ggml.h 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport) extern
  178. # else
  179. # define GGML_API __declspec(dllimport) extern
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default"))) extern
  183. # endif
  184. #else
  185. # define GGML_API extern
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__) && !defined(__clang__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #include <stdbool.h>
  203. #include <stddef.h>
  204. #include <stdint.h>
  205. #include <stdio.h>
  206. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  207. #define GGML_FILE_VERSION 2
  208. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  209. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  210. #define GGML_MAX_DIMS 4
  211. #define GGML_MAX_PARAMS 2048
  212. #define GGML_MAX_SRC 10
  213. #define GGML_MAX_N_THREADS 512
  214. #define GGML_MAX_OP_PARAMS 64
  215. #ifndef GGML_MAX_NAME
  216. # define GGML_MAX_NAME 64
  217. #endif
  218. #define GGML_DEFAULT_N_THREADS 4
  219. #define GGML_DEFAULT_GRAPH_SIZE 2048
  220. #if UINTPTR_MAX == 0xFFFFFFFF
  221. #define GGML_MEM_ALIGN 4
  222. #else
  223. #define GGML_MEM_ALIGN 16
  224. #endif
  225. #define GGML_EXIT_SUCCESS 0
  226. #define GGML_EXIT_ABORTED 1
  227. #define GGML_ROPE_TYPE_NEOX 2
  228. #define GGML_ROPE_TYPE_MROPE 8
  229. #define GGML_ROPE_TYPE_VISION 24
  230. #define GGML_MROPE_SECTIONS 4
  231. #define GGML_UNUSED(x) (void)(x)
  232. #ifdef __CUDACC__
  233. template<typename... Args>
  234. __host__ __device__ constexpr inline void ggml_unused_vars_impl(Args&&...) noexcept {}
  235. #define GGML_UNUSED_VARS(...) ggml_unused_vars_impl(__VA_ARGS__)
  236. #else
  237. #define GGML_UNUSED_VARS(...) do { (void)sizeof((__VA_ARGS__, 0)); } while(0)
  238. #endif // __CUDACC__
  239. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  240. #ifndef NDEBUG
  241. # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  242. #elif defined(__GNUC__)
  243. # define GGML_UNREACHABLE() __builtin_unreachable()
  244. #elif defined(_MSC_VER)
  245. # define GGML_UNREACHABLE() __assume(0)
  246. #else
  247. # define GGML_UNREACHABLE() ((void) 0)
  248. #endif
  249. #ifdef __cplusplus
  250. # define GGML_NORETURN [[noreturn]]
  251. #elif defined(_MSC_VER)
  252. # define GGML_NORETURN __declspec(noreturn)
  253. #else
  254. # define GGML_NORETURN _Noreturn
  255. #endif
  256. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  257. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  258. // used to copy the number of elements and stride in bytes of tensors into local variables.
  259. // main purpose is to reduce code duplication and improve readability.
  260. //
  261. // example:
  262. //
  263. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  264. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  265. //
  266. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  267. const type prefix##0 = (pointer)->array[0]; \
  268. GGML_UNUSED(prefix##0);
  269. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  270. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  271. const type prefix##1 = (pointer)->array[1]; \
  272. GGML_UNUSED(prefix##1);
  273. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  274. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  275. const type prefix##2 = (pointer)->array[2]; \
  276. GGML_UNUSED(prefix##2);
  277. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  278. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  279. const type prefix##3 = (pointer)->array[3]; \
  280. GGML_UNUSED(prefix##3);
  281. #define GGML_TENSOR_UNARY_OP_LOCALS \
  282. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  283. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  284. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  285. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  286. #define GGML_TENSOR_BINARY_OP_LOCALS \
  287. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  288. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  289. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  290. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  291. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  292. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  293. #define GGML_TENSOR_TERNARY_OP_LOCALS \
  294. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  295. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  296. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  297. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  298. GGML_TENSOR_LOCALS(int64_t, ne2, src2, ne) \
  299. GGML_TENSOR_LOCALS(size_t, nb2, src2, nb) \
  300. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  301. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  302. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  303. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  304. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  305. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  306. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  307. #ifdef __cplusplus
  308. extern "C" {
  309. #endif
  310. // Function type used in fatal error callbacks
  311. typedef void (*ggml_abort_callback_t)(const char * error_message);
  312. // Set the abort callback (passing null will restore original abort functionality: printing a message to stdout)
  313. // Returns the old callback for chaining
  314. GGML_API ggml_abort_callback_t ggml_set_abort_callback(ggml_abort_callback_t callback);
  315. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  316. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  317. enum ggml_status {
  318. GGML_STATUS_ALLOC_FAILED = -2,
  319. GGML_STATUS_FAILED = -1,
  320. GGML_STATUS_SUCCESS = 0,
  321. GGML_STATUS_ABORTED = 1,
  322. };
  323. // get ggml_status name string
  324. GGML_API const char * ggml_status_to_string(enum ggml_status status);
  325. // ieee 754-2008 half-precision float16
  326. // todo: make this not an integral type
  327. typedef uint16_t ggml_fp16_t;
  328. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  329. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  330. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  331. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  332. // google brain half-precision bfloat16
  333. typedef struct { uint16_t bits; } ggml_bf16_t;
  334. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  335. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  336. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  337. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  338. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  339. struct ggml_object;
  340. struct ggml_context;
  341. struct ggml_cgraph;
  342. // NOTE: always add types at the end of the enum to keep backward compatibility
  343. enum ggml_type {
  344. GGML_TYPE_F32 = 0,
  345. GGML_TYPE_F16 = 1,
  346. GGML_TYPE_Q4_0 = 2,
  347. GGML_TYPE_Q4_1 = 3,
  348. // GGML_TYPE_Q4_2 = 4, support has been removed
  349. // GGML_TYPE_Q4_3 = 5, support has been removed
  350. GGML_TYPE_Q5_0 = 6,
  351. GGML_TYPE_Q5_1 = 7,
  352. GGML_TYPE_Q8_0 = 8,
  353. GGML_TYPE_Q8_1 = 9,
  354. GGML_TYPE_Q2_K = 10,
  355. GGML_TYPE_Q3_K = 11,
  356. GGML_TYPE_Q4_K = 12,
  357. GGML_TYPE_Q5_K = 13,
  358. GGML_TYPE_Q6_K = 14,
  359. GGML_TYPE_Q8_K = 15,
  360. GGML_TYPE_IQ2_XXS = 16,
  361. GGML_TYPE_IQ2_XS = 17,
  362. GGML_TYPE_IQ3_XXS = 18,
  363. GGML_TYPE_IQ1_S = 19,
  364. GGML_TYPE_IQ4_NL = 20,
  365. GGML_TYPE_IQ3_S = 21,
  366. GGML_TYPE_IQ2_S = 22,
  367. GGML_TYPE_IQ4_XS = 23,
  368. GGML_TYPE_I8 = 24,
  369. GGML_TYPE_I16 = 25,
  370. GGML_TYPE_I32 = 26,
  371. GGML_TYPE_I64 = 27,
  372. GGML_TYPE_F64 = 28,
  373. GGML_TYPE_IQ1_M = 29,
  374. GGML_TYPE_BF16 = 30,
  375. // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
  376. // GGML_TYPE_Q4_0_4_8 = 32,
  377. // GGML_TYPE_Q4_0_8_8 = 33,
  378. GGML_TYPE_TQ1_0 = 34,
  379. GGML_TYPE_TQ2_0 = 35,
  380. // GGML_TYPE_IQ4_NL_4_4 = 36,
  381. // GGML_TYPE_IQ4_NL_4_8 = 37,
  382. // GGML_TYPE_IQ4_NL_8_8 = 38,
  383. GGML_TYPE_MXFP4 = 39, // MXFP4 (1 block)
  384. GGML_TYPE_COUNT = 40,
  385. };
  386. // precision
  387. enum ggml_prec {
  388. GGML_PREC_DEFAULT = 0, // stored as ggml_tensor.op_params, 0 by default
  389. GGML_PREC_F32 = 10,
  390. };
  391. // model file types
  392. enum ggml_ftype {
  393. GGML_FTYPE_UNKNOWN = -1,
  394. GGML_FTYPE_ALL_F32 = 0,
  395. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  396. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  397. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  398. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  399. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  400. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  401. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  402. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  403. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  404. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  405. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  406. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  407. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  408. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  409. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  410. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  411. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  412. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  413. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  414. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  415. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  416. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  417. GGML_FTYPE_MOSTLY_MXFP4 = 25, // except 1d tensors
  418. };
  419. // available tensor operations:
  420. enum ggml_op {
  421. GGML_OP_NONE = 0,
  422. GGML_OP_DUP,
  423. GGML_OP_ADD,
  424. GGML_OP_ADD_ID,
  425. GGML_OP_ADD1,
  426. GGML_OP_ACC,
  427. GGML_OP_SUB,
  428. GGML_OP_MUL,
  429. GGML_OP_DIV,
  430. GGML_OP_SQR,
  431. GGML_OP_SQRT,
  432. GGML_OP_LOG,
  433. GGML_OP_SIN,
  434. GGML_OP_COS,
  435. GGML_OP_SUM,
  436. GGML_OP_SUM_ROWS,
  437. GGML_OP_MEAN,
  438. GGML_OP_ARGMAX,
  439. GGML_OP_COUNT_EQUAL,
  440. GGML_OP_REPEAT,
  441. GGML_OP_REPEAT_BACK,
  442. GGML_OP_CONCAT,
  443. GGML_OP_SILU_BACK,
  444. GGML_OP_NORM, // normalize
  445. GGML_OP_RMS_NORM,
  446. GGML_OP_RMS_NORM_BACK,
  447. GGML_OP_GROUP_NORM,
  448. GGML_OP_L2_NORM,
  449. GGML_OP_MUL_MAT,
  450. GGML_OP_MUL_MAT_ID,
  451. GGML_OP_OUT_PROD,
  452. GGML_OP_SCALE,
  453. GGML_OP_SET,
  454. GGML_OP_CPY,
  455. GGML_OP_CONT,
  456. GGML_OP_RESHAPE,
  457. GGML_OP_VIEW,
  458. GGML_OP_PERMUTE,
  459. GGML_OP_TRANSPOSE,
  460. GGML_OP_GET_ROWS,
  461. GGML_OP_GET_ROWS_BACK,
  462. GGML_OP_SET_ROWS,
  463. GGML_OP_DIAG,
  464. GGML_OP_DIAG_MASK_INF,
  465. GGML_OP_DIAG_MASK_ZERO,
  466. GGML_OP_SOFT_MAX,
  467. GGML_OP_SOFT_MAX_BACK,
  468. GGML_OP_ROPE,
  469. GGML_OP_ROPE_BACK,
  470. GGML_OP_CLAMP,
  471. GGML_OP_CONV_TRANSPOSE_1D,
  472. GGML_OP_IM2COL,
  473. GGML_OP_IM2COL_BACK,
  474. GGML_OP_IM2COL_3D,
  475. GGML_OP_CONV_2D,
  476. GGML_OP_CONV_3D,
  477. GGML_OP_CONV_2D_DW,
  478. GGML_OP_CONV_TRANSPOSE_2D,
  479. GGML_OP_POOL_1D,
  480. GGML_OP_POOL_2D,
  481. GGML_OP_POOL_2D_BACK,
  482. GGML_OP_UPSCALE,
  483. GGML_OP_PAD,
  484. GGML_OP_PAD_REFLECT_1D,
  485. GGML_OP_ROLL,
  486. GGML_OP_ARANGE,
  487. GGML_OP_TIMESTEP_EMBEDDING,
  488. GGML_OP_ARGSORT,
  489. GGML_OP_LEAKY_RELU,
  490. GGML_OP_FLASH_ATTN_EXT,
  491. GGML_OP_FLASH_ATTN_BACK,
  492. GGML_OP_SSM_CONV,
  493. GGML_OP_SSM_SCAN,
  494. GGML_OP_WIN_PART,
  495. GGML_OP_WIN_UNPART,
  496. GGML_OP_GET_REL_POS,
  497. GGML_OP_ADD_REL_POS,
  498. GGML_OP_RWKV_WKV6,
  499. GGML_OP_GATED_LINEAR_ATTN,
  500. GGML_OP_RWKV_WKV7,
  501. GGML_OP_DELTA_NET,
  502. GGML_OP_UNARY,
  503. GGML_OP_MAP_CUSTOM1,
  504. GGML_OP_MAP_CUSTOM2,
  505. GGML_OP_MAP_CUSTOM3,
  506. GGML_OP_CUSTOM,
  507. GGML_OP_CROSS_ENTROPY_LOSS,
  508. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  509. GGML_OP_OPT_STEP_ADAMW,
  510. GGML_OP_OPT_STEP_SGD,
  511. GGML_OP_GLU,
  512. GGML_OP_COUNT,
  513. };
  514. enum ggml_unary_op {
  515. GGML_UNARY_OP_ABS,
  516. GGML_UNARY_OP_SGN,
  517. GGML_UNARY_OP_NEG,
  518. GGML_UNARY_OP_STEP,
  519. GGML_UNARY_OP_TANH,
  520. GGML_UNARY_OP_ELU,
  521. GGML_UNARY_OP_RELU,
  522. GGML_UNARY_OP_SIGMOID,
  523. GGML_UNARY_OP_GELU,
  524. GGML_UNARY_OP_GELU_QUICK,
  525. GGML_UNARY_OP_SILU,
  526. GGML_UNARY_OP_HARDSWISH,
  527. GGML_UNARY_OP_HARDSIGMOID,
  528. GGML_UNARY_OP_EXP,
  529. GGML_UNARY_OP_GELU_ERF,
  530. GGML_UNARY_OP_COUNT,
  531. };
  532. enum ggml_glu_op {
  533. GGML_GLU_OP_REGLU,
  534. GGML_GLU_OP_GEGLU,
  535. GGML_GLU_OP_SWIGLU,
  536. GGML_GLU_OP_SWIGLU_OAI,
  537. GGML_GLU_OP_GEGLU_ERF,
  538. GGML_GLU_OP_GEGLU_QUICK,
  539. GGML_GLU_OP_COUNT,
  540. };
  541. enum ggml_object_type {
  542. GGML_OBJECT_TYPE_TENSOR,
  543. GGML_OBJECT_TYPE_GRAPH,
  544. GGML_OBJECT_TYPE_WORK_BUFFER
  545. };
  546. enum ggml_log_level {
  547. GGML_LOG_LEVEL_NONE = 0,
  548. GGML_LOG_LEVEL_DEBUG = 1,
  549. GGML_LOG_LEVEL_INFO = 2,
  550. GGML_LOG_LEVEL_WARN = 3,
  551. GGML_LOG_LEVEL_ERROR = 4,
  552. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  553. };
  554. // this tensor...
  555. enum ggml_tensor_flag {
  556. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  557. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  558. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  559. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  560. };
  561. struct ggml_init_params {
  562. // memory pool
  563. size_t mem_size; // bytes
  564. void * mem_buffer; // if NULL, memory will be allocated internally
  565. bool no_alloc; // don't allocate memory for the tensor data
  566. };
  567. // n-dimensional tensor
  568. struct ggml_tensor {
  569. enum ggml_type type;
  570. struct ggml_backend_buffer * buffer;
  571. int64_t ne[GGML_MAX_DIMS]; // number of elements
  572. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  573. // nb[0] = ggml_type_size(type)
  574. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  575. // nb[i] = nb[i-1] * ne[i-1]
  576. // compute data
  577. enum ggml_op op;
  578. // op params - allocated as int32_t for alignment
  579. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  580. int32_t flags;
  581. struct ggml_tensor * src[GGML_MAX_SRC];
  582. // source tensor and offset for views
  583. struct ggml_tensor * view_src;
  584. size_t view_offs;
  585. void * data;
  586. char name[GGML_MAX_NAME];
  587. void * extra; // extra things e.g. for ggml-cuda.cu
  588. char padding[8];
  589. };
  590. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  591. // Abort callback
  592. // If not NULL, called before ggml computation
  593. // If it returns true, the computation is aborted
  594. typedef bool (*ggml_abort_callback)(void * data);
  595. //
  596. // GUID
  597. //
  598. // GUID types
  599. typedef uint8_t ggml_guid[16];
  600. typedef ggml_guid * ggml_guid_t;
  601. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  602. // misc
  603. GGML_API const char * ggml_version(void);
  604. GGML_API const char * ggml_commit(void);
  605. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  606. GGML_API int64_t ggml_time_ms(void);
  607. GGML_API int64_t ggml_time_us(void);
  608. GGML_API int64_t ggml_cycles(void);
  609. GGML_API int64_t ggml_cycles_per_ms(void);
  610. // accepts a UTF-8 path, even on Windows
  611. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  612. GGML_API void ggml_print_object (const struct ggml_object * obj);
  613. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  614. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  615. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  616. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  617. GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  618. GGML_API int64_t ggml_blck_size(enum ggml_type type);
  619. GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  620. GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  621. GGML_DEPRECATED(
  622. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  623. "use ggml_row_size() instead");
  624. GGML_API const char * ggml_type_name(enum ggml_type type);
  625. GGML_API const char * ggml_op_name (enum ggml_op op);
  626. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  627. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  628. GGML_API const char * ggml_glu_op_name(enum ggml_glu_op op);
  629. GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  630. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  631. GGML_API bool ggml_is_quantized(enum ggml_type type);
  632. // TODO: temporary until model loading of ggml examples is refactored
  633. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  634. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  635. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  636. GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
  637. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  638. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  639. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  640. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  641. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  642. // returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
  643. GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  644. GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  645. GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  646. GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  647. // returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
  648. GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
  649. // true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
  650. GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
  651. // true if the elements in dimension 0 are contiguous, or there is just 1 block of elements
  652. GGML_API bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor);
  653. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  654. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  655. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  656. // use this to compute the memory overhead of a tensor
  657. GGML_API size_t ggml_tensor_overhead(void);
  658. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  659. // main
  660. GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
  661. GGML_API void ggml_reset(struct ggml_context * ctx);
  662. GGML_API void ggml_free (struct ggml_context * ctx);
  663. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  664. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  665. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  666. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  667. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  668. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  669. GGML_API struct ggml_tensor * ggml_new_tensor(
  670. struct ggml_context * ctx,
  671. enum ggml_type type,
  672. int n_dims,
  673. const int64_t *ne);
  674. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  675. struct ggml_context * ctx,
  676. enum ggml_type type,
  677. int64_t ne0);
  678. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  679. struct ggml_context * ctx,
  680. enum ggml_type type,
  681. int64_t ne0,
  682. int64_t ne1);
  683. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  684. struct ggml_context * ctx,
  685. enum ggml_type type,
  686. int64_t ne0,
  687. int64_t ne1,
  688. int64_t ne2);
  689. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  690. struct ggml_context * ctx,
  691. enum ggml_type type,
  692. int64_t ne0,
  693. int64_t ne1,
  694. int64_t ne2,
  695. int64_t ne3);
  696. GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
  697. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  698. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  699. // Context tensor enumeration and lookup
  700. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  701. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  702. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  703. // Converts a flat index into coordinates
  704. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  705. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  706. GGML_API enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor);
  707. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  708. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  709. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  710. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  711. GGML_ATTRIBUTE_FORMAT(2, 3)
  712. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  713. // Tensor flags
  714. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  715. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  716. GGML_API void ggml_set_param(struct ggml_tensor * tensor);
  717. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  718. //
  719. // operations on tensors with backpropagation
  720. //
  721. GGML_API struct ggml_tensor * ggml_dup(
  722. struct ggml_context * ctx,
  723. struct ggml_tensor * a);
  724. // in-place, returns view(a)
  725. GGML_API struct ggml_tensor * ggml_dup_inplace(
  726. struct ggml_context * ctx,
  727. struct ggml_tensor * a);
  728. GGML_API struct ggml_tensor * ggml_add(
  729. struct ggml_context * ctx,
  730. struct ggml_tensor * a,
  731. struct ggml_tensor * b);
  732. GGML_API struct ggml_tensor * ggml_add_inplace(
  733. struct ggml_context * ctx,
  734. struct ggml_tensor * a,
  735. struct ggml_tensor * b);
  736. GGML_API struct ggml_tensor * ggml_add_cast(
  737. struct ggml_context * ctx,
  738. struct ggml_tensor * a,
  739. struct ggml_tensor * b,
  740. enum ggml_type type);
  741. // dst[i0, i1, i2] = a[i0, i1, i2] + b[i0, ids[i1, i2]]
  742. GGML_API struct ggml_tensor * ggml_add_id(
  743. struct ggml_context * ctx,
  744. struct ggml_tensor * a,
  745. struct ggml_tensor * b,
  746. struct ggml_tensor * ids);
  747. GGML_API struct ggml_tensor * ggml_add1(
  748. struct ggml_context * ctx,
  749. struct ggml_tensor * a,
  750. struct ggml_tensor * b);
  751. GGML_API struct ggml_tensor * ggml_add1_inplace(
  752. struct ggml_context * ctx,
  753. struct ggml_tensor * a,
  754. struct ggml_tensor * b);
  755. // dst = a
  756. // view(dst, nb1, nb2, nb3, offset) += b
  757. // return dst
  758. GGML_API struct ggml_tensor * ggml_acc(
  759. struct ggml_context * ctx,
  760. struct ggml_tensor * a,
  761. struct ggml_tensor * b,
  762. size_t nb1,
  763. size_t nb2,
  764. size_t nb3,
  765. size_t offset);
  766. GGML_API struct ggml_tensor * ggml_acc_inplace(
  767. struct ggml_context * ctx,
  768. struct ggml_tensor * a,
  769. struct ggml_tensor * b,
  770. size_t nb1,
  771. size_t nb2,
  772. size_t nb3,
  773. size_t offset);
  774. GGML_API struct ggml_tensor * ggml_sub(
  775. struct ggml_context * ctx,
  776. struct ggml_tensor * a,
  777. struct ggml_tensor * b);
  778. GGML_API struct ggml_tensor * ggml_sub_inplace(
  779. struct ggml_context * ctx,
  780. struct ggml_tensor * a,
  781. struct ggml_tensor * b);
  782. GGML_API struct ggml_tensor * ggml_mul(
  783. struct ggml_context * ctx,
  784. struct ggml_tensor * a,
  785. struct ggml_tensor * b);
  786. GGML_API struct ggml_tensor * ggml_mul_inplace(
  787. struct ggml_context * ctx,
  788. struct ggml_tensor * a,
  789. struct ggml_tensor * b);
  790. GGML_API struct ggml_tensor * ggml_div(
  791. struct ggml_context * ctx,
  792. struct ggml_tensor * a,
  793. struct ggml_tensor * b);
  794. GGML_API struct ggml_tensor * ggml_div_inplace(
  795. struct ggml_context * ctx,
  796. struct ggml_tensor * a,
  797. struct ggml_tensor * b);
  798. GGML_API struct ggml_tensor * ggml_sqr(
  799. struct ggml_context * ctx,
  800. struct ggml_tensor * a);
  801. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  802. struct ggml_context * ctx,
  803. struct ggml_tensor * a);
  804. GGML_API struct ggml_tensor * ggml_sqrt(
  805. struct ggml_context * ctx,
  806. struct ggml_tensor * a);
  807. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  808. struct ggml_context * ctx,
  809. struct ggml_tensor * a);
  810. GGML_API struct ggml_tensor * ggml_log(
  811. struct ggml_context * ctx,
  812. struct ggml_tensor * a);
  813. GGML_API struct ggml_tensor * ggml_log_inplace(
  814. struct ggml_context * ctx,
  815. struct ggml_tensor * a);
  816. GGML_API struct ggml_tensor * ggml_sin(
  817. struct ggml_context * ctx,
  818. struct ggml_tensor * a);
  819. GGML_API struct ggml_tensor * ggml_sin_inplace(
  820. struct ggml_context * ctx,
  821. struct ggml_tensor * a);
  822. GGML_API struct ggml_tensor * ggml_cos(
  823. struct ggml_context * ctx,
  824. struct ggml_tensor * a);
  825. GGML_API struct ggml_tensor * ggml_cos_inplace(
  826. struct ggml_context * ctx,
  827. struct ggml_tensor * a);
  828. // return scalar
  829. GGML_API struct ggml_tensor * ggml_sum(
  830. struct ggml_context * ctx,
  831. struct ggml_tensor * a);
  832. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  833. GGML_API struct ggml_tensor * ggml_sum_rows(
  834. struct ggml_context * ctx,
  835. struct ggml_tensor * a);
  836. // mean along rows
  837. GGML_API struct ggml_tensor * ggml_mean(
  838. struct ggml_context * ctx,
  839. struct ggml_tensor * a);
  840. // argmax along rows
  841. GGML_API struct ggml_tensor * ggml_argmax(
  842. struct ggml_context * ctx,
  843. struct ggml_tensor * a);
  844. // count number of equal elements in a and b
  845. GGML_API struct ggml_tensor * ggml_count_equal(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a,
  848. struct ggml_tensor * b);
  849. // if a is the same shape as b, and a is not parameter, return a
  850. // otherwise, return a new tensor: repeat(a) to fit in b
  851. GGML_API struct ggml_tensor * ggml_repeat(
  852. struct ggml_context * ctx,
  853. struct ggml_tensor * a,
  854. struct ggml_tensor * b);
  855. // repeat a to the specified shape
  856. GGML_API struct ggml_tensor * ggml_repeat_4d(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a,
  859. int64_t ne0,
  860. int64_t ne1,
  861. int64_t ne2,
  862. int64_t ne3);
  863. // sums repetitions in a into shape of b
  864. GGML_API struct ggml_tensor * ggml_repeat_back(
  865. struct ggml_context * ctx,
  866. struct ggml_tensor * a,
  867. struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
  868. // concat a and b along dim
  869. // used in stable-diffusion
  870. GGML_API struct ggml_tensor * ggml_concat(
  871. struct ggml_context * ctx,
  872. struct ggml_tensor * a,
  873. struct ggml_tensor * b,
  874. int dim);
  875. GGML_API struct ggml_tensor * ggml_abs(
  876. struct ggml_context * ctx,
  877. struct ggml_tensor * a);
  878. GGML_API struct ggml_tensor * ggml_abs_inplace(
  879. struct ggml_context * ctx,
  880. struct ggml_tensor * a);
  881. GGML_API struct ggml_tensor * ggml_sgn(
  882. struct ggml_context * ctx,
  883. struct ggml_tensor * a);
  884. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  885. struct ggml_context * ctx,
  886. struct ggml_tensor * a);
  887. GGML_API struct ggml_tensor * ggml_neg(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a);
  890. GGML_API struct ggml_tensor * ggml_neg_inplace(
  891. struct ggml_context * ctx,
  892. struct ggml_tensor * a);
  893. GGML_API struct ggml_tensor * ggml_step(
  894. struct ggml_context * ctx,
  895. struct ggml_tensor * a);
  896. GGML_API struct ggml_tensor * ggml_step_inplace(
  897. struct ggml_context * ctx,
  898. struct ggml_tensor * a);
  899. GGML_API struct ggml_tensor * ggml_tanh(
  900. struct ggml_context * ctx,
  901. struct ggml_tensor * a);
  902. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  903. struct ggml_context * ctx,
  904. struct ggml_tensor * a);
  905. GGML_API struct ggml_tensor * ggml_elu(
  906. struct ggml_context * ctx,
  907. struct ggml_tensor * a);
  908. GGML_API struct ggml_tensor * ggml_elu_inplace(
  909. struct ggml_context * ctx,
  910. struct ggml_tensor * a);
  911. GGML_API struct ggml_tensor * ggml_relu(
  912. struct ggml_context * ctx,
  913. struct ggml_tensor * a);
  914. GGML_API struct ggml_tensor * ggml_leaky_relu(
  915. struct ggml_context * ctx,
  916. struct ggml_tensor * a, float negative_slope, bool inplace);
  917. GGML_API struct ggml_tensor * ggml_relu_inplace(
  918. struct ggml_context * ctx,
  919. struct ggml_tensor * a);
  920. GGML_API struct ggml_tensor * ggml_sigmoid(
  921. struct ggml_context * ctx,
  922. struct ggml_tensor * a);
  923. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  924. struct ggml_context * ctx,
  925. struct ggml_tensor * a);
  926. GGML_API struct ggml_tensor * ggml_gelu(
  927. struct ggml_context * ctx,
  928. struct ggml_tensor * a);
  929. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  930. struct ggml_context * ctx,
  931. struct ggml_tensor * a);
  932. // GELU using erf (error function) when possible
  933. // some backends may fallback to approximation based on Abramowitz and Stegun formula
  934. GGML_API struct ggml_tensor * ggml_gelu_erf(
  935. struct ggml_context * ctx,
  936. struct ggml_tensor * a);
  937. GGML_API struct ggml_tensor * ggml_gelu_erf_inplace(
  938. struct ggml_context * ctx,
  939. struct ggml_tensor * a);
  940. GGML_API struct ggml_tensor * ggml_gelu_quick(
  941. struct ggml_context * ctx,
  942. struct ggml_tensor * a);
  943. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  944. struct ggml_context * ctx,
  945. struct ggml_tensor * a);
  946. GGML_API struct ggml_tensor * ggml_silu(
  947. struct ggml_context * ctx,
  948. struct ggml_tensor * a);
  949. GGML_API struct ggml_tensor * ggml_silu_inplace(
  950. struct ggml_context * ctx,
  951. struct ggml_tensor * a);
  952. // a - x
  953. // b - dy
  954. GGML_API struct ggml_tensor * ggml_silu_back(
  955. struct ggml_context * ctx,
  956. struct ggml_tensor * a,
  957. struct ggml_tensor * b);
  958. // hardswish(x) = x * relu6(x + 3) / 6
  959. GGML_API struct ggml_tensor * ggml_hardswish(
  960. struct ggml_context * ctx,
  961. struct ggml_tensor * a);
  962. // hardsigmoid(x) = relu6(x + 3) / 6
  963. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  964. struct ggml_context * ctx,
  965. struct ggml_tensor * a);
  966. GGML_API struct ggml_tensor * ggml_exp(
  967. struct ggml_context * ctx,
  968. struct ggml_tensor * a);
  969. GGML_API struct ggml_tensor * ggml_exp_inplace(
  970. struct ggml_context * ctx,
  971. struct ggml_tensor * a);
  972. // gated linear unit ops
  973. // A: n columns, r rows,
  974. // result is n / 2 columns, r rows,
  975. // expects gate in second half of row, unless swapped is true
  976. GGML_API struct ggml_tensor * ggml_glu(
  977. struct ggml_context * ctx,
  978. struct ggml_tensor * a,
  979. enum ggml_glu_op op,
  980. bool swapped);
  981. GGML_API struct ggml_tensor * ggml_reglu(
  982. struct ggml_context * ctx,
  983. struct ggml_tensor * a);
  984. GGML_API struct ggml_tensor * ggml_reglu_swapped(
  985. struct ggml_context * ctx,
  986. struct ggml_tensor * a);
  987. GGML_API struct ggml_tensor * ggml_geglu(
  988. struct ggml_context * ctx,
  989. struct ggml_tensor * a);
  990. GGML_API struct ggml_tensor * ggml_geglu_swapped(
  991. struct ggml_context * ctx,
  992. struct ggml_tensor * a);
  993. GGML_API struct ggml_tensor * ggml_swiglu(
  994. struct ggml_context * ctx,
  995. struct ggml_tensor * a);
  996. GGML_API struct ggml_tensor * ggml_swiglu_swapped(
  997. struct ggml_context * ctx,
  998. struct ggml_tensor * a);
  999. GGML_API struct ggml_tensor * ggml_geglu_erf(
  1000. struct ggml_context * ctx,
  1001. struct ggml_tensor * a);
  1002. GGML_API struct ggml_tensor * ggml_geglu_erf_swapped(
  1003. struct ggml_context * ctx,
  1004. struct ggml_tensor * a);
  1005. GGML_API struct ggml_tensor * ggml_geglu_quick(
  1006. struct ggml_context * ctx,
  1007. struct ggml_tensor * a);
  1008. GGML_API struct ggml_tensor * ggml_geglu_quick_swapped(
  1009. struct ggml_context * ctx,
  1010. struct ggml_tensor * a);
  1011. // A: n columns, r rows,
  1012. // B: n columns, r rows,
  1013. GGML_API struct ggml_tensor * ggml_glu_split(
  1014. struct ggml_context * ctx,
  1015. struct ggml_tensor * a,
  1016. struct ggml_tensor * b,
  1017. enum ggml_glu_op op);
  1018. GGML_API struct ggml_tensor * ggml_reglu_split(
  1019. struct ggml_context * ctx,
  1020. struct ggml_tensor * a,
  1021. struct ggml_tensor * b);
  1022. GGML_API struct ggml_tensor * ggml_geglu_split(
  1023. struct ggml_context * ctx,
  1024. struct ggml_tensor * a,
  1025. struct ggml_tensor * b);
  1026. GGML_API struct ggml_tensor * ggml_swiglu_split(
  1027. struct ggml_context * ctx,
  1028. struct ggml_tensor * a,
  1029. struct ggml_tensor * b);
  1030. GGML_API struct ggml_tensor * ggml_geglu_erf_split(
  1031. struct ggml_context * ctx,
  1032. struct ggml_tensor * a,
  1033. struct ggml_tensor * b);
  1034. GGML_API struct ggml_tensor * ggml_geglu_quick_split(
  1035. struct ggml_context * ctx,
  1036. struct ggml_tensor * a,
  1037. struct ggml_tensor * b);
  1038. GGML_API struct ggml_tensor * ggml_swiglu_oai(
  1039. struct ggml_context * ctx,
  1040. struct ggml_tensor * a,
  1041. struct ggml_tensor * b,
  1042. float alpha,
  1043. float limit);
  1044. // normalize along rows
  1045. GGML_API struct ggml_tensor * ggml_norm(
  1046. struct ggml_context * ctx,
  1047. struct ggml_tensor * a,
  1048. float eps);
  1049. GGML_API struct ggml_tensor * ggml_norm_inplace(
  1050. struct ggml_context * ctx,
  1051. struct ggml_tensor * a,
  1052. float eps);
  1053. GGML_API struct ggml_tensor * ggml_rms_norm(
  1054. struct ggml_context * ctx,
  1055. struct ggml_tensor * a,
  1056. float eps);
  1057. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  1058. struct ggml_context * ctx,
  1059. struct ggml_tensor * a,
  1060. float eps);
  1061. // group normalize along ne0*ne1*n_groups
  1062. // used in stable-diffusion
  1063. GGML_API struct ggml_tensor * ggml_group_norm(
  1064. struct ggml_context * ctx,
  1065. struct ggml_tensor * a,
  1066. int n_groups,
  1067. float eps);
  1068. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  1069. struct ggml_context * ctx,
  1070. struct ggml_tensor * a,
  1071. int n_groups,
  1072. float eps);
  1073. // l2 normalize along rows
  1074. // used in rwkv v7
  1075. GGML_API struct ggml_tensor * ggml_l2_norm(
  1076. struct ggml_context * ctx,
  1077. struct ggml_tensor * a,
  1078. float eps);
  1079. GGML_API struct ggml_tensor * ggml_l2_norm_inplace(
  1080. struct ggml_context * ctx,
  1081. struct ggml_tensor * a,
  1082. float eps);
  1083. // a - x
  1084. // b - dy
  1085. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  1086. struct ggml_context * ctx,
  1087. struct ggml_tensor * a,
  1088. struct ggml_tensor * b,
  1089. float eps);
  1090. // A: k columns, n rows => [ne03, ne02, n, k]
  1091. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  1092. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  1093. GGML_API struct ggml_tensor * ggml_mul_mat(
  1094. struct ggml_context * ctx,
  1095. struct ggml_tensor * a,
  1096. struct ggml_tensor * b);
  1097. // change the precision of a matrix multiplication
  1098. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  1099. GGML_API void ggml_mul_mat_set_prec(
  1100. struct ggml_tensor * a,
  1101. enum ggml_prec prec);
  1102. // indirect matrix multiplication
  1103. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  1104. struct ggml_context * ctx,
  1105. struct ggml_tensor * as,
  1106. struct ggml_tensor * b,
  1107. struct ggml_tensor * ids);
  1108. // A: m columns, n rows,
  1109. // B: p columns, n rows,
  1110. // result is m columns, p rows
  1111. GGML_API struct ggml_tensor * ggml_out_prod(
  1112. struct ggml_context * ctx,
  1113. struct ggml_tensor * a,
  1114. struct ggml_tensor * b);
  1115. //
  1116. // operations on tensors without backpropagation
  1117. //
  1118. GGML_API struct ggml_tensor * ggml_scale(
  1119. struct ggml_context * ctx,
  1120. struct ggml_tensor * a,
  1121. float s);
  1122. // in-place, returns view(a)
  1123. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1124. struct ggml_context * ctx,
  1125. struct ggml_tensor * a,
  1126. float s);
  1127. // x = s * a + b
  1128. GGML_API struct ggml_tensor * ggml_scale_bias(
  1129. struct ggml_context * ctx,
  1130. struct ggml_tensor * a,
  1131. float s,
  1132. float b);
  1133. GGML_API struct ggml_tensor * ggml_scale_bias_inplace(
  1134. struct ggml_context * ctx,
  1135. struct ggml_tensor * a,
  1136. float s,
  1137. float b);
  1138. // b -> view(a,offset,nb1,nb2,3), return modified a
  1139. GGML_API struct ggml_tensor * ggml_set(
  1140. struct ggml_context * ctx,
  1141. struct ggml_tensor * a,
  1142. struct ggml_tensor * b,
  1143. size_t nb1,
  1144. size_t nb2,
  1145. size_t nb3,
  1146. size_t offset); // in bytes
  1147. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1148. GGML_API struct ggml_tensor * ggml_set_inplace(
  1149. struct ggml_context * ctx,
  1150. struct ggml_tensor * a,
  1151. struct ggml_tensor * b,
  1152. size_t nb1,
  1153. size_t nb2,
  1154. size_t nb3,
  1155. size_t offset); // in bytes
  1156. GGML_API struct ggml_tensor * ggml_set_1d(
  1157. struct ggml_context * ctx,
  1158. struct ggml_tensor * a,
  1159. struct ggml_tensor * b,
  1160. size_t offset); // in bytes
  1161. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1162. struct ggml_context * ctx,
  1163. struct ggml_tensor * a,
  1164. struct ggml_tensor * b,
  1165. size_t offset); // in bytes
  1166. // b -> view(a,offset,nb1,nb2,3), return modified a
  1167. GGML_API struct ggml_tensor * ggml_set_2d(
  1168. struct ggml_context * ctx,
  1169. struct ggml_tensor * a,
  1170. struct ggml_tensor * b,
  1171. size_t nb1,
  1172. size_t offset); // in bytes
  1173. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1174. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1175. struct ggml_context * ctx,
  1176. struct ggml_tensor * a,
  1177. struct ggml_tensor * b,
  1178. size_t nb1,
  1179. size_t offset); // in bytes
  1180. // a -> b, return view(b)
  1181. GGML_API struct ggml_tensor * ggml_cpy(
  1182. struct ggml_context * ctx,
  1183. struct ggml_tensor * a,
  1184. struct ggml_tensor * b);
  1185. // note: casting from f32 to i32 will discard the fractional part
  1186. GGML_API struct ggml_tensor * ggml_cast(
  1187. struct ggml_context * ctx,
  1188. struct ggml_tensor * a,
  1189. enum ggml_type type);
  1190. // make contiguous
  1191. GGML_API struct ggml_tensor * ggml_cont(
  1192. struct ggml_context * ctx,
  1193. struct ggml_tensor * a);
  1194. // make contiguous, with new shape
  1195. GGML_API struct ggml_tensor * ggml_cont_1d(
  1196. struct ggml_context * ctx,
  1197. struct ggml_tensor * a,
  1198. int64_t ne0);
  1199. GGML_API struct ggml_tensor * ggml_cont_2d(
  1200. struct ggml_context * ctx,
  1201. struct ggml_tensor * a,
  1202. int64_t ne0,
  1203. int64_t ne1);
  1204. GGML_API struct ggml_tensor * ggml_cont_3d(
  1205. struct ggml_context * ctx,
  1206. struct ggml_tensor * a,
  1207. int64_t ne0,
  1208. int64_t ne1,
  1209. int64_t ne2);
  1210. GGML_API struct ggml_tensor * ggml_cont_4d(
  1211. struct ggml_context * ctx,
  1212. struct ggml_tensor * a,
  1213. int64_t ne0,
  1214. int64_t ne1,
  1215. int64_t ne2,
  1216. int64_t ne3);
  1217. // return view(a), b specifies the new shape
  1218. // TODO: when we start computing gradient, make a copy instead of view
  1219. GGML_API struct ggml_tensor * ggml_reshape(
  1220. struct ggml_context * ctx,
  1221. struct ggml_tensor * a,
  1222. struct ggml_tensor * b);
  1223. // return view(a)
  1224. // TODO: when we start computing gradient, make a copy instead of view
  1225. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1226. struct ggml_context * ctx,
  1227. struct ggml_tensor * a,
  1228. int64_t ne0);
  1229. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1230. struct ggml_context * ctx,
  1231. struct ggml_tensor * a,
  1232. int64_t ne0,
  1233. int64_t ne1);
  1234. // return view(a)
  1235. // TODO: when we start computing gradient, make a copy instead of view
  1236. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1237. struct ggml_context * ctx,
  1238. struct ggml_tensor * a,
  1239. int64_t ne0,
  1240. int64_t ne1,
  1241. int64_t ne2);
  1242. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1243. struct ggml_context * ctx,
  1244. struct ggml_tensor * a,
  1245. int64_t ne0,
  1246. int64_t ne1,
  1247. int64_t ne2,
  1248. int64_t ne3);
  1249. // offset in bytes
  1250. GGML_API struct ggml_tensor * ggml_view_1d(
  1251. struct ggml_context * ctx,
  1252. struct ggml_tensor * a,
  1253. int64_t ne0,
  1254. size_t offset);
  1255. GGML_API struct ggml_tensor * ggml_view_2d(
  1256. struct ggml_context * ctx,
  1257. struct ggml_tensor * a,
  1258. int64_t ne0,
  1259. int64_t ne1,
  1260. size_t nb1, // row stride in bytes
  1261. size_t offset);
  1262. GGML_API struct ggml_tensor * ggml_view_3d(
  1263. struct ggml_context * ctx,
  1264. struct ggml_tensor * a,
  1265. int64_t ne0,
  1266. int64_t ne1,
  1267. int64_t ne2,
  1268. size_t nb1, // row stride in bytes
  1269. size_t nb2, // slice stride in bytes
  1270. size_t offset);
  1271. GGML_API struct ggml_tensor * ggml_view_4d(
  1272. struct ggml_context * ctx,
  1273. struct ggml_tensor * a,
  1274. int64_t ne0,
  1275. int64_t ne1,
  1276. int64_t ne2,
  1277. int64_t ne3,
  1278. size_t nb1, // row stride in bytes
  1279. size_t nb2, // slice stride in bytes
  1280. size_t nb3,
  1281. size_t offset);
  1282. GGML_API struct ggml_tensor * ggml_permute(
  1283. struct ggml_context * ctx,
  1284. struct ggml_tensor * a,
  1285. int axis0,
  1286. int axis1,
  1287. int axis2,
  1288. int axis3);
  1289. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1290. GGML_API struct ggml_tensor * ggml_transpose(
  1291. struct ggml_context * ctx,
  1292. struct ggml_tensor * a);
  1293. // supports 4D a:
  1294. // a [n_embd, ne1, ne2, ne3]
  1295. // b I32 [n_rows, ne2, ne3, 1]
  1296. //
  1297. // return [n_embd, n_rows, ne2, ne3]
  1298. GGML_API struct ggml_tensor * ggml_get_rows(
  1299. struct ggml_context * ctx,
  1300. struct ggml_tensor * a, // data
  1301. struct ggml_tensor * b); // row indices
  1302. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1303. struct ggml_context * ctx,
  1304. struct ggml_tensor * a, // gradients of ggml_get_rows result
  1305. struct ggml_tensor * b, // row indices
  1306. struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
  1307. // a TD [n_embd, ne1, ne2, ne3]
  1308. // b TS [n_embd, n_rows, ne02, ne03] | ne02 == ne2, ne03 == ne3
  1309. // c I64 [n_rows, ne11, ne12, 1] | c[i] in [0, ne1)
  1310. //
  1311. // undefined behavior if destination rows overlap
  1312. //
  1313. // broadcast:
  1314. // ne2 % ne11 == 0
  1315. // ne3 % ne12 == 0
  1316. //
  1317. // return view(a)
  1318. GGML_API struct ggml_tensor * ggml_set_rows(
  1319. struct ggml_context * ctx,
  1320. struct ggml_tensor * a, // destination
  1321. struct ggml_tensor * b, // source
  1322. struct ggml_tensor * c); // row indices
  1323. GGML_API struct ggml_tensor * ggml_diag(
  1324. struct ggml_context * ctx,
  1325. struct ggml_tensor * a);
  1326. // set elements above the diagonal to -INF
  1327. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1328. struct ggml_context * ctx,
  1329. struct ggml_tensor * a,
  1330. int n_past);
  1331. // in-place, returns view(a)
  1332. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1333. struct ggml_context * ctx,
  1334. struct ggml_tensor * a,
  1335. int n_past);
  1336. // set elements above the diagonal to 0
  1337. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1338. struct ggml_context * ctx,
  1339. struct ggml_tensor * a,
  1340. int n_past);
  1341. // in-place, returns view(a)
  1342. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1343. struct ggml_context * ctx,
  1344. struct ggml_tensor * a,
  1345. int n_past);
  1346. GGML_API struct ggml_tensor * ggml_soft_max(
  1347. struct ggml_context * ctx,
  1348. struct ggml_tensor * a);
  1349. // in-place, returns view(a)
  1350. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1351. struct ggml_context * ctx,
  1352. struct ggml_tensor * a);
  1353. // a [ne0, ne01, ne02, ne03]
  1354. // mask [ne0, ne11, ne12, ne13] | ne11 >= ne01, F16 or F32, optional
  1355. //
  1356. // broadcast:
  1357. // ne02 % ne12 == 0
  1358. // ne03 % ne13 == 0
  1359. //
  1360. // fused soft_max(a*scale + mask*(ALiBi slope))
  1361. // max_bias = 0.0f for no ALiBi
  1362. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1363. struct ggml_context * ctx,
  1364. struct ggml_tensor * a,
  1365. struct ggml_tensor * mask,
  1366. float scale,
  1367. float max_bias);
  1368. GGML_API void ggml_soft_max_add_sinks(
  1369. struct ggml_tensor * a,
  1370. struct ggml_tensor * sinks);
  1371. GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
  1372. struct ggml_context * ctx,
  1373. struct ggml_tensor * a,
  1374. struct ggml_tensor * b,
  1375. float scale,
  1376. float max_bias);
  1377. // in-place, returns view(a)
  1378. GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
  1379. struct ggml_context * ctx,
  1380. struct ggml_tensor * a,
  1381. struct ggml_tensor * b,
  1382. float scale,
  1383. float max_bias);
  1384. // rotary position embedding
  1385. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1386. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1387. //
  1388. // b is an int32 vector with size a->ne[2], it contains the positions
  1389. GGML_API struct ggml_tensor * ggml_rope(
  1390. struct ggml_context * ctx,
  1391. struct ggml_tensor * a,
  1392. struct ggml_tensor * b,
  1393. int n_dims,
  1394. int mode);
  1395. // in-place, returns view(a)
  1396. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1397. struct ggml_context * ctx,
  1398. struct ggml_tensor * a,
  1399. struct ggml_tensor * b,
  1400. int n_dims,
  1401. int mode);
  1402. // custom RoPE
  1403. // c is freq factors (e.g. phi3-128k), (optional)
  1404. GGML_API struct ggml_tensor * ggml_rope_ext(
  1405. struct ggml_context * ctx,
  1406. struct ggml_tensor * a,
  1407. struct ggml_tensor * b,
  1408. struct ggml_tensor * c,
  1409. int n_dims,
  1410. int mode,
  1411. int n_ctx_orig,
  1412. float freq_base,
  1413. float freq_scale,
  1414. float ext_factor,
  1415. float attn_factor,
  1416. float beta_fast,
  1417. float beta_slow);
  1418. GGML_API struct ggml_tensor * ggml_rope_multi(
  1419. struct ggml_context * ctx,
  1420. struct ggml_tensor * a,
  1421. struct ggml_tensor * b,
  1422. struct ggml_tensor * c,
  1423. int n_dims,
  1424. int sections[GGML_MROPE_SECTIONS],
  1425. int mode,
  1426. int n_ctx_orig,
  1427. float freq_base,
  1428. float freq_scale,
  1429. float ext_factor,
  1430. float attn_factor,
  1431. float beta_fast,
  1432. float beta_slow);
  1433. // in-place, returns view(a)
  1434. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1435. struct ggml_context * ctx,
  1436. struct ggml_tensor * a,
  1437. struct ggml_tensor * b,
  1438. struct ggml_tensor * c,
  1439. int n_dims,
  1440. int mode,
  1441. int n_ctx_orig,
  1442. float freq_base,
  1443. float freq_scale,
  1444. float ext_factor,
  1445. float attn_factor,
  1446. float beta_fast,
  1447. float beta_slow);
  1448. GGML_API struct ggml_tensor * ggml_rope_multi_inplace(
  1449. struct ggml_context * ctx,
  1450. struct ggml_tensor * a,
  1451. struct ggml_tensor * b,
  1452. struct ggml_tensor * c,
  1453. int n_dims,
  1454. int sections[GGML_MROPE_SECTIONS],
  1455. int mode,
  1456. int n_ctx_orig,
  1457. float freq_base,
  1458. float freq_scale,
  1459. float ext_factor,
  1460. float attn_factor,
  1461. float beta_fast,
  1462. float beta_slow);
  1463. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1464. struct ggml_context * ctx,
  1465. struct ggml_tensor * a,
  1466. struct ggml_tensor * b,
  1467. int n_dims,
  1468. int mode,
  1469. int n_ctx_orig,
  1470. float freq_base,
  1471. float freq_scale,
  1472. float ext_factor,
  1473. float attn_factor,
  1474. float beta_fast,
  1475. float beta_slow),
  1476. "use ggml_rope_ext instead");
  1477. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1478. struct ggml_context * ctx,
  1479. struct ggml_tensor * a,
  1480. struct ggml_tensor * b,
  1481. int n_dims,
  1482. int mode,
  1483. int n_ctx_orig,
  1484. float freq_base,
  1485. float freq_scale,
  1486. float ext_factor,
  1487. float attn_factor,
  1488. float beta_fast,
  1489. float beta_slow),
  1490. "use ggml_rope_ext_inplace instead");
  1491. // compute correction dims for YaRN RoPE scaling
  1492. GGML_API void ggml_rope_yarn_corr_dims(
  1493. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1494. // rotary position embedding backward, i.e compute dx from dy
  1495. // a - dy
  1496. GGML_API struct ggml_tensor * ggml_rope_ext_back(
  1497. struct ggml_context * ctx,
  1498. struct ggml_tensor * a, // gradients of ggml_rope result
  1499. struct ggml_tensor * b, // positions
  1500. struct ggml_tensor * c, // freq factors
  1501. int n_dims,
  1502. int mode,
  1503. int n_ctx_orig,
  1504. float freq_base,
  1505. float freq_scale,
  1506. float ext_factor,
  1507. float attn_factor,
  1508. float beta_fast,
  1509. float beta_slow);
  1510. GGML_API struct ggml_tensor * ggml_rope_multi_back(
  1511. struct ggml_context * ctx,
  1512. struct ggml_tensor * a,
  1513. struct ggml_tensor * b,
  1514. struct ggml_tensor * c,
  1515. int n_dims,
  1516. int sections[4],
  1517. int mode,
  1518. int n_ctx_orig,
  1519. float freq_base,
  1520. float freq_scale,
  1521. float ext_factor,
  1522. float attn_factor,
  1523. float beta_fast,
  1524. float beta_slow);
  1525. // clamp
  1526. // in-place, returns view(a)
  1527. GGML_API struct ggml_tensor * ggml_clamp(
  1528. struct ggml_context * ctx,
  1529. struct ggml_tensor * a,
  1530. float min,
  1531. float max);
  1532. // im2col
  1533. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1534. GGML_API struct ggml_tensor * ggml_im2col(
  1535. struct ggml_context * ctx,
  1536. struct ggml_tensor * a, // convolution kernel
  1537. struct ggml_tensor * b, // data
  1538. int s0, // stride dimension 0
  1539. int s1, // stride dimension 1
  1540. int p0, // padding dimension 0
  1541. int p1, // padding dimension 1
  1542. int d0, // dilation dimension 0
  1543. int d1, // dilation dimension 1
  1544. bool is_2D,
  1545. enum ggml_type dst_type);
  1546. GGML_API struct ggml_tensor * ggml_im2col_back(
  1547. struct ggml_context * ctx,
  1548. struct ggml_tensor * a, // convolution kernel
  1549. struct ggml_tensor * b, // gradient of im2col output
  1550. int64_t * ne, // shape of im2col input
  1551. int s0, // stride dimension 0
  1552. int s1, // stride dimension 1
  1553. int p0, // padding dimension 0
  1554. int p1, // padding dimension 1
  1555. int d0, // dilation dimension 0
  1556. int d1, // dilation dimension 1
  1557. bool is_2D);
  1558. GGML_API struct ggml_tensor * ggml_conv_1d(
  1559. struct ggml_context * ctx,
  1560. struct ggml_tensor * a, // convolution kernel
  1561. struct ggml_tensor * b, // data
  1562. int s0, // stride
  1563. int p0, // padding
  1564. int d0); // dilation
  1565. // conv_1d with padding = half
  1566. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1567. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1568. struct ggml_context * ctx,
  1569. struct ggml_tensor * a, // convolution kernel
  1570. struct ggml_tensor * b, // data
  1571. int s, // stride
  1572. int d); // dilation
  1573. // depthwise
  1574. // TODO: this is very likely wrong for some cases! - needs more testing
  1575. GGML_API struct ggml_tensor * ggml_conv_1d_dw(
  1576. struct ggml_context * ctx,
  1577. struct ggml_tensor * a, // convolution kernel
  1578. struct ggml_tensor * b, // data
  1579. int s0, // stride
  1580. int p0, // padding
  1581. int d0); // dilation
  1582. GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph(
  1583. struct ggml_context * ctx,
  1584. struct ggml_tensor * a, // convolution kernel
  1585. struct ggml_tensor * b, // data
  1586. int s0, // stride
  1587. int d0); // dilation
  1588. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1589. struct ggml_context * ctx,
  1590. struct ggml_tensor * a, // convolution kernel
  1591. struct ggml_tensor * b, // data
  1592. int s0, // stride
  1593. int p0, // padding
  1594. int d0); // dilation
  1595. GGML_API struct ggml_tensor * ggml_conv_2d(
  1596. struct ggml_context * ctx,
  1597. struct ggml_tensor * a, // convolution kernel
  1598. struct ggml_tensor * b, // data
  1599. int s0, // stride dimension 0
  1600. int s1, // stride dimension 1
  1601. int p0, // padding dimension 0
  1602. int p1, // padding dimension 1
  1603. int d0, // dilation dimension 0
  1604. int d1); // dilation dimension 1
  1605. GGML_API struct ggml_tensor * ggml_im2col_3d(
  1606. struct ggml_context * ctx,
  1607. struct ggml_tensor * a,
  1608. struct ggml_tensor * b,
  1609. int64_t IC,
  1610. int s0, // stride width
  1611. int s1, // stride height
  1612. int s2, // stride depth
  1613. int p0, // padding width
  1614. int p1, // padding height
  1615. int p2, // padding depth
  1616. int d0, // dilation width
  1617. int d1, // dilation height
  1618. int d2, // dilation depth
  1619. enum ggml_type dst_type);
  1620. // a: [OC*IC, KD, KH, KW]
  1621. // b: [N*IC, ID, IH, IW]
  1622. // result: [N*OC, OD, OH, OW]
  1623. GGML_API struct ggml_tensor * ggml_conv_3d(
  1624. struct ggml_context * ctx,
  1625. struct ggml_tensor * a,
  1626. struct ggml_tensor * b,
  1627. int64_t IC,
  1628. int s0, // stride width
  1629. int s1, // stride height
  1630. int s2, // stride depth
  1631. int p0, // padding width
  1632. int p1, // padding height
  1633. int p2, // padding depth
  1634. int d0, // dilation width
  1635. int d1, // dilation height
  1636. int d2 // dilation depth
  1637. );
  1638. // kernel size is a->ne[0] x a->ne[1]
  1639. // stride is equal to kernel size
  1640. // padding is zero
  1641. // example:
  1642. // a: 16 16 3 768
  1643. // b: 1024 1024 3 1
  1644. // res: 64 64 768 1
  1645. // used in sam
  1646. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1647. struct ggml_context * ctx,
  1648. struct ggml_tensor * a,
  1649. struct ggml_tensor * b);
  1650. // kernel size is a->ne[0] x a->ne[1]
  1651. // stride is 1
  1652. // padding is half
  1653. // example:
  1654. // a: 3 3 256 256
  1655. // b: 64 64 256 1
  1656. // res: 64 64 256 1
  1657. // used in sam
  1658. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1659. struct ggml_context * ctx,
  1660. struct ggml_tensor * a,
  1661. struct ggml_tensor * b);
  1662. // depthwise (via im2col and mul_mat)
  1663. GGML_API struct ggml_tensor * ggml_conv_2d_dw(
  1664. struct ggml_context * ctx,
  1665. struct ggml_tensor * a, // convolution kernel
  1666. struct ggml_tensor * b, // data
  1667. int s0, // stride dimension 0
  1668. int s1, // stride dimension 1
  1669. int p0, // padding dimension 0
  1670. int p1, // padding dimension 1
  1671. int d0, // dilation dimension 0
  1672. int d1); // dilation dimension 1
  1673. // Depthwise 2D convolution
  1674. // may be faster than ggml_conv_2d_dw, but not available in all backends
  1675. // a: KW KH 1 C convolution kernel
  1676. // b: W H C N input data
  1677. // res: W_out H_out C N
  1678. GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
  1679. struct ggml_context * ctx,
  1680. struct ggml_tensor * a,
  1681. struct ggml_tensor * b,
  1682. int stride0,
  1683. int stride1,
  1684. int pad0,
  1685. int pad1,
  1686. int dilation0,
  1687. int dilation1);
  1688. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1689. struct ggml_context * ctx,
  1690. struct ggml_tensor * a,
  1691. struct ggml_tensor * b,
  1692. int stride);
  1693. GGML_API struct ggml_tensor * ggml_conv_2d_direct(
  1694. struct ggml_context * ctx,
  1695. struct ggml_tensor * a, // convolution kernel [KW, KH, IC, OC]
  1696. struct ggml_tensor * b, // input data [W, H, C, N]
  1697. int s0, // stride dimension 0
  1698. int s1, // stride dimension 1
  1699. int p0, // padding dimension 0
  1700. int p1, // padding dimension 1
  1701. int d0, // dilation dimension 0
  1702. int d1); // dilation dimension 1
  1703. GGML_API struct ggml_tensor * ggml_conv_3d_direct(
  1704. struct ggml_context * ctx,
  1705. struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
  1706. struct ggml_tensor * b, // input [W, H, D, C * N]
  1707. int s0, // stride
  1708. int s1,
  1709. int s2,
  1710. int p0, // padding
  1711. int p1,
  1712. int p2,
  1713. int d0, // dilation
  1714. int d1,
  1715. int d2,
  1716. int n_channels,
  1717. int n_batch,
  1718. int n_channels_out);
  1719. enum ggml_op_pool {
  1720. GGML_OP_POOL_MAX,
  1721. GGML_OP_POOL_AVG,
  1722. GGML_OP_POOL_COUNT,
  1723. };
  1724. GGML_API struct ggml_tensor * ggml_pool_1d(
  1725. struct ggml_context * ctx,
  1726. struct ggml_tensor * a,
  1727. enum ggml_op_pool op,
  1728. int k0, // kernel size
  1729. int s0, // stride
  1730. int p0); // padding
  1731. // the result will have 2*p0 padding for the first dimension
  1732. // and 2*p1 padding for the second dimension
  1733. GGML_API struct ggml_tensor * ggml_pool_2d(
  1734. struct ggml_context * ctx,
  1735. struct ggml_tensor * a,
  1736. enum ggml_op_pool op,
  1737. int k0,
  1738. int k1,
  1739. int s0,
  1740. int s1,
  1741. float p0,
  1742. float p1);
  1743. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1744. struct ggml_context * ctx,
  1745. struct ggml_tensor * a,
  1746. struct ggml_tensor * af, // "a"/input used in forward pass
  1747. enum ggml_op_pool op,
  1748. int k0,
  1749. int k1,
  1750. int s0,
  1751. int s1,
  1752. float p0,
  1753. float p1);
  1754. enum ggml_scale_mode {
  1755. GGML_SCALE_MODE_NEAREST = 0,
  1756. GGML_SCALE_MODE_BILINEAR = 1,
  1757. GGML_SCALE_MODE_COUNT
  1758. };
  1759. enum ggml_scale_flag {
  1760. GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
  1761. };
  1762. // interpolate
  1763. // multiplies ne0 and ne1 by scale factor
  1764. GGML_API struct ggml_tensor * ggml_upscale(
  1765. struct ggml_context * ctx,
  1766. struct ggml_tensor * a,
  1767. int scale_factor,
  1768. enum ggml_scale_mode mode);
  1769. // interpolate
  1770. // interpolate scale to specified dimensions
  1771. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_upscale_ext(
  1772. struct ggml_context * ctx,
  1773. struct ggml_tensor * a,
  1774. int ne0,
  1775. int ne1,
  1776. int ne2,
  1777. int ne3,
  1778. enum ggml_scale_mode mode),
  1779. "use ggml_interpolate instead");
  1780. // Up- or downsamples the input to the specified size.
  1781. // 2D scale modes (eg. bilinear) are applied to the first two dimensions.
  1782. GGML_API struct ggml_tensor * ggml_interpolate(
  1783. struct ggml_context * ctx,
  1784. struct ggml_tensor * a,
  1785. int64_t ne0,
  1786. int64_t ne1,
  1787. int64_t ne2,
  1788. int64_t ne3,
  1789. uint32_t mode); // ggml_scale_mode [ | ggml_scale_flag...]
  1790. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1791. GGML_API struct ggml_tensor * ggml_pad(
  1792. struct ggml_context * ctx,
  1793. struct ggml_tensor * a,
  1794. int p0,
  1795. int p1,
  1796. int p2,
  1797. int p3);
  1798. GGML_API struct ggml_tensor * ggml_pad_ext(
  1799. struct ggml_context * ctx,
  1800. struct ggml_tensor * a,
  1801. int lp0,
  1802. int rp0,
  1803. int lp1,
  1804. int rp1,
  1805. int lp2,
  1806. int rp2,
  1807. int lp3,
  1808. int rp3
  1809. );
  1810. // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
  1811. GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
  1812. struct ggml_context * ctx,
  1813. struct ggml_tensor * a,
  1814. int p0,
  1815. int p1);
  1816. // Move tensor elements by an offset given for each dimension. Elements that
  1817. // are shifted beyond the last position are wrapped around to the beginning.
  1818. GGML_API struct ggml_tensor * ggml_roll(
  1819. struct ggml_context * ctx,
  1820. struct ggml_tensor * a,
  1821. int shift0,
  1822. int shift1,
  1823. int shift2,
  1824. int shift3);
  1825. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1826. // timesteps: [N,]
  1827. // return: [N, dim]
  1828. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1829. struct ggml_context * ctx,
  1830. struct ggml_tensor * timesteps,
  1831. int dim,
  1832. int max_period);
  1833. // sort rows
  1834. enum ggml_sort_order {
  1835. GGML_SORT_ORDER_ASC,
  1836. GGML_SORT_ORDER_DESC,
  1837. };
  1838. GGML_API struct ggml_tensor * ggml_argsort(
  1839. struct ggml_context * ctx,
  1840. struct ggml_tensor * a,
  1841. enum ggml_sort_order order);
  1842. GGML_API struct ggml_tensor * ggml_arange(
  1843. struct ggml_context * ctx,
  1844. float start,
  1845. float stop,
  1846. float step);
  1847. // top k elements per row
  1848. GGML_API struct ggml_tensor * ggml_top_k(
  1849. struct ggml_context * ctx,
  1850. struct ggml_tensor * a,
  1851. int k);
  1852. #define GGML_KQ_MASK_PAD 64
  1853. // q: [n_embd_k, n_batch, n_head, ne3 ]
  1854. // k: [n_embd_k, n_kv, n_head_kv, ne3 ]
  1855. // v: [n_embd_v, n_kv, n_head_kv, ne3 ] !! not transposed !!
  1856. // mask: [n_kv, n_batch_pad, ne32, ne33] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1857. // res: [n_embd_v, n_head, n_batch, ne3 ] !! permuted !!
  1858. //
  1859. // broadcast:
  1860. // n_head % n_head_kv == 0
  1861. // n_head % ne32 == 0
  1862. // ne3 % ne33 == 0
  1863. //
  1864. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1865. struct ggml_context * ctx,
  1866. struct ggml_tensor * q,
  1867. struct ggml_tensor * k,
  1868. struct ggml_tensor * v,
  1869. struct ggml_tensor * mask,
  1870. float scale,
  1871. float max_bias,
  1872. float logit_softcap);
  1873. GGML_API void ggml_flash_attn_ext_set_prec(
  1874. struct ggml_tensor * a,
  1875. enum ggml_prec prec);
  1876. GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
  1877. const struct ggml_tensor * a);
  1878. GGML_API void ggml_flash_attn_ext_add_sinks(
  1879. struct ggml_tensor * a,
  1880. struct ggml_tensor * sinks);
  1881. // TODO: needs to be adapted to ggml_flash_attn_ext
  1882. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1883. struct ggml_context * ctx,
  1884. struct ggml_tensor * q,
  1885. struct ggml_tensor * k,
  1886. struct ggml_tensor * v,
  1887. struct ggml_tensor * d,
  1888. bool masked);
  1889. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1890. struct ggml_context * ctx,
  1891. struct ggml_tensor * sx,
  1892. struct ggml_tensor * c);
  1893. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1894. struct ggml_context * ctx,
  1895. struct ggml_tensor * s,
  1896. struct ggml_tensor * x,
  1897. struct ggml_tensor * dt,
  1898. struct ggml_tensor * A,
  1899. struct ggml_tensor * B,
  1900. struct ggml_tensor * C,
  1901. struct ggml_tensor * ids);
  1902. // partition into non-overlapping windows with padding if needed
  1903. // example:
  1904. // a: 768 64 64 1
  1905. // w: 14
  1906. // res: 768 14 14 25
  1907. // used in sam
  1908. GGML_API struct ggml_tensor * ggml_win_part(
  1909. struct ggml_context * ctx,
  1910. struct ggml_tensor * a,
  1911. int w);
  1912. // reverse of ggml_win_part
  1913. // used in sam
  1914. GGML_API struct ggml_tensor * ggml_win_unpart(
  1915. struct ggml_context * ctx,
  1916. struct ggml_tensor * a,
  1917. int w0,
  1918. int h0,
  1919. int w);
  1920. GGML_API struct ggml_tensor * ggml_unary(
  1921. struct ggml_context * ctx,
  1922. struct ggml_tensor * a,
  1923. enum ggml_unary_op op);
  1924. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1925. struct ggml_context * ctx,
  1926. struct ggml_tensor * a,
  1927. enum ggml_unary_op op);
  1928. // used in sam
  1929. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1930. struct ggml_context * ctx,
  1931. struct ggml_tensor * a,
  1932. int qh,
  1933. int kh);
  1934. // used in sam
  1935. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1936. struct ggml_context * ctx,
  1937. struct ggml_tensor * a,
  1938. struct ggml_tensor * pw,
  1939. struct ggml_tensor * ph);
  1940. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1941. struct ggml_context * ctx,
  1942. struct ggml_tensor * a,
  1943. struct ggml_tensor * pw,
  1944. struct ggml_tensor * ph);
  1945. GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
  1946. struct ggml_context * ctx,
  1947. struct ggml_tensor * k,
  1948. struct ggml_tensor * v,
  1949. struct ggml_tensor * r,
  1950. struct ggml_tensor * tf,
  1951. struct ggml_tensor * td,
  1952. struct ggml_tensor * state);
  1953. GGML_API struct ggml_tensor * ggml_gated_linear_attn(
  1954. struct ggml_context * ctx,
  1955. struct ggml_tensor * k,
  1956. struct ggml_tensor * v,
  1957. struct ggml_tensor * q,
  1958. struct ggml_tensor * g,
  1959. struct ggml_tensor * state,
  1960. float scale);
  1961. // Delta-Net linear layer activation
  1962. // Implements the complete Delta-Net gated linear attention mechanism
  1963. // This includes causal convolution preprocessing and gated delta rule computation
  1964. // k, v, q, g: [S, H, n_tokens, n_seqs] - key, value, query, gate tensors
  1965. // conv_weight: [conv_dim, 1, conv_kernel_size] - convolution kernel weights
  1966. // conv_bias: [conv_dim] - convolution bias (optional, can be NULL)
  1967. // beta: [H, n_tokens, n_seqs] - beta parameter for delta rule
  1968. // state: [S, S, H, n_seqs] - recurrent state tensor
  1969. // chunk_size: chunk size for chunked computation (0 for recurrent mode)
  1970. // use_qk_l2norm: whether to apply L2 normalization to query and key
  1971. // scale: attention scaling factor
  1972. GGML_API struct ggml_tensor * ggml_delta_net(
  1973. struct ggml_context * ctx,
  1974. struct ggml_tensor * k,
  1975. struct ggml_tensor * v,
  1976. struct ggml_tensor * q,
  1977. struct ggml_tensor * g,
  1978. struct ggml_tensor * conv_weight,
  1979. struct ggml_tensor * conv_bias,
  1980. struct ggml_tensor * beta,
  1981. struct ggml_tensor * state,
  1982. int chunk_size,
  1983. bool use_qk_l2norm,
  1984. float scale);
  1985. GGML_API struct ggml_tensor * ggml_rwkv_wkv7(
  1986. struct ggml_context * ctx,
  1987. struct ggml_tensor * r,
  1988. struct ggml_tensor * w,
  1989. struct ggml_tensor * k,
  1990. struct ggml_tensor * v,
  1991. struct ggml_tensor * a,
  1992. struct ggml_tensor * b,
  1993. struct ggml_tensor * state);
  1994. // custom operators
  1995. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1996. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1997. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1998. #define GGML_N_TASKS_MAX (-1)
  1999. // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
  2000. GGML_API struct ggml_tensor * ggml_map_custom1(
  2001. struct ggml_context * ctx,
  2002. struct ggml_tensor * a,
  2003. ggml_custom1_op_t fun,
  2004. int n_tasks,
  2005. void * userdata);
  2006. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  2007. struct ggml_context * ctx,
  2008. struct ggml_tensor * a,
  2009. ggml_custom1_op_t fun,
  2010. int n_tasks,
  2011. void * userdata);
  2012. GGML_API struct ggml_tensor * ggml_map_custom2(
  2013. struct ggml_context * ctx,
  2014. struct ggml_tensor * a,
  2015. struct ggml_tensor * b,
  2016. ggml_custom2_op_t fun,
  2017. int n_tasks,
  2018. void * userdata);
  2019. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  2020. struct ggml_context * ctx,
  2021. struct ggml_tensor * a,
  2022. struct ggml_tensor * b,
  2023. ggml_custom2_op_t fun,
  2024. int n_tasks,
  2025. void * userdata);
  2026. GGML_API struct ggml_tensor * ggml_map_custom3(
  2027. struct ggml_context * ctx,
  2028. struct ggml_tensor * a,
  2029. struct ggml_tensor * b,
  2030. struct ggml_tensor * c,
  2031. ggml_custom3_op_t fun,
  2032. int n_tasks,
  2033. void * userdata);
  2034. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  2035. struct ggml_context * ctx,
  2036. struct ggml_tensor * a,
  2037. struct ggml_tensor * b,
  2038. struct ggml_tensor * c,
  2039. ggml_custom3_op_t fun,
  2040. int n_tasks,
  2041. void * userdata);
  2042. typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
  2043. GGML_API struct ggml_tensor * ggml_custom_4d(
  2044. struct ggml_context * ctx,
  2045. enum ggml_type type,
  2046. int64_t ne0,
  2047. int64_t ne1,
  2048. int64_t ne2,
  2049. int64_t ne3,
  2050. struct ggml_tensor ** args,
  2051. int n_args,
  2052. ggml_custom_op_t fun,
  2053. int n_tasks,
  2054. void * userdata);
  2055. GGML_API struct ggml_tensor * ggml_custom_inplace(
  2056. struct ggml_context * ctx,
  2057. struct ggml_tensor * a,
  2058. struct ggml_tensor ** args,
  2059. int n_args,
  2060. ggml_custom_op_t fun,
  2061. int n_tasks,
  2062. void * userdata);
  2063. // loss function
  2064. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  2065. struct ggml_context * ctx,
  2066. struct ggml_tensor * a, // logits
  2067. struct ggml_tensor * b); // labels
  2068. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  2069. struct ggml_context * ctx,
  2070. struct ggml_tensor * a, // logits
  2071. struct ggml_tensor * b, // labels
  2072. struct ggml_tensor * c); // gradients of cross_entropy_loss result
  2073. // AdamW optimizer step
  2074. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  2075. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  2076. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  2077. struct ggml_context * ctx,
  2078. struct ggml_tensor * a,
  2079. struct ggml_tensor * grad,
  2080. struct ggml_tensor * m,
  2081. struct ggml_tensor * v,
  2082. struct ggml_tensor * adamw_params); // parameters such as the learning rate
  2083. // stochastic gradient descent step (with weight decay)
  2084. GGML_API struct ggml_tensor * ggml_opt_step_sgd(
  2085. struct ggml_context * ctx,
  2086. struct ggml_tensor * a,
  2087. struct ggml_tensor * grad,
  2088. struct ggml_tensor * sgd_params); // alpha, weight decay
  2089. //
  2090. // automatic differentiation
  2091. //
  2092. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  2093. GGML_API void ggml_build_backward_expand(
  2094. struct ggml_context * ctx, // context for gradient computation
  2095. struct ggml_cgraph * cgraph,
  2096. struct ggml_tensor ** grad_accs);
  2097. // graph allocation in a context
  2098. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  2099. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  2100. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
  2101. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  2102. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  2103. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  2104. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  2105. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  2106. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  2107. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  2108. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  2109. GGML_API size_t ggml_graph_overhead(void);
  2110. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  2111. GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
  2112. GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  2113. GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  2114. // print info and performance information for the graph
  2115. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  2116. // dump the graph into a file using the dot format
  2117. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  2118. // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
  2119. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  2120. // Set callback for all future logging events.
  2121. // If this is not called, or NULL is supplied, everything is output on stderr.
  2122. GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
  2123. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  2124. //
  2125. // quantization
  2126. //
  2127. // - ggml_quantize_init can be called multiple times with the same type
  2128. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  2129. // automatically called by ggml_quantize_chunk for convenience
  2130. //
  2131. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  2132. // call this at the end of the program to avoid memory leaks
  2133. //
  2134. // note: these are thread-safe
  2135. //
  2136. GGML_API void ggml_quantize_init(enum ggml_type type);
  2137. GGML_API void ggml_quantize_free(void);
  2138. // some quantization type cannot be used without an importance matrix
  2139. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  2140. // calls ggml_quantize_init internally (i.e. can allocate memory)
  2141. GGML_API size_t ggml_quantize_chunk(
  2142. enum ggml_type type,
  2143. const float * src,
  2144. void * dst,
  2145. int64_t start,
  2146. int64_t nrows,
  2147. int64_t n_per_row,
  2148. const float * imatrix);
  2149. #ifdef __cplusplus
  2150. // restrict not standard in C++
  2151. # if defined(__GNUC__)
  2152. # define GGML_RESTRICT __restrict__
  2153. # elif defined(__clang__)
  2154. # define GGML_RESTRICT __restrict
  2155. # elif defined(_MSC_VER)
  2156. # define GGML_RESTRICT __restrict
  2157. # else
  2158. # define GGML_RESTRICT
  2159. # endif
  2160. #else
  2161. # if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
  2162. # define GGML_RESTRICT __restrict
  2163. # else
  2164. # define GGML_RESTRICT restrict
  2165. # endif
  2166. #endif
  2167. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2168. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2169. struct ggml_type_traits {
  2170. const char * type_name;
  2171. int64_t blck_size;
  2172. int64_t blck_size_interleave; // interleave elements in blocks
  2173. size_t type_size;
  2174. bool is_quantized;
  2175. ggml_to_float_t to_float;
  2176. ggml_from_float_t from_float_ref;
  2177. };
  2178. GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
  2179. // ggml threadpool
  2180. // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
  2181. // the goal should be to create an API that other backends can use move everything to the ggml base
  2182. // scheduling priorities
  2183. enum ggml_sched_priority {
  2184. GGML_SCHED_PRIO_LOW = -1,
  2185. GGML_SCHED_PRIO_NORMAL,
  2186. GGML_SCHED_PRIO_MEDIUM,
  2187. GGML_SCHED_PRIO_HIGH,
  2188. GGML_SCHED_PRIO_REALTIME
  2189. };
  2190. // threadpool params
  2191. // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
  2192. struct ggml_threadpool_params {
  2193. bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
  2194. int n_threads; // number of threads
  2195. enum ggml_sched_priority prio; // thread priority
  2196. uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
  2197. bool strict_cpu; // strict cpu placement
  2198. bool paused; // start in paused state
  2199. };
  2200. struct ggml_threadpool; // forward declaration, see ggml.c
  2201. typedef struct ggml_threadpool * ggml_threadpool_t;
  2202. GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
  2203. GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
  2204. GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
  2205. #ifdef __cplusplus
  2206. }
  2207. #endif