  11226. struct ggml_tensor * dst) {
  11227. const struct ggml_tensor * src0 = dst->src[0];
  11228. const struct ggml_tensor * src1 = dst->src[1];
  11229. assert(ggml_is_contiguous(dst));
  11230. assert(ggml_are_same_shape(src0, dst));
  11231. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11232. return;
  11233. }
  11234. float scale = 1.0f;
  11235. float max_bias = 0.0f;
  11236. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11237. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11238. // TODO: handle transposed/permuted matrices
  11239. const int ith = params->ith;
  11240. const int nth = params->nth;
  11241. GGML_TENSOR_UNARY_OP_LOCALS
  11242. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11243. // TODO: is this supposed to be ceil instead of floor?
  11244. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11245. const uint32_t n_head = ne02;
  11246. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11247. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11248. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11249. const int nc = src0->ne[0];
  11250. const int nr = ggml_nrows(src0);
  11251. // rows per thread
  11252. const int dr = (nr + nth - 1)/nth;
  11253. // row range for this thread
  11254. const int ir0 = dr*ith;
  11255. const int ir1 = MIN(ir0 + dr, nr);
  11256. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11257. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11258. for (int i1 = ir0; i1 < ir1; i1++) {
  11259. // ALiBi
  11260. const uint32_t h = (i1/ne01)%ne02; // head
  11261. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11262. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11263. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11264. // broadcast the mask across rows
  11265. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11266. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11267. ggml_vec_cpy_f32 (nc, wp, sp);
  11268. ggml_vec_scale_f32(nc, wp, scale);
  11269. if (mp_f32) {
  11270. if (use_f16) {
  11271. for (int i = 0; i < nc; ++i) {
  11272. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11273. }
  11274. } else {
  11275. for (int i = 0; i < nc; ++i) {
  11276. wp[i] += slope*mp_f32[i];
  11277. }
  11278. }
  11279. }
  11280. #ifndef NDEBUG
  11281. for (int i = 0; i < nc; ++i) {
  11282. //printf("p[%d] = %f\n", i, p[i]);
  11283. assert(!isnan(wp[i]));
  11284. }
  11285. #endif
  11286. float max = -INFINITY;
  11287. ggml_vec_max_f32(nc, &max, wp);
  11288. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11289. assert(sum > 0.0);
  11290. sum = 1.0/sum;
  11291. ggml_vec_scale_f32(nc, dp, sum);
  11292. #ifndef NDEBUG
  11293. for (int i = 0; i < nc; ++i) {
  11294. assert(!isnan(dp[i]));
  11295. assert(!isinf(dp[i]));
  11296. }
  11297. #endif
  11298. }
  11299. }
  11300. static void ggml_compute_forward_soft_max(
  11301. const struct ggml_compute_params * params,
  11302. struct ggml_tensor * dst) {
  11303. const struct ggml_tensor * src0 = dst->src[0];
  11304. switch (src0->type) {
  11305. case GGML_TYPE_F32:
  11306. {
  11307. ggml_compute_forward_soft_max_f32(params, dst);
  11308. } break;
  11309. default:
  11310. {
  11311. GGML_ASSERT(false);
  11312. } break;
  11313. }
  11314. }
  11315. // ggml_compute_forward_soft_max_back
  11316. static void ggml_compute_forward_soft_max_back_f32(
  11317. const struct ggml_compute_params * params,
  11318. struct ggml_tensor * dst) {
  11319. const struct ggml_tensor * src0 = dst->src[0];
  11320. const struct ggml_tensor * src1 = dst->src[1];
  11321. GGML_ASSERT(ggml_is_contiguous(src0));
  11322. GGML_ASSERT(ggml_is_contiguous(src1));
  11323. GGML_ASSERT(ggml_is_contiguous(dst));
  11324. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11325. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11326. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11327. return;
  11328. }
  11329. // TODO: handle transposed/permuted matrices
  11330. const int ith = params->ith;
  11331. const int nth = params->nth;
  11332. const int nc = src0->ne[0];
  11333. const int nr = ggml_nrows(src0);
  11334. // rows per thread
  11335. const int dr = (nr + nth - 1)/nth;
  11336. // row range for this thread
  11337. const int ir0 = dr*ith;
  11338. const int ir1 = MIN(ir0 + dr, nr);
  11339. for (int i1 = ir0; i1 < ir1; i1++) {
  11340. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11341. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11342. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11343. #ifndef NDEBUG
  11344. for (int i = 0; i < nc; ++i) {
  11345. //printf("p[%d] = %f\n", i, p[i]);
  11346. assert(!isnan(dy[i]));
  11347. assert(!isnan(y[i]));
  11348. }
  11349. #endif
  11350. // Jii = yi - yi*yi
  11351. // Jij = -yi*yj
  11352. // J = diag(y)-y.T*y
  11353. // dx = J * dy
  11354. // dxk = sum_i(Jki * dyi)
  11355. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11356. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11357. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11358. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11359. // dxk = -yk * dot(y, dy) + yk*dyk
  11360. // dxk = yk * (- dot(y, dy) + dyk)
  11361. // dxk = yk * (dyk - dot(y, dy))
  11362. //
  11363. // post-order:
  11364. // dot_y_dy := dot(y, dy)
  11365. // dx := dy
  11366. // dx := dx - dot_y_dy
  11367. // dx := dx * y
  11368. // linear runtime, no additional memory
  11369. float dot_y_dy = 0;
  11370. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11371. ggml_vec_cpy_f32 (nc, dx, dy);
  11372. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11373. ggml_vec_mul_f32 (nc, dx, dx, y);
  11374. #ifndef NDEBUG
  11375. for (int i = 0; i < nc; ++i) {
  11376. assert(!isnan(dx[i]));
  11377. assert(!isinf(dx[i]));
  11378. }
  11379. #endif
  11380. }
  11381. }
  11382. static void ggml_compute_forward_soft_max_back(
  11383. const struct ggml_compute_params * params,
  11384. struct ggml_tensor * dst) {
  11385. const struct ggml_tensor * src0 = dst->src[0];
  11386. switch (src0->type) {
  11387. case GGML_TYPE_F32:
  11388. {
  11389. ggml_compute_forward_soft_max_back_f32(params, dst);
  11390. } break;
  11391. default:
  11392. {
  11393. GGML_ASSERT(false);
  11394. } break;
  11395. }
  11396. }
  11397. // ggml_compute_forward_clamp
  11398. static void ggml_compute_forward_clamp_f32(
  11399. const struct ggml_compute_params * params,
  11400. struct ggml_tensor * dst) {
  11401. const struct ggml_tensor * src0 = dst->src[0];
  11402. assert(params->ith == 0);
  11403. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11404. return;
  11405. }
  11406. float min;
  11407. float max;
  11408. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11409. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11410. const int ith = params->ith;
  11411. const int nth = params->nth;
  11412. const int n = ggml_nrows(src0);
  11413. const int nc = src0->ne[0];
  11414. const size_t nb00 = src0->nb[0];
  11415. const size_t nb01 = src0->nb[1];
  11416. const size_t nb0 = dst->nb[0];
  11417. const size_t nb1 = dst->nb[1];
  11418. GGML_ASSERT( nb0 == sizeof(float));
  11419. GGML_ASSERT(nb00 == sizeof(float));
  11420. for (int j = ith; j < n; j += nth) {
  11421. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11422. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11423. for (int i = 0; i < nc; i++) {
  11424. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11425. }
  11426. }
  11427. }
  11428. static void ggml_compute_forward_clamp(
  11429. const struct ggml_compute_params * params,
  11430. struct ggml_tensor * dst) {
  11431. const struct ggml_tensor * src0 = dst->src[0];
  11432. switch (src0->type) {
  11433. case GGML_TYPE_F32:
  11434. {
  11435. ggml_compute_forward_clamp_f32(params, dst);
  11436. } break;
  11437. case GGML_TYPE_F16:
  11438. case GGML_TYPE_BF16:
  11439. case GGML_TYPE_Q4_0:
  11440. case GGML_TYPE_Q4_1:
  11441. case GGML_TYPE_Q5_0:
  11442. case GGML_TYPE_Q5_1:
  11443. case GGML_TYPE_Q8_0:
  11444. case GGML_TYPE_Q8_1:
  11445. case GGML_TYPE_Q2_K:
  11446. case GGML_TYPE_Q3_K:
  11447. case GGML_TYPE_Q4_K:
  11448. case GGML_TYPE_Q5_K:
  11449. case GGML_TYPE_Q6_K:
  11450. case GGML_TYPE_IQ2_XXS:
  11451. case GGML_TYPE_IQ2_XS:
  11452. case GGML_TYPE_IQ3_XXS:
  11453. case GGML_TYPE_IQ1_S:
  11454. case GGML_TYPE_IQ1_M:
  11455. case GGML_TYPE_IQ4_NL:
  11456. case GGML_TYPE_IQ4_XS:
  11457. case GGML_TYPE_IQ3_S:
  11458. case GGML_TYPE_IQ2_S:
  11459. case GGML_TYPE_Q8_K:
  11460. case GGML_TYPE_I8:
  11461. case GGML_TYPE_I16:
  11462. case GGML_TYPE_I32:
  11463. case GGML_TYPE_I64:
  11464. case GGML_TYPE_F64:
  11465. case GGML_TYPE_COUNT:
  11466. {
  11467. GGML_ASSERT(false);
  11468. } break;
  11469. }
  11470. }
  11471. // ggml_compute_forward_rope
  11472. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11473. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11474. return 1 - MIN(1, MAX(0, y));
  11475. }
  11476. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11477. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11478. static void rope_yarn(
  11479. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11480. float * cos_theta, float * sin_theta
  11481. ) {
  11482. // Get n-d rotational scaling corrected for extrapolation
  11483. float theta_interp = freq_scale * theta_extrap;
  11484. float theta = theta_interp;
  11485. if (ext_factor != 0.0f) {
  11486. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11487. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11488. // Get n-d magnitude scaling corrected for interpolation
  11489. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11490. }
  11491. *cos_theta = cosf(theta) * mscale;
  11492. *sin_theta = sinf(theta) * mscale;
  11493. }
  11494. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11495. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11496. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11497. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11498. }
  11499. static void ggml_rope_cache_init(
  11500. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11501. float * cache, float sin_sign, float theta_scale
  11502. ) {
  11503. float theta = theta_base;
  11504. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11505. rope_yarn(
  11506. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11507. );
  11508. cache[i0 + 1] *= sin_sign;
  11509. theta *= theta_scale;
  11510. }
  11511. }
  11512. GGML_CALL void ggml_rope_yarn_corr_dims(
  11513. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11514. ) {
  11515. // start and end correction dims
  11516. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11517. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11518. dims[0] = MAX(0, start);
  11519. dims[1] = MIN(n_dims - 1, end);
  11520. }
  11521. static void ggml_compute_forward_rope_f32(
  11522. const struct ggml_compute_params * params,
  11523. struct ggml_tensor * dst,
  11524. const bool forward) {
  11525. const struct ggml_tensor * src0 = dst->src[0];
  11526. const struct ggml_tensor * src1 = dst->src[1];
  11527. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11528. return;
  11529. }
  11530. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11531. // these two only relevant for xPos RoPE:
  11532. float xpos_base;
  11533. bool xpos_down;
  11534. //const int n_past = ((int32_t *) dst->op_params)[0];
  11535. const int n_dims = ((int32_t *) dst->op_params)[1];
  11536. const int mode = ((int32_t *) dst->op_params)[2];
  11537. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11538. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11539. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11540. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11541. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11542. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11543. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11544. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11545. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11546. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11547. GGML_TENSOR_UNARY_OP_LOCALS
  11548. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11549. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11550. GGML_ASSERT(nb00 == sizeof(float));
  11551. const int ith = params->ith;
  11552. const int nth = params->nth;
  11553. const int nr = ggml_nrows(dst);
  11554. GGML_ASSERT(n_dims <= ne0);
  11555. GGML_ASSERT(n_dims % 2 == 0);
  11556. // rows per thread
  11557. const int dr = (nr + nth - 1)/nth;
  11558. // row range for this thread
  11559. const int ir0 = dr*ith;
  11560. const int ir1 = MIN(ir0 + dr, nr);
  11561. // row index used to determine which thread to use
  11562. int ir = 0;
  11563. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11564. const float inv_ndims = -1.f/n_dims;
  11565. float corr_dims[2];
  11566. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11567. const bool is_neox = mode & 2;
  11568. const bool is_glm = mode & 4;
  11569. // backward process uses inverse rotation by cos and sin.
  11570. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11571. // this essentially just switches the sign of sin.
  11572. const float sin_sign = forward ? 1.0f : -1.0f;
  11573. const int32_t * pos = (const int32_t *) src1->data;
  11574. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11575. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11576. const int64_t p = pos[i2];
  11577. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11578. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11579. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11580. }
  11581. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11582. if (ir++ < ir0) continue;
  11583. if (ir > ir1) break;
  11584. float theta_base = (float)p;
  11585. if (is_glm) {
  11586. theta_base = MIN(p, n_ctx - 2);
  11587. float block_theta = MAX(p - (n_ctx - 2), 0);
  11588. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11589. const float cos_theta = cosf(theta_base);
  11590. const float sin_theta = sinf(theta_base) * sin_sign;
  11591. const float cos_block_theta = cosf(block_theta);
  11592. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11593. theta_base *= theta_scale;
  11594. block_theta *= theta_scale;
  11595. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11596. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11597. const float x0 = src[0];
  11598. const float x1 = src[n_dims/2];
  11599. const float x2 = src[n_dims];
  11600. const float x3 = src[n_dims/2*3];
  11601. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11602. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11603. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11604. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11605. }
  11606. } else if (!is_neox) {
  11607. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11608. const float cos_theta = cache[i0 + 0];
  11609. const float sin_theta = cache[i0 + 1];
  11610. // zeta scaling for xPos only:
  11611. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11612. if (xpos_down) zeta = 1.0f / zeta;
  11613. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11614. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11615. const float x0 = src[0];
  11616. const float x1 = src[1];
  11617. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11618. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11619. }
  11620. } else {
  11621. // TODO: this might be wrong for ne0 != n_dims - need double check
  11622. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11623. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11624. theta_base *= freq_scale;
  11625. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11626. if (ic < n_dims) {
  11627. const int64_t ib = 0;
  11628. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11629. float cur_rot = inv_ndims * ic - ib;
  11630. float cos_theta, sin_theta;
  11631. rope_yarn(
  11632. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11633. &cos_theta, &sin_theta
  11634. );
  11635. sin_theta *= sin_sign;
  11636. theta_base *= theta_scale;
  11637. const int64_t i0 = ib*n_dims + ic/2;
  11638. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11639. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11640. const float x0 = src[0];
  11641. const float x1 = src[n_dims/2];
  11642. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11643. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11644. } else {
  11645. const int64_t i0 = ic;
  11646. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11647. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11648. dst_data[0] = src[0];
  11649. dst_data[1] = src[1];
  11650. }
  11651. }
  11652. }
  11653. }
  11654. }
  11655. }
  11656. }
  11657. static void ggml_compute_forward_rope_f16(
  11658. const struct ggml_compute_params * params,
  11659. struct ggml_tensor * dst,
  11660. const bool forward) {
  11661. const struct ggml_tensor * src0 = dst->src[0];
  11662. const struct ggml_tensor * src1 = dst->src[1];
  11663. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11664. return;
  11665. }
  11666. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11667. //const int n_past = ((int32_t *) dst->op_params)[0];
  11668. const int n_dims = ((int32_t *) dst->op_params)[1];
  11669. const int mode = ((int32_t *) dst->op_params)[2];
  11670. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11671. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11672. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11673. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11674. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11675. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11676. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11677. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11678. GGML_TENSOR_UNARY_OP_LOCALS
  11679. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11680. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11681. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11682. const int ith = params->ith;
  11683. const int nth = params->nth;
  11684. const int nr = ggml_nrows(dst);
  11685. GGML_ASSERT(n_dims <= ne0);
  11686. GGML_ASSERT(n_dims % 2 == 0);
  11687. // rows per thread
  11688. const int dr = (nr + nth - 1)/nth;
  11689. // row range for this thread
  11690. const int ir0 = dr*ith;
  11691. const int ir1 = MIN(ir0 + dr, nr);
  11692. // row index used to determine which thread to use
  11693. int ir = 0;
  11694. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11695. const float inv_ndims = -1.f/n_dims;
  11696. float corr_dims[2];
  11697. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11698. const bool is_neox = mode & 2;
  11699. const bool is_glm = mode & 4;
  11700. // backward process uses inverse rotation by cos and sin.
  11701. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11702. // this essentially just switches the sign of sin.
  11703. const float sin_sign = forward ? 1.0f : -1.0f;
  11704. const int32_t * pos = (const int32_t *) src1->data;
  11705. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11706. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11707. const int64_t p = pos[i2];
  11708. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11709. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11710. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11711. }
  11712. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11713. if (ir++ < ir0) continue;
  11714. if (ir > ir1) break;
  11715. float theta_base = (float)p;
  11716. if (is_glm) {
  11717. theta_base = MIN(p, n_ctx - 2);
  11718. float block_theta = MAX(p - (n_ctx - 2), 0);
  11719. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11720. const float cos_theta = cosf(theta_base);
  11721. const float sin_theta = sinf(theta_base) * sin_sign;
  11722. const float cos_block_theta = cosf(block_theta);
  11723. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11724. theta_base *= theta_scale;
  11725. block_theta *= theta_scale;
  11726. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11727. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11728. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11729. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11730. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11731. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11732. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11733. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11734. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11735. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11736. }
  11737. } else if (!is_neox) {
  11738. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11739. const float cos_theta = cache[i0 + 0];
  11740. const float sin_theta = cache[i0 + 1];
  11741. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11742. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11743. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11744. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11745. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11746. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11747. }
  11748. } else {
  11749. // TODO: this might be wrong for ne0 != n_dims - need double check
  11750. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11751. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11752. theta_base *= freq_scale;
  11753. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11754. if (ic < n_dims) {
  11755. const int64_t ib = 0;
  11756. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11757. float cur_rot = inv_ndims * ic - ib;
  11758. float cos_theta, sin_theta;
  11759. rope_yarn(
  11760. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11761. &cos_theta, &sin_theta
  11762. );
  11763. sin_theta *= sin_sign;
  11764. theta_base *= theta_scale;
  11765. const int64_t i0 = ib*n_dims + ic/2;
  11766. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11767. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11768. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11769. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11770. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11771. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11772. } else {
  11773. const int64_t i0 = ic;
  11774. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11775. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11776. dst_data[0] = src[0];
  11777. dst_data[1] = src[1];
  11778. }
  11779. }
  11780. }
  11781. }
  11782. }
  11783. }
  11784. }
  11785. static void ggml_compute_forward_rope(
  11786. const struct ggml_compute_params * params,
  11787. struct ggml_tensor * dst) {
  11788. const struct ggml_tensor * src0 = dst->src[0];
  11789. switch (src0->type) {
  11790. case GGML_TYPE_F16:
  11791. {
  11792. ggml_compute_forward_rope_f16(params, dst, true);
  11793. } break;
  11794. case GGML_TYPE_F32:
  11795. {
  11796. ggml_compute_forward_rope_f32(params, dst, true);
  11797. } break;
  11798. default:
  11799. {
  11800. GGML_ASSERT(false);
  11801. } break;
  11802. }
  11803. }
  11804. // ggml_compute_forward_rope_back
  11805. static void ggml_compute_forward_rope_back(
  11806. const struct ggml_compute_params * params,
  11807. struct ggml_tensor * dst) {
  11808. const struct ggml_tensor * src0 = dst->src[0];
  11809. switch (src0->type) {
  11810. case GGML_TYPE_F16:
  11811. {
  11812. ggml_compute_forward_rope_f16(params, dst, false);
  11813. } break;
  11814. case GGML_TYPE_F32:
  11815. {
  11816. ggml_compute_forward_rope_f32(params, dst, false);
  11817. } break;
  11818. default:
  11819. {
  11820. GGML_ASSERT(false);
  11821. } break;
  11822. }
  11823. }
  11824. // ggml_compute_forward_conv_transpose_1d
  11825. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11826. const struct ggml_compute_params * params,
  11827. struct ggml_tensor * dst) {
  11828. const struct ggml_tensor * src0 = dst->src[0];
  11829. const struct ggml_tensor * src1 = dst->src[1];
  11830. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11831. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11832. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11833. int64_t t0 = ggml_perf_time_us();
  11834. UNUSED(t0);
  11835. GGML_TENSOR_BINARY_OP_LOCALS
  11836. const int ith = params->ith;
  11837. const int nth = params->nth;
  11838. const int nk = ne00*ne01*ne02;
  11839. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11840. GGML_ASSERT(nb10 == sizeof(float));
  11841. if (params->type == GGML_TASK_TYPE_INIT) {
  11842. if (ith != 0) {
  11843. return;
  11844. }
  11845. memset(params->wdata, 0, params->wsize);
  11846. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11847. {
  11848. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11849. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11850. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11851. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11852. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11853. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11854. dst_data[i00*ne02 + i02] = src[i00];
  11855. }
  11856. }
  11857. }
  11858. }
  11859. // permute source data (src1) from (L x Cin) to (Cin x L)
  11860. {
  11861. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11862. ggml_fp16_t * dst_data = wdata;
  11863. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11864. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11865. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11866. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11867. }
  11868. }
  11869. }
  11870. // need to zero dst since we are accumulating into it
  11871. memset(dst->data, 0, ggml_nbytes(dst));
  11872. return;
  11873. }
  11874. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11875. return;
  11876. }
  11877. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11878. // total rows in dst
  11879. const int nr = ne1;
  11880. // rows per thread
  11881. const int dr = (nr + nth - 1)/nth;
  11882. // row range for this thread
  11883. const int ir0 = dr*ith;
  11884. const int ir1 = MIN(ir0 + dr, nr);
  11885. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11886. ggml_fp16_t * const wdata_src = wdata + nk;
  11887. for (int i1 = ir0; i1 < ir1; i1++) {
  11888. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11889. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11890. for (int i10 = 0; i10 < ne10; i10++) {
  11891. const int i1n = i10*ne11;
  11892. for (int i00 = 0; i00 < ne00; i00++) {
  11893. float v = 0;
  11894. ggml_vec_dot_f16(ne02, &v, 0,
  11895. (ggml_fp16_t *) wdata_src + i1n, 0,
  11896. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11897. dst_data[i10*s0 + i00] += v;
  11898. }
  11899. }
  11900. }
  11901. }
  11902. static void ggml_compute_forward_conv_transpose_1d_f32(
  11903. const struct ggml_compute_params * params,
  11904. struct ggml_tensor * dst) {
  11905. const struct ggml_tensor * src0 = dst->src[0];
  11906. const struct ggml_tensor * src1 = dst->src[1];
  11907. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11908. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11909. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11910. int64_t t0 = ggml_perf_time_us();
  11911. UNUSED(t0);
  11912. GGML_TENSOR_BINARY_OP_LOCALS
  11913. const int ith = params->ith;
  11914. const int nth = params->nth;
  11915. const int nk = ne00*ne01*ne02;
  11916. GGML_ASSERT(nb00 == sizeof(float));
  11917. GGML_ASSERT(nb10 == sizeof(float));
  11918. if (params->type == GGML_TASK_TYPE_INIT) {
  11919. if (ith != 0) {
  11920. return;
  11921. }
  11922. memset(params->wdata, 0, params->wsize);
  11923. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11924. {
  11925. float * const wdata = (float *) params->wdata + 0;
  11926. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11927. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11928. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11929. float * dst_data = wdata + i01*ne00*ne02;
  11930. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11931. dst_data[i00*ne02 + i02] = src[i00];
  11932. }
  11933. }
  11934. }
  11935. }
  11936. // prepare source data (src1)
  11937. {
  11938. float * const wdata = (float *) params->wdata + nk;
  11939. float * dst_data = wdata;
  11940. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11941. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11942. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11943. dst_data[i10*ne11 + i11] = src[i10];
  11944. }
  11945. }
  11946. }
  11947. // need to zero dst since we are accumulating into it
  11948. memset(dst->data, 0, ggml_nbytes(dst));
  11949. return;
  11950. }
  11951. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11952. return;
  11953. }
  11954. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11955. // total rows in dst
  11956. const int nr = ne1;
  11957. // rows per thread
  11958. const int dr = (nr + nth - 1)/nth;
  11959. // row range for this thread
  11960. const int ir0 = dr*ith;
  11961. const int ir1 = MIN(ir0 + dr, nr);
  11962. float * const wdata = (float *) params->wdata + 0;
  11963. float * const wdata_src = wdata + nk;
  11964. for (int i1 = ir0; i1 < ir1; i1++) {
  11965. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11966. float * wdata_kernel = wdata + i1*ne02*ne00;
  11967. for (int i10 = 0; i10 < ne10; i10++) {
  11968. const int i1n = i10*ne11;
  11969. for (int i00 = 0; i00 < ne00; i00++) {
  11970. float v = 0;
  11971. ggml_vec_dot_f32(ne02, &v, 0,
  11972. wdata_src + i1n, 0,
  11973. wdata_kernel + i00*ne02, 0, 1);
  11974. dst_data[i10*s0 + i00] += v;
  11975. }
  11976. }
  11977. }
  11978. }
  11979. static void ggml_compute_forward_conv_transpose_1d(
  11980. const struct ggml_compute_params * params,
  11981. struct ggml_tensor * dst) {
  11982. const struct ggml_tensor * src0 = dst->src[0];
  11983. switch (src0->type) {
  11984. case GGML_TYPE_F16:
  11985. {
  11986. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11987. } break;
  11988. case GGML_TYPE_F32:
  11989. {
  11990. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11991. } break;
  11992. default:
  11993. {
  11994. GGML_ASSERT(false);
  11995. } break;
  11996. }
  11997. }
  11998. // src0: kernel [OC, IC, KH, KW]
  11999. // src1: image [N, IC, IH, IW]
  12000. // dst: result [N, OH, OW, IC*KH*KW]
  12001. static void ggml_compute_forward_im2col_f32(
  12002. const struct ggml_compute_params * params,
  12003. struct ggml_tensor * dst) {
  12004. const struct ggml_tensor * src0 = dst->src[0];
  12005. const struct ggml_tensor * src1 = dst->src[1];
  12006. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12007. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12008. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12009. int64_t t0 = ggml_perf_time_us();
  12010. UNUSED(t0);
  12011. GGML_TENSOR_BINARY_OP_LOCALS;
  12012. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12013. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12014. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12015. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12016. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12017. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12018. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12019. const int ith = params->ith;
  12020. const int nth = params->nth;
  12021. const int64_t N = is_2D ? ne13 : ne12;
  12022. const int64_t IC = is_2D ? ne12 : ne11;
  12023. const int64_t IH = is_2D ? ne11 : 1;
  12024. const int64_t IW = ne10;
  12025. const int64_t KH = is_2D ? ne01 : 1;
  12026. const int64_t KW = ne00;
  12027. const int64_t OH = is_2D ? ne2 : 1;
  12028. const int64_t OW = ne1;
  12029. int ofs0 = is_2D ? nb13 : nb12;
  12030. int ofs1 = is_2D ? nb12 : nb11;
  12031. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12032. GGML_ASSERT(nb10 == sizeof(float));
  12033. if (params->type == GGML_TASK_TYPE_INIT) {
  12034. return;
  12035. }
  12036. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12037. return;
  12038. }
  12039. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12040. {
  12041. float * const wdata = (float *) dst->data;
  12042. for (int64_t in = 0; in < N; in++) {
  12043. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12044. for (int64_t iow = 0; iow < OW; iow++) {
  12045. for (int64_t iic = ith; iic < IC; iic += nth) {
  12046. // micro kernel
  12047. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12048. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12049. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12050. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12051. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12052. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12053. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12054. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12055. } else {
  12056. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12057. }
  12058. }
  12059. }
  12060. }
  12061. }
  12062. }
  12063. }
  12064. }
  12065. }
  12066. // src0: kernel [OC, IC, KH, KW]
  12067. // src1: image [N, IC, IH, IW]
  12068. // dst: result [N, OH, OW, IC*KH*KW]
  12069. static void ggml_compute_forward_im2col_f16(
  12070. const struct ggml_compute_params * params,
  12071. struct ggml_tensor * dst) {
  12072. const struct ggml_tensor * src0 = dst->src[0];
  12073. const struct ggml_tensor * src1 = dst->src[1];
  12074. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12075. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12076. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12077. int64_t t0 = ggml_perf_time_us();
  12078. UNUSED(t0);
  12079. GGML_TENSOR_BINARY_OP_LOCALS;
  12080. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12081. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12082. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12083. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12084. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12085. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12086. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12087. const int ith = params->ith;
  12088. const int nth = params->nth;
  12089. const int64_t N = is_2D ? ne13 : ne12;
  12090. const int64_t IC = is_2D ? ne12 : ne11;
  12091. const int64_t IH = is_2D ? ne11 : 1;
  12092. const int64_t IW = ne10;
  12093. const int64_t KH = is_2D ? ne01 : 1;
  12094. const int64_t KW = ne00;
  12095. const int64_t OH = is_2D ? ne2 : 1;
  12096. const int64_t OW = ne1;
  12097. int ofs0 = is_2D ? nb13 : nb12;
  12098. int ofs1 = is_2D ? nb12 : nb11;
  12099. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12100. GGML_ASSERT(nb10 == sizeof(float));
  12101. if (params->type == GGML_TASK_TYPE_INIT) {
  12102. return;
  12103. }
  12104. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12105. return;
  12106. }
  12107. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12108. {
  12109. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12110. for (int64_t in = 0; in < N; in++) {
  12111. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12112. for (int64_t iow = 0; iow < OW; iow++) {
  12113. for (int64_t iic = ith; iic < IC; iic += nth) {
  12114. // micro kernel
  12115. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12116. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12117. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12118. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12119. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12120. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12121. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12122. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12123. } else {
  12124. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12125. }
  12126. }
  12127. }
  12128. }
  12129. }
  12130. }
  12131. }
  12132. }
  12133. }
  12134. static void ggml_compute_forward_im2col(
  12135. const struct ggml_compute_params * params,
  12136. struct ggml_tensor * dst) {
  12137. switch (dst->type) {
  12138. case GGML_TYPE_F16:
  12139. {
  12140. ggml_compute_forward_im2col_f16(params, dst);
  12141. } break;
  12142. case GGML_TYPE_F32:
  12143. {
  12144. ggml_compute_forward_im2col_f32(params, dst);
  12145. } break;
  12146. default:
  12147. {
  12148. GGML_ASSERT(false);
  12149. } break;
  12150. }
  12151. }
  12152. // ggml_compute_forward_conv_transpose_2d
  12153. static void ggml_compute_forward_conv_transpose_2d(
  12154. const struct ggml_compute_params * params,
  12155. struct ggml_tensor * dst) {
  12156. const struct ggml_tensor * src0 = dst->src[0];
  12157. const struct ggml_tensor * src1 = dst->src[1];
  12158. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12159. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12160. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12161. int64_t t0 = ggml_perf_time_us();
  12162. UNUSED(t0);
  12163. GGML_TENSOR_BINARY_OP_LOCALS
  12164. const int ith = params->ith;
  12165. const int nth = params->nth;
  12166. const int nk = ne00*ne01*ne02*ne03;
  12167. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12168. GGML_ASSERT(nb10 == sizeof(float));
  12169. if (params->type == GGML_TASK_TYPE_INIT) {
  12170. if (ith != 0) {
  12171. return;
  12172. }
  12173. memset(params->wdata, 0, params->wsize);
  12174. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12175. {
  12176. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12177. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12178. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12179. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12180. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12181. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12182. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12183. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12184. }
  12185. }
  12186. }
  12187. }
  12188. }
  12189. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12190. {
  12191. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12192. for (int i12 = 0; i12 < ne12; i12++) {
  12193. for (int i11 = 0; i11 < ne11; i11++) {
  12194. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12195. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12196. for (int i10 = 0; i10 < ne10; i10++) {
  12197. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12198. }
  12199. }
  12200. }
  12201. }
  12202. memset(dst->data, 0, ggml_nbytes(dst));
  12203. return;
  12204. }
  12205. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12206. return;
  12207. }
  12208. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12209. // total patches in dst
  12210. const int np = ne2;
  12211. // patches per thread
  12212. const int dp = (np + nth - 1)/nth;
  12213. // patch range for this thread
  12214. const int ip0 = dp*ith;
  12215. const int ip1 = MIN(ip0 + dp, np);
  12216. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12217. ggml_fp16_t * const wdata_src = wdata + nk;
  12218. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12219. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12220. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12221. for (int i11 = 0; i11 < ne11; i11++) {
  12222. for (int i10 = 0; i10 < ne10; i10++) {
  12223. const int i1n = i11*ne10*ne12 + i10*ne12;
  12224. for (int i01 = 0; i01 < ne01; i01++) {
  12225. for (int i00 = 0; i00 < ne00; i00++) {
  12226. float v = 0;
  12227. ggml_vec_dot_f16(ne03, &v, 0,
  12228. wdata_src + i1n, 0,
  12229. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12230. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12231. }
  12232. }
  12233. }
  12234. }
  12235. }
  12236. }
  12237. // ggml_compute_forward_pool_1d_sk_p0
  12238. static void ggml_compute_forward_pool_1d_sk_p0(
  12239. const struct ggml_compute_params * params,
  12240. const enum ggml_op_pool op,
  12241. const int k,
  12242. struct ggml_tensor * dst) {
  12243. const struct ggml_tensor * src = dst->src[0];
  12244. assert(src->type == GGML_TYPE_F32);
  12245. assert(params->ith == 0);
  12246. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12247. return;
  12248. }
  12249. const char * cdata = (const char *)src->data;
  12250. const char * const data_end = cdata + ggml_nbytes(src);
  12251. float * drow = (float *)dst->data;
  12252. const int64_t rs = dst->ne[0];
  12253. while (cdata < data_end) {
  12254. const float * const srow = (const float *)cdata;
  12255. int j = 0;
  12256. for (int64_t i = 0; i < rs; ++i) {
  12257. switch (op) {
  12258. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12259. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12260. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12261. }
  12262. for (int ki = 0; ki < k; ++ki) {
  12263. switch (op) {
  12264. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12265. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12266. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12267. }
  12268. ++j;
  12269. }
  12270. switch (op) {
  12271. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12272. case GGML_OP_POOL_MAX: break;
  12273. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12274. }
  12275. }
  12276. cdata += src->nb[1];
  12277. drow += rs;
  12278. }
  12279. }
  12280. // ggml_compute_forward_pool_1d
  12281. static void ggml_compute_forward_pool_1d(
  12282. const struct ggml_compute_params * params,
  12283. struct ggml_tensor * dst) {
  12284. const int32_t * opts = (const int32_t *)dst->op_params;
  12285. enum ggml_op_pool op = opts[0];
  12286. const int k0 = opts[1];
  12287. const int s0 = opts[2];
  12288. const int p0 = opts[3];
  12289. GGML_ASSERT(p0 == 0); // padding not supported
  12290. GGML_ASSERT(k0 == s0); // only s = k supported
  12291. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12292. }
  12293. // ggml_compute_forward_pool_2d
  12294. static void ggml_compute_forward_pool_2d(
  12295. const struct ggml_compute_params * params,
  12296. struct ggml_tensor * dst) {
  12297. const struct ggml_tensor * src = dst->src[0];
  12298. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12299. GGML_ASSERT(params->ith == 0);
  12300. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12301. return;
  12302. }
  12303. const int32_t * opts = (const int32_t *)dst->op_params;
  12304. enum ggml_op_pool op = opts[0];
  12305. const int k0 = opts[1];
  12306. const int k1 = opts[2];
  12307. const int s0 = opts[3];
  12308. const int s1 = opts[4];
  12309. const int p0 = opts[5];
  12310. const int p1 = opts[6];
  12311. const char * cdata = (const char*)src->data;
  12312. const char * const data_end = cdata + ggml_nbytes(src);
  12313. const int64_t px = dst->ne[0];
  12314. const int64_t py = dst->ne[1];
  12315. const int64_t pa = px * py;
  12316. float * dplane = (float *)dst->data;
  12317. const int ka = k0 * k1;
  12318. const int offset0 = -p0;
  12319. const int offset1 = -p1;
  12320. while (cdata < data_end) {
  12321. for (int oy = 0; oy < py; ++oy) {
  12322. float * const drow = dplane + oy * px;
  12323. for (int ox = 0; ox < px; ++ox) {
  12324. float * const out = drow + ox;
  12325. switch (op) {
  12326. case GGML_OP_POOL_AVG: *out = 0; break;
  12327. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12328. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12329. }
  12330. const int ix = offset0 + ox * s0;
  12331. const int iy = offset1 + oy * s1;
  12332. for (int ky = 0; ky < k1; ++ky) {
  12333. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12334. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12335. for (int kx = 0; kx < k0; ++kx) {
  12336. int j = ix + kx;
  12337. if (j < 0 || j >= src->ne[0]) continue;
  12338. switch (op) {
  12339. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12340. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12341. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12342. }
  12343. }
  12344. }
  12345. switch (op) {
  12346. case GGML_OP_POOL_AVG: *out /= ka; break;
  12347. case GGML_OP_POOL_MAX: break;
  12348. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12349. }
  12350. }
  12351. }
  12352. cdata += src->nb[2];
  12353. dplane += pa;
  12354. }
  12355. }
  12356. // ggml_compute_forward_upscale
  12357. static void ggml_compute_forward_upscale_f32(
  12358. const struct ggml_compute_params * params,
  12359. struct ggml_tensor * dst) {
  12360. const struct ggml_tensor * src0 = dst->src[0];
  12361. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12362. return;
  12363. }
  12364. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12365. const int ith = params->ith;
  12366. const int nth = params->nth;
  12367. GGML_TENSOR_UNARY_OP_LOCALS
  12368. const float sf0 = (float)ne0/src0->ne[0];
  12369. const float sf1 = (float)ne1/src0->ne[1];
  12370. const float sf2 = (float)ne2/src0->ne[2];
  12371. const float sf3 = (float)ne3/src0->ne[3];
  12372. // TODO: optimize
  12373. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12374. const int64_t i03 = i3 / sf3;
  12375. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12376. const int64_t i02 = i2 / sf2;
  12377. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12378. const int64_t i01 = i1 / sf1;
  12379. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12380. const int64_t i00 = i0 / sf0;
  12381. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12382. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12383. *y = *x;
  12384. }
  12385. }
  12386. }
  12387. }
  12388. }
  12389. static void ggml_compute_forward_upscale(
  12390. const struct ggml_compute_params * params,
  12391. struct ggml_tensor * dst) {
  12392. const struct ggml_tensor * src0 = dst->src[0];
  12393. switch (src0->type) {
  12394. case GGML_TYPE_F32:
  12395. {
  12396. ggml_compute_forward_upscale_f32(params, dst);
  12397. } break;
  12398. default:
  12399. {
  12400. GGML_ASSERT(false);
  12401. } break;
  12402. }
  12403. }
  12404. // ggml_compute_forward_pad
  12405. static void ggml_compute_forward_pad_f32(
  12406. const struct ggml_compute_params * params,
  12407. struct ggml_tensor * dst) {
  12408. const struct ggml_tensor * src0 = dst->src[0];
  12409. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12410. return;
  12411. }
  12412. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12413. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12414. const int ith = params->ith;
  12415. const int nth = params->nth;
  12416. GGML_TENSOR_UNARY_OP_LOCALS
  12417. float * dst_ptr = (float *) dst->data;
  12418. // TODO: optimize
  12419. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12420. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12421. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12422. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12423. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12424. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12425. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12426. dst_ptr[dst_idx] = *src_ptr;
  12427. } else {
  12428. dst_ptr[dst_idx] = 0;
  12429. }
  12430. }
  12431. }
  12432. }
  12433. }
  12434. }
  12435. static void ggml_compute_forward_pad(
  12436. const struct ggml_compute_params * params,
  12437. struct ggml_tensor * dst) {
  12438. const struct ggml_tensor * src0 = dst->src[0];
  12439. switch (src0->type) {
  12440. case GGML_TYPE_F32:
  12441. {
  12442. ggml_compute_forward_pad_f32(params, dst);
  12443. } break;
  12444. default:
  12445. {
  12446. GGML_ASSERT(false);
  12447. } break;
  12448. }
  12449. }
  12450. // ggml_compute_forward_arange
  12451. static void ggml_compute_forward_arange_f32(
  12452. const struct ggml_compute_params * params,
  12453. struct ggml_tensor * dst) {
  12454. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12455. return;
  12456. }
  12457. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12458. const int ith = params->ith;
  12459. const int nth = params->nth;
  12460. const float start = ggml_get_op_params_f32(dst, 0);
  12461. const float stop = ggml_get_op_params_f32(dst, 1);
  12462. const float step = ggml_get_op_params_f32(dst, 2);
  12463. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12464. GGML_ASSERT(ggml_nelements(dst) == steps);
  12465. for (int64_t i = ith; i < steps; i+= nth) {
  12466. float value = start + step * i;
  12467. ((float *)dst->data)[i] = value;
  12468. }
  12469. }
  12470. static void ggml_compute_forward_arange(
  12471. const struct ggml_compute_params * params,
  12472. struct ggml_tensor * dst) {
  12473. switch (dst->type) {
  12474. case GGML_TYPE_F32:
  12475. {
  12476. ggml_compute_forward_arange_f32(params, dst);
  12477. } break;
  12478. default:
  12479. {
  12480. GGML_ASSERT(false);
  12481. } break;
  12482. }
  12483. }
  12484. static void ggml_compute_forward_timestep_embedding_f32(
  12485. const struct ggml_compute_params * params,
  12486. struct ggml_tensor * dst) {
  12487. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12488. return;
  12489. }
  12490. const struct ggml_tensor * src0 = dst->src[0];
  12491. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12492. const int ith = params->ith;
  12493. const int nth = params->nth;
  12494. GGML_TENSOR_UNARY_OP_LOCALS
  12495. const int dim = ggml_get_op_params_i32(dst, 0);
  12496. const int max_period = ggml_get_op_params_i32(dst, 1);
  12497. int half = dim / 2;
  12498. for (int64_t i = 0; i < ne00; i++) {
  12499. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12500. for (int64_t j = ith; j < half; j += nth) {
  12501. float timestep = ((float *)src0->data)[i];
  12502. float freq = (float)expf(-logf(max_period) * j / half);
  12503. float arg = timestep * freq;
  12504. embed_data[j] = cosf(arg);
  12505. embed_data[j + half] = sinf(arg);
  12506. }
  12507. if (dim % 2 != 0 && ith == 0) {
  12508. embed_data[dim] = 0.f;
  12509. }
  12510. }
  12511. }
  12512. static void ggml_compute_forward_timestep_embedding(
  12513. const struct ggml_compute_params * params,
  12514. struct ggml_tensor * dst) {
  12515. const struct ggml_tensor * src0 = dst->src[0];
  12516. switch (src0->type) {
  12517. case GGML_TYPE_F32:
  12518. {
  12519. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12520. } break;
  12521. default:
  12522. {
  12523. GGML_ASSERT(false);
  12524. } break;
  12525. }
  12526. }
  12527. // ggml_compute_forward_argsort
  12528. static void ggml_compute_forward_argsort_f32(
  12529. const struct ggml_compute_params * params,
  12530. struct ggml_tensor * dst) {
  12531. const struct ggml_tensor * src0 = dst->src[0];
  12532. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12533. return;
  12534. }
  12535. GGML_TENSOR_UNARY_OP_LOCALS
  12536. GGML_ASSERT(nb0 == sizeof(float));
  12537. const int ith = params->ith;
  12538. const int nth = params->nth;
  12539. const int64_t nr = ggml_nrows(src0);
  12540. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12541. for (int64_t i = ith; i < nr; i += nth) {
  12542. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12543. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12544. for (int64_t j = 0; j < ne0; j++) {
  12545. dst_data[j] = j;
  12546. }
  12547. // C doesn't have a functional sort, so we do a bubble sort instead
  12548. for (int64_t j = 0; j < ne0; j++) {
  12549. for (int64_t k = j + 1; k < ne0; k++) {
  12550. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12551. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12552. int32_t tmp = dst_data[j];
  12553. dst_data[j] = dst_data[k];
  12554. dst_data[k] = tmp;
  12555. }
  12556. }
  12557. }
  12558. }
  12559. }
  12560. static void ggml_compute_forward_argsort(
  12561. const struct ggml_compute_params * params,
  12562. struct ggml_tensor * dst) {
  12563. const struct ggml_tensor * src0 = dst->src[0];
  12564. switch (src0->type) {
  12565. case GGML_TYPE_F32:
  12566. {
  12567. ggml_compute_forward_argsort_f32(params, dst);
  12568. } break;
  12569. default:
  12570. {
  12571. GGML_ASSERT(false);
  12572. } break;
  12573. }
  12574. }
  12575. // ggml_compute_forward_flash_attn
  12576. static void ggml_compute_forward_flash_attn_f32(
  12577. const struct ggml_compute_params * params,
  12578. const bool masked,
  12579. struct ggml_tensor * dst) {
  12580. const struct ggml_tensor * q = dst->src[0];
  12581. const struct ggml_tensor * k = dst->src[1];
  12582. const struct ggml_tensor * v = dst->src[2];
  12583. int64_t t0 = ggml_perf_time_us();
  12584. UNUSED(t0);
  12585. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12586. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12587. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12588. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12589. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12590. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12591. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12592. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12593. const int ith = params->ith;
  12594. const int nth = params->nth;
  12595. const int64_t D = neq0;
  12596. const int64_t N = neq1;
  12597. const int64_t P = nek1 - N;
  12598. const int64_t M = P + N;
  12599. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12600. GGML_ASSERT(ne0 == D);
  12601. GGML_ASSERT(ne1 == N);
  12602. GGML_ASSERT(P >= 0);
  12603. GGML_ASSERT(nbq0 == sizeof(float));
  12604. GGML_ASSERT(nbk0 == sizeof(float));
  12605. GGML_ASSERT(nbv0 == sizeof(float));
  12606. GGML_ASSERT(neq0 == D);
  12607. GGML_ASSERT(nek0 == D);
  12608. GGML_ASSERT(nev1 == D);
  12609. GGML_ASSERT(neq1 == N);
  12610. GGML_ASSERT(nek1 == N + P);
  12611. GGML_ASSERT(nev1 == D);
  12612. // dst cannot be transposed or permuted
  12613. GGML_ASSERT(nb0 == sizeof(float));
  12614. GGML_ASSERT(nb0 <= nb1);
  12615. GGML_ASSERT(nb1 <= nb2);
  12616. GGML_ASSERT(nb2 <= nb3);
  12617. if (params->type == GGML_TASK_TYPE_INIT) {
  12618. return;
  12619. }
  12620. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12621. return;
  12622. }
  12623. // parallelize by q rows using ggml_vec_dot_f32
  12624. // total rows in q
  12625. const int nr = neq1*neq2*neq3;
  12626. // rows per thread
  12627. const int dr = (nr + nth - 1)/nth;
  12628. // row range for this thread
  12629. const int ir0 = dr*ith;
  12630. const int ir1 = MIN(ir0 + dr, nr);
  12631. const float scale = 1.0f/sqrtf(D);
  12632. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12633. for (int ir = ir0; ir < ir1; ++ir) {
  12634. // q indices
  12635. const int iq3 = ir/(neq2*neq1);
  12636. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12637. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12638. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12639. for (int i = M; i < Mup; ++i) {
  12640. S[i] = -INFINITY;
  12641. }
  12642. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12643. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12644. // k indices
  12645. const int ik3 = iq3;
  12646. const int ik2 = iq2 % nek2;
  12647. const int ik1 = ic;
  12648. // S indices
  12649. const int i1 = ik1;
  12650. ggml_vec_dot_f32(neq0,
  12651. S + i1, 0,
  12652. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12653. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12654. }
  12655. // scale
  12656. ggml_vec_scale_f32(masked_begin, S, scale);
  12657. for (int64_t i = masked_begin; i < M; i++) {
  12658. S[i] = -INFINITY;
  12659. }
  12660. // softmax
  12661. // exclude known -INF S[..] values from max and loop
  12662. // dont forget to set their SW values to zero
  12663. {
  12664. float max = -INFINITY;
  12665. ggml_vec_max_f32(masked_begin, &max, S);
  12666. ggml_float sum = 0.0;
  12667. {
  12668. #ifdef GGML_SOFT_MAX_ACCELERATE
  12669. max = -max;
  12670. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12671. vvexpf(S, S, &Mup);
  12672. ggml_vec_sum_f32(Mup, &sum, S);
  12673. #else
  12674. sum = ggml_vec_soft_max_f32(Mup, S, S, max);
  12675. #endif
  12676. }
  12677. assert(sum > 0.0);
  12678. sum = 1.0/sum;
  12679. ggml_vec_scale_f32(masked_begin, S, sum);
  12680. #ifndef NDEBUG
  12681. for (int i = 0; i < masked_begin; ++i) {
  12682. assert(!isnan(S[i]));
  12683. assert(!isinf(S[i]));
  12684. }
  12685. #endif
  12686. }
  12687. for (int64_t ic = 0; ic < nev1; ++ic) {
  12688. // dst indices
  12689. const int i1 = iq1;
  12690. const int i2 = iq2;
  12691. const int i3 = iq3;
  12692. // v indices
  12693. const int iv2 = iq2 % nev2;
  12694. const int iv3 = iq3;
  12695. ggml_vec_dot_f32(masked_begin,
  12696. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12697. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12698. S, 0, 1);
  12699. }
  12700. }
  12701. }
  12702. static void ggml_compute_forward_flash_attn_f16(
  12703. const struct ggml_compute_params * params,
  12704. const bool masked,
  12705. struct ggml_tensor * dst) {
  12706. const struct ggml_tensor * q = dst->src[0];
  12707. const struct ggml_tensor * k = dst->src[1];
  12708. const struct ggml_tensor * v = dst->src[2];
  12709. int64_t t0 = ggml_perf_time_us();
  12710. UNUSED(t0);
  12711. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12712. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12713. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12714. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12715. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12716. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12717. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12718. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12719. const int ith = params->ith;
  12720. const int nth = params->nth;
  12721. const int64_t D = neq0;
  12722. const int64_t N = neq1;
  12723. const int64_t P = nek1 - N;
  12724. const int64_t M = P + N;
  12725. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12726. GGML_ASSERT(ne0 == D);
  12727. GGML_ASSERT(ne1 == N);
  12728. GGML_ASSERT(P >= 0);
  12729. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12730. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12731. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12732. GGML_ASSERT(neq0 == D);
  12733. GGML_ASSERT(nek0 == D);
  12734. GGML_ASSERT(nev1 == D);
  12735. GGML_ASSERT(neq1 == N);
  12736. GGML_ASSERT(nek1 == N + P);
  12737. GGML_ASSERT(nev1 == D);
  12738. // dst cannot be transposed or permuted
  12739. GGML_ASSERT(nb0 == sizeof(float));
  12740. GGML_ASSERT(nb0 <= nb1);
  12741. GGML_ASSERT(nb1 <= nb2);
  12742. GGML_ASSERT(nb2 <= nb3);
  12743. if (params->type == GGML_TASK_TYPE_INIT) {
  12744. return;
  12745. }
  12746. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12747. return;
  12748. }
  12749. // parallelize by q rows using ggml_vec_dot_f32
  12750. // total rows in q
  12751. const int nr = neq1*neq2*neq3;
  12752. // rows per thread
  12753. const int dr = (nr + nth - 1)/nth;
  12754. // row range for this thread
  12755. const int ir0 = dr*ith;
  12756. const int ir1 = MIN(ir0 + dr, nr);
  12757. const float scale = 1.0f/sqrtf(D);
  12758. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12759. for (int ir = ir0; ir < ir1; ++ir) {
  12760. // q indices
  12761. const int iq3 = ir/(neq2*neq1);
  12762. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12763. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12764. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12765. for (int i = M; i < Mup; ++i) {
  12766. S[i] = -INFINITY;
  12767. }
  12768. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12769. for (int64_t ic = 0; ic < nek1; ++ic) {
  12770. // k indices
  12771. const int ik3 = iq3;
  12772. const int ik2 = iq2 % nek2;
  12773. const int ik1 = ic;
  12774. // S indices
  12775. const int i1 = ik1;
  12776. ggml_vec_dot_f16(neq0,
  12777. S + i1, 0,
  12778. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12779. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12780. }
  12781. } else {
  12782. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12783. // k indices
  12784. const int ik3 = iq3;
  12785. const int ik2 = iq2 % nek2;
  12786. const int ik1 = ic;
  12787. // S indices
  12788. const int i1 = ik1;
  12789. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12790. S + i1,
  12791. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12792. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12793. }
  12794. }
  12795. // scale
  12796. ggml_vec_scale_f32(nek1, S, scale);
  12797. if (masked) {
  12798. for (int64_t i = P; i < M; i++) {
  12799. if (i > P + iq1) {
  12800. S[i] = -INFINITY;
  12801. }
  12802. }
  12803. }
  12804. // softmax
  12805. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12806. // dont forget to set their S values to zero
  12807. {
  12808. float max = -INFINITY;
  12809. ggml_vec_max_f32(M, &max, S);
  12810. ggml_float sum = 0.0;
  12811. {
  12812. #ifdef GGML_SOFT_MAX_ACCELERATE
  12813. max = -max;
  12814. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12815. vvexpf(S, S, &Mup);
  12816. ggml_vec_sum_f32(Mup, &sum, S);
  12817. #else
  12818. sum = ggml_vec_soft_max_f32(Mup, S, S, max);
  12819. #endif
  12820. }
  12821. assert(sum > 0.0);
  12822. sum = 1.0/sum;
  12823. ggml_vec_scale_f32(M, S, sum);
  12824. #ifndef NDEBUG
  12825. for (int i = 0; i < M; ++i) {
  12826. assert(!isnan(S[i]));
  12827. assert(!isinf(S[i]));
  12828. }
  12829. #endif
  12830. }
  12831. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12832. for (int64_t i = 0; i < M; i++) {
  12833. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12834. }
  12835. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12836. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12837. for (int64_t ic = 0; ic < nev1; ++ic) {
  12838. // dst indices
  12839. const int i1 = iq1;
  12840. const int i2 = iq2;
  12841. const int i3 = iq3;
  12842. // v indices
  12843. const int iv2 = iq2 % nev2;
  12844. const int iv3 = iq3;
  12845. ggml_vec_dot_f16(nev0,
  12846. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12847. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12848. S16, 0, 1);
  12849. }
  12850. } else {
  12851. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12852. // dst indices
  12853. const int i1 = iq1;
  12854. const int i2 = iq2;
  12855. const int i3 = iq3;
  12856. // v indices
  12857. const int iv2 = iq2 % nev2;
  12858. const int iv3 = iq3;
  12859. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12860. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12861. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12862. S16);
  12863. }
  12864. }
  12865. }
  12866. }
  12867. static void ggml_compute_forward_flash_attn(
  12868. const struct ggml_compute_params * params,
  12869. const bool masked,
  12870. struct ggml_tensor * dst) {
  12871. const struct ggml_tensor * q = dst->src[0];
  12872. switch (q->type) {
  12873. case GGML_TYPE_F16:
  12874. {
  12875. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  12876. } break;
  12877. case GGML_TYPE_F32:
  12878. {
  12879. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  12880. } break;
  12881. default:
  12882. {
  12883. GGML_ASSERT(false);
  12884. } break;
  12885. }
  12886. }
  12887. // ggml_compute_forward_flash_attn_ext
  12888. static void ggml_compute_forward_flash_attn_ext_f16(
  12889. const struct ggml_compute_params * params,
  12890. const struct ggml_tensor * q,
  12891. const struct ggml_tensor * k,
  12892. const struct ggml_tensor * v,
  12893. const struct ggml_tensor * mask,
  12894. struct ggml_tensor * dst) {
  12895. int64_t t0 = ggml_perf_time_us();
  12896. UNUSED(t0);
  12897. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12898. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12899. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12900. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12901. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12902. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12903. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12904. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12905. const int ith = params->ith;
  12906. const int nth = params->nth;
  12907. const int64_t D = neq0;
  12908. const int64_t N = neq1;
  12909. GGML_ASSERT(ne0 == D);
  12910. GGML_ASSERT(ne2 == N);
  12911. // input tensor rows must be contiguous
  12912. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12913. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12914. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12915. GGML_ASSERT(neq0 == D);
  12916. GGML_ASSERT(nek0 == D);
  12917. GGML_ASSERT(nev0 == D);
  12918. GGML_ASSERT(neq1 == N);
  12919. GGML_ASSERT(nev0 == D);
  12920. // dst cannot be transposed or permuted
  12921. GGML_ASSERT(nb0 == sizeof(float));
  12922. GGML_ASSERT(nb0 <= nb1);
  12923. GGML_ASSERT(nb1 <= nb2);
  12924. GGML_ASSERT(nb2 <= nb3);
  12925. // broadcast factors
  12926. const int64_t rk2 = neq2/nek2;
  12927. const int64_t rk3 = neq3/nek3;
  12928. const int64_t rv2 = neq2/nev2;
  12929. const int64_t rv3 = neq3/nev3;
  12930. if (params->type == GGML_TASK_TYPE_INIT) {
  12931. return;
  12932. }
  12933. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12934. return;
  12935. }
  12936. // parallelize by q rows using ggml_vec_dot_f32
  12937. // total rows in q
  12938. const int nr = neq1*neq2*neq3;
  12939. // rows per thread
  12940. const int dr = (nr + nth - 1)/nth;
  12941. // row range for this thread
  12942. const int ir0 = dr*ith;
  12943. const int ir1 = MIN(ir0 + dr, nr);
  12944. float scale = 1.0f;
  12945. float max_bias = 0.0f;
  12946. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12947. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12948. const uint32_t n_head = neq2;
  12949. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12950. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12951. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12952. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12953. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12954. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12955. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12956. // loop over n_batch and n_head
  12957. for (int ir = ir0; ir < ir1; ++ir) {
  12958. // q indices
  12959. const int iq3 = ir/(neq2*neq1);
  12960. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12961. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12962. const uint32_t h = iq2; // head index
  12963. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12964. float S = 0.0f; // sum
  12965. float M = -INFINITY; // maximum KQ value
  12966. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12967. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12968. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12969. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12970. if (v->type == GGML_TYPE_F16) {
  12971. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12972. } else {
  12973. memset(VKQ32, 0, D*sizeof(float));
  12974. }
  12975. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12976. // k indices
  12977. const int ik3 = iq3 / rk3;
  12978. const int ik2 = iq2 / rk2;
  12979. // v indices
  12980. const int iv3 = iq3 / rv3;
  12981. const int iv2 = iq2 / rv2;
  12982. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12983. q_to_vec_dot(pq, Q_q, D);
  12984. // online softmax / attention
  12985. // loop over n_kv and n_head_kv
  12986. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12987. for (int64_t ic = 0; ic < nek1; ++ic) {
  12988. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12989. if (mv == -INFINITY) {
  12990. continue;
  12991. }
  12992. float s; // KQ value
  12993. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12994. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12995. s = s*scale + mv; // scale KQ value and apply mask
  12996. const float Mold = M;
  12997. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12998. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12999. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  13000. if (v->type== GGML_TYPE_F16) {
  13001. if (s > M) {
  13002. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13003. M = s;
  13004. ms = expf(Mold - M);
  13005. // V = V*expf(Mold - M)
  13006. ggml_vec_scale_f16(D, VKQ16, ms);
  13007. } else {
  13008. // no new maximum, ms == 1.0f, vs != 1.0f
  13009. vs = expf(s - M);
  13010. }
  13011. // V += v*expf(s - M)
  13012. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  13013. } else {
  13014. if (s > M) {
  13015. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13016. M = s;
  13017. ms = expf(Mold - M);
  13018. // V = V*expf(Mold - M)
  13019. ggml_vec_scale_f32(D, VKQ32, ms);
  13020. } else {
  13021. // no new maximum, ms == 1.0f, vs != 1.0f
  13022. vs = expf(s - M);
  13023. }
  13024. v_to_float(v_data, V32, D);
  13025. // V += v*expf(s - M)
  13026. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  13027. }
  13028. S = S*ms + vs; // scale and increment sum with partial sum
  13029. }
  13030. if (v->type == GGML_TYPE_F16) {
  13031. for (int64_t d = 0; d < D; ++d) {
  13032. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  13033. }
  13034. }
  13035. // V /= S
  13036. const float S_inv = 1.0f/S;
  13037. ggml_vec_scale_f32(D, VKQ32, S_inv);
  13038. // dst indices
  13039. const int i1 = iq1;
  13040. const int i2 = iq2;
  13041. const int i3 = iq3;
  13042. // original
  13043. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  13044. // permute(0, 2, 1, 3)
  13045. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  13046. }
  13047. }
  13048. static void ggml_compute_forward_flash_attn_ext(
  13049. const struct ggml_compute_params * params,
  13050. const struct ggml_tensor * q,
  13051. const struct ggml_tensor * k,
  13052. const struct ggml_tensor * v,
  13053. const struct ggml_tensor * mask,
  13054. struct ggml_tensor * dst) {
  13055. switch (dst->op_params[2]) {
  13056. case GGML_PREC_DEFAULT:
  13057. case GGML_PREC_F32:
  13058. {
  13059. // uses F32 accumulators
  13060. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  13061. } break;
  13062. default:
  13063. {
  13064. GGML_ASSERT(false);
  13065. } break;
  13066. }
  13067. }
  13068. // ggml_compute_forward_flash_ff
  13069. static void ggml_compute_forward_flash_ff_f16(
  13070. const struct ggml_compute_params * params,
  13071. struct ggml_tensor * dst) {
  13072. const struct ggml_tensor * a = dst->src[0]; // F16
  13073. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  13074. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  13075. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  13076. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  13077. int64_t t0 = ggml_perf_time_us();
  13078. UNUSED(t0);
  13079. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  13080. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  13081. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  13082. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  13083. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  13084. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  13085. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  13086. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  13087. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  13088. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  13089. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13090. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13091. const int ith = params->ith;
  13092. const int nth = params->nth;
  13093. const int64_t D = nea0;
  13094. //const int64_t N = nea1;
  13095. const int64_t M = neb01;
  13096. GGML_ASSERT(ne0 == nea0);
  13097. GGML_ASSERT(ne1 == nea1);
  13098. GGML_ASSERT(ne2 == nea2);
  13099. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  13100. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  13101. GGML_ASSERT(nbb10 == sizeof(float));
  13102. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  13103. GGML_ASSERT(nbc10 == sizeof(float));
  13104. GGML_ASSERT(neb00 == D);
  13105. GGML_ASSERT(neb01 == M);
  13106. GGML_ASSERT(neb10 == M);
  13107. GGML_ASSERT(neb11 == 1);
  13108. GGML_ASSERT(nec00 == M);
  13109. GGML_ASSERT(nec01 == D);
  13110. GGML_ASSERT(nec10 == D);
  13111. GGML_ASSERT(nec11 == 1);
  13112. // dst cannot be transposed or permuted
  13113. GGML_ASSERT(nb0 == sizeof(float));
  13114. GGML_ASSERT(nb0 <= nb1);
  13115. GGML_ASSERT(nb1 <= nb2);
  13116. GGML_ASSERT(nb2 <= nb3);
  13117. if (params->type == GGML_TASK_TYPE_INIT) {
  13118. return;
  13119. }
  13120. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13121. return;
  13122. }
  13123. // parallelize by a rows using ggml_vec_dot_f32
  13124. // total rows in a
  13125. const int nr = nea1*nea2*nea3;
  13126. // rows per thread
  13127. const int dr = (nr + nth - 1)/nth;
  13128. // row range for this thread
  13129. const int ir0 = dr*ith;
  13130. const int ir1 = MIN(ir0 + dr, nr);
  13131. for (int ir = ir0; ir < ir1; ++ir) {
  13132. // a indices
  13133. const int ia3 = ir/(nea2*nea1);
  13134. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  13135. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  13136. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  13137. for (int64_t ic = 0; ic < neb01; ++ic) {
  13138. // b0 indices
  13139. const int ib03 = ia3;
  13140. const int ib02 = ia2;
  13141. const int ib01 = ic;
  13142. // S indices
  13143. const int i1 = ib01;
  13144. ggml_vec_dot_f16(nea0,
  13145. S + i1, 0,
  13146. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  13147. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  13148. }
  13149. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  13150. //ggml_vec_gelu_f32(neb01, S, S);
  13151. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  13152. for (int64_t i = 0; i < M; i++) {
  13153. S16[i] = GGML_FP32_TO_FP16(S[i]);
  13154. }
  13155. ggml_vec_gelu_f16(neb01, S16, S16);
  13156. {
  13157. // dst indices
  13158. const int i1 = ia1;
  13159. const int i2 = ia2;
  13160. const int i3 = ia3;
  13161. for (int64_t ic = 0; ic < nec01; ++ic) {
  13162. ggml_vec_dot_f16(neb01,
  13163. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  13164. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  13165. S16, 0, 1);
  13166. }
  13167. ggml_vec_add_f32(nec01,
  13168. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  13169. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  13170. (float *) c1->data);
  13171. }
  13172. }
  13173. }
  13174. static void ggml_compute_forward_flash_ff(
  13175. const struct ggml_compute_params * params,
  13176. struct ggml_tensor * dst) {
  13177. const struct ggml_tensor * b0 = dst->src[1];
  13178. switch (b0->type) {
  13179. case GGML_TYPE_F16:
  13180. {
  13181. ggml_compute_forward_flash_ff_f16(params, dst);
  13182. } break;
  13183. case GGML_TYPE_F32:
  13184. {
  13185. GGML_ASSERT(false); // TODO
  13186. } break;
  13187. default:
  13188. {
  13189. GGML_ASSERT(false);
  13190. } break;
  13191. }
  13192. }
  13193. // ggml_compute_forward_flash_attn_back
  13194. static void ggml_compute_forward_flash_attn_back_f32(
  13195. const struct ggml_compute_params * params,
  13196. const bool masked,
  13197. struct ggml_tensor * dst) {
  13198. const struct ggml_tensor * q = dst->src[0];
  13199. const struct ggml_tensor * k = dst->src[1];
  13200. const struct ggml_tensor * v = dst->src[2];
  13201. const struct ggml_tensor * d = dst->src[3];
  13202. int64_t t0 = ggml_perf_time_us();
  13203. UNUSED(t0);
  13204. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13205. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13206. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13207. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13208. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13209. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13210. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  13211. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  13212. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13213. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13214. const int ith = params->ith;
  13215. const int nth = params->nth;
  13216. const int64_t D = neq0;
  13217. const int64_t N = neq1;
  13218. const int64_t P = nek1 - N;
  13219. const int64_t M = P + N;
  13220. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  13221. const int mxDM = MAX(D, Mup);
  13222. // GGML_ASSERT(ne0 == D);
  13223. // GGML_ASSERT(ne1 == N);
  13224. GGML_ASSERT(P >= 0);
  13225. GGML_ASSERT(nbq0 == sizeof(float));
  13226. GGML_ASSERT(nbk0 == sizeof(float));
  13227. GGML_ASSERT(nbv0 == sizeof(float));
  13228. GGML_ASSERT(neq0 == D);
  13229. GGML_ASSERT(nek0 == D);
  13230. GGML_ASSERT(nev1 == D);
  13231. GGML_ASSERT(ned0 == D);
  13232. GGML_ASSERT(neq1 == N);
  13233. GGML_ASSERT(nek1 == N + P);
  13234. GGML_ASSERT(nev1 == D);
  13235. GGML_ASSERT(ned1 == N);
  13236. // dst cannot be transposed or permuted
  13237. GGML_ASSERT(nb0 == sizeof(float));
  13238. GGML_ASSERT(nb0 <= nb1);
  13239. GGML_ASSERT(nb1 <= nb2);
  13240. GGML_ASSERT(nb2 <= nb3);
  13241. if (params->type == GGML_TASK_TYPE_INIT) {
  13242. if (ith == 0) {
  13243. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13244. }
  13245. return;
  13246. }
  13247. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13248. return;
  13249. }
  13250. const int64_t elem_q = ggml_nelements(q);
  13251. const int64_t elem_k = ggml_nelements(k);
  13252. enum ggml_type result_type = dst->type;
  13253. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13254. const size_t tsize = ggml_type_size(result_type);
  13255. const size_t offs_q = 0;
  13256. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13257. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13258. void * grad_q = (char *) dst->data;
  13259. void * grad_k = (char *) dst->data + offs_k;
  13260. void * grad_v = (char *) dst->data + offs_v;
  13261. const size_t nbgq1 = nb0*neq0;
  13262. const size_t nbgq2 = nb0*neq0*neq1;
  13263. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13264. const size_t nbgk1 = nb0*nek0;
  13265. const size_t nbgk2 = nb0*nek0*nek1;
  13266. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13267. const size_t nbgv1 = nb0*nev0;
  13268. const size_t nbgv2 = nb0*nev0*nev1;
  13269. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13270. // parallelize by k rows using ggml_vec_dot_f32
  13271. // total rows in k
  13272. const int nr = nek2*nek3;
  13273. // rows per thread
  13274. const int dr = (nr + nth - 1)/nth;
  13275. // row range for this thread
  13276. const int ir0 = dr*ith;
  13277. const int ir1 = MIN(ir0 + dr, nr);
  13278. const float scale = 1.0f/sqrtf(D);
  13279. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13280. // how often k2 (and v2) is repeated in q2
  13281. int nrep = neq2/nek2;
  13282. for (int ir = ir0; ir < ir1; ++ir) {
  13283. // q indices
  13284. const int ik3 = ir/(nek2);
  13285. const int ik2 = ir - ik3*nek2;
  13286. const int iq3 = ik3;
  13287. const int id3 = ik3;
  13288. const int iv3 = ik3;
  13289. const int iv2 = ik2;
  13290. for (int irep = 0; irep < nrep; ++irep) {
  13291. const int iq2 = ik2 + irep*nek2;
  13292. const int id2 = iq2;
  13293. // (ik2 + irep*nek2) % nek2 == ik2
  13294. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13295. const int id1 = iq1;
  13296. // not sure about CACHE_LINE_SIZE_F32..
  13297. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13298. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13299. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13300. for (int i = M; i < Mup; ++i) {
  13301. S[i] = -INFINITY;
  13302. }
  13303. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13304. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13305. // k indices
  13306. const int ik1 = ic;
  13307. // S indices
  13308. const int i1 = ik1;
  13309. ggml_vec_dot_f32(neq0,
  13310. S + i1, 0,
  13311. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13312. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13313. }
  13314. // scale
  13315. ggml_vec_scale_f32(masked_begin, S, scale);
  13316. for (int64_t i = masked_begin; i < M; i++) {
  13317. S[i] = -INFINITY;
  13318. }
  13319. // softmax
  13320. // exclude known -INF S[..] values from max and loop
  13321. // dont forget to set their SM values to zero
  13322. {
  13323. float max = -INFINITY;
  13324. ggml_vec_max_f32(masked_begin, &max, S);
  13325. ggml_float sum = 0.0;
  13326. {
  13327. #ifdef GGML_SOFT_MAX_ACCELERATE
  13328. max = -max;
  13329. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13330. vvexpf(SM, SM, &Mup);
  13331. ggml_vec_sum_f32(Mup, &sum, SM);
  13332. #else
  13333. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13334. #endif
  13335. }
  13336. assert(sum > 0.0);
  13337. sum = 1.0/sum;
  13338. ggml_vec_scale_f32(masked_begin, SM, sum);
  13339. }
  13340. // step-by-step explanation
  13341. {
  13342. // forward-process shape grads from backward process
  13343. // parallel_for ik2,ik3:
  13344. // for irep:
  13345. // iq2 = ik2 + irep*nek2
  13346. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13347. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13348. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13349. // for iq1:
  13350. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13351. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13352. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13353. // S0 = -Inf [D,1,1,1]
  13354. // ~S1[i] = dot(kcur[:D,i], qcur)
  13355. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13356. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13357. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13358. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13359. // ~S5[i] = dot(vcur[:,i], S4)
  13360. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13361. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13362. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13363. // dst backward-/ grad[dst] = d
  13364. //
  13365. // output gradients with their dependencies:
  13366. //
  13367. // grad[kcur] = grad[S1].T @ qcur
  13368. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13369. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13370. // grad[S4] = grad[S5] @ vcur
  13371. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13372. // grad[qcur] = grad[S1] @ kcur
  13373. // grad[vcur] = grad[S5].T @ S4
  13374. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13375. //
  13376. // in post-order:
  13377. //
  13378. // S1 = qcur @ kcur.T
  13379. // S2 = S1 * scale
  13380. // S3 = diag_mask_inf(S2, P)
  13381. // S4 = softmax(S3)
  13382. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13383. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13384. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13385. // grad[qcur] = grad[S1] @ kcur
  13386. // grad[kcur] = grad[S1].T @ qcur
  13387. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13388. //
  13389. // using less variables (SM=S4):
  13390. //
  13391. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13392. // SM = softmax(S)
  13393. // S = d[:D,iq1,iq2,iq3] @ vcur
  13394. // dot_SM_gradSM = dot(SM, S)
  13395. // S = SM * (S - dot(SM, S))
  13396. // S = diag_mask_zero(S, P) * scale
  13397. //
  13398. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13399. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13400. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13401. }
  13402. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13403. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13404. // for ic:
  13405. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13406. // exclude known future zero S[..] values from operation
  13407. ggml_vec_set_f32(masked_begin, S, 0);
  13408. for (int64_t ic = 0; ic < D; ++ic) {
  13409. ggml_vec_mad_f32(masked_begin,
  13410. S,
  13411. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13412. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13413. }
  13414. // S = SM * (S - dot(SM, S))
  13415. float dot_SM_gradSM = 0;
  13416. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13417. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13418. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13419. // S = diag_mask_zero(S, P) * scale
  13420. // already done by above ggml_vec_set_f32
  13421. // exclude known zero S[..] values from operation
  13422. ggml_vec_scale_f32(masked_begin, S, scale);
  13423. // S shape [M,1]
  13424. // SM shape [M,1]
  13425. // kcur shape [D,M]
  13426. // qcur shape [D,1]
  13427. // vcur shape [M,D]
  13428. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13429. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13430. // for ic:
  13431. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13432. // exclude known zero S[..] values from loop
  13433. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13434. ggml_vec_mad_f32(D,
  13435. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13436. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13437. S[ic]);
  13438. }
  13439. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13440. // for ic:
  13441. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13442. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13443. // exclude known zero S[..] values from loop
  13444. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13445. ggml_vec_mad_f32(D,
  13446. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13447. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13448. S[ic]);
  13449. }
  13450. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13451. // for ic:
  13452. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13453. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13454. // exclude known zero SM[..] values from mad
  13455. for (int64_t ic = 0; ic < D; ++ic) {
  13456. ggml_vec_mad_f32(masked_begin,
  13457. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13458. SM,
  13459. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13460. }
  13461. }
  13462. }
  13463. }
  13464. }
  13465. static void ggml_compute_forward_flash_attn_back(
  13466. const struct ggml_compute_params * params,
  13467. const bool masked,
  13468. struct ggml_tensor * dst) {
  13469. const struct ggml_tensor * q = dst->src[0];
  13470. switch (q->type) {
  13471. case GGML_TYPE_F32:
  13472. {
  13473. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13474. } break;
  13475. default:
  13476. {
  13477. GGML_ASSERT(false);
  13478. } break;
  13479. }
  13480. }
  13481. // ggml_compute_forward_ssm_conv
  13482. static void ggml_compute_forward_ssm_conv_f32(
  13483. const struct ggml_compute_params * params,
  13484. struct ggml_tensor * dst) {
  13485. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13486. return;
  13487. }
  13488. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13489. const struct ggml_tensor * src1 = dst->src[1]; // x
  13490. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13491. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13492. const int ith = params->ith;
  13493. const int nth = params->nth;
  13494. const int nc = src2->ne[0]; // d_conv
  13495. const int nr = src0->ne[1]; // d_inner
  13496. const int n_t = src1->ne[1]; // n_tokens
  13497. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13498. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13499. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13500. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13501. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13502. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13503. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13504. // for use with the destination state offset between sequences
  13505. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13506. // rows per thread
  13507. const int dr = (nr + nth - 1)/nth;
  13508. // row range for this thread
  13509. const int ir0 = dr*ith;
  13510. const int ir1 = MIN(ir0 + dr, nr);
  13511. const int ir = ir1 - ir0;
  13512. if (n_kv > 1) {
  13513. // multiple sequences means it's hard to know when it's the first time a state is read,
  13514. // so copy them all over to the destination, just to be sure.
  13515. for (int i3 = 0; i3 < n_kv; ++i3) {
  13516. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13517. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13518. // can't use memcpy because of d_conv vs d_conv - 1
  13519. for (int i1 = 0; i1 < ir; ++i1) {
  13520. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13521. // copy s0 to last (d_conv - 1) columns of s
  13522. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13523. }
  13524. }
  13525. }
  13526. }
  13527. for (int i2 = 0; i2 < n_t; ++i2) {
  13528. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13529. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13530. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13531. float * s0; // {d_conv - 1, d_inner, n_kv}
  13532. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13533. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13534. int ne0s0;
  13535. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13536. // avoid needing to copy the state for the first token
  13537. if (i2 == 0) {
  13538. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13539. ne0s0 = src0->ne[0];
  13540. } else {
  13541. // the source is the last (d_conv - 1) columns of the destination
  13542. s0 = s + 1;
  13543. ne0s0 = nc;
  13544. }
  13545. // d_inner
  13546. for (int i1 = 0; i1 < ir; ++i1) {
  13547. // shift state left
  13548. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13549. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13550. }
  13551. // insert x on the last column
  13552. s[(nc - 1) + i1*nc] = x0[i1];
  13553. }
  13554. // handle copies when there are multiple output states
  13555. for (int i3 = 1; i3 < n_kv; ++i3) {
  13556. int32_t seq = sq[i3];
  13557. if (0 <= seq && seq < n_kv) {
  13558. float * s1 = s + (seq - sq[0])*nc*nr;
  13559. memcpy(s1, s, nc*ir*sizeof(float));
  13560. } else {
  13561. // stop at negative or too big seq_ids
  13562. break;
  13563. }
  13564. }
  13565. // it seems a little faster when this is separate from the state shift
  13566. for (int i1 = 0; i1 < ir; ++i1) {
  13567. // rowwise dot product
  13568. float sumf = 0.0f;
  13569. for (int i0 = 0; i0 < nc; ++i0) {
  13570. int i = i0 + i1*nc;
  13571. sumf += s[i] * c[i];
  13572. }
  13573. x[i1] = sumf;
  13574. }
  13575. }
  13576. }
  13577. static void ggml_compute_forward_ssm_conv(
  13578. const struct ggml_compute_params * params,
  13579. struct ggml_tensor * dst) {
  13580. switch (dst->src[0]->type) {
  13581. case GGML_TYPE_F32:
  13582. {
  13583. ggml_compute_forward_ssm_conv_f32(params, dst);
  13584. } break;
  13585. default:
  13586. {
  13587. GGML_ASSERT(false);
  13588. } break;
  13589. }
  13590. }
  13591. // ggml_compute_forward_ssm_scan
  13592. static void ggml_compute_forward_ssm_scan_f32(
  13593. const struct ggml_compute_params * params,
  13594. struct ggml_tensor * dst) {
  13595. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13596. return;
  13597. }
  13598. const struct ggml_tensor * src0 = dst->src[0]; // s
  13599. const struct ggml_tensor * src1 = dst->src[1]; // x
  13600. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13601. const struct ggml_tensor * src3 = dst->src[3]; // A
  13602. const struct ggml_tensor * src4 = dst->src[4]; // B
  13603. const struct ggml_tensor * src5 = dst->src[5]; // C
  13604. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13605. const int ith = params->ith;
  13606. const int nth = params->nth;
  13607. const int64_t nc = src0->ne[0]; // d_state
  13608. const int64_t nr = src0->ne[1]; // d_inner
  13609. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13610. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13611. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13612. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13613. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13614. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13615. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13616. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13617. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13618. // required for the dot product between s and C, and when copying the states
  13619. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13620. // required for per-sequence offsets for states
  13621. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13622. // required to get correct offset for state destination (i.e. src1->nb[2])
  13623. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13624. // rows per thread
  13625. const int dr = (nr + nth - 1)/nth;
  13626. // row range for this thread
  13627. const int ir0 = dr*ith;
  13628. const int ir1 = MIN(ir0 + dr, nr);
  13629. const int ir = ir1 - ir0;
  13630. if (n_kv > 1) {
  13631. // it's hard to know if the source states have already been copied
  13632. // when there are multiple, so copy them already.
  13633. for (int i3 = 0; i3 < n_kv; ++i3) {
  13634. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13635. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13636. memcpy(s, s0, nc*ir*sizeof(float));
  13637. }
  13638. }
  13639. for (int i2 = 0; i2 < n_t; ++i2) {
  13640. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13641. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13642. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13643. float * s0;
  13644. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13645. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13646. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13647. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13648. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13649. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13650. // avoid needing to copy the state for the first token
  13651. if (i2 == 0) {
  13652. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13653. } else {
  13654. // otherwise the source is the same as the destination
  13655. s0 = s;
  13656. }
  13657. // d_inner
  13658. for (int i1 = 0; i1 < ir; ++i1) {
  13659. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13660. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13661. float x_dt = x[i1] * dt_soft_plus;
  13662. float sumf = 0.0f;
  13663. // d_state
  13664. for (int i0 = 0; i0 < nc; ++i0) {
  13665. int i = i0 + i1*nc;
  13666. // state = prev_state * dA + dB * x
  13667. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13668. // y = rowwise_dotprod(state, C)
  13669. sumf += state * C[i0];
  13670. s[i] = state;
  13671. }
  13672. y[i1] = sumf;
  13673. }
  13674. // handle copies when there are multiple output states
  13675. for (int i3 = 1; i3 < n_kv; ++i3) {
  13676. int32_t seq = sq[i3];
  13677. if (0 <= seq && seq < n_kv) {
  13678. float * s1 = s + (seq - sq[0])*nc*nr;
  13679. memcpy(s1, s, nc*ir*sizeof(float));
  13680. } else {
  13681. // stop at negative or too big seq_ids
  13682. break;
  13683. }
  13684. }
  13685. }
  13686. }
  13687. static void ggml_compute_forward_ssm_scan(
  13688. const struct ggml_compute_params * params,
  13689. struct ggml_tensor * dst) {
  13690. switch (dst->src[0]->type) {
  13691. case GGML_TYPE_F32:
  13692. {
  13693. ggml_compute_forward_ssm_scan_f32(params, dst);
  13694. } break;
  13695. default:
  13696. {
  13697. GGML_ASSERT(false);
  13698. } break;
  13699. }
  13700. }
  13701. // ggml_compute_forward_win_part
  13702. static void ggml_compute_forward_win_part_f32(
  13703. const struct ggml_compute_params * params,
  13704. struct ggml_tensor * dst) {
  13705. const struct ggml_tensor * src0 = dst->src[0];
  13706. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13707. return;
  13708. }
  13709. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13710. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13711. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13712. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13713. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13714. assert(ne00 == ne0);
  13715. assert(ne3 == nep0*nep1);
  13716. // TODO: optimize / multi-thread
  13717. for (int py = 0; py < nep1; ++py) {
  13718. for (int px = 0; px < nep0; ++px) {
  13719. const int64_t i3 = py*nep0 + px;
  13720. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13721. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13722. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13723. const int64_t i02 = py*w + i2;
  13724. const int64_t i01 = px*w + i1;
  13725. const int64_t i00 = i0;
  13726. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13727. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13728. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13729. ((float *) dst->data)[i] = 0.0f;
  13730. } else {
  13731. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13732. }
  13733. }
  13734. }
  13735. }
  13736. }
  13737. }
  13738. }
  13739. static void ggml_compute_forward_win_part(
  13740. const struct ggml_compute_params * params,
  13741. struct ggml_tensor * dst) {
  13742. const struct ggml_tensor * src0 = dst->src[0];
  13743. switch (src0->type) {
  13744. case GGML_TYPE_F32:
  13745. {
  13746. ggml_compute_forward_win_part_f32(params, dst);
  13747. } break;
  13748. default:
  13749. {
  13750. GGML_ASSERT(false);
  13751. } break;
  13752. }
  13753. }
  13754. // ggml_compute_forward_win_unpart
  13755. static void ggml_compute_forward_win_unpart_f32(
  13756. const struct ggml_compute_params * params,
  13757. struct ggml_tensor * dst) {
  13758. const struct ggml_tensor * src0 = dst->src[0];
  13759. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13760. return;
  13761. }
  13762. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13763. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13764. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13765. // padding
  13766. const int px = (w - ne1%w)%w;
  13767. //const int py = (w - ne2%w)%w;
  13768. const int npx = (px + ne1)/w;
  13769. //const int npy = (py + ne2)/w;
  13770. assert(ne0 == ne00);
  13771. // TODO: optimize / multi-thread
  13772. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13773. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13774. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13775. const int ip2 = i2/w;
  13776. const int ip1 = i1/w;
  13777. const int64_t i02 = i2%w;
  13778. const int64_t i01 = i1%w;
  13779. const int64_t i00 = i0;
  13780. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13781. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13782. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13783. }
  13784. }
  13785. }
  13786. }
  13787. static void ggml_compute_forward_win_unpart(
  13788. const struct ggml_compute_params * params,
  13789. struct ggml_tensor * dst) {
  13790. const struct ggml_tensor * src0 = dst->src[0];
  13791. switch (src0->type) {
  13792. case GGML_TYPE_F32:
  13793. {
  13794. ggml_compute_forward_win_unpart_f32(params, dst);
  13795. } break;
  13796. default:
  13797. {
  13798. GGML_ASSERT(false);
  13799. } break;
  13800. }
  13801. }
  13802. //gmml_compute_forward_unary
  13803. static void ggml_compute_forward_unary(
  13804. const struct ggml_compute_params * params,
  13805. struct ggml_tensor * dst) {
  13806. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13807. switch (op) {
  13808. case GGML_UNARY_OP_ABS:
  13809. {
  13810. ggml_compute_forward_abs(params, dst);
  13811. } break;
  13812. case GGML_UNARY_OP_SGN:
  13813. {
  13814. ggml_compute_forward_sgn(params, dst);
  13815. } break;
  13816. case GGML_UNARY_OP_NEG:
  13817. {
  13818. ggml_compute_forward_neg(params, dst);
  13819. } break;
  13820. case GGML_UNARY_OP_STEP:
  13821. {
  13822. ggml_compute_forward_step(params, dst);
  13823. } break;
  13824. case GGML_UNARY_OP_TANH:
  13825. {
  13826. ggml_compute_forward_tanh(params, dst);
  13827. } break;
  13828. case GGML_UNARY_OP_ELU:
  13829. {
  13830. ggml_compute_forward_elu(params, dst);
  13831. } break;
  13832. case GGML_UNARY_OP_RELU:
  13833. {
  13834. ggml_compute_forward_relu(params, dst);
  13835. } break;
  13836. case GGML_UNARY_OP_SIGMOID:
  13837. {
  13838. ggml_compute_forward_sigmoid(params, dst);
  13839. } break;
  13840. case GGML_UNARY_OP_GELU:
  13841. {
  13842. ggml_compute_forward_gelu(params, dst);
  13843. } break;
  13844. case GGML_UNARY_OP_GELU_QUICK:
  13845. {
  13846. ggml_compute_forward_gelu_quick(params, dst);
  13847. } break;
  13848. case GGML_UNARY_OP_SILU:
  13849. {
  13850. ggml_compute_forward_silu(params, dst);
  13851. } break;
  13852. case GGML_UNARY_OP_HARDSWISH:
  13853. {
  13854. ggml_compute_forward_hardswish(params, dst);
  13855. } break;
  13856. case GGML_UNARY_OP_HARDSIGMOID:
  13857. {
  13858. ggml_compute_forward_hardsigmoid(params, dst);
  13859. } break;
  13860. default:
  13861. {
  13862. GGML_ASSERT(false);
  13863. } break;
  13864. }
  13865. }
  13866. // ggml_compute_forward_get_rel_pos
  13867. static void ggml_compute_forward_get_rel_pos_f16(
  13868. const struct ggml_compute_params * params,
  13869. struct ggml_tensor * dst) {
  13870. const struct ggml_tensor * src0 = dst->src[0];
  13871. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13872. return;
  13873. }
  13874. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13875. GGML_TENSOR_UNARY_OP_LOCALS
  13876. const int64_t w = ne1;
  13877. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13878. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13879. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13880. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13881. const int64_t pos = (w - i1 - 1) + i2;
  13882. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13883. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13884. }
  13885. }
  13886. }
  13887. }
  13888. static void ggml_compute_forward_get_rel_pos(
  13889. const struct ggml_compute_params * params,
  13890. struct ggml_tensor * dst) {
  13891. const struct ggml_tensor * src0 = dst->src[0];
  13892. switch (src0->type) {
  13893. case GGML_TYPE_F16:
  13894. case GGML_TYPE_BF16:
  13895. {
  13896. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13897. } break;
  13898. default:
  13899. {
  13900. GGML_ASSERT(false);
  13901. } break;
  13902. }
  13903. }
  13904. // ggml_compute_forward_add_rel_pos
  13905. static void ggml_compute_forward_add_rel_pos_f32(
  13906. const struct ggml_compute_params * params,
  13907. struct ggml_tensor * dst) {
  13908. const struct ggml_tensor * src0 = dst->src[0];
  13909. const struct ggml_tensor * src1 = dst->src[1];
  13910. const struct ggml_tensor * src2 = dst->src[2];
  13911. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13912. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13913. if (params->ith != 0) {
  13914. return;
  13915. }
  13916. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13917. return;
  13918. }
  13919. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13920. return;
  13921. }
  13922. int64_t t0 = ggml_perf_time_us();
  13923. UNUSED(t0);
  13924. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13925. float * src1_data = (float *) src1->data;
  13926. float * src2_data = (float *) src2->data;
  13927. float * dst_data = (float *) dst->data;
  13928. const int64_t ne10 = src1->ne[0];
  13929. const int64_t ne11 = src1->ne[1];
  13930. const int64_t ne12 = src1->ne[2];
  13931. const int64_t ne13 = src1->ne[3];
  13932. const int ith = params->ith;
  13933. const int nth = params->nth;
  13934. // total patches in dst
  13935. const int np = ne13;
  13936. // patches per thread
  13937. const int dp = (np + nth - 1)/nth;
  13938. // patch range for this thread
  13939. const int ip0 = dp*ith;
  13940. const int ip1 = MIN(ip0 + dp, np);
  13941. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13942. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13943. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13944. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13945. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13946. const int64_t jp0 = jp1 + i10;
  13947. const float src1_e = src1_data[jp0];
  13948. const float src2_e = src2_data[jp0];
  13949. const int64_t jdh = jp0 * ne10;
  13950. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13951. for (int64_t j = 0; j < ne10; ++j) {
  13952. dst_data[jdh + j ] += src2_e;
  13953. dst_data[jdw + j*ne10] += src1_e;
  13954. }
  13955. }
  13956. }
  13957. }
  13958. }
  13959. }
  13960. static void ggml_compute_forward_add_rel_pos(
  13961. const struct ggml_compute_params * params,
  13962. struct ggml_tensor * dst) {
  13963. const struct ggml_tensor * src0 = dst->src[0];
  13964. switch (src0->type) {
  13965. case GGML_TYPE_F32:
  13966. {
  13967. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13968. } break;
  13969. default:
  13970. {
  13971. GGML_ASSERT(false);
  13972. } break;
  13973. }
  13974. }
  13975. // ggml_compute_forward_map_unary
  13976. static void ggml_compute_forward_map_unary_f32(
  13977. const struct ggml_compute_params * params,
  13978. struct ggml_tensor * dst,
  13979. const ggml_unary_op_f32_t fun) {
  13980. const struct ggml_tensor * src0 = dst->src[0];
  13981. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13982. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13983. return;
  13984. }
  13985. const int n = ggml_nrows(src0);
  13986. const int nc = src0->ne[0];
  13987. assert( dst->nb[0] == sizeof(float));
  13988. assert(src0->nb[0] == sizeof(float));
  13989. for (int i = 0; i < n; i++) {
  13990. fun(nc,
  13991. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13992. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13993. }
  13994. }
  13995. static void ggml_compute_forward_map_unary(
  13996. const struct ggml_compute_params * params,
  13997. struct ggml_tensor * dst,
  13998. const ggml_unary_op_f32_t fun) {
  13999. const struct ggml_tensor * src0 = dst->src[0];
  14000. switch (src0->type) {
  14001. case GGML_TYPE_F32:
  14002. {
  14003. ggml_compute_forward_map_unary_f32(params, dst, fun);
  14004. } break;
  14005. default:
  14006. {
  14007. GGML_ASSERT(false);
  14008. } break;
  14009. }
  14010. }
  14011. // ggml_compute_forward_map_binary
  14012. static void ggml_compute_forward_map_binary_f32(
  14013. const struct ggml_compute_params * params,
  14014. struct ggml_tensor * dst,
  14015. const ggml_binary_op_f32_t fun) {
  14016. const struct ggml_tensor * src0 = dst->src[0];
  14017. const struct ggml_tensor * src1 = dst->src[1];
  14018. assert(params->ith == 0);
  14019. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14020. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14021. return;
  14022. }
  14023. const int n = ggml_nrows(src0);
  14024. const int nc = src0->ne[0];
  14025. assert( dst->nb[0] == sizeof(float));
  14026. assert(src0->nb[0] == sizeof(float));
  14027. assert(src1->nb[0] == sizeof(float));
  14028. for (int i = 0; i < n; i++) {
  14029. fun(nc,
  14030. (float *) ((char *) dst->data + i*( dst->nb[1])),
  14031. (float *) ((char *) src0->data + i*(src0->nb[1])),
  14032. (float *) ((char *) src1->data + i*(src1->nb[1])));
  14033. }
  14034. }
  14035. static void ggml_compute_forward_map_binary(
  14036. const struct ggml_compute_params * params,
  14037. struct ggml_tensor * dst,
  14038. const ggml_binary_op_f32_t fun) {
  14039. const struct ggml_tensor * src0 = dst->src[0];
  14040. switch (src0->type) {
  14041. case GGML_TYPE_F32:
  14042. {
  14043. ggml_compute_forward_map_binary_f32(params, dst, fun);
  14044. } break;
  14045. default:
  14046. {
  14047. GGML_ASSERT(false);
  14048. } break;
  14049. }
  14050. }
  14051. // ggml_compute_forward_map_custom1
  14052. static void ggml_compute_forward_map_custom1_f32(
  14053. const struct ggml_compute_params * params,
  14054. struct ggml_tensor * dst,
  14055. const ggml_custom1_op_f32_t fun) {
  14056. const struct ggml_tensor * a = dst->src[0];
  14057. assert(params->ith == 0);
  14058. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14059. return;
  14060. }
  14061. fun(dst, a);
  14062. }
  14063. // ggml_compute_forward_map_custom2
  14064. static void ggml_compute_forward_map_custom2_f32(
  14065. const struct ggml_compute_params * params,
  14066. struct ggml_tensor * dst,
  14067. const ggml_custom2_op_f32_t fun) {
  14068. const struct ggml_tensor * a = dst->src[0];
  14069. const struct ggml_tensor * b = dst->src[1];
  14070. assert(params->ith == 0);
  14071. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14072. return;
  14073. }
  14074. fun(dst, a, b);
  14075. }
  14076. // ggml_compute_forward_map_custom3
  14077. static void ggml_compute_forward_map_custom3_f32(
  14078. const struct ggml_compute_params * params,
  14079. struct ggml_tensor * dst,
  14080. const ggml_custom3_op_f32_t fun) {
  14081. const struct ggml_tensor * a = dst->src[0];
  14082. const struct ggml_tensor * b = dst->src[1];
  14083. const struct ggml_tensor * c = dst->src[1];
  14084. assert(params->ith == 0);
  14085. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14086. return;
  14087. }
  14088. fun(dst, a, b, c);
  14089. }
  14090. // ggml_compute_forward_map_custom1
  14091. static void ggml_compute_forward_map_custom1(
  14092. const struct ggml_compute_params * params,
  14093. struct ggml_tensor * dst) {
  14094. const struct ggml_tensor * a = dst->src[0];
  14095. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14096. return;
  14097. }
  14098. struct ggml_map_custom1_op_params p;
  14099. memcpy(&p, dst->op_params, sizeof(p));
  14100. p.fun(dst, a, params->ith, params->nth, p.userdata);
  14101. }
  14102. // ggml_compute_forward_map_custom2
  14103. static void ggml_compute_forward_map_custom2(
  14104. const struct ggml_compute_params * params,
  14105. struct ggml_tensor * dst) {
  14106. const struct ggml_tensor * a = dst->src[0];
  14107. const struct ggml_tensor * b = dst->src[1];
  14108. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14109. return;
  14110. }
  14111. struct ggml_map_custom2_op_params p;
  14112. memcpy(&p, dst->op_params, sizeof(p));
  14113. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  14114. }
  14115. // ggml_compute_forward_map_custom3
  14116. static void ggml_compute_forward_map_custom3(
  14117. const struct ggml_compute_params * params,
  14118. struct ggml_tensor * dst) {
  14119. const struct ggml_tensor * a = dst->src[0];
  14120. const struct ggml_tensor * b = dst->src[1];
  14121. const struct ggml_tensor * c = dst->src[2];
  14122. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14123. return;
  14124. }
  14125. struct ggml_map_custom3_op_params p;
  14126. memcpy(&p, dst->op_params, sizeof(p));
  14127. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  14128. }
  14129. // ggml_compute_forward_cross_entropy_loss
  14130. static void ggml_compute_forward_cross_entropy_loss_f32(
  14131. const struct ggml_compute_params * params,
  14132. struct ggml_tensor * dst) {
  14133. const struct ggml_tensor * src0 = dst->src[0];
  14134. const struct ggml_tensor * src1 = dst->src[1];
  14135. GGML_ASSERT(ggml_is_contiguous(src0));
  14136. GGML_ASSERT(ggml_is_contiguous(src1));
  14137. GGML_ASSERT(ggml_is_scalar(dst));
  14138. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  14139. const int ith = params->ith;
  14140. const int nth = params->nth;
  14141. float * sums = (float *) params->wdata;
  14142. // TODO: handle transposed/permuted matrices
  14143. const int nc = src0->ne[0];
  14144. const int nr = ggml_nrows(src0);
  14145. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  14146. if (params->type == GGML_TASK_TYPE_INIT) {
  14147. if (ith == 0) {
  14148. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  14149. }
  14150. return;
  14151. }
  14152. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  14153. if (ith == 0) {
  14154. float * dp = (float *) dst->data;
  14155. ggml_vec_sum_f32(nth, dp, sums);
  14156. dp[0] *= -1.0f / (float) nr;
  14157. }
  14158. return;
  14159. }
  14160. const double eps = 1e-9;
  14161. // rows per thread
  14162. const int dr = (nr + nth - 1)/nth;
  14163. // row range for this thread
  14164. const int ir0 = dr*ith;
  14165. const int ir1 = MIN(ir0 + dr, nr);
  14166. for (int i1 = ir0; i1 < ir1; i1++) {
  14167. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14168. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14169. float * st = ((float *) params->wdata) + nth + ith*nc;
  14170. #ifndef NDEBUG
  14171. for (int i = 0; i < nc; ++i) {
  14172. //printf("p[%d] = %f\n", i, p[i]);
  14173. assert(!isnan(s0[i]));
  14174. assert(!isnan(s1[i]));
  14175. }
  14176. #endif
  14177. // soft_max
  14178. float max = -INFINITY;
  14179. ggml_vec_max_f32(nc, &max, s0);
  14180. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  14181. assert(sum > 0.0);
  14182. sum = (1.0 - eps) / sum;
  14183. // avoid log(0) by rescaling from [0..1] to [eps..1]
  14184. ggml_vec_scale_f32(nc, st, sum);
  14185. ggml_vec_add1_f32(nc, st, st, eps);
  14186. ggml_vec_log_f32(nc, st, st);
  14187. ggml_vec_mul_f32(nc, st, st, s1);
  14188. float st_sum = 0;
  14189. ggml_vec_sum_f32(nc, &st_sum, st);
  14190. sums[ith] += st_sum;
  14191. #ifndef NDEBUG
  14192. for (int i = 0; i < nc; ++i) {
  14193. assert(!isnan(st[i]));
  14194. assert(!isinf(st[i]));
  14195. }
  14196. #endif
  14197. }
  14198. }
  14199. static void ggml_compute_forward_cross_entropy_loss(
  14200. const struct ggml_compute_params * params,
  14201. struct ggml_tensor * dst) {
  14202. const struct ggml_tensor * src0 = dst->src[0];
  14203. switch (src0->type) {
  14204. case GGML_TYPE_F32:
  14205. {
  14206. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  14207. } break;
  14208. default:
  14209. {
  14210. GGML_ASSERT(false);
  14211. } break;
  14212. }
  14213. }
  14214. // ggml_compute_forward_cross_entropy_loss_back
  14215. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  14216. const struct ggml_compute_params * params,
  14217. struct ggml_tensor * dst) {
  14218. const struct ggml_tensor * src0 = dst->src[0];
  14219. const struct ggml_tensor * src1 = dst->src[1];
  14220. const struct ggml_tensor * opt0 = dst->src[2];
  14221. GGML_ASSERT(ggml_is_contiguous(dst));
  14222. GGML_ASSERT(ggml_is_contiguous(src0));
  14223. GGML_ASSERT(ggml_is_contiguous(src1));
  14224. GGML_ASSERT(ggml_is_contiguous(opt0));
  14225. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14226. const int64_t ith = params->ith;
  14227. const int64_t nth = params->nth;
  14228. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14229. return;
  14230. }
  14231. const double eps = 1e-9;
  14232. // TODO: handle transposed/permuted matrices
  14233. const int64_t nc = src0->ne[0];
  14234. const int64_t nr = ggml_nrows(src0);
  14235. // rows per thread
  14236. const int64_t dr = (nr + nth - 1)/nth;
  14237. // row range for this thread
  14238. const int64_t ir0 = dr*ith;
  14239. const int64_t ir1 = MIN(ir0 + dr, nr);
  14240. float * d = (float *) opt0->data;
  14241. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  14242. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  14243. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14244. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14245. #ifndef NDEBUG
  14246. for (int i = 0; i < nc; ++i) {
  14247. //printf("p[%d] = %f\n", i, p[i]);
  14248. assert(!isnan(s0[i]));
  14249. assert(!isnan(s1[i]));
  14250. }
  14251. #endif
  14252. // soft_max
  14253. float max = -INFINITY;
  14254. ggml_vec_max_f32(nc, &max, s0);
  14255. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14256. assert(sum > 0.0);
  14257. sum = (1.0 - eps) / sum;
  14258. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14259. ggml_vec_scale_f32(nc, ds0, sum);
  14260. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14261. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14262. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14263. #ifndef NDEBUG
  14264. for (int i = 0; i < nc; ++i) {
  14265. assert(!isnan(ds0[i]));
  14266. assert(!isinf(ds0[i]));
  14267. }
  14268. #endif
  14269. }
  14270. }
  14271. static void ggml_compute_forward_cross_entropy_loss_back(
  14272. const struct ggml_compute_params * params,
  14273. struct ggml_tensor * dst) {
  14274. const struct ggml_tensor * src0 = dst->src[0];
  14275. switch (src0->type) {
  14276. case GGML_TYPE_F32:
  14277. {
  14278. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14279. } break;
  14280. default:
  14281. {
  14282. GGML_ASSERT(false);
  14283. } break;
  14284. }
  14285. }
  14286. /////////////////////////////////
  14287. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14288. GGML_ASSERT(params);
  14289. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14290. return;
  14291. }
  14292. switch (tensor->op) {
  14293. case GGML_OP_DUP:
  14294. {
  14295. ggml_compute_forward_dup(params, tensor);
  14296. } break;
  14297. case GGML_OP_ADD:
  14298. {
  14299. ggml_compute_forward_add(params, tensor);
  14300. } break;
  14301. case GGML_OP_ADD1:
  14302. {
  14303. ggml_compute_forward_add1(params, tensor);
  14304. } break;
  14305. case GGML_OP_ACC:
  14306. {
  14307. ggml_compute_forward_acc(params, tensor);
  14308. } break;
  14309. case GGML_OP_SUB:
  14310. {
  14311. ggml_compute_forward_sub(params, tensor);
  14312. } break;
  14313. case GGML_OP_MUL:
  14314. {
  14315. ggml_compute_forward_mul(params, tensor);
  14316. } break;
  14317. case GGML_OP_DIV:
  14318. {
  14319. ggml_compute_forward_div(params, tensor);
  14320. } break;
  14321. case GGML_OP_SQR:
  14322. {
  14323. ggml_compute_forward_sqr(params, tensor);
  14324. } break;
  14325. case GGML_OP_SQRT:
  14326. {
  14327. ggml_compute_forward_sqrt(params, tensor);
  14328. } break;
  14329. case GGML_OP_LOG:
  14330. {
  14331. ggml_compute_forward_log(params, tensor);
  14332. } break;
  14333. case GGML_OP_SUM:
  14334. {
  14335. ggml_compute_forward_sum(params, tensor);
  14336. } break;
  14337. case GGML_OP_SUM_ROWS:
  14338. {
  14339. ggml_compute_forward_sum_rows(params, tensor);
  14340. } break;
  14341. case GGML_OP_MEAN:
  14342. {
  14343. ggml_compute_forward_mean(params, tensor);
  14344. } break;
  14345. case GGML_OP_ARGMAX:
  14346. {
  14347. ggml_compute_forward_argmax(params, tensor);
  14348. } break;
  14349. case GGML_OP_REPEAT:
  14350. {
  14351. ggml_compute_forward_repeat(params, tensor);
  14352. } break;
  14353. case GGML_OP_REPEAT_BACK:
  14354. {
  14355. ggml_compute_forward_repeat_back(params, tensor);
  14356. } break;
  14357. case GGML_OP_CONCAT:
  14358. {
  14359. ggml_compute_forward_concat(params, tensor);
  14360. } break;
  14361. case GGML_OP_SILU_BACK:
  14362. {
  14363. ggml_compute_forward_silu_back(params, tensor);
  14364. } break;
  14365. case GGML_OP_NORM:
  14366. {
  14367. ggml_compute_forward_norm(params, tensor);
  14368. } break;
  14369. case GGML_OP_RMS_NORM:
  14370. {
  14371. ggml_compute_forward_rms_norm(params, tensor);
  14372. } break;
  14373. case GGML_OP_RMS_NORM_BACK:
  14374. {
  14375. ggml_compute_forward_rms_norm_back(params, tensor);
  14376. } break;
  14377. case GGML_OP_GROUP_NORM:
  14378. {
  14379. ggml_compute_forward_group_norm(params, tensor);
  14380. } break;
  14381. case GGML_OP_MUL_MAT:
  14382. {
  14383. ggml_compute_forward_mul_mat(params, tensor, state);
  14384. } break;
  14385. case GGML_OP_MUL_MAT_ID:
  14386. {
  14387. ggml_compute_forward_mul_mat_id(params, tensor);
  14388. } break;
  14389. case GGML_OP_OUT_PROD:
  14390. {
  14391. ggml_compute_forward_out_prod(params, tensor);
  14392. } break;
  14393. case GGML_OP_SCALE:
  14394. {
  14395. ggml_compute_forward_scale(params, tensor);
  14396. } break;
  14397. case GGML_OP_SET:
  14398. {
  14399. ggml_compute_forward_set(params, tensor);
  14400. } break;
  14401. case GGML_OP_CPY:
  14402. {
  14403. ggml_compute_forward_cpy(params, tensor);
  14404. } break;
  14405. case GGML_OP_CONT:
  14406. {
  14407. ggml_compute_forward_cont(params, tensor);
  14408. } break;
  14409. case GGML_OP_RESHAPE:
  14410. {
  14411. ggml_compute_forward_reshape(params, tensor);
  14412. } break;
  14413. case GGML_OP_VIEW:
  14414. {
  14415. ggml_compute_forward_view(params, tensor);
  14416. } break;
  14417. case GGML_OP_PERMUTE:
  14418. {
  14419. ggml_compute_forward_permute(params, tensor);
  14420. } break;
  14421. case GGML_OP_TRANSPOSE:
  14422. {
  14423. ggml_compute_forward_transpose(params, tensor);
  14424. } break;
  14425. case GGML_OP_GET_ROWS:
  14426. {
  14427. ggml_compute_forward_get_rows(params, tensor);
  14428. } break;
  14429. case GGML_OP_GET_ROWS_BACK:
  14430. {
  14431. ggml_compute_forward_get_rows_back(params, tensor);
  14432. } break;
  14433. case GGML_OP_DIAG:
  14434. {
  14435. ggml_compute_forward_diag(params, tensor);
  14436. } break;
  14437. case GGML_OP_DIAG_MASK_INF:
  14438. {
  14439. ggml_compute_forward_diag_mask_inf(params, tensor);
  14440. } break;
  14441. case GGML_OP_DIAG_MASK_ZERO:
  14442. {
  14443. ggml_compute_forward_diag_mask_zero(params, tensor);
  14444. } break;
  14445. case GGML_OP_SOFT_MAX:
  14446. {
  14447. ggml_compute_forward_soft_max(params, tensor);
  14448. } break;
  14449. case GGML_OP_SOFT_MAX_BACK:
  14450. {
  14451. ggml_compute_forward_soft_max_back(params, tensor);
  14452. } break;
  14453. case GGML_OP_ROPE:
  14454. {
  14455. ggml_compute_forward_rope(params, tensor);
  14456. } break;
  14457. case GGML_OP_ROPE_BACK:
  14458. {
  14459. ggml_compute_forward_rope_back(params, tensor);
  14460. } break;
  14461. case GGML_OP_CLAMP:
  14462. {
  14463. ggml_compute_forward_clamp(params, tensor);
  14464. } break;
  14465. case GGML_OP_CONV_TRANSPOSE_1D:
  14466. {
  14467. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14468. } break;
  14469. case GGML_OP_IM2COL:
  14470. {
  14471. ggml_compute_forward_im2col(params, tensor);
  14472. } break;
  14473. case GGML_OP_CONV_TRANSPOSE_2D:
  14474. {
  14475. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14476. } break;
  14477. case GGML_OP_POOL_1D:
  14478. {
  14479. ggml_compute_forward_pool_1d(params, tensor);
  14480. } break;
  14481. case GGML_OP_POOL_2D:
  14482. {
  14483. ggml_compute_forward_pool_2d(params, tensor);
  14484. } break;
  14485. case GGML_OP_UPSCALE:
  14486. {
  14487. ggml_compute_forward_upscale(params, tensor);
  14488. } break;
  14489. case GGML_OP_PAD:
  14490. {
  14491. ggml_compute_forward_pad(params, tensor);
  14492. } break;
  14493. case GGML_OP_ARANGE:
  14494. {
  14495. ggml_compute_forward_arange(params, tensor);
  14496. } break;
  14497. case GGML_OP_TIMESTEP_EMBEDDING:
  14498. {
  14499. ggml_compute_forward_timestep_embedding(params, tensor);
  14500. } break;
  14501. case GGML_OP_ARGSORT:
  14502. {
  14503. ggml_compute_forward_argsort(params, tensor);
  14504. } break;
  14505. case GGML_OP_LEAKY_RELU:
  14506. {
  14507. ggml_compute_forward_leaky_relu(params, tensor);
  14508. } break;
  14509. case GGML_OP_FLASH_ATTN:
  14510. {
  14511. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  14512. GGML_ASSERT(t == 0 || t == 1);
  14513. const bool masked = t != 0;
  14514. ggml_compute_forward_flash_attn(params, masked, tensor);
  14515. } break;
  14516. case GGML_OP_FLASH_ATTN_EXT:
  14517. {
  14518. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14519. } break;
  14520. case GGML_OP_FLASH_FF:
  14521. {
  14522. ggml_compute_forward_flash_ff(params, tensor);
  14523. } break;
  14524. case GGML_OP_FLASH_ATTN_BACK:
  14525. {
  14526. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14527. GGML_ASSERT(t == 0 || t == 1);
  14528. bool masked = t != 0;
  14529. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14530. } break;
  14531. case GGML_OP_SSM_CONV:
  14532. {
  14533. ggml_compute_forward_ssm_conv(params, tensor);
  14534. } break;
  14535. case GGML_OP_SSM_SCAN:
  14536. {
  14537. ggml_compute_forward_ssm_scan(params, tensor);
  14538. } break;
  14539. case GGML_OP_WIN_PART:
  14540. {
  14541. ggml_compute_forward_win_part(params, tensor);
  14542. } break;
  14543. case GGML_OP_WIN_UNPART:
  14544. {
  14545. ggml_compute_forward_win_unpart(params, tensor);
  14546. } break;
  14547. case GGML_OP_UNARY:
  14548. {
  14549. ggml_compute_forward_unary(params, tensor);
  14550. } break;
  14551. case GGML_OP_GET_REL_POS:
  14552. {
  14553. ggml_compute_forward_get_rel_pos(params, tensor);
  14554. } break;
  14555. case GGML_OP_ADD_REL_POS:
  14556. {
  14557. ggml_compute_forward_add_rel_pos(params, tensor);
  14558. } break;
  14559. case GGML_OP_MAP_UNARY:
  14560. {
  14561. ggml_unary_op_f32_t fun;
  14562. memcpy(&fun, tensor->op_params, sizeof(fun));
  14563. ggml_compute_forward_map_unary(params, tensor, fun);
  14564. }
  14565. break;
  14566. case GGML_OP_MAP_BINARY:
  14567. {
  14568. ggml_binary_op_f32_t fun;
  14569. memcpy(&fun, tensor->op_params, sizeof(fun));
  14570. ggml_compute_forward_map_binary(params, tensor, fun);
  14571. }
  14572. break;
  14573. case GGML_OP_MAP_CUSTOM1_F32:
  14574. {
  14575. ggml_custom1_op_f32_t fun;
  14576. memcpy(&fun, tensor->op_params, sizeof(fun));
  14577. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14578. }
  14579. break;
  14580. case GGML_OP_MAP_CUSTOM2_F32:
  14581. {
  14582. ggml_custom2_op_f32_t fun;
  14583. memcpy(&fun, tensor->op_params, sizeof(fun));
  14584. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14585. }
  14586. break;
  14587. case GGML_OP_MAP_CUSTOM3_F32:
  14588. {
  14589. ggml_custom3_op_f32_t fun;
  14590. memcpy(&fun, tensor->op_params, sizeof(fun));
  14591. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14592. }
  14593. break;
  14594. case GGML_OP_MAP_CUSTOM1:
  14595. {
  14596. ggml_compute_forward_map_custom1(params, tensor);
  14597. }
  14598. break;
  14599. case GGML_OP_MAP_CUSTOM2:
  14600. {
  14601. ggml_compute_forward_map_custom2(params, tensor);
  14602. }
  14603. break;
  14604. case GGML_OP_MAP_CUSTOM3:
  14605. {
  14606. ggml_compute_forward_map_custom3(params, tensor);
  14607. }
  14608. break;
  14609. case GGML_OP_CROSS_ENTROPY_LOSS:
  14610. {
  14611. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14612. }
  14613. break;
  14614. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14615. {
  14616. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14617. }
  14618. break;
  14619. case GGML_OP_NONE:
  14620. {
  14621. // nop
  14622. } break;
  14623. case GGML_OP_COUNT:
  14624. {
  14625. GGML_ASSERT(false);
  14626. } break;
  14627. }
  14628. }
  14629. ////////////////////////////////////////////////////////////////////////////////
  14630. static size_t ggml_hash_size(size_t min_sz) {
  14631. // next primes after powers of two
  14632. static const size_t primes[] = {
  14633. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14634. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14635. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14636. 16777259, 33554467, 67108879, 134217757, 268435459,
  14637. 536870923, 1073741827, 2147483659
  14638. };
  14639. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14640. // find the smallest prime that is larger or equal to min_sz
  14641. size_t l = 0;
  14642. size_t r = n_primes;
  14643. while (l < r) {
  14644. size_t m = (l + r)/2;
  14645. if (primes[m] < min_sz) {
  14646. l = m + 1;
  14647. } else {
  14648. r = m;
  14649. }
  14650. }
  14651. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14652. return sz;
  14653. }
  14654. static size_t ggml_hash(const void * p) {
  14655. return (size_t)p;
  14656. }
  14657. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14658. size_t h = ggml_hash(key) % hash_set.size;
  14659. // linear probing
  14660. size_t i = h;
  14661. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14662. i = (i + 1) % hash_set.size;
  14663. if (i == h) {
  14664. // visited all hash table entries -> not found
  14665. return GGML_HASHTABLE_FULL;
  14666. }
  14667. }
  14668. return i;
  14669. }
  14670. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14671. size_t i = ggml_hash_find(hash_set, key);
  14672. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14673. }
  14674. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14675. size_t i = ggml_hash_find(hash_set, key);
  14676. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14677. if (hash_set.keys[i] == key) {
  14678. return GGML_HASHTABLE_ALREADY_EXISTS;
  14679. }
  14680. // insert
  14681. GGML_ASSERT(hash_set.keys[i] == NULL);
  14682. hash_set.keys[i] = key;
  14683. return i;
  14684. }
  14685. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14686. size_t i = ggml_hash_find(hash_set, key);
  14687. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14688. hash_set.keys[i] = key;
  14689. return i;
  14690. }
  14691. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14692. size = ggml_hash_size(size);
  14693. struct ggml_hash_set result;
  14694. result.size = size;
  14695. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14696. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14697. return result;
  14698. }
  14699. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14700. GGML_FREE(hash_set.keys);
  14701. }
  14702. struct hash_map {
  14703. struct ggml_hash_set set;
  14704. struct ggml_tensor ** vals;
  14705. };
  14706. static struct hash_map * ggml_new_hash_map(size_t size) {
  14707. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14708. result->set = ggml_hash_set_new(size);
  14709. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14710. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14711. return result;
  14712. }
  14713. static void ggml_hash_map_free(struct hash_map * map) {
  14714. ggml_hash_set_free(map->set);
  14715. GGML_FREE(map->vals);
  14716. GGML_FREE(map);
  14717. }
  14718. // gradient checkpointing
  14719. static struct ggml_tensor * ggml_recompute_graph_node(
  14720. struct ggml_context * ctx,
  14721. struct ggml_cgraph * graph,
  14722. struct hash_map * replacements,
  14723. struct ggml_tensor * node) {
  14724. if (node == NULL) {
  14725. return NULL;
  14726. }
  14727. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14728. return node;
  14729. }
  14730. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14731. return node;
  14732. }
  14733. int count_children = 0;
  14734. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14735. if (node->src[k]) {
  14736. ++count_children;
  14737. }
  14738. }
  14739. if (count_children == 0) {
  14740. return node;
  14741. }
  14742. size_t i = ggml_hash_find(replacements->set, node);
  14743. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14744. if (replacements->set.keys[i] == node) {
  14745. return replacements->vals[i];
  14746. }
  14747. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14748. // insert clone into replacements
  14749. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14750. replacements->set.keys[i] = node;
  14751. replacements->vals[i] = clone;
  14752. clone->op = node->op;
  14753. clone->grad = node->grad;
  14754. clone->flags = node->flags;
  14755. clone->extra = node->extra;
  14756. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14757. clone->nb[k] = node->nb[k];
  14758. }
  14759. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14760. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14761. }
  14762. if (node->view_src != NULL) {
  14763. clone->data = (node->view_src->data == NULL)
  14764. ? NULL // view_src not yet allocated
  14765. : (char *) node->view_src->data // view_src already allocated
  14766. + node->view_offs;
  14767. clone->view_src = node->view_src;
  14768. clone->view_offs = node->view_offs;
  14769. }
  14770. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14771. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14772. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14773. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14774. return clone;
  14775. }
  14776. void ggml_build_backward_gradient_checkpointing(
  14777. struct ggml_context * ctx,
  14778. struct ggml_cgraph * gf,
  14779. struct ggml_cgraph * gb,
  14780. struct ggml_cgraph * gb_tmp,
  14781. struct ggml_tensor * * checkpoints,
  14782. int n_checkpoints) {
  14783. ggml_graph_cpy(gf, gb_tmp);
  14784. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14785. if (n_checkpoints <= 0) {
  14786. ggml_graph_cpy(gb_tmp, gb);
  14787. return;
  14788. }
  14789. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14790. // insert checkpoints in replacements
  14791. for (int i = 0; i < n_checkpoints; ++i) {
  14792. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14793. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14794. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14795. replacements->set.keys[k] = checkpoints[i];
  14796. replacements->vals[k] = checkpoints[i];
  14797. }
  14798. ggml_graph_cpy(gf, gb);
  14799. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14800. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14801. // by recomputing them from checkpoints
  14802. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14803. struct ggml_tensor * node = gb_tmp->nodes[i];
  14804. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14805. // insert new tensors recomputing src, reusing already made replacements,
  14806. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14807. // recurse for input tensors,
  14808. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14809. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14810. }
  14811. // insert rewritten backward node with replacements made into resulting backward graph gb
  14812. ggml_build_forward_expand(gb, node);
  14813. }
  14814. ggml_hash_map_free(replacements);
  14815. }
  14816. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14817. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14818. if (ggml_hash_contains(zero_table, a)) {
  14819. return b;
  14820. } else {
  14821. return ggml_add_impl(ctx, a, b, false);
  14822. }
  14823. }
  14824. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14825. if (ggml_hash_contains(zero_table, a)) {
  14826. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14827. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14828. } else {
  14829. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14830. }
  14831. }
  14832. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14833. if (ggml_hash_contains(zero_table, a)) {
  14834. return ggml_repeat(ctx, b, a);
  14835. } else {
  14836. return ggml_add1_impl(ctx, a, b, false);
  14837. }
  14838. }
  14839. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14840. if (ggml_hash_contains(zero_table, a)) {
  14841. return ggml_neg(ctx, b);
  14842. } else {
  14843. return ggml_sub_impl(ctx, a, b, false);
  14844. }
  14845. }
  14846. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14847. struct ggml_tensor * src0 = tensor->src[0];
  14848. struct ggml_tensor * src1 = tensor->src[1];
  14849. switch (tensor->op) {
  14850. case GGML_OP_DUP:
  14851. {
  14852. if (src0->grad) {
  14853. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14854. }
  14855. } break;
  14856. case GGML_OP_ADD:
  14857. {
  14858. if (src0->grad) {
  14859. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14860. }
  14861. if (src1->grad) {
  14862. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14863. }
  14864. } break;
  14865. case GGML_OP_ADD1:
  14866. {
  14867. if (src0->grad) {
  14868. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14869. }
  14870. if (src1->grad) {
  14871. src1->grad = ggml_add_or_set(ctx,
  14872. src1->grad,
  14873. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14874. zero_table);
  14875. }
  14876. } break;
  14877. case GGML_OP_ACC:
  14878. {
  14879. if (src0->grad) {
  14880. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14881. }
  14882. if (src1->grad) {
  14883. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14884. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14885. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14886. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14887. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14888. tensor->grad,
  14889. src1->grad->ne[0],
  14890. src1->grad->ne[1],
  14891. src1->grad->ne[2],
  14892. src1->grad->ne[3],
  14893. nb1, nb2, nb3, offset);
  14894. src1->grad =
  14895. ggml_add_or_set(ctx,
  14896. src1->grad,
  14897. ggml_reshape(ctx,
  14898. ggml_cont(ctx, tensor_grad_view),
  14899. src1->grad),
  14900. zero_table);
  14901. }
  14902. } break;
  14903. case GGML_OP_SUB:
  14904. {
  14905. if (src0->grad) {
  14906. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14907. }
  14908. if (src1->grad) {
  14909. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14910. }
  14911. } break;
  14912. case GGML_OP_MUL:
  14913. {
  14914. if (src0->grad) {
  14915. src0->grad =
  14916. ggml_add_or_set(ctx,
  14917. src0->grad,
  14918. ggml_mul(ctx, src1, tensor->grad),
  14919. zero_table);
  14920. }
  14921. if (src1->grad) {
  14922. src1->grad =
  14923. ggml_add_or_set(ctx,
  14924. src1->grad,
  14925. ggml_mul(ctx, src0, tensor->grad),
  14926. zero_table);
  14927. }
  14928. } break;
  14929. case GGML_OP_DIV:
  14930. {
  14931. if (src0->grad) {
  14932. src0->grad =
  14933. ggml_add_or_set(ctx,
  14934. src0->grad,
  14935. ggml_div(ctx, tensor->grad, src1),
  14936. zero_table);
  14937. }
  14938. if (src1->grad) {
  14939. src1->grad =
  14940. ggml_sub_or_set(ctx,
  14941. src1->grad,
  14942. ggml_mul(ctx,
  14943. tensor->grad,
  14944. ggml_div(ctx, tensor, src1)),
  14945. zero_table);
  14946. }
  14947. } break;
  14948. case GGML_OP_SQR:
  14949. {
  14950. if (src0->grad) {
  14951. src0->grad =
  14952. ggml_add_or_set(ctx,
  14953. src0->grad,
  14954. ggml_scale(ctx,
  14955. ggml_mul(ctx, src0, tensor->grad),
  14956. 2.0f),
  14957. zero_table);
  14958. }
  14959. } break;
  14960. case GGML_OP_SQRT:
  14961. {
  14962. if (src0->grad) {
  14963. src0->grad =
  14964. ggml_add_or_set(ctx,
  14965. src0->grad,
  14966. ggml_scale(ctx,
  14967. ggml_div(ctx,
  14968. tensor->grad,
  14969. tensor),
  14970. 0.5f),
  14971. zero_table);
  14972. }
  14973. } break;
  14974. case GGML_OP_LOG:
  14975. {
  14976. if (src0->grad) {
  14977. src0->grad =
  14978. ggml_add_or_set(ctx,
  14979. src0->grad,
  14980. ggml_div(ctx,
  14981. tensor->grad,
  14982. src0),
  14983. zero_table);
  14984. }
  14985. } break;
  14986. case GGML_OP_SUM:
  14987. {
  14988. if (src0->grad) {
  14989. src0->grad =
  14990. ggml_add1_or_set(ctx,
  14991. src0->grad,
  14992. tensor->grad,
  14993. zero_table);
  14994. }
  14995. } break;
  14996. case GGML_OP_SUM_ROWS:
  14997. {
  14998. if (src0->grad) {
  14999. src0->grad =
  15000. ggml_add_or_set(ctx,
  15001. src0->grad,
  15002. ggml_repeat(ctx,
  15003. tensor->grad,
  15004. src0->grad),
  15005. zero_table);
  15006. }
  15007. } break;
  15008. case GGML_OP_MEAN:
  15009. case GGML_OP_ARGMAX:
  15010. {
  15011. GGML_ASSERT(false); // TODO: implement
  15012. } break;
  15013. case GGML_OP_REPEAT:
  15014. {
  15015. // necessary for llama
  15016. if (src0->grad) {
  15017. src0->grad = ggml_add_or_set(ctx,
  15018. src0->grad,
  15019. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  15020. zero_table);
  15021. }
  15022. } break;
  15023. case GGML_OP_REPEAT_BACK:
  15024. {
  15025. if (src0->grad) {
  15026. // TODO: test this
  15027. src0->grad = ggml_add_or_set(ctx,
  15028. src0->grad,
  15029. ggml_repeat(ctx, tensor->grad, src0->grad),
  15030. zero_table);
  15031. }
  15032. } break;
  15033. case GGML_OP_CONCAT:
  15034. {
  15035. GGML_ASSERT(false); // TODO: implement
  15036. } break;
  15037. case GGML_OP_SILU_BACK:
  15038. {
  15039. GGML_ASSERT(false); // TODO: not implemented
  15040. } break;
  15041. case GGML_OP_NORM:
  15042. {
  15043. GGML_ASSERT(false); // TODO: not implemented
  15044. } break;
  15045. case GGML_OP_RMS_NORM:
  15046. {
  15047. // necessary for llama
  15048. if (src0->grad) {
  15049. float eps;
  15050. memcpy(&eps, tensor->op_params, sizeof(float));
  15051. src0->grad = ggml_add_or_set(ctx,
  15052. src0->grad,
  15053. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  15054. zero_table);
  15055. }
  15056. } break;
  15057. case GGML_OP_RMS_NORM_BACK:
  15058. {
  15059. GGML_ASSERT(false); // TODO: not implemented
  15060. } break;
  15061. case GGML_OP_GROUP_NORM:
  15062. {
  15063. GGML_ASSERT(false); // TODO: not implemented
  15064. } break;
  15065. case GGML_OP_MUL_MAT:
  15066. {
  15067. // https://cs231n.github.io/optimization-2/#staged
  15068. // # forward pass
  15069. // s0 = np.random.randn(5, 10)
  15070. // s1 = np.random.randn(10, 3)
  15071. // t = s0.dot(s1)
  15072. // # now suppose we had the gradient on t from above in the circuit
  15073. // dt = np.random.randn(*t.shape) # same shape as t
  15074. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  15075. // ds1 = t.T.dot(dt)
  15076. // tensor.shape [m,p,qq,rr]
  15077. // src0.shape [n,m,q1,r1]
  15078. // src1.shape [n,p,qq,rr]
  15079. // necessary for llama
  15080. if (src0->grad) {
  15081. struct ggml_tensor * s1_tg =
  15082. ggml_out_prod(ctx, // [n,m,qq,rr]
  15083. src1, // [n,p,qq,rr]
  15084. tensor->grad); // [m,p,qq,rr]
  15085. const int64_t qq = s1_tg->ne[2];
  15086. const int64_t rr = s1_tg->ne[3];
  15087. const int64_t q1 = src0->ne[2];
  15088. const int64_t r1 = src0->ne[3];
  15089. const bool ne2_broadcasted = qq > q1;
  15090. const bool ne3_broadcasted = rr > r1;
  15091. if (ne2_broadcasted || ne3_broadcasted) {
  15092. // sum broadcast repetitions of s1_tg into shape of src0
  15093. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  15094. }
  15095. src0->grad =
  15096. ggml_add_or_set(ctx,
  15097. src0->grad, // [n,m,q1,r1]
  15098. s1_tg, // [n,m,q1,r1]
  15099. zero_table);
  15100. }
  15101. if (src1->grad) {
  15102. src1->grad =
  15103. ggml_add_or_set(ctx,
  15104. src1->grad, // [n,p,qq,rr]
  15105. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  15106. // ggml_cont(ctx, // [m,n,q1,r1]
  15107. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  15108. // tensor->grad), // [m,p,qq,rr]
  15109. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  15110. // // avoid transpose of src0, rather transpose smaller tensor->grad
  15111. // // and then use ggml_out_prod
  15112. ggml_out_prod(ctx, // [n,p,qq,rr]
  15113. src0, // [n,m,q1,r1]
  15114. ggml_transpose(ctx, // [p,m,qq,rr]
  15115. tensor->grad)), // [m,p,qq,rr]
  15116. zero_table);
  15117. }
  15118. } break;
  15119. case GGML_OP_MUL_MAT_ID:
  15120. {
  15121. GGML_ASSERT(false); // TODO: not implemented
  15122. } break;
  15123. case GGML_OP_OUT_PROD:
  15124. {
  15125. GGML_ASSERT(false); // TODO: not implemented
  15126. } break;
  15127. case GGML_OP_SCALE:
  15128. {
  15129. // necessary for llama
  15130. if (src0->grad) {
  15131. float s;
  15132. memcpy(&s, tensor->op_params, sizeof(float));
  15133. src0->grad =
  15134. ggml_add_or_set(ctx,
  15135. src0->grad,
  15136. ggml_scale_impl(ctx, tensor->grad, s, false),
  15137. zero_table);
  15138. }
  15139. } break;
  15140. case GGML_OP_SET:
  15141. {
  15142. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15143. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15144. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15145. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15146. struct ggml_tensor * tensor_grad_view = NULL;
  15147. if (src0->grad || src1->grad) {
  15148. GGML_ASSERT(src0->type == tensor->type);
  15149. GGML_ASSERT(tensor->grad->type == tensor->type);
  15150. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  15151. tensor_grad_view = ggml_view_4d(ctx,
  15152. tensor->grad,
  15153. src1->grad->ne[0],
  15154. src1->grad->ne[1],
  15155. src1->grad->ne[2],
  15156. src1->grad->ne[3],
  15157. nb1, nb2, nb3, offset);
  15158. }
  15159. if (src0->grad) {
  15160. src0->grad = ggml_add_or_set(ctx,
  15161. src0->grad,
  15162. ggml_acc_impl(ctx,
  15163. tensor->grad,
  15164. ggml_neg(ctx, tensor_grad_view),
  15165. nb1, nb2, nb3, offset, false),
  15166. zero_table);
  15167. }
  15168. if (src1->grad) {
  15169. src1->grad =
  15170. ggml_add_or_set(ctx,
  15171. src1->grad,
  15172. ggml_reshape(ctx,
  15173. ggml_cont(ctx, tensor_grad_view),
  15174. src1->grad),
  15175. zero_table);
  15176. }
  15177. } break;
  15178. case GGML_OP_CPY:
  15179. {
  15180. // necessary for llama
  15181. // cpy overwrites value of src1 by src0 and returns view(src1)
  15182. // the overwriting is mathematically equivalent to:
  15183. // tensor = src0 * 1 + src1 * 0
  15184. if (src0->grad) {
  15185. // dsrc0 = dtensor * 1
  15186. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15187. }
  15188. if (src1->grad) {
  15189. // dsrc1 = dtensor * 0 -> noop
  15190. }
  15191. } break;
  15192. case GGML_OP_CONT:
  15193. {
  15194. // same as cpy
  15195. if (src0->grad) {
  15196. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15197. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15198. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15199. }
  15200. } break;
  15201. case GGML_OP_RESHAPE:
  15202. {
  15203. // necessary for llama
  15204. if (src0->grad) {
  15205. src0->grad =
  15206. ggml_add_or_set(ctx, src0->grad,
  15207. ggml_reshape(ctx,
  15208. ggml_is_contiguous(tensor->grad)
  15209. ? tensor->grad
  15210. : ggml_cont(ctx, tensor->grad),
  15211. src0->grad),
  15212. zero_table);
  15213. }
  15214. } break;
  15215. case GGML_OP_VIEW:
  15216. {
  15217. // necessary for llama
  15218. if (src0->grad) {
  15219. size_t offset;
  15220. memcpy(&offset, tensor->op_params, sizeof(offset));
  15221. size_t nb1 = tensor->nb[1];
  15222. size_t nb2 = tensor->nb[2];
  15223. size_t nb3 = tensor->nb[3];
  15224. if (src0->type != src0->grad->type) {
  15225. // gradient is typically F32, but src0 could be other type
  15226. size_t ng = ggml_element_size(src0->grad);
  15227. size_t n0 = ggml_element_size(src0);
  15228. GGML_ASSERT(offset % n0 == 0);
  15229. GGML_ASSERT(nb1 % n0 == 0);
  15230. GGML_ASSERT(nb2 % n0 == 0);
  15231. GGML_ASSERT(nb3 % n0 == 0);
  15232. offset = (offset / n0) * ng;
  15233. nb1 = (nb1 / n0) * ng;
  15234. nb2 = (nb2 / n0) * ng;
  15235. nb3 = (nb3 / n0) * ng;
  15236. }
  15237. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  15238. }
  15239. } break;
  15240. case GGML_OP_PERMUTE:
  15241. {
  15242. // necessary for llama
  15243. if (src0->grad) {
  15244. int32_t * axes = (int32_t *) tensor->op_params;
  15245. int axis0 = axes[0] & 0x3;
  15246. int axis1 = axes[1] & 0x3;
  15247. int axis2 = axes[2] & 0x3;
  15248. int axis3 = axes[3] & 0x3;
  15249. int axes_backward[4] = {0,0,0,0};
  15250. axes_backward[axis0] = 0;
  15251. axes_backward[axis1] = 1;
  15252. axes_backward[axis2] = 2;
  15253. axes_backward[axis3] = 3;
  15254. src0->grad =
  15255. ggml_add_or_set(ctx, src0->grad,
  15256. ggml_permute(ctx,
  15257. tensor->grad,
  15258. axes_backward[0],
  15259. axes_backward[1],
  15260. axes_backward[2],
  15261. axes_backward[3]),
  15262. zero_table);
  15263. }
  15264. } break;
  15265. case GGML_OP_TRANSPOSE:
  15266. {
  15267. // necessary for llama
  15268. if (src0->grad) {
  15269. src0->grad =
  15270. ggml_add_or_set(ctx, src0->grad,
  15271. ggml_transpose(ctx, tensor->grad),
  15272. zero_table);
  15273. }
  15274. } break;
  15275. case GGML_OP_GET_ROWS:
  15276. {
  15277. // necessary for llama (only for tokenizer)
  15278. if (src0->grad) {
  15279. src0->grad =
  15280. ggml_add_or_set(ctx, src0->grad,
  15281. // last ggml_get_rows_back argument src0->grad is only
  15282. // necessary to setup correct output shape
  15283. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15284. zero_table);
  15285. }
  15286. if (src1->grad) {
  15287. // noop
  15288. }
  15289. } break;
  15290. case GGML_OP_GET_ROWS_BACK:
  15291. {
  15292. GGML_ASSERT(false); // TODO: not implemented
  15293. } break;
  15294. case GGML_OP_DIAG:
  15295. {
  15296. GGML_ASSERT(false); // TODO: not implemented
  15297. } break;
  15298. case GGML_OP_DIAG_MASK_INF:
  15299. {
  15300. // necessary for llama
  15301. if (src0->grad) {
  15302. const int n_past = ((int32_t *) tensor->op_params)[0];
  15303. src0->grad =
  15304. ggml_add_or_set(ctx, src0->grad,
  15305. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15306. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15307. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15308. zero_table);
  15309. }
  15310. } break;
  15311. case GGML_OP_DIAG_MASK_ZERO:
  15312. {
  15313. // necessary for llama
  15314. if (src0->grad) {
  15315. const int n_past = ((int32_t *) tensor->op_params)[0];
  15316. src0->grad =
  15317. ggml_add_or_set(ctx, src0->grad,
  15318. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15319. zero_table);
  15320. }
  15321. } break;
  15322. case GGML_OP_SOFT_MAX:
  15323. {
  15324. // necessary for llama
  15325. if (src0->grad) {
  15326. src0->grad =
  15327. ggml_add_or_set(ctx, src0->grad,
  15328. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15329. zero_table);
  15330. }
  15331. } break;
  15332. case GGML_OP_SOFT_MAX_BACK:
  15333. {
  15334. GGML_ASSERT(false); // TODO: not implemented
  15335. } break;
  15336. case GGML_OP_ROPE:
  15337. {
  15338. // necessary for llama
  15339. if (src0->grad) {
  15340. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15341. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15342. const int mode = ((int32_t *) tensor->op_params)[2];
  15343. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15344. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15345. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15346. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15347. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15348. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15349. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15350. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15351. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15352. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15353. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15354. src0->grad = ggml_add_or_set(ctx,
  15355. src0->grad,
  15356. ggml_rope_back(ctx,
  15357. tensor->grad,
  15358. src1,
  15359. n_dims,
  15360. mode,
  15361. n_ctx,
  15362. n_orig_ctx,
  15363. freq_base,
  15364. freq_scale,
  15365. ext_factor,
  15366. attn_factor,
  15367. beta_fast,
  15368. beta_slow,
  15369. xpos_base,
  15370. xpos_down),
  15371. zero_table);
  15372. }
  15373. } break;
  15374. case GGML_OP_ROPE_BACK:
  15375. {
  15376. if (src0->grad) {
  15377. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15378. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15379. const int mode = ((int32_t *) tensor->op_params)[2];
  15380. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15381. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15382. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15383. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15384. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15385. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15386. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15387. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15388. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15389. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15390. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15391. src0->grad = ggml_add_or_set(ctx,
  15392. src0->grad,
  15393. ggml_rope_impl(ctx,
  15394. tensor->grad,
  15395. src1,
  15396. n_dims,
  15397. mode,
  15398. n_ctx,
  15399. n_orig_ctx,
  15400. freq_base,
  15401. freq_scale,
  15402. ext_factor,
  15403. attn_factor,
  15404. beta_fast,
  15405. beta_slow,
  15406. xpos_base,
  15407. xpos_down,
  15408. false),
  15409. zero_table);
  15410. }
  15411. } break;
  15412. case GGML_OP_CLAMP:
  15413. {
  15414. GGML_ASSERT(false); // TODO: not implemented
  15415. } break;
  15416. case GGML_OP_CONV_TRANSPOSE_1D:
  15417. {
  15418. GGML_ASSERT(false); // TODO: not implemented
  15419. } break;
  15420. case GGML_OP_IM2COL:
  15421. {
  15422. GGML_ASSERT(false); // TODO: not implemented
  15423. } break;
  15424. case GGML_OP_CONV_TRANSPOSE_2D:
  15425. {
  15426. GGML_ASSERT(false); // TODO: not implemented
  15427. } break;
  15428. case GGML_OP_POOL_1D:
  15429. {
  15430. GGML_ASSERT(false); // TODO: not implemented
  15431. } break;
  15432. case GGML_OP_POOL_2D:
  15433. {
  15434. GGML_ASSERT(false); // TODO: not implemented
  15435. } break;
  15436. case GGML_OP_UPSCALE:
  15437. {
  15438. GGML_ASSERT(false); // TODO: not implemented
  15439. } break;
  15440. case GGML_OP_PAD:
  15441. {
  15442. GGML_ASSERT(false); // TODO: not implemented
  15443. } break;
  15444. case GGML_OP_ARANGE:
  15445. {
  15446. GGML_ASSERT(false); // TODO: not implemented
  15447. } break;
  15448. case GGML_OP_TIMESTEP_EMBEDDING:
  15449. {
  15450. GGML_ASSERT(false); // TODO: not implemented
  15451. } break;
  15452. case GGML_OP_ARGSORT:
  15453. {
  15454. GGML_ASSERT(false); // TODO: not implemented
  15455. } break;
  15456. case GGML_OP_LEAKY_RELU:
  15457. {
  15458. GGML_ASSERT(false); // TODO: not implemented
  15459. } break;
  15460. case GGML_OP_FLASH_ATTN:
  15461. case GGML_OP_FLASH_ATTN_EXT:
  15462. {
  15463. struct ggml_tensor * flash_grad = NULL;
  15464. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15465. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15466. GGML_ASSERT(t == 0 || t == 1);
  15467. bool masked = t != 0;
  15468. flash_grad =
  15469. ggml_flash_attn_back(ctx,
  15470. src0,
  15471. src1,
  15472. tensor->src[2],
  15473. tensor->grad,
  15474. masked);
  15475. }
  15476. struct ggml_tensor * src2 = tensor->src[2];
  15477. const int64_t elem_q = ggml_nelements(src0);
  15478. const int64_t elem_k = ggml_nelements(src1);
  15479. const int64_t elem_v = ggml_nelements(src2);
  15480. enum ggml_type result_type = flash_grad->type;
  15481. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15482. const size_t tsize = ggml_type_size(result_type);
  15483. const size_t offs_q = 0;
  15484. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15485. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15486. if (src0->grad) {
  15487. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15488. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15489. src0->grad = ggml_add_or_set(ctx,
  15490. src0->grad,
  15491. grad_q,
  15492. zero_table);
  15493. }
  15494. if (src1->grad) {
  15495. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15496. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15497. src1->grad = ggml_add_or_set(ctx,
  15498. src1->grad,
  15499. grad_k,
  15500. zero_table);
  15501. }
  15502. if (src2->grad) {
  15503. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15504. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15505. src2->grad = ggml_add_or_set(ctx,
  15506. src2->grad,
  15507. grad_v,
  15508. zero_table);
  15509. }
  15510. } break;
  15511. case GGML_OP_FLASH_FF:
  15512. {
  15513. GGML_ASSERT(false); // not supported
  15514. } break;
  15515. case GGML_OP_FLASH_ATTN_BACK:
  15516. {
  15517. GGML_ASSERT(false); // not supported
  15518. } break;
  15519. case GGML_OP_SSM_CONV:
  15520. case GGML_OP_SSM_SCAN:
  15521. {
  15522. GGML_ASSERT(false); // TODO: not implemented
  15523. } break;
  15524. case GGML_OP_WIN_PART:
  15525. case GGML_OP_WIN_UNPART:
  15526. case GGML_OP_UNARY:
  15527. {
  15528. switch (ggml_get_unary_op(tensor)) {
  15529. case GGML_UNARY_OP_ABS:
  15530. {
  15531. if (src0->grad) {
  15532. src0->grad =
  15533. ggml_add_or_set(ctx,
  15534. src0->grad,
  15535. ggml_mul(ctx,
  15536. ggml_sgn(ctx, src0),
  15537. tensor->grad),
  15538. zero_table);
  15539. }
  15540. } break;
  15541. case GGML_UNARY_OP_SGN:
  15542. {
  15543. if (src0->grad) {
  15544. // noop
  15545. }
  15546. } break;
  15547. case GGML_UNARY_OP_NEG:
  15548. {
  15549. if (src0->grad) {
  15550. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15551. }
  15552. } break;
  15553. case GGML_UNARY_OP_STEP:
  15554. {
  15555. if (src0->grad) {
  15556. // noop
  15557. }
  15558. } break;
  15559. case GGML_UNARY_OP_TANH:
  15560. {
  15561. GGML_ASSERT(false); // TODO: not implemented
  15562. } break;
  15563. case GGML_UNARY_OP_ELU:
  15564. {
  15565. GGML_ASSERT(false); // TODO: not implemented
  15566. } break;
  15567. case GGML_UNARY_OP_RELU:
  15568. {
  15569. if (src0->grad) {
  15570. src0->grad = ggml_add_or_set(ctx,
  15571. src0->grad,
  15572. ggml_mul(ctx,
  15573. ggml_step(ctx, src0),
  15574. tensor->grad),
  15575. zero_table);
  15576. }
  15577. } break;
  15578. case GGML_UNARY_OP_SIGMOID:
  15579. {
  15580. GGML_ASSERT(false); // TODO: not implemented
  15581. } break;
  15582. case GGML_UNARY_OP_GELU:
  15583. {
  15584. GGML_ASSERT(false); // TODO: not implemented
  15585. } break;
  15586. case GGML_UNARY_OP_GELU_QUICK:
  15587. {
  15588. GGML_ASSERT(false); // TODO: not implemented
  15589. } break;
  15590. case GGML_UNARY_OP_SILU:
  15591. {
  15592. // necessary for llama
  15593. if (src0->grad) {
  15594. src0->grad = ggml_add_or_set(ctx,
  15595. src0->grad,
  15596. ggml_silu_back(ctx, src0, tensor->grad),
  15597. zero_table);
  15598. }
  15599. } break;
  15600. default:
  15601. GGML_ASSERT(false);
  15602. }
  15603. } break;
  15604. case GGML_OP_GET_REL_POS:
  15605. case GGML_OP_ADD_REL_POS:
  15606. case GGML_OP_MAP_UNARY:
  15607. case GGML_OP_MAP_BINARY:
  15608. case GGML_OP_MAP_CUSTOM1_F32:
  15609. case GGML_OP_MAP_CUSTOM2_F32:
  15610. case GGML_OP_MAP_CUSTOM3_F32:
  15611. case GGML_OP_MAP_CUSTOM1:
  15612. case GGML_OP_MAP_CUSTOM2:
  15613. case GGML_OP_MAP_CUSTOM3:
  15614. {
  15615. GGML_ASSERT(false); // not supported
  15616. } break;
  15617. case GGML_OP_CROSS_ENTROPY_LOSS:
  15618. {
  15619. if (src0->grad) {
  15620. src0->grad = ggml_add_or_set(ctx,
  15621. src0->grad,
  15622. ggml_cross_entropy_loss_back(ctx,
  15623. src0,
  15624. src1,
  15625. tensor->grad),
  15626. zero_table);
  15627. }
  15628. } break;
  15629. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15630. {
  15631. GGML_ASSERT(false); // not supported
  15632. } break;
  15633. case GGML_OP_NONE:
  15634. {
  15635. // nop
  15636. } break;
  15637. case GGML_OP_COUNT:
  15638. {
  15639. GGML_ASSERT(false);
  15640. } break;
  15641. }
  15642. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15643. if (tensor->src[i] && tensor->src[i]->grad) {
  15644. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15645. }
  15646. }
  15647. }
  15648. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15649. if (node->grad == NULL) {
  15650. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15651. // it can also happen during forward pass, if the user performs computations with constants
  15652. if (node->op != GGML_OP_NONE) {
  15653. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15654. }
  15655. }
  15656. // check if already visited
  15657. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15658. return;
  15659. }
  15660. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15661. const int k =
  15662. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15663. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15664. /* unknown order, just fall back to using i*/ i;
  15665. if (node->src[k]) {
  15666. ggml_visit_parents(cgraph, node->src[k]);
  15667. }
  15668. }
  15669. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15670. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15671. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15672. if (strlen(node->name) == 0) {
  15673. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15674. }
  15675. cgraph->leafs[cgraph->n_leafs] = node;
  15676. cgraph->n_leafs++;
  15677. } else {
  15678. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15679. if (strlen(node->name) == 0) {
  15680. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15681. }
  15682. cgraph->nodes[cgraph->n_nodes] = node;
  15683. if (cgraph->grads) {
  15684. cgraph->grads[cgraph->n_nodes] = node->grad;
  15685. }
  15686. cgraph->n_nodes++;
  15687. }
  15688. }
  15689. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15690. if (!expand) {
  15691. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15692. ggml_graph_clear(cgraph);
  15693. }
  15694. const int n0 = cgraph->n_nodes;
  15695. UNUSED(n0);
  15696. ggml_visit_parents(cgraph, tensor);
  15697. const int n_new = cgraph->n_nodes - n0;
  15698. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15699. if (n_new > 0) {
  15700. // the last added node should always be starting point
  15701. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15702. }
  15703. }
  15704. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15705. ggml_build_forward_impl(cgraph, tensor, true);
  15706. }
  15707. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15708. GGML_ASSERT(gf->n_nodes > 0);
  15709. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15710. if (keep) {
  15711. for (int i = 0; i < gf->n_nodes; i++) {
  15712. struct ggml_tensor * node = gf->nodes[i];
  15713. if (node->grad) {
  15714. node->grad = ggml_dup_tensor(ctx, node);
  15715. gf->grads[i] = node->grad;
  15716. }
  15717. }
  15718. }
  15719. // remember original gradients which start with zero values
  15720. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15721. for (int i = 0; i < gf->n_nodes; i++) {
  15722. if (gf->grads[i]) {
  15723. ggml_hash_insert(zero_table, gf->grads[i]);
  15724. }
  15725. }
  15726. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15727. struct ggml_tensor * node = gf->nodes[i];
  15728. // inplace operations to add gradients are not created by ggml_compute_backward
  15729. // use allocator to automatically make inplace operations
  15730. if (node->grad) {
  15731. ggml_compute_backward(ctx, node, zero_table);
  15732. }
  15733. }
  15734. for (int i = 0; i < gf->n_nodes; i++) {
  15735. struct ggml_tensor * node = gf->nodes[i];
  15736. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15737. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15738. ggml_build_forward_expand(gb, node->grad);
  15739. }
  15740. }
  15741. ggml_hash_set_free(zero_table);
  15742. }
  15743. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15744. size_t nbytes = sizeof(struct ggml_cgraph);
  15745. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15746. if (grads) {
  15747. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15748. }
  15749. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15750. return nbytes;
  15751. }
  15752. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15753. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15754. }
  15755. size_t ggml_graph_overhead(void) {
  15756. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15757. }
  15758. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15759. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15760. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15761. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15762. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15763. size_t hash_size = ggml_hash_size(size * 2);
  15764. struct ggml_tensor ** nodes_ptr = data_start;
  15765. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15766. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15767. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15768. // check that we allocated the correct amount of memory
  15769. assert(obj_size == (size_t) (
  15770. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15771. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15772. *cgraph = (struct ggml_cgraph) {
  15773. /*.size =*/ size,
  15774. /*.n_nodes =*/ 0,
  15775. /*.n_leafs =*/ 0,
  15776. /*.nodes =*/ nodes_ptr,
  15777. /*.grads =*/ grads_ptr,
  15778. /*.leafs =*/ leafs_ptr,
  15779. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15780. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15781. /*.perf_runs =*/ 0,
  15782. /*.perf_cycles =*/ 0,
  15783. /*.perf_time_us =*/ 0,
  15784. };
  15785. return cgraph;
  15786. }
  15787. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15788. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15789. }
  15790. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15791. struct ggml_cgraph cgraph = {
  15792. /*.size =*/ 0,
  15793. /*.n_nodes =*/ i1 - i0,
  15794. /*.n_leafs =*/ 0,
  15795. /*.nodes =*/ cgraph0->nodes + i0,
  15796. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15797. /*.leafs =*/ NULL,
  15798. /*.hash_table =*/ { 0, NULL },
  15799. /*.order =*/ cgraph0->order,
  15800. /*.perf_runs =*/ 0,
  15801. /*.perf_cycles =*/ 0,
  15802. /*.perf_time_us =*/ 0,
  15803. };
  15804. return cgraph;
  15805. }
  15806. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15807. GGML_ASSERT(dst->size >= src->n_leafs);
  15808. GGML_ASSERT(dst->size >= src->n_nodes);
  15809. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15810. dst->n_leafs = src->n_leafs;
  15811. dst->n_nodes = src->n_nodes;
  15812. dst->order = src->order;
  15813. for (int i = 0; i < src->n_leafs; ++i) {
  15814. dst->leafs[i] = src->leafs[i];
  15815. }
  15816. for (int i = 0; i < src->n_nodes; ++i) {
  15817. dst->nodes[i] = src->nodes[i];
  15818. }
  15819. if (src->grads) {
  15820. GGML_ASSERT(dst->grads != NULL);
  15821. for (int i = 0; i < src->n_nodes; ++i) {
  15822. dst->grads[i] = src->grads[i];
  15823. }
  15824. }
  15825. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15826. if (src->visited_hash_table.keys[i]) {
  15827. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15828. }
  15829. }
  15830. }
  15831. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15832. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15833. ggml_graph_cpy(cgraph, result);
  15834. return result;
  15835. }
  15836. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15837. GGML_ASSERT(cgraph->grads != NULL);
  15838. for (int i = 0; i < cgraph->n_nodes; i++) {
  15839. struct ggml_tensor * grad = cgraph->grads[i];
  15840. if (grad) {
  15841. ggml_set_zero(grad);
  15842. }
  15843. }
  15844. }
  15845. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15846. cgraph->n_leafs = 0;
  15847. cgraph->n_nodes = 0;
  15848. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15849. }
  15850. //
  15851. // thread data
  15852. //
  15853. // synchronization is done via busy loops
  15854. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15855. //
  15856. #ifdef __APPLE__
  15857. //#include <os/lock.h>
  15858. //
  15859. //typedef os_unfair_lock ggml_lock_t;
  15860. //
  15861. //#define ggml_lock_init(x) UNUSED(x)
  15862. //#define ggml_lock_destroy(x) UNUSED(x)
  15863. //#define ggml_lock_lock os_unfair_lock_lock
  15864. //#define ggml_lock_unlock os_unfair_lock_unlock
  15865. //
  15866. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15867. typedef int ggml_lock_t;
  15868. #define ggml_lock_init(x) UNUSED(x)
  15869. #define ggml_lock_destroy(x) UNUSED(x)
  15870. #define ggml_lock_lock(x) UNUSED(x)
  15871. #define ggml_lock_unlock(x) UNUSED(x)
  15872. #define GGML_LOCK_INITIALIZER 0
  15873. #define ggml_thread_create pthread_create
  15874. #define ggml_thread_join pthread_join
  15875. #else
  15876. //typedef pthread_spinlock_t ggml_lock_t;
  15877. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15878. //#define ggml_lock_destroy pthread_spin_destroy
  15879. //#define ggml_lock_lock pthread_spin_lock
  15880. //#define ggml_lock_unlock pthread_spin_unlock
  15881. typedef int ggml_lock_t;
  15882. #define ggml_lock_init(x) UNUSED(x)
  15883. #define ggml_lock_destroy(x) UNUSED(x)
  15884. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15885. #define ggml_lock_lock(x) _mm_pause()
  15886. #else
  15887. #define ggml_lock_lock(x) UNUSED(x)
  15888. #endif
  15889. #define ggml_lock_unlock(x) UNUSED(x)
  15890. #define GGML_LOCK_INITIALIZER 0
  15891. #define ggml_thread_create pthread_create
  15892. #define ggml_thread_join pthread_join
  15893. #endif
  15894. // Android's libc implementation "bionic" does not support setting affinity
  15895. #if defined(__gnu_linux__)
  15896. static void set_numa_thread_affinity(int thread_n) {
  15897. if (!ggml_is_numa()) {
  15898. return;
  15899. }
  15900. int node_num;
  15901. int rv;
  15902. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15903. switch(g_state.numa.numa_strategy) {
  15904. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15905. // run thread on node_num thread_n / (threads per node)
  15906. node_num = thread_n % g_state.numa.n_nodes;
  15907. break;
  15908. case GGML_NUMA_STRATEGY_ISOLATE:
  15909. // run thread on current_node
  15910. node_num = g_state.numa.current_node;
  15911. break;
  15912. case GGML_NUMA_STRATEGY_NUMACTL:
  15913. // use the cpuset that numactl gave us
  15914. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15915. if (rv) {
  15916. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15917. }
  15918. return;
  15919. default:
  15920. return;
  15921. }
  15922. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15923. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15924. CPU_ZERO_S(setsize, cpus);
  15925. for (size_t i = 0; i < node->n_cpus; ++i) {
  15926. CPU_SET_S(node->cpus[i], setsize, cpus);
  15927. }
  15928. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15929. if (rv) {
  15930. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15931. }
  15932. CPU_FREE(cpus);
  15933. }
  15934. static void clear_numa_thread_affinity(void) {
  15935. if (!ggml_is_numa()) {
  15936. return;
  15937. }
  15938. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15939. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15940. CPU_ZERO_S(setsize, cpus);
  15941. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15942. CPU_SET_S(i, setsize, cpus);
  15943. }
  15944. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15945. if (rv) {
  15946. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15947. }
  15948. CPU_FREE(cpus);
  15949. }
  15950. #else
  15951. // TODO: Windows etc.
  15952. // (the linux implementation may also work on BSD, someone should test)
  15953. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15954. static void clear_numa_thread_affinity(void) {}
  15955. #endif
  15956. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15957. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15958. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15959. node->perf_runs++;
  15960. node->perf_cycles += cycles_cur;
  15961. node->perf_time_us += time_us_cur;
  15962. }
  15963. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15964. int n_tasks = 0;
  15965. if (ggml_is_empty(node)) {
  15966. // no need to multi-thread a no-op
  15967. n_tasks = 1;
  15968. return n_tasks;
  15969. }
  15970. switch (node->op) {
  15971. case GGML_OP_CPY:
  15972. case GGML_OP_DUP:
  15973. case GGML_OP_ADD:
  15974. case GGML_OP_ADD1:
  15975. case GGML_OP_ACC:
  15976. {
  15977. n_tasks = n_threads;
  15978. } break;
  15979. case GGML_OP_SUB:
  15980. case GGML_OP_SQR:
  15981. case GGML_OP_SQRT:
  15982. case GGML_OP_LOG:
  15983. case GGML_OP_SUM:
  15984. case GGML_OP_SUM_ROWS:
  15985. case GGML_OP_MEAN:
  15986. case GGML_OP_ARGMAX:
  15987. case GGML_OP_REPEAT:
  15988. case GGML_OP_REPEAT_BACK:
  15989. case GGML_OP_LEAKY_RELU:
  15990. {
  15991. n_tasks = 1;
  15992. } break;
  15993. case GGML_OP_UNARY:
  15994. switch (ggml_get_unary_op(node)) {
  15995. case GGML_UNARY_OP_ABS:
  15996. case GGML_UNARY_OP_SGN:
  15997. case GGML_UNARY_OP_NEG:
  15998. case GGML_UNARY_OP_STEP:
  15999. case GGML_UNARY_OP_TANH:
  16000. case GGML_UNARY_OP_ELU:
  16001. case GGML_UNARY_OP_RELU:
  16002. case GGML_UNARY_OP_SIGMOID:
  16003. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  16004. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  16005. {
  16006. n_tasks = 1;
  16007. } break;
  16008. case GGML_UNARY_OP_GELU:
  16009. case GGML_UNARY_OP_GELU_QUICK:
  16010. case GGML_UNARY_OP_SILU:
  16011. {
  16012. n_tasks = n_threads;
  16013. } break;
  16014. default:
  16015. GGML_ASSERT(false);
  16016. }
  16017. break;
  16018. case GGML_OP_SILU_BACK:
  16019. case GGML_OP_MUL:
  16020. case GGML_OP_DIV:
  16021. case GGML_OP_NORM:
  16022. case GGML_OP_RMS_NORM:
  16023. case GGML_OP_RMS_NORM_BACK:
  16024. case GGML_OP_GROUP_NORM:
  16025. case GGML_OP_CONCAT:
  16026. {
  16027. n_tasks = n_threads;
  16028. } break;
  16029. case GGML_OP_MUL_MAT:
  16030. {
  16031. n_tasks = n_threads;
  16032. // TODO: use different scheduling for different matrix sizes
  16033. //const int nr0 = ggml_nrows(node->src[0]);
  16034. //const int nr1 = ggml_nrows(node->src[1]);
  16035. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  16036. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  16037. } break;
  16038. case GGML_OP_MUL_MAT_ID:
  16039. {
  16040. n_tasks = n_threads;
  16041. } break;
  16042. case GGML_OP_OUT_PROD:
  16043. {
  16044. n_tasks = n_threads;
  16045. } break;
  16046. case GGML_OP_GET_ROWS:
  16047. {
  16048. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  16049. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  16050. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  16051. } break;
  16052. case GGML_OP_SCALE:
  16053. case GGML_OP_SET:
  16054. case GGML_OP_CONT:
  16055. case GGML_OP_RESHAPE:
  16056. case GGML_OP_VIEW:
  16057. case GGML_OP_PERMUTE:
  16058. case GGML_OP_TRANSPOSE:
  16059. case GGML_OP_GET_ROWS_BACK:
  16060. case GGML_OP_DIAG:
  16061. {
  16062. n_tasks = 1;
  16063. } break;
  16064. case GGML_OP_DIAG_MASK_ZERO:
  16065. case GGML_OP_DIAG_MASK_INF:
  16066. case GGML_OP_SOFT_MAX_BACK:
  16067. case GGML_OP_ROPE:
  16068. case GGML_OP_ROPE_BACK:
  16069. case GGML_OP_ADD_REL_POS:
  16070. {
  16071. n_tasks = n_threads;
  16072. } break;
  16073. case GGML_OP_CLAMP:
  16074. {
  16075. n_tasks = 1; //TODO
  16076. } break;
  16077. case GGML_OP_SOFT_MAX:
  16078. {
  16079. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  16080. } break;
  16081. case GGML_OP_CONV_TRANSPOSE_1D:
  16082. {
  16083. n_tasks = n_threads;
  16084. } break;
  16085. case GGML_OP_IM2COL:
  16086. {
  16087. n_tasks = n_threads;
  16088. } break;
  16089. case GGML_OP_CONV_TRANSPOSE_2D:
  16090. {
  16091. n_tasks = n_threads;
  16092. } break;
  16093. case GGML_OP_POOL_1D:
  16094. case GGML_OP_POOL_2D:
  16095. {
  16096. n_tasks = 1;
  16097. } break;
  16098. case GGML_OP_UPSCALE:
  16099. {
  16100. n_tasks = n_threads;
  16101. } break;
  16102. case GGML_OP_PAD:
  16103. {
  16104. n_tasks = n_threads;
  16105. } break;
  16106. case GGML_OP_ARANGE:
  16107. {
  16108. n_tasks = n_threads;
  16109. } break;
  16110. case GGML_OP_TIMESTEP_EMBEDDING:
  16111. {
  16112. n_tasks = n_threads;
  16113. } break;
  16114. case GGML_OP_ARGSORT:
  16115. {
  16116. n_tasks = n_threads;
  16117. } break;
  16118. case GGML_OP_FLASH_ATTN:
  16119. case GGML_OP_FLASH_ATTN_EXT:
  16120. {
  16121. n_tasks = n_threads;
  16122. } break;
  16123. case GGML_OP_FLASH_FF:
  16124. {
  16125. n_tasks = n_threads;
  16126. } break;
  16127. case GGML_OP_FLASH_ATTN_BACK:
  16128. {
  16129. n_tasks = n_threads;
  16130. } break;
  16131. case GGML_OP_SSM_CONV:
  16132. case GGML_OP_SSM_SCAN:
  16133. {
  16134. n_tasks = n_threads;
  16135. } break;
  16136. case GGML_OP_WIN_PART:
  16137. case GGML_OP_WIN_UNPART:
  16138. case GGML_OP_GET_REL_POS:
  16139. case GGML_OP_MAP_UNARY:
  16140. case GGML_OP_MAP_BINARY:
  16141. case GGML_OP_MAP_CUSTOM1_F32:
  16142. case GGML_OP_MAP_CUSTOM2_F32:
  16143. case GGML_OP_MAP_CUSTOM3_F32:
  16144. {
  16145. n_tasks = 1;
  16146. } break;
  16147. case GGML_OP_MAP_CUSTOM1:
  16148. {
  16149. struct ggml_map_custom1_op_params p;
  16150. memcpy(&p, node->op_params, sizeof(p));
  16151. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16152. n_tasks = n_threads;
  16153. } else {
  16154. n_tasks = MIN(p.n_tasks, n_threads);
  16155. }
  16156. } break;
  16157. case GGML_OP_MAP_CUSTOM2:
  16158. {
  16159. struct ggml_map_custom2_op_params p;
  16160. memcpy(&p, node->op_params, sizeof(p));
  16161. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16162. n_tasks = n_threads;
  16163. } else {
  16164. n_tasks = MIN(p.n_tasks, n_threads);
  16165. }
  16166. } break;
  16167. case GGML_OP_MAP_CUSTOM3:
  16168. {
  16169. struct ggml_map_custom3_op_params p;
  16170. memcpy(&p, node->op_params, sizeof(p));
  16171. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16172. n_tasks = n_threads;
  16173. } else {
  16174. n_tasks = MIN(p.n_tasks, n_threads);
  16175. }
  16176. } break;
  16177. case GGML_OP_CROSS_ENTROPY_LOSS:
  16178. {
  16179. n_tasks = n_threads;
  16180. } break;
  16181. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16182. {
  16183. n_tasks = n_threads;
  16184. } break;
  16185. case GGML_OP_NONE:
  16186. {
  16187. n_tasks = 1;
  16188. } break;
  16189. case GGML_OP_COUNT:
  16190. {
  16191. GGML_ASSERT(false);
  16192. } break;
  16193. default:
  16194. {
  16195. fprintf(stderr, "%s: op not implemented: ", __func__);
  16196. if (node->op < GGML_OP_COUNT) {
  16197. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16198. } else {
  16199. fprintf(stderr, "%d\n", node->op);
  16200. }
  16201. GGML_ASSERT(false);
  16202. } break;
  16203. }
  16204. assert(n_tasks > 0);
  16205. return n_tasks;
  16206. }
  16207. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  16208. // wait for other threads to finish
  16209. const int last_node_n = * node_n;
  16210. while (true) {
  16211. if (do_yield) {
  16212. sched_yield();
  16213. }
  16214. * node_n = atomic_load(&state->shared->node_n);
  16215. if (* node_n != last_node_n) break;
  16216. #if defined(__SSE3__)
  16217. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16218. _mm_pause();
  16219. #endif
  16220. }
  16221. }
  16222. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  16223. // wait for other threads to finish
  16224. const int last_task_phase = * task_phase;
  16225. while (true) {
  16226. if (do_yield) {
  16227. sched_yield();
  16228. }
  16229. * task_phase = atomic_load(&state->shared->node_task);
  16230. if (* task_phase != last_task_phase) break;
  16231. #if defined(__SSE3__)
  16232. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16233. _mm_pause();
  16234. #endif
  16235. }
  16236. }
  16237. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16238. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16239. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  16240. const struct ggml_cplan * cplan = state->shared->cplan;
  16241. const int n_threads = state->shared->n_threads;
  16242. set_numa_thread_affinity(state->ith);
  16243. int node_n = -1;
  16244. int task_phase = GGML_TASK_TYPE_FINALIZE;
  16245. while (true) {
  16246. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16247. state->shared->node_n += 1;
  16248. state->ec = GGML_STATUS_ABORTED;
  16249. return 0;
  16250. }
  16251. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16252. // all other threads are finished and spinning
  16253. // do finalize and init here so we don't have synchronize again
  16254. struct ggml_compute_params params = {
  16255. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  16256. /*.ith =*/ 0,
  16257. /*.nth =*/ 0,
  16258. /*.wsize =*/ cplan->work_size,
  16259. /*.wdata =*/ cplan->work_data,
  16260. };
  16261. if (node_n != -1) {
  16262. /* FINALIZE */
  16263. struct ggml_tensor * node = cgraph->nodes[node_n];
  16264. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16265. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16266. ggml_compute_forward(&params, node, state);
  16267. }
  16268. ggml_graph_compute_perf_stats_node(node, state->shared);
  16269. }
  16270. // distribute new work or execute it direct if 1T
  16271. while (++node_n < cgraph->n_nodes) {
  16272. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16273. struct ggml_tensor * node = cgraph->nodes[node_n];
  16274. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16275. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16276. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16277. params.nth = n_tasks;
  16278. if (n_tasks == 1) {
  16279. /* INIT */
  16280. if (GGML_OP_HAS_INIT[node->op]) {
  16281. params.type = GGML_TASK_TYPE_INIT;
  16282. ggml_compute_forward(&params, node, state);
  16283. }
  16284. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16285. // they do something more efficient than spinning (?)
  16286. params.type = GGML_TASK_TYPE_COMPUTE;
  16287. ggml_compute_forward(&params, node, state);
  16288. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16289. params.type = GGML_TASK_TYPE_FINALIZE;
  16290. ggml_compute_forward(&params, node, state);
  16291. }
  16292. ggml_graph_compute_perf_stats_node(node, state->shared);
  16293. } else {
  16294. break;
  16295. }
  16296. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16297. break;
  16298. }
  16299. }
  16300. task_phase = GGML_TASK_TYPE_INIT;
  16301. atomic_store(&state->shared->n_active, n_threads);
  16302. atomic_store(&state->shared->node_n, node_n);
  16303. atomic_store(&state->shared->node_task, task_phase);
  16304. } else {
  16305. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16306. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16307. }
  16308. // check if we should stop
  16309. if (node_n >= cgraph->n_nodes) break;
  16310. /* INIT & COMPUTE */
  16311. struct ggml_tensor * node = cgraph->nodes[node_n];
  16312. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16313. struct ggml_compute_params params = {
  16314. /*.type =*/ GGML_TASK_TYPE_INIT,
  16315. /*.ith =*/ state->ith,
  16316. /*.nth =*/ n_tasks,
  16317. /*.wsize =*/ cplan->work_size,
  16318. /*.wdata =*/ cplan->work_data,
  16319. };
  16320. if (state->ith < n_tasks) {
  16321. if (GGML_OP_HAS_INIT[node->op]) {
  16322. ggml_compute_forward(&params, node, state);
  16323. }
  16324. }
  16325. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16326. task_phase = GGML_TASK_TYPE_COMPUTE;
  16327. atomic_store(&state->shared->n_active, n_threads);
  16328. atomic_store(&state->shared->node_task, task_phase);
  16329. }
  16330. else {
  16331. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16332. // depending on the workload and the operating system.
  16333. // since it is not clear what is the best approach, it should potentially become user-configurable
  16334. // ref: https://github.com/ggerganov/ggml/issues/291
  16335. // UPD: adding the do_yield flag seems to resolve the issue universally
  16336. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16337. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16338. }
  16339. if (state->ith < n_tasks) {
  16340. params.type = GGML_TASK_TYPE_COMPUTE;
  16341. ggml_compute_forward(&params, node, state);
  16342. }
  16343. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16344. task_phase = GGML_TASK_TYPE_FINALIZE;
  16345. atomic_store(&state->shared->n_active, n_threads);
  16346. atomic_store(&state->shared->node_task, task_phase);
  16347. }
  16348. else {
  16349. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16350. }
  16351. }
  16352. return 0;
  16353. }
  16354. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16355. if (n_threads <= 0) {
  16356. n_threads = GGML_DEFAULT_N_THREADS;
  16357. }
  16358. size_t work_size = 0;
  16359. struct ggml_cplan cplan;
  16360. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16361. int max_tasks = 1;
  16362. // thread scheduling for the different operations + work buffer size estimation
  16363. for (int i = 0; i < cgraph->n_nodes; i++) {
  16364. struct ggml_tensor * node = cgraph->nodes[i];
  16365. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16366. max_tasks = MAX(max_tasks, n_tasks);
  16367. size_t cur = 0;
  16368. switch (node->op) {
  16369. case GGML_OP_CPY:
  16370. case GGML_OP_DUP:
  16371. {
  16372. if (ggml_is_quantized(node->type) ||
  16373. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16374. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16375. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16376. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16377. }
  16378. } break;
  16379. case GGML_OP_ADD:
  16380. case GGML_OP_ADD1:
  16381. {
  16382. if (ggml_is_quantized(node->src[0]->type)) {
  16383. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16384. }
  16385. } break;
  16386. case GGML_OP_ACC:
  16387. {
  16388. if (ggml_is_quantized(node->src[0]->type)) {
  16389. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16390. }
  16391. } break;
  16392. case GGML_OP_MUL_MAT:
  16393. {
  16394. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16395. #if defined(GGML_USE_CLBLAST)
  16396. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16397. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16398. } else
  16399. #endif
  16400. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16401. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16402. if (node->src[0]->type != GGML_TYPE_F32) {
  16403. // here we need memory for fully dequantized matrix from src0
  16404. // take into account that src0 can be broadcasted into src1[2,3]
  16405. cur = ggml_type_size(GGML_TYPE_F32)
  16406. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16407. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16408. }
  16409. } else
  16410. #endif
  16411. if (node->src[1]->type != vec_dot_type) {
  16412. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16413. }
  16414. } break;
  16415. case GGML_OP_MUL_MAT_ID:
  16416. {
  16417. cur = 0;
  16418. const struct ggml_tensor * src0 = node->src[0];
  16419. const struct ggml_tensor * src1 = node->src[1];
  16420. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16421. if (src1->type != vec_dot_type) {
  16422. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16423. }
  16424. const int n_as = src0->ne[2];
  16425. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16426. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16427. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16428. } break;
  16429. case GGML_OP_OUT_PROD:
  16430. {
  16431. if (ggml_is_quantized(node->src[0]->type)) {
  16432. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16433. }
  16434. } break;
  16435. case GGML_OP_SOFT_MAX:
  16436. case GGML_OP_ROPE:
  16437. {
  16438. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16439. } break;
  16440. case GGML_OP_CONV_TRANSPOSE_1D:
  16441. {
  16442. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16443. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16444. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16445. const int64_t ne00 = node->src[0]->ne[0]; // K
  16446. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16447. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16448. const int64_t ne10 = node->src[1]->ne[0]; // L
  16449. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16450. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16451. node->src[0]->type == GGML_TYPE_BF16) &&
  16452. node->src[1]->type == GGML_TYPE_F32) {
  16453. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16454. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16455. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16456. node->src[1]->type == GGML_TYPE_F32) {
  16457. cur += sizeof(float)*ne00*ne01*ne02;
  16458. cur += sizeof(float)*ne10*ne11;
  16459. } else {
  16460. GGML_ASSERT(false);
  16461. }
  16462. } break;
  16463. case GGML_OP_CONV_TRANSPOSE_2D:
  16464. {
  16465. const int64_t ne00 = node->src[0]->ne[0]; // W
  16466. const int64_t ne01 = node->src[0]->ne[1]; // H
  16467. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16468. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16469. const int64_t ne10 = node->src[1]->ne[0]; // W
  16470. const int64_t ne11 = node->src[1]->ne[1]; // H
  16471. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16472. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16473. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16474. } break;
  16475. case GGML_OP_FLASH_ATTN:
  16476. {
  16477. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16478. if (node->src[1]->type == GGML_TYPE_F32) {
  16479. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16480. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16481. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16482. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16483. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16484. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16485. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16486. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16487. }
  16488. } break;
  16489. case GGML_OP_FLASH_ATTN_EXT:
  16490. {
  16491. const int64_t ne00 = node->src[0]->ne[0]; // D
  16492. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16493. } break;
  16494. case GGML_OP_FLASH_FF:
  16495. {
  16496. if (node->src[1]->type == GGML_TYPE_F32) {
  16497. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16498. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16499. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16500. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16501. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16502. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16503. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16504. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16505. }
  16506. } break;
  16507. case GGML_OP_FLASH_ATTN_BACK:
  16508. {
  16509. const int64_t D = node->src[0]->ne[0];
  16510. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16511. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16512. if (node->src[1]->type == GGML_TYPE_F32) {
  16513. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16514. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16515. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16516. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16517. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16518. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16519. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16520. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16521. }
  16522. } break;
  16523. case GGML_OP_CROSS_ENTROPY_LOSS:
  16524. {
  16525. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16526. } break;
  16527. case GGML_OP_COUNT:
  16528. {
  16529. GGML_ASSERT(false);
  16530. } break;
  16531. default:
  16532. break;
  16533. }
  16534. work_size = MAX(work_size, cur);
  16535. }
  16536. if (work_size > 0) {
  16537. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16538. }
  16539. cplan.n_threads = MIN(max_tasks, n_threads);
  16540. cplan.work_size = work_size;
  16541. cplan.work_data = NULL;
  16542. return cplan;
  16543. }
  16544. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16545. {
  16546. GGML_ASSERT(cplan);
  16547. GGML_ASSERT(cplan->n_threads > 0);
  16548. if (cplan->work_size > 0) {
  16549. GGML_ASSERT(cplan->work_data);
  16550. }
  16551. }
  16552. const int n_threads = cplan->n_threads;
  16553. struct ggml_compute_state_shared state_shared = {
  16554. /*.cgraph =*/ cgraph,
  16555. /*.cgraph_plan =*/ cplan,
  16556. /*.perf_node_start_cycles =*/ 0,
  16557. /*.perf_node_start_time_us =*/ 0,
  16558. /*.n_threads =*/ n_threads,
  16559. /*.n_active =*/ n_threads,
  16560. /*.node_n =*/ -1,
  16561. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16562. /*.abort_callback =*/ NULL,
  16563. /*.abort_callback_data =*/ NULL,
  16564. /*.current_chunk; =*/ 0,
  16565. };
  16566. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16567. // create thread pool
  16568. if (n_threads > 1) {
  16569. for (int j = 1; j < n_threads; ++j) {
  16570. workers[j] = (struct ggml_compute_state) {
  16571. .thrd = 0,
  16572. .ith = j,
  16573. .shared = &state_shared,
  16574. .ec = GGML_STATUS_SUCCESS,
  16575. };
  16576. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16577. GGML_ASSERT(rc == 0);
  16578. UNUSED(rc);
  16579. }
  16580. }
  16581. workers[0].ith = 0;
  16582. workers[0].shared = &state_shared;
  16583. workers[0].ec = GGML_STATUS_SUCCESS;
  16584. const int64_t perf_start_cycles = ggml_perf_cycles();
  16585. const int64_t perf_start_time_us = ggml_perf_time_us();
  16586. // this is a work thread too
  16587. ggml_graph_compute_thread(&workers[0]);
  16588. enum ggml_status compute_status = workers[0].ec;
  16589. // don't leave affinity set on the main thread
  16590. clear_numa_thread_affinity();
  16591. // join or kill thread pool
  16592. if (n_threads > 1) {
  16593. for (int j = 1; j < n_threads; j++) {
  16594. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16595. GGML_ASSERT(rc == 0);
  16596. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16597. compute_status = workers[j].ec;
  16598. }
  16599. }
  16600. // performance stats (graph)
  16601. {
  16602. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16603. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16604. cgraph->perf_runs++;
  16605. cgraph->perf_cycles += perf_cycles_cur;
  16606. cgraph->perf_time_us += perf_time_us_cur;
  16607. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16608. __func__, cgraph->perf_runs,
  16609. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16610. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16611. (double) perf_time_us_cur / 1000.0,
  16612. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16613. }
  16614. return compute_status;
  16615. }
  16616. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16617. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16618. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16619. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16620. return ggml_graph_compute(cgraph, &cplan);
  16621. }
  16622. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16623. for (int i = 0; i < cgraph->n_leafs; i++) {
  16624. struct ggml_tensor * leaf = cgraph->leafs[i];
  16625. if (strcmp(leaf->name, name) == 0) {
  16626. return leaf;
  16627. }
  16628. }
  16629. for (int i = 0; i < cgraph->n_nodes; i++) {
  16630. struct ggml_tensor * node = cgraph->nodes[i];
  16631. if (strcmp(node->name, name) == 0) {
  16632. return node;
  16633. }
  16634. }
  16635. return NULL;
  16636. }
  16637. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16638. const int64_t * ne = tensor->ne;
  16639. const size_t * nb = tensor->nb;
  16640. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16641. ggml_type_name(tensor->type),
  16642. ggml_op_name (tensor->op),
  16643. ggml_n_dims(tensor),
  16644. ne[0], ne[1], ne[2], ne[3],
  16645. nb[0], nb[1], nb[2], nb[3],
  16646. tensor->data,
  16647. tensor->name);
  16648. }
  16649. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16650. const int64_t * ne = tensor->ne;
  16651. const size_t * nb = tensor->nb;
  16652. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16653. arg,
  16654. ggml_type_name(tensor->type),
  16655. ggml_op_name (tensor->op),
  16656. ggml_n_dims(tensor),
  16657. ne[0], ne[1], ne[2], ne[3],
  16658. nb[0], nb[1], nb[2], nb[3],
  16659. tensor->data,
  16660. tensor->name);
  16661. }
  16662. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16663. uint64_t size_eval = 0;
  16664. // compute size of intermediate results
  16665. // TODO: does not take into account scratch buffers !!!!
  16666. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16667. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16668. }
  16669. // print
  16670. {
  16671. FILE * fout = stdout;
  16672. fprintf(fout, "\n");
  16673. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16674. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16675. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16676. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16677. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16678. // header
  16679. fprintf(fout, "\n");
  16680. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16681. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16682. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16683. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16684. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16685. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16686. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16687. }
  16688. // header
  16689. fprintf(fout, "\n");
  16690. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16691. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16692. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16693. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16694. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16695. if (cgraph->nodes[i]->src[j]) {
  16696. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16697. }
  16698. }
  16699. fprintf(fout, "\n");
  16700. }
  16701. fprintf(fout, "\n");
  16702. }
  16703. // write binary data
  16704. {
  16705. FILE * fout = ggml_fopen(fname, "wb");
  16706. if (!fout) {
  16707. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16708. return;
  16709. }
  16710. // header
  16711. {
  16712. const uint32_t magic = GGML_FILE_MAGIC;
  16713. const uint32_t version = GGML_FILE_VERSION;
  16714. const uint32_t n_leafs = cgraph->n_leafs;
  16715. const uint32_t n_nodes = cgraph->n_nodes;
  16716. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16717. fwrite(&version, sizeof(uint32_t), 1, fout);
  16718. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16719. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16720. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16721. }
  16722. // leafs
  16723. {
  16724. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16725. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16726. const uint32_t type = tensor->type;
  16727. const uint32_t op = tensor->op;
  16728. fwrite(&type, sizeof(uint32_t), 1, fout);
  16729. fwrite(&op, sizeof(uint32_t), 1, fout);
  16730. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16731. const uint64_t ne = tensor->ne[j];
  16732. const uint64_t nb = tensor->nb[j];
  16733. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16734. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16735. }
  16736. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16737. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16738. // dump the data
  16739. // TODO: pad this to 32 byte boundary
  16740. {
  16741. const size_t size = ggml_nbytes(tensor);
  16742. fwrite(tensor->data, sizeof(char), size, fout);
  16743. }
  16744. }
  16745. }
  16746. // nodes
  16747. {
  16748. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16749. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16750. const uint32_t type = tensor->type;
  16751. const uint32_t op = tensor->op;
  16752. fwrite(&type, sizeof(uint32_t), 1, fout);
  16753. fwrite(&op, sizeof(uint32_t), 1, fout);
  16754. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16755. const uint64_t ne = tensor->ne[j];
  16756. const uint64_t nb = tensor->nb[j];
  16757. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16758. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16759. }
  16760. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16761. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16762. // output the op arguments
  16763. {
  16764. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16765. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16766. args[j] = tensor->src[j];
  16767. }
  16768. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16769. if (args[j]) {
  16770. int32_t idx = -1;
  16771. // check if leaf
  16772. {
  16773. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16774. if (args[j] == cgraph->leafs[k]) {
  16775. idx = k;
  16776. break;
  16777. }
  16778. }
  16779. }
  16780. // check if node
  16781. if (idx == -1) {
  16782. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16783. if (args[j] == cgraph->nodes[k]) {
  16784. idx = cgraph->n_leafs + k;
  16785. break;
  16786. }
  16787. }
  16788. }
  16789. if (idx == -1) {
  16790. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16791. fclose(fout);
  16792. return;
  16793. }
  16794. fwrite(&idx, sizeof(int32_t), 1, fout);
  16795. } else {
  16796. const int32_t nul = -1;
  16797. fwrite(&nul, sizeof(int32_t), 1, fout);
  16798. }
  16799. }
  16800. }
  16801. }
  16802. }
  16803. fclose(fout);
  16804. }
  16805. }
  16806. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16807. assert(*ctx_data == NULL);
  16808. assert(*ctx_eval == NULL);
  16809. struct ggml_cgraph * result = NULL;
  16810. struct ggml_tensor * data = NULL;
  16811. // read file into data
  16812. {
  16813. FILE * fin = ggml_fopen(fname, "rb");
  16814. if (!fin) {
  16815. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16816. return result;
  16817. }
  16818. size_t fsize = 0;
  16819. fseek(fin, 0, SEEK_END);
  16820. fsize = ftell(fin);
  16821. fseek(fin, 0, SEEK_SET);
  16822. // create the data context
  16823. {
  16824. const size_t overhead = 1*ggml_tensor_overhead();
  16825. struct ggml_init_params params = {
  16826. .mem_size = fsize + overhead,
  16827. .mem_buffer = NULL,
  16828. .no_alloc = false,
  16829. };
  16830. *ctx_data = ggml_init(params);
  16831. if (!*ctx_data) {
  16832. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16833. fclose(fin);
  16834. return result;
  16835. }
  16836. }
  16837. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16838. {
  16839. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16840. if (ret != fsize) {
  16841. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16842. fclose(fin);
  16843. return result;
  16844. }
  16845. }
  16846. fclose(fin);
  16847. }
  16848. // populate result
  16849. {
  16850. char * ptr = (char *) data->data;
  16851. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16852. if (magic != GGML_FILE_MAGIC) {
  16853. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16854. return result;
  16855. }
  16856. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16857. if (version != GGML_FILE_VERSION) {
  16858. fprintf(stderr, "%s: invalid version number\n", __func__);
  16859. return result;
  16860. }
  16861. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16862. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16863. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16864. const int graph_size = MAX(n_leafs, n_nodes);
  16865. // create the data context
  16866. {
  16867. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16868. struct ggml_init_params params = {
  16869. .mem_size = size_eval + overhead,
  16870. .mem_buffer = NULL,
  16871. .no_alloc = true,
  16872. };
  16873. *ctx_eval = ggml_init(params);
  16874. if (!*ctx_eval) {
  16875. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16876. return result;
  16877. }
  16878. }
  16879. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16880. result->n_leafs = n_leafs;
  16881. result->n_nodes = n_nodes;
  16882. // leafs
  16883. {
  16884. uint32_t type;
  16885. uint32_t op;
  16886. for (uint32_t i = 0; i < n_leafs; ++i) {
  16887. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16888. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16889. int64_t ne[GGML_MAX_DIMS];
  16890. size_t nb[GGML_MAX_DIMS];
  16891. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16892. uint64_t ne_cur;
  16893. uint64_t nb_cur;
  16894. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16895. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16896. ne[j] = ne_cur;
  16897. nb[j] = nb_cur;
  16898. }
  16899. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16900. tensor->op = (enum ggml_op) op;
  16901. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16902. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16903. tensor->data = (void *) ptr;
  16904. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16905. tensor->nb[j] = nb[j];
  16906. }
  16907. result->leafs[i] = tensor;
  16908. ptr += ggml_nbytes(tensor);
  16909. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16910. }
  16911. }
  16912. ggml_set_no_alloc(*ctx_eval, false);
  16913. // nodes
  16914. {
  16915. uint32_t type;
  16916. uint32_t op;
  16917. for (uint32_t i = 0; i < n_nodes; ++i) {
  16918. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16919. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16920. enum ggml_op eop = (enum ggml_op) op;
  16921. int64_t ne[GGML_MAX_DIMS];
  16922. size_t nb[GGML_MAX_DIMS];
  16923. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16924. uint64_t ne_cur;
  16925. uint64_t nb_cur;
  16926. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16927. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16928. ne[j] = ne_cur;
  16929. nb[j] = nb_cur;
  16930. }
  16931. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16932. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16933. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16934. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16935. // parse args
  16936. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16937. const int32_t arg_idx = ptr_arg_idx[j];
  16938. if (arg_idx == -1) {
  16939. continue;
  16940. }
  16941. if (arg_idx < result->n_leafs) {
  16942. args[j] = result->leafs[arg_idx];
  16943. } else {
  16944. args[j] = result->nodes[arg_idx - result->n_leafs];
  16945. }
  16946. }
  16947. // create the tensor
  16948. // "view" operations are handled differently
  16949. // TODO: handle inplace ops - currently a copy is always made
  16950. struct ggml_tensor * tensor = NULL;
  16951. switch (eop) {
  16952. // TODO: implement other view ops
  16953. case GGML_OP_RESHAPE:
  16954. {
  16955. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16956. } break;
  16957. case GGML_OP_VIEW:
  16958. {
  16959. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16960. size_t offs;
  16961. memcpy(&offs, ptr_op_params, sizeof(offs));
  16962. tensor->data = ((char *) tensor->data) + offs;
  16963. } break;
  16964. case GGML_OP_TRANSPOSE:
  16965. {
  16966. tensor = ggml_transpose(*ctx_eval, args[0]);
  16967. } break;
  16968. case GGML_OP_PERMUTE:
  16969. {
  16970. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16971. } break;
  16972. default:
  16973. {
  16974. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16975. tensor->op = eop;
  16976. } break;
  16977. }
  16978. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16979. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16980. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16981. tensor->nb[j] = nb[j];
  16982. }
  16983. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16984. tensor->src[j] = args[j];
  16985. }
  16986. result->nodes[i] = tensor;
  16987. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16988. }
  16989. }
  16990. }
  16991. return result;
  16992. }
  16993. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16994. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16995. GGML_PRINT("=== GRAPH ===\n");
  16996. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16997. for (int i = 0; i < cgraph->n_nodes; i++) {
  16998. struct ggml_tensor * node = cgraph->nodes[i];
  16999. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  17000. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  17001. i,
  17002. node->ne[0], node->ne[1], node->ne[2],
  17003. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  17004. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  17005. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  17006. (double) node->perf_time_us / 1000.0,
  17007. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  17008. }
  17009. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  17010. for (int i = 0; i < cgraph->n_leafs; i++) {
  17011. struct ggml_tensor * node = cgraph->leafs[i];
  17012. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  17013. i,
  17014. node->ne[0], node->ne[1],
  17015. ggml_op_name(node->op),
  17016. ggml_get_name(node));
  17017. }
  17018. for (int i = 0; i < GGML_OP_COUNT; i++) {
  17019. if (perf_total_per_op_us[i] == 0) {
  17020. continue;
  17021. }
  17022. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  17023. }
  17024. GGML_PRINT("========================================\n");
  17025. }
  17026. // check if node is part of the graph
  17027. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17028. if (cgraph == NULL) {
  17029. return true;
  17030. }
  17031. for (int i = 0; i < cgraph->n_nodes; i++) {
  17032. if (cgraph->nodes[i] == node) {
  17033. return true;
  17034. }
  17035. }
  17036. return false;
  17037. }
  17038. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17039. for (int i = 0; i < cgraph->n_nodes; i++) {
  17040. struct ggml_tensor * parent = cgraph->nodes[i];
  17041. if (parent->grad == node) {
  17042. return parent;
  17043. }
  17044. }
  17045. return NULL;
  17046. }
  17047. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17048. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  17049. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  17050. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  17051. gparent0 ? (void *) gparent0 : (void *) parent,
  17052. gparent0 ? "g" : "x",
  17053. gparent ? (void *) gparent : (void *) node,
  17054. gparent ? "g" : "x",
  17055. gparent ? "empty" : "vee",
  17056. gparent ? "dashed" : "solid",
  17057. label);
  17058. }
  17059. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17060. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  17061. (void *) parent, "x",
  17062. (void *) node, "x",
  17063. label);
  17064. }
  17065. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  17066. char color[16];
  17067. FILE * fp = ggml_fopen(filename, "w");
  17068. GGML_ASSERT(fp);
  17069. fprintf(fp, "digraph G {\n");
  17070. fprintf(fp, " newrank = true;\n");
  17071. fprintf(fp, " rankdir = LR;\n");
  17072. for (int i = 0; i < gb->n_nodes; i++) {
  17073. struct ggml_tensor * node = gb->nodes[i];
  17074. if (ggml_graph_get_parent(gb, node) != NULL) {
  17075. continue;
  17076. }
  17077. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  17078. snprintf(color, sizeof(color), "yellow");
  17079. } else if (node->grad) {
  17080. if (ggml_graph_find(gf, node)) {
  17081. snprintf(color, sizeof(color), "green");
  17082. } else {
  17083. snprintf(color, sizeof(color), "lightblue");
  17084. }
  17085. } else {
  17086. snprintf(color, sizeof(color), "white");
  17087. }
  17088. fprintf(fp, " \"%p\" [ "
  17089. "style = filled; fillcolor = %s; shape = record; "
  17090. "label=\"",
  17091. (void *) node, color);
  17092. if (strlen(node->name) > 0) {
  17093. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17094. } else {
  17095. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17096. }
  17097. if (ggml_is_matrix(node)) {
  17098. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  17099. } else {
  17100. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  17101. }
  17102. if (node->grad) {
  17103. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  17104. } else {
  17105. fprintf(fp, "\"; ]\n");
  17106. }
  17107. }
  17108. for (int i = 0; i < gb->n_leafs; i++) {
  17109. struct ggml_tensor * node = gb->leafs[i];
  17110. snprintf(color, sizeof(color), "pink");
  17111. fprintf(fp, " \"%p\" [ "
  17112. "style = filled; fillcolor = %s; shape = record; "
  17113. "label=\"<x>",
  17114. (void *) node, color);
  17115. if (strlen(node->name) > 0) {
  17116. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17117. } else {
  17118. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17119. }
  17120. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17121. if (ggml_nelements(node) < 5) {
  17122. fprintf(fp, " | (");
  17123. for (int j = 0; j < ggml_nelements(node); j++) {
  17124. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17125. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17126. }
  17127. else if (node->type == GGML_TYPE_F32 ||
  17128. node->type == GGML_TYPE_F16 ||
  17129. node->type == GGML_TYPE_BF16) {
  17130. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17131. }
  17132. else {
  17133. fprintf(fp, "#");
  17134. }
  17135. if (j < ggml_nelements(node) - 1) {
  17136. fprintf(fp, ", ");
  17137. }
  17138. }
  17139. fprintf(fp, ")");
  17140. }
  17141. fprintf(fp, "\"; ]\n");
  17142. }
  17143. for (int i = 0; i < gb->n_nodes; i++) {
  17144. struct ggml_tensor * node = gb->nodes[i];
  17145. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17146. if (node->src[j]) {
  17147. char label[16];
  17148. snprintf(label, sizeof(label), "src %d", j);
  17149. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17150. }
  17151. }
  17152. }
  17153. for (int i = 0; i < gb->n_leafs; i++) {
  17154. struct ggml_tensor * node = gb->leafs[i];
  17155. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17156. if (node->src[j]) {
  17157. char label[16];
  17158. snprintf(label, sizeof(label), "src %d", j);
  17159. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17160. }
  17161. }
  17162. }
  17163. fprintf(fp, "}\n");
  17164. fclose(fp);
  17165. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17166. }
  17167. ////////////////////////////////////////////////////////////////////////////////
  17168. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17169. int i = 0;
  17170. for (int p = 0; p < np; ++p) {
  17171. const int64_t ne = ggml_nelements(ps[p]) ;
  17172. // TODO: add function to set tensor from array
  17173. for (int64_t j = 0; j < ne; ++j) {
  17174. ggml_set_f32_1d(ps[p], j, x[i++]);
  17175. }
  17176. }
  17177. }
  17178. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17179. int i = 0;
  17180. for (int p = 0; p < np; ++p) {
  17181. const int64_t ne = ggml_nelements(ps[p]) ;
  17182. // TODO: add function to get all elements at once
  17183. for (int64_t j = 0; j < ne; ++j) {
  17184. x[i++] = ggml_get_f32_1d(ps[p], j);
  17185. }
  17186. }
  17187. }
  17188. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17189. int64_t i = 0;
  17190. for (int p = 0; p < np; ++p) {
  17191. const int64_t ne = ggml_nelements(ps[p]) ;
  17192. // TODO: add function to get all elements at once
  17193. for (int64_t j = 0; j < ne; ++j) {
  17194. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17195. }
  17196. }
  17197. }
  17198. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17199. int64_t i = 0;
  17200. for (int p = 0; p < np; ++p) {
  17201. const int64_t ne = ggml_nelements(ps[p]) ;
  17202. // TODO: add function to get all elements at once
  17203. for (int64_t j = 0; j < ne; ++j) {
  17204. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17205. }
  17206. }
  17207. }
  17208. //
  17209. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17210. //
  17211. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17212. //
  17213. static enum ggml_opt_result ggml_opt_adam(
  17214. struct ggml_context * ctx,
  17215. struct ggml_opt_context * opt,
  17216. struct ggml_opt_params params,
  17217. struct ggml_tensor * f,
  17218. struct ggml_cgraph * gf,
  17219. struct ggml_cgraph * gb,
  17220. ggml_opt_callback callback,
  17221. void * callback_data) {
  17222. GGML_ASSERT(ggml_is_scalar(f));
  17223. // these will store the parameters we want to optimize
  17224. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17225. int np = 0;
  17226. int64_t nx = 0;
  17227. for (int i = 0; i < gf->n_nodes; ++i) {
  17228. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17229. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17230. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17231. ps[np++] = gf->nodes[i];
  17232. nx += ggml_nelements(gf->nodes[i]);
  17233. }
  17234. }
  17235. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17236. int iter = opt->iter;
  17237. ggml_opt_init(opt->ctx, opt, params, nx);
  17238. opt->iter = iter;
  17239. }
  17240. // constants
  17241. float sched = params.adam.sched;
  17242. const float alpha = params.adam.alpha;
  17243. const float decay = params.adam.decay * alpha;
  17244. const float beta1 = params.adam.beta1;
  17245. const float beta2 = params.adam.beta2;
  17246. const float eps = params.adam.eps;
  17247. const float gclip = params.adam.gclip;
  17248. const int decay_min_ndim = params.adam.decay_min_ndim;
  17249. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17250. const float accum_norm = 1.0f / (float) n_accum;
  17251. float * g = opt->adam.g->data; // gradients
  17252. float * m = opt->adam.m->data; // first moment
  17253. float * v = opt->adam.v->data; // second moment
  17254. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17255. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17256. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17257. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17258. bool cancel = false;
  17259. // compute the function value
  17260. float fx = 0;
  17261. ggml_set_zero(opt->adam.g);
  17262. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17263. if (callback) {
  17264. callback(callback_data, accum_step, &sched, &cancel);
  17265. if (cancel) {
  17266. return GGML_OPT_RESULT_CANCEL;
  17267. }
  17268. }
  17269. // ggml_graph_reset (gf);
  17270. ggml_set_f32 (f->grad, 1.0f);
  17271. ggml_graph_compute(gb, &cplan);
  17272. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17273. fx += ggml_get_f32_1d(f, 0);
  17274. }
  17275. fx *= accum_norm;
  17276. opt->adam.fx_prev = fx;
  17277. opt->adam.fx_best = opt->adam.fx_prev;
  17278. if (pf) {
  17279. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17280. }
  17281. opt->loss_before = opt->adam.fx_prev;
  17282. opt->loss_after = opt->adam.fx_prev;
  17283. // initialize
  17284. if (opt->just_initialized) {
  17285. opt->adam.n_no_improvement = 0;
  17286. opt->just_initialized = false;
  17287. }
  17288. float * fx_best = &opt->adam.fx_best;
  17289. float * fx_prev = &opt->adam.fx_prev;
  17290. int * n_no_improvement = &opt->adam.n_no_improvement;
  17291. int iter0 = opt->iter;
  17292. // run the optimizer
  17293. for (int t = 0; t < params.adam.n_iter; ++t) {
  17294. opt->iter = iter0 + t + 1;
  17295. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17296. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17297. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17298. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17299. for (int i = 0; i < np; ++i) {
  17300. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17301. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17302. }
  17303. const int64_t t_start_wall = ggml_time_us();
  17304. const int64_t t_start_cpu = ggml_cycles();
  17305. UNUSED(t_start_wall);
  17306. UNUSED(t_start_cpu);
  17307. {
  17308. float gnorm = 1.0f;
  17309. if (gclip > 0.0f) {
  17310. // gradient clipping
  17311. ggml_float sum = 0.0;
  17312. for (int64_t i = 0; i < nx; ++i) {
  17313. sum += (ggml_float)(g[i]*g[i]);
  17314. }
  17315. ggml_float norm = sqrt(sum);
  17316. if (norm > (ggml_float) gclip) {
  17317. gnorm = (float) ((ggml_float) gclip / norm);
  17318. }
  17319. }
  17320. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17321. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17322. int64_t i = 0;
  17323. for (int p = 0; p < np; ++p) {
  17324. const int64_t ne = ggml_nelements(ps[p]);
  17325. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17326. for (int64_t j = 0; j < ne; ++j) {
  17327. float x = ggml_get_f32_1d(ps[p], j);
  17328. float g_ = g[i]*gnorm;
  17329. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17330. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17331. float mh = m[i]*beta1h;
  17332. float vh = v[i]*beta2h;
  17333. vh = sqrtf(vh) + eps;
  17334. x = x*(1.0f - p_decay) - mh/vh;
  17335. ggml_set_f32_1d(ps[p], j, x);
  17336. ++i;
  17337. }
  17338. }
  17339. }
  17340. fx = 0;
  17341. ggml_set_zero(opt->adam.g);
  17342. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17343. if (callback) {
  17344. callback(callback_data, accum_step, &sched, &cancel);
  17345. if (cancel) {
  17346. return GGML_OPT_RESULT_CANCEL;;
  17347. }
  17348. }
  17349. // ggml_graph_reset (gf);
  17350. ggml_set_f32 (f->grad, 1.0f);
  17351. ggml_graph_compute(gb, &cplan);
  17352. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17353. fx += ggml_get_f32_1d(f, 0);
  17354. }
  17355. fx *= accum_norm;
  17356. opt->loss_after = fx;
  17357. // check convergence
  17358. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17359. GGML_PRINT_DEBUG("converged\n");
  17360. return GGML_OPT_RESULT_OK;
  17361. }
  17362. // delta-based convergence test
  17363. if (pf != NULL) {
  17364. // need at least params.past iterations to start checking for convergence
  17365. if (params.past <= iter0 + t) {
  17366. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17367. if (fabsf(rate) < params.delta) {
  17368. return GGML_OPT_RESULT_OK;
  17369. }
  17370. }
  17371. pf[(iter0 + t)%params.past] = fx;
  17372. }
  17373. // check for improvement
  17374. if (params.max_no_improvement > 0) {
  17375. if (fx_best[0] > fx) {
  17376. fx_best[0] = fx;
  17377. n_no_improvement[0] = 0;
  17378. } else {
  17379. ++n_no_improvement[0];
  17380. if (n_no_improvement[0] >= params.max_no_improvement) {
  17381. return GGML_OPT_RESULT_OK;
  17382. }
  17383. }
  17384. }
  17385. fx_prev[0] = fx;
  17386. {
  17387. const int64_t t_end_cpu = ggml_cycles();
  17388. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17389. UNUSED(t_end_cpu);
  17390. const int64_t t_end_wall = ggml_time_us();
  17391. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17392. UNUSED(t_end_wall);
  17393. }
  17394. }
  17395. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17396. }
  17397. //
  17398. // L-BFGS
  17399. //
  17400. // the L-BFGS implementation below is based on the following implementation:
  17401. //
  17402. // https://github.com/chokkan/liblbfgs
  17403. //
  17404. struct ggml_lbfgs_iteration_data {
  17405. float alpha;
  17406. float ys;
  17407. float * s;
  17408. float * y;
  17409. };
  17410. static enum ggml_opt_result linesearch_backtracking(
  17411. const struct ggml_opt_params * params,
  17412. int nx,
  17413. float * x,
  17414. float * fx,
  17415. float * g,
  17416. float * d,
  17417. float * step,
  17418. const float * xp,
  17419. struct ggml_tensor * f,
  17420. struct ggml_cgraph * gb,
  17421. struct ggml_cplan * cplan,
  17422. const int np,
  17423. struct ggml_tensor * ps[],
  17424. bool * cancel,
  17425. ggml_opt_callback callback,
  17426. void * callback_data) {
  17427. int count = 0;
  17428. float width = 0.0f;
  17429. float dg = 0.0f;
  17430. float finit = 0.0f;
  17431. float dginit = 0.0f;
  17432. float dgtest = 0.0f;
  17433. const float dec = 0.5f;
  17434. const float inc = 2.1f;
  17435. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17436. const float accum_norm = 1.0f / (float) n_accum;
  17437. if (*step <= 0.f) {
  17438. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17439. }
  17440. // compute the initial gradient in the search direction
  17441. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17442. // make sure that d points to a descent direction
  17443. if (0 < dginit) {
  17444. return GGML_LINESEARCH_FAIL;
  17445. }
  17446. // initialize local variables
  17447. finit = *fx;
  17448. dgtest = params->lbfgs.ftol*dginit;
  17449. while (true) {
  17450. ggml_vec_cpy_f32(nx, x, xp);
  17451. ggml_vec_mad_f32(nx, x, d, *step);
  17452. // evaluate the function and gradient values
  17453. {
  17454. ggml_opt_set_params(np, ps, x);
  17455. *fx = 0;
  17456. memset(g, 0, sizeof(float)*nx);
  17457. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17458. if (callback) {
  17459. // LBFG-S does not support learning rate -> ignore learning schedule
  17460. float sched = 0;
  17461. callback(callback_data, accum_step, &sched, cancel);
  17462. if (*cancel) {
  17463. return GGML_OPT_RESULT_CANCEL;
  17464. }
  17465. }
  17466. // ggml_graph_reset (gf);
  17467. ggml_set_f32 (f->grad, 1.0f);
  17468. ggml_graph_compute(gb, cplan);
  17469. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17470. *fx += ggml_get_f32_1d(f, 0);
  17471. }
  17472. *fx *= accum_norm;
  17473. }
  17474. ++count;
  17475. if (*fx > finit + (*step)*dgtest) {
  17476. width = dec;
  17477. } else {
  17478. // Armijo condition is satisfied
  17479. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17480. return count;
  17481. }
  17482. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17483. // check the Wolfe condition
  17484. if (dg < params->lbfgs.wolfe * dginit) {
  17485. width = inc;
  17486. } else {
  17487. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17488. // regular Wolfe conditions
  17489. return count;
  17490. }
  17491. if(dg > -params->lbfgs.wolfe*dginit) {
  17492. width = dec;
  17493. } else {
  17494. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17495. return count;
  17496. }
  17497. }
  17498. }
  17499. if (*step < params->lbfgs.min_step) {
  17500. return GGML_LINESEARCH_MINIMUM_STEP;
  17501. }
  17502. if (*step > params->lbfgs.max_step) {
  17503. return GGML_LINESEARCH_MAXIMUM_STEP;
  17504. }
  17505. if (params->lbfgs.max_linesearch <= count) {
  17506. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17507. }
  17508. (*step) *= width;
  17509. }
  17510. GGML_ASSERT(false && "line search failed");
  17511. return GGML_LINESEARCH_FAIL;
  17512. }
  17513. static enum ggml_opt_result ggml_opt_lbfgs(
  17514. struct ggml_context * ctx,
  17515. struct ggml_opt_context * opt,
  17516. struct ggml_opt_params params,
  17517. struct ggml_tensor * f,
  17518. struct ggml_cgraph * gf,
  17519. struct ggml_cgraph * gb,
  17520. ggml_opt_callback callback,
  17521. void * callback_data) {
  17522. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17523. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17524. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17525. return GGML_OPT_RESULT_INVALID_WOLFE;
  17526. }
  17527. }
  17528. const int m = params.lbfgs.m;
  17529. // these will store the parameters we want to optimize
  17530. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17531. int np = 0;
  17532. int nx = 0;
  17533. for (int i = 0; i < gf->n_nodes; ++i) {
  17534. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17535. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17536. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17537. ps[np++] = gf->nodes[i];
  17538. nx += ggml_nelements(gf->nodes[i]);
  17539. }
  17540. }
  17541. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17542. int iter = opt->iter;
  17543. ggml_opt_init(ctx, opt, params, nx);
  17544. opt->iter = iter;
  17545. }
  17546. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17547. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17548. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17549. float * x = opt->lbfgs.x->data; // current parameters
  17550. float * xp = opt->lbfgs.xp->data; // previous parameters
  17551. float * g = opt->lbfgs.g->data; // current gradient
  17552. float * gp = opt->lbfgs.gp->data; // previous gradient
  17553. float * d = opt->lbfgs.d->data; // search direction
  17554. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17555. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17556. const float accum_norm = 1.0f / (float) n_accum;
  17557. float fx = 0.0f; // cost function value
  17558. float xnorm = 0.0f; // ||x||
  17559. float gnorm = 0.0f; // ||g||
  17560. // initialize x from the graph nodes
  17561. ggml_opt_get_params(np, ps, x);
  17562. // the L-BFGS memory
  17563. float * lm_alpha = opt->lbfgs.lmal->data;
  17564. float * lm_ys = opt->lbfgs.lmys->data;
  17565. float * lm_s = opt->lbfgs.lms->data;
  17566. float * lm_y = opt->lbfgs.lmy->data;
  17567. bool cancel = false;
  17568. // evaluate the function value and its gradient
  17569. {
  17570. ggml_opt_set_params(np, ps, x);
  17571. fx = 0;
  17572. memset(g, 0, sizeof(float)*nx);
  17573. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17574. if (callback) {
  17575. // LBFG-S does not support learning rate -> ignore learning schedule
  17576. float sched = 0;
  17577. callback(callback_data, accum_step, &sched, &cancel);
  17578. if (cancel) {
  17579. return GGML_OPT_RESULT_CANCEL;
  17580. }
  17581. }
  17582. // ggml_graph_reset (gf);
  17583. ggml_set_f32 (f->grad, 1.0f);
  17584. ggml_graph_compute(gb, &cplan);
  17585. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17586. fx += ggml_get_f32_1d(f, 0);
  17587. }
  17588. fx *= accum_norm;
  17589. opt->loss_before = fx;
  17590. opt->loss_after = fx;
  17591. }
  17592. // search direction = -gradient
  17593. ggml_vec_neg_f32(nx, d, g);
  17594. // ||x||, ||g||
  17595. ggml_vec_norm_f32(nx, &xnorm, x);
  17596. ggml_vec_norm_f32(nx, &gnorm, g);
  17597. if (xnorm < 1.0f) {
  17598. xnorm = 1.0f;
  17599. }
  17600. // already optimized
  17601. if (gnorm/xnorm <= params.lbfgs.eps) {
  17602. return GGML_OPT_RESULT_OK;
  17603. }
  17604. if (opt->just_initialized) {
  17605. if (pf) {
  17606. pf[0] = fx;
  17607. }
  17608. opt->lbfgs.fx_best = fx;
  17609. // initial step
  17610. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17611. opt->lbfgs.j = 0;
  17612. opt->lbfgs.k = 1;
  17613. opt->lbfgs.end = 0;
  17614. opt->lbfgs.n_no_improvement = 0;
  17615. opt->just_initialized = false;
  17616. }
  17617. float * fx_best = &opt->lbfgs.fx_best;
  17618. float * step = &opt->lbfgs.step;
  17619. int * j = &opt->lbfgs.j;
  17620. int * k = &opt->lbfgs.k;
  17621. int * end = &opt->lbfgs.end;
  17622. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17623. int ls = 0;
  17624. int bound = 0;
  17625. float ys = 0.0f;
  17626. float yy = 0.0f;
  17627. float beta = 0.0f;
  17628. int it = 0;
  17629. while (true) {
  17630. // store the current position and gradient vectors
  17631. ggml_vec_cpy_f32(nx, xp, x);
  17632. ggml_vec_cpy_f32(nx, gp, g);
  17633. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17634. // to determine if the optimization should be cancelled
  17635. // this is a simple change, but not doing this atm, since I don't have a nice
  17636. // way to test and don't want to break something with so many changes lined up
  17637. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17638. if (cancel) {
  17639. return GGML_OPT_RESULT_CANCEL;
  17640. }
  17641. if (ls < 0) {
  17642. // linesearch failed - go back to the previous point and return
  17643. ggml_vec_cpy_f32(nx, x, xp);
  17644. ggml_vec_cpy_f32(nx, g, gp);
  17645. return ls;
  17646. }
  17647. opt->loss_after = fx;
  17648. ggml_vec_norm_f32(nx, &xnorm, x);
  17649. ggml_vec_norm_f32(nx, &gnorm, g);
  17650. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17651. if (xnorm < 1.0f) {
  17652. xnorm = 1.0f;
  17653. }
  17654. if (gnorm/xnorm <= params.lbfgs.eps) {
  17655. // converged
  17656. return GGML_OPT_RESULT_OK;
  17657. }
  17658. // delta-based convergence test
  17659. if (pf != NULL) {
  17660. // need at least params.past iterations to start checking for convergence
  17661. if (params.past <= k[0]) {
  17662. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17663. if (fabsf(rate) < params.delta) {
  17664. return GGML_OPT_RESULT_OK;
  17665. }
  17666. }
  17667. pf[k[0]%params.past] = fx;
  17668. }
  17669. // check for improvement
  17670. if (params.max_no_improvement > 0) {
  17671. if (fx < fx_best[0]) {
  17672. fx_best[0] = fx;
  17673. n_no_improvement[0] = 0;
  17674. } else {
  17675. n_no_improvement[0]++;
  17676. if (n_no_improvement[0] >= params.max_no_improvement) {
  17677. return GGML_OPT_RESULT_OK;
  17678. }
  17679. }
  17680. }
  17681. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17682. // reached the maximum number of iterations
  17683. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17684. }
  17685. // update vectors s and y:
  17686. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17687. // y_{k+1} = g_{k+1} - g_{k}.
  17688. //
  17689. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17690. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17691. // compute scalars ys and yy:
  17692. // ys = y^t \cdot s -> 1 / \rho.
  17693. // yy = y^t \cdot y.
  17694. //
  17695. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17696. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17697. lm_ys[end[0]] = ys;
  17698. // find new search direction
  17699. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17700. bound = (m <= k[0]) ? m : k[0];
  17701. k[0]++;
  17702. it++;
  17703. end[0] = (end[0] + 1)%m;
  17704. // initialize search direction with -g
  17705. ggml_vec_neg_f32(nx, d, g);
  17706. j[0] = end[0];
  17707. for (int i = 0; i < bound; ++i) {
  17708. j[0] = (j[0] + m - 1) % m;
  17709. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17710. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17711. lm_alpha[j[0]] /= lm_ys[j[0]];
  17712. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17713. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17714. }
  17715. ggml_vec_scale_f32(nx, d, ys/yy);
  17716. for (int i = 0; i < bound; ++i) {
  17717. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17718. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17719. beta /= lm_ys[j[0]];
  17720. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17721. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17722. j[0] = (j[0] + 1)%m;
  17723. }
  17724. step[0] = 1.0;
  17725. }
  17726. GGML_ASSERT(false && "lbfgs failed");
  17727. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17728. }
  17729. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17730. struct ggml_opt_params result;
  17731. switch (type) {
  17732. case GGML_OPT_TYPE_ADAM:
  17733. {
  17734. result = (struct ggml_opt_params) {
  17735. .type = GGML_OPT_TYPE_ADAM,
  17736. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17737. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17738. .past = 0,
  17739. .delta = 1e-5f,
  17740. .max_no_improvement = 100,
  17741. .print_forward_graph = true,
  17742. .print_backward_graph = true,
  17743. .n_gradient_accumulation = 1,
  17744. .adam = {
  17745. .n_iter = 10000,
  17746. .sched = 1.000f,
  17747. .decay = 0.0f,
  17748. .decay_min_ndim = 2,
  17749. .alpha = 0.001f,
  17750. .beta1 = 0.9f,
  17751. .beta2 = 0.999f,
  17752. .eps = 1e-8f,
  17753. .eps_f = 1e-5f,
  17754. .eps_g = 1e-3f,
  17755. .gclip = 0.0f,
  17756. },
  17757. };
  17758. } break;
  17759. case GGML_OPT_TYPE_LBFGS:
  17760. {
  17761. result = (struct ggml_opt_params) {
  17762. .type = GGML_OPT_TYPE_LBFGS,
  17763. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17764. .n_threads = 1,
  17765. .past = 0,
  17766. .delta = 1e-5f,
  17767. .max_no_improvement = 0,
  17768. .print_forward_graph = true,
  17769. .print_backward_graph = true,
  17770. .n_gradient_accumulation = 1,
  17771. .lbfgs = {
  17772. .m = 6,
  17773. .n_iter = 100,
  17774. .max_linesearch = 20,
  17775. .eps = 1e-5f,
  17776. .ftol = 1e-4f,
  17777. .wolfe = 0.9f,
  17778. .min_step = 1e-20f,
  17779. .max_step = 1e+20f,
  17780. .linesearch = GGML_LINESEARCH_DEFAULT,
  17781. },
  17782. };
  17783. } break;
  17784. }
  17785. return result;
  17786. }
  17787. GGML_API void ggml_opt_init(
  17788. struct ggml_context * ctx,
  17789. struct ggml_opt_context * opt,
  17790. struct ggml_opt_params params,
  17791. int64_t nx) {
  17792. opt->ctx = ctx;
  17793. opt->params = params;
  17794. opt->iter = 0;
  17795. opt->nx = nx;
  17796. opt->just_initialized = true;
  17797. if (opt->ctx == NULL) {
  17798. struct ggml_init_params ctx_opt_params;
  17799. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17800. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17801. if (opt->params.past > 0) {
  17802. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17803. }
  17804. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17805. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17806. if (opt->params.past > 0) {
  17807. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17808. }
  17809. }
  17810. ctx_opt_params.mem_buffer = NULL;
  17811. ctx_opt_params.no_alloc = false;
  17812. opt->ctx = ggml_init(ctx_opt_params);
  17813. }
  17814. switch (opt->params.type) {
  17815. case GGML_OPT_TYPE_ADAM:
  17816. {
  17817. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17818. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17819. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17820. opt->adam.pf = params.past > 0
  17821. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17822. : NULL;
  17823. ggml_set_zero(opt->adam.m);
  17824. ggml_set_zero(opt->adam.v);
  17825. if (opt->adam.pf) {
  17826. ggml_set_zero(opt->adam.pf);
  17827. }
  17828. } break;
  17829. case GGML_OPT_TYPE_LBFGS:
  17830. {
  17831. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17832. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17833. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17834. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17835. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17836. opt->lbfgs.pf = params.past > 0
  17837. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17838. : NULL;
  17839. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17840. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17841. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17842. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17843. ggml_set_zero(opt->lbfgs.x);
  17844. ggml_set_zero(opt->lbfgs.xp);
  17845. ggml_set_zero(opt->lbfgs.g);
  17846. ggml_set_zero(opt->lbfgs.gp);
  17847. ggml_set_zero(opt->lbfgs.d);
  17848. if (opt->lbfgs.pf) {
  17849. ggml_set_zero(opt->lbfgs.pf);
  17850. }
  17851. ggml_set_zero(opt->lbfgs.lmal);
  17852. ggml_set_zero(opt->lbfgs.lmys);
  17853. ggml_set_zero(opt->lbfgs.lms);
  17854. ggml_set_zero(opt->lbfgs.lmy);
  17855. } break;
  17856. }
  17857. }
  17858. enum ggml_opt_result ggml_opt(
  17859. struct ggml_context * ctx,
  17860. struct ggml_opt_params params,
  17861. struct ggml_tensor * f) {
  17862. bool free_ctx = false;
  17863. if (ctx == NULL) {
  17864. struct ggml_init_params params_ctx = {
  17865. .mem_size = 16*1024*1024,
  17866. .mem_buffer = NULL,
  17867. .no_alloc = false,
  17868. };
  17869. ctx = ggml_init(params_ctx);
  17870. if (ctx == NULL) {
  17871. return GGML_OPT_RESULT_NO_CONTEXT;
  17872. }
  17873. free_ctx = true;
  17874. }
  17875. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17876. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17877. ggml_opt_init(ctx, opt, params, 0);
  17878. result = ggml_opt_resume(ctx, opt, f);
  17879. if (free_ctx) {
  17880. ggml_free(ctx);
  17881. }
  17882. return result;
  17883. }
  17884. enum ggml_opt_result ggml_opt_resume(
  17885. struct ggml_context * ctx,
  17886. struct ggml_opt_context * opt,
  17887. struct ggml_tensor * f) {
  17888. // build forward + backward compute graphs
  17889. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17890. ggml_build_forward_expand(gf, f);
  17891. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17892. ggml_build_backward_expand(ctx, gf, gb, true);
  17893. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17894. }
  17895. enum ggml_opt_result ggml_opt_resume_g(
  17896. struct ggml_context * ctx,
  17897. struct ggml_opt_context * opt,
  17898. struct ggml_tensor * f,
  17899. struct ggml_cgraph * gf,
  17900. struct ggml_cgraph * gb,
  17901. ggml_opt_callback callback,
  17902. void * callback_data) {
  17903. // build forward + backward compute graphs
  17904. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17905. switch (opt->params.type) {
  17906. case GGML_OPT_TYPE_ADAM:
  17907. {
  17908. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17909. } break;
  17910. case GGML_OPT_TYPE_LBFGS:
  17911. {
  17912. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17913. } break;
  17914. }
  17915. if (opt->params.print_forward_graph) {
  17916. ggml_graph_print (gf);
  17917. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17918. }
  17919. if (opt->params.print_backward_graph) {
  17920. ggml_graph_print (gb);
  17921. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17922. }
  17923. return result;
  17924. }
  17925. ////////////////////////////////////////////////////////////////////////////////
  17926. void ggml_set_input(struct ggml_tensor * tensor) {
  17927. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17928. }
  17929. void ggml_set_output(struct ggml_tensor * tensor) {
  17930. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17931. }
  17932. ////////////////////////////////////////////////////////////////////////////////
  17933. void ggml_quantize_init(enum ggml_type type) {
  17934. ggml_critical_section_start();
  17935. switch (type) {
  17936. case GGML_TYPE_IQ2_XXS:
  17937. case GGML_TYPE_IQ2_XS:
  17938. case GGML_TYPE_IQ2_S:
  17939. case GGML_TYPE_IQ1_S:
  17940. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17941. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17942. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17943. default: // nothing
  17944. break;
  17945. }
  17946. ggml_critical_section_end();
  17947. }
  17948. void ggml_quantize_free(void) {
  17949. ggml_critical_section_start();
  17950. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17951. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17952. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17953. iq3xs_free_impl(256);
  17954. ggml_critical_section_end();
  17955. }
  17956. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17957. return
  17958. type == GGML_TYPE_IQ2_XXS ||
  17959. type == GGML_TYPE_IQ2_XS ||
  17960. type == GGML_TYPE_IQ1_S;// ||
  17961. //type == GGML_TYPE_IQ1_M;
  17962. }
  17963. size_t ggml_quantize_chunk(
  17964. enum ggml_type type,
  17965. const float * src,
  17966. void * dst,
  17967. int64_t start,
  17968. int64_t nrows,
  17969. int64_t n_per_row,
  17970. const float * imatrix) {
  17971. const int64_t n = (int64_t) nrows * n_per_row;
  17972. if (ggml_quantize_requires_imatrix(type)) {
  17973. GGML_ASSERT(imatrix != NULL);
  17974. }
  17975. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17976. GGML_ASSERT(start % n_per_row == 0);
  17977. ggml_quantize_init(type); // this is noop if already initialized
  17978. const size_t start_row = start / n_per_row;
  17979. const size_t row_size = ggml_row_size(type, n_per_row);
  17980. size_t result = 0;
  17981. switch (type) {
  17982. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17983. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17984. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17985. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17986. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17987. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17988. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17989. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17990. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17991. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17992. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17993. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17994. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17995. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17996. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17997. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17998. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17999. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18000. #if QK_K == 64
  18001. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18002. #else
  18003. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18004. #endif
  18005. case GGML_TYPE_F16:
  18006. {
  18007. size_t elemsize = sizeof(ggml_fp16_t);
  18008. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  18009. result = n * elemsize;
  18010. } break;
  18011. case GGML_TYPE_BF16:
  18012. {
  18013. size_t elemsize = sizeof(ggml_bf16_t);
  18014. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  18015. result = n * elemsize;
  18016. } break;
  18017. case GGML_TYPE_F32:
  18018. {
  18019. size_t elemsize = sizeof(float);
  18020. result = n * elemsize;
  18021. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  18022. } break;
  18023. default:
  18024. assert(false);
  18025. }
  18026. GGML_ASSERT(result == nrows * row_size);
  18027. return result;
  18028. }
  18029. ////////////////////////////////////////////////////////////////////////////////
  18030. struct gguf_str {
  18031. uint64_t n; // GGUFv2
  18032. char * data;
  18033. };
  18034. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  18035. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  18036. [GGUF_TYPE_INT8] = sizeof(int8_t),
  18037. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  18038. [GGUF_TYPE_INT16] = sizeof(int16_t),
  18039. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  18040. [GGUF_TYPE_INT32] = sizeof(int32_t),
  18041. [GGUF_TYPE_FLOAT32] = sizeof(float),
  18042. [GGUF_TYPE_BOOL] = sizeof(bool),
  18043. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  18044. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  18045. [GGUF_TYPE_INT64] = sizeof(int64_t),
  18046. [GGUF_TYPE_FLOAT64] = sizeof(double),
  18047. [GGUF_TYPE_ARRAY] = 0, // undefined
  18048. };
  18049. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18050. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  18051. [GGUF_TYPE_UINT8] = "u8",
  18052. [GGUF_TYPE_INT8] = "i8",
  18053. [GGUF_TYPE_UINT16] = "u16",
  18054. [GGUF_TYPE_INT16] = "i16",
  18055. [GGUF_TYPE_UINT32] = "u32",
  18056. [GGUF_TYPE_INT32] = "i32",
  18057. [GGUF_TYPE_FLOAT32] = "f32",
  18058. [GGUF_TYPE_BOOL] = "bool",
  18059. [GGUF_TYPE_STRING] = "str",
  18060. [GGUF_TYPE_ARRAY] = "arr",
  18061. [GGUF_TYPE_UINT64] = "u64",
  18062. [GGUF_TYPE_INT64] = "i64",
  18063. [GGUF_TYPE_FLOAT64] = "f64",
  18064. };
  18065. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18066. union gguf_value {
  18067. uint8_t uint8;
  18068. int8_t int8;
  18069. uint16_t uint16;
  18070. int16_t int16;
  18071. uint32_t uint32;
  18072. int32_t int32;
  18073. float float32;
  18074. uint64_t uint64;
  18075. int64_t int64;
  18076. double float64;
  18077. bool bool_;
  18078. struct gguf_str str;
  18079. struct {
  18080. enum gguf_type type;
  18081. uint64_t n; // GGUFv2
  18082. void * data;
  18083. } arr;
  18084. };
  18085. struct gguf_kv {
  18086. struct gguf_str key;
  18087. enum gguf_type type;
  18088. union gguf_value value;
  18089. };
  18090. struct gguf_header {
  18091. char magic[4];
  18092. uint32_t version;
  18093. uint64_t n_tensors; // GGUFv2
  18094. uint64_t n_kv; // GGUFv2
  18095. };
  18096. struct gguf_tensor_info {
  18097. struct gguf_str name;
  18098. uint32_t n_dims;
  18099. uint64_t ne[GGML_MAX_DIMS];
  18100. enum ggml_type type;
  18101. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  18102. // for writing API
  18103. const void * data;
  18104. size_t size;
  18105. };
  18106. struct gguf_context {
  18107. struct gguf_header header;
  18108. struct gguf_kv * kv;
  18109. struct gguf_tensor_info * infos;
  18110. size_t alignment;
  18111. size_t offset; // offset of `data` from beginning of file
  18112. size_t size; // size of `data` in bytes
  18113. //uint8_t * padding;
  18114. void * data;
  18115. };
  18116. static size_t gguf_type_size(enum gguf_type type) {
  18117. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18118. return GGUF_TYPE_SIZE[type];
  18119. }
  18120. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18121. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18122. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18123. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18124. GGML_ASSERT(info->ne[i] > 0);
  18125. }
  18126. // prevent overflow for total number of elements
  18127. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18128. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18129. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18130. }
  18131. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18132. const size_t n = fread(dst, 1, size, file);
  18133. *offset += n;
  18134. return n == size;
  18135. }
  18136. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18137. p->n = 0;
  18138. p->data = NULL;
  18139. bool ok = true;
  18140. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18141. // early exit if string length is invalid, prevents from integer overflow
  18142. if (p->n == SIZE_MAX) {
  18143. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18144. return false;
  18145. }
  18146. p->data = GGML_CALLOC(p->n + 1, 1);
  18147. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18148. return ok;
  18149. }
  18150. static void gguf_free_kv(struct gguf_kv * kv) {
  18151. if (kv->key.data) {
  18152. GGML_FREE(kv->key.data);
  18153. }
  18154. if (kv->type == GGUF_TYPE_STRING) {
  18155. if (kv->value.str.data) {
  18156. GGML_FREE(kv->value.str.data);
  18157. }
  18158. }
  18159. if (kv->type == GGUF_TYPE_ARRAY) {
  18160. if (kv->value.arr.data) {
  18161. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18162. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18163. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18164. if (str->data) {
  18165. GGML_FREE(str->data);
  18166. }
  18167. }
  18168. }
  18169. GGML_FREE(kv->value.arr.data);
  18170. }
  18171. }
  18172. }
  18173. struct gguf_context * gguf_init_empty(void) {
  18174. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18175. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18176. ctx->header.version = GGUF_VERSION;
  18177. ctx->header.n_tensors = 0;
  18178. ctx->header.n_kv = 0;
  18179. ctx->kv = NULL;
  18180. ctx->infos = NULL;
  18181. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18182. ctx->offset = 0;
  18183. ctx->size = 0;
  18184. ctx->data = NULL;
  18185. return ctx;
  18186. }
  18187. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18188. FILE * file = ggml_fopen(fname, "rb");
  18189. if (!file) {
  18190. return NULL;
  18191. }
  18192. // offset from start of file
  18193. size_t offset = 0;
  18194. char magic[4];
  18195. // check the magic before making allocations
  18196. {
  18197. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18198. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18199. if (magic[i] != GGUF_MAGIC[i]) {
  18200. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18201. fclose(file);
  18202. return NULL;
  18203. }
  18204. }
  18205. }
  18206. bool ok = true;
  18207. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18208. // read the header
  18209. {
  18210. strncpy(ctx->header.magic, magic, 4);
  18211. ctx->kv = NULL;
  18212. ctx->infos = NULL;
  18213. ctx->data = NULL;
  18214. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18215. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18216. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18217. if (ctx->header.version == 1) {
  18218. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18219. fclose(file);
  18220. gguf_free(ctx);
  18221. return NULL;
  18222. }
  18223. // sanity-checks to prevent from integer/buffer overflows
  18224. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18225. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18226. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18227. if (!ok) {
  18228. fprintf(stderr, "%s: failed to read header\n", __func__);
  18229. fclose(file);
  18230. gguf_free(ctx);
  18231. return NULL;
  18232. }
  18233. }
  18234. // read the kv pairs
  18235. {
  18236. const uint64_t n_kv = ctx->header.n_kv;
  18237. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18238. ctx->header.n_kv = 0;
  18239. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18240. for (uint64_t i = 0; i < n_kv; ++i) {
  18241. struct gguf_kv * kv = &ctx->kv[i];
  18242. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18243. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18244. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18245. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18246. switch (kv->type) {
  18247. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18248. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18249. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18250. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18251. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18252. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18253. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18254. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18255. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18256. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18257. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18258. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18259. case GGUF_TYPE_ARRAY:
  18260. {
  18261. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18262. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18263. switch (kv->value.arr.type) {
  18264. case GGUF_TYPE_UINT8:
  18265. case GGUF_TYPE_INT8:
  18266. case GGUF_TYPE_UINT16:
  18267. case GGUF_TYPE_INT16:
  18268. case GGUF_TYPE_UINT32:
  18269. case GGUF_TYPE_INT32:
  18270. case GGUF_TYPE_FLOAT32:
  18271. case GGUF_TYPE_UINT64:
  18272. case GGUF_TYPE_INT64:
  18273. case GGUF_TYPE_FLOAT64:
  18274. case GGUF_TYPE_BOOL:
  18275. {
  18276. // prevent from integer overflow in the malloc below
  18277. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18278. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18279. fclose(file);
  18280. gguf_free(ctx);
  18281. return NULL;
  18282. }
  18283. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18284. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18285. } break;
  18286. case GGUF_TYPE_STRING:
  18287. {
  18288. // prevent from integer overflow in the malloc below
  18289. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18290. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18291. fclose(file);
  18292. gguf_free(ctx);
  18293. return NULL;
  18294. }
  18295. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18296. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18297. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18298. }
  18299. } break;
  18300. case GGUF_TYPE_ARRAY:
  18301. default: GGML_ASSERT(false && "invalid type"); break;
  18302. }
  18303. } break;
  18304. default: GGML_ASSERT(false && "invalid type");
  18305. }
  18306. if (!ok) {
  18307. break;
  18308. }
  18309. ctx->header.n_kv++;
  18310. }
  18311. if (!ok) {
  18312. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18313. fclose(file);
  18314. gguf_free(ctx);
  18315. return NULL;
  18316. }
  18317. }
  18318. // read the tensor infos
  18319. if (ctx->header.n_tensors > 0) {
  18320. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18321. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18322. struct gguf_tensor_info * info = &ctx->infos[i];
  18323. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18324. info->ne[j] = 1;
  18325. }
  18326. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18327. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18328. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18329. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18330. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18331. }
  18332. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18333. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18334. // TODO: return an error instead of crashing with GGML_ASSERT
  18335. gguf_tensor_info_sanitize(info);
  18336. // make sure there is no duplicated tensor names
  18337. for (uint64_t j = 0; j < i; ++j) {
  18338. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18339. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18340. ok = false;
  18341. }
  18342. }
  18343. if (!ok) {
  18344. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18345. fclose(file);
  18346. gguf_free(ctx);
  18347. return NULL;
  18348. }
  18349. }
  18350. }
  18351. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18352. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18353. if (alignment_idx != -1) {
  18354. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18355. }
  18356. // we require the data section to be aligned, so take into account any padding
  18357. {
  18358. const size_t offset_pad = offset % ctx->alignment;
  18359. if (offset_pad != 0) {
  18360. offset += ctx->alignment - offset_pad;
  18361. fseek(file, offset, SEEK_SET);
  18362. }
  18363. }
  18364. // store the current file offset - this is where the data section starts
  18365. ctx->offset = offset;
  18366. // compute the total size of the data section, taking into account the alignment
  18367. {
  18368. ctx->size = 0;
  18369. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18370. struct gguf_tensor_info * info = &ctx->infos[i];
  18371. const int64_t ne =
  18372. (int64_t) info->ne[0] *
  18373. (int64_t) info->ne[1] *
  18374. (int64_t) info->ne[2] *
  18375. (int64_t) info->ne[3];
  18376. if (ne % ggml_blck_size(info->type) != 0) {
  18377. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18378. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18379. fclose(file);
  18380. gguf_free(ctx);
  18381. return NULL;
  18382. }
  18383. const size_t size_cur = ggml_row_size(info->type, ne);
  18384. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18385. }
  18386. }
  18387. // load the tensor data only if requested
  18388. if (params.ctx != NULL) {
  18389. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18390. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18391. // the ggml_tensor structs to the appropriate locations in the binary blob
  18392. // compute the exact size needed for the new ggml_context
  18393. const size_t mem_size =
  18394. params.no_alloc ?
  18395. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18396. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18397. struct ggml_init_params pdata = {
  18398. .mem_size = mem_size,
  18399. .mem_buffer = NULL,
  18400. .no_alloc = params.no_alloc,
  18401. };
  18402. *params.ctx = ggml_init(pdata);
  18403. struct ggml_context * ctx_data = *params.ctx;
  18404. struct ggml_tensor * data = NULL;
  18405. if (!params.no_alloc) {
  18406. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18407. ok = ok && data != NULL;
  18408. // read the binary blob with the tensor data
  18409. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18410. if (!ok) {
  18411. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18412. fclose(file);
  18413. ggml_free(ctx_data);
  18414. gguf_free(ctx);
  18415. return NULL;
  18416. }
  18417. ctx->data = data->data;
  18418. }
  18419. ggml_set_no_alloc(ctx_data, true);
  18420. // create the tensors
  18421. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18422. const int64_t ne[GGML_MAX_DIMS] = {
  18423. ctx->infos[i].ne[0],
  18424. ctx->infos[i].ne[1],
  18425. ctx->infos[i].ne[2],
  18426. ctx->infos[i].ne[3],
  18427. };
  18428. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18429. ok = ok && cur != NULL;
  18430. if (!ok) {
  18431. break;
  18432. }
  18433. ggml_set_name(cur, ctx->infos[i].name.data);
  18434. // point the data member to the appropriate location in the binary blob using the tensor infos
  18435. if (!params.no_alloc) {
  18436. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18437. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18438. }
  18439. }
  18440. if (!ok) {
  18441. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18442. fclose(file);
  18443. ggml_free(ctx_data);
  18444. gguf_free(ctx);
  18445. return NULL;
  18446. }
  18447. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18448. }
  18449. fclose(file);
  18450. return ctx;
  18451. }
  18452. void gguf_free(struct gguf_context * ctx) {
  18453. if (ctx == NULL) {
  18454. return;
  18455. }
  18456. if (ctx->kv) {
  18457. // free string memory - not great..
  18458. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18459. gguf_free_kv(&ctx->kv[i]);
  18460. }
  18461. GGML_FREE(ctx->kv);
  18462. }
  18463. if (ctx->infos) {
  18464. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18465. struct gguf_tensor_info * info = &ctx->infos[i];
  18466. if (info->name.data) {
  18467. GGML_FREE(info->name.data);
  18468. }
  18469. }
  18470. GGML_FREE(ctx->infos);
  18471. }
  18472. GGML_FREE(ctx);
  18473. }
  18474. const char * gguf_type_name(enum gguf_type type) {
  18475. return GGUF_TYPE_NAME[type];
  18476. }
  18477. int gguf_get_version(const struct gguf_context * ctx) {
  18478. return ctx->header.version;
  18479. }
  18480. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18481. return ctx->alignment;
  18482. }
  18483. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18484. return ctx->offset;
  18485. }
  18486. void * gguf_get_data(const struct gguf_context * ctx) {
  18487. return ctx->data;
  18488. }
  18489. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18490. return ctx->header.n_kv;
  18491. }
  18492. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18493. // return -1 if key not found
  18494. int keyfound = -1;
  18495. const int n_kv = gguf_get_n_kv(ctx);
  18496. for (int i = 0; i < n_kv; ++i) {
  18497. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18498. keyfound = i;
  18499. break;
  18500. }
  18501. }
  18502. return keyfound;
  18503. }
  18504. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18505. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18506. return ctx->kv[key_id].key.data;
  18507. }
  18508. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18509. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18510. return ctx->kv[key_id].type;
  18511. }
  18512. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18513. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18514. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18515. return ctx->kv[key_id].value.arr.type;
  18516. }
  18517. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18518. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18519. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18520. return ctx->kv[key_id].value.arr.data;
  18521. }
  18522. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18523. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18524. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18525. struct gguf_kv * kv = &ctx->kv[key_id];
  18526. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18527. return str->data;
  18528. }
  18529. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18530. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18531. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18532. return ctx->kv[key_id].value.arr.n;
  18533. }
  18534. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18535. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18536. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18537. return ctx->kv[key_id].value.uint8;
  18538. }
  18539. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18540. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18541. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18542. return ctx->kv[key_id].value.int8;
  18543. }
  18544. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18545. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18546. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18547. return ctx->kv[key_id].value.uint16;
  18548. }
  18549. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18550. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18551. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18552. return ctx->kv[key_id].value.int16;
  18553. }
  18554. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18555. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18556. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18557. return ctx->kv[key_id].value.uint32;
  18558. }
  18559. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18560. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18561. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18562. return ctx->kv[key_id].value.int32;
  18563. }
  18564. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18565. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18566. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18567. return ctx->kv[key_id].value.float32;
  18568. }
  18569. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18570. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18571. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18572. return ctx->kv[key_id].value.uint64;
  18573. }
  18574. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18575. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18576. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18577. return ctx->kv[key_id].value.int64;
  18578. }
  18579. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18580. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18581. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18582. return ctx->kv[key_id].value.float64;
  18583. }
  18584. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18585. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18586. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18587. return ctx->kv[key_id].value.bool_;
  18588. }
  18589. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18590. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18591. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18592. return ctx->kv[key_id].value.str.data;
  18593. }
  18594. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18595. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18596. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18597. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18598. return &ctx->kv[key_id].value;
  18599. }
  18600. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18601. return ctx->header.n_tensors;
  18602. }
  18603. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18604. // return -1 if tensor not found
  18605. int tensorfound = -1;
  18606. const int n_tensors = gguf_get_n_tensors(ctx);
  18607. for (int i = 0; i < n_tensors; ++i) {
  18608. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18609. tensorfound = i;
  18610. break;
  18611. }
  18612. }
  18613. return tensorfound;
  18614. }
  18615. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18616. return ctx->infos[i].offset;
  18617. }
  18618. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18619. return ctx->infos[i].name.data;
  18620. }
  18621. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18622. return ctx->infos[i].type;
  18623. }
  18624. // returns the index
  18625. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18626. const int idx = gguf_find_key(ctx, key);
  18627. if (idx >= 0) {
  18628. return idx;
  18629. }
  18630. const int n_kv = gguf_get_n_kv(ctx);
  18631. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18632. ctx->kv[n_kv].key.n = strlen(key);
  18633. ctx->kv[n_kv].key.data = strdup(key);
  18634. ctx->header.n_kv++;
  18635. return n_kv;
  18636. }
  18637. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18638. const int idx = gguf_find_key(ctx, key);
  18639. if (idx >= 0) {
  18640. const int n_kv = gguf_get_n_kv(ctx);
  18641. gguf_free_kv(&ctx->kv[idx]);
  18642. for (int i = idx; i < n_kv-1; ++i) {
  18643. ctx->kv[i] = ctx->kv[i+1];
  18644. }
  18645. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18646. ctx->header.n_kv--;
  18647. }
  18648. }
  18649. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18650. const int idx = gguf_get_or_add_key(ctx, key);
  18651. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18652. ctx->kv[idx].value.uint8 = val;
  18653. }
  18654. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18655. const int idx = gguf_get_or_add_key(ctx, key);
  18656. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18657. ctx->kv[idx].value.int8 = val;
  18658. }
  18659. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18660. const int idx = gguf_get_or_add_key(ctx, key);
  18661. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18662. ctx->kv[idx].value.uint16 = val;
  18663. }
  18664. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18665. const int idx = gguf_get_or_add_key(ctx, key);
  18666. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18667. ctx->kv[idx].value.int16 = val;
  18668. }
  18669. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18670. const int idx = gguf_get_or_add_key(ctx, key);
  18671. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18672. ctx->kv[idx].value.uint32 = val;
  18673. }
  18674. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18675. const int idx = gguf_get_or_add_key(ctx, key);
  18676. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18677. ctx->kv[idx].value.int32 = val;
  18678. }
  18679. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18680. const int idx = gguf_get_or_add_key(ctx, key);
  18681. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18682. ctx->kv[idx].value.float32 = val;
  18683. }
  18684. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18685. const int idx = gguf_get_or_add_key(ctx, key);
  18686. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18687. ctx->kv[idx].value.uint64 = val;
  18688. }
  18689. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18690. const int idx = gguf_get_or_add_key(ctx, key);
  18691. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18692. ctx->kv[idx].value.int64 = val;
  18693. }
  18694. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18695. const int idx = gguf_get_or_add_key(ctx, key);
  18696. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18697. ctx->kv[idx].value.float64 = val;
  18698. }
  18699. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18700. const int idx = gguf_get_or_add_key(ctx, key);
  18701. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18702. ctx->kv[idx].value.bool_ = val;
  18703. }
  18704. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18705. const int idx = gguf_get_or_add_key(ctx, key);
  18706. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18707. ctx->kv[idx].value.str.n = strlen(val);
  18708. ctx->kv[idx].value.str.data = strdup(val);
  18709. }
  18710. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18711. const int idx = gguf_get_or_add_key(ctx, key);
  18712. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18713. ctx->kv[idx].value.arr.type = type;
  18714. ctx->kv[idx].value.arr.n = n;
  18715. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18716. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18717. }
  18718. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18719. const int idx = gguf_get_or_add_key(ctx, key);
  18720. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18721. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18722. ctx->kv[idx].value.arr.n = n;
  18723. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18724. for (int i = 0; i < n; i++) {
  18725. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18726. str->n = strlen(data[i]);
  18727. str->data = strdup(data[i]);
  18728. }
  18729. }
  18730. // set or add KV pairs from another context
  18731. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18732. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18733. switch (src->kv[i].type) {
  18734. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18735. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18736. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18737. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18738. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18739. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18740. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18741. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18742. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18743. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18744. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18745. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18746. case GGUF_TYPE_ARRAY:
  18747. {
  18748. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18749. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18750. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18751. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18752. }
  18753. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18754. GGML_FREE((void *)data);
  18755. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18756. GGML_ASSERT(false && "nested arrays not supported");
  18757. } else {
  18758. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18759. }
  18760. } break;
  18761. default: GGML_ASSERT(false && "invalid type"); break;
  18762. }
  18763. }
  18764. }
  18765. void gguf_add_tensor(
  18766. struct gguf_context * ctx,
  18767. const struct ggml_tensor * tensor) {
  18768. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18769. GGML_ASSERT(false && "duplicated tensor name");
  18770. }
  18771. const int idx = ctx->header.n_tensors;
  18772. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18773. ctx->infos[idx].name.n = strlen(tensor->name);
  18774. ctx->infos[idx].name.data = strdup(tensor->name);
  18775. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18776. ctx->infos[idx].ne[i] = 1;
  18777. }
  18778. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18779. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18780. ctx->infos[idx].ne[i] = tensor->ne[i];
  18781. }
  18782. ctx->infos[idx].type = tensor->type;
  18783. ctx->infos[idx].offset = 0;
  18784. ctx->infos[idx].data = tensor->data;
  18785. ctx->infos[idx].size = ggml_nbytes(tensor);
  18786. if (ctx->header.n_tensors > 0) {
  18787. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18788. }
  18789. ctx->header.n_tensors++;
  18790. }
  18791. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18792. const int idx = gguf_find_tensor(ctx, name);
  18793. if (idx < 0) {
  18794. GGML_ASSERT(false && "tensor not found");
  18795. }
  18796. ctx->infos[idx].type = type;
  18797. }
  18798. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18799. const int idx = gguf_find_tensor(ctx, name);
  18800. if (idx < 0) {
  18801. GGML_ASSERT(false && "tensor not found");
  18802. }
  18803. ctx->infos[idx].data = data;
  18804. ctx->infos[idx].size = size;
  18805. // update offsets
  18806. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18807. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18808. }
  18809. }
  18810. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18811. // fwrite(&val->n, sizeof(val->n), 1, file);
  18812. // fwrite(val->data, sizeof(char), val->n, file);
  18813. //}
  18814. //
  18815. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18816. // fwrite(val, sizeof(char), size, file);
  18817. //}
  18818. struct gguf_buf {
  18819. void * data;
  18820. size_t size;
  18821. size_t offset;
  18822. };
  18823. static struct gguf_buf gguf_buf_init(size_t size) {
  18824. struct gguf_buf buf = {
  18825. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18826. /*buf.size =*/ size,
  18827. /*buf.offset =*/ 0,
  18828. };
  18829. return buf;
  18830. }
  18831. static void gguf_buf_free(struct gguf_buf buf) {
  18832. if (buf.data) {
  18833. GGML_FREE(buf.data);
  18834. }
  18835. }
  18836. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18837. if (buf->offset + size > buf->size) {
  18838. buf->size = 1.5*(buf->offset + size);
  18839. if (buf->data) {
  18840. buf->data = realloc(buf->data, buf->size);
  18841. }
  18842. }
  18843. }
  18844. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18845. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18846. if (buf->data) {
  18847. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18848. }
  18849. buf->offset += sizeof(val->n);
  18850. if (buf->data) {
  18851. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18852. }
  18853. buf->offset += val->n;
  18854. }
  18855. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18856. gguf_buf_grow(buf, el_size);
  18857. if (buf->data) {
  18858. memcpy((char *) buf->data + buf->offset, val, el_size);
  18859. }
  18860. buf->offset += el_size;
  18861. }
  18862. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18863. // write header
  18864. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18865. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18866. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18867. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18868. // write key-value pairs
  18869. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18870. struct gguf_kv * kv = &ctx->kv[i];
  18871. gguf_bwrite_str(buf, &kv->key);
  18872. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18873. switch (kv->type) {
  18874. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18875. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18876. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18877. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18878. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18879. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18880. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18881. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18882. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18883. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18884. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18885. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18886. case GGUF_TYPE_ARRAY:
  18887. {
  18888. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18889. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18890. switch (kv->value.arr.type) {
  18891. case GGUF_TYPE_UINT8:
  18892. case GGUF_TYPE_INT8:
  18893. case GGUF_TYPE_UINT16:
  18894. case GGUF_TYPE_INT16:
  18895. case GGUF_TYPE_UINT32:
  18896. case GGUF_TYPE_INT32:
  18897. case GGUF_TYPE_FLOAT32:
  18898. case GGUF_TYPE_UINT64:
  18899. case GGUF_TYPE_INT64:
  18900. case GGUF_TYPE_FLOAT64:
  18901. case GGUF_TYPE_BOOL:
  18902. {
  18903. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18904. } break;
  18905. case GGUF_TYPE_STRING:
  18906. {
  18907. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18908. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18909. }
  18910. } break;
  18911. case GGUF_TYPE_ARRAY:
  18912. default: GGML_ASSERT(false && "invalid type"); break;
  18913. }
  18914. } break;
  18915. default: GGML_ASSERT(false && "invalid type");
  18916. }
  18917. }
  18918. // write tensor infos
  18919. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18920. struct gguf_tensor_info * info = &ctx->infos[i];
  18921. gguf_bwrite_str(buf, &info->name);
  18922. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18923. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18924. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18925. }
  18926. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18927. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18928. }
  18929. // we require the data section to be aligned, so take into account any padding
  18930. {
  18931. const size_t offset = buf->offset;
  18932. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18933. if (offset_pad != offset) {
  18934. uint8_t pad = 0;
  18935. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18936. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18937. }
  18938. }
  18939. }
  18940. if (only_meta) {
  18941. return;
  18942. }
  18943. size_t offset = 0;
  18944. // write tensor data
  18945. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18946. struct gguf_tensor_info * info = &ctx->infos[i];
  18947. const size_t size = info->size;
  18948. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18949. gguf_bwrite_el(buf, info->data, size);
  18950. if (size_pad != size) {
  18951. uint8_t pad = 0;
  18952. for (size_t j = 0; j < size_pad - size; ++j) {
  18953. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18954. }
  18955. }
  18956. GGML_ASSERT(offset == info->offset);
  18957. offset += size_pad;
  18958. }
  18959. }
  18960. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18961. FILE * file = ggml_fopen(fname, "wb");
  18962. if (!file) {
  18963. GGML_ASSERT(false && "failed to open file for writing");
  18964. }
  18965. struct gguf_buf buf = gguf_buf_init(16*1024);
  18966. gguf_write_to_buf(ctx, &buf, only_meta);
  18967. fwrite(buf.data, 1, buf.offset, file);
  18968. gguf_buf_free(buf);
  18969. fclose(file);
  18970. }
  18971. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18972. // no allocs - only compute size
  18973. struct gguf_buf buf = gguf_buf_init(0);
  18974. gguf_write_to_buf(ctx, &buf, true);
  18975. return buf.offset;
  18976. }
  18977. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18978. struct gguf_buf buf = gguf_buf_init(16*1024);
  18979. gguf_write_to_buf(ctx, &buf, true);
  18980. memcpy(data, buf.data, buf.offset);
  18981. gguf_buf_free(buf);
  18982. }
  18983. ////////////////////////////////////////////////////////////////////////////////
  18984. int ggml_cpu_has_avx(void) {
  18985. #if defined(__AVX__)
  18986. return 1;
  18987. #else
  18988. return 0;
  18989. #endif
  18990. }
  18991. int ggml_cpu_has_avx_vnni(void) {
  18992. #if defined(__AVXVNNI__)
  18993. return 1;
  18994. #else
  18995. return 0;
  18996. #endif
  18997. }
  18998. int ggml_cpu_has_avx2(void) {
  18999. #if defined(__AVX2__)
  19000. return 1;
  19001. #else
  19002. return 0;
  19003. #endif
  19004. }
  19005. int ggml_cpu_has_avx512(void) {
  19006. #if defined(__AVX512F__)
  19007. return 1;
  19008. #else
  19009. return 0;
  19010. #endif
  19011. }
  19012. int ggml_cpu_has_avx512_vbmi(void) {
  19013. #if defined(__AVX512VBMI__)
  19014. return 1;
  19015. #else
  19016. return 0;
  19017. #endif
  19018. }
  19019. int ggml_cpu_has_avx512_vnni(void) {
  19020. #if defined(__AVX512VNNI__)
  19021. return 1;
  19022. #else
  19023. return 0;
  19024. #endif
  19025. }
  19026. int ggml_cpu_has_avx512_bf16(void) {
  19027. #if defined(__AVX512BF16__)
  19028. return 1;
  19029. #else
  19030. return 0;
  19031. #endif
  19032. }
  19033. int ggml_cpu_has_fma(void) {
  19034. #if defined(__FMA__)
  19035. return 1;
  19036. #else
  19037. return 0;
  19038. #endif
  19039. }
  19040. int ggml_cpu_has_neon(void) {
  19041. #if defined(__ARM_NEON)
  19042. return 1;
  19043. #else
  19044. return 0;
  19045. #endif
  19046. }
  19047. int ggml_cpu_has_arm_fma(void) {
  19048. #if defined(__ARM_FEATURE_FMA)
  19049. return 1;
  19050. #else
  19051. return 0;
  19052. #endif
  19053. }
  19054. int ggml_cpu_has_metal(void) {
  19055. #if defined(GGML_USE_METAL)
  19056. return 1;
  19057. #else
  19058. return 0;
  19059. #endif
  19060. }
  19061. int ggml_cpu_has_f16c(void) {
  19062. #if defined(__F16C__)
  19063. return 1;
  19064. #else
  19065. return 0;
  19066. #endif
  19067. }
  19068. int ggml_cpu_has_fp16_va(void) {
  19069. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  19070. return 1;
  19071. #else
  19072. return 0;
  19073. #endif
  19074. }
  19075. int ggml_cpu_has_wasm_simd(void) {
  19076. #if defined(__wasm_simd128__)
  19077. return 1;
  19078. #else
  19079. return 0;
  19080. #endif
  19081. }
  19082. int ggml_cpu_has_blas(void) {
  19083. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  19084. return 1;
  19085. #else
  19086. return 0;
  19087. #endif
  19088. }
  19089. int ggml_cpu_has_cuda(void) {
  19090. #if defined(GGML_USE_CUDA)
  19091. return 1;
  19092. #else
  19093. return 0;
  19094. #endif
  19095. }
  19096. int ggml_cpu_has_clblast(void) {
  19097. #if defined(GGML_USE_CLBLAST)
  19098. return 1;
  19099. #else
  19100. return 0;
  19101. #endif
  19102. }
  19103. int ggml_cpu_has_vulkan(void) {
  19104. #if defined(GGML_USE_VULKAN)
  19105. return 1;
  19106. #else
  19107. return 0;
  19108. #endif
  19109. }
  19110. int ggml_cpu_has_kompute(void) {
  19111. #if defined(GGML_USE_KOMPUTE)
  19112. return 1;
  19113. #else
  19114. return 0;
  19115. #endif
  19116. }
  19117. int ggml_cpu_has_sycl(void) {
  19118. #if defined(GGML_USE_SYCL)
  19119. return 1;
  19120. #else
  19121. return 0;
  19122. #endif
  19123. }
  19124. int ggml_cpu_has_gpublas(void) {
  19125. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  19126. ggml_cpu_has_sycl();
  19127. }
  19128. int ggml_cpu_has_sse3(void) {
  19129. #if defined(__SSE3__)
  19130. return 1;
  19131. #else
  19132. return 0;
  19133. #endif
  19134. }
  19135. int ggml_cpu_has_ssse3(void) {
  19136. #if defined(__SSSE3__)
  19137. return 1;
  19138. #else
  19139. return 0;
  19140. #endif
  19141. }
  19142. int ggml_cpu_has_vsx(void) {
  19143. #if defined(__POWER9_VECTOR__)
  19144. return 1;
  19145. #else
  19146. return 0;
  19147. #endif
  19148. }
  19149. int ggml_cpu_has_matmul_int8(void) {
  19150. #if defined(__ARM_FEATURE_MATMUL_INT8)
  19151. return 1;
  19152. #else
  19153. return 0;
  19154. #endif
  19155. }
  19156. ////////////////////////////////////////////////////////////////////////////////