common.h 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include <string>
  5. #include <vector>
  6. #include <random>
  7. #include <thread>
  8. #include <unordered_map>
  9. #include <tuple>
  10. //
  11. // CLI argument parsing
  12. //
  13. int32_t get_num_physical_cores();
  14. struct gpt_params {
  15. uint32_t seed = -1; // RNG seed
  16. int32_t n_threads = get_num_physical_cores();
  17. int32_t n_predict = -1; // new tokens to predict
  18. int32_t n_ctx = 512; // context size
  19. int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
  20. int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
  21. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  22. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  23. int32_t n_gpu_layers = 0; // number of layers to store in VRAM
  24. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  25. float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
  26. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  27. float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; // rms norm epsilon
  28. float rope_freq_base = 10000.0f; // RoPE base frequency
  29. float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
  30. // sampling parameters
  31. std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
  32. int32_t top_k = 40; // <= 0 to use vocab size
  33. float top_p = 0.95f; // 1.0 = disabled
  34. float tfs_z = 1.00f; // 1.0 = disabled
  35. float typical_p = 1.00f; // 1.0 = disabled
  36. float temp = 0.80f; // 1.0 = disabled
  37. float repeat_penalty = 1.10f; // 1.0 = disabled
  38. int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  39. float frequency_penalty = 0.00f; // 0.0 = disabled
  40. float presence_penalty = 0.00f; // 0.0 = disabled
  41. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  42. float mirostat_tau = 5.00f; // target entropy
  43. float mirostat_eta = 0.10f; // learning rate
  44. // Classifier-Free Guidance
  45. // https://arxiv.org/abs/2306.17806
  46. std::string cfg_negative_prompt; // string to help guidance
  47. float cfg_scale = 1.f; // How strong is guidance
  48. std::string model = "models/7B/ggml-model.bin"; // model path
  49. std::string model_alias = "unknown"; // model alias
  50. std::string prompt = "";
  51. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  52. std::string input_prefix = ""; // string to prefix user inputs with
  53. std::string input_suffix = ""; // string to suffix user inputs with
  54. std::string grammar = ""; // optional BNF-like grammar to constrain sampling
  55. std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
  56. std::string lora_adapter = ""; // lora adapter path
  57. std::string lora_base = ""; // base model path for the lora adapter
  58. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  59. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  60. bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
  61. bool mul_mat_q = false; // if true, use experimental mul_mat_q kernels
  62. bool memory_f16 = true; // use f16 instead of f32 for memory kv
  63. bool random_prompt = false; // do not randomize prompt if none provided
  64. bool use_color = false; // use color to distinguish generations and inputs
  65. bool interactive = false; // interactive mode
  66. bool prompt_cache_all = false; // save user input and generations to prompt cache
  67. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  68. bool embedding = false; // get only sentence embedding
  69. bool interactive_first = false; // wait for user input immediately
  70. bool multiline_input = false; // reverse the usage of `\`
  71. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  72. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  73. bool instruct = false; // instruction mode (used for Alpaca models)
  74. bool penalize_nl = true; // consider newlines as a repeatable token
  75. bool perplexity = false; // compute perplexity over the prompt
  76. bool use_mmap = true; // use mmap for faster loads
  77. bool use_mlock = false; // use mlock to keep model in memory
  78. bool mem_test = false; // compute maximum memory usage
  79. bool numa = false; // attempt optimizations that help on some NUMA systems
  80. bool export_cgraph = false; // export the computation graph
  81. bool verbose_prompt = false; // print prompt tokens before generation
  82. };
  83. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  84. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  85. std::string gpt_random_prompt(std::mt19937 & rng);
  86. //
  87. // Vocab utils
  88. //
  89. std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);
  90. //
  91. // Model utils
  92. //
  93. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params);
  94. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);