ggml-metal.metal 175 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136
  1. #include <metal_stdlib>
  2. using namespace metal;
  3. #define MAX(x, y) ((x) > (y) ? (x) : (y))
  4. #define MIN(x, y) ((x) < (y) ? (x) : (y))
  5. #define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
  6. #define QK4_0 32
  7. #define QR4_0 2
  8. typedef struct {
  9. half d; // delta
  10. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  11. } block_q4_0;
  12. #define QK4_1 32
  13. typedef struct {
  14. half d; // delta
  15. half m; // min
  16. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  17. } block_q4_1;
  18. #define QK5_0 32
  19. typedef struct {
  20. half d; // delta
  21. uint8_t qh[4]; // 5-th bit of quants
  22. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  23. } block_q5_0;
  24. #define QK5_1 32
  25. typedef struct {
  26. half d; // delta
  27. half m; // min
  28. uint8_t qh[4]; // 5-th bit of quants
  29. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  30. } block_q5_1;
  31. #define QK8_0 32
  32. typedef struct {
  33. half d; // delta
  34. int8_t qs[QK8_0]; // quants
  35. } block_q8_0;
  36. #define N_SIMDWIDTH 32 // assuming SIMD group size is 32
  37. enum ggml_sort_order {
  38. GGML_SORT_ASC,
  39. GGML_SORT_DESC,
  40. };
  41. // general-purpose kernel for addition, multiplication and division of two tensors
  42. // pros: works for non-contiguous tensors, supports broadcast across all dims
  43. // cons: not very efficient
  44. kernel void kernel_add(
  45. device const char * src0,
  46. device const char * src1,
  47. device char * dst,
  48. constant int64_t & ne00,
  49. constant int64_t & ne01,
  50. constant int64_t & ne02,
  51. constant int64_t & ne03,
  52. constant uint64_t & nb00,
  53. constant uint64_t & nb01,
  54. constant uint64_t & nb02,
  55. constant uint64_t & nb03,
  56. constant int64_t & ne10,
  57. constant int64_t & ne11,
  58. constant int64_t & ne12,
  59. constant int64_t & ne13,
  60. constant uint64_t & nb10,
  61. constant uint64_t & nb11,
  62. constant uint64_t & nb12,
  63. constant uint64_t & nb13,
  64. constant int64_t & ne0,
  65. constant int64_t & ne1,
  66. constant int64_t & ne2,
  67. constant int64_t & ne3,
  68. constant uint64_t & nb0,
  69. constant uint64_t & nb1,
  70. constant uint64_t & nb2,
  71. constant uint64_t & nb3,
  72. constant int64_t & offs,
  73. uint3 tgpig[[threadgroup_position_in_grid]],
  74. uint3 tpitg[[thread_position_in_threadgroup]],
  75. uint3 ntg[[threads_per_threadgroup]]) {
  76. const int64_t i03 = tgpig.z;
  77. const int64_t i02 = tgpig.y;
  78. const int64_t i01 = tgpig.x;
  79. const int64_t i13 = i03 % ne13;
  80. const int64_t i12 = i02 % ne12;
  81. const int64_t i11 = i01 % ne11;
  82. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
  83. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  84. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
  85. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  86. const int i10 = i0 % ne10;
  87. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10));
  88. }
  89. }
  90. kernel void kernel_mul(
  91. device const char * src0,
  92. device const char * src1,
  93. device char * dst,
  94. constant int64_t & ne00,
  95. constant int64_t & ne01,
  96. constant int64_t & ne02,
  97. constant int64_t & ne03,
  98. constant uint64_t & nb00,
  99. constant uint64_t & nb01,
  100. constant uint64_t & nb02,
  101. constant uint64_t & nb03,
  102. constant int64_t & ne10,
  103. constant int64_t & ne11,
  104. constant int64_t & ne12,
  105. constant int64_t & ne13,
  106. constant uint64_t & nb10,
  107. constant uint64_t & nb11,
  108. constant uint64_t & nb12,
  109. constant uint64_t & nb13,
  110. constant int64_t & ne0,
  111. constant int64_t & ne1,
  112. constant int64_t & ne2,
  113. constant int64_t & ne3,
  114. constant uint64_t & nb0,
  115. constant uint64_t & nb1,
  116. constant uint64_t & nb2,
  117. constant uint64_t & nb3,
  118. uint3 tgpig[[threadgroup_position_in_grid]],
  119. uint3 tpitg[[thread_position_in_threadgroup]],
  120. uint3 ntg[[threads_per_threadgroup]]) {
  121. const int64_t i03 = tgpig.z;
  122. const int64_t i02 = tgpig.y;
  123. const int64_t i01 = tgpig.x;
  124. const int64_t i13 = i03 % ne13;
  125. const int64_t i12 = i02 % ne12;
  126. const int64_t i11 = i01 % ne11;
  127. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  128. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  129. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  130. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  131. const int i10 = i0 % ne10;
  132. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10));
  133. }
  134. }
  135. kernel void kernel_div(
  136. device const char * src0,
  137. device const char * src1,
  138. device char * dst,
  139. constant int64_t & ne00,
  140. constant int64_t & ne01,
  141. constant int64_t & ne02,
  142. constant int64_t & ne03,
  143. constant uint64_t & nb00,
  144. constant uint64_t & nb01,
  145. constant uint64_t & nb02,
  146. constant uint64_t & nb03,
  147. constant int64_t & ne10,
  148. constant int64_t & ne11,
  149. constant int64_t & ne12,
  150. constant int64_t & ne13,
  151. constant uint64_t & nb10,
  152. constant uint64_t & nb11,
  153. constant uint64_t & nb12,
  154. constant uint64_t & nb13,
  155. constant int64_t & ne0,
  156. constant int64_t & ne1,
  157. constant int64_t & ne2,
  158. constant int64_t & ne3,
  159. constant uint64_t & nb0,
  160. constant uint64_t & nb1,
  161. constant uint64_t & nb2,
  162. constant uint64_t & nb3,
  163. uint3 tgpig[[threadgroup_position_in_grid]],
  164. uint3 tpitg[[thread_position_in_threadgroup]],
  165. uint3 ntg[[threads_per_threadgroup]]) {
  166. const int64_t i03 = tgpig.z;
  167. const int64_t i02 = tgpig.y;
  168. const int64_t i01 = tgpig.x;
  169. const int64_t i13 = i03 % ne13;
  170. const int64_t i12 = i02 % ne12;
  171. const int64_t i11 = i01 % ne11;
  172. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  173. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  174. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  175. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  176. const int i10 = i0 % ne10;
  177. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10));
  178. }
  179. }
  180. // assumption: src1 is a row
  181. // broadcast src1 into src0
  182. kernel void kernel_add_row(
  183. device const float4 * src0,
  184. device const float4 * src1,
  185. device float4 * dst,
  186. constant uint64_t & nb [[buffer(28)]],
  187. uint tpig[[thread_position_in_grid]]) {
  188. dst[tpig] = src0[tpig] + src1[tpig % nb];
  189. }
  190. kernel void kernel_mul_row(
  191. device const float4 * src0,
  192. device const float4 * src1,
  193. device float4 * dst,
  194. constant uint64_t & nb [[buffer(28)]],
  195. uint tpig[[thread_position_in_grid]]) {
  196. dst[tpig] = src0[tpig] * src1[tpig % nb];
  197. }
  198. kernel void kernel_div_row(
  199. device const float4 * src0,
  200. device const float4 * src1,
  201. device float4 * dst,
  202. constant uint64_t & nb [[buffer(28)]],
  203. uint tpig[[thread_position_in_grid]]) {
  204. dst[tpig] = src0[tpig] / src1[tpig % nb];
  205. }
  206. kernel void kernel_scale(
  207. device const float * src0,
  208. device float * dst,
  209. constant float & scale,
  210. uint tpig[[thread_position_in_grid]]) {
  211. dst[tpig] = src0[tpig] * scale;
  212. }
  213. kernel void kernel_scale_4(
  214. device const float4 * src0,
  215. device float4 * dst,
  216. constant float & scale,
  217. uint tpig[[thread_position_in_grid]]) {
  218. dst[tpig] = src0[tpig] * scale;
  219. }
  220. kernel void kernel_relu(
  221. device const float * src0,
  222. device float * dst,
  223. uint tpig[[thread_position_in_grid]]) {
  224. dst[tpig] = max(0.0f, src0[tpig]);
  225. }
  226. kernel void kernel_tanh(
  227. device const float * src0,
  228. device float * dst,
  229. uint tpig[[thread_position_in_grid]]) {
  230. device const float & x = src0[tpig];
  231. dst[tpig] = precise::tanh(x);
  232. }
  233. constant float GELU_COEF_A = 0.044715f;
  234. constant float GELU_QUICK_COEF = -1.702f;
  235. constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  236. kernel void kernel_gelu(
  237. device const float4 * src0,
  238. device float4 * dst,
  239. uint tpig[[thread_position_in_grid]]) {
  240. device const float4 & x = src0[tpig];
  241. // BEWARE !!!
  242. // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
  243. // This was observed with Falcon 7B and 40B models
  244. //
  245. dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  246. }
  247. kernel void kernel_gelu_quick(
  248. device const float4 * src0,
  249. device float4 * dst,
  250. uint tpig[[thread_position_in_grid]]) {
  251. device const float4 & x = src0[tpig];
  252. dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
  253. }
  254. kernel void kernel_silu(
  255. device const float4 * src0,
  256. device float4 * dst,
  257. uint tpig[[thread_position_in_grid]]) {
  258. device const float4 & x = src0[tpig];
  259. dst[tpig] = x / (1.0f + exp(-x));
  260. }
  261. kernel void kernel_sqr(
  262. device const float * src0,
  263. device float * dst,
  264. uint tpig[[thread_position_in_grid]]) {
  265. dst[tpig] = src0[tpig] * src0[tpig];
  266. }
  267. kernel void kernel_sum_rows(
  268. device const float * src0,
  269. device float * dst,
  270. constant int64_t & ne00,
  271. constant int64_t & ne01,
  272. constant int64_t & ne02,
  273. constant int64_t & ne03,
  274. constant uint64_t & nb00,
  275. constant uint64_t & nb01,
  276. constant uint64_t & nb02,
  277. constant uint64_t & nb03,
  278. constant int64_t & ne10,
  279. constant int64_t & ne11,
  280. constant int64_t & ne12,
  281. constant int64_t & ne13,
  282. constant uint64_t & nb10,
  283. constant uint64_t & nb11,
  284. constant uint64_t & nb12,
  285. constant uint64_t & nb13,
  286. constant int64_t & ne0,
  287. constant int64_t & ne1,
  288. constant int64_t & ne2,
  289. constant int64_t & ne3,
  290. constant uint64_t & nb0,
  291. constant uint64_t & nb1,
  292. constant uint64_t & nb2,
  293. constant uint64_t & nb3,
  294. uint3 tpig[[thread_position_in_grid]]) {
  295. int64_t i3 = tpig.z;
  296. int64_t i2 = tpig.y;
  297. int64_t i1 = tpig.x;
  298. if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
  299. return;
  300. }
  301. device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
  302. device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
  303. float row_sum = 0;
  304. for (int64_t i0 = 0; i0 < ne00; i0++) {
  305. row_sum += src_row[i0];
  306. }
  307. dst_row[0] = row_sum;
  308. }
  309. kernel void kernel_soft_max(
  310. device const float * src0,
  311. device const float * src1,
  312. device float * dst,
  313. constant int64_t & ne00,
  314. constant int64_t & ne01,
  315. constant int64_t & ne02,
  316. constant float & scale,
  317. threadgroup float * buf [[threadgroup(0)]],
  318. uint tgpig[[threadgroup_position_in_grid]],
  319. uint tpitg[[thread_position_in_threadgroup]],
  320. uint sgitg[[simdgroup_index_in_threadgroup]],
  321. uint tiisg[[thread_index_in_simdgroup]],
  322. uint ntg[[threads_per_threadgroup]]) {
  323. const int64_t i03 = (tgpig) / (ne02*ne01);
  324. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  325. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  326. device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  327. device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr;
  328. device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  329. // parallel max
  330. float lmax = -INFINITY;
  331. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  332. lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f));
  333. }
  334. // find the max value in the block
  335. float max_val = simd_max(lmax);
  336. if (ntg > N_SIMDWIDTH) {
  337. if (sgitg == 0) {
  338. buf[tiisg] = -INFINITY;
  339. }
  340. threadgroup_barrier(mem_flags::mem_threadgroup);
  341. if (tiisg == 0) {
  342. buf[sgitg] = max_val;
  343. }
  344. threadgroup_barrier(mem_flags::mem_threadgroup);
  345. max_val = buf[tiisg];
  346. max_val = simd_max(max_val);
  347. }
  348. // parallel sum
  349. float lsum = 0.0f;
  350. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  351. const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
  352. lsum += exp_psrc0;
  353. pdst[i00] = exp_psrc0;
  354. }
  355. // This barrier fixes a failing test
  356. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  357. threadgroup_barrier(mem_flags::mem_none);
  358. float sum = simd_sum(lsum);
  359. if (ntg > N_SIMDWIDTH) {
  360. if (sgitg == 0) {
  361. buf[tiisg] = 0.0f;
  362. }
  363. threadgroup_barrier(mem_flags::mem_threadgroup);
  364. if (tiisg == 0) {
  365. buf[sgitg] = sum;
  366. }
  367. threadgroup_barrier(mem_flags::mem_threadgroup);
  368. sum = buf[tiisg];
  369. sum = simd_sum(sum);
  370. }
  371. const float inv_sum = 1.0f/sum;
  372. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  373. pdst[i00] *= inv_sum;
  374. }
  375. }
  376. kernel void kernel_soft_max_4(
  377. device const float * src0,
  378. device const float * src1,
  379. device float * dst,
  380. constant int64_t & ne00,
  381. constant int64_t & ne01,
  382. constant int64_t & ne02,
  383. constant float & scale,
  384. threadgroup float * buf [[threadgroup(0)]],
  385. uint tgpig[[threadgroup_position_in_grid]],
  386. uint tpitg[[thread_position_in_threadgroup]],
  387. uint sgitg[[simdgroup_index_in_threadgroup]],
  388. uint tiisg[[thread_index_in_simdgroup]],
  389. uint ntg[[threads_per_threadgroup]]) {
  390. const int64_t i03 = (tgpig) / (ne02*ne01);
  391. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  392. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  393. device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  394. device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
  395. device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  396. // parallel max
  397. float4 lmax4 = -INFINITY;
  398. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  399. lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f));
  400. }
  401. const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
  402. float max_val = simd_max(lmax);
  403. if (ntg > N_SIMDWIDTH) {
  404. if (sgitg == 0) {
  405. buf[tiisg] = -INFINITY;
  406. }
  407. threadgroup_barrier(mem_flags::mem_threadgroup);
  408. if (tiisg == 0) {
  409. buf[sgitg] = max_val;
  410. }
  411. threadgroup_barrier(mem_flags::mem_threadgroup);
  412. max_val = buf[tiisg];
  413. max_val = simd_max(max_val);
  414. }
  415. // parallel sum
  416. float4 lsum4 = 0.0f;
  417. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  418. const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
  419. lsum4 += exp_psrc4;
  420. pdst4[i00] = exp_psrc4;
  421. }
  422. const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
  423. // This barrier fixes a failing test
  424. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  425. threadgroup_barrier(mem_flags::mem_none);
  426. float sum = simd_sum(lsum);
  427. if (ntg > N_SIMDWIDTH) {
  428. if (sgitg == 0) {
  429. buf[tiisg] = 0.0f;
  430. }
  431. threadgroup_barrier(mem_flags::mem_threadgroup);
  432. if (tiisg == 0) {
  433. buf[sgitg] = sum;
  434. }
  435. threadgroup_barrier(mem_flags::mem_threadgroup);
  436. sum = buf[tiisg];
  437. sum = simd_sum(sum);
  438. }
  439. const float inv_sum = 1.0f/sum;
  440. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  441. pdst4[i00] *= inv_sum;
  442. }
  443. }
  444. kernel void kernel_diag_mask_inf(
  445. device const float * src0,
  446. device float * dst,
  447. constant int64_t & ne00,
  448. constant int64_t & ne01,
  449. constant int & n_past,
  450. uint3 tpig[[thread_position_in_grid]]) {
  451. const int64_t i02 = tpig[2];
  452. const int64_t i01 = tpig[1];
  453. const int64_t i00 = tpig[0];
  454. if (i00 > n_past + i01) {
  455. dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
  456. } else {
  457. dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
  458. }
  459. }
  460. kernel void kernel_diag_mask_inf_8(
  461. device const float4 * src0,
  462. device float4 * dst,
  463. constant int64_t & ne00,
  464. constant int64_t & ne01,
  465. constant int & n_past,
  466. uint3 tpig[[thread_position_in_grid]]) {
  467. const int64_t i = 2*tpig[0];
  468. dst[i+0] = src0[i+0];
  469. dst[i+1] = src0[i+1];
  470. int64_t i4 = 4*i;
  471. const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
  472. const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
  473. const int64_t i00 = i4;
  474. for (int k = 3; k >= 0; --k) {
  475. if (i00 + 4 + k <= n_past + i01) {
  476. break;
  477. }
  478. dst[i+1][k] = -INFINITY;
  479. if (i00 + k > n_past + i01) {
  480. dst[i][k] = -INFINITY;
  481. }
  482. }
  483. }
  484. kernel void kernel_norm(
  485. device const void * src0,
  486. device float * dst,
  487. constant int64_t & ne00,
  488. constant uint64_t & nb01,
  489. constant float & eps,
  490. threadgroup float * sum [[threadgroup(0)]],
  491. uint tgpig[[threadgroup_position_in_grid]],
  492. uint tpitg[[thread_position_in_threadgroup]],
  493. uint ntg[[threads_per_threadgroup]]) {
  494. device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
  495. // MEAN
  496. // parallel sum
  497. sum[tpitg] = 0.0f;
  498. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  499. sum[tpitg] += x[i00];
  500. }
  501. // reduce
  502. threadgroup_barrier(mem_flags::mem_threadgroup);
  503. for (uint i = ntg/2; i > 0; i /= 2) {
  504. if (tpitg < i) {
  505. sum[tpitg] += sum[tpitg + i];
  506. }
  507. threadgroup_barrier(mem_flags::mem_threadgroup);
  508. }
  509. const float mean = sum[0] / ne00;
  510. // recenter and VARIANCE
  511. threadgroup_barrier(mem_flags::mem_threadgroup);
  512. device float * y = dst + tgpig*ne00;
  513. sum[tpitg] = 0.0f;
  514. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  515. y[i00] = x[i00] - mean;
  516. sum[tpitg] += y[i00] * y[i00];
  517. }
  518. // reduce
  519. threadgroup_barrier(mem_flags::mem_threadgroup);
  520. for (uint i = ntg/2; i > 0; i /= 2) {
  521. if (tpitg < i) {
  522. sum[tpitg] += sum[tpitg + i];
  523. }
  524. threadgroup_barrier(mem_flags::mem_threadgroup);
  525. }
  526. const float variance = sum[0] / ne00;
  527. const float scale = 1.0f/sqrt(variance + eps);
  528. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  529. y[i00] = y[i00] * scale;
  530. }
  531. }
  532. kernel void kernel_rms_norm(
  533. device const void * src0,
  534. device float * dst,
  535. constant int64_t & ne00,
  536. constant uint64_t & nb01,
  537. constant float & eps,
  538. threadgroup float * buf [[threadgroup(0)]],
  539. uint tgpig[[threadgroup_position_in_grid]],
  540. uint tpitg[[thread_position_in_threadgroup]],
  541. uint sgitg[[simdgroup_index_in_threadgroup]],
  542. uint tiisg[[thread_index_in_simdgroup]],
  543. uint ntg[[threads_per_threadgroup]]) {
  544. device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
  545. float4 sumf = 0;
  546. float all_sum = 0;
  547. // parallel sum
  548. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  549. sumf += x[i00] * x[i00];
  550. }
  551. all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
  552. all_sum = simd_sum(all_sum);
  553. if (ntg > N_SIMDWIDTH) {
  554. if (sgitg == 0) {
  555. buf[tiisg] = 0.0f;
  556. }
  557. threadgroup_barrier(mem_flags::mem_threadgroup);
  558. if (tiisg == 0) {
  559. buf[sgitg] = all_sum;
  560. }
  561. threadgroup_barrier(mem_flags::mem_threadgroup);
  562. all_sum = buf[tiisg];
  563. all_sum = simd_sum(all_sum);
  564. }
  565. const float mean = all_sum/ne00;
  566. const float scale = 1.0f/sqrt(mean + eps);
  567. device float4 * y = (device float4 *) (dst + tgpig*ne00);
  568. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  569. y[i00] = x[i00] * scale;
  570. }
  571. }
  572. kernel void kernel_group_norm(
  573. device const float * src0,
  574. device float * dst,
  575. constant int64_t & ne00,
  576. constant int64_t & ne01,
  577. constant int64_t & ne02,
  578. constant uint64_t & nb00,
  579. constant uint64_t & nb01,
  580. constant uint64_t & nb02,
  581. constant int32_t & n_groups,
  582. constant float & eps,
  583. threadgroup float * buf [[threadgroup(0)]],
  584. uint tgpig[[threadgroup_position_in_grid]],
  585. uint tpitg[[thread_position_in_threadgroup]],
  586. uint sgitg[[simdgroup_index_in_threadgroup]],
  587. uint tiisg[[thread_index_in_simdgroup]],
  588. uint ntg[[threads_per_threadgroup]]) {
  589. const int64_t ne = ne00*ne01*ne02;
  590. const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups);
  591. int start = tgpig * gs;
  592. int end = start + gs;
  593. start += tpitg;
  594. if (end >= ne) {
  595. end = ne;
  596. }
  597. float tmp = 0.0f; // partial sum for thread in warp
  598. for (int j = start; j < end; j += ntg) {
  599. tmp += src0[j];
  600. }
  601. threadgroup_barrier(mem_flags::mem_threadgroup);
  602. tmp = simd_sum(tmp);
  603. if (ntg > N_SIMDWIDTH) {
  604. if (sgitg == 0) {
  605. buf[tiisg] = 0.0f;
  606. }
  607. threadgroup_barrier(mem_flags::mem_threadgroup);
  608. if (tiisg == 0) {
  609. buf[sgitg] = tmp;
  610. }
  611. threadgroup_barrier(mem_flags::mem_threadgroup);
  612. tmp = buf[tiisg];
  613. tmp = simd_sum(tmp);
  614. }
  615. const float mean = tmp / gs;
  616. tmp = 0.0f;
  617. for (int j = start; j < end; j += ntg) {
  618. float xi = src0[j] - mean;
  619. dst[j] = xi;
  620. tmp += xi * xi;
  621. }
  622. tmp = simd_sum(tmp);
  623. if (ntg > N_SIMDWIDTH) {
  624. if (sgitg == 0) {
  625. buf[tiisg] = 0.0f;
  626. }
  627. threadgroup_barrier(mem_flags::mem_threadgroup);
  628. if (tiisg == 0) {
  629. buf[sgitg] = tmp;
  630. }
  631. threadgroup_barrier(mem_flags::mem_threadgroup);
  632. tmp = buf[tiisg];
  633. tmp = simd_sum(tmp);
  634. }
  635. const float variance = tmp / gs;
  636. const float scale = 1.0f/sqrt(variance + eps);
  637. for (int j = start; j < end; j += ntg) {
  638. dst[j] *= scale;
  639. }
  640. }
  641. // function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
  642. // il indicates where the q4 quants begin (0 or QK4_0/4)
  643. // we assume that the yl's have been multiplied with the appropriate scale factor
  644. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  645. inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
  646. float d = qb_curr->d;
  647. float2 acc = 0.f;
  648. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
  649. for (int i = 0; i < 8; i+=2) {
  650. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  651. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  652. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  653. + yl[i + 9] * (qs[i / 2] & 0xF000);
  654. }
  655. return d * (sumy * -8.f + acc[0] + acc[1]);
  656. }
  657. // function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
  658. // il indicates where the q4 quants begin (0 or QK4_0/4)
  659. // we assume that the yl's have been multiplied with the appropriate scale factor
  660. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  661. inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
  662. float d = qb_curr->d;
  663. float m = qb_curr->m;
  664. float2 acc = 0.f;
  665. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
  666. for (int i = 0; i < 8; i+=2) {
  667. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  668. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  669. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  670. + yl[i + 9] * (qs[i / 2] & 0xF000);
  671. }
  672. return d * (acc[0] + acc[1]) + sumy * m;
  673. }
  674. // function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
  675. // il indicates where the q5 quants begin (0 or QK5_0/4)
  676. // we assume that the yl's have been multiplied with the appropriate scale factor
  677. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  678. inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
  679. float d = qb_curr->d;
  680. float2 acc = 0.f;
  681. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
  682. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  683. for (int i = 0; i < 8; i+=2) {
  684. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  685. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  686. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  687. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  688. }
  689. return d * (sumy * -16.f + acc[0] + acc[1]);
  690. }
  691. // function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
  692. // il indicates where the q5 quants begin (0 or QK5_1/4)
  693. // we assume that the yl's have been multiplied with the appropriate scale factor
  694. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  695. inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
  696. float d = qb_curr->d;
  697. float m = qb_curr->m;
  698. float2 acc = 0.f;
  699. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
  700. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  701. for (int i = 0; i < 8; i+=2) {
  702. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  703. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  704. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  705. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  706. }
  707. return d * (acc[0] + acc[1]) + sumy * m;
  708. }
  709. // putting them in the kernel cause a significant performance penalty
  710. #define N_DST 4 // each SIMD group works on 4 rows
  711. #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
  712. //Note: This is a template, but strictly speaking it only applies to
  713. // quantizations where the block size is 32. It also does not
  714. // guard against the number of rows not being divisible by
  715. // N_DST, so this is another explicit assumption of the implementation.
  716. template<typename block_q_type, int nr, int nsg, int nw>
  717. void mul_vec_q_n_f32_impl(
  718. device const void * src0,
  719. device const float * src1,
  720. device float * dst,
  721. int64_t ne00,
  722. int64_t ne01,
  723. int64_t ne02,
  724. int64_t ne10,
  725. int64_t ne12,
  726. int64_t ne0,
  727. int64_t ne1,
  728. uint r2,
  729. uint r3,
  730. uint3 tgpig, uint tiisg, uint sgitg) {
  731. const int nb = ne00/QK4_0;
  732. const int r0 = tgpig.x;
  733. const int r1 = tgpig.y;
  734. const int im = tgpig.z;
  735. const int first_row = (r0 * nsg + sgitg) * nr;
  736. const uint i12 = im%ne12;
  737. const uint i13 = im/ne12;
  738. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  739. device const block_q_type * x = (device const block_q_type *) src0 + offset0;
  740. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  741. float yl[16]; // src1 vector cache
  742. float sumf[nr] = {0.f};
  743. const int ix = (tiisg/2);
  744. const int il = (tiisg%2)*8;
  745. device const float * yb = y + ix * QK4_0 + il;
  746. // each thread in a SIMD group deals with half a block.
  747. for (int ib = ix; ib < nb; ib += nw/2) {
  748. float sumy = 0;
  749. for (int i = 0; i < 8; i += 2) {
  750. sumy += yb[i] + yb[i+1];
  751. yl[i+0] = yb[i+ 0];
  752. yl[i+1] = yb[i+ 1]/256.f;
  753. sumy += yb[i+16] + yb[i+17];
  754. yl[i+8] = yb[i+16]/16.f;
  755. yl[i+9] = yb[i+17]/4096.f;
  756. }
  757. for (int row = 0; row < nr; row++) {
  758. sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
  759. }
  760. yb += QK4_0 * 16;
  761. }
  762. for (int row = 0; row < nr; ++row) {
  763. const float tot = simd_sum(sumf[row]);
  764. if (tiisg == 0 && first_row + row < ne01) {
  765. dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
  766. }
  767. }
  768. }
  769. kernel void kernel_mul_mv_q4_0_f32(
  770. device const void * src0,
  771. device const float * src1,
  772. device float * dst,
  773. constant int64_t & ne00,
  774. constant int64_t & ne01,
  775. constant int64_t & ne02,
  776. constant uint64_t & nb00,
  777. constant uint64_t & nb01,
  778. constant uint64_t & nb02,
  779. constant int64_t & ne10,
  780. constant int64_t & ne11,
  781. constant int64_t & ne12,
  782. constant uint64_t & nb10,
  783. constant uint64_t & nb11,
  784. constant uint64_t & nb12,
  785. constant int64_t & ne0,
  786. constant int64_t & ne1,
  787. constant uint & r2,
  788. constant uint & r3,
  789. uint3 tgpig[[threadgroup_position_in_grid]],
  790. uint tiisg[[thread_index_in_simdgroup]],
  791. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  792. mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  793. }
  794. kernel void kernel_mul_mv_q4_1_f32(
  795. device const void * src0,
  796. device const float * src1,
  797. device float * dst,
  798. constant int64_t & ne00,
  799. constant int64_t & ne01,
  800. constant int64_t & ne02,
  801. constant uint64_t & nb00,
  802. constant uint64_t & nb01,
  803. constant uint64_t & nb02,
  804. constant int64_t & ne10,
  805. constant int64_t & ne11,
  806. constant int64_t & ne12,
  807. constant uint64_t & nb10,
  808. constant uint64_t & nb11,
  809. constant uint64_t & nb12,
  810. constant int64_t & ne0,
  811. constant int64_t & ne1,
  812. constant uint & r2,
  813. constant uint & r3,
  814. uint3 tgpig[[threadgroup_position_in_grid]],
  815. uint tiisg[[thread_index_in_simdgroup]],
  816. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  817. mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  818. }
  819. kernel void kernel_mul_mv_q5_0_f32(
  820. device const void * src0,
  821. device const float * src1,
  822. device float * dst,
  823. constant int64_t & ne00,
  824. constant int64_t & ne01,
  825. constant int64_t & ne02,
  826. constant uint64_t & nb00,
  827. constant uint64_t & nb01,
  828. constant uint64_t & nb02,
  829. constant int64_t & ne10,
  830. constant int64_t & ne11,
  831. constant int64_t & ne12,
  832. constant uint64_t & nb10,
  833. constant uint64_t & nb11,
  834. constant uint64_t & nb12,
  835. constant int64_t & ne0,
  836. constant int64_t & ne1,
  837. constant uint & r2,
  838. constant uint & r3,
  839. uint3 tgpig[[threadgroup_position_in_grid]],
  840. uint tiisg[[thread_index_in_simdgroup]],
  841. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  842. mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  843. }
  844. kernel void kernel_mul_mv_q5_1_f32(
  845. device const void * src0,
  846. device const float * src1,
  847. device float * dst,
  848. constant int64_t & ne00,
  849. constant int64_t & ne01,
  850. constant int64_t & ne02,
  851. constant uint64_t & nb00,
  852. constant uint64_t & nb01,
  853. constant uint64_t & nb02,
  854. constant int64_t & ne10,
  855. constant int64_t & ne11,
  856. constant int64_t & ne12,
  857. constant uint64_t & nb10,
  858. constant uint64_t & nb11,
  859. constant uint64_t & nb12,
  860. constant int64_t & ne0,
  861. constant int64_t & ne1,
  862. constant uint & r2,
  863. constant uint & r3,
  864. uint3 tgpig[[threadgroup_position_in_grid]],
  865. uint tiisg[[thread_index_in_simdgroup]],
  866. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  867. mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  868. }
  869. #define NB_Q8_0 8
  870. void kernel_mul_mv_q8_0_f32_impl(
  871. device const void * src0,
  872. device const float * src1,
  873. device float * dst,
  874. constant int64_t & ne00,
  875. constant int64_t & ne01,
  876. constant int64_t & ne02,
  877. constant int64_t & ne10,
  878. constant int64_t & ne12,
  879. constant int64_t & ne0,
  880. constant int64_t & ne1,
  881. constant uint & r2,
  882. constant uint & r3,
  883. uint3 tgpig[[threadgroup_position_in_grid]],
  884. uint tiisg[[thread_index_in_simdgroup]],
  885. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  886. const int nr = N_DST;
  887. const int nsg = N_SIMDGROUP;
  888. const int nw = N_SIMDWIDTH;
  889. const int nb = ne00/QK8_0;
  890. const int r0 = tgpig.x;
  891. const int r1 = tgpig.y;
  892. const int im = tgpig.z;
  893. const int first_row = (r0 * nsg + sgitg) * nr;
  894. const uint i12 = im%ne12;
  895. const uint i13 = im/ne12;
  896. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  897. device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
  898. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  899. float yl[NB_Q8_0];
  900. float sumf[nr]={0.f};
  901. const int ix = tiisg/4;
  902. const int il = tiisg%4;
  903. device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
  904. // each thread in a SIMD group deals with NB_Q8_0 quants at a time
  905. for (int ib = ix; ib < nb; ib += nw/4) {
  906. for (int i = 0; i < NB_Q8_0; ++i) {
  907. yl[i] = yb[i];
  908. }
  909. for (int row = 0; row < nr; row++) {
  910. device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
  911. float sumq = 0.f;
  912. for (int iq = 0; iq < NB_Q8_0; ++iq) {
  913. sumq += qs[iq] * yl[iq];
  914. }
  915. sumf[row] += sumq*x[ib+row*nb].d;
  916. }
  917. yb += NB_Q8_0 * nw;
  918. }
  919. for (int row = 0; row < nr; ++row) {
  920. const float tot = simd_sum(sumf[row]);
  921. if (tiisg == 0 && first_row + row < ne01) {
  922. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  923. }
  924. }
  925. }
  926. [[host_name("kernel_mul_mv_q8_0_f32")]]
  927. kernel void kernel_mul_mv_q8_0_f32(
  928. device const void * src0,
  929. device const float * src1,
  930. device float * dst,
  931. constant int64_t & ne00,
  932. constant int64_t & ne01,
  933. constant int64_t & ne02,
  934. constant uint64_t & nb00,
  935. constant uint64_t & nb01,
  936. constant uint64_t & nb02,
  937. constant int64_t & ne10,
  938. constant int64_t & ne11,
  939. constant int64_t & ne12,
  940. constant uint64_t & nb10,
  941. constant uint64_t & nb11,
  942. constant uint64_t & nb12,
  943. constant int64_t & ne0,
  944. constant int64_t & ne1,
  945. constant uint & r2,
  946. constant uint & r3,
  947. uint3 tgpig[[threadgroup_position_in_grid]],
  948. uint tiisg[[thread_index_in_simdgroup]],
  949. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  950. kernel_mul_mv_q8_0_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  951. }
  952. #define N_F32_F32 4
  953. void kernel_mul_mv_f32_f32_impl(
  954. device const char * src0,
  955. device const char * src1,
  956. device float * dst,
  957. constant int64_t & ne00,
  958. constant int64_t & ne01,
  959. constant int64_t & ne02,
  960. constant uint64_t & nb00,
  961. constant uint64_t & nb01,
  962. constant uint64_t & nb02,
  963. constant int64_t & ne10,
  964. constant int64_t & ne11,
  965. constant int64_t & ne12,
  966. constant uint64_t & nb10,
  967. constant uint64_t & nb11,
  968. constant uint64_t & nb12,
  969. constant int64_t & ne0,
  970. constant int64_t & ne1,
  971. constant uint & r2,
  972. constant uint & r3,
  973. uint3 tgpig[[threadgroup_position_in_grid]],
  974. uint tiisg[[thread_index_in_simdgroup]]) {
  975. const int64_t r0 = tgpig.x;
  976. const int64_t rb = tgpig.y*N_F32_F32;
  977. const int64_t im = tgpig.z;
  978. const uint i12 = im%ne12;
  979. const uint i13 = im/ne12;
  980. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  981. device const float * x = (device const float *) (src0 + offset0);
  982. if (ne00 < 128) {
  983. for (int row = 0; row < N_F32_F32; ++row) {
  984. int r1 = rb + row;
  985. if (r1 >= ne11) {
  986. break;
  987. }
  988. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  989. float sumf = 0;
  990. for (int i = tiisg; i < ne00; i += 32) {
  991. sumf += (float) x[i] * (float) y[i];
  992. }
  993. float all_sum = simd_sum(sumf);
  994. if (tiisg == 0) {
  995. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  996. }
  997. }
  998. } else {
  999. device const float4 * x4 = (device const float4 *)x;
  1000. for (int row = 0; row < N_F32_F32; ++row) {
  1001. int r1 = rb + row;
  1002. if (r1 >= ne11) {
  1003. break;
  1004. }
  1005. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1006. device const float4 * y4 = (device const float4 *) y;
  1007. float sumf = 0;
  1008. for (int i = tiisg; i < ne00/4; i += 32) {
  1009. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1010. }
  1011. float all_sum = simd_sum(sumf);
  1012. if (tiisg == 0) {
  1013. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1014. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1015. }
  1016. }
  1017. }
  1018. }
  1019. [[host_name("kernel_mul_mv_f32_f32")]]
  1020. kernel void kernel_mul_mv_f32_f32(
  1021. device const char * src0,
  1022. device const char * src1,
  1023. device float * dst,
  1024. constant int64_t & ne00,
  1025. constant int64_t & ne01,
  1026. constant int64_t & ne02,
  1027. constant uint64_t & nb00,
  1028. constant uint64_t & nb01,
  1029. constant uint64_t & nb02,
  1030. constant int64_t & ne10,
  1031. constant int64_t & ne11,
  1032. constant int64_t & ne12,
  1033. constant uint64_t & nb10,
  1034. constant uint64_t & nb11,
  1035. constant uint64_t & nb12,
  1036. constant int64_t & ne0,
  1037. constant int64_t & ne1,
  1038. constant uint & r2,
  1039. constant uint & r3,
  1040. uint3 tgpig[[threadgroup_position_in_grid]],
  1041. uint tiisg[[thread_index_in_simdgroup]]) {
  1042. kernel_mul_mv_f32_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1043. }
  1044. #define N_F16_F16 4
  1045. kernel void kernel_mul_mv_f16_f16(
  1046. device const char * src0,
  1047. device const char * src1,
  1048. device float * dst,
  1049. constant int64_t & ne00,
  1050. constant int64_t & ne01,
  1051. constant int64_t & ne02,
  1052. constant uint64_t & nb00,
  1053. constant uint64_t & nb01,
  1054. constant uint64_t & nb02,
  1055. constant int64_t & ne10,
  1056. constant int64_t & ne11,
  1057. constant int64_t & ne12,
  1058. constant uint64_t & nb10,
  1059. constant uint64_t & nb11,
  1060. constant uint64_t & nb12,
  1061. constant int64_t & ne0,
  1062. constant int64_t & ne1,
  1063. constant uint & r2,
  1064. constant uint & r3,
  1065. uint3 tgpig[[threadgroup_position_in_grid]],
  1066. uint tiisg[[thread_index_in_simdgroup]]) {
  1067. const int64_t r0 = tgpig.x;
  1068. const int64_t rb = tgpig.y*N_F16_F16;
  1069. const int64_t im = tgpig.z;
  1070. const uint i12 = im%ne12;
  1071. const uint i13 = im/ne12;
  1072. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1073. device const half * x = (device const half *) (src0 + offset0);
  1074. if (ne00 < 128) {
  1075. for (int row = 0; row < N_F16_F16; ++row) {
  1076. int r1 = rb + row;
  1077. if (r1 >= ne11) {
  1078. break;
  1079. }
  1080. device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
  1081. float sumf = 0;
  1082. for (int i = tiisg; i < ne00; i += 32) {
  1083. sumf += (half) x[i] * (half) y[i];
  1084. }
  1085. float all_sum = simd_sum(sumf);
  1086. if (tiisg == 0) {
  1087. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1088. }
  1089. }
  1090. } else {
  1091. device const half4 * x4 = (device const half4 *)x;
  1092. for (int row = 0; row < N_F16_F16; ++row) {
  1093. int r1 = rb + row;
  1094. if (r1 >= ne11) {
  1095. break;
  1096. }
  1097. device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
  1098. device const half4 * y4 = (device const half4 *) y;
  1099. float sumf = 0;
  1100. for (int i = tiisg; i < ne00/4; i += 32) {
  1101. for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
  1102. }
  1103. float all_sum = simd_sum(sumf);
  1104. if (tiisg == 0) {
  1105. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
  1106. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1107. }
  1108. }
  1109. }
  1110. }
  1111. void kernel_mul_mv_f16_f32_1row_impl(
  1112. device const char * src0,
  1113. device const char * src1,
  1114. device float * dst,
  1115. constant int64_t & ne00,
  1116. constant int64_t & ne01,
  1117. constant int64_t & ne02,
  1118. constant uint64_t & nb00,
  1119. constant uint64_t & nb01,
  1120. constant uint64_t & nb02,
  1121. constant int64_t & ne10,
  1122. constant int64_t & ne11,
  1123. constant int64_t & ne12,
  1124. constant uint64_t & nb10,
  1125. constant uint64_t & nb11,
  1126. constant uint64_t & nb12,
  1127. constant int64_t & ne0,
  1128. constant int64_t & ne1,
  1129. constant uint & r2,
  1130. constant uint & r3,
  1131. uint3 tgpig[[threadgroup_position_in_grid]],
  1132. uint tiisg[[thread_index_in_simdgroup]]) {
  1133. const int64_t r0 = tgpig.x;
  1134. const int64_t r1 = tgpig.y;
  1135. const int64_t im = tgpig.z;
  1136. const uint i12 = im%ne12;
  1137. const uint i13 = im/ne12;
  1138. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1139. device const half * x = (device const half *) (src0 + offset0);
  1140. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1141. float sumf = 0;
  1142. if (ne00 < 128) {
  1143. for (int i = tiisg; i < ne00; i += 32) {
  1144. sumf += (float) x[i] * (float) y[i];
  1145. }
  1146. float all_sum = simd_sum(sumf);
  1147. if (tiisg == 0) {
  1148. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1149. }
  1150. } else {
  1151. device const half4 * x4 = (device const half4 *) x;
  1152. device const float4 * y4 = (device const float4 *) y;
  1153. for (int i = tiisg; i < ne00/4; i += 32) {
  1154. for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k];
  1155. }
  1156. float all_sum = simd_sum(sumf);
  1157. if (tiisg == 0) {
  1158. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1159. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1160. }
  1161. }
  1162. }
  1163. [[host_name("kernel_mul_mv_f16_f32_1row")]]
  1164. kernel void kernel_mul_mv_f16_f32_1row(
  1165. device const char * src0,
  1166. device const char * src1,
  1167. device float * dst,
  1168. constant int64_t & ne00,
  1169. constant int64_t & ne01,
  1170. constant int64_t & ne02,
  1171. constant uint64_t & nb00,
  1172. constant uint64_t & nb01,
  1173. constant uint64_t & nb02,
  1174. constant int64_t & ne10,
  1175. constant int64_t & ne11,
  1176. constant int64_t & ne12,
  1177. constant uint64_t & nb10,
  1178. constant uint64_t & nb11,
  1179. constant uint64_t & nb12,
  1180. constant int64_t & ne0,
  1181. constant int64_t & ne1,
  1182. constant uint & r2,
  1183. constant uint & r3,
  1184. uint3 tgpig[[threadgroup_position_in_grid]],
  1185. uint tiisg[[thread_index_in_simdgroup]]) {
  1186. kernel_mul_mv_f16_f32_1row_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1187. }
  1188. #define N_F16_F32 4
  1189. void kernel_mul_mv_f16_f32_impl(
  1190. device const char * src0,
  1191. device const char * src1,
  1192. device float * dst,
  1193. constant int64_t & ne00,
  1194. constant int64_t & ne01,
  1195. constant int64_t & ne02,
  1196. constant uint64_t & nb00,
  1197. constant uint64_t & nb01,
  1198. constant uint64_t & nb02,
  1199. constant int64_t & ne10,
  1200. constant int64_t & ne11,
  1201. constant int64_t & ne12,
  1202. constant uint64_t & nb10,
  1203. constant uint64_t & nb11,
  1204. constant uint64_t & nb12,
  1205. constant int64_t & ne0,
  1206. constant int64_t & ne1,
  1207. constant uint & r2,
  1208. constant uint & r3,
  1209. uint3 tgpig[[threadgroup_position_in_grid]],
  1210. uint tiisg[[thread_index_in_simdgroup]]) {
  1211. const int64_t r0 = tgpig.x;
  1212. const int64_t rb = tgpig.y*N_F16_F32;
  1213. const int64_t im = tgpig.z;
  1214. const uint i12 = im%ne12;
  1215. const uint i13 = im/ne12;
  1216. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1217. device const half * x = (device const half *) (src0 + offset0);
  1218. if (ne00 < 128) {
  1219. for (int row = 0; row < N_F16_F32; ++row) {
  1220. int r1 = rb + row;
  1221. if (r1 >= ne11) {
  1222. break;
  1223. }
  1224. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1225. float sumf = 0;
  1226. for (int i = tiisg; i < ne00; i += 32) {
  1227. sumf += (float) x[i] * (float) y[i];
  1228. }
  1229. float all_sum = simd_sum(sumf);
  1230. if (tiisg == 0) {
  1231. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1232. }
  1233. }
  1234. } else {
  1235. device const half4 * x4 = (device const half4 *)x;
  1236. for (int row = 0; row < N_F16_F32; ++row) {
  1237. int r1 = rb + row;
  1238. if (r1 >= ne11) {
  1239. break;
  1240. }
  1241. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1242. device const float4 * y4 = (device const float4 *) y;
  1243. float sumf = 0;
  1244. for (int i = tiisg; i < ne00/4; i += 32) {
  1245. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1246. }
  1247. float all_sum = simd_sum(sumf);
  1248. if (tiisg == 0) {
  1249. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1250. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1251. }
  1252. }
  1253. }
  1254. }
  1255. [[host_name("kernel_mul_mv_f16_f32")]]
  1256. kernel void kernel_mul_mv_f16_f32(
  1257. device const char * src0,
  1258. device const char * src1,
  1259. device float * dst,
  1260. constant int64_t & ne00,
  1261. constant int64_t & ne01,
  1262. constant int64_t & ne02,
  1263. constant uint64_t & nb00,
  1264. constant uint64_t & nb01,
  1265. constant uint64_t & nb02,
  1266. constant int64_t & ne10,
  1267. constant int64_t & ne11,
  1268. constant int64_t & ne12,
  1269. constant uint64_t & nb10,
  1270. constant uint64_t & nb11,
  1271. constant uint64_t & nb12,
  1272. constant int64_t & ne0,
  1273. constant int64_t & ne1,
  1274. constant uint & r2,
  1275. constant uint & r3,
  1276. uint3 tgpig[[threadgroup_position_in_grid]],
  1277. uint tiisg[[thread_index_in_simdgroup]]) {
  1278. kernel_mul_mv_f16_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1279. }
  1280. // Assumes row size (ne00) is a multiple of 4
  1281. kernel void kernel_mul_mv_f16_f32_l4(
  1282. device const char * src0,
  1283. device const char * src1,
  1284. device float * dst,
  1285. constant int64_t & ne00,
  1286. constant int64_t & ne01,
  1287. constant int64_t & ne02,
  1288. constant uint64_t & nb00,
  1289. constant uint64_t & nb01,
  1290. constant uint64_t & nb02,
  1291. constant int64_t & ne10,
  1292. constant int64_t & ne11,
  1293. constant int64_t & ne12,
  1294. constant uint64_t & nb10,
  1295. constant uint64_t & nb11,
  1296. constant uint64_t & nb12,
  1297. constant int64_t & ne0,
  1298. constant int64_t & ne1,
  1299. constant uint & r2,
  1300. constant uint & r3,
  1301. uint3 tgpig[[threadgroup_position_in_grid]],
  1302. uint tiisg[[thread_index_in_simdgroup]]) {
  1303. const int nrows = ne11;
  1304. const int64_t r0 = tgpig.x;
  1305. const int64_t im = tgpig.z;
  1306. const uint i12 = im%ne12;
  1307. const uint i13 = im/ne12;
  1308. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1309. device const half4 * x4 = (device const half4 *) (src0 + offset0);
  1310. for (int r1 = 0; r1 < nrows; ++r1) {
  1311. device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
  1312. float sumf = 0;
  1313. for (int i = tiisg; i < ne00/4; i += 32) {
  1314. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1315. }
  1316. float all_sum = simd_sum(sumf);
  1317. if (tiisg == 0) {
  1318. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1319. }
  1320. }
  1321. }
  1322. kernel void kernel_alibi_f32(
  1323. device const float * src0,
  1324. device float * dst,
  1325. constant int64_t & ne00,
  1326. constant int64_t & ne01,
  1327. constant int64_t & ne02,
  1328. constant int64_t & ne03,
  1329. constant uint64_t & nb00,
  1330. constant uint64_t & nb01,
  1331. constant uint64_t & nb02,
  1332. constant uint64_t & nb03,
  1333. constant int64_t & ne0,
  1334. constant int64_t & ne1,
  1335. constant int64_t & ne2,
  1336. constant int64_t & ne3,
  1337. constant uint64_t & nb0,
  1338. constant uint64_t & nb1,
  1339. constant uint64_t & nb2,
  1340. constant uint64_t & nb3,
  1341. constant float & m0,
  1342. constant float & m1,
  1343. constant int & n_heads_log2_floor,
  1344. uint3 tgpig[[threadgroup_position_in_grid]],
  1345. uint3 tpitg[[thread_position_in_threadgroup]],
  1346. uint3 ntg[[threads_per_threadgroup]]) {
  1347. const int64_t i03 = tgpig[2];
  1348. const int64_t i02 = tgpig[1];
  1349. const int64_t i01 = tgpig[0];
  1350. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1351. const int64_t i3 = n / (ne2*ne1*ne0);
  1352. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1353. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1354. //const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1355. const int64_t k = i3*ne3 + i2;
  1356. float m_k;
  1357. if (k < n_heads_log2_floor) {
  1358. m_k = pow(m0, k + 1);
  1359. } else {
  1360. m_k = pow(m1, 2 * (k - n_heads_log2_floor) + 1);
  1361. }
  1362. device char * dst_row = (device char *) dst + i3*nb3 + i2*nb2 + i1*nb1;
  1363. device const char * src_row = (device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01;
  1364. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1365. const float src_v = *(device float *)(src_row + i00*nb00);
  1366. device float * dst_v = (device float *)(dst_row + i00*nb0);
  1367. *dst_v = i00 * m_k + src_v;
  1368. }
  1369. }
  1370. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  1371. const float y = (i0 / 2 - low) / max(0.001f, high - low);
  1372. return 1.0f - min(1.0f, max(0.0f, y));
  1373. }
  1374. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  1375. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  1376. static void rope_yarn(
  1377. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  1378. thread float * cos_theta, thread float * sin_theta
  1379. ) {
  1380. // Get n-d rotational scaling corrected for extrapolation
  1381. float theta_interp = freq_scale * theta_extrap;
  1382. float theta = theta_interp;
  1383. if (ext_factor != 0.0f) {
  1384. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  1385. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  1386. // Get n-d magnitude scaling corrected for interpolation
  1387. mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
  1388. }
  1389. *cos_theta = cos(theta) * mscale;
  1390. *sin_theta = sin(theta) * mscale;
  1391. }
  1392. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  1393. // `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  1394. static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
  1395. return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base));
  1396. }
  1397. static void rope_yarn_corr_dims(
  1398. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  1399. ) {
  1400. // start and end correction dims
  1401. dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
  1402. dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
  1403. }
  1404. typedef void (rope_t)(
  1405. device const void * src0,
  1406. device const int32_t * src1,
  1407. device float * dst,
  1408. constant int64_t & ne00,
  1409. constant int64_t & ne01,
  1410. constant int64_t & ne02,
  1411. constant int64_t & ne03,
  1412. constant uint64_t & nb00,
  1413. constant uint64_t & nb01,
  1414. constant uint64_t & nb02,
  1415. constant uint64_t & nb03,
  1416. constant int64_t & ne0,
  1417. constant int64_t & ne1,
  1418. constant int64_t & ne2,
  1419. constant int64_t & ne3,
  1420. constant uint64_t & nb0,
  1421. constant uint64_t & nb1,
  1422. constant uint64_t & nb2,
  1423. constant uint64_t & nb3,
  1424. constant int & n_past,
  1425. constant int & n_dims,
  1426. constant int & mode,
  1427. constant int & n_orig_ctx,
  1428. constant float & freq_base,
  1429. constant float & freq_scale,
  1430. constant float & ext_factor,
  1431. constant float & attn_factor,
  1432. constant float & beta_fast,
  1433. constant float & beta_slow,
  1434. uint tiitg[[thread_index_in_threadgroup]],
  1435. uint3 tptg[[threads_per_threadgroup]],
  1436. uint3 tgpig[[threadgroup_position_in_grid]]);
  1437. template<typename T>
  1438. kernel void kernel_rope(
  1439. device const void * src0,
  1440. device const int32_t * src1,
  1441. device float * dst,
  1442. constant int64_t & ne00,
  1443. constant int64_t & ne01,
  1444. constant int64_t & ne02,
  1445. constant int64_t & ne03,
  1446. constant uint64_t & nb00,
  1447. constant uint64_t & nb01,
  1448. constant uint64_t & nb02,
  1449. constant uint64_t & nb03,
  1450. constant int64_t & ne0,
  1451. constant int64_t & ne1,
  1452. constant int64_t & ne2,
  1453. constant int64_t & ne3,
  1454. constant uint64_t & nb0,
  1455. constant uint64_t & nb1,
  1456. constant uint64_t & nb2,
  1457. constant uint64_t & nb3,
  1458. constant int & n_past,
  1459. constant int & n_dims,
  1460. constant int & mode,
  1461. constant int & n_orig_ctx,
  1462. constant float & freq_base,
  1463. constant float & freq_scale,
  1464. constant float & ext_factor,
  1465. constant float & attn_factor,
  1466. constant float & beta_fast,
  1467. constant float & beta_slow,
  1468. uint tiitg[[thread_index_in_threadgroup]],
  1469. uint3 tptg[[threads_per_threadgroup]],
  1470. uint3 tgpig[[threadgroup_position_in_grid]]) {
  1471. const int64_t i3 = tgpig[2];
  1472. const int64_t i2 = tgpig[1];
  1473. const int64_t i1 = tgpig[0];
  1474. const bool is_neox = mode & 2;
  1475. float corr_dims[2];
  1476. rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  1477. device const int32_t * pos = src1;
  1478. const int64_t p = pos[i2];
  1479. const float theta_0 = (float)p;
  1480. const float inv_ndims = -1.f/n_dims;
  1481. if (!is_neox) {
  1482. for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
  1483. const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
  1484. float cos_theta, sin_theta;
  1485. rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1486. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1487. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1488. const T x0 = src[0];
  1489. const T x1 = src[1];
  1490. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1491. dst_data[1] = x0*sin_theta + x1*cos_theta;
  1492. }
  1493. } else {
  1494. for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) {
  1495. if (ic < n_dims) {
  1496. const int64_t ib = 0;
  1497. // simplified from `(ib * n_dims + ic) * inv_ndims`
  1498. const float cur_rot = inv_ndims*ic - ib;
  1499. const float theta = theta_0 * pow(freq_base, cur_rot);
  1500. float cos_theta, sin_theta;
  1501. rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1502. const int64_t i0 = ib*n_dims + ic/2;
  1503. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1504. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1505. const float x0 = src[0];
  1506. const float x1 = src[n_dims/2];
  1507. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1508. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  1509. } else {
  1510. const int64_t i0 = ic;
  1511. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1512. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1513. dst_data[0] = src[0];
  1514. dst_data[1] = src[1];
  1515. }
  1516. }
  1517. }
  1518. }
  1519. template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
  1520. template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
  1521. kernel void kernel_im2col_f16(
  1522. device const float * x,
  1523. device half * dst,
  1524. constant int32_t & ofs0,
  1525. constant int32_t & ofs1,
  1526. constant int32_t & IW,
  1527. constant int32_t & IH,
  1528. constant int32_t & CHW,
  1529. constant int32_t & s0,
  1530. constant int32_t & s1,
  1531. constant int32_t & p0,
  1532. constant int32_t & p1,
  1533. constant int32_t & d0,
  1534. constant int32_t & d1,
  1535. uint3 tgpig[[threadgroup_position_in_grid]],
  1536. uint3 tgpg[[threadgroups_per_grid]],
  1537. uint3 tpitg[[thread_position_in_threadgroup]],
  1538. uint3 ntg[[threads_per_threadgroup]]) {
  1539. const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
  1540. const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
  1541. const int32_t offset_dst =
  1542. (tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
  1543. (tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
  1544. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  1545. dst[offset_dst] = 0.0f;
  1546. } else {
  1547. const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
  1548. dst[offset_dst] = x[offset_src + iih * IW + iiw];
  1549. }
  1550. }
  1551. kernel void kernel_upscale_f32(
  1552. device const char * src0,
  1553. device char * dst,
  1554. constant int64_t & ne00,
  1555. constant int64_t & ne01,
  1556. constant int64_t & ne02,
  1557. constant int64_t & ne03,
  1558. constant uint64_t & nb00,
  1559. constant uint64_t & nb01,
  1560. constant uint64_t & nb02,
  1561. constant uint64_t & nb03,
  1562. constant int64_t & ne0,
  1563. constant int64_t & ne1,
  1564. constant int64_t & ne2,
  1565. constant int64_t & ne3,
  1566. constant uint64_t & nb0,
  1567. constant uint64_t & nb1,
  1568. constant uint64_t & nb2,
  1569. constant uint64_t & nb3,
  1570. constant int32_t & sf,
  1571. uint3 tgpig[[threadgroup_position_in_grid]],
  1572. uint3 tpitg[[thread_position_in_threadgroup]],
  1573. uint3 ntg[[threads_per_threadgroup]]) {
  1574. const int64_t i3 = tgpig.z;
  1575. const int64_t i2 = tgpig.y;
  1576. const int64_t i1 = tgpig.x;
  1577. const int64_t i03 = i3;
  1578. const int64_t i02 = i2;
  1579. const int64_t i01 = i1/sf;
  1580. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1581. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1582. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1583. dst_ptr[i0] = src0_ptr[i0/sf];
  1584. }
  1585. }
  1586. kernel void kernel_pad_f32(
  1587. device const char * src0,
  1588. device char * dst,
  1589. constant int64_t & ne00,
  1590. constant int64_t & ne01,
  1591. constant int64_t & ne02,
  1592. constant int64_t & ne03,
  1593. constant uint64_t & nb00,
  1594. constant uint64_t & nb01,
  1595. constant uint64_t & nb02,
  1596. constant uint64_t & nb03,
  1597. constant int64_t & ne0,
  1598. constant int64_t & ne1,
  1599. constant int64_t & ne2,
  1600. constant int64_t & ne3,
  1601. constant uint64_t & nb0,
  1602. constant uint64_t & nb1,
  1603. constant uint64_t & nb2,
  1604. constant uint64_t & nb3,
  1605. uint3 tgpig[[threadgroup_position_in_grid]],
  1606. uint3 tpitg[[thread_position_in_threadgroup]],
  1607. uint3 ntg[[threads_per_threadgroup]]) {
  1608. const int64_t i3 = tgpig.z;
  1609. const int64_t i2 = tgpig.y;
  1610. const int64_t i1 = tgpig.x;
  1611. const int64_t i03 = i3;
  1612. const int64_t i02 = i2;
  1613. const int64_t i01 = i1;
  1614. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1615. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1616. if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
  1617. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1618. if (i0 < ne00) {
  1619. dst_ptr[i0] = src0_ptr[i0];
  1620. } else {
  1621. dst_ptr[i0] = 0.0f;
  1622. }
  1623. }
  1624. return;
  1625. }
  1626. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1627. dst_ptr[i0] = 0.0f;
  1628. }
  1629. }
  1630. // bitonic sort implementation following the CUDA kernels as reference
  1631. typedef void (argsort_t)(
  1632. device const float * x,
  1633. device int32_t * dst,
  1634. constant int64_t & ncols,
  1635. uint3 tgpig[[threadgroup_position_in_grid]],
  1636. uint3 tpitg[[thread_position_in_threadgroup]]);
  1637. template<ggml_sort_order order>
  1638. kernel void kernel_argsort_f32_i32(
  1639. device const float * x,
  1640. device int32_t * dst,
  1641. constant int64_t & ncols,
  1642. uint3 tgpig[[threadgroup_position_in_grid]],
  1643. uint3 tpitg[[thread_position_in_threadgroup]]) {
  1644. // bitonic sort
  1645. int col = tpitg[0];
  1646. int row = tgpig[1];
  1647. if (col >= ncols) return;
  1648. device const float * x_row = x + row * ncols;
  1649. device int32_t * dst_row = dst + row * ncols;
  1650. // initialize indices
  1651. if (col < ncols) {
  1652. dst_row[col] = col;
  1653. }
  1654. threadgroup_barrier(mem_flags::mem_threadgroup);
  1655. for (int k = 2; k <= ncols; k *= 2) {
  1656. for (int j = k / 2; j > 0; j /= 2) {
  1657. int ixj = col ^ j;
  1658. if (ixj > col) {
  1659. if ((col & k) == 0) {
  1660. if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
  1661. SWAP(dst_row[col], dst_row[ixj]);
  1662. }
  1663. } else {
  1664. if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
  1665. SWAP(dst_row[col], dst_row[ixj]);
  1666. }
  1667. }
  1668. }
  1669. threadgroup_barrier(mem_flags::mem_threadgroup);
  1670. }
  1671. }
  1672. }
  1673. template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ASC>;
  1674. template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_DESC>;
  1675. kernel void kernel_leaky_relu_f32(
  1676. device const float * src0,
  1677. device float * dst,
  1678. constant float & slope,
  1679. uint tpig[[thread_position_in_grid]]) {
  1680. dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
  1681. }
  1682. kernel void kernel_cpy_f16_f16(
  1683. device const half * src0,
  1684. device half * dst,
  1685. constant int64_t & ne00,
  1686. constant int64_t & ne01,
  1687. constant int64_t & ne02,
  1688. constant int64_t & ne03,
  1689. constant uint64_t & nb00,
  1690. constant uint64_t & nb01,
  1691. constant uint64_t & nb02,
  1692. constant uint64_t & nb03,
  1693. constant int64_t & ne0,
  1694. constant int64_t & ne1,
  1695. constant int64_t & ne2,
  1696. constant int64_t & ne3,
  1697. constant uint64_t & nb0,
  1698. constant uint64_t & nb1,
  1699. constant uint64_t & nb2,
  1700. constant uint64_t & nb3,
  1701. uint3 tgpig[[threadgroup_position_in_grid]],
  1702. uint3 tpitg[[thread_position_in_threadgroup]],
  1703. uint3 ntg[[threads_per_threadgroup]]) {
  1704. const int64_t i03 = tgpig[2];
  1705. const int64_t i02 = tgpig[1];
  1706. const int64_t i01 = tgpig[0];
  1707. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1708. const int64_t i3 = n / (ne2*ne1*ne0);
  1709. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1710. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1711. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1712. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1713. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1714. device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1715. dst_data[i00] = src[0];
  1716. }
  1717. }
  1718. kernel void kernel_cpy_f16_f32(
  1719. device const half * src0,
  1720. device float * dst,
  1721. constant int64_t & ne00,
  1722. constant int64_t & ne01,
  1723. constant int64_t & ne02,
  1724. constant int64_t & ne03,
  1725. constant uint64_t & nb00,
  1726. constant uint64_t & nb01,
  1727. constant uint64_t & nb02,
  1728. constant uint64_t & nb03,
  1729. constant int64_t & ne0,
  1730. constant int64_t & ne1,
  1731. constant int64_t & ne2,
  1732. constant int64_t & ne3,
  1733. constant uint64_t & nb0,
  1734. constant uint64_t & nb1,
  1735. constant uint64_t & nb2,
  1736. constant uint64_t & nb3,
  1737. uint3 tgpig[[threadgroup_position_in_grid]],
  1738. uint3 tpitg[[thread_position_in_threadgroup]],
  1739. uint3 ntg[[threads_per_threadgroup]]) {
  1740. const int64_t i03 = tgpig[2];
  1741. const int64_t i02 = tgpig[1];
  1742. const int64_t i01 = tgpig[0];
  1743. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1744. const int64_t i3 = n / (ne2*ne1*ne0);
  1745. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1746. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1747. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1748. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1749. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1750. device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1751. dst_data[i00] = src[0];
  1752. }
  1753. }
  1754. kernel void kernel_cpy_f32_f16(
  1755. device const float * src0,
  1756. device half * dst,
  1757. constant int64_t & ne00,
  1758. constant int64_t & ne01,
  1759. constant int64_t & ne02,
  1760. constant int64_t & ne03,
  1761. constant uint64_t & nb00,
  1762. constant uint64_t & nb01,
  1763. constant uint64_t & nb02,
  1764. constant uint64_t & nb03,
  1765. constant int64_t & ne0,
  1766. constant int64_t & ne1,
  1767. constant int64_t & ne2,
  1768. constant int64_t & ne3,
  1769. constant uint64_t & nb0,
  1770. constant uint64_t & nb1,
  1771. constant uint64_t & nb2,
  1772. constant uint64_t & nb3,
  1773. uint3 tgpig[[threadgroup_position_in_grid]],
  1774. uint3 tpitg[[thread_position_in_threadgroup]],
  1775. uint3 ntg[[threads_per_threadgroup]]) {
  1776. const int64_t i03 = tgpig[2];
  1777. const int64_t i02 = tgpig[1];
  1778. const int64_t i01 = tgpig[0];
  1779. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1780. const int64_t i3 = n / (ne2*ne1*ne0);
  1781. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1782. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1783. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1784. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1785. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1786. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1787. dst_data[i00] = src[0];
  1788. }
  1789. }
  1790. kernel void kernel_cpy_f32_f32(
  1791. device const float * src0,
  1792. device float * dst,
  1793. constant int64_t & ne00,
  1794. constant int64_t & ne01,
  1795. constant int64_t & ne02,
  1796. constant int64_t & ne03,
  1797. constant uint64_t & nb00,
  1798. constant uint64_t & nb01,
  1799. constant uint64_t & nb02,
  1800. constant uint64_t & nb03,
  1801. constant int64_t & ne0,
  1802. constant int64_t & ne1,
  1803. constant int64_t & ne2,
  1804. constant int64_t & ne3,
  1805. constant uint64_t & nb0,
  1806. constant uint64_t & nb1,
  1807. constant uint64_t & nb2,
  1808. constant uint64_t & nb3,
  1809. uint3 tgpig[[threadgroup_position_in_grid]],
  1810. uint3 tpitg[[thread_position_in_threadgroup]],
  1811. uint3 ntg[[threads_per_threadgroup]]) {
  1812. const int64_t i03 = tgpig[2];
  1813. const int64_t i02 = tgpig[1];
  1814. const int64_t i01 = tgpig[0];
  1815. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1816. const int64_t i3 = n / (ne2*ne1*ne0);
  1817. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1818. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1819. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1820. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1821. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1822. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1823. dst_data[i00] = src[0];
  1824. }
  1825. }
  1826. kernel void kernel_cpy_f32_q8_0(
  1827. device const float * src0,
  1828. device void * dst,
  1829. constant int64_t & ne00,
  1830. constant int64_t & ne01,
  1831. constant int64_t & ne02,
  1832. constant int64_t & ne03,
  1833. constant uint64_t & nb00,
  1834. constant uint64_t & nb01,
  1835. constant uint64_t & nb02,
  1836. constant uint64_t & nb03,
  1837. constant int64_t & ne0,
  1838. constant int64_t & ne1,
  1839. constant int64_t & ne2,
  1840. constant int64_t & ne3,
  1841. constant uint64_t & nb0,
  1842. constant uint64_t & nb1,
  1843. constant uint64_t & nb2,
  1844. constant uint64_t & nb3,
  1845. uint3 tgpig[[threadgroup_position_in_grid]],
  1846. uint3 tpitg[[thread_position_in_threadgroup]],
  1847. uint3 ntg[[threads_per_threadgroup]]) {
  1848. const int64_t i03 = tgpig[2];
  1849. const int64_t i02 = tgpig[1];
  1850. const int64_t i01 = tgpig[0];
  1851. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1852. const int64_t i3 = n / (ne2*ne1*ne0);
  1853. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1854. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1855. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0;
  1856. device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1857. for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) {
  1858. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1859. float amax = 0.0f; // absolute max
  1860. for (int j = 0; j < QK8_0; j++) {
  1861. const float v = src[j];
  1862. amax = MAX(amax, fabs(v));
  1863. }
  1864. const float d = amax / ((1 << 7) - 1);
  1865. const float id = d ? 1.0f/d : 0.0f;
  1866. dst_data[i00/QK8_0].d = d;
  1867. for (int j = 0; j < QK8_0; ++j) {
  1868. const float x0 = src[j]*id;
  1869. dst_data[i00/QK8_0].qs[j] = round(x0);
  1870. }
  1871. }
  1872. }
  1873. kernel void kernel_cpy_f32_q4_0(
  1874. device const float * src0,
  1875. device void * dst,
  1876. constant int64_t & ne00,
  1877. constant int64_t & ne01,
  1878. constant int64_t & ne02,
  1879. constant int64_t & ne03,
  1880. constant uint64_t & nb00,
  1881. constant uint64_t & nb01,
  1882. constant uint64_t & nb02,
  1883. constant uint64_t & nb03,
  1884. constant int64_t & ne0,
  1885. constant int64_t & ne1,
  1886. constant int64_t & ne2,
  1887. constant int64_t & ne3,
  1888. constant uint64_t & nb0,
  1889. constant uint64_t & nb1,
  1890. constant uint64_t & nb2,
  1891. constant uint64_t & nb3,
  1892. uint3 tgpig[[threadgroup_position_in_grid]],
  1893. uint3 tpitg[[thread_position_in_threadgroup]],
  1894. uint3 ntg[[threads_per_threadgroup]]) {
  1895. const int64_t i03 = tgpig[2];
  1896. const int64_t i02 = tgpig[1];
  1897. const int64_t i01 = tgpig[0];
  1898. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1899. const int64_t i3 = n / (ne2*ne1*ne0);
  1900. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1901. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1902. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0;
  1903. device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1904. for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) {
  1905. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1906. float amax = 0.0f; // absolute max
  1907. float max = 0.0f;
  1908. for (int j = 0; j < QK4_0; j++) {
  1909. const float v = src[j];
  1910. if (amax < fabs(v)) {
  1911. amax = fabs(v);
  1912. max = v;
  1913. }
  1914. }
  1915. const float d = max / -8;
  1916. const float id = d ? 1.0f/d : 0.0f;
  1917. dst_data[i00/QK4_0].d = d;
  1918. for (int j = 0; j < QK4_0/2; ++j) {
  1919. const float x0 = src[0 + j]*id;
  1920. const float x1 = src[QK4_0/2 + j]*id;
  1921. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  1922. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  1923. dst_data[i00/QK4_0].qs[j] = xi0;
  1924. dst_data[i00/QK4_0].qs[j] |= xi1 << 4;
  1925. }
  1926. }
  1927. }
  1928. kernel void kernel_cpy_f32_q4_1(
  1929. device const float * src0,
  1930. device void * dst,
  1931. constant int64_t & ne00,
  1932. constant int64_t & ne01,
  1933. constant int64_t & ne02,
  1934. constant int64_t & ne03,
  1935. constant uint64_t & nb00,
  1936. constant uint64_t & nb01,
  1937. constant uint64_t & nb02,
  1938. constant uint64_t & nb03,
  1939. constant int64_t & ne0,
  1940. constant int64_t & ne1,
  1941. constant int64_t & ne2,
  1942. constant int64_t & ne3,
  1943. constant uint64_t & nb0,
  1944. constant uint64_t & nb1,
  1945. constant uint64_t & nb2,
  1946. constant uint64_t & nb3,
  1947. uint3 tgpig[[threadgroup_position_in_grid]],
  1948. uint3 tpitg[[thread_position_in_threadgroup]],
  1949. uint3 ntg[[threads_per_threadgroup]]) {
  1950. const int64_t i03 = tgpig[2];
  1951. const int64_t i02 = tgpig[1];
  1952. const int64_t i01 = tgpig[0];
  1953. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1954. const int64_t i3 = n / (ne2*ne1*ne0);
  1955. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1956. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1957. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1;
  1958. device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1959. for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) {
  1960. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1961. float min = FLT_MAX;
  1962. float max = -FLT_MAX;
  1963. for (int j = 0; j < QK4_1; j++) {
  1964. const float v = src[j];
  1965. if (min > v) min = v;
  1966. if (max < v) max = v;
  1967. }
  1968. const float d = (max - min) / ((1 << 4) - 1);
  1969. const float id = d ? 1.0f/d : 0.0f;
  1970. dst_data[i00/QK4_1].d = d;
  1971. dst_data[i00/QK4_1].m = min;
  1972. for (int j = 0; j < QK4_1/2; ++j) {
  1973. const float x0 = (src[0 + j] - min)*id;
  1974. const float x1 = (src[QK4_1/2 + j] - min)*id;
  1975. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  1976. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  1977. dst_data[i00/QK4_1].qs[j] = xi0;
  1978. dst_data[i00/QK4_1].qs[j] |= xi1 << 4;
  1979. }
  1980. }
  1981. }
  1982. kernel void kernel_concat(
  1983. device const char * src0,
  1984. device const char * src1,
  1985. device char * dst,
  1986. constant int64_t & ne00,
  1987. constant int64_t & ne01,
  1988. constant int64_t & ne02,
  1989. constant int64_t & ne03,
  1990. constant uint64_t & nb00,
  1991. constant uint64_t & nb01,
  1992. constant uint64_t & nb02,
  1993. constant uint64_t & nb03,
  1994. constant int64_t & ne10,
  1995. constant int64_t & ne11,
  1996. constant int64_t & ne12,
  1997. constant int64_t & ne13,
  1998. constant uint64_t & nb10,
  1999. constant uint64_t & nb11,
  2000. constant uint64_t & nb12,
  2001. constant uint64_t & nb13,
  2002. constant int64_t & ne0,
  2003. constant int64_t & ne1,
  2004. constant int64_t & ne2,
  2005. constant int64_t & ne3,
  2006. constant uint64_t & nb0,
  2007. constant uint64_t & nb1,
  2008. constant uint64_t & nb2,
  2009. constant uint64_t & nb3,
  2010. uint3 tgpig[[threadgroup_position_in_grid]],
  2011. uint3 tpitg[[thread_position_in_threadgroup]],
  2012. uint3 ntg[[threads_per_threadgroup]]) {
  2013. const int64_t i03 = tgpig.z;
  2014. const int64_t i02 = tgpig.y;
  2015. const int64_t i01 = tgpig.x;
  2016. const int64_t i13 = i03 % ne13;
  2017. const int64_t i12 = i02 % ne12;
  2018. const int64_t i11 = i01 % ne11;
  2019. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00;
  2020. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
  2021. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
  2022. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  2023. if (i02 < ne02) {
  2024. ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
  2025. src0_ptr += ntg.x*nb00;
  2026. } else {
  2027. ((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
  2028. src1_ptr += ntg.x*nb10;
  2029. }
  2030. dst_ptr += ntg.x*nb0;
  2031. }
  2032. }
  2033. //============================================ k-quants ======================================================
  2034. #ifndef QK_K
  2035. #define QK_K 256
  2036. #else
  2037. static_assert(QK_K == 256 || QK_K == 64, "QK_K must be 256 or 64");
  2038. #endif
  2039. #if QK_K == 256
  2040. #define K_SCALE_SIZE 12
  2041. #else
  2042. #define K_SCALE_SIZE 4
  2043. #endif
  2044. typedef struct {
  2045. uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
  2046. uint8_t qs[QK_K/4]; // quants
  2047. half d; // super-block scale for quantized scales
  2048. half dmin; // super-block scale for quantized mins
  2049. } block_q2_K;
  2050. // 84 bytes / block
  2051. typedef struct {
  2052. uint8_t hmask[QK_K/8]; // quants - high bit
  2053. uint8_t qs[QK_K/4]; // quants - low 2 bits
  2054. #if QK_K == 64
  2055. uint8_t scales[2];
  2056. #else
  2057. uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
  2058. #endif
  2059. half d; // super-block scale
  2060. } block_q3_K;
  2061. #if QK_K == 64
  2062. typedef struct {
  2063. half d[2]; // super-block scales/mins
  2064. uint8_t scales[2];
  2065. uint8_t qs[QK_K/2]; // 4-bit quants
  2066. } block_q4_K;
  2067. #else
  2068. typedef struct {
  2069. half d; // super-block scale for quantized scales
  2070. half dmin; // super-block scale for quantized mins
  2071. uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
  2072. uint8_t qs[QK_K/2]; // 4--bit quants
  2073. } block_q4_K;
  2074. #endif
  2075. #if QK_K == 64
  2076. typedef struct {
  2077. half d; // super-block scales/mins
  2078. int8_t scales[QK_K/16]; // 8-bit block scales
  2079. uint8_t qh[QK_K/8]; // quants, high bit
  2080. uint8_t qs[QK_K/2]; // quants, low 4 bits
  2081. } block_q5_K;
  2082. #else
  2083. typedef struct {
  2084. half d; // super-block scale for quantized scales
  2085. half dmin; // super-block scale for quantized mins
  2086. uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
  2087. uint8_t qh[QK_K/8]; // quants, high bit
  2088. uint8_t qs[QK_K/2]; // quants, low 4 bits
  2089. } block_q5_K;
  2090. // 176 bytes / block
  2091. #endif
  2092. typedef struct {
  2093. uint8_t ql[QK_K/2]; // quants, lower 4 bits
  2094. uint8_t qh[QK_K/4]; // quants, upper 2 bits
  2095. int8_t scales[QK_K/16]; // scales, quantized with 8 bits
  2096. half d; // super-block scale
  2097. } block_q6_K;
  2098. // 210 bytes / block
  2099. //====================================== dot products =========================
  2100. void kernel_mul_mv_q2_K_f32_impl(
  2101. device const void * src0,
  2102. device const float * src1,
  2103. device float * dst,
  2104. constant int64_t & ne00,
  2105. constant int64_t & ne01,
  2106. constant int64_t & ne02,
  2107. constant int64_t & ne10,
  2108. constant int64_t & ne12,
  2109. constant int64_t & ne0,
  2110. constant int64_t & ne1,
  2111. constant uint & r2,
  2112. constant uint & r3,
  2113. uint3 tgpig[[threadgroup_position_in_grid]],
  2114. uint tiisg[[thread_index_in_simdgroup]],
  2115. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2116. const int nb = ne00/QK_K;
  2117. const int r0 = tgpig.x;
  2118. const int r1 = tgpig.y;
  2119. const int im = tgpig.z;
  2120. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2121. const int ib_row = first_row * nb;
  2122. const uint i12 = im%ne12;
  2123. const uint i13 = im/ne12;
  2124. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2125. device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row + offset0;
  2126. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2127. float yl[32];
  2128. float sumf[N_DST]={0.f}, all_sum;
  2129. const int step = sizeof(block_q2_K) * nb;
  2130. #if QK_K == 256
  2131. const int ix = tiisg/8; // 0...3
  2132. const int it = tiisg%8; // 0...7
  2133. const int iq = it/4; // 0 or 1
  2134. const int ir = it%4; // 0...3
  2135. const int is = (8*ir)/16;// 0 or 1
  2136. device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir;
  2137. for (int ib = ix; ib < nb; ib += 4) {
  2138. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2139. for (int i = 0; i < 8; ++i) {
  2140. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  2141. yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
  2142. yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
  2143. yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
  2144. }
  2145. device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is;
  2146. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  2147. device const half * dh = &x[ib].d;
  2148. for (int row = 0; row < N_DST; row++) {
  2149. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2150. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2151. for (int i = 0; i < 8; i += 2) {
  2152. acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
  2153. acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
  2154. acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
  2155. acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
  2156. acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
  2157. acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
  2158. acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
  2159. acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
  2160. }
  2161. float dall = dh[0];
  2162. float dmin = dh[1] * 1.f/16.f;
  2163. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
  2164. (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
  2165. (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
  2166. (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
  2167. dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
  2168. qs += step/2;
  2169. sc += step;
  2170. dh += step/2;
  2171. }
  2172. y4 += 4 * QK_K;
  2173. }
  2174. #else
  2175. const int ix = tiisg/2; // 0...15
  2176. const int it = tiisg%2; // 0...1
  2177. device const float * y4 = y + ix * QK_K + 8 * it;
  2178. for (int ib = ix; ib < nb; ib += 16) {
  2179. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2180. for (int i = 0; i < 8; ++i) {
  2181. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  2182. yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
  2183. yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
  2184. yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
  2185. }
  2186. device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
  2187. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
  2188. device const half * dh = &x[ib].d;
  2189. for (int row = 0; row < N_DST; row++) {
  2190. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2191. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2192. for (int i = 0; i < 8; i += 2) {
  2193. acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
  2194. acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
  2195. acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
  2196. acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
  2197. acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
  2198. acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
  2199. acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
  2200. acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
  2201. }
  2202. float dall = dh[0];
  2203. float dmin = dh[1];
  2204. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
  2205. (acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
  2206. (acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
  2207. (acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
  2208. dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
  2209. qs += step/2;
  2210. sc += step;
  2211. dh += step/2;
  2212. }
  2213. y4 += 16 * QK_K;
  2214. }
  2215. #endif
  2216. for (int row = 0; row < N_DST; ++row) {
  2217. all_sum = simd_sum(sumf[row]);
  2218. if (tiisg == 0) {
  2219. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2220. }
  2221. }
  2222. }
  2223. [[host_name("kernel_mul_mv_q2_K_f32")]]
  2224. kernel void kernel_mul_mv_q2_K_f32(
  2225. device const void * src0,
  2226. device const float * src1,
  2227. device float * dst,
  2228. constant int64_t & ne00,
  2229. constant int64_t & ne01,
  2230. constant int64_t & ne02,
  2231. constant uint64_t & nb00,
  2232. constant uint64_t & nb01,
  2233. constant uint64_t & nb02,
  2234. constant int64_t & ne10,
  2235. constant int64_t & ne11,
  2236. constant int64_t & ne12,
  2237. constant uint64_t & nb10,
  2238. constant uint64_t & nb11,
  2239. constant uint64_t & nb12,
  2240. constant int64_t & ne0,
  2241. constant int64_t & ne1,
  2242. constant uint & r2,
  2243. constant uint & r3,
  2244. uint3 tgpig[[threadgroup_position_in_grid]],
  2245. uint tiisg[[thread_index_in_simdgroup]],
  2246. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2247. kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2248. }
  2249. #if QK_K == 256
  2250. void kernel_mul_mv_q3_K_f32_impl(
  2251. device const void * src0,
  2252. device const float * src1,
  2253. device float * dst,
  2254. constant int64_t & ne00,
  2255. constant int64_t & ne01,
  2256. constant int64_t & ne02,
  2257. constant int64_t & ne10,
  2258. constant int64_t & ne12,
  2259. constant int64_t & ne0,
  2260. constant int64_t & ne1,
  2261. constant uint & r2,
  2262. constant uint & r3,
  2263. uint3 tgpig[[threadgroup_position_in_grid]],
  2264. uint tiisg[[thread_index_in_simdgroup]],
  2265. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2266. const int nb = ne00/QK_K;
  2267. const int64_t r0 = tgpig.x;
  2268. const int64_t r1 = tgpig.y;
  2269. const int64_t im = tgpig.z;
  2270. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  2271. const uint i12 = im%ne12;
  2272. const uint i13 = im/ne12;
  2273. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2274. device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
  2275. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2276. float yl[32];
  2277. //const uint16_t kmask1 = 0x3030;
  2278. //const uint16_t kmask2 = 0x0f0f;
  2279. const int tid = tiisg/4;
  2280. const int ix = tiisg%4;
  2281. const int ip = tid/4; // 0 or 1
  2282. const int il = 2*((tid%4)/2); // 0 or 2
  2283. const int ir = tid%2;
  2284. const int n = 8;
  2285. const int l0 = n*ir;
  2286. // One would think that the Metal compiler would figure out that ip and il can only have
  2287. // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
  2288. // with these two tales.
  2289. //
  2290. // Possible masks for the high bit
  2291. const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
  2292. {0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
  2293. {0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
  2294. {0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
  2295. // Possible masks for the low 2 bits
  2296. const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
  2297. const ushort4 hm = mm[2*ip + il/2];
  2298. const int shift = 2*il;
  2299. const float v1 = il == 0 ? 4.f : 64.f;
  2300. const float v2 = 4.f * v1;
  2301. const uint16_t s_shift1 = 4*ip;
  2302. const uint16_t s_shift2 = s_shift1 + il;
  2303. const int q_offset = 32*ip + l0;
  2304. const int y_offset = 128*ip + 32*il + l0;
  2305. const int step = sizeof(block_q3_K) * nb / 2;
  2306. device const float * y1 = yy + ix*QK_K + y_offset;
  2307. uint32_t scales32, aux32;
  2308. thread uint16_t * scales16 = (thread uint16_t *)&scales32;
  2309. thread const int8_t * scales = (thread const int8_t *)&scales32;
  2310. float sumf1[2] = {0.f};
  2311. float sumf2[2] = {0.f};
  2312. for (int i = ix; i < nb; i += 4) {
  2313. for (int l = 0; l < 8; ++l) {
  2314. yl[l+ 0] = y1[l+ 0];
  2315. yl[l+ 8] = y1[l+16];
  2316. yl[l+16] = y1[l+32];
  2317. yl[l+24] = y1[l+48];
  2318. }
  2319. device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
  2320. device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
  2321. device const uint16_t * a = (device const uint16_t *)(x[i].scales);
  2322. device const half * dh = &x[i].d;
  2323. for (int row = 0; row < 2; ++row) {
  2324. const float d_all = (float)dh[0];
  2325. scales16[0] = a[4];
  2326. scales16[1] = a[5];
  2327. aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
  2328. scales16[0] = a[il+0];
  2329. scales16[1] = a[il+1];
  2330. scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
  2331. float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
  2332. for (int l = 0; l < n; l += 2) {
  2333. const int32_t qs = q[l/2];
  2334. s1 += yl[l+0] * (qs & qm[il/2][0]);
  2335. s2 += yl[l+1] * (qs & qm[il/2][1]);
  2336. s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
  2337. s4 += yl[l+16] * (qs & qm[il/2][2]);
  2338. s5 += yl[l+17] * (qs & qm[il/2][3]);
  2339. s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
  2340. }
  2341. float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  2342. float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  2343. sumf1[row] += d1 * (scales[0] - 32);
  2344. sumf2[row] += d2 * (scales[2] - 32);
  2345. s1 = s2 = s3 = s4 = s5 = s6 = 0;
  2346. for (int l = 0; l < n; l += 2) {
  2347. const int32_t qs = q[l/2+8];
  2348. s1 += yl[l+8] * (qs & qm[il/2][0]);
  2349. s2 += yl[l+9] * (qs & qm[il/2][1]);
  2350. s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
  2351. s4 += yl[l+24] * (qs & qm[il/2][2]);
  2352. s5 += yl[l+25] * (qs & qm[il/2][3]);
  2353. s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
  2354. }
  2355. d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  2356. d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  2357. sumf1[row] += d1 * (scales[1] - 32);
  2358. sumf2[row] += d2 * (scales[3] - 32);
  2359. q += step;
  2360. h += step;
  2361. a += step;
  2362. dh += step;
  2363. }
  2364. y1 += 4 * QK_K;
  2365. }
  2366. for (int row = 0; row < 2; ++row) {
  2367. const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
  2368. sumf1[row] = simd_sum(sumf);
  2369. }
  2370. if (tiisg == 0) {
  2371. for (int row = 0; row < 2; ++row) {
  2372. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = sumf1[row];
  2373. }
  2374. }
  2375. }
  2376. #else
  2377. void kernel_mul_mv_q3_K_f32_impl(
  2378. device const void * src0,
  2379. device const float * src1,
  2380. device float * dst,
  2381. constant int64_t & ne00,
  2382. constant int64_t & ne01,
  2383. constant int64_t & ne02,
  2384. constant int64_t & ne10,
  2385. constant int64_t & ne12,
  2386. constant int64_t & ne0,
  2387. constant int64_t & ne1,
  2388. constant uint & r2,
  2389. constant uint & r3,
  2390. uint3 tgpig[[threadgroup_position_in_grid]],
  2391. uint tiisg[[thread_index_in_simdgroup]],
  2392. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2393. const int nb = ne00/QK_K;
  2394. const int64_t r0 = tgpig.x;
  2395. const int64_t r1 = tgpig.y;
  2396. const int64_t im = tgpig.z;
  2397. const int row = 2 * r0 + sgitg;
  2398. const uint i12 = im%ne12;
  2399. const uint i13 = im/ne12;
  2400. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2401. device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0;
  2402. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2403. const int ix = tiisg/4;
  2404. const int il = 4 * (tiisg%4);// 0, 4, 8, 12
  2405. const int iq = il/8; // 0, 0, 1, 1
  2406. const int in = il%8; // 0, 4, 0, 4
  2407. float2 sum = {0.f, 0.f};
  2408. for (int i = ix; i < nb; i += 8) {
  2409. const float d_all = (float)(x[i].d);
  2410. device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
  2411. device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
  2412. device const uint16_t * s = (device const uint16_t *)(x[i].scales);
  2413. device const float * y = yy + i * QK_K + il;
  2414. const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
  2415. const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
  2416. const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
  2417. const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
  2418. for (int l = 0; l < 4; l += 2) {
  2419. const uint16_t hm = h[l/2] >> iq;
  2420. sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
  2421. + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
  2422. + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
  2423. + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
  2424. sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
  2425. + y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
  2426. + y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
  2427. + y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
  2428. }
  2429. }
  2430. const float sumf = sum[0] + sum[1] * 1.f/256.f;
  2431. const float tot = simd_sum(sumf);
  2432. if (tiisg == 0) {
  2433. dst[r1*ne0 + im*ne0*ne1 + row] = tot;
  2434. }
  2435. }
  2436. #endif
  2437. [[host_name("kernel_mul_mv_q3_K_f32")]]
  2438. kernel void kernel_mul_mv_q3_K_f32(
  2439. device const void * src0,
  2440. device const float * src1,
  2441. device float * dst,
  2442. constant int64_t & ne00,
  2443. constant int64_t & ne01,
  2444. constant int64_t & ne02,
  2445. constant uint64_t & nb00,
  2446. constant uint64_t & nb01,
  2447. constant uint64_t & nb02,
  2448. constant int64_t & ne10,
  2449. constant int64_t & ne11,
  2450. constant int64_t & ne12,
  2451. constant uint64_t & nb10,
  2452. constant uint64_t & nb11,
  2453. constant uint64_t & nb12,
  2454. constant int64_t & ne0,
  2455. constant int64_t & ne1,
  2456. constant uint & r2,
  2457. constant uint & r3,
  2458. uint3 tgpig[[threadgroup_position_in_grid]],
  2459. uint tiisg[[thread_index_in_simdgroup]],
  2460. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2461. kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2462. }
  2463. #if QK_K == 256
  2464. void kernel_mul_mv_q4_K_f32_impl(
  2465. device const void * src0,
  2466. device const float * src1,
  2467. device float * dst,
  2468. constant int64_t & ne00,
  2469. constant int64_t & ne01,
  2470. constant int64_t & ne02,
  2471. constant int64_t & ne10,
  2472. constant int64_t & ne12,
  2473. constant int64_t & ne0,
  2474. constant int64_t & ne1,
  2475. constant uint & r2,
  2476. constant uint & r3,
  2477. uint3 tgpig[[threadgroup_position_in_grid]],
  2478. uint tiisg[[thread_index_in_simdgroup]],
  2479. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2480. const uint16_t kmask1 = 0x3f3f;
  2481. const uint16_t kmask2 = 0x0f0f;
  2482. const uint16_t kmask3 = 0xc0c0;
  2483. const int ix = tiisg/8; // 0...3
  2484. const int it = tiisg%8; // 0...7
  2485. const int iq = it/4; // 0 or 1
  2486. const int ir = it%4; // 0...3
  2487. const int nb = ne00/QK_K;
  2488. const int r0 = tgpig.x;
  2489. const int r1 = tgpig.y;
  2490. const int im = tgpig.z;
  2491. //const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2492. const int first_row = r0 * N_DST;
  2493. const int ib_row = first_row * nb;
  2494. const uint i12 = im%ne12;
  2495. const uint i13 = im/ne12;
  2496. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2497. device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
  2498. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2499. float yl[16];
  2500. float yh[16];
  2501. float sumf[N_DST]={0.f}, all_sum;
  2502. const int step = sizeof(block_q4_K) * nb / 2;
  2503. device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir;
  2504. uint16_t sc16[4];
  2505. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  2506. for (int ib = ix; ib < nb; ib += 4) {
  2507. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2508. for (int i = 0; i < 8; ++i) {
  2509. yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
  2510. yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
  2511. yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
  2512. yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
  2513. }
  2514. device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq;
  2515. device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  2516. device const half * dh = &x[ib].d;
  2517. for (int row = 0; row < N_DST; row++) {
  2518. sc16[0] = sc[0] & kmask1;
  2519. sc16[1] = sc[2] & kmask1;
  2520. sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
  2521. sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
  2522. device const uint16_t * q2 = q1 + 32;
  2523. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2524. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2525. for (int i = 0; i < 8; i += 2) {
  2526. acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
  2527. acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
  2528. acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
  2529. acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
  2530. acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
  2531. acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
  2532. acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
  2533. acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
  2534. }
  2535. float dall = dh[0];
  2536. float dmin = dh[1];
  2537. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
  2538. (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
  2539. (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
  2540. (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
  2541. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  2542. q1 += step;
  2543. sc += step;
  2544. dh += step;
  2545. }
  2546. y4 += 4 * QK_K;
  2547. }
  2548. for (int row = 0; row < N_DST; ++row) {
  2549. all_sum = simd_sum(sumf[row]);
  2550. if (tiisg == 0) {
  2551. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2552. }
  2553. }
  2554. }
  2555. #else
  2556. void kernel_mul_mv_q4_K_f32_impl(
  2557. device const void * src0,
  2558. device const float * src1,
  2559. device float * dst,
  2560. constant int64_t & ne00,
  2561. constant int64_t & ne01,
  2562. constant int64_t & ne02,
  2563. constant int64_t & ne10,
  2564. constant int64_t & ne12,
  2565. constant int64_t & ne0,
  2566. constant int64_t & ne1,
  2567. constant uint & r2,
  2568. constant uint & r3,
  2569. uint3 tgpig[[threadgroup_position_in_grid]],
  2570. uint tiisg[[thread_index_in_simdgroup]],
  2571. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2572. const int ix = tiisg/4; // 0...7
  2573. const int it = tiisg%4; // 0...3
  2574. const int nb = ne00/QK_K;
  2575. const int r0 = tgpig.x;
  2576. const int r1 = tgpig.y;
  2577. const int im = tgpig.z;
  2578. const int first_row = r0 * N_DST;
  2579. const int ib_row = first_row * nb;
  2580. const uint i12 = im%ne12;
  2581. const uint i13 = im/ne12;
  2582. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2583. device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
  2584. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2585. float yl[8];
  2586. float yh[8];
  2587. float sumf[N_DST]={0.f}, all_sum;
  2588. const int step = sizeof(block_q4_K) * nb / 2;
  2589. device const float * y4 = y + ix * QK_K + 8 * it;
  2590. uint16_t sc16[4];
  2591. for (int ib = ix; ib < nb; ib += 8) {
  2592. float2 sumy = {0.f, 0.f};
  2593. for (int i = 0; i < 8; ++i) {
  2594. yl[i] = y4[i+ 0]; sumy[0] += yl[i];
  2595. yh[i] = y4[i+32]; sumy[1] += yh[i];
  2596. }
  2597. device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
  2598. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
  2599. device const half * dh = x[ib].d;
  2600. for (int row = 0; row < N_DST; row++) {
  2601. sc16[0] = sc[0] & 0x000f;
  2602. sc16[1] = sc[0] & 0x0f00;
  2603. sc16[2] = sc[0] & 0x00f0;
  2604. sc16[3] = sc[0] & 0xf000;
  2605. float2 acc1 = {0.f, 0.f};
  2606. float2 acc2 = {0.f, 0.f};
  2607. for (int i = 0; i < 8; i += 2) {
  2608. acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
  2609. acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
  2610. acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
  2611. acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
  2612. }
  2613. float dall = dh[0];
  2614. float dmin = dh[1];
  2615. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
  2616. (acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
  2617. dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
  2618. qs += step;
  2619. sc += step;
  2620. dh += step;
  2621. }
  2622. y4 += 8 * QK_K;
  2623. }
  2624. for (int row = 0; row < N_DST; ++row) {
  2625. all_sum = simd_sum(sumf[row]);
  2626. if (tiisg == 0) {
  2627. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2628. }
  2629. }
  2630. }
  2631. #endif
  2632. [[host_name("kernel_mul_mv_q4_K_f32")]]
  2633. kernel void kernel_mul_mv_q4_K_f32(
  2634. device const void * src0,
  2635. device const float * src1,
  2636. device float * dst,
  2637. constant int64_t & ne00,
  2638. constant int64_t & ne01,
  2639. constant int64_t & ne02,
  2640. constant uint64_t & nb00,
  2641. constant uint64_t & nb01,
  2642. constant uint64_t & nb02,
  2643. constant int64_t & ne10,
  2644. constant int64_t & ne11,
  2645. constant int64_t & ne12,
  2646. constant uint64_t & nb10,
  2647. constant uint64_t & nb11,
  2648. constant uint64_t & nb12,
  2649. constant int64_t & ne0,
  2650. constant int64_t & ne1,
  2651. constant uint & r2,
  2652. constant uint & r3,
  2653. uint3 tgpig[[threadgroup_position_in_grid]],
  2654. uint tiisg[[thread_index_in_simdgroup]],
  2655. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2656. kernel_mul_mv_q4_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2657. }
  2658. void kernel_mul_mv_q5_K_f32_impl(
  2659. device const void * src0,
  2660. device const float * src1,
  2661. device float * dst,
  2662. constant int64_t & ne00,
  2663. constant int64_t & ne01,
  2664. constant int64_t & ne02,
  2665. constant int64_t & ne10,
  2666. constant int64_t & ne12,
  2667. constant int64_t & ne0,
  2668. constant int64_t & ne1,
  2669. constant uint & r2,
  2670. constant uint & r3,
  2671. uint3 tgpig[[threadgroup_position_in_grid]],
  2672. uint tiisg[[thread_index_in_simdgroup]],
  2673. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2674. const int nb = ne00/QK_K;
  2675. const int64_t r0 = tgpig.x;
  2676. const int64_t r1 = tgpig.y;
  2677. const int im = tgpig.z;
  2678. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  2679. const uint i12 = im%ne12;
  2680. const uint i13 = im/ne12;
  2681. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2682. device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb + offset0;
  2683. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2684. float sumf[2]={0.f};
  2685. const int step = sizeof(block_q5_K) * nb;
  2686. #if QK_K == 256
  2687. #
  2688. float yl[16], yh[16];
  2689. const uint16_t kmask1 = 0x3f3f;
  2690. const uint16_t kmask2 = 0x0f0f;
  2691. const uint16_t kmask3 = 0xc0c0;
  2692. const int tid = tiisg/4;
  2693. const int ix = tiisg%4;
  2694. const int iq = tid/4;
  2695. const int ir = tid%4;
  2696. const int n = 8;
  2697. const int l0 = n*ir;
  2698. const int q_offset = 32*iq + l0;
  2699. const int y_offset = 64*iq + l0;
  2700. const uint8_t hm1 = 1u << (2*iq);
  2701. const uint8_t hm2 = hm1 << 1;
  2702. const uint8_t hm3 = hm1 << 4;
  2703. const uint8_t hm4 = hm2 << 4;
  2704. uint16_t sc16[4];
  2705. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  2706. device const float * y1 = yy + ix*QK_K + y_offset;
  2707. for (int i = ix; i < nb; i += 4) {
  2708. device const uint8_t * q1 = x[i].qs + q_offset;
  2709. device const uint8_t * qh = x[i].qh + l0;
  2710. device const half * dh = &x[i].d;
  2711. device const uint16_t * a = (device const uint16_t *)x[i].scales + iq;
  2712. device const float * y2 = y1 + 128;
  2713. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2714. for (int l = 0; l < 8; ++l) {
  2715. yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
  2716. yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
  2717. yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
  2718. yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
  2719. }
  2720. for (int row = 0; row < 2; ++row) {
  2721. device const uint8_t * q2 = q1 + 64;
  2722. sc16[0] = a[0] & kmask1;
  2723. sc16[1] = a[2] & kmask1;
  2724. sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
  2725. sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
  2726. float4 acc1 = {0.f};
  2727. float4 acc2 = {0.f};
  2728. for (int l = 0; l < n; ++l) {
  2729. uint8_t h = qh[l];
  2730. acc1[0] += yl[l+0] * (q1[l] & 0x0F);
  2731. acc1[1] += yl[l+8] * (q1[l] & 0xF0);
  2732. acc1[2] += yh[l+0] * (q2[l] & 0x0F);
  2733. acc1[3] += yh[l+8] * (q2[l] & 0xF0);
  2734. acc2[0] += h & hm1 ? yl[l+0] : 0.f;
  2735. acc2[1] += h & hm2 ? yl[l+8] : 0.f;
  2736. acc2[2] += h & hm3 ? yh[l+0] : 0.f;
  2737. acc2[3] += h & hm4 ? yh[l+8] : 0.f;
  2738. }
  2739. const float dall = dh[0];
  2740. const float dmin = dh[1];
  2741. sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
  2742. sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
  2743. sc8[4] * (acc1[2] + 16.f*acc2[2]) +
  2744. sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
  2745. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  2746. q1 += step;
  2747. qh += step;
  2748. dh += step/2;
  2749. a += step/2;
  2750. }
  2751. y1 += 4 * QK_K;
  2752. }
  2753. #else
  2754. float yl[8], yh[8];
  2755. const int il = 4 * (tiisg/8); // 0, 4, 8, 12
  2756. const int ix = tiisg%8;
  2757. const int iq = il/8; // 0, 0, 1, 1
  2758. const int in = il%8; // 0, 4, 0, 4
  2759. device const float * y = yy + ix*QK_K + il;
  2760. for (int i = ix; i < nb; i += 8) {
  2761. for (int l = 0; l < 4; ++l) {
  2762. yl[l+0] = y[l+ 0];
  2763. yl[l+4] = y[l+16];
  2764. yh[l+0] = y[l+32];
  2765. yh[l+4] = y[l+48];
  2766. }
  2767. device const half * dh = &x[i].d;
  2768. device const uint8_t * q = x[i].qs + il;
  2769. device const uint8_t * h = x[i].qh + in;
  2770. device const int8_t * s = x[i].scales;
  2771. for (int row = 0; row < 2; ++row) {
  2772. const float d = dh[0];
  2773. float2 acc = {0.f, 0.f};
  2774. for (int l = 0; l < 4; ++l) {
  2775. const uint8_t hl = h[l] >> iq;
  2776. acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
  2777. + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
  2778. acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
  2779. + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
  2780. }
  2781. sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
  2782. q += step;
  2783. h += step;
  2784. s += step;
  2785. dh += step/2;
  2786. }
  2787. y += 8 * QK_K;
  2788. }
  2789. #endif
  2790. for (int row = 0; row < 2; ++row) {
  2791. const float tot = simd_sum(sumf[row]);
  2792. if (tiisg == 0) {
  2793. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  2794. }
  2795. }
  2796. }
  2797. [[host_name("kernel_mul_mv_q5_K_f32")]]
  2798. kernel void kernel_mul_mv_q5_K_f32(
  2799. device const void * src0,
  2800. device const float * src1,
  2801. device float * dst,
  2802. constant int64_t & ne00,
  2803. constant int64_t & ne01,
  2804. constant int64_t & ne02,
  2805. constant uint64_t & nb00,
  2806. constant uint64_t & nb01,
  2807. constant uint64_t & nb02,
  2808. constant int64_t & ne10,
  2809. constant int64_t & ne11,
  2810. constant int64_t & ne12,
  2811. constant uint64_t & nb10,
  2812. constant uint64_t & nb11,
  2813. constant uint64_t & nb12,
  2814. constant int64_t & ne0,
  2815. constant int64_t & ne1,
  2816. constant uint & r2,
  2817. constant uint & r3,
  2818. uint3 tgpig[[threadgroup_position_in_grid]],
  2819. uint tiisg[[thread_index_in_simdgroup]],
  2820. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2821. kernel_mul_mv_q5_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2822. }
  2823. void kernel_mul_mv_q6_K_f32_impl(
  2824. device const void * src0,
  2825. device const float * src1,
  2826. device float * dst,
  2827. constant int64_t & ne00,
  2828. constant int64_t & ne01,
  2829. constant int64_t & ne02,
  2830. constant int64_t & ne10,
  2831. constant int64_t & ne12,
  2832. constant int64_t & ne0,
  2833. constant int64_t & ne1,
  2834. constant uint & r2,
  2835. constant uint & r3,
  2836. uint3 tgpig[[threadgroup_position_in_grid]],
  2837. uint tiisg[[thread_index_in_simdgroup]],
  2838. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2839. const uint8_t kmask1 = 0x03;
  2840. const uint8_t kmask2 = 0x0C;
  2841. const uint8_t kmask3 = 0x30;
  2842. const uint8_t kmask4 = 0xC0;
  2843. const int nb = ne00/QK_K;
  2844. const int64_t r0 = tgpig.x;
  2845. const int64_t r1 = tgpig.y;
  2846. const int im = tgpig.z;
  2847. const int row = 2 * r0 + sgitg;
  2848. const uint i12 = im%ne12;
  2849. const uint i13 = im/ne12;
  2850. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2851. device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb + offset0;
  2852. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2853. float sumf = 0;
  2854. #if QK_K == 256
  2855. const int tid = tiisg/2;
  2856. const int ix = tiisg%2;
  2857. const int ip = tid/8; // 0 or 1
  2858. const int il = tid%8;
  2859. const int n = 4;
  2860. const int l0 = n*il;
  2861. const int is = 8*ip + l0/16;
  2862. const int y_offset = 128*ip + l0;
  2863. const int q_offset_l = 64*ip + l0;
  2864. const int q_offset_h = 32*ip + l0;
  2865. for (int i = ix; i < nb; i += 2) {
  2866. device const uint8_t * q1 = x[i].ql + q_offset_l;
  2867. device const uint8_t * q2 = q1 + 32;
  2868. device const uint8_t * qh = x[i].qh + q_offset_h;
  2869. device const int8_t * sc = x[i].scales + is;
  2870. device const float * y = yy + i * QK_K + y_offset;
  2871. const float dall = x[i].d;
  2872. float4 sums = {0.f, 0.f, 0.f, 0.f};
  2873. for (int l = 0; l < n; ++l) {
  2874. sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  2875. sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  2876. sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
  2877. sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  2878. }
  2879. sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
  2880. }
  2881. #else
  2882. const int ix = tiisg/4;
  2883. const int il = 4*(tiisg%4);
  2884. for (int i = ix; i < nb; i += 8) {
  2885. device const float * y = yy + i * QK_K + il;
  2886. device const uint8_t * ql = x[i].ql + il;
  2887. device const uint8_t * qh = x[i].qh + il;
  2888. device const int8_t * s = x[i].scales;
  2889. const float d = x[i].d;
  2890. float4 sums = {0.f, 0.f, 0.f, 0.f};
  2891. for (int l = 0; l < 4; ++l) {
  2892. sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  2893. sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  2894. sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
  2895. sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  2896. }
  2897. sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
  2898. }
  2899. #endif
  2900. const float tot = simd_sum(sumf);
  2901. if (tiisg == 0) {
  2902. dst[r1*ne0 + im*ne0*ne1 + row] = tot;
  2903. }
  2904. }
  2905. [[host_name("kernel_mul_mv_q6_K_f32")]]
  2906. kernel void kernel_mul_mv_q6_K_f32(
  2907. device const void * src0,
  2908. device const float * src1,
  2909. device float * dst,
  2910. constant int64_t & ne00,
  2911. constant int64_t & ne01,
  2912. constant int64_t & ne02,
  2913. constant uint64_t & nb00,
  2914. constant uint64_t & nb01,
  2915. constant uint64_t & nb02,
  2916. constant int64_t & ne10,
  2917. constant int64_t & ne11,
  2918. constant int64_t & ne12,
  2919. constant uint64_t & nb10,
  2920. constant uint64_t & nb11,
  2921. constant uint64_t & nb12,
  2922. constant int64_t & ne0,
  2923. constant int64_t & ne1,
  2924. constant uint & r2,
  2925. constant uint & r3,
  2926. uint3 tgpig[[threadgroup_position_in_grid]],
  2927. uint tiisg[[thread_index_in_simdgroup]],
  2928. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2929. kernel_mul_mv_q6_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2930. }
  2931. //============================= templates and their specializations =============================
  2932. // NOTE: this is not dequantizing - we are simply fitting the template
  2933. template <typename type4x4>
  2934. void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
  2935. float4x4 temp = *(((device float4x4 *)src));
  2936. for (int i = 0; i < 16; i++){
  2937. reg[i/4][i%4] = temp[i/4][i%4];
  2938. }
  2939. }
  2940. template <typename type4x4>
  2941. void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
  2942. half4x4 temp = *(((device half4x4 *)src));
  2943. for (int i = 0; i < 16; i++){
  2944. reg[i/4][i%4] = temp[i/4][i%4];
  2945. }
  2946. }
  2947. template <typename type4x4>
  2948. void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
  2949. device const uint16_t * qs = ((device const uint16_t *)xb + 1);
  2950. const float d1 = il ? (xb->d / 16.h) : xb->d;
  2951. const float d2 = d1 / 256.f;
  2952. const float md = -8.h * xb->d;
  2953. const ushort mask0 = il ? 0x00F0 : 0x000F;
  2954. const ushort mask1 = mask0 << 8;
  2955. for (int i=0;i<8;i++) {
  2956. reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
  2957. reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
  2958. }
  2959. }
  2960. template <typename type4x4>
  2961. void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
  2962. device const uint16_t * qs = ((device const uint16_t *)xb + 2);
  2963. const float d1 = il ? (xb->d / 16.h) : xb->d;
  2964. const float d2 = d1 / 256.f;
  2965. const float m = xb->m;
  2966. const ushort mask0 = il ? 0x00F0 : 0x000F;
  2967. const ushort mask1 = mask0 << 8;
  2968. for (int i=0;i<8;i++) {
  2969. reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
  2970. reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
  2971. }
  2972. }
  2973. template <typename type4x4>
  2974. void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
  2975. device const uint16_t * qs = ((device const uint16_t *)xb + 3);
  2976. const float d = xb->d;
  2977. const float md = -16.h * xb->d;
  2978. const ushort mask = il ? 0x00F0 : 0x000F;
  2979. const uint32_t qh = *((device const uint32_t *)xb->qh);
  2980. const int x_mv = il ? 4 : 0;
  2981. const int gh_mv = il ? 12 : 0;
  2982. const int gh_bk = il ? 0 : 4;
  2983. for (int i = 0; i < 8; i++) {
  2984. // extract the 5-th bits for x0 and x1
  2985. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  2986. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  2987. // combine the 4-bits from qs with the 5th bit
  2988. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  2989. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  2990. reg[i/2][2*(i%2)+0] = d * x0 + md;
  2991. reg[i/2][2*(i%2)+1] = d * x1 + md;
  2992. }
  2993. }
  2994. template <typename type4x4>
  2995. void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
  2996. device const uint16_t * qs = ((device const uint16_t *)xb + 4);
  2997. const float d = xb->d;
  2998. const float m = xb->m;
  2999. const ushort mask = il ? 0x00F0 : 0x000F;
  3000. const uint32_t qh = *((device const uint32_t *)xb->qh);
  3001. const int x_mv = il ? 4 : 0;
  3002. const int gh_mv = il ? 12 : 0;
  3003. const int gh_bk = il ? 0 : 4;
  3004. for (int i = 0; i < 8; i++) {
  3005. // extract the 5-th bits for x0 and x1
  3006. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  3007. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  3008. // combine the 4-bits from qs with the 5th bit
  3009. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  3010. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  3011. reg[i/2][2*(i%2)+0] = d * x0 + m;
  3012. reg[i/2][2*(i%2)+1] = d * x1 + m;
  3013. }
  3014. }
  3015. template <typename type4x4>
  3016. void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
  3017. device const int8_t * qs = ((device const int8_t *)xb->qs);
  3018. const half d = xb->d;
  3019. for (int i = 0; i < 16; i++) {
  3020. reg[i/4][i%4] = (qs[i + 16*il] * d);
  3021. }
  3022. }
  3023. template <typename type4x4>
  3024. void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
  3025. const float d = xb->d;
  3026. const float min = xb->dmin;
  3027. device const uint8_t * q = (device const uint8_t *)xb->qs;
  3028. float dl, ml;
  3029. uint8_t sc = xb->scales[il];
  3030. #if QK_K == 256
  3031. q = q + 32*(il/8) + 16*(il&1);
  3032. il = (il/2)%4;
  3033. #endif
  3034. half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  3035. uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3036. dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
  3037. for (int i = 0; i < 16; ++i) {
  3038. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  3039. }
  3040. }
  3041. template <typename type4x4>
  3042. void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
  3043. const half d_all = xb->d;
  3044. device const uint8_t * q = (device const uint8_t *)xb->qs;
  3045. device const uint8_t * h = (device const uint8_t *)xb->hmask;
  3046. device const int8_t * scales = (device const int8_t *)xb->scales;
  3047. #if QK_K == 256
  3048. q = q + 32 * (il/8) + 16 * (il&1);
  3049. h = h + 16 * (il&1);
  3050. uint8_t m = 1 << (il/2);
  3051. uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
  3052. ((il/4)>0 ? 12 : 3);
  3053. uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
  3054. uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
  3055. int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
  3056. : (scale_2&kmask2) | ((scale_1&kmask1) << 4);
  3057. half dl = il<8 ? d_all * (dl_int - 32.h) : d_all * (dl_int / 16.h - 32.h);
  3058. const half ml = 4.h * dl;
  3059. il = (il/2) & 3;
  3060. const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  3061. const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3062. dl *= coef;
  3063. for (int i = 0; i < 16; ++i) {
  3064. reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
  3065. }
  3066. #else
  3067. float kcoef = il&1 ? 1.f/16.f : 1.f;
  3068. uint16_t kmask = il&1 ? 0xF0 : 0x0F;
  3069. float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8);
  3070. float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  3071. uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3072. uint8_t m = 1<<(il*2);
  3073. for (int i = 0; i < 16; ++i) {
  3074. reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef));
  3075. }
  3076. #endif
  3077. }
  3078. static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
  3079. return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
  3080. : uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
  3081. }
  3082. template <typename type4x4>
  3083. void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
  3084. device const uchar * q = xb->qs;
  3085. #if QK_K == 256
  3086. short is = (il/4) * 2;
  3087. q = q + (il/4) * 32 + 16 * (il&1);
  3088. il = il & 3;
  3089. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  3090. const float d = il < 2 ? xb->d : xb->d / 16.h;
  3091. const float min = xb->dmin;
  3092. const float dl = d * sc[0];
  3093. const float ml = min * sc[1];
  3094. #else
  3095. q = q + 16 * (il&1);
  3096. device const uint8_t * s = xb->scales;
  3097. device const half2 * dh = (device const half2 *)xb->d;
  3098. const float2 d = (float2)dh[0];
  3099. const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
  3100. const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
  3101. #endif
  3102. const ushort mask = il<2 ? 0x0F : 0xF0;
  3103. for (int i = 0; i < 16; ++i) {
  3104. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  3105. }
  3106. }
  3107. template <typename type4x4>
  3108. void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
  3109. device const uint8_t * q = xb->qs;
  3110. device const uint8_t * qh = xb->qh;
  3111. #if QK_K == 256
  3112. short is = (il/4) * 2;
  3113. q = q + 32 * (il/4) + 16 * (il&1);
  3114. qh = qh + 16 * (il&1);
  3115. uint8_t ul = 1 << (il/2);
  3116. il = il & 3;
  3117. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  3118. const float d = il < 2 ? xb->d : xb->d / 16.h;
  3119. const float min = xb->dmin;
  3120. const float dl = d * sc[0];
  3121. const float ml = min * sc[1];
  3122. const ushort mask = il<2 ? 0x0F : 0xF0;
  3123. const float qh_val = il<2 ? 16.f : 256.f;
  3124. for (int i = 0; i < 16; ++i) {
  3125. reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
  3126. }
  3127. #else
  3128. q = q + 16 * (il&1);
  3129. device const int8_t * s = xb->scales;
  3130. const float dl = xb->d * s[il];
  3131. uint8_t m = 1<<(il*2);
  3132. const float coef = il<2 ? 1.f : 1.f/16.f;
  3133. const ushort mask = il<2 ? 0x0F : 0xF0;
  3134. for (int i = 0; i < 16; ++i) {
  3135. reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef));
  3136. }
  3137. #endif
  3138. }
  3139. template <typename type4x4>
  3140. void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
  3141. const half d_all = xb->d;
  3142. device const uint8_t * ql = (device const uint8_t *)xb->ql;
  3143. device const uint8_t * qh = (device const uint8_t *)xb->qh;
  3144. device const int8_t * scales = (device const int8_t *)xb->scales;
  3145. #if QK_K == 256
  3146. ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
  3147. qh = qh + 32*(il/8) + 16*(il&1);
  3148. half sc = scales[(il%2) + 2 * ((il/2))];
  3149. il = (il/2) & 3;
  3150. #else
  3151. ql = ql + 16 * (il&1);
  3152. half sc = scales[il];
  3153. #endif
  3154. const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3155. const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
  3156. const half coef = il>1 ? 1.f/16.h : 1.h;
  3157. const half ml = d_all * sc * 32.h;
  3158. const half dl = d_all * sc * coef;
  3159. for (int i = 0; i < 16; ++i) {
  3160. const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
  3161. : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
  3162. reg[i/4][i%4] = dl * q - ml;
  3163. }
  3164. }
  3165. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
  3166. kernel void kernel_get_rows(
  3167. device const void * src0,
  3168. device const char * src1,
  3169. device float * dst,
  3170. constant int64_t & ne00,
  3171. constant uint64_t & nb01,
  3172. constant uint64_t & nb02,
  3173. constant int64_t & ne10,
  3174. constant uint64_t & nb10,
  3175. constant uint64_t & nb11,
  3176. constant uint64_t & nb1,
  3177. constant uint64_t & nb2,
  3178. uint3 tgpig[[threadgroup_position_in_grid]],
  3179. uint tiitg[[thread_index_in_threadgroup]],
  3180. uint3 tptg [[threads_per_threadgroup]]) {
  3181. //const int64_t i = tgpig;
  3182. //const int64_t r = ((device int32_t *) src1)[i];
  3183. const int64_t i10 = tgpig.x;
  3184. const int64_t i11 = tgpig.y;
  3185. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3186. const int64_t i02 = i11;
  3187. for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) {
  3188. float4x4 temp;
  3189. dequantize_func(
  3190. ((device const block_q *) ((device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp);
  3191. *(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp;
  3192. }
  3193. }
  3194. kernel void kernel_get_rows_f32(
  3195. device const void * src0,
  3196. device const char * src1,
  3197. device float * dst,
  3198. constant int64_t & ne00,
  3199. constant uint64_t & nb01,
  3200. constant uint64_t & nb02,
  3201. constant int64_t & ne10,
  3202. constant uint64_t & nb10,
  3203. constant uint64_t & nb11,
  3204. constant uint64_t & nb1,
  3205. constant uint64_t & nb2,
  3206. uint3 tgpig[[threadgroup_position_in_grid]],
  3207. uint tiitg[[thread_index_in_threadgroup]],
  3208. uint3 tptg [[threads_per_threadgroup]]) {
  3209. const int64_t i10 = tgpig.x;
  3210. const int64_t i11 = tgpig.y;
  3211. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3212. const int64_t i02 = i11;
  3213. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  3214. ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  3215. ((device float *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  3216. }
  3217. }
  3218. kernel void kernel_get_rows_f16(
  3219. device const void * src0,
  3220. device const char * src1,
  3221. device float * dst,
  3222. constant int64_t & ne00,
  3223. constant uint64_t & nb01,
  3224. constant uint64_t & nb02,
  3225. constant int64_t & ne10,
  3226. constant uint64_t & nb10,
  3227. constant uint64_t & nb11,
  3228. constant uint64_t & nb1,
  3229. constant uint64_t & nb2,
  3230. uint3 tgpig[[threadgroup_position_in_grid]],
  3231. uint tiitg[[thread_index_in_threadgroup]],
  3232. uint3 tptg [[threads_per_threadgroup]]) {
  3233. const int64_t i10 = tgpig.x;
  3234. const int64_t i11 = tgpig.y;
  3235. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3236. const int64_t i02 = i11;
  3237. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  3238. ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  3239. ((device half *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  3240. }
  3241. }
  3242. kernel void kernel_get_rows_i32(
  3243. device const void * src0,
  3244. device const char * src1,
  3245. device int32_t * dst,
  3246. constant int64_t & ne00,
  3247. constant uint64_t & nb01,
  3248. constant uint64_t & nb02,
  3249. constant int64_t & ne10,
  3250. constant uint64_t & nb10,
  3251. constant uint64_t & nb11,
  3252. constant uint64_t & nb1,
  3253. constant uint64_t & nb2,
  3254. uint3 tgpig[[threadgroup_position_in_grid]],
  3255. uint tiitg[[thread_index_in_threadgroup]],
  3256. uint3 tptg [[threads_per_threadgroup]]) {
  3257. const int64_t i10 = tgpig.x;
  3258. const int64_t i11 = tgpig.y;
  3259. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3260. const int64_t i02 = i11;
  3261. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  3262. ((device int32_t *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  3263. ((device int32_t *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  3264. }
  3265. }
  3266. #define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
  3267. #define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
  3268. #define BLOCK_SIZE_K 32
  3269. #define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
  3270. #define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
  3271. #define THREAD_PER_BLOCK 128
  3272. #define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
  3273. #define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
  3274. #define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
  3275. #define SG_MAT_ROW 8
  3276. // each block_q contains 16*nl weights
  3277. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3278. void kernel_mul_mm_impl(device const uchar * src0,
  3279. device const uchar * src1,
  3280. device float * dst,
  3281. constant int64_t & ne00,
  3282. constant int64_t & ne02,
  3283. constant uint64_t & nb01,
  3284. constant uint64_t & nb02,
  3285. constant int64_t & ne12,
  3286. constant uint64_t & nb10,
  3287. constant uint64_t & nb11,
  3288. constant uint64_t & nb12,
  3289. constant int64_t & ne0,
  3290. constant int64_t & ne1,
  3291. constant uint & r2,
  3292. constant uint & r3,
  3293. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3294. uint3 tgpig[[threadgroup_position_in_grid]],
  3295. uint tiitg[[thread_index_in_threadgroup]],
  3296. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3297. threadgroup half * sa = (threadgroup half *)(shared_memory);
  3298. threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
  3299. const uint r0 = tgpig.y;
  3300. const uint r1 = tgpig.x;
  3301. const uint im = tgpig.z;
  3302. // if this block is of 64x32 shape or smaller
  3303. short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
  3304. short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
  3305. // a thread shouldn't load data outside of the matrix
  3306. short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
  3307. short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
  3308. simdgroup_half8x8 ma[4];
  3309. simdgroup_float8x8 mb[2];
  3310. simdgroup_float8x8 c_res[8];
  3311. for (int i = 0; i < 8; i++){
  3312. c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
  3313. }
  3314. short il = (tiitg % THREAD_PER_ROW);
  3315. const uint i12 = im%ne12;
  3316. const uint i13 = im/ne12;
  3317. uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
  3318. ushort offset1 = il/nl;
  3319. device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
  3320. device const float * y = (device const float *)(src1
  3321. + nb12 * im
  3322. + nb11 * (r1 * BLOCK_SIZE_N + thread_col)
  3323. + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
  3324. for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
  3325. // load data and store to threadgroup memory
  3326. half4x4 temp_a;
  3327. dequantize_func(x, il, temp_a);
  3328. threadgroup_barrier(mem_flags::mem_threadgroup);
  3329. #pragma unroll(16)
  3330. for (int i = 0; i < 16; i++) {
  3331. *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
  3332. + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
  3333. + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
  3334. }
  3335. *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
  3336. il = (il + 2 < nl) ? il + 2 : il % 2;
  3337. x = (il < 2) ? x + (2+nl-1)/nl : x;
  3338. y += BLOCK_SIZE_K;
  3339. threadgroup_barrier(mem_flags::mem_threadgroup);
  3340. // load matrices from threadgroup memory and conduct outer products
  3341. threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
  3342. threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
  3343. #pragma unroll(4)
  3344. for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
  3345. #pragma unroll(4)
  3346. for (int i = 0; i < 4; i++) {
  3347. simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
  3348. }
  3349. simdgroup_barrier(mem_flags::mem_none);
  3350. #pragma unroll(2)
  3351. for (int i = 0; i < 2; i++) {
  3352. simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
  3353. }
  3354. lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
  3355. lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
  3356. #pragma unroll(8)
  3357. for (int i = 0; i < 8; i++){
  3358. simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
  3359. }
  3360. }
  3361. }
  3362. if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
  3363. device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
  3364. + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
  3365. for (int i = 0; i < 8; i++) {
  3366. simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
  3367. }
  3368. } else {
  3369. // block is smaller than 64x32, we should avoid writing data outside of the matrix
  3370. threadgroup_barrier(mem_flags::mem_threadgroup);
  3371. threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
  3372. + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
  3373. for (int i = 0; i < 8; i++) {
  3374. simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
  3375. }
  3376. threadgroup_barrier(mem_flags::mem_threadgroup);
  3377. device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
  3378. if (sgitg == 0) {
  3379. for (int i = 0; i < n_rows; i++) {
  3380. for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
  3381. *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
  3382. }
  3383. }
  3384. }
  3385. }
  3386. }
  3387. // same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in src1ids
  3388. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3389. void kernel_mul_mm_id_impl(
  3390. device const uchar * src0,
  3391. device const uchar * src1,
  3392. thread short * src1ids,
  3393. device float * dst,
  3394. constant int64_t & ne00,
  3395. constant int64_t & ne02,
  3396. constant uint64_t & nb01,
  3397. constant uint64_t & nb02,
  3398. constant int64_t & ne12,
  3399. constant uint64_t & nb10,
  3400. constant uint64_t & nb11,
  3401. constant uint64_t & nb12,
  3402. constant int64_t & ne0,
  3403. int64_t ne1,
  3404. constant uint & r2,
  3405. constant uint & r3,
  3406. threadgroup uchar * shared_memory,
  3407. uint3 tgpig[[threadgroup_position_in_grid]],
  3408. uint tiitg[[thread_index_in_threadgroup]],
  3409. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3410. threadgroup half * sa = (threadgroup half *)(shared_memory);
  3411. threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
  3412. const uint r0 = tgpig.y;
  3413. const uint r1 = tgpig.x;
  3414. const uint im = tgpig.z;
  3415. if (r1 * BLOCK_SIZE_N >= ne1) return;
  3416. // if this block is of 64x32 shape or smaller
  3417. short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
  3418. short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
  3419. // a thread shouldn't load data outside of the matrix
  3420. short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
  3421. short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
  3422. simdgroup_half8x8 ma[4];
  3423. simdgroup_float8x8 mb[2];
  3424. simdgroup_float8x8 c_res[8];
  3425. for (int i = 0; i < 8; i++){
  3426. c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
  3427. }
  3428. short il = (tiitg % THREAD_PER_ROW);
  3429. const uint i12 = im%ne12;
  3430. const uint i13 = im/ne12;
  3431. uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
  3432. ushort offset1 = il/nl;
  3433. device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
  3434. device const float * y = (device const float *)(src1
  3435. + nb12 * im
  3436. + nb11 * src1ids[r1 * BLOCK_SIZE_N + thread_col]
  3437. + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
  3438. for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
  3439. // load data and store to threadgroup memory
  3440. half4x4 temp_a;
  3441. dequantize_func(x, il, temp_a);
  3442. threadgroup_barrier(mem_flags::mem_threadgroup);
  3443. for (int i = 0; i < 16; i++) {
  3444. *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
  3445. + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
  3446. + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
  3447. }
  3448. *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
  3449. il = (il + 2 < nl) ? il + 2 : il % 2;
  3450. x = (il < 2) ? x + (2+nl-1)/nl : x;
  3451. y += BLOCK_SIZE_K;
  3452. threadgroup_barrier(mem_flags::mem_threadgroup);
  3453. // load matrices from threadgroup memory and conduct outer products
  3454. threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
  3455. threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
  3456. for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
  3457. for (int i = 0; i < 4; i++) {
  3458. simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
  3459. }
  3460. simdgroup_barrier(mem_flags::mem_none);
  3461. for (int i = 0; i < 2; i++) {
  3462. simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
  3463. }
  3464. lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
  3465. lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
  3466. for (int i = 0; i < 8; i++){
  3467. simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
  3468. }
  3469. }
  3470. }
  3471. {
  3472. threadgroup_barrier(mem_flags::mem_threadgroup);
  3473. threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
  3474. + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
  3475. for (int i = 0; i < 8; i++) {
  3476. simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
  3477. }
  3478. threadgroup_barrier(mem_flags::mem_threadgroup);
  3479. device float * C = dst + (BLOCK_SIZE_M * r0) + im*ne1*ne0;
  3480. if (sgitg == 0) {
  3481. for (int i = 0; i < n_rows; i++) {
  3482. for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
  3483. *(C + i + src1ids[j + r1*BLOCK_SIZE_N] * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
  3484. }
  3485. }
  3486. }
  3487. }
  3488. }
  3489. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3490. kernel void kernel_mul_mm(device const uchar * src0,
  3491. device const uchar * src1,
  3492. device float * dst,
  3493. constant int64_t & ne00,
  3494. constant int64_t & ne02,
  3495. constant uint64_t & nb01,
  3496. constant uint64_t & nb02,
  3497. constant int64_t & ne12,
  3498. constant uint64_t & nb10,
  3499. constant uint64_t & nb11,
  3500. constant uint64_t & nb12,
  3501. constant int64_t & ne0,
  3502. constant int64_t & ne1,
  3503. constant uint & r2,
  3504. constant uint & r3,
  3505. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3506. uint3 tgpig[[threadgroup_position_in_grid]],
  3507. uint tiitg[[thread_index_in_threadgroup]],
  3508. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3509. kernel_mul_mm_impl<block_q, nl, dequantize_func>(
  3510. src0,
  3511. src1,
  3512. dst,
  3513. ne00,
  3514. ne02,
  3515. nb01,
  3516. nb02,
  3517. ne12,
  3518. nb10,
  3519. nb11,
  3520. nb12,
  3521. ne0,
  3522. ne1,
  3523. r2,
  3524. r3,
  3525. shared_memory,
  3526. tgpig,
  3527. tiitg,
  3528. sgitg);
  3529. }
  3530. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3531. kernel void kernel_mul_mm_id(
  3532. device const uchar * ids,
  3533. device const uchar * src1,
  3534. device float * dst,
  3535. constant uint64_t & nbi1,
  3536. constant int64_t & ne00,
  3537. constant int64_t & ne02,
  3538. constant uint64_t & nb01,
  3539. constant uint64_t & nb02,
  3540. constant int64_t & ne12,
  3541. constant int64_t & ne13,
  3542. constant uint64_t & nb10,
  3543. constant uint64_t & nb11,
  3544. constant uint64_t & nb12,
  3545. constant int64_t & ne0,
  3546. constant int64_t & ne1,
  3547. constant uint64_t & nb1,
  3548. constant uint & r2,
  3549. constant uint & r3,
  3550. constant int & idx,
  3551. device const uchar * src00,
  3552. device const uchar * src01,
  3553. device const uchar * src02,
  3554. device const uchar * src03,
  3555. device const uchar * src04,
  3556. device const uchar * src05,
  3557. device const uchar * src06,
  3558. device const uchar * src07,
  3559. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3560. uint3 tgpig[[threadgroup_position_in_grid]],
  3561. uint tiitg[[thread_index_in_threadgroup]],
  3562. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3563. device const uchar * src0s[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3564. // expert id
  3565. const int32_t id = tgpig.z/(ne12*ne13);
  3566. tgpig.z = tgpig.z%(ne12*ne13);
  3567. // row indices of src1 for expert id
  3568. int64_t _ne1 = 0;
  3569. short src1ids[512];
  3570. for (int64_t i1 = 0; i1 < ne1; i1++) {
  3571. if (((device int32_t *) (ids + i1*nbi1))[idx] == id) {
  3572. src1ids[_ne1++] = i1;
  3573. }
  3574. }
  3575. kernel_mul_mm_id_impl<block_q, nl, dequantize_func>(
  3576. src0s[id],
  3577. src1,
  3578. src1ids,
  3579. dst,
  3580. ne00,
  3581. ne02,
  3582. nb01,
  3583. nb02,
  3584. ne12,
  3585. nb10,
  3586. nb11,
  3587. nb12,
  3588. ne0,
  3589. _ne1,
  3590. r2,
  3591. r3,
  3592. shared_memory,
  3593. tgpig,
  3594. tiitg,
  3595. sgitg);
  3596. }
  3597. #if QK_K == 256
  3598. #define QK_NL 16
  3599. #else
  3600. #define QK_NL 4
  3601. #endif
  3602. //
  3603. // get rows
  3604. //
  3605. typedef void (get_rows_t)(
  3606. device const void * src0,
  3607. device const char * src1,
  3608. device float * dst,
  3609. constant int64_t & ne00,
  3610. constant uint64_t & nb01,
  3611. constant uint64_t & nb02,
  3612. constant int64_t & ne10,
  3613. constant uint64_t & nb10,
  3614. constant uint64_t & nb11,
  3615. constant uint64_t & nb1,
  3616. constant uint64_t & nb2,
  3617. uint3, uint, uint3);
  3618. //template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows<float4x4, 1, dequantize_f32>;
  3619. //template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
  3620. template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
  3621. template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
  3622. template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows<block_q5_0, 2, dequantize_q5_0>;
  3623. template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows<block_q5_1, 2, dequantize_q5_1>;
  3624. template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
  3625. template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
  3626. template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
  3627. template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows<block_q4_K, QK_NL, dequantize_q4_K>;
  3628. template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows<block_q5_K, QK_NL, dequantize_q5_K>;
  3629. template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
  3630. //
  3631. // matrix-matrix multiplication
  3632. //
  3633. typedef void (mat_mm_t)(
  3634. device const uchar * src0,
  3635. device const uchar * src1,
  3636. device float * dst,
  3637. constant int64_t & ne00,
  3638. constant int64_t & ne02,
  3639. constant uint64_t & nb01,
  3640. constant uint64_t & nb02,
  3641. constant int64_t & ne12,
  3642. constant uint64_t & nb10,
  3643. constant uint64_t & nb11,
  3644. constant uint64_t & nb12,
  3645. constant int64_t & ne0,
  3646. constant int64_t & ne1,
  3647. constant uint & r2,
  3648. constant uint & r3,
  3649. threadgroup uchar *,
  3650. uint3, uint, uint);
  3651. template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<float4x4, 1, dequantize_f32>;
  3652. template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
  3653. template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
  3654. template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
  3655. template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
  3656. template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
  3657. template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
  3658. template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
  3659. template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
  3660. template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
  3661. template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_K, QK_NL, dequantize_q5_K>;
  3662. template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
  3663. //
  3664. // indirect matrix-matrix multiplication
  3665. //
  3666. typedef void (mat_mm_id_t)(
  3667. device const uchar * ids,
  3668. device const uchar * src1,
  3669. device float * dst,
  3670. constant uint64_t & nbi1,
  3671. constant int64_t & ne00,
  3672. constant int64_t & ne02,
  3673. constant uint64_t & nb01,
  3674. constant uint64_t & nb02,
  3675. constant int64_t & ne12,
  3676. constant int64_t & ne13,
  3677. constant uint64_t & nb10,
  3678. constant uint64_t & nb11,
  3679. constant uint64_t & nb12,
  3680. constant int64_t & ne0,
  3681. constant int64_t & ne1,
  3682. constant uint64_t & nb1,
  3683. constant uint & r2,
  3684. constant uint & r3,
  3685. constant int & idx,
  3686. device const uchar * src00,
  3687. device const uchar * src01,
  3688. device const uchar * src02,
  3689. device const uchar * src03,
  3690. device const uchar * src04,
  3691. device const uchar * src05,
  3692. device const uchar * src06,
  3693. device const uchar * src07,
  3694. threadgroup uchar *,
  3695. uint3, uint, uint);
  3696. template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>;
  3697. template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>;
  3698. template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>;
  3699. template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>;
  3700. template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>;
  3701. template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>;
  3702. template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>;
  3703. template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
  3704. template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
  3705. template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
  3706. template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
  3707. template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
  3708. //
  3709. // matrix-vector multiplication
  3710. //
  3711. [[host_name("kernel_mul_mv_id_f32_f32")]]
  3712. kernel void kernel_mul_mv_id_f32_f32(
  3713. device const char * ids,
  3714. device const char * src1,
  3715. device float * dst,
  3716. constant uint64_t & nbi1,
  3717. constant int64_t & ne00,
  3718. constant int64_t & ne01,
  3719. constant int64_t & ne02,
  3720. constant uint64_t & nb00,
  3721. constant uint64_t & nb01,
  3722. constant uint64_t & nb02,
  3723. constant int64_t & ne10,
  3724. constant int64_t & ne11,
  3725. constant int64_t & ne12,
  3726. constant int64_t & ne13,
  3727. constant uint64_t & nb10,
  3728. constant uint64_t & nb11,
  3729. constant uint64_t & nb12,
  3730. constant int64_t & ne0,
  3731. constant int64_t & ne1,
  3732. constant uint64_t & nb1,
  3733. constant uint & r2,
  3734. constant uint & r3,
  3735. constant int & idx,
  3736. device const char * src00,
  3737. device const char * src01,
  3738. device const char * src02,
  3739. device const char * src03,
  3740. device const char * src04,
  3741. device const char * src05,
  3742. device const char * src06,
  3743. device const char * src07,
  3744. uint3 tgpig[[threadgroup_position_in_grid]],
  3745. uint tiitg[[thread_index_in_threadgroup]],
  3746. uint tiisg[[thread_index_in_simdgroup]],
  3747. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3748. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3749. const int64_t bid = tgpig.z/(ne12*ne13);
  3750. tgpig.z = tgpig.z%(ne12*ne13);
  3751. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3752. kernel_mul_mv_f32_f32_impl(
  3753. src0[id],
  3754. src1 + bid*nb11,
  3755. dst + bid*ne0,
  3756. ne00,
  3757. ne01,
  3758. ne02,
  3759. nb00,
  3760. nb01,
  3761. nb02,
  3762. ne10,
  3763. ne11,
  3764. ne12,
  3765. nb10,
  3766. nb11,
  3767. nb12,
  3768. ne0,
  3769. ne1,
  3770. r2,
  3771. r3,
  3772. tgpig,
  3773. tiisg);
  3774. }
  3775. [[host_name("kernel_mul_mv_id_f16_f32")]]
  3776. kernel void kernel_mul_mv_id_f16_f32(
  3777. device const char * ids,
  3778. device const char * src1,
  3779. device float * dst,
  3780. constant uint64_t & nbi1,
  3781. constant int64_t & ne00,
  3782. constant int64_t & ne01,
  3783. constant int64_t & ne02,
  3784. constant uint64_t & nb00,
  3785. constant uint64_t & nb01,
  3786. constant uint64_t & nb02,
  3787. constant int64_t & ne10,
  3788. constant int64_t & ne11,
  3789. constant int64_t & ne12,
  3790. constant int64_t & ne13,
  3791. constant uint64_t & nb10,
  3792. constant uint64_t & nb11,
  3793. constant uint64_t & nb12,
  3794. constant int64_t & ne0,
  3795. constant int64_t & ne1,
  3796. constant uint64_t & nb1,
  3797. constant uint & r2,
  3798. constant uint & r3,
  3799. constant int & idx,
  3800. device const char * src00,
  3801. device const char * src01,
  3802. device const char * src02,
  3803. device const char * src03,
  3804. device const char * src04,
  3805. device const char * src05,
  3806. device const char * src06,
  3807. device const char * src07,
  3808. uint3 tgpig[[threadgroup_position_in_grid]],
  3809. uint tiitg[[thread_index_in_threadgroup]],
  3810. uint tiisg[[thread_index_in_simdgroup]],
  3811. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3812. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3813. const int64_t bid = tgpig.z/(ne12*ne13);
  3814. tgpig.z = tgpig.z%(ne12*ne13);
  3815. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3816. kernel_mul_mv_f16_f32_impl(
  3817. src0[id],
  3818. src1 + bid*nb11,
  3819. dst + bid*ne0,
  3820. ne00,
  3821. ne01,
  3822. ne02,
  3823. nb00,
  3824. nb01,
  3825. nb02,
  3826. ne10,
  3827. ne11,
  3828. ne12,
  3829. nb10,
  3830. nb11,
  3831. nb12,
  3832. ne0,
  3833. ne1,
  3834. r2,
  3835. r3,
  3836. tgpig,
  3837. tiisg);
  3838. }
  3839. [[host_name("kernel_mul_mv_id_q8_0_f32")]]
  3840. kernel void kernel_mul_mv_id_q8_0_f32(
  3841. device const char * ids,
  3842. device const char * src1,
  3843. device float * dst,
  3844. constant uint64_t & nbi1,
  3845. constant int64_t & ne00,
  3846. constant int64_t & ne01,
  3847. constant int64_t & ne02,
  3848. constant uint64_t & nb00,
  3849. constant uint64_t & nb01,
  3850. constant uint64_t & nb02,
  3851. constant int64_t & ne10,
  3852. constant int64_t & ne11,
  3853. constant int64_t & ne12,
  3854. constant int64_t & ne13,
  3855. constant uint64_t & nb10,
  3856. constant uint64_t & nb11,
  3857. constant uint64_t & nb12,
  3858. constant int64_t & ne0,
  3859. constant int64_t & ne1,
  3860. constant uint64_t & nb1,
  3861. constant uint & r2,
  3862. constant uint & r3,
  3863. constant int & idx,
  3864. device const char * src00,
  3865. device const char * src01,
  3866. device const char * src02,
  3867. device const char * src03,
  3868. device const char * src04,
  3869. device const char * src05,
  3870. device const char * src06,
  3871. device const char * src07,
  3872. uint3 tgpig[[threadgroup_position_in_grid]],
  3873. uint tiitg[[thread_index_in_threadgroup]],
  3874. uint tiisg[[thread_index_in_simdgroup]],
  3875. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3876. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3877. const int64_t bid = tgpig.z/(ne12*ne13);
  3878. tgpig.z = tgpig.z%(ne12*ne13);
  3879. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3880. kernel_mul_mv_q8_0_f32_impl(
  3881. src0[id],
  3882. (device const float *) (src1 + bid*nb11),
  3883. dst + bid*ne0,
  3884. ne00,
  3885. ne01,
  3886. ne02,
  3887. ne10,
  3888. ne12,
  3889. ne0,
  3890. ne1,
  3891. r2,
  3892. r3,
  3893. tgpig,
  3894. tiisg,
  3895. sgitg);
  3896. }
  3897. [[host_name("kernel_mul_mv_id_q4_0_f32")]]
  3898. kernel void kernel_mul_mv_id_q4_0_f32(
  3899. device const char * ids,
  3900. device const char * src1,
  3901. device float * dst,
  3902. constant uint64_t & nbi1,
  3903. constant int64_t & ne00,
  3904. constant int64_t & ne01,
  3905. constant int64_t & ne02,
  3906. constant uint64_t & nb00,
  3907. constant uint64_t & nb01,
  3908. constant uint64_t & nb02,
  3909. constant int64_t & ne10,
  3910. constant int64_t & ne11,
  3911. constant int64_t & ne12,
  3912. constant int64_t & ne13,
  3913. constant uint64_t & nb10,
  3914. constant uint64_t & nb11,
  3915. constant uint64_t & nb12,
  3916. constant int64_t & ne0,
  3917. constant int64_t & ne1,
  3918. constant uint64_t & nb1,
  3919. constant uint & r2,
  3920. constant uint & r3,
  3921. constant int & idx,
  3922. device const char * src00,
  3923. device const char * src01,
  3924. device const char * src02,
  3925. device const char * src03,
  3926. device const char * src04,
  3927. device const char * src05,
  3928. device const char * src06,
  3929. device const char * src07,
  3930. uint3 tgpig[[threadgroup_position_in_grid]],
  3931. uint tiitg[[thread_index_in_threadgroup]],
  3932. uint tiisg[[thread_index_in_simdgroup]],
  3933. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3934. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3935. const int64_t bid = tgpig.z/(ne12*ne13);
  3936. tgpig.z = tgpig.z%(ne12*ne13);
  3937. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3938. mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  3939. src0[id],
  3940. (device const float *) (src1 + bid*nb11),
  3941. dst + bid*ne0,
  3942. ne00,
  3943. ne01,
  3944. ne02,
  3945. ne10,
  3946. ne12,
  3947. ne0,
  3948. ne1,
  3949. r2,
  3950. r3,
  3951. tgpig,
  3952. tiisg,
  3953. sgitg);
  3954. }
  3955. [[host_name("kernel_mul_mv_id_q4_1_f32")]]
  3956. kernel void kernel_mul_mv_id_q4_1_f32(
  3957. device const char * ids,
  3958. device const char * src1,
  3959. device float * dst,
  3960. constant uint64_t & nbi1,
  3961. constant int64_t & ne00,
  3962. constant int64_t & ne01,
  3963. constant int64_t & ne02,
  3964. constant uint64_t & nb00,
  3965. constant uint64_t & nb01,
  3966. constant uint64_t & nb02,
  3967. constant int64_t & ne10,
  3968. constant int64_t & ne11,
  3969. constant int64_t & ne12,
  3970. constant int64_t & ne13,
  3971. constant uint64_t & nb10,
  3972. constant uint64_t & nb11,
  3973. constant uint64_t & nb12,
  3974. constant int64_t & ne0,
  3975. constant int64_t & ne1,
  3976. constant uint64_t & nb1,
  3977. constant uint & r2,
  3978. constant uint & r3,
  3979. constant int & idx,
  3980. device const char * src00,
  3981. device const char * src01,
  3982. device const char * src02,
  3983. device const char * src03,
  3984. device const char * src04,
  3985. device const char * src05,
  3986. device const char * src06,
  3987. device const char * src07,
  3988. uint3 tgpig[[threadgroup_position_in_grid]],
  3989. uint tiitg[[thread_index_in_threadgroup]],
  3990. uint tiisg[[thread_index_in_simdgroup]],
  3991. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3992. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3993. const int64_t bid = tgpig.z/(ne12*ne13);
  3994. tgpig.z = tgpig.z%(ne12*ne13);
  3995. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3996. mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  3997. src0[id],
  3998. (device const float *) (src1 + bid*nb11),
  3999. dst + bid*ne0,
  4000. ne00,
  4001. ne01,
  4002. ne02,
  4003. ne10,
  4004. ne12,
  4005. ne0,
  4006. ne1,
  4007. r2,
  4008. r3,
  4009. tgpig,
  4010. tiisg,
  4011. sgitg);
  4012. }
  4013. [[host_name("kernel_mul_mv_id_q5_0_f32")]]
  4014. kernel void kernel_mul_mv_id_q5_0_f32(
  4015. device const char * ids,
  4016. device const char * src1,
  4017. device float * dst,
  4018. constant uint64_t & nbi1,
  4019. constant int64_t & ne00,
  4020. constant int64_t & ne01,
  4021. constant int64_t & ne02,
  4022. constant uint64_t & nb00,
  4023. constant uint64_t & nb01,
  4024. constant uint64_t & nb02,
  4025. constant int64_t & ne10,
  4026. constant int64_t & ne11,
  4027. constant int64_t & ne12,
  4028. constant int64_t & ne13,
  4029. constant uint64_t & nb10,
  4030. constant uint64_t & nb11,
  4031. constant uint64_t & nb12,
  4032. constant int64_t & ne0,
  4033. constant int64_t & ne1,
  4034. constant uint64_t & nb1,
  4035. constant uint & r2,
  4036. constant uint & r3,
  4037. constant int & idx,
  4038. device const char * src00,
  4039. device const char * src01,
  4040. device const char * src02,
  4041. device const char * src03,
  4042. device const char * src04,
  4043. device const char * src05,
  4044. device const char * src06,
  4045. device const char * src07,
  4046. uint3 tgpig[[threadgroup_position_in_grid]],
  4047. uint tiitg[[thread_index_in_threadgroup]],
  4048. uint tiisg[[thread_index_in_simdgroup]],
  4049. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4050. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4051. const int64_t bid = tgpig.z/(ne12*ne13);
  4052. tgpig.z = tgpig.z%(ne12*ne13);
  4053. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4054. mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  4055. src0[id],
  4056. (device const float *) (src1 + bid*nb11),
  4057. dst + bid*ne0,
  4058. ne00,
  4059. ne01,
  4060. ne02,
  4061. ne10,
  4062. ne12,
  4063. ne0,
  4064. ne1,
  4065. r2,
  4066. r3,
  4067. tgpig,
  4068. tiisg,
  4069. sgitg);
  4070. }
  4071. [[host_name("kernel_mul_mv_id_q5_1_f32")]]
  4072. kernel void kernel_mul_mv_id_q5_1_f32(
  4073. device const char * ids,
  4074. device const char * src1,
  4075. device float * dst,
  4076. constant uint64_t & nbi1,
  4077. constant int64_t & ne00,
  4078. constant int64_t & ne01,
  4079. constant int64_t & ne02,
  4080. constant uint64_t & nb00,
  4081. constant uint64_t & nb01,
  4082. constant uint64_t & nb02,
  4083. constant int64_t & ne10,
  4084. constant int64_t & ne11,
  4085. constant int64_t & ne12,
  4086. constant int64_t & ne13,
  4087. constant uint64_t & nb10,
  4088. constant uint64_t & nb11,
  4089. constant uint64_t & nb12,
  4090. constant int64_t & ne0,
  4091. constant int64_t & ne1,
  4092. constant uint64_t & nb1,
  4093. constant uint & r2,
  4094. constant uint & r3,
  4095. constant int & idx,
  4096. device const char * src00,
  4097. device const char * src01,
  4098. device const char * src02,
  4099. device const char * src03,
  4100. device const char * src04,
  4101. device const char * src05,
  4102. device const char * src06,
  4103. device const char * src07,
  4104. uint3 tgpig[[threadgroup_position_in_grid]],
  4105. uint tiitg[[thread_index_in_threadgroup]],
  4106. uint tiisg[[thread_index_in_simdgroup]],
  4107. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4108. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4109. const int64_t bid = tgpig.z/(ne12*ne13);
  4110. tgpig.z = tgpig.z%(ne12*ne13);
  4111. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4112. mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  4113. src0[id],
  4114. (device const float *) (src1 + bid*nb11),
  4115. dst + bid*ne0,
  4116. ne00,
  4117. ne01,
  4118. ne02,
  4119. ne10,
  4120. ne12,
  4121. ne0,
  4122. ne1,
  4123. r2,
  4124. r3,
  4125. tgpig,
  4126. tiisg,
  4127. sgitg);
  4128. }
  4129. [[host_name("kernel_mul_mv_id_q2_K_f32")]]
  4130. kernel void kernel_mul_mv_id_q2_K_f32(
  4131. device const char * ids,
  4132. device const char * src1,
  4133. device float * dst,
  4134. constant uint64_t & nbi1,
  4135. constant int64_t & ne00,
  4136. constant int64_t & ne01,
  4137. constant int64_t & ne02,
  4138. constant uint64_t & nb00,
  4139. constant uint64_t & nb01,
  4140. constant uint64_t & nb02,
  4141. constant int64_t & ne10,
  4142. constant int64_t & ne11,
  4143. constant int64_t & ne12,
  4144. constant int64_t & ne13,
  4145. constant uint64_t & nb10,
  4146. constant uint64_t & nb11,
  4147. constant uint64_t & nb12,
  4148. constant int64_t & ne0,
  4149. constant int64_t & ne1,
  4150. constant uint64_t & nb1,
  4151. constant uint & r2,
  4152. constant uint & r3,
  4153. constant int & idx,
  4154. device const char * src00,
  4155. device const char * src01,
  4156. device const char * src02,
  4157. device const char * src03,
  4158. device const char * src04,
  4159. device const char * src05,
  4160. device const char * src06,
  4161. device const char * src07,
  4162. uint3 tgpig[[threadgroup_position_in_grid]],
  4163. uint tiitg[[thread_index_in_threadgroup]],
  4164. uint tiisg[[thread_index_in_simdgroup]],
  4165. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4166. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4167. const int64_t bid = tgpig.z/(ne12*ne13);
  4168. tgpig.z = tgpig.z%(ne12*ne13);
  4169. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4170. kernel_mul_mv_q2_K_f32_impl(
  4171. src0[id],
  4172. (device const float *) (src1 + bid*nb11),
  4173. dst + bid*ne0,
  4174. ne00,
  4175. ne01,
  4176. ne02,
  4177. ne10,
  4178. ne12,
  4179. ne0,
  4180. ne1,
  4181. r2,
  4182. r3,
  4183. tgpig,
  4184. tiisg,
  4185. sgitg);
  4186. }
  4187. [[host_name("kernel_mul_mv_id_q3_K_f32")]]
  4188. kernel void kernel_mul_mv_id_q3_K_f32(
  4189. device const char * ids,
  4190. device const char * src1,
  4191. device float * dst,
  4192. constant uint64_t & nbi1,
  4193. constant int64_t & ne00,
  4194. constant int64_t & ne01,
  4195. constant int64_t & ne02,
  4196. constant uint64_t & nb00,
  4197. constant uint64_t & nb01,
  4198. constant uint64_t & nb02,
  4199. constant int64_t & ne10,
  4200. constant int64_t & ne11,
  4201. constant int64_t & ne12,
  4202. constant int64_t & ne13,
  4203. constant uint64_t & nb10,
  4204. constant uint64_t & nb11,
  4205. constant uint64_t & nb12,
  4206. constant int64_t & ne0,
  4207. constant int64_t & ne1,
  4208. constant uint64_t & nb1,
  4209. constant uint & r2,
  4210. constant uint & r3,
  4211. constant int & idx,
  4212. device const char * src00,
  4213. device const char * src01,
  4214. device const char * src02,
  4215. device const char * src03,
  4216. device const char * src04,
  4217. device const char * src05,
  4218. device const char * src06,
  4219. device const char * src07,
  4220. uint3 tgpig[[threadgroup_position_in_grid]],
  4221. uint tiitg[[thread_index_in_threadgroup]],
  4222. uint tiisg[[thread_index_in_simdgroup]],
  4223. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4224. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4225. const int64_t bid = tgpig.z/(ne12*ne13);
  4226. tgpig.z = tgpig.z%(ne12*ne13);
  4227. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4228. kernel_mul_mv_q3_K_f32_impl(
  4229. src0[id],
  4230. (device const float *) (src1 + bid*nb11),
  4231. dst + bid*ne0,
  4232. ne00,
  4233. ne01,
  4234. ne02,
  4235. ne10,
  4236. ne12,
  4237. ne0,
  4238. ne1,
  4239. r2,
  4240. r3,
  4241. tgpig,
  4242. tiisg,
  4243. sgitg);
  4244. }
  4245. [[host_name("kernel_mul_mv_id_q4_K_f32")]]
  4246. kernel void kernel_mul_mv_id_q4_K_f32(
  4247. device const char * ids,
  4248. device const char * src1,
  4249. device float * dst,
  4250. constant uint64_t & nbi1,
  4251. constant int64_t & ne00,
  4252. constant int64_t & ne01,
  4253. constant int64_t & ne02,
  4254. constant uint64_t & nb00,
  4255. constant uint64_t & nb01,
  4256. constant uint64_t & nb02,
  4257. constant int64_t & ne10,
  4258. constant int64_t & ne11,
  4259. constant int64_t & ne12,
  4260. constant int64_t & ne13,
  4261. constant uint64_t & nb10,
  4262. constant uint64_t & nb11,
  4263. constant uint64_t & nb12,
  4264. constant int64_t & ne0,
  4265. constant int64_t & ne1,
  4266. constant uint64_t & nb1,
  4267. constant uint & r2,
  4268. constant uint & r3,
  4269. constant int & idx,
  4270. device const char * src00,
  4271. device const char * src01,
  4272. device const char * src02,
  4273. device const char * src03,
  4274. device const char * src04,
  4275. device const char * src05,
  4276. device const char * src06,
  4277. device const char * src07,
  4278. uint3 tgpig[[threadgroup_position_in_grid]],
  4279. uint tiitg[[thread_index_in_threadgroup]],
  4280. uint tiisg[[thread_index_in_simdgroup]],
  4281. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4282. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4283. const int64_t bid = tgpig.z/(ne12*ne13);
  4284. tgpig.z = tgpig.z%(ne12*ne13);
  4285. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4286. kernel_mul_mv_q4_K_f32_impl(
  4287. src0[id],
  4288. (device const float *) (src1 + bid*nb11),
  4289. dst + bid*ne0,
  4290. ne00,
  4291. ne01,
  4292. ne02,
  4293. ne10,
  4294. ne12,
  4295. ne0,
  4296. ne1,
  4297. r2,
  4298. r3,
  4299. tgpig,
  4300. tiisg,
  4301. sgitg);
  4302. }
  4303. [[host_name("kernel_mul_mv_id_q5_K_f32")]]
  4304. kernel void kernel_mul_mv_id_q5_K_f32(
  4305. device const char * ids,
  4306. device const char * src1,
  4307. device float * dst,
  4308. constant uint64_t & nbi1,
  4309. constant int64_t & ne00,
  4310. constant int64_t & ne01,
  4311. constant int64_t & ne02,
  4312. constant uint64_t & nb00,
  4313. constant uint64_t & nb01,
  4314. constant uint64_t & nb02,
  4315. constant int64_t & ne10,
  4316. constant int64_t & ne11,
  4317. constant int64_t & ne12,
  4318. constant int64_t & ne13,
  4319. constant uint64_t & nb10,
  4320. constant uint64_t & nb11,
  4321. constant uint64_t & nb12,
  4322. constant int64_t & ne0,
  4323. constant int64_t & ne1,
  4324. constant uint64_t & nb1,
  4325. constant uint & r2,
  4326. constant uint & r3,
  4327. constant int & idx,
  4328. device const char * src00,
  4329. device const char * src01,
  4330. device const char * src02,
  4331. device const char * src03,
  4332. device const char * src04,
  4333. device const char * src05,
  4334. device const char * src06,
  4335. device const char * src07,
  4336. uint3 tgpig[[threadgroup_position_in_grid]],
  4337. uint tiitg[[thread_index_in_threadgroup]],
  4338. uint tiisg[[thread_index_in_simdgroup]],
  4339. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4340. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4341. const int64_t bid = tgpig.z/(ne12*ne13);
  4342. tgpig.z = tgpig.z%(ne12*ne13);
  4343. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4344. kernel_mul_mv_q5_K_f32_impl(
  4345. src0[id],
  4346. (device const float *) (src1 + bid*nb11),
  4347. dst + bid*ne0,
  4348. ne00,
  4349. ne01,
  4350. ne02,
  4351. ne10,
  4352. ne12,
  4353. ne0,
  4354. ne1,
  4355. r2,
  4356. r3,
  4357. tgpig,
  4358. tiisg,
  4359. sgitg);
  4360. }
  4361. [[host_name("kernel_mul_mv_id_q6_K_f32")]]
  4362. kernel void kernel_mul_mv_id_q6_K_f32(
  4363. device const char * ids,
  4364. device const char * src1,
  4365. device float * dst,
  4366. constant uint64_t & nbi1,
  4367. constant int64_t & ne00,
  4368. constant int64_t & ne01,
  4369. constant int64_t & ne02,
  4370. constant uint64_t & nb00,
  4371. constant uint64_t & nb01,
  4372. constant uint64_t & nb02,
  4373. constant int64_t & ne10,
  4374. constant int64_t & ne11,
  4375. constant int64_t & ne12,
  4376. constant int64_t & ne13,
  4377. constant uint64_t & nb10,
  4378. constant uint64_t & nb11,
  4379. constant uint64_t & nb12,
  4380. constant int64_t & ne0,
  4381. constant int64_t & ne1,
  4382. constant uint64_t & nb1,
  4383. constant uint & r2,
  4384. constant uint & r3,
  4385. constant int & idx,
  4386. device const char * src00,
  4387. device const char * src01,
  4388. device const char * src02,
  4389. device const char * src03,
  4390. device const char * src04,
  4391. device const char * src05,
  4392. device const char * src06,
  4393. device const char * src07,
  4394. uint3 tgpig[[threadgroup_position_in_grid]],
  4395. uint tiitg[[thread_index_in_threadgroup]],
  4396. uint tiisg[[thread_index_in_simdgroup]],
  4397. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4398. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4399. const int64_t bid = tgpig.z/(ne12*ne13);
  4400. tgpig.z = tgpig.z%(ne12*ne13);
  4401. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4402. kernel_mul_mv_q6_K_f32_impl(
  4403. src0[id],
  4404. (device const float *) (src1 + bid*nb11),
  4405. dst + bid*ne0,
  4406. ne00,
  4407. ne01,
  4408. ne02,
  4409. ne10,
  4410. ne12,
  4411. ne0,
  4412. ne1,
  4413. r2,
  4414. r3,
  4415. tgpig,
  4416. tiisg,
  4417. sgitg);
  4418. }