ggml.c 317 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. #define GGML_MLOCK_SUPPORT 0
  71. #ifdef __has_include
  72. #if __has_include(<sys/mman.h>)
  73. #undef GGML_MLOCK_SUPPORT
  74. #define GGML_MLOCK_SUPPORT 1
  75. #include <sys/mman.h>
  76. #endif
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) (x)
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  141. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  142. #elif defined(__POWER9_VECTOR__)
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  145. /* the inline asm below is about 12% faster than the lookup method */
  146. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  147. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  148. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  149. register float f;
  150. register double d;
  151. __asm__(
  152. "mtfprd %0,%2\n"
  153. "xscvhpdp %0,%0\n"
  154. "frsp %1,%0\n" :
  155. /* temp */ "=d"(d),
  156. /* out */ "=f"(f):
  157. /* in */ "r"(h));
  158. return f;
  159. }
  160. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  161. register double d;
  162. register ggml_fp16_t r;
  163. __asm__( /* xscvdphp can work on double or single precision */
  164. "xscvdphp %0,%2\n"
  165. "mffprd %1,%0\n" :
  166. /* temp */ "=d"(d),
  167. /* out */ "=r"(r):
  168. /* in */ "f"(f));
  169. return r;
  170. }
  171. #else
  172. // FP16 <-> FP32
  173. // ref: https://github.com/Maratyszcza/FP16
  174. static inline float fp32_from_bits(uint32_t w) {
  175. union {
  176. uint32_t as_bits;
  177. float as_value;
  178. } fp32;
  179. fp32.as_bits = w;
  180. return fp32.as_value;
  181. }
  182. static inline uint32_t fp32_to_bits(float f) {
  183. union {
  184. float as_value;
  185. uint32_t as_bits;
  186. } fp32;
  187. fp32.as_value = f;
  188. return fp32.as_bits;
  189. }
  190. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  191. const uint32_t w = (uint32_t) h << 16;
  192. const uint32_t sign = w & UINT32_C(0x80000000);
  193. const uint32_t two_w = w + w;
  194. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  195. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  196. const float exp_scale = 0x1.0p-112f;
  197. #else
  198. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  199. #endif
  200. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  201. const uint32_t magic_mask = UINT32_C(126) << 23;
  202. const float magic_bias = 0.5f;
  203. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  204. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  205. const uint32_t result = sign |
  206. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  207. return fp32_from_bits(result);
  208. }
  209. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  210. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  211. const float scale_to_inf = 0x1.0p+112f;
  212. const float scale_to_zero = 0x1.0p-110f;
  213. #else
  214. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  215. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  216. #endif
  217. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  218. const uint32_t w = fp32_to_bits(f);
  219. const uint32_t shl1_w = w + w;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  222. if (bias < UINT32_C(0x71000000)) {
  223. bias = UINT32_C(0x71000000);
  224. }
  225. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  226. const uint32_t bits = fp32_to_bits(base);
  227. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  228. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  229. const uint32_t nonsign = exp_bits + mantissa_bits;
  230. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  231. }
  232. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  233. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  234. #endif // __F16C__
  235. #endif // __ARM_NEON
  236. //
  237. // global data
  238. //
  239. // precomputed gelu table for f16 (128 KB)
  240. static ggml_fp16_t table_gelu_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB)
  246. static float table_f32_f16[1 << 16];
  247. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  248. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  249. // This is also true for POWER9.
  250. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  251. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  252. uint16_t s;
  253. memcpy(&s, &f, sizeof(uint16_t));
  254. return table_f32_f16[s];
  255. }
  256. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  257. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  258. #endif
  259. // note: do not use these inside ggml.c
  260. // these are meant to be used via the ggml.h API
  261. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  262. return GGML_FP16_TO_FP32(x);
  263. }
  264. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  265. return GGML_FP32_TO_FP16(x);
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER frequency;
  274. QueryPerformanceFrequency(&frequency);
  275. timer_freq = frequency.QuadPart;
  276. }
  277. int64_t ggml_time_ms(void) {
  278. LARGE_INTEGER t;
  279. QueryPerformanceCounter(&t);
  280. return (t.QuadPart * 1000) / timer_freq;
  281. }
  282. int64_t ggml_time_us(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000000) / timer_freq;
  286. }
  287. #else
  288. void ggml_time_init(void) {}
  289. int64_t ggml_time_ms(void) {
  290. struct timespec ts;
  291. clock_gettime(CLOCK_MONOTONIC, &ts);
  292. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  293. }
  294. int64_t ggml_time_us(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  298. }
  299. #endif
  300. int64_t ggml_cycles(void) {
  301. return clock();
  302. }
  303. int64_t ggml_cycles_per_ms(void) {
  304. return CLOCKS_PER_SEC/1000;
  305. }
  306. #ifdef GGML_PERF
  307. #define ggml_perf_time_ms() ggml_time_ms()
  308. #define ggml_perf_time_us() ggml_time_us()
  309. #define ggml_perf_cycles() ggml_cycles()
  310. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  311. #else
  312. #define ggml_perf_time_ms() 0
  313. #define ggml_perf_time_us() 0
  314. #define ggml_perf_cycles() 0
  315. #define ggml_perf_cycles_per_ms() 0
  316. #endif
  317. //
  318. // cache line
  319. //
  320. #if defined(__cpp_lib_hardware_interference_size)
  321. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  322. #else
  323. #if defined(__POWER9_VECTOR__)
  324. #define CACHE_LINE_SIZE 128
  325. #else
  326. #define CACHE_LINE_SIZE 64
  327. #endif
  328. #endif
  329. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  330. //
  331. // quantization
  332. //
  333. #define QK 32
  334. // AVX routines provided by GH user Const-me
  335. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  336. #if __AVX2__ || __AVX512F__
  337. // Unpack 32 4-bit fields into 32 bytes
  338. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  339. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  340. {
  341. // Load 16 bytes from memory
  342. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  343. // Expand bytes into uint16_t values
  344. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  345. // Unpack values into individual bytes
  346. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  347. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  348. __m256i low = _mm256_and_si256( lowMask, bytes );
  349. high = _mm256_slli_epi16( high, 4 );
  350. bytes = _mm256_or_si256( low, high );
  351. return bytes;
  352. }
  353. static inline __m128i packNibbles( __m256i bytes )
  354. {
  355. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  356. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  357. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  358. __m256i low = _mm256_and_si256( lowByte, bytes );
  359. high = _mm256_srli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. // Compress uint16_t lanes into bytes
  362. __m128i r0 = _mm256_castsi256_si128( bytes );
  363. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  364. return _mm_packus_epi16( r0, r1 );
  365. }
  366. #endif
  367. // method 5
  368. // blocks of QK elements
  369. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  370. // reference implementation for deterministic creation of model files
  371. static void quantize_row_q4_0_reference(const float * restrict x, void * restrict y, int k) {
  372. assert(k % QK == 0);
  373. const int nb = k / QK;
  374. const size_t bs = sizeof(float) + QK/2;
  375. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  376. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  377. uint8_t pp[QK/2];
  378. for (int i = 0; i < nb; i++) {
  379. float amax = 0.0f; // absolute max
  380. for (int l = 0; l < QK; l++) {
  381. const float v = x[i*QK + l];
  382. amax = MAX(amax, fabsf(v));
  383. }
  384. const float d = amax / ((1 << 3) - 1);
  385. const float id = d ? 1.0f/d : 0.0f;
  386. *(float *)pd = d;
  387. pd += bs;
  388. for (int l = 0; l < QK; l += 2) {
  389. const float v0 = x[i*QK + l + 0]*id;
  390. const float v1 = x[i*QK + l + 1]*id;
  391. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  392. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  393. assert(vi0 >= 0 && vi0 < 16);
  394. assert(vi1 >= 0 && vi1 < 16);
  395. pp[l/2] = vi0 | (vi1 << 4);
  396. }
  397. memcpy(pb, pp, sizeof(pp));
  398. pb += bs;
  399. }
  400. }
  401. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  402. assert(k % QK == 0);
  403. #if defined(__ARM_NEON) || defined(__AVX2__) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  404. const int nb = k / QK;
  405. const size_t bs = sizeof(float) + QK/2;
  406. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  407. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  408. uint8_t pp[QK/2];
  409. #endif
  410. #if defined(__POWER9_VECTOR__)
  411. const vector float v85 = vec_splats(8.5f);
  412. for (int i = 0; i < nb; i++) {
  413. float amax = 0.0f; // absolute max
  414. vector float srcv [8];
  415. vector float asrcv[8];
  416. vector float amaxv[8];
  417. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  418. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  419. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  420. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  421. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  422. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  423. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  424. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  425. amax = MAX(
  426. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  427. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  428. const float d = amax / ((1 << 3) - 1);
  429. const float id = d ? 1.0/d : 0.0;
  430. *(float *)pd = d;
  431. pd += bs;
  432. const vector float vid = vec_splats(id);
  433. for (int l = 0; l < 8; l++) {
  434. const vector float vf = vec_madd(srcv[l], vid, v85);
  435. const vector signed int vi = vec_signed(vf);
  436. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  437. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  438. }
  439. //memcpy(pb, pp, sizeof(pp));
  440. pb += bs;
  441. }
  442. #elif __ARM_NEON
  443. for (int i = 0; i < nb; i++) {
  444. float amax = 0.0f; // absolute max
  445. float32x4_t srcv [8];
  446. float32x4_t asrcv[8];
  447. float32x4_t amaxv[8];
  448. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  449. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  450. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  451. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  452. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  453. amax = MAX(
  454. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  455. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  456. const float d = amax / ((1 << 3) - 1);
  457. const float id = d ? 1.0/d : 0.0;
  458. *(float *)pd = d;
  459. pd += bs;
  460. for (int l = 0; l < 8; l++) {
  461. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  462. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  463. const int32x4_t vi = vcvtq_s32_f32(vf);
  464. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  465. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  466. }
  467. memcpy(pb, pp, sizeof(pp));
  468. pb += bs;
  469. }
  470. #elif defined(__AVX2__)
  471. for (int i = 0; i < nb; i++) {
  472. // Load elements into 4 AVX vectors
  473. __m256 v0 = _mm256_loadu_ps( x );
  474. __m256 v1 = _mm256_loadu_ps( x + 8 );
  475. __m256 v2 = _mm256_loadu_ps( x + 16 );
  476. __m256 v3 = _mm256_loadu_ps( x + 24 );
  477. x += 32;
  478. // Compute max(abs(e)) for the block
  479. const __m256 signBit = _mm256_set1_ps( -0.0f );
  480. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  481. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  482. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  483. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  484. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  485. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  486. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  487. const float maxScalar = _mm_cvtss_f32( max4 );
  488. // Quantize these floats
  489. const float d = maxScalar / 7.0f;
  490. *(float *)pd = d;
  491. pd += bs;
  492. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  493. const __m256 mul = _mm256_set1_ps( id );
  494. // Apply the multiplier
  495. v0 = _mm256_mul_ps( v0, mul );
  496. v1 = _mm256_mul_ps( v1, mul );
  497. v2 = _mm256_mul_ps( v2, mul );
  498. v3 = _mm256_mul_ps( v3, mul );
  499. // Round to nearest integer
  500. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  501. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  502. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  503. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  504. // Convert floats to integers
  505. __m256i i0 = _mm256_cvtps_epi32( v0 );
  506. __m256i i1 = _mm256_cvtps_epi32( v1 );
  507. __m256i i2 = _mm256_cvtps_epi32( v2 );
  508. __m256i i3 = _mm256_cvtps_epi32( v3 );
  509. // Convert int32 to int16
  510. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  511. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  512. // Convert int16 to int8
  513. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  514. // We got our precious signed bytes, but the order is now wrong
  515. // These AVX2 pack instructions process 16-byte pieces independently
  516. // The following instruction is fixing the order
  517. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  518. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  519. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  520. const __m256i off = _mm256_set1_epi8( 8 );
  521. i0 = _mm256_add_epi8( i0, off );
  522. // Compress the vector into 4 bit/value, and store
  523. __m128i res = packNibbles( i0 );
  524. _mm_storeu_si128( ( __m128i* )pb, res );
  525. pb += bs;
  526. }
  527. #elif defined(__wasm_simd128__)
  528. for (int i = 0; i < nb; i++) {
  529. float amax = 0.0f; // absolute max
  530. v128_t srcv [8];
  531. v128_t asrcv[8];
  532. v128_t amaxv[8];
  533. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  534. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  535. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  536. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  537. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  538. amax = MAX(
  539. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  540. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  541. const float d = amax / ((1 << 3) - 1);
  542. const float id = d ? 1.0/d : 0.0;
  543. *(float *)pd = d;
  544. pd += bs;
  545. for (int l = 0; l < 8; l++) {
  546. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  547. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  548. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  549. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  550. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  551. }
  552. memcpy(pb, pp, sizeof(pp));
  553. pb += bs;
  554. }
  555. #else
  556. // scalar
  557. quantize_row_q4_0_reference(x, y, k);
  558. #endif
  559. }
  560. // method 4
  561. // blocks of QK elements
  562. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  563. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  564. assert(k % QK == 0);
  565. const int nb = k / QK;
  566. const size_t bs = 2*sizeof(float) + QK/2;
  567. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  568. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  569. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  570. uint8_t pp[QK/2];
  571. for (int i = 0; i < nb; i++) {
  572. float min = FLT_MAX;
  573. float max = -FLT_MAX;
  574. for (int l = 0; l < QK; l++) {
  575. const float v = x[i*QK + l];
  576. if (v < min) min = v;
  577. if (v > max) max = v;
  578. }
  579. const float d = (max - min) / ((1 << 4) - 1);
  580. const float id = d ? 1.0f/d : 0.0f;
  581. *(float *)pm = min;
  582. *(float *)pd = d;
  583. pm += bs;
  584. pd += bs;
  585. for (int l = 0; l < QK; l += 2) {
  586. const float v0 = (x[i*QK + l + 0] - min)*id;
  587. const float v1 = (x[i*QK + l + 1] - min)*id;
  588. const uint8_t vi0 = round(v0);
  589. const uint8_t vi1 = round(v1);
  590. assert(vi0 >= 0 && vi0 < 16);
  591. assert(vi1 >= 0 && vi1 < 16);
  592. pp[l/2] = vi0 | (vi1 << 4);
  593. }
  594. memcpy(pb, pp, sizeof(pp));
  595. pb += bs;
  596. }
  597. }
  598. // TODO: vectorize
  599. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  600. assert(k % QK == 0);
  601. const int nb = k / QK;
  602. const size_t bs = sizeof(float) + QK/2;
  603. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  604. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  605. #if defined(__AVX2__)
  606. for (int i = 0; i < nb; i++) {
  607. // scale factor
  608. const __m256 d_v = _mm256_broadcast_ss((const float *) (pd + i*bs));
  609. const uint8_t * restrict pp = pb + i*bs;
  610. for (int l = 0; l < QK; l += 32) {
  611. // Load 32x4-bit integers into 32x8-bit integers
  612. __m256i vx8 = bytesFromNibbles(pp+l/2);
  613. // Subtract 8 from the integers
  614. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  615. // Convert to 16-bit int
  616. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  617. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  618. // Convert to 32-bit int -> float 32
  619. const __m256 vf[4] = {
  620. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  621. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  622. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  623. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  624. };
  625. // Scale and store
  626. for (int j = 0; j < 4; j++) {
  627. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  628. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  629. }
  630. }
  631. }
  632. #elif defined(__ARM_NEON)
  633. for (int i = 0; i < nb; i++) {
  634. const float d = *(const float *) (pd + i*bs);
  635. const uint8_t * restrict pp = pb + i*bs;
  636. const float32x4_t vd = vdupq_n_f32(d);
  637. for (int l = 0; l < QK; l += 16) {
  638. // Load 16x4-bit integers into 8x8-bit integers
  639. const uint8x8_t v8 = vld1_u8(pp + l/2);
  640. // Expand 4-bit nibbles to 8-bit bytes
  641. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  642. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  643. // Convert to signed 8-bit integers
  644. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  645. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  646. // Subtract 8 from each byte
  647. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  648. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  649. // Interleave and combine
  650. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  651. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  652. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  653. // convert to 2x int16x8_t
  654. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  655. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  656. // convert to 4x float32x4_t
  657. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  658. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  659. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  660. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  661. // Multiply by d
  662. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  663. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  664. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  665. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  666. // Store
  667. vst1q_f32(y + i*QK + l + 0, r0);
  668. vst1q_f32(y + i*QK + l + 4, r1);
  669. vst1q_f32(y + i*QK + l + 8, r2);
  670. vst1q_f32(y + i*QK + l + 12, r3);
  671. }
  672. }
  673. #else
  674. // scalar
  675. for (int i = 0; i < nb; i++) {
  676. const float d = *(const float *) (pd + i*bs);
  677. const uint8_t * restrict pp = pb + i*bs;
  678. for (int l = 0; l < QK; l += 2) {
  679. const uint8_t vi = pp[l/2];
  680. const int8_t vi0 = vi & 0xf;
  681. const int8_t vi1 = vi >> 4;
  682. const float v0 = (vi0 - 8)*d;
  683. const float v1 = (vi1 - 8)*d;
  684. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  685. y[i*QK + l + 0] = v0;
  686. y[i*QK + l + 1] = v1;
  687. assert(!isnan(y[i*QK + l + 0]));
  688. assert(!isnan(y[i*QK + l + 1]));
  689. }
  690. }
  691. #endif
  692. }
  693. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  694. assert(k % QK == 0);
  695. const int nb = k / QK;
  696. const size_t bs = 2*sizeof(float) + QK/2;
  697. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  698. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  699. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  700. #if defined(__AVX2__)
  701. for (int i = 0; i < nb; i++) {
  702. const __m256 d_v = _mm256_broadcast_ss((const float *) (pd + i*bs));
  703. const __m256 d_m = _mm256_broadcast_ss((const float *) (pm + i*bs));
  704. const uint8_t * restrict pp = pb + i*bs;
  705. for (int l = 0; l < QK; l += 32) {
  706. // Load 32x4-bit integers into 32x8-bit integers
  707. __m256i vx8 = bytesFromNibbles(pp+l/2);
  708. // Convert to 16-bit int
  709. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  710. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  711. // Convert to 32-bit int -> float 32
  712. const __m256 vf[4] = {
  713. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  714. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  715. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  716. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  717. };
  718. // Scale, add m and store
  719. for (int j = 0; j < 4; j++) {
  720. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  721. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  722. }
  723. }
  724. }
  725. #else
  726. for (int i = 0; i < nb; i++) {
  727. const float d = *(const float *) (pd + i*bs);
  728. const float m = *(const float *) (pm + i*bs);
  729. const uint8_t * restrict pp = pb + i*bs;
  730. for (int l = 0; l < QK; l += 2) {
  731. const uint8_t vi = pp[l/2];
  732. const int8_t vi0 = vi & 0xf;
  733. const int8_t vi1 = vi >> 4;
  734. const float v0 = vi0*d + m;
  735. const float v1 = vi1*d + m;
  736. y[i*QK + l + 0] = v0;
  737. y[i*QK + l + 1] = v1;
  738. assert(!isnan(y[i*QK + l + 0]));
  739. assert(!isnan(y[i*QK + l + 1]));
  740. }
  741. }
  742. #endif
  743. }
  744. //
  745. // simd mappings
  746. //
  747. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  748. // we then implement the fundamental computation operations below using only these macros
  749. // adding support for new architectures requires to define the corresponding SIMD macros
  750. //
  751. // GGML_F32_STEP / GGML_F16_STEP
  752. // number of elements to process in a single step
  753. //
  754. // GGML_F32_EPR / GGML_F16_EPR
  755. // number of elements to fit in a single register
  756. //
  757. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  758. #define GGML_SIMD
  759. // F32 NEON
  760. #define GGML_F32_STEP 16
  761. #define GGML_F32_EPR 4
  762. #define GGML_F32x4 float32x4_t
  763. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  764. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  765. #define GGML_F32x4_LOAD vld1q_f32
  766. #define GGML_F32x4_STORE vst1q_f32
  767. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  768. #define GGML_F32x4_ADD vaddq_f32
  769. #define GGML_F32x4_MUL vmulq_f32
  770. #if defined(__ARM_FEATURE_QRDMX)
  771. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  772. #else
  773. #define GGML_F32x4_REDUCE_ONE(x) \
  774. (vgetq_lane_f32(x, 0) + \
  775. vgetq_lane_f32(x, 1) + \
  776. vgetq_lane_f32(x, 2) + \
  777. vgetq_lane_f32(x, 3))
  778. #endif
  779. #define GGML_F32x4_REDUCE(res, x) \
  780. { \
  781. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  782. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  783. } \
  784. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  785. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  786. } \
  787. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  788. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  789. } \
  790. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  791. }
  792. #define GGML_F32_VEC GGML_F32x4
  793. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  794. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  795. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  796. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  797. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  798. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  799. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  800. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  801. // F16 NEON
  802. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  803. #define GGML_F16_STEP 32
  804. #define GGML_F16_EPR 8
  805. #define GGML_F16x8 float16x8_t
  806. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  807. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  808. #define GGML_F16x8_LOAD vld1q_f16
  809. #define GGML_F16x8_STORE vst1q_f16
  810. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  811. #define GGML_F16x8_ADD vaddq_f16
  812. #define GGML_F16x8_MUL vmulq_f16
  813. #define GGML_F16x8_REDUCE(res, x) \
  814. { \
  815. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  816. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  817. } \
  818. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  819. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  820. } \
  821. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  822. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  823. } \
  824. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  825. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  826. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  827. }
  828. #define GGML_F16_VEC GGML_F16x8
  829. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  830. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  831. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  832. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  833. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  834. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  835. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  836. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  837. #else
  838. // if FP16 vector arithmetic is not supported, we use FP32 instead
  839. // and take advantage of the vcvt_ functions to convert to/from FP16
  840. #define GGML_F16_STEP 16
  841. #define GGML_F16_EPR 4
  842. #define GGML_F32Cx4 float32x4_t
  843. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  844. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  845. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  846. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  847. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  848. #define GGML_F32Cx4_ADD vaddq_f32
  849. #define GGML_F32Cx4_MUL vmulq_f32
  850. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  851. #define GGML_F16_VEC GGML_F32Cx4
  852. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  853. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  854. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  855. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  856. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  857. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  858. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  859. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  860. #endif
  861. #elif defined(__AVX__)
  862. #define GGML_SIMD
  863. // F32 AVX
  864. #define GGML_F32_STEP 32
  865. #define GGML_F32_EPR 8
  866. #define GGML_F32x8 __m256
  867. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  868. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  869. #define GGML_F32x8_LOAD _mm256_loadu_ps
  870. #define GGML_F32x8_STORE _mm256_storeu_ps
  871. #if defined(__FMA__)
  872. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  873. #else
  874. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  875. #endif
  876. #define GGML_F32x8_ADD _mm256_add_ps
  877. #define GGML_F32x8_MUL _mm256_mul_ps
  878. #define GGML_F32x8_REDUCE(res, x) \
  879. { \
  880. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  881. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  882. } \
  883. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  884. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  885. } \
  886. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  887. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  888. } \
  889. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  890. _mm256_extractf128_ps(x[0], 1)); \
  891. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  892. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  893. }
  894. // TODO: is this optimal ?
  895. #define GGML_F32_VEC GGML_F32x8
  896. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  897. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  898. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  899. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  900. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  901. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  902. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  903. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  904. // F16 AVX
  905. #define GGML_F16_STEP 32
  906. #define GGML_F16_EPR 8
  907. // F16 arithmetic is not supported by AVX, so we use F32 instead
  908. // we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32
  909. #define GGML_F32Cx8 __m256
  910. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  911. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  912. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  913. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  914. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  915. #define GGML_F32Cx8_ADD _mm256_add_ps
  916. #define GGML_F32Cx8_MUL _mm256_mul_ps
  917. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  918. #define GGML_F16_VEC GGML_F32Cx8
  919. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  920. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  921. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  922. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  923. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  924. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  925. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  926. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  927. #elif defined(__POWER9_VECTOR__)
  928. #define GGML_SIMD
  929. // F32 POWER9
  930. #define GGML_F32_STEP 32
  931. #define GGML_F32_EPR 4
  932. #define GGML_F32x4 vector float
  933. #define GGML_F32x4_ZERO 0.0f
  934. #define GGML_F32x4_SET1 vec_splats
  935. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  936. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  937. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  938. #define GGML_F32x4_ADD vec_add
  939. #define GGML_F32x4_MUL vec_mul
  940. #define GGML_F32x4_REDUCE(res, x) \
  941. { \
  942. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  943. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  944. } \
  945. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  946. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  947. } \
  948. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  949. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  950. } \
  951. res = vec_extract(x[0], 0) + \
  952. vec_extract(x[0], 1) + \
  953. vec_extract(x[0], 2) + \
  954. vec_extract(x[0], 3); \
  955. }
  956. #define GGML_F32_VEC GGML_F32x4
  957. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  958. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  959. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  960. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  961. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  962. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  963. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  964. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  965. // F16 POWER9
  966. #define GGML_F16_STEP GGML_F32_STEP
  967. #define GGML_F16_EPR GGML_F32_EPR
  968. #define GGML_F16_VEC GGML_F32x4
  969. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  970. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  971. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  972. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  973. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  974. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  975. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  976. vec_extract_fp32_from_shortl(vec_xl(0, p))
  977. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  978. #define GGML_F16_VEC_STORE(p, r, i) \
  979. if (i & 0x1) \
  980. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  981. r[i - GGML_ENDIAN_BYTE(0)]), \
  982. 0, p - GGML_F16_EPR)
  983. #elif defined(__wasm_simd128__)
  984. #define GGML_SIMD
  985. // F32 WASM
  986. #define GGML_F32_STEP 16
  987. #define GGML_F32_EPR 4
  988. #define GGML_F32x4 v128_t
  989. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  990. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  991. #define GGML_F32x4_LOAD wasm_v128_load
  992. #define GGML_F32x4_STORE wasm_v128_store
  993. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  994. #define GGML_F32x4_ADD wasm_f32x4_add
  995. #define GGML_F32x4_MUL wasm_f32x4_mul
  996. #define GGML_F32x4_REDUCE(res, x) \
  997. { \
  998. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  999. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1000. } \
  1001. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1002. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1003. } \
  1004. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1005. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1006. } \
  1007. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1008. wasm_f32x4_extract_lane(x[0], 1) + \
  1009. wasm_f32x4_extract_lane(x[0], 2) + \
  1010. wasm_f32x4_extract_lane(x[0], 3); \
  1011. }
  1012. #define GGML_F32_VEC GGML_F32x4
  1013. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1014. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1015. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1016. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1017. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1018. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1019. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1020. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1021. // F16 WASM
  1022. #define GGML_F16_STEP 16
  1023. #define GGML_F16_EPR 4
  1024. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1025. float tmp[4];
  1026. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1027. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1028. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1029. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1030. return wasm_v128_load(tmp);
  1031. }
  1032. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1033. float tmp[4];
  1034. wasm_v128_store(tmp, x);
  1035. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1036. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1037. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1038. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1039. }
  1040. #define GGML_F16x4 v128_t
  1041. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1042. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1043. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1044. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1045. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1046. #define GGML_F16x4_ADD wasm_f32x4_add
  1047. #define GGML_F16x4_MUL wasm_f32x4_mul
  1048. #define GGML_F16x4_REDUCE(res, x) \
  1049. { \
  1050. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1051. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1052. } \
  1053. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1054. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1055. } \
  1056. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1057. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1058. } \
  1059. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1060. wasm_f32x4_extract_lane(x[0], 1) + \
  1061. wasm_f32x4_extract_lane(x[0], 2) + \
  1062. wasm_f32x4_extract_lane(x[0], 3); \
  1063. }
  1064. #define GGML_F16_VEC GGML_F16x4
  1065. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1066. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1067. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1068. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1069. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1070. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1071. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1072. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1073. #elif defined(__SSE3__)
  1074. #define GGML_SIMD
  1075. // F32 SSE
  1076. #define GGML_F32_STEP 32
  1077. #define GGML_F32_EPR 4
  1078. #define GGML_F32x4 __m128
  1079. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1080. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1081. #define GGML_F32x4_LOAD _mm_loadu_ps
  1082. #define GGML_F32x4_STORE _mm_storeu_ps
  1083. #if defined(__FMA__)
  1084. // TODO: Does this work?
  1085. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1086. #else
  1087. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1088. #endif
  1089. #define GGML_F32x4_ADD _mm_add_ps
  1090. #define GGML_F32x4_MUL _mm_mul_ps
  1091. #define GGML_F32x4_REDUCE(res, x) \
  1092. { \
  1093. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1094. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1095. } \
  1096. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1097. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1098. } \
  1099. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1100. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1101. } \
  1102. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1103. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1104. }
  1105. // TODO: is this optimal ?
  1106. #define GGML_F32_VEC GGML_F32x4
  1107. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1108. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1109. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1110. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1111. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1112. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1113. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1114. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1115. // F16 SSE
  1116. #define GGML_F16_STEP 32
  1117. #define GGML_F16_EPR 4
  1118. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1119. float tmp[4];
  1120. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1121. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1122. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1123. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1124. return _mm_loadu_ps(tmp);
  1125. }
  1126. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1127. float arr[4];
  1128. _mm_storeu_ps(arr, y);
  1129. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1130. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1131. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1132. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1133. }
  1134. #define GGML_F32Cx4 __m128
  1135. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1136. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1137. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1138. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1139. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1140. #define GGML_F32Cx4_ADD _mm_add_ps
  1141. #define GGML_F32Cx4_MUL _mm_mul_ps
  1142. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1143. #define GGML_F16_VEC GGML_F32Cx4
  1144. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1145. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1146. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1147. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1148. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1149. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1150. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1151. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1152. #endif
  1153. // GGML_F32_ARR / GGML_F16_ARR
  1154. // number of registers to use per step
  1155. #ifdef GGML_SIMD
  1156. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1157. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1158. #endif
  1159. //
  1160. // fundamental operations
  1161. //
  1162. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1163. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1164. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1165. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1166. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1167. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1168. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1169. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1170. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1171. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1172. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1173. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1174. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1175. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1176. ggml_float sumf = 0.0;
  1177. #ifdef GGML_SIMD
  1178. const int np = (n & ~(GGML_F32_STEP - 1));
  1179. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1180. GGML_F32_VEC ax[GGML_F32_ARR];
  1181. GGML_F32_VEC ay[GGML_F32_ARR];
  1182. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1183. for (int j = 0; j < GGML_F32_ARR; j++) {
  1184. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1185. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1186. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1187. }
  1188. }
  1189. // reduce sum0..sum3 to sum0
  1190. GGML_F32_VEC_REDUCE(sumf, sum);
  1191. // leftovers
  1192. for (int i = np; i < n; ++i) {
  1193. sumf += x[i]*y[i];
  1194. }
  1195. #else
  1196. // scalar
  1197. for (int i = 0; i < n; ++i) {
  1198. sumf += x[i]*y[i];
  1199. }
  1200. #endif
  1201. *s = sumf;
  1202. }
  1203. #if __AVX512F__ && QK == 32
  1204. static inline __m512 dot_q4_0_oneblock_avx512(
  1205. __m512 acc,
  1206. const uint8_t * pd0,
  1207. const uint8_t * pd1,
  1208. const uint8_t * pb0,
  1209. const uint8_t * pb1,
  1210. size_t bs,
  1211. int i
  1212. ) {
  1213. const float * d0_0 = (const float *) (pd0 + i*bs);
  1214. const float * d1_0 = (const float *) (pd1 + i*bs);
  1215. const uint8_t * restrict p0 = pb0 + (i+0)*bs;
  1216. const uint8_t * restrict p1 = pb1 + (i+0)*bs;
  1217. // Compute combined scale for the block
  1218. float scaleScalar = d0_0[0] * d1_0[0];
  1219. __m512 scale = _mm512_set1_ps( scaleScalar );
  1220. __m256i bx = bytesFromNibbles( p0 );
  1221. __m256i by = bytesFromNibbles( p1 );
  1222. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1223. const __m256i off = _mm256_set1_epi8( 8 );
  1224. bx = _mm256_sub_epi8( bx, off );
  1225. by = _mm256_sub_epi8( by, off );
  1226. // Sign-extend 16 signed bytes into int16_t
  1227. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1228. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1229. // Compute products of int16_t integers, add pairwise
  1230. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1231. // Convert int32_t to float
  1232. __m512 p = _mm512_cvtepi32_ps( i64 );
  1233. // Apply the scale, and accumulate
  1234. return _mm512_fmadd_ps( scale, p, acc );
  1235. }
  1236. #endif
  1237. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1238. ggml_float sumf = 0.0;
  1239. #if defined(GGML_SIMD)
  1240. const int np = (n & ~(GGML_F16_STEP - 1));
  1241. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1242. GGML_F16_VEC ax[GGML_F16_ARR];
  1243. GGML_F16_VEC ay[GGML_F16_ARR];
  1244. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1245. for (int j = 0; j < GGML_F16_ARR; j++) {
  1246. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1247. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1248. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1249. }
  1250. }
  1251. // reduce sum0..sum3 to sum0
  1252. GGML_F16_VEC_REDUCE(sumf, sum);
  1253. // leftovers
  1254. for (int i = np; i < n; ++i) {
  1255. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1256. }
  1257. #else
  1258. for (int i = 0; i < n; ++i) {
  1259. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1260. }
  1261. #endif
  1262. *s = sumf;
  1263. }
  1264. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1265. const int nb = n / QK;
  1266. assert(n % QK == 0);
  1267. assert(nb % 2 == 0);
  1268. const size_t bs = sizeof(float) + QK/2;
  1269. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1270. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1271. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1272. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1273. float sumf = 0.0;
  1274. #if defined(__ARM_NEON)
  1275. float sum0 = 0.0f;
  1276. float sum1 = 0.0f;
  1277. for (int i = 0; i < nb; i += 2) {
  1278. const float d0_0 = *(const float *) (pd0 + i*bs);
  1279. const float d1_0 = *(const float *) (pd1 + i*bs);
  1280. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1281. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1282. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1283. const uint8_t * restrict p0 = pb0 + i*bs;
  1284. const uint8_t * restrict p1 = pb1 + i*bs;
  1285. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1286. const int8x16_t s8b = vdupq_n_s8(0x8);
  1287. const uint8x16_t v0_0 = vld1q_u8(p0);
  1288. const uint8x16_t v1_0 = vld1q_u8(p1);
  1289. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1290. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1291. // 4-bit -> 8-bit
  1292. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1293. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1294. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1295. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1296. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1297. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1298. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1299. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1300. // sub 8
  1301. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1302. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1303. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1304. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1305. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1306. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1307. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1308. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1309. #if defined(__ARM_FEATURE_DOTPROD)
  1310. // dot product into int16x8_t
  1311. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1312. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1313. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1314. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1315. // scalar
  1316. #if defined(__ARM_FEATURE_QRDMX)
  1317. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1318. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1319. #else
  1320. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1321. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1322. #endif
  1323. #else
  1324. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1325. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1326. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1327. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1328. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1329. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1330. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1331. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1332. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1333. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1334. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1335. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1336. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1337. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1338. // scalar
  1339. #if defined(__ARM_FEATURE_QRDMX)
  1340. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1341. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1342. #else
  1343. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1344. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1345. #endif
  1346. #endif
  1347. }
  1348. sumf = sum0 + sum1;
  1349. #elif defined(__AVX512F__)
  1350. // Initialize accumulator with zeros
  1351. __m512 acc0 = _mm512_setzero_ps();
  1352. __m512 acc1 = _mm512_setzero_ps();
  1353. const int superblock_size = 8;
  1354. const int superblock_count = nb / superblock_size;
  1355. const int remainder = nb % superblock_size;
  1356. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1357. int i = superblock_ix * superblock_size;
  1358. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
  1359. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
  1360. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
  1361. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
  1362. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
  1363. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
  1364. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
  1365. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
  1366. }
  1367. // Remainders
  1368. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1369. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
  1370. }
  1371. // Horizontal sum of all lanes of the accumulator
  1372. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1373. #elif defined(__AVX2__)
  1374. const size_t countBlocks = nb;
  1375. // Initialize accumulator with zeros
  1376. __m256 acc = _mm256_setzero_ps();
  1377. // Main loop
  1378. for (int i = 0; i < nb; ++i) {
  1379. const float * d0_0 = (const float *) (pd0 + i*bs);
  1380. const float * d1_0 = (const float *) (pd1 + i*bs);
  1381. const uint8_t * restrict p0 = pb0 + i*bs;
  1382. const uint8_t * restrict p1 = pb1 + i*bs;
  1383. // Compute combined scale for the block
  1384. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1385. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1386. __m256i bx = bytesFromNibbles( p0 );
  1387. __m256i by = bytesFromNibbles( p1 );
  1388. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1389. const __m256i off = _mm256_set1_epi8( 8 );
  1390. bx = _mm256_sub_epi8( bx, off );
  1391. by = _mm256_sub_epi8( by, off );
  1392. // Sign-extend first 16 signed bytes into int16_t
  1393. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1394. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1395. // Compute products of int16_t integers, add pairwise
  1396. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1397. // Sign-extend last 16 signed bytes into int16_t vectors
  1398. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1399. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1400. // Accumulate products of int16_t integers
  1401. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1402. // Convert int32_t to float
  1403. __m256 p = _mm256_cvtepi32_ps( i32 );
  1404. // Apply the scale, and accumulate
  1405. acc = _mm256_fmadd_ps( scale, p, acc );
  1406. }
  1407. // Return horizontal sum of the acc vector
  1408. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1409. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1410. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1411. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1412. sumf = _mm_cvtss_f32( res );
  1413. #elif defined(__wasm_simd128__)
  1414. // wasm simd
  1415. float sum0 = 0.0f;
  1416. float sum1 = 0.0f;
  1417. for (int i = 0; i < nb; i += 2) {
  1418. const float d0_0 = *(const float *) (pd0 + i*bs);
  1419. const float d1_0 = *(const float *) (pd1 + i*bs);
  1420. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1421. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1422. const uint8_t * restrict p0 = pb0 + i*bs;
  1423. const uint8_t * restrict p1 = pb1 + i*bs;
  1424. const v128_t m4b = wasm_u8x16_splat(0xf);
  1425. const v128_t s8b = wasm_i8x16_splat(0x8);
  1426. const v128_t v0_0 = wasm_v128_load(p0);
  1427. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1428. const v128_t v1_0 = wasm_v128_load(p1);
  1429. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1430. // 4-bit -> 8-bit
  1431. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1432. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1433. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1434. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1435. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1436. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1437. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1438. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1439. // sub 8
  1440. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1441. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1442. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1443. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1444. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1445. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1446. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1447. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1448. // dot product into int16x8_t
  1449. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1450. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1451. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1452. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1453. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1454. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1455. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1456. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1457. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1458. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1459. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1460. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1461. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1462. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1463. sum0 += d0_0*d1_0*(
  1464. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1465. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1466. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1467. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1468. sum1 += d0_1*d1_1*(
  1469. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1470. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1471. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1472. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1473. }
  1474. sumf = sum0 + sum1;
  1475. #else
  1476. // scalar
  1477. for (int i = 0; i < nb; i++) {
  1478. const float d0 = *(const float *) (pd0 + i*bs);
  1479. const float d1 = *(const float *) (pd1 + i*bs);
  1480. const uint8_t * restrict p0 = pb0 + i*bs;
  1481. const uint8_t * restrict p1 = pb1 + i*bs;
  1482. for (int j = 0; j < QK/2; j++) {
  1483. const uint8_t v0 = p0[j];
  1484. const uint8_t v1 = p1[j];
  1485. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1486. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1487. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1488. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1489. sumf += f0*f2 + f1*f3;
  1490. }
  1491. }
  1492. #endif
  1493. *s = sumf;
  1494. }
  1495. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1496. const int nb = n / QK;
  1497. const size_t bs = 2*sizeof(float) + QK/2;
  1498. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1499. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1500. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1501. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1502. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1503. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1504. float sumf = 0.0;
  1505. #if defined(__AVX2__)
  1506. // Initialize accumulator with zeros
  1507. __m256 acc = _mm256_setzero_ps();
  1508. // Accumulator for constant offsets
  1509. float acc_offset = 0.0f;
  1510. // Main loop
  1511. for (int i = 0; i < nb; ++i) {
  1512. const float * m0 = (const float *) (pm0 + i*bs);
  1513. const float * m1 = (const float *) (pm1 + i*bs);
  1514. const float * d0 = (const float *) (pd0 + i*bs);
  1515. const float * d1 = (const float *) (pd1 + i*bs);
  1516. const uint8_t * restrict p0 = pb0 + i*bs;
  1517. const uint8_t * restrict p1 = pb1 + i*bs;
  1518. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1519. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1520. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1521. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1522. // Compute combined scale for the block
  1523. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1524. // Compute cross scales for the block
  1525. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1526. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1527. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1528. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1529. __m256i bx = bytesFromNibbles( p0 );
  1530. __m256i by = bytesFromNibbles( p1 );
  1531. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1532. // Sign-extend first 16 signed bytes into int16_t
  1533. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1534. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1535. // Compute products of int16_t integers, add pairwise
  1536. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1537. // Sign-extend last 16 signed bytes into int16_t vectors
  1538. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1539. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1540. // Accumulate products of int16_t integers
  1541. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1542. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1543. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1544. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1545. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1546. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1547. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1548. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1549. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1550. // Convert int32_t to float
  1551. __m256 p = _mm256_cvtepi32_ps( i32 );
  1552. // Apply the scale, and accumulate
  1553. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1554. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1555. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1556. // acc_offset += m0*m1 (for each entry in the block)
  1557. acc_offset += (*m0)*(*m1);
  1558. }
  1559. // Return horizontal sum of the acc vector
  1560. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1561. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1562. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1563. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1564. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1565. #else
  1566. // scalar
  1567. for (int i = 0; i < nb; i++) {
  1568. const float m0 = *(const float *) (pm0 + i*bs);
  1569. const float m1 = *(const float *) (pm1 + i*bs);
  1570. const float d0 = *(const float *) (pd0 + i*bs);
  1571. const float d1 = *(const float *) (pd1 + i*bs);
  1572. const uint8_t * restrict p0 = pb0 + i*bs;
  1573. const uint8_t * restrict p1 = pb1 + i*bs;
  1574. for (int j = 0; j < QK/2; j++) {
  1575. const uint8_t v0 = p0[j];
  1576. const uint8_t v1 = p1[j];
  1577. const float f0 = d0*(v0 & 0xf) + m0;
  1578. const float f1 = d0*(v0 >> 4) + m0;
  1579. const float f2 = d1*(v1 & 0xf) + m1;
  1580. const float f3 = d1*(v1 >> 4) + m1;
  1581. sumf += f0*f2 + f1*f3;
  1582. }
  1583. }
  1584. #endif
  1585. *s = sumf;
  1586. }
  1587. // compute GGML_VEC_DOT_UNROLL dot products at once
  1588. // xs - x row stride in bytes
  1589. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1590. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1591. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1592. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1593. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1594. }
  1595. #if defined(GGML_SIMD)
  1596. const int np = (n & ~(GGML_F16_STEP - 1));
  1597. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1598. GGML_F16_VEC ax[GGML_F16_ARR];
  1599. GGML_F16_VEC ay[GGML_F16_ARR];
  1600. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1601. for (int j = 0; j < GGML_F16_ARR; j++) {
  1602. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1603. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1604. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1605. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1606. }
  1607. }
  1608. }
  1609. // reduce sum0..sum3 to sum0
  1610. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1611. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1612. }
  1613. // leftovers
  1614. for (int i = np; i < n; ++i) {
  1615. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1616. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1617. }
  1618. }
  1619. #else
  1620. for (int i = 0; i < n; ++i) {
  1621. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1622. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1623. }
  1624. }
  1625. #endif
  1626. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1627. s[i] = sumf[i];
  1628. }
  1629. }
  1630. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1631. #if defined(GGML_SIMD)
  1632. const int np = (n & ~(GGML_F32_STEP - 1));
  1633. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1634. GGML_F32_VEC ax[GGML_F32_ARR];
  1635. GGML_F32_VEC ay[GGML_F32_ARR];
  1636. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1637. for (int j = 0; j < GGML_F32_ARR; j++) {
  1638. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1639. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1640. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1641. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1642. }
  1643. }
  1644. // leftovers
  1645. for (int i = np; i < n; ++i) {
  1646. y[i] += x[i]*v;
  1647. }
  1648. #else
  1649. // scalar
  1650. for (int i = 0; i < n; ++i) {
  1651. y[i] += x[i]*v;
  1652. }
  1653. #endif
  1654. }
  1655. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1656. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1657. #if defined(GGML_SIMD)
  1658. const int np = (n & ~(GGML_F32_STEP - 1));
  1659. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1660. GGML_F32_VEC ay[GGML_F32_ARR];
  1661. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1662. for (int j = 0; j < GGML_F32_ARR; j++) {
  1663. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1664. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1665. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1666. }
  1667. }
  1668. // leftovers
  1669. for (int i = np; i < n; ++i) {
  1670. y[i] *= v;
  1671. }
  1672. #else
  1673. // scalar
  1674. for (int i = 0; i < n; ++i) {
  1675. y[i] *= v;
  1676. }
  1677. #endif
  1678. }
  1679. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1680. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1681. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1682. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1683. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1684. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1685. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1686. static const ggml_float GELU_COEF_A = 0.044715;
  1687. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1688. inline static float ggml_gelu_f32(float x) {
  1689. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1690. }
  1691. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1692. const uint16_t * i16 = (const uint16_t *) x;
  1693. for (int i = 0; i < n; ++i) {
  1694. y[i] = table_gelu_f16[i16[i]];
  1695. }
  1696. }
  1697. #ifdef GGML_GELU_FP16
  1698. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1699. uint16_t t;
  1700. for (int i = 0; i < n; ++i) {
  1701. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1702. memcpy(&t, &fp16, sizeof(uint16_t));
  1703. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1704. }
  1705. }
  1706. #else
  1707. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1708. for (int i = 0; i < n; ++i) {
  1709. y[i] = ggml_gelu_f32(x[i]);
  1710. }
  1711. }
  1712. #endif
  1713. // Sigmoid Linear Unit (SiLU) function
  1714. inline static float ggml_silu_f32(float x) {
  1715. return x/(1.0 + exp(-x));
  1716. }
  1717. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1718. const uint16_t * i16 = (const uint16_t *) x;
  1719. for (int i = 0; i < n; ++i) {
  1720. y[i] = table_silu_f16[i16[i]];
  1721. }
  1722. }
  1723. #ifdef GGML_SILU_FP16
  1724. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1725. uint16_t t;
  1726. for (int i = 0; i < n; ++i) {
  1727. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1728. memcpy(&t, &fp16, sizeof(uint16_t));
  1729. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1730. }
  1731. }
  1732. #else
  1733. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1734. for (int i = 0; i < n; ++i) {
  1735. y[i] = ggml_silu_f32(x[i]);
  1736. }
  1737. }
  1738. #endif
  1739. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1740. #ifndef GGML_USE_ACCELERATE
  1741. ggml_float sum = 0.0;
  1742. for (int i = 0; i < n; ++i) {
  1743. sum += x[i];
  1744. }
  1745. *s = sum;
  1746. #else
  1747. vDSP_sve(x, 1, s, n);
  1748. #endif
  1749. }
  1750. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1751. #ifndef GGML_USE_ACCELERATE
  1752. ggml_float max = -INFINITY;
  1753. for (int i = 0; i < n; ++i) {
  1754. max = MAX(max, x[i]);
  1755. }
  1756. *s = max;
  1757. #else
  1758. vDSP_maxv(x, 1, s, n);
  1759. #endif
  1760. }
  1761. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1762. //
  1763. // logging
  1764. //
  1765. #if (GGML_DEBUG >= 1)
  1766. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1767. #else
  1768. #define GGML_PRINT_DEBUG(...)
  1769. #endif
  1770. #if (GGML_DEBUG >= 5)
  1771. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1772. #else
  1773. #define GGML_PRINT_DEBUG_5(...)
  1774. #endif
  1775. #if (GGML_DEBUG >= 10)
  1776. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1777. #else
  1778. #define GGML_PRINT_DEBUG_10(...)
  1779. #endif
  1780. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1781. //
  1782. // data types
  1783. //
  1784. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1785. QK,
  1786. QK,
  1787. 1,
  1788. 1,
  1789. 1,
  1790. 1,
  1791. 1,
  1792. };
  1793. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1794. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1795. sizeof(float ) + QK/2,
  1796. sizeof(float )*2 + QK/2,
  1797. sizeof(int8_t ),
  1798. sizeof(int16_t),
  1799. sizeof(int32_t),
  1800. sizeof(ggml_fp16_t),
  1801. sizeof(float ),
  1802. };
  1803. // don't forget to update the array above when adding new types
  1804. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1805. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1806. "NONE",
  1807. "DUP",
  1808. "ADD",
  1809. "SUB",
  1810. "MUL",
  1811. "DIV",
  1812. "SQR",
  1813. "SQRT",
  1814. "SUM",
  1815. "MEAN",
  1816. "REPEAT",
  1817. "ABS",
  1818. "SGN",
  1819. "NEG",
  1820. "STEP",
  1821. "RELU",
  1822. "GELU",
  1823. "SILU",
  1824. "NORM",
  1825. "RMS_NORM",
  1826. "MUL_MAT",
  1827. "SCALE",
  1828. "CPY",
  1829. "RESHAPE",
  1830. "VIEW",
  1831. "PERMUTE",
  1832. "TRANSPOSE",
  1833. "GET_ROWS",
  1834. "DIAG_MASK_INF",
  1835. "SOFT_MAX",
  1836. "ROPE",
  1837. "CONV_1D_1S",
  1838. "CONV_1D_2S",
  1839. "FLASH_ATTN",
  1840. "FLASH_FF",
  1841. };
  1842. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1843. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1844. "none",
  1845. "x",
  1846. "x+y",
  1847. "x-y",
  1848. "x*y",
  1849. "x/y",
  1850. "x^2",
  1851. "√x",
  1852. "Σx",
  1853. "Σx/n",
  1854. "repeat(x)",
  1855. "abs(x)",
  1856. "sgn(x)",
  1857. "-x",
  1858. "step(x)",
  1859. "relu(x)",
  1860. "gelu(x)",
  1861. "silu(x)",
  1862. "norm(x)",
  1863. "rms_norm(x)",
  1864. "X*Y",
  1865. "x*v",
  1866. "x-\\>y",
  1867. "reshape(x)",
  1868. "view(x)",
  1869. "permute(x)",
  1870. "transpose(x)",
  1871. "get_rows(x)",
  1872. "diag_mask_inf(x)",
  1873. "soft_max(x)",
  1874. "rope(x)",
  1875. "conv_1d_1s(x)",
  1876. "conv_1d_2s(x)",
  1877. "flash_attn(x)",
  1878. "flash_ff(x)",
  1879. };
  1880. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1881. //
  1882. // ggml object
  1883. //
  1884. struct ggml_object {
  1885. size_t offs;
  1886. size_t size;
  1887. struct ggml_object * next;
  1888. char padding[8];
  1889. };
  1890. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1891. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1892. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1893. //
  1894. // ggml context
  1895. //
  1896. struct ggml_context {
  1897. size_t mem_size;
  1898. void * mem_buffer;
  1899. bool mem_buffer_owned;
  1900. bool mem_buffer_mlocked;
  1901. int n_objects;
  1902. struct ggml_object * objects_begin;
  1903. struct ggml_object * objects_end;
  1904. struct ggml_scratch scratch;
  1905. struct ggml_scratch scratch_save;
  1906. };
  1907. struct ggml_context_container {
  1908. bool used;
  1909. struct ggml_context context;
  1910. };
  1911. //
  1912. // compute types
  1913. //
  1914. enum ggml_task_type {
  1915. GGML_TASK_INIT = 0,
  1916. GGML_TASK_COMPUTE,
  1917. GGML_TASK_FINALIZE,
  1918. };
  1919. struct ggml_compute_params {
  1920. enum ggml_task_type type;
  1921. int ith, nth;
  1922. // work buffer for all threads
  1923. size_t wsize;
  1924. void * wdata;
  1925. };
  1926. //
  1927. // ggml state
  1928. //
  1929. struct ggml_state {
  1930. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1931. };
  1932. // global state
  1933. static struct ggml_state g_state;
  1934. static atomic_int g_state_barrier = 0;
  1935. // barrier via spin lock
  1936. inline static void ggml_critical_section_start(void) {
  1937. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1938. while (processing > 0) {
  1939. // wait for other threads to finish
  1940. atomic_fetch_sub(&g_state_barrier, 1);
  1941. sched_yield(); // TODO: reconsider this
  1942. processing = atomic_fetch_add(&g_state_barrier, 1);
  1943. }
  1944. }
  1945. // TODO: make this somehow automatically executed
  1946. // some sort of "sentry" mechanism
  1947. inline static void ggml_critical_section_end(void) {
  1948. atomic_fetch_sub(&g_state_barrier, 1);
  1949. }
  1950. ////////////////////////////////////////////////////////////////////////////////
  1951. void ggml_print_object(const struct ggml_object * obj) {
  1952. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1953. obj->offs, obj->size, (const void *) obj->next);
  1954. }
  1955. void ggml_print_objects(const struct ggml_context * ctx) {
  1956. struct ggml_object * obj = ctx->objects_begin;
  1957. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1958. while (obj != NULL) {
  1959. ggml_print_object(obj);
  1960. obj = obj->next;
  1961. }
  1962. GGML_PRINT("%s: --- end ---\n", __func__);
  1963. }
  1964. int ggml_nelements(const struct ggml_tensor * tensor) {
  1965. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1966. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1967. }
  1968. int ggml_nrows(const struct ggml_tensor * tensor) {
  1969. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1970. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1971. }
  1972. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1973. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1974. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  1975. }
  1976. int ggml_blck_size(enum ggml_type type) {
  1977. return GGML_BLCK_SIZE[type];
  1978. }
  1979. size_t ggml_type_size(enum ggml_type type) {
  1980. return GGML_TYPE_SIZE[type];
  1981. }
  1982. float ggml_type_sizef(enum ggml_type type) {
  1983. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  1984. }
  1985. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1986. return GGML_TYPE_SIZE[tensor->type];
  1987. }
  1988. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1989. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1990. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1991. }
  1992. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1993. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1994. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1995. }
  1996. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1997. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1998. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1999. }
  2000. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2001. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2002. return
  2003. (t0->ne[0] == t1->ne[0]) &&
  2004. (t0->ne[2] == t1->ne[2]) &&
  2005. (t0->ne[3] == t1->ne[3]);
  2006. }
  2007. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2008. return tensor->nb[0] > tensor->nb[1];
  2009. }
  2010. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2011. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2012. return
  2013. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2014. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2015. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2016. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2017. }
  2018. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2019. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2020. return
  2021. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2022. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2023. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2024. }
  2025. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2026. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2027. return
  2028. (t0->ne[0] == t1->ne[0] ) &&
  2029. (t0->ne[1] == t1->ne[1] ) &&
  2030. (t0->ne[2] == t1->ne[2] ) &&
  2031. (t0->ne[3] == t1->ne[3] );
  2032. }
  2033. // check if t1 can be represented as a repeatition of t0
  2034. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2035. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2036. return
  2037. (t1->ne[0]%t0->ne[0] == 0) &&
  2038. (t1->ne[1]%t0->ne[1] == 0) &&
  2039. (t1->ne[2]%t0->ne[2] == 0) &&
  2040. (t1->ne[3]%t0->ne[3] == 0);
  2041. }
  2042. static inline int ggml_up32(int n) {
  2043. return (n + 31) & ~31;
  2044. }
  2045. static inline int ggml_up64(int n) {
  2046. return (n + 63) & ~63;
  2047. }
  2048. static inline int ggml_up(int n, int m) {
  2049. // assert m is a power of 2
  2050. GGML_ASSERT((m & (m - 1)) == 0);
  2051. return (n + m - 1) & ~(m - 1);
  2052. }
  2053. // assert that pointer is aligned to GGML_MEM_ALIGN
  2054. #define ggml_assert_aligned(ptr) \
  2055. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2056. ////////////////////////////////////////////////////////////////////////////////
  2057. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2058. // make this function thread safe
  2059. ggml_critical_section_start();
  2060. static bool is_first_call = true;
  2061. if (is_first_call) {
  2062. // initialize GELU, SILU and EXP F32 tables
  2063. {
  2064. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2065. ggml_fp16_t ii;
  2066. for (int i = 0; i < (1 << 16); ++i) {
  2067. uint16_t ui = i;
  2068. memcpy(&ii, &ui, sizeof(ii));
  2069. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2070. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2071. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2072. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2073. }
  2074. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2075. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2076. }
  2077. // initialize g_state
  2078. {
  2079. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2080. g_state = (struct ggml_state) {
  2081. /*.contexts =*/ { { 0 } },
  2082. };
  2083. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2084. g_state.contexts[i].used = false;
  2085. }
  2086. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2087. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2088. }
  2089. is_first_call = false;
  2090. }
  2091. // find non-used context in g_state
  2092. struct ggml_context * ctx = NULL;
  2093. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2094. if (!g_state.contexts[i].used) {
  2095. g_state.contexts[i].used = true;
  2096. ctx = &g_state.contexts[i].context;
  2097. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2098. break;
  2099. }
  2100. }
  2101. if (ctx == NULL) {
  2102. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2103. ggml_critical_section_end();
  2104. return NULL;
  2105. }
  2106. *ctx = (struct ggml_context) {
  2107. /*.mem_size =*/ params.mem_size,
  2108. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2109. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2110. /*.mem_buffer_mlocked =*/ false,
  2111. /*.n_objects =*/ 0,
  2112. /*.objects_begin =*/ NULL,
  2113. /*.objects_end =*/ NULL,
  2114. /*.scratch =*/ { 0, 0, NULL, },
  2115. /*.scratch_save =*/ { 0, 0, NULL, },
  2116. };
  2117. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2118. ggml_assert_aligned(ctx->mem_buffer);
  2119. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2120. ggml_critical_section_end();
  2121. return ctx;
  2122. }
  2123. void ggml_free(struct ggml_context * ctx) {
  2124. // make this function thread safe
  2125. ggml_critical_section_start();
  2126. bool found = false;
  2127. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2128. if (&g_state.contexts[i].context == ctx) {
  2129. g_state.contexts[i].used = false;
  2130. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2131. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2132. #if GGML_MLOCK_SUPPORT
  2133. if (ctx->mem_buffer_mlocked) {
  2134. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2135. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2136. }
  2137. }
  2138. #endif
  2139. if (ctx->mem_buffer_owned) {
  2140. free(ctx->mem_buffer);
  2141. }
  2142. found = true;
  2143. break;
  2144. }
  2145. }
  2146. if (!found) {
  2147. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2148. }
  2149. ggml_critical_section_end();
  2150. }
  2151. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2152. return ctx->objects_end->offs + ctx->objects_end->size;
  2153. }
  2154. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2155. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2156. ctx->scratch = scratch;
  2157. return result;
  2158. }
  2159. bool ggml_mlock_supported(void) {
  2160. return GGML_MLOCK_SUPPORT;
  2161. }
  2162. #if GGML_MLOCK_SUPPORT
  2163. #ifdef __APPLE__
  2164. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2165. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2166. #else
  2167. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2168. #endif
  2169. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2170. if (ctx->mem_buffer_mlocked) {
  2171. return true;
  2172. }
  2173. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2174. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2175. ctx->mem_size, strerror(errno));
  2176. GGML_ASSERT(ret >= 0);
  2177. return false;
  2178. }
  2179. ctx->mem_buffer_mlocked = true;
  2180. return true;
  2181. }
  2182. #else // GGML_MLOCK_SUPPORT
  2183. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2184. *err_p = strdup("can't mlock because it's not supported on this system");
  2185. return false;
  2186. }
  2187. #endif // GGML_MLOCK_SUPPORT
  2188. ////////////////////////////////////////////////////////////////////////////////
  2189. struct ggml_tensor * ggml_new_tensor_impl(
  2190. struct ggml_context * ctx,
  2191. enum ggml_type type,
  2192. int n_dims,
  2193. const int* ne,
  2194. void* data) {
  2195. // always insert objects at the end of the context's memory pool
  2196. struct ggml_object * obj_cur = ctx->objects_end;
  2197. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2198. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2199. const size_t cur_end = cur_offs + cur_size;
  2200. size_t size_needed = 0;
  2201. if (data == NULL) {
  2202. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2203. for (int i = 1; i < n_dims; i++) {
  2204. size_needed *= ne[i];
  2205. }
  2206. // align to GGML_MEM_ALIGN
  2207. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2208. }
  2209. char * const mem_buffer = ctx->mem_buffer;
  2210. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2211. if (ctx->scratch.data == NULL || data != NULL) {
  2212. size_needed += sizeof(struct ggml_tensor);
  2213. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2214. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2215. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2216. assert(false);
  2217. return NULL;
  2218. }
  2219. *obj_new = (struct ggml_object) {
  2220. .offs = cur_end + GGML_OBJECT_SIZE,
  2221. .size = size_needed,
  2222. .next = NULL,
  2223. };
  2224. } else {
  2225. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2226. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2227. assert(false);
  2228. return NULL;
  2229. }
  2230. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2231. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2232. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2233. assert(false);
  2234. return NULL;
  2235. }
  2236. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2237. *obj_new = (struct ggml_object) {
  2238. .offs = cur_end + GGML_OBJECT_SIZE,
  2239. .size = sizeof(struct ggml_tensor),
  2240. .next = NULL,
  2241. };
  2242. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2243. ctx->scratch.offs += size_needed;
  2244. }
  2245. if (obj_cur != NULL) {
  2246. obj_cur->next = obj_new;
  2247. } else {
  2248. // this is the first object in this context
  2249. ctx->objects_begin = obj_new;
  2250. }
  2251. ctx->objects_end = obj_new;
  2252. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2253. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2254. ggml_assert_aligned(result);
  2255. *result = (struct ggml_tensor) {
  2256. /*.type =*/ type,
  2257. /*.n_dims =*/ n_dims,
  2258. /*.ne =*/ { 1, 1, 1, 1 },
  2259. /*.nb =*/ { 0, 0, 0, 0 },
  2260. /*.op =*/ GGML_OP_NONE,
  2261. /*.is_param =*/ false,
  2262. /*.grad =*/ NULL,
  2263. /*.src0 =*/ NULL,
  2264. /*.src1 =*/ NULL,
  2265. /*.opt =*/ { NULL },
  2266. /*.n_tasks =*/ 0,
  2267. /*.perf_runs =*/ 0,
  2268. /*.perf_cycles =*/ 0,
  2269. /*.perf_time_us =*/ 0,
  2270. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2271. /*.pad =*/ { 0 },
  2272. };
  2273. ggml_assert_aligned(result->data);
  2274. for (int i = 0; i < n_dims; i++) {
  2275. result->ne[i] = ne[i];
  2276. }
  2277. result->nb[0] = GGML_TYPE_SIZE[type];
  2278. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2279. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2280. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2281. }
  2282. ctx->n_objects++;
  2283. return result;
  2284. }
  2285. struct ggml_tensor * ggml_new_tensor(
  2286. struct ggml_context * ctx,
  2287. enum ggml_type type,
  2288. int n_dims,
  2289. const int * ne) {
  2290. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2291. }
  2292. struct ggml_tensor * ggml_new_tensor_1d(
  2293. struct ggml_context * ctx,
  2294. enum ggml_type type,
  2295. int ne0) {
  2296. return ggml_new_tensor(ctx, type, 1, &ne0);
  2297. }
  2298. struct ggml_tensor * ggml_new_tensor_2d(
  2299. struct ggml_context * ctx,
  2300. enum ggml_type type,
  2301. int ne0,
  2302. int ne1) {
  2303. const int ne[2] = { ne0, ne1 };
  2304. return ggml_new_tensor(ctx, type, 2, ne);
  2305. }
  2306. struct ggml_tensor * ggml_new_tensor_3d(
  2307. struct ggml_context * ctx,
  2308. enum ggml_type type,
  2309. int ne0,
  2310. int ne1,
  2311. int ne2) {
  2312. const int ne[3] = { ne0, ne1, ne2 };
  2313. return ggml_new_tensor(ctx, type, 3, ne);
  2314. }
  2315. struct ggml_tensor * ggml_new_tensor_4d(
  2316. struct ggml_context * ctx,
  2317. enum ggml_type type,
  2318. int ne0,
  2319. int ne1,
  2320. int ne2,
  2321. int ne3) {
  2322. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2323. return ggml_new_tensor(ctx, type, 4, ne);
  2324. }
  2325. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2326. ctx->scratch_save = ctx->scratch;
  2327. ctx->scratch.data = NULL;
  2328. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2329. ctx->scratch = ctx->scratch_save;
  2330. ggml_set_i32(result, value);
  2331. return result;
  2332. }
  2333. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2334. ctx->scratch_save = ctx->scratch;
  2335. ctx->scratch.data = NULL;
  2336. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2337. ctx->scratch = ctx->scratch_save;
  2338. ggml_set_f32(result, value);
  2339. return result;
  2340. }
  2341. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2342. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2343. }
  2344. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2345. memset(tensor->data, 0, ggml_nbytes(tensor));
  2346. return tensor;
  2347. }
  2348. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2349. const int n = ggml_nrows(tensor);
  2350. const int nc = tensor->ne[0];
  2351. const size_t n1 = tensor->nb[1];
  2352. char * const data = tensor->data;
  2353. switch (tensor->type) {
  2354. case GGML_TYPE_Q4_0:
  2355. {
  2356. GGML_ASSERT(false);
  2357. } break;
  2358. case GGML_TYPE_Q4_1:
  2359. {
  2360. GGML_ASSERT(false);
  2361. } break;
  2362. case GGML_TYPE_I8:
  2363. {
  2364. assert(tensor->nb[0] == sizeof(int8_t));
  2365. for (int i = 0; i < n; i++) {
  2366. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2367. }
  2368. } break;
  2369. case GGML_TYPE_I16:
  2370. {
  2371. assert(tensor->nb[0] == sizeof(int16_t));
  2372. for (int i = 0; i < n; i++) {
  2373. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2374. }
  2375. } break;
  2376. case GGML_TYPE_I32:
  2377. {
  2378. assert(tensor->nb[0] == sizeof(int32_t));
  2379. for (int i = 0; i < n; i++) {
  2380. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2381. }
  2382. } break;
  2383. case GGML_TYPE_F16:
  2384. {
  2385. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2386. for (int i = 0; i < n; i++) {
  2387. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2388. }
  2389. } break;
  2390. case GGML_TYPE_F32:
  2391. {
  2392. assert(tensor->nb[0] == sizeof(float));
  2393. for (int i = 0; i < n; i++) {
  2394. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2395. }
  2396. } break;
  2397. case GGML_TYPE_COUNT:
  2398. {
  2399. GGML_ASSERT(false);
  2400. } break;
  2401. }
  2402. return tensor;
  2403. }
  2404. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2405. const int n = ggml_nrows(tensor);
  2406. const int nc = tensor->ne[0];
  2407. const size_t n1 = tensor->nb[1];
  2408. char * const data = tensor->data;
  2409. switch (tensor->type) {
  2410. case GGML_TYPE_Q4_0:
  2411. {
  2412. GGML_ASSERT(false);
  2413. } break;
  2414. case GGML_TYPE_Q4_1:
  2415. {
  2416. GGML_ASSERT(false);
  2417. } break;
  2418. case GGML_TYPE_I8:
  2419. {
  2420. assert(tensor->nb[0] == sizeof(int8_t));
  2421. for (int i = 0; i < n; i++) {
  2422. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2423. }
  2424. } break;
  2425. case GGML_TYPE_I16:
  2426. {
  2427. assert(tensor->nb[0] == sizeof(int16_t));
  2428. for (int i = 0; i < n; i++) {
  2429. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2430. }
  2431. } break;
  2432. case GGML_TYPE_I32:
  2433. {
  2434. assert(tensor->nb[0] == sizeof(int32_t));
  2435. for (int i = 0; i < n; i++) {
  2436. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2437. }
  2438. } break;
  2439. case GGML_TYPE_F16:
  2440. {
  2441. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2442. for (int i = 0; i < n; i++) {
  2443. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2444. }
  2445. } break;
  2446. case GGML_TYPE_F32:
  2447. {
  2448. assert(tensor->nb[0] == sizeof(float));
  2449. for (int i = 0; i < n; i++) {
  2450. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2451. }
  2452. } break;
  2453. case GGML_TYPE_COUNT:
  2454. {
  2455. GGML_ASSERT(false);
  2456. } break;
  2457. }
  2458. return tensor;
  2459. }
  2460. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2461. switch (tensor->type) {
  2462. case GGML_TYPE_Q4_0:
  2463. {
  2464. GGML_ASSERT(false);
  2465. } break;
  2466. case GGML_TYPE_Q4_1:
  2467. {
  2468. GGML_ASSERT(false);
  2469. } break;
  2470. case GGML_TYPE_I8:
  2471. {
  2472. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2473. return ((int8_t *)(tensor->data))[i];
  2474. } break;
  2475. case GGML_TYPE_I16:
  2476. {
  2477. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2478. return ((int16_t *)(tensor->data))[i];
  2479. } break;
  2480. case GGML_TYPE_I32:
  2481. {
  2482. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2483. return ((int32_t *)(tensor->data))[i];
  2484. } break;
  2485. case GGML_TYPE_F16:
  2486. {
  2487. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2488. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2489. } break;
  2490. case GGML_TYPE_F32:
  2491. {
  2492. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2493. return ((float *)(tensor->data))[i];
  2494. } break;
  2495. case GGML_TYPE_COUNT:
  2496. {
  2497. GGML_ASSERT(false);
  2498. } break;
  2499. }
  2500. return 0.0f;
  2501. }
  2502. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2503. switch (tensor->type) {
  2504. case GGML_TYPE_Q4_0:
  2505. {
  2506. GGML_ASSERT(false);
  2507. } break;
  2508. case GGML_TYPE_Q4_1:
  2509. {
  2510. GGML_ASSERT(false);
  2511. } break;
  2512. case GGML_TYPE_I8:
  2513. {
  2514. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2515. ((int8_t *)(tensor->data))[i] = value;
  2516. } break;
  2517. case GGML_TYPE_I16:
  2518. {
  2519. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2520. ((int16_t *)(tensor->data))[i] = value;
  2521. } break;
  2522. case GGML_TYPE_I32:
  2523. {
  2524. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2525. ((int32_t *)(tensor->data))[i] = value;
  2526. } break;
  2527. case GGML_TYPE_F16:
  2528. {
  2529. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2530. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2531. } break;
  2532. case GGML_TYPE_F32:
  2533. {
  2534. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2535. ((float *)(tensor->data))[i] = value;
  2536. } break;
  2537. case GGML_TYPE_COUNT:
  2538. {
  2539. GGML_ASSERT(false);
  2540. } break;
  2541. }
  2542. }
  2543. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2544. switch (tensor->type) {
  2545. case GGML_TYPE_Q4_0:
  2546. {
  2547. GGML_ASSERT(false);
  2548. } break;
  2549. case GGML_TYPE_Q4_1:
  2550. {
  2551. GGML_ASSERT(false);
  2552. } break;
  2553. case GGML_TYPE_I8:
  2554. {
  2555. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2556. return ((int8_t *)(tensor->data))[i];
  2557. } break;
  2558. case GGML_TYPE_I16:
  2559. {
  2560. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2561. return ((int16_t *)(tensor->data))[i];
  2562. } break;
  2563. case GGML_TYPE_I32:
  2564. {
  2565. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2566. return ((int32_t *)(tensor->data))[i];
  2567. } break;
  2568. case GGML_TYPE_F16:
  2569. {
  2570. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2571. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2572. } break;
  2573. case GGML_TYPE_F32:
  2574. {
  2575. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2576. return ((float *)(tensor->data))[i];
  2577. } break;
  2578. case GGML_TYPE_COUNT:
  2579. {
  2580. GGML_ASSERT(false);
  2581. } break;
  2582. }
  2583. return 0.0f;
  2584. }
  2585. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2586. switch (tensor->type) {
  2587. case GGML_TYPE_Q4_0:
  2588. {
  2589. GGML_ASSERT(false);
  2590. } break;
  2591. case GGML_TYPE_Q4_1:
  2592. {
  2593. GGML_ASSERT(false);
  2594. } break;
  2595. case GGML_TYPE_I8:
  2596. {
  2597. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2598. ((int8_t *)(tensor->data))[i] = value;
  2599. } break;
  2600. case GGML_TYPE_I16:
  2601. {
  2602. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2603. ((int16_t *)(tensor->data))[i] = value;
  2604. } break;
  2605. case GGML_TYPE_I32:
  2606. {
  2607. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2608. ((int32_t *)(tensor->data))[i] = value;
  2609. } break;
  2610. case GGML_TYPE_F16:
  2611. {
  2612. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2613. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2614. } break;
  2615. case GGML_TYPE_F32:
  2616. {
  2617. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2618. ((float *)(tensor->data))[i] = value;
  2619. } break;
  2620. case GGML_TYPE_COUNT:
  2621. {
  2622. GGML_ASSERT(false);
  2623. } break;
  2624. }
  2625. }
  2626. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2627. return tensor->data;
  2628. }
  2629. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2630. assert(tensor->type == GGML_TYPE_F32);
  2631. return (float *)(tensor->data);
  2632. }
  2633. struct ggml_tensor * ggml_view_tensor(
  2634. struct ggml_context * ctx,
  2635. const struct ggml_tensor * src) {
  2636. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2637. }
  2638. ////////////////////////////////////////////////////////////////////////////////
  2639. // ggml_dup
  2640. struct ggml_tensor * ggml_dup_impl(
  2641. struct ggml_context * ctx,
  2642. struct ggml_tensor * a,
  2643. bool inplace) {
  2644. bool is_node = false;
  2645. if (!inplace && (a->grad)) {
  2646. is_node = true;
  2647. }
  2648. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2649. result->op = GGML_OP_DUP;
  2650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2651. result->src0 = a;
  2652. result->src1 = NULL;
  2653. return result;
  2654. }
  2655. struct ggml_tensor * ggml_dup(
  2656. struct ggml_context * ctx,
  2657. struct ggml_tensor * a) {
  2658. return ggml_dup_impl(ctx, a, false);
  2659. }
  2660. struct ggml_tensor * ggml_dup_inplace(
  2661. struct ggml_context * ctx,
  2662. struct ggml_tensor * a) {
  2663. return ggml_dup_impl(ctx, a, true);
  2664. }
  2665. // ggml_add
  2666. struct ggml_tensor * ggml_add_impl(
  2667. struct ggml_context * ctx,
  2668. struct ggml_tensor * a,
  2669. struct ggml_tensor * b,
  2670. bool inplace) {
  2671. GGML_ASSERT(ggml_are_same_shape(a, b));
  2672. bool is_node = false;
  2673. if (!inplace && (a->grad || b->grad)) {
  2674. is_node = true;
  2675. }
  2676. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2677. result->op = GGML_OP_ADD;
  2678. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2679. result->src0 = a;
  2680. result->src1 = b;
  2681. return result;
  2682. }
  2683. struct ggml_tensor * ggml_add(
  2684. struct ggml_context * ctx,
  2685. struct ggml_tensor * a,
  2686. struct ggml_tensor * b) {
  2687. return ggml_add_impl(ctx, a, b, false);
  2688. }
  2689. struct ggml_tensor * ggml_add_inplace(
  2690. struct ggml_context * ctx,
  2691. struct ggml_tensor * a,
  2692. struct ggml_tensor * b) {
  2693. return ggml_add_impl(ctx, a, b, true);
  2694. }
  2695. // ggml_sub
  2696. struct ggml_tensor * ggml_sub_impl(
  2697. struct ggml_context * ctx,
  2698. struct ggml_tensor * a,
  2699. struct ggml_tensor * b,
  2700. bool inplace) {
  2701. GGML_ASSERT(ggml_are_same_shape(a, b));
  2702. bool is_node = false;
  2703. if (!inplace && (a->grad || b->grad)) {
  2704. is_node = true;
  2705. }
  2706. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2707. result->op = GGML_OP_SUB;
  2708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2709. result->src0 = a;
  2710. result->src1 = b;
  2711. return result;
  2712. }
  2713. struct ggml_tensor * ggml_sub(
  2714. struct ggml_context * ctx,
  2715. struct ggml_tensor * a,
  2716. struct ggml_tensor * b) {
  2717. return ggml_sub_impl(ctx, a, b, false);
  2718. }
  2719. struct ggml_tensor * ggml_sub_inplace(
  2720. struct ggml_context * ctx,
  2721. struct ggml_tensor * a,
  2722. struct ggml_tensor * b) {
  2723. return ggml_sub_impl(ctx, a, b, true);
  2724. }
  2725. // ggml_mul
  2726. struct ggml_tensor * ggml_mul_impl(
  2727. struct ggml_context * ctx,
  2728. struct ggml_tensor * a,
  2729. struct ggml_tensor * b,
  2730. bool inplace) {
  2731. GGML_ASSERT(ggml_are_same_shape(a, b));
  2732. bool is_node = false;
  2733. if (!inplace && (a->grad || b->grad)) {
  2734. is_node = true;
  2735. }
  2736. if (inplace) {
  2737. GGML_ASSERT(is_node == false);
  2738. }
  2739. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2740. result->op = GGML_OP_MUL;
  2741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2742. result->src0 = a;
  2743. result->src1 = b;
  2744. return result;
  2745. }
  2746. struct ggml_tensor * ggml_mul(
  2747. struct ggml_context * ctx,
  2748. struct ggml_tensor * a,
  2749. struct ggml_tensor * b) {
  2750. return ggml_mul_impl(ctx, a, b, false);
  2751. }
  2752. struct ggml_tensor * ggml_mul_inplace(
  2753. struct ggml_context * ctx,
  2754. struct ggml_tensor * a,
  2755. struct ggml_tensor * b) {
  2756. return ggml_mul_impl(ctx, a, b, true);
  2757. }
  2758. // ggml_div
  2759. struct ggml_tensor * ggml_div_impl(
  2760. struct ggml_context * ctx,
  2761. struct ggml_tensor * a,
  2762. struct ggml_tensor * b,
  2763. bool inplace) {
  2764. GGML_ASSERT(ggml_are_same_shape(a, b));
  2765. bool is_node = false;
  2766. if (!inplace && (a->grad || b->grad)) {
  2767. is_node = true;
  2768. }
  2769. if (inplace) {
  2770. GGML_ASSERT(is_node == false);
  2771. }
  2772. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2773. result->op = GGML_OP_DIV;
  2774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2775. result->src0 = a;
  2776. result->src1 = b;
  2777. return result;
  2778. }
  2779. struct ggml_tensor * ggml_div(
  2780. struct ggml_context * ctx,
  2781. struct ggml_tensor * a,
  2782. struct ggml_tensor * b) {
  2783. return ggml_div_impl(ctx, a, b, false);
  2784. }
  2785. struct ggml_tensor * ggml_div_inplace(
  2786. struct ggml_context * ctx,
  2787. struct ggml_tensor * a,
  2788. struct ggml_tensor * b) {
  2789. return ggml_div_impl(ctx, a, b, true);
  2790. }
  2791. // ggml_sqr
  2792. struct ggml_tensor * ggml_sqr_impl(
  2793. struct ggml_context * ctx,
  2794. struct ggml_tensor * a,
  2795. bool inplace) {
  2796. bool is_node = false;
  2797. if (!inplace && (a->grad)) {
  2798. is_node = true;
  2799. }
  2800. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2801. result->op = GGML_OP_SQR;
  2802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2803. result->src0 = a;
  2804. result->src1 = NULL;
  2805. return result;
  2806. }
  2807. struct ggml_tensor * ggml_sqr(
  2808. struct ggml_context * ctx,
  2809. struct ggml_tensor * a) {
  2810. return ggml_sqr_impl(ctx, a, false);
  2811. }
  2812. struct ggml_tensor * ggml_sqr_inplace(
  2813. struct ggml_context * ctx,
  2814. struct ggml_tensor * a) {
  2815. return ggml_sqr_impl(ctx, a, true);
  2816. }
  2817. // ggml_sqrt
  2818. struct ggml_tensor * ggml_sqrt_impl(
  2819. struct ggml_context * ctx,
  2820. struct ggml_tensor * a,
  2821. bool inplace) {
  2822. bool is_node = false;
  2823. if (!inplace && (a->grad)) {
  2824. is_node = true;
  2825. }
  2826. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2827. result->op = GGML_OP_SQRT;
  2828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2829. result->src0 = a;
  2830. result->src1 = NULL;
  2831. return result;
  2832. }
  2833. struct ggml_tensor * ggml_sqrt(
  2834. struct ggml_context * ctx,
  2835. struct ggml_tensor * a) {
  2836. return ggml_sqrt_impl(ctx, a, false);
  2837. }
  2838. struct ggml_tensor * ggml_sqrt_inplace(
  2839. struct ggml_context * ctx,
  2840. struct ggml_tensor * a) {
  2841. return ggml_sqrt_impl(ctx, a, true);
  2842. }
  2843. // ggml_sum
  2844. struct ggml_tensor * ggml_sum(
  2845. struct ggml_context * ctx,
  2846. struct ggml_tensor * a) {
  2847. bool is_node = false;
  2848. if (a->grad) {
  2849. is_node = true;
  2850. }
  2851. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2852. result->op = GGML_OP_SUM;
  2853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2854. result->src0 = a;
  2855. result->src1 = NULL;
  2856. return result;
  2857. }
  2858. // ggml_mean
  2859. struct ggml_tensor * ggml_mean(
  2860. struct ggml_context * ctx,
  2861. struct ggml_tensor * a) {
  2862. bool is_node = false;
  2863. if (a->grad) {
  2864. GGML_ASSERT(false); // TODO: implement
  2865. is_node = true;
  2866. }
  2867. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2868. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2869. result->op = GGML_OP_MEAN;
  2870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2871. result->src0 = a;
  2872. result->src1 = NULL;
  2873. return result;
  2874. }
  2875. // ggml_repeat
  2876. struct ggml_tensor * ggml_repeat(
  2877. struct ggml_context * ctx,
  2878. struct ggml_tensor * a,
  2879. struct ggml_tensor * b) {
  2880. GGML_ASSERT(ggml_can_repeat(a, b));
  2881. bool is_node = false;
  2882. if (a->grad) {
  2883. is_node = true;
  2884. }
  2885. if (ggml_are_same_shape(a, b) && !is_node) {
  2886. return a;
  2887. }
  2888. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2889. result->op = GGML_OP_REPEAT;
  2890. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2891. result->src0 = a;
  2892. result->src1 = b;
  2893. return result;
  2894. }
  2895. // ggml_abs
  2896. struct ggml_tensor * ggml_abs_impl(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * a,
  2899. bool inplace) {
  2900. bool is_node = false;
  2901. if (!inplace && (a->grad)) {
  2902. is_node = true;
  2903. }
  2904. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2905. result->op = GGML_OP_ABS;
  2906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2907. result->src0 = a;
  2908. result->src1 = NULL;
  2909. return result;
  2910. }
  2911. struct ggml_tensor * ggml_abs(
  2912. struct ggml_context * ctx,
  2913. struct ggml_tensor * a) {
  2914. return ggml_abs_impl(ctx, a, false);
  2915. }
  2916. struct ggml_tensor * ggml_abs_inplace(
  2917. struct ggml_context * ctx,
  2918. struct ggml_tensor * a) {
  2919. return ggml_abs_impl(ctx, a, true);
  2920. }
  2921. // ggml_sgn
  2922. struct ggml_tensor * ggml_sgn_impl(
  2923. struct ggml_context * ctx,
  2924. struct ggml_tensor * a,
  2925. bool inplace) {
  2926. bool is_node = false;
  2927. if (!inplace && (a->grad)) {
  2928. is_node = true;
  2929. }
  2930. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2931. result->op = GGML_OP_SGN;
  2932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2933. result->src0 = a;
  2934. result->src1 = NULL;
  2935. return result;
  2936. }
  2937. struct ggml_tensor * ggml_sgn(
  2938. struct ggml_context * ctx,
  2939. struct ggml_tensor * a) {
  2940. return ggml_sgn_impl(ctx, a, false);
  2941. }
  2942. struct ggml_tensor * ggml_sgn_inplace(
  2943. struct ggml_context * ctx,
  2944. struct ggml_tensor * a) {
  2945. return ggml_sgn_impl(ctx, a, true);
  2946. }
  2947. // ggml_neg
  2948. struct ggml_tensor * ggml_neg_impl(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a,
  2951. bool inplace) {
  2952. bool is_node = false;
  2953. if (!inplace && (a->grad)) {
  2954. is_node = true;
  2955. }
  2956. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2957. result->op = GGML_OP_NEG;
  2958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2959. result->src0 = a;
  2960. result->src1 = NULL;
  2961. return result;
  2962. }
  2963. struct ggml_tensor * ggml_neg(
  2964. struct ggml_context * ctx,
  2965. struct ggml_tensor * a) {
  2966. return ggml_neg_impl(ctx, a, false);
  2967. }
  2968. struct ggml_tensor * ggml_neg_inplace(
  2969. struct ggml_context * ctx,
  2970. struct ggml_tensor * a) {
  2971. return ggml_neg_impl(ctx, a, true);
  2972. }
  2973. // ggml_step
  2974. struct ggml_tensor * ggml_step_impl(
  2975. struct ggml_context * ctx,
  2976. struct ggml_tensor * a,
  2977. bool inplace) {
  2978. bool is_node = false;
  2979. if (!inplace && (a->grad)) {
  2980. is_node = true;
  2981. }
  2982. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2983. result->op = GGML_OP_STEP;
  2984. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2985. result->src0 = a;
  2986. result->src1 = NULL;
  2987. return result;
  2988. }
  2989. struct ggml_tensor * ggml_step(
  2990. struct ggml_context * ctx,
  2991. struct ggml_tensor * a) {
  2992. return ggml_step_impl(ctx, a, false);
  2993. }
  2994. struct ggml_tensor * ggml_step_inplace(
  2995. struct ggml_context * ctx,
  2996. struct ggml_tensor * a) {
  2997. return ggml_step_impl(ctx, a, true);
  2998. }
  2999. // ggml_relu
  3000. struct ggml_tensor * ggml_relu_impl(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a,
  3003. bool inplace) {
  3004. bool is_node = false;
  3005. if (!inplace && (a->grad)) {
  3006. is_node = true;
  3007. }
  3008. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3009. result->op = GGML_OP_RELU;
  3010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3011. result->src0 = a;
  3012. result->src1 = NULL;
  3013. return result;
  3014. }
  3015. struct ggml_tensor * ggml_relu(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a) {
  3018. return ggml_relu_impl(ctx, a, false);
  3019. }
  3020. struct ggml_tensor * ggml_relu_inplace(
  3021. struct ggml_context * ctx,
  3022. struct ggml_tensor * a) {
  3023. return ggml_relu_impl(ctx, a, true);
  3024. }
  3025. // ggml_gelu
  3026. struct ggml_tensor * ggml_gelu_impl(
  3027. struct ggml_context * ctx,
  3028. struct ggml_tensor * a,
  3029. bool inplace) {
  3030. bool is_node = false;
  3031. if (!inplace && (a->grad)) {
  3032. is_node = true;
  3033. }
  3034. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3035. result->op = GGML_OP_GELU;
  3036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3037. result->src0 = a;
  3038. result->src1 = NULL;
  3039. return result;
  3040. }
  3041. struct ggml_tensor * ggml_gelu(
  3042. struct ggml_context * ctx,
  3043. struct ggml_tensor * a) {
  3044. return ggml_gelu_impl(ctx, a, false);
  3045. }
  3046. struct ggml_tensor * ggml_gelu_inplace(
  3047. struct ggml_context * ctx,
  3048. struct ggml_tensor * a) {
  3049. return ggml_gelu_impl(ctx, a, true);
  3050. }
  3051. // ggml_silu
  3052. struct ggml_tensor * ggml_silu_impl(
  3053. struct ggml_context * ctx,
  3054. struct ggml_tensor * a,
  3055. bool inplace) {
  3056. bool is_node = false;
  3057. if (!inplace && (a->grad)) {
  3058. is_node = true;
  3059. }
  3060. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3061. result->op = GGML_OP_SILU;
  3062. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3063. result->src0 = a;
  3064. result->src1 = NULL;
  3065. return result;
  3066. }
  3067. struct ggml_tensor * ggml_silu(
  3068. struct ggml_context * ctx,
  3069. struct ggml_tensor * a) {
  3070. return ggml_silu_impl(ctx, a, false);
  3071. }
  3072. struct ggml_tensor * ggml_silu_inplace(
  3073. struct ggml_context * ctx,
  3074. struct ggml_tensor * a) {
  3075. return ggml_silu_impl(ctx, a, true);
  3076. }
  3077. // ggml_norm
  3078. struct ggml_tensor * ggml_norm_impl(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a,
  3081. bool inplace) {
  3082. bool is_node = false;
  3083. if (!inplace && (a->grad)) {
  3084. GGML_ASSERT(false); // TODO: implement backward
  3085. is_node = true;
  3086. }
  3087. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3088. result->op = GGML_OP_NORM;
  3089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3090. result->src0 = a;
  3091. result->src1 = NULL; // TODO: maybe store epsilon here?
  3092. return result;
  3093. }
  3094. struct ggml_tensor * ggml_norm(
  3095. struct ggml_context * ctx,
  3096. struct ggml_tensor * a) {
  3097. return ggml_norm_impl(ctx, a, false);
  3098. }
  3099. struct ggml_tensor * ggml_norm_inplace(
  3100. struct ggml_context * ctx,
  3101. struct ggml_tensor * a) {
  3102. return ggml_norm_impl(ctx, a, true);
  3103. }
  3104. struct ggml_tensor * ggml_rms_norm_impl(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a,
  3107. bool inplace) {
  3108. bool is_node = false;
  3109. if (!inplace && (a->grad)) {
  3110. GGML_ASSERT(false); // TODO: implement backward
  3111. is_node = true;
  3112. }
  3113. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3114. result->op = GGML_OP_RMS_NORM;
  3115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3116. result->src0 = a;
  3117. result->src1 = NULL; // TODO: maybe store epsilon here?
  3118. return result;
  3119. }
  3120. struct ggml_tensor * ggml_rms_norm(
  3121. struct ggml_context * ctx,
  3122. struct ggml_tensor * a) {
  3123. return ggml_rms_norm_impl(ctx, a, false);
  3124. }
  3125. struct ggml_tensor * ggml_rms_norm_inplace(
  3126. struct ggml_context * ctx,
  3127. struct ggml_tensor * a) {
  3128. return ggml_rms_norm_impl(ctx, a, true);
  3129. }
  3130. // ggml_mul_mat
  3131. struct ggml_tensor * ggml_mul_mat(
  3132. struct ggml_context * ctx,
  3133. struct ggml_tensor * a,
  3134. struct ggml_tensor * b) {
  3135. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3136. GGML_ASSERT(!ggml_is_transposed(a));
  3137. bool is_node = false;
  3138. if (a->grad || b->grad) {
  3139. is_node = true;
  3140. }
  3141. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3142. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3143. result->op = GGML_OP_MUL_MAT;
  3144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3145. result->src0 = a;
  3146. result->src1 = b;
  3147. return result;
  3148. }
  3149. // ggml_scale
  3150. struct ggml_tensor * ggml_scale_impl(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a,
  3153. struct ggml_tensor * b,
  3154. bool inplace) {
  3155. GGML_ASSERT(ggml_is_scalar(b));
  3156. GGML_ASSERT(ggml_is_padded_1d(a));
  3157. bool is_node = false;
  3158. if (!inplace && (a->grad || b->grad)) {
  3159. GGML_ASSERT(false); // TODO: implement backward
  3160. is_node = true;
  3161. }
  3162. // TODO: when implement backward, fix this:
  3163. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3164. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3165. result->op = GGML_OP_SCALE;
  3166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3167. result->src0 = a;
  3168. result->src1 = b;
  3169. return result;
  3170. }
  3171. struct ggml_tensor * ggml_scale(
  3172. struct ggml_context * ctx,
  3173. struct ggml_tensor * a,
  3174. struct ggml_tensor * b) {
  3175. return ggml_scale_impl(ctx, a, b, false);
  3176. }
  3177. struct ggml_tensor * ggml_scale_inplace(
  3178. struct ggml_context * ctx,
  3179. struct ggml_tensor * a,
  3180. struct ggml_tensor * b) {
  3181. return ggml_scale_impl(ctx, a, b, true);
  3182. }
  3183. // ggml_cpy
  3184. struct ggml_tensor * ggml_cpy_impl(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a,
  3187. struct ggml_tensor * b,
  3188. bool inplace) {
  3189. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3190. bool is_node = false;
  3191. if (!inplace && (a->grad || b->grad)) {
  3192. GGML_ASSERT(false); // TODO: implement backward
  3193. is_node = true;
  3194. }
  3195. // make a view of the destination
  3196. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3197. result->op = GGML_OP_CPY;
  3198. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3199. result->src0 = a;
  3200. result->src1 = b;
  3201. return result;
  3202. }
  3203. struct ggml_tensor * ggml_cpy(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a,
  3206. struct ggml_tensor * b) {
  3207. return ggml_cpy_impl(ctx, a, b, false);
  3208. }
  3209. struct ggml_tensor * ggml_cpy_inplace(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a,
  3212. struct ggml_tensor * b) {
  3213. return ggml_cpy_impl(ctx, a, b, true);
  3214. }
  3215. // ggml_reshape
  3216. struct ggml_tensor * ggml_reshape(
  3217. struct ggml_context * ctx,
  3218. struct ggml_tensor * a,
  3219. struct ggml_tensor * b) {
  3220. GGML_ASSERT(ggml_is_contiguous(a));
  3221. GGML_ASSERT(ggml_is_contiguous(b));
  3222. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3223. bool is_node = false;
  3224. if (a->grad || b->grad) {
  3225. GGML_ASSERT(false); // TODO: implement backward
  3226. is_node = true;
  3227. }
  3228. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3229. result->op = GGML_OP_RESHAPE;
  3230. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3231. result->src0 = a;
  3232. result->src1 = NULL;
  3233. return result;
  3234. }
  3235. struct ggml_tensor * ggml_reshape_2d(
  3236. struct ggml_context * ctx,
  3237. struct ggml_tensor * a,
  3238. int ne0,
  3239. int ne1) {
  3240. GGML_ASSERT(ggml_is_contiguous(a));
  3241. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3242. bool is_node = false;
  3243. if (a->grad) {
  3244. GGML_ASSERT(false); // TODO: implement backward
  3245. is_node = true;
  3246. }
  3247. const int ne[2] = { ne0, ne1 };
  3248. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3249. result->op = GGML_OP_RESHAPE;
  3250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3251. result->src0 = a;
  3252. result->src1 = NULL;
  3253. return result;
  3254. }
  3255. struct ggml_tensor * ggml_reshape_3d(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a,
  3258. int ne0,
  3259. int ne1,
  3260. int ne2) {
  3261. GGML_ASSERT(ggml_is_contiguous(a));
  3262. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3263. bool is_node = false;
  3264. if (a->grad) {
  3265. GGML_ASSERT(false); // TODO: implement backward
  3266. is_node = true;
  3267. }
  3268. const int ne[3] = { ne0, ne1, ne2 };
  3269. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3270. result->op = GGML_OP_RESHAPE;
  3271. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3272. result->src0 = a;
  3273. result->src1 = NULL;
  3274. return result;
  3275. }
  3276. // ggml_view_1d
  3277. struct ggml_tensor * ggml_view_1d(
  3278. struct ggml_context * ctx,
  3279. struct ggml_tensor * a,
  3280. int ne0,
  3281. size_t offset) {
  3282. if (a->grad) {
  3283. GGML_ASSERT(false); // gradient propagation is not supported
  3284. }
  3285. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3286. result->op = GGML_OP_VIEW;
  3287. result->grad = NULL;
  3288. result->src0 = a;
  3289. result->src1 = NULL; // TODO: maybe store the offset here?
  3290. return result;
  3291. }
  3292. // ggml_view_2d
  3293. struct ggml_tensor * ggml_view_2d(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a,
  3296. int ne0,
  3297. int ne1,
  3298. size_t nb1,
  3299. size_t offset) {
  3300. if (a->grad) {
  3301. GGML_ASSERT(false); // gradient propagation is not supported
  3302. }
  3303. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3304. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3305. result->nb[1] = nb1;
  3306. result->nb[2] = result->nb[1]*ne1;
  3307. result->nb[3] = result->nb[2];
  3308. result->op = GGML_OP_VIEW;
  3309. result->grad = NULL;
  3310. result->src0 = a;
  3311. result->src1 = NULL; // TODO: maybe store the offset here?
  3312. return result;
  3313. }
  3314. // ggml_permute
  3315. struct ggml_tensor * ggml_permute(
  3316. struct ggml_context * ctx,
  3317. struct ggml_tensor * a,
  3318. int axis0,
  3319. int axis1,
  3320. int axis2,
  3321. int axis3) {
  3322. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3323. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3324. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3325. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3326. GGML_ASSERT(axis0 != axis1);
  3327. GGML_ASSERT(axis0 != axis2);
  3328. GGML_ASSERT(axis0 != axis3);
  3329. GGML_ASSERT(axis1 != axis2);
  3330. GGML_ASSERT(axis1 != axis3);
  3331. GGML_ASSERT(axis2 != axis3);
  3332. bool is_node = false;
  3333. if (a->grad) {
  3334. GGML_ASSERT(false); // TODO: implement backward
  3335. is_node = true;
  3336. }
  3337. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3338. int ne[GGML_MAX_DIMS];
  3339. int nb[GGML_MAX_DIMS];
  3340. ne[axis0] = a->ne[0];
  3341. ne[axis1] = a->ne[1];
  3342. ne[axis2] = a->ne[2];
  3343. ne[axis3] = a->ne[3];
  3344. nb[axis0] = a->nb[0];
  3345. nb[axis1] = a->nb[1];
  3346. nb[axis2] = a->nb[2];
  3347. nb[axis3] = a->nb[3];
  3348. result->ne[0] = ne[0];
  3349. result->ne[1] = ne[1];
  3350. result->ne[2] = ne[2];
  3351. result->ne[3] = ne[3];
  3352. result->nb[0] = nb[0];
  3353. result->nb[1] = nb[1];
  3354. result->nb[2] = nb[2];
  3355. result->nb[3] = nb[3];
  3356. result->op = GGML_OP_PERMUTE;
  3357. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3358. result->src0 = a;
  3359. result->src1 = NULL; // TODO: maybe store the permutation here?
  3360. return result;
  3361. }
  3362. // ggml_transpose
  3363. struct ggml_tensor * ggml_transpose(
  3364. struct ggml_context * ctx,
  3365. struct ggml_tensor * a) {
  3366. bool is_node = false;
  3367. if (a->grad) {
  3368. GGML_ASSERT(false); // TODO: implement backward
  3369. is_node = true;
  3370. }
  3371. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3372. result->ne[0] = a->ne[1];
  3373. result->ne[1] = a->ne[0];
  3374. result->nb[0] = a->nb[1];
  3375. result->nb[1] = a->nb[0];
  3376. result->op = GGML_OP_TRANSPOSE;
  3377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3378. result->src0 = a;
  3379. result->src1 = NULL;
  3380. return result;
  3381. }
  3382. // ggml_get_rows
  3383. struct ggml_tensor * ggml_get_rows(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a,
  3386. struct ggml_tensor * b) {
  3387. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3388. bool is_node = false;
  3389. if (a->grad || b->grad) {
  3390. GGML_ASSERT(false); // TODO: implement backward
  3391. is_node = true;
  3392. }
  3393. // TODO: implement non F32 return
  3394. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3395. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3396. result->op = GGML_OP_GET_ROWS;
  3397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3398. result->src0 = a;
  3399. result->src1 = b;
  3400. return result;
  3401. }
  3402. // ggml_diag_mask_inf
  3403. struct ggml_tensor * ggml_diag_mask_inf(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * a,
  3406. int n_past) {
  3407. bool is_node = false;
  3408. if (a->grad) {
  3409. GGML_ASSERT(false); // TODO: implement backward
  3410. is_node = true;
  3411. }
  3412. // TODO: when implement backward, fix this:
  3413. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3414. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3415. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3416. result->op = GGML_OP_DIAG_MASK_INF;
  3417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3418. result->src0 = a;
  3419. result->src1 = b;
  3420. return result;
  3421. }
  3422. // ggml_soft_max
  3423. struct ggml_tensor * ggml_soft_max(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a) {
  3426. bool is_node = false;
  3427. if (a->grad) {
  3428. GGML_ASSERT(false); // TODO: implement backward
  3429. is_node = true;
  3430. }
  3431. // TODO: when implement backward, fix this:
  3432. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3433. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3434. result->op = GGML_OP_SOFT_MAX;
  3435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3436. result->src0 = a;
  3437. result->src1 = NULL;
  3438. return result;
  3439. }
  3440. // ggml_rope
  3441. struct ggml_tensor * ggml_rope(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * a,
  3444. int n_past,
  3445. int n_dims,
  3446. int mode) {
  3447. GGML_ASSERT(n_past >= 0);
  3448. bool is_node = false;
  3449. if (a->grad) {
  3450. GGML_ASSERT(false); // TODO: implement backward
  3451. is_node = true;
  3452. }
  3453. // TODO: when implement backward, fix this:
  3454. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3455. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3456. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3457. ((int32_t *) b->data)[0] = n_past;
  3458. ((int32_t *) b->data)[1] = n_dims;
  3459. ((int32_t *) b->data)[2] = mode;
  3460. result->op = GGML_OP_ROPE;
  3461. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3462. result->src0 = a;
  3463. result->src1 = b;
  3464. return result;
  3465. }
  3466. // ggml_conv_1d_1s
  3467. struct ggml_tensor * ggml_conv_1d_1s(
  3468. struct ggml_context * ctx,
  3469. struct ggml_tensor * a,
  3470. struct ggml_tensor * b) {
  3471. GGML_ASSERT(ggml_is_matrix(b));
  3472. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3473. GGML_ASSERT(a->ne[3] == 1);
  3474. bool is_node = false;
  3475. if (a->grad || b->grad) {
  3476. GGML_ASSERT(false); // TODO: implement backward
  3477. is_node = true;
  3478. }
  3479. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3480. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3481. result->op = GGML_OP_CONV_1D_1S;
  3482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3483. result->src0 = a;
  3484. result->src1 = b;
  3485. return result;
  3486. }
  3487. // ggml_conv_1d_2s
  3488. struct ggml_tensor * ggml_conv_1d_2s(
  3489. struct ggml_context * ctx,
  3490. struct ggml_tensor * a,
  3491. struct ggml_tensor * b) {
  3492. GGML_ASSERT(ggml_is_matrix(b));
  3493. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3494. GGML_ASSERT(a->ne[3] == 1);
  3495. bool is_node = false;
  3496. if (a->grad || b->grad) {
  3497. GGML_ASSERT(false); // TODO: implement backward
  3498. is_node = true;
  3499. }
  3500. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3501. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3502. result->op = GGML_OP_CONV_1D_2S;
  3503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3504. result->src0 = a;
  3505. result->src1 = b;
  3506. return result;
  3507. }
  3508. // ggml_flash_attn
  3509. struct ggml_tensor * ggml_flash_attn(
  3510. struct ggml_context * ctx,
  3511. struct ggml_tensor * q,
  3512. struct ggml_tensor * k,
  3513. struct ggml_tensor * v,
  3514. bool masked) {
  3515. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3516. // TODO: check if vT can be multiplied by (k*qT)
  3517. bool is_node = false;
  3518. if (q->grad || k->grad || v->grad) {
  3519. GGML_ASSERT(false); // TODO: implement backward
  3520. is_node = true;
  3521. }
  3522. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3523. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3524. result->op = GGML_OP_FLASH_ATTN;
  3525. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3526. result->src0 = q;
  3527. result->src1 = k;
  3528. result->opt[0] = v;
  3529. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3530. return result;
  3531. }
  3532. // ggml_flash_ff
  3533. struct ggml_tensor * ggml_flash_ff(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a,
  3536. struct ggml_tensor * b0,
  3537. struct ggml_tensor * b1,
  3538. struct ggml_tensor * c0,
  3539. struct ggml_tensor * c1) {
  3540. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3541. // TODO: more checks
  3542. bool is_node = false;
  3543. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3544. GGML_ASSERT(false); // TODO: implement backward
  3545. is_node = true;
  3546. }
  3547. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3548. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3549. result->op = GGML_OP_FLASH_FF;
  3550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3551. result->src0 = a;
  3552. result->src1 = b0;
  3553. result->opt[0] = b1;
  3554. result->opt[1] = c0;
  3555. result->opt[2] = c1;
  3556. return result;
  3557. }
  3558. ////////////////////////////////////////////////////////////////////////////////
  3559. void ggml_set_param(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * tensor) {
  3562. tensor->is_param = true;
  3563. GGML_ASSERT(tensor->grad == NULL);
  3564. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3565. }
  3566. // ggml_compute_forward_dup
  3567. static void ggml_compute_forward_dup_f16(
  3568. const struct ggml_compute_params * params,
  3569. const struct ggml_tensor * src0,
  3570. struct ggml_tensor * dst) {
  3571. GGML_ASSERT(params->ith == 0);
  3572. GGML_ASSERT(ggml_is_contiguous(dst));
  3573. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3575. return;
  3576. }
  3577. const int ne00 = src0->ne[0];
  3578. const int ne01 = src0->ne[1];
  3579. const int ne02 = src0->ne[2];
  3580. const int ne03 = src0->ne[3];
  3581. const size_t nb00 = src0->nb[0];
  3582. const size_t nb01 = src0->nb[1];
  3583. const size_t nb02 = src0->nb[2];
  3584. const size_t nb03 = src0->nb[3];
  3585. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3586. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3587. return;
  3588. }
  3589. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3590. if (dst->type == GGML_TYPE_F16) {
  3591. size_t id = 0;
  3592. const size_t rs = ne00*nb00;
  3593. for (int i03 = 0; i03 < ne03; i03++) {
  3594. for (int i02 = 0; i02 < ne02; i02++) {
  3595. for (int i01 = 0; i01 < ne01; i01++) {
  3596. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3597. char * dst_ptr = (char *) dst->data + id*rs;
  3598. memcpy(dst_ptr, src0_ptr, rs);
  3599. id++;
  3600. }
  3601. }
  3602. }
  3603. } else if (dst->type == GGML_TYPE_F32) {
  3604. size_t id = 0;
  3605. float * dst_ptr = (float *) dst->data;
  3606. for (int i03 = 0; i03 < ne03; i03++) {
  3607. for (int i02 = 0; i02 < ne02; i02++) {
  3608. for (int i01 = 0; i01 < ne01; i01++) {
  3609. for (int i00 = 0; i00 < ne00; i00++) {
  3610. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3611. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3612. id++;
  3613. }
  3614. }
  3615. }
  3616. }
  3617. } else {
  3618. GGML_ASSERT(false); // TODO: implement
  3619. }
  3620. } else {
  3621. //printf("%s: this is not optimal - fix me\n", __func__);
  3622. if (dst->type == GGML_TYPE_F32) {
  3623. size_t id = 0;
  3624. float * dst_ptr = (float *) dst->data;
  3625. for (int i03 = 0; i03 < ne03; i03++) {
  3626. for (int i02 = 0; i02 < ne02; i02++) {
  3627. for (int i01 = 0; i01 < ne01; i01++) {
  3628. for (int i00 = 0; i00 < ne00; i00++) {
  3629. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3630. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3631. id++;
  3632. }
  3633. }
  3634. }
  3635. }
  3636. } else if (dst->type == GGML_TYPE_F16) {
  3637. size_t id = 0;
  3638. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3639. for (int i03 = 0; i03 < ne03; i03++) {
  3640. for (int i02 = 0; i02 < ne02; i02++) {
  3641. for (int i01 = 0; i01 < ne01; i01++) {
  3642. for (int i00 = 0; i00 < ne00; i00++) {
  3643. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3644. dst_ptr[id] = *src0_ptr;
  3645. id++;
  3646. }
  3647. }
  3648. }
  3649. }
  3650. } else {
  3651. GGML_ASSERT(false); // TODO: implement
  3652. }
  3653. }
  3654. }
  3655. static void ggml_compute_forward_dup_f32(
  3656. const struct ggml_compute_params * params,
  3657. const struct ggml_tensor * src0,
  3658. struct ggml_tensor * dst) {
  3659. GGML_ASSERT(params->ith == 0);
  3660. GGML_ASSERT(ggml_is_contiguous(dst));
  3661. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3662. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3663. return;
  3664. }
  3665. const int ne00 = src0->ne[0];
  3666. const int ne01 = src0->ne[1];
  3667. const int ne02 = src0->ne[2];
  3668. const int ne03 = src0->ne[3];
  3669. const size_t nb00 = src0->nb[0];
  3670. const size_t nb01 = src0->nb[1];
  3671. const size_t nb02 = src0->nb[2];
  3672. const size_t nb03 = src0->nb[3];
  3673. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3674. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3675. return;
  3676. }
  3677. if (src0->nb[0] == sizeof(float)) {
  3678. if (dst->type == GGML_TYPE_F32) {
  3679. size_t id = 0;
  3680. const size_t rs = ne00*nb00;
  3681. for (int i03 = 0; i03 < ne03; i03++) {
  3682. for (int i02 = 0; i02 < ne02; i02++) {
  3683. for (int i01 = 0; i01 < ne01; i01++) {
  3684. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3685. char * dst_ptr = (char *) dst->data + id*rs;
  3686. memcpy(dst_ptr, src0_ptr, rs);
  3687. id++;
  3688. }
  3689. }
  3690. }
  3691. } else if (dst->type == GGML_TYPE_F16) {
  3692. size_t id = 0;
  3693. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3694. for (int i03 = 0; i03 < ne03; i03++) {
  3695. for (int i02 = 0; i02 < ne02; i02++) {
  3696. for (int i01 = 0; i01 < ne01; i01++) {
  3697. for (int i00 = 0; i00 < ne00; i00++) {
  3698. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3699. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3700. id++;
  3701. }
  3702. }
  3703. }
  3704. }
  3705. } else {
  3706. GGML_ASSERT(false); // TODO: implement
  3707. }
  3708. } else {
  3709. //printf("%s: this is not optimal - fix me\n", __func__);
  3710. if (dst->type == GGML_TYPE_F32) {
  3711. size_t id = 0;
  3712. float * dst_ptr = (float *) dst->data;
  3713. for (int i03 = 0; i03 < ne03; i03++) {
  3714. for (int i02 = 0; i02 < ne02; i02++) {
  3715. for (int i01 = 0; i01 < ne01; i01++) {
  3716. for (int i00 = 0; i00 < ne00; i00++) {
  3717. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3718. dst_ptr[id] = *src0_ptr;
  3719. id++;
  3720. }
  3721. }
  3722. }
  3723. }
  3724. } else if (dst->type == GGML_TYPE_F16) {
  3725. size_t id = 0;
  3726. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3727. for (int i03 = 0; i03 < ne03; i03++) {
  3728. for (int i02 = 0; i02 < ne02; i02++) {
  3729. for (int i01 = 0; i01 < ne01; i01++) {
  3730. for (int i00 = 0; i00 < ne00; i00++) {
  3731. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3732. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3733. id++;
  3734. }
  3735. }
  3736. }
  3737. }
  3738. } else {
  3739. GGML_ASSERT(false); // TODO: implement
  3740. }
  3741. }
  3742. }
  3743. static void ggml_compute_forward_dup(
  3744. const struct ggml_compute_params * params,
  3745. const struct ggml_tensor * src0,
  3746. struct ggml_tensor * dst) {
  3747. switch (src0->type) {
  3748. case GGML_TYPE_F16:
  3749. {
  3750. ggml_compute_forward_dup_f16(params, src0, dst);
  3751. } break;
  3752. case GGML_TYPE_F32:
  3753. {
  3754. ggml_compute_forward_dup_f32(params, src0, dst);
  3755. } break;
  3756. case GGML_TYPE_Q4_0:
  3757. case GGML_TYPE_Q4_1:
  3758. case GGML_TYPE_I8:
  3759. case GGML_TYPE_I16:
  3760. case GGML_TYPE_I32:
  3761. case GGML_TYPE_COUNT:
  3762. {
  3763. GGML_ASSERT(false);
  3764. } break;
  3765. }
  3766. }
  3767. // ggml_compute_forward_add
  3768. static void ggml_compute_forward_add_f32(
  3769. const struct ggml_compute_params * params,
  3770. const struct ggml_tensor * src0,
  3771. const struct ggml_tensor * src1,
  3772. struct ggml_tensor * dst) {
  3773. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3774. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3775. return;
  3776. }
  3777. const int ith = params->ith;
  3778. const int nth = params->nth;
  3779. const int n = ggml_nrows(src0);
  3780. const int nc = src0->ne[0];
  3781. const size_t nb00 = src0->nb[0];
  3782. const size_t nb01 = src0->nb[1];
  3783. const size_t nb10 = src1->nb[0];
  3784. const size_t nb11 = src1->nb[1];
  3785. const size_t nb0 = dst->nb[0];
  3786. const size_t nb1 = dst->nb[1];
  3787. GGML_ASSERT( nb0 == sizeof(float));
  3788. GGML_ASSERT(nb00 == sizeof(float));
  3789. if (nb10 == sizeof(float)) {
  3790. const int j0 = (n/nth)*ith;
  3791. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3792. for (int j = j0; j < j1; j++) {
  3793. ggml_vec_add_f32(nc,
  3794. (float *) ((char *) dst->data + j*nb1),
  3795. (float *) ((char *) src0->data + j*nb01),
  3796. (float *) ((char *) src1->data + j*nb11));
  3797. }
  3798. } else {
  3799. // src1 is not contiguous
  3800. for (int j = ith; j < n; j += nth) {
  3801. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3802. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3803. for (int i = 0; i < nc; i++) {
  3804. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3805. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3806. }
  3807. }
  3808. }
  3809. }
  3810. static void ggml_compute_forward_add(
  3811. const struct ggml_compute_params * params,
  3812. const struct ggml_tensor * src0,
  3813. const struct ggml_tensor * src1,
  3814. struct ggml_tensor * dst) {
  3815. switch (src0->type) {
  3816. case GGML_TYPE_F32:
  3817. {
  3818. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3819. } break;
  3820. case GGML_TYPE_Q4_0:
  3821. case GGML_TYPE_Q4_1:
  3822. case GGML_TYPE_I8:
  3823. case GGML_TYPE_I16:
  3824. case GGML_TYPE_I32:
  3825. case GGML_TYPE_F16:
  3826. case GGML_TYPE_COUNT:
  3827. {
  3828. GGML_ASSERT(false);
  3829. } break;
  3830. }
  3831. }
  3832. // ggml_compute_forward_sub
  3833. static void ggml_compute_forward_sub_f32(
  3834. const struct ggml_compute_params * params,
  3835. const struct ggml_tensor * src0,
  3836. const struct ggml_tensor * src1,
  3837. struct ggml_tensor * dst) {
  3838. assert(params->ith == 0);
  3839. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3840. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3841. return;
  3842. }
  3843. const int n = ggml_nrows(src0);
  3844. const int nc = src0->ne[0];
  3845. assert( dst->nb[0] == sizeof(float));
  3846. assert(src0->nb[0] == sizeof(float));
  3847. assert(src1->nb[0] == sizeof(float));
  3848. for (int i = 0; i < n; i++) {
  3849. ggml_vec_sub_f32(nc,
  3850. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3851. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3852. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3853. }
  3854. }
  3855. static void ggml_compute_forward_sub(
  3856. const struct ggml_compute_params * params,
  3857. const struct ggml_tensor * src0,
  3858. const struct ggml_tensor * src1,
  3859. struct ggml_tensor * dst) {
  3860. switch (src0->type) {
  3861. case GGML_TYPE_F32:
  3862. {
  3863. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3864. } break;
  3865. case GGML_TYPE_Q4_0:
  3866. case GGML_TYPE_Q4_1:
  3867. case GGML_TYPE_I8:
  3868. case GGML_TYPE_I16:
  3869. case GGML_TYPE_I32:
  3870. case GGML_TYPE_F16:
  3871. case GGML_TYPE_COUNT:
  3872. {
  3873. GGML_ASSERT(false);
  3874. } break;
  3875. }
  3876. }
  3877. // ggml_compute_forward_mul
  3878. static void ggml_compute_forward_mul_f32(
  3879. const struct ggml_compute_params * params,
  3880. const struct ggml_tensor * src0,
  3881. const struct ggml_tensor * src1,
  3882. struct ggml_tensor * dst) {
  3883. assert(params->ith == 0);
  3884. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3885. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3886. return;
  3887. }
  3888. const int n = ggml_nrows(src0);
  3889. const int nc = src0->ne[0];
  3890. assert( dst->nb[0] == sizeof(float));
  3891. assert(src0->nb[0] == sizeof(float));
  3892. assert(src1->nb[0] == sizeof(float));
  3893. for (int i = 0; i < n; i++) {
  3894. ggml_vec_mul_f32(nc,
  3895. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3896. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3897. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3898. }
  3899. }
  3900. static void ggml_compute_forward_mul(
  3901. const struct ggml_compute_params * params,
  3902. const struct ggml_tensor * src0,
  3903. const struct ggml_tensor * src1,
  3904. struct ggml_tensor * dst) {
  3905. switch (src0->type) {
  3906. case GGML_TYPE_F32:
  3907. {
  3908. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3909. } break;
  3910. case GGML_TYPE_Q4_0:
  3911. case GGML_TYPE_Q4_1:
  3912. case GGML_TYPE_I8:
  3913. case GGML_TYPE_I16:
  3914. case GGML_TYPE_I32:
  3915. case GGML_TYPE_F16:
  3916. case GGML_TYPE_COUNT:
  3917. {
  3918. GGML_ASSERT(false);
  3919. } break;
  3920. }
  3921. }
  3922. // ggml_compute_forward_div
  3923. static void ggml_compute_forward_div_f32(
  3924. const struct ggml_compute_params * params,
  3925. const struct ggml_tensor * src0,
  3926. const struct ggml_tensor * src1,
  3927. struct ggml_tensor * dst) {
  3928. assert(params->ith == 0);
  3929. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3930. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3931. return;
  3932. }
  3933. const int n = ggml_nrows(src0);
  3934. const int nc = src0->ne[0];
  3935. assert( dst->nb[0] == sizeof(float));
  3936. assert(src0->nb[0] == sizeof(float));
  3937. assert(src1->nb[0] == sizeof(float));
  3938. for (int i = 0; i < n; i++) {
  3939. ggml_vec_div_f32(nc,
  3940. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3941. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3942. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3943. }
  3944. }
  3945. static void ggml_compute_forward_div(
  3946. const struct ggml_compute_params * params,
  3947. const struct ggml_tensor * src0,
  3948. const struct ggml_tensor * src1,
  3949. struct ggml_tensor * dst) {
  3950. switch (src0->type) {
  3951. case GGML_TYPE_F32:
  3952. {
  3953. ggml_compute_forward_div_f32(params, src0, src1, dst);
  3954. } break;
  3955. case GGML_TYPE_Q4_0:
  3956. case GGML_TYPE_Q4_1:
  3957. case GGML_TYPE_I8:
  3958. case GGML_TYPE_I16:
  3959. case GGML_TYPE_I32:
  3960. case GGML_TYPE_F16:
  3961. case GGML_TYPE_COUNT:
  3962. {
  3963. GGML_ASSERT(false);
  3964. } break;
  3965. }
  3966. }
  3967. // ggml_compute_forward_sqr
  3968. static void ggml_compute_forward_sqr_f32(
  3969. const struct ggml_compute_params * params,
  3970. const struct ggml_tensor * src0,
  3971. struct ggml_tensor * dst) {
  3972. assert(params->ith == 0);
  3973. assert(ggml_are_same_shape(src0, dst));
  3974. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3975. return;
  3976. }
  3977. const int n = ggml_nrows(src0);
  3978. const int nc = src0->ne[0];
  3979. assert( dst->nb[0] == sizeof(float));
  3980. assert(src0->nb[0] == sizeof(float));
  3981. for (int i = 0; i < n; i++) {
  3982. ggml_vec_sqr_f32(nc,
  3983. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3984. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3985. }
  3986. }
  3987. static void ggml_compute_forward_sqr(
  3988. const struct ggml_compute_params * params,
  3989. const struct ggml_tensor * src0,
  3990. struct ggml_tensor * dst) {
  3991. switch (src0->type) {
  3992. case GGML_TYPE_F32:
  3993. {
  3994. ggml_compute_forward_sqr_f32(params, src0, dst);
  3995. } break;
  3996. case GGML_TYPE_Q4_0:
  3997. case GGML_TYPE_Q4_1:
  3998. case GGML_TYPE_I8:
  3999. case GGML_TYPE_I16:
  4000. case GGML_TYPE_I32:
  4001. case GGML_TYPE_F16:
  4002. case GGML_TYPE_COUNT:
  4003. {
  4004. GGML_ASSERT(false);
  4005. } break;
  4006. }
  4007. }
  4008. // ggml_compute_forward_sqrt
  4009. static void ggml_compute_forward_sqrt_f32(
  4010. const struct ggml_compute_params * params,
  4011. const struct ggml_tensor * src0,
  4012. struct ggml_tensor * dst) {
  4013. assert(params->ith == 0);
  4014. assert(ggml_are_same_shape(src0, dst));
  4015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4016. return;
  4017. }
  4018. const int n = ggml_nrows(src0);
  4019. const int nc = src0->ne[0];
  4020. assert( dst->nb[0] == sizeof(float));
  4021. assert(src0->nb[0] == sizeof(float));
  4022. for (int i = 0; i < n; i++) {
  4023. ggml_vec_sqrt_f32(nc,
  4024. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4025. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4026. }
  4027. }
  4028. static void ggml_compute_forward_sqrt(
  4029. const struct ggml_compute_params * params,
  4030. const struct ggml_tensor * src0,
  4031. struct ggml_tensor * dst) {
  4032. switch (src0->type) {
  4033. case GGML_TYPE_F32:
  4034. {
  4035. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4036. } break;
  4037. case GGML_TYPE_Q4_0:
  4038. case GGML_TYPE_Q4_1:
  4039. case GGML_TYPE_I8:
  4040. case GGML_TYPE_I16:
  4041. case GGML_TYPE_I32:
  4042. case GGML_TYPE_F16:
  4043. case GGML_TYPE_COUNT:
  4044. {
  4045. GGML_ASSERT(false);
  4046. } break;
  4047. }
  4048. }
  4049. // ggml_compute_forward_sum
  4050. static void ggml_compute_forward_sum_f32(
  4051. const struct ggml_compute_params * params,
  4052. const struct ggml_tensor * src0,
  4053. struct ggml_tensor * dst) {
  4054. assert(params->ith == 0);
  4055. assert(ggml_is_scalar(dst));
  4056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4057. return;
  4058. }
  4059. assert(ggml_is_scalar(dst));
  4060. assert(src0->nb[0] == sizeof(float));
  4061. const int ne00 = src0->ne[0];
  4062. const int ne01 = src0->ne[1];
  4063. const int ne02 = src0->ne[2];
  4064. const int ne03 = src0->ne[3];
  4065. const size_t nb01 = src0->nb[1];
  4066. const size_t nb02 = src0->nb[2];
  4067. const size_t nb03 = src0->nb[3];
  4068. for (int i03 = 0; i03 < ne03; i03++) {
  4069. for (int i02 = 0; i02 < ne02; i02++) {
  4070. for (int i01 = 0; i01 < ne01; i01++) {
  4071. ggml_vec_sum_f32(ne00,
  4072. (float *) (dst->data),
  4073. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4074. }
  4075. }
  4076. }
  4077. }
  4078. static void ggml_compute_forward_sum(
  4079. const struct ggml_compute_params * params,
  4080. const struct ggml_tensor * src0,
  4081. struct ggml_tensor * dst) {
  4082. switch (src0->type) {
  4083. case GGML_TYPE_F32:
  4084. {
  4085. ggml_compute_forward_sum_f32(params, src0, dst);
  4086. } break;
  4087. case GGML_TYPE_Q4_0:
  4088. case GGML_TYPE_Q4_1:
  4089. case GGML_TYPE_I8:
  4090. case GGML_TYPE_I16:
  4091. case GGML_TYPE_I32:
  4092. case GGML_TYPE_F16:
  4093. case GGML_TYPE_COUNT:
  4094. {
  4095. GGML_ASSERT(false);
  4096. } break;
  4097. }
  4098. }
  4099. // ggml_compute_forward_mean
  4100. static void ggml_compute_forward_mean_f32(
  4101. const struct ggml_compute_params * params,
  4102. const struct ggml_tensor * src0,
  4103. struct ggml_tensor * dst) {
  4104. assert(params->ith == 0);
  4105. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4106. return;
  4107. }
  4108. assert(src0->nb[0] == sizeof(float));
  4109. const int ne00 = src0->ne[0];
  4110. const int ne01 = src0->ne[1];
  4111. const int ne02 = src0->ne[2];
  4112. const int ne03 = src0->ne[3];
  4113. const size_t nb01 = src0->nb[1];
  4114. const size_t nb02 = src0->nb[2];
  4115. const size_t nb03 = src0->nb[3];
  4116. const int ne0 = dst->ne[0];
  4117. const int ne1 = dst->ne[1];
  4118. const int ne2 = dst->ne[2];
  4119. const int ne3 = dst->ne[3];
  4120. assert(ne0 == 1);
  4121. assert(ne1 == ne01);
  4122. assert(ne2 == ne02);
  4123. assert(ne3 == ne03);
  4124. UNUSED(ne0);
  4125. UNUSED(ne1);
  4126. UNUSED(ne2);
  4127. UNUSED(ne3);
  4128. const size_t nb1 = dst->nb[1];
  4129. const size_t nb2 = dst->nb[2];
  4130. const size_t nb3 = dst->nb[3];
  4131. for (int i03 = 0; i03 < ne03; i03++) {
  4132. for (int i02 = 0; i02 < ne02; i02++) {
  4133. for (int i01 = 0; i01 < ne01; i01++) {
  4134. ggml_vec_sum_f32(ne00,
  4135. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4136. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4137. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4138. }
  4139. }
  4140. }
  4141. }
  4142. static void ggml_compute_forward_mean(
  4143. const struct ggml_compute_params * params,
  4144. const struct ggml_tensor * src0,
  4145. struct ggml_tensor * dst) {
  4146. switch (src0->type) {
  4147. case GGML_TYPE_F32:
  4148. {
  4149. ggml_compute_forward_mean_f32(params, src0, dst);
  4150. } break;
  4151. case GGML_TYPE_Q4_0:
  4152. case GGML_TYPE_Q4_1:
  4153. case GGML_TYPE_I8:
  4154. case GGML_TYPE_I16:
  4155. case GGML_TYPE_I32:
  4156. case GGML_TYPE_F16:
  4157. case GGML_TYPE_COUNT:
  4158. {
  4159. GGML_ASSERT(false);
  4160. } break;
  4161. }
  4162. }
  4163. // ggml_compute_forward_repeat
  4164. static void ggml_compute_forward_repeat_f32(
  4165. const struct ggml_compute_params * params,
  4166. const struct ggml_tensor * src0,
  4167. struct ggml_tensor * dst) {
  4168. assert(params->ith == 0);
  4169. assert(ggml_can_repeat(src0, dst));
  4170. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4171. return;
  4172. }
  4173. // TODO: implement support for rank > 2 tensors
  4174. assert(src0->ne[2] == 1);
  4175. assert(src0->ne[3] == 1);
  4176. assert( dst->ne[2] == 1);
  4177. assert( dst->ne[3] == 1);
  4178. const int nc = dst->ne[0];
  4179. const int nr = dst->ne[1];
  4180. const int nc0 = src0->ne[0];
  4181. const int nr0 = src0->ne[1];
  4182. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4183. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4184. // TODO: support for transposed / permuted tensors
  4185. assert( dst->nb[0] == sizeof(float));
  4186. assert(src0->nb[0] == sizeof(float));
  4187. // TODO: maybe this is not optimal?
  4188. for (int i = 0; i < nrr; i++) {
  4189. for (int j = 0; j < ncr; j++) {
  4190. for (int k = 0; k < nr0; k++) {
  4191. ggml_vec_cpy_f32(nc0,
  4192. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4193. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4194. }
  4195. }
  4196. }
  4197. }
  4198. static void ggml_compute_forward_repeat(
  4199. const struct ggml_compute_params * params,
  4200. const struct ggml_tensor * src0,
  4201. struct ggml_tensor * dst) {
  4202. switch (src0->type) {
  4203. case GGML_TYPE_F32:
  4204. {
  4205. ggml_compute_forward_repeat_f32(params, src0, dst);
  4206. } break;
  4207. case GGML_TYPE_Q4_0:
  4208. case GGML_TYPE_Q4_1:
  4209. case GGML_TYPE_I8:
  4210. case GGML_TYPE_I16:
  4211. case GGML_TYPE_I32:
  4212. case GGML_TYPE_F16:
  4213. case GGML_TYPE_COUNT:
  4214. {
  4215. GGML_ASSERT(false);
  4216. } break;
  4217. }
  4218. }
  4219. // ggml_compute_forward_abs
  4220. static void ggml_compute_forward_abs_f32(
  4221. const struct ggml_compute_params * params,
  4222. const struct ggml_tensor * src0,
  4223. struct ggml_tensor * dst) {
  4224. assert(params->ith == 0);
  4225. assert(ggml_are_same_shape(src0, dst));
  4226. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4227. return;
  4228. }
  4229. const int n = ggml_nrows(src0);
  4230. const int nc = src0->ne[0];
  4231. assert(dst->nb[0] == sizeof(float));
  4232. assert(src0->nb[0] == sizeof(float));
  4233. for (int i = 0; i < n; i++) {
  4234. ggml_vec_abs_f32(nc,
  4235. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4236. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4237. }
  4238. }
  4239. static void ggml_compute_forward_abs(
  4240. const struct ggml_compute_params * params,
  4241. const struct ggml_tensor * src0,
  4242. struct ggml_tensor * dst) {
  4243. switch (src0->type) {
  4244. case GGML_TYPE_F32:
  4245. {
  4246. ggml_compute_forward_abs_f32(params, src0, dst);
  4247. } break;
  4248. case GGML_TYPE_Q4_0:
  4249. case GGML_TYPE_Q4_1:
  4250. case GGML_TYPE_I8:
  4251. case GGML_TYPE_I16:
  4252. case GGML_TYPE_I32:
  4253. case GGML_TYPE_F16:
  4254. case GGML_TYPE_COUNT:
  4255. {
  4256. GGML_ASSERT(false);
  4257. } break;
  4258. }
  4259. }
  4260. // ggml_compute_forward_sgn
  4261. static void ggml_compute_forward_sgn_f32(
  4262. const struct ggml_compute_params * params,
  4263. const struct ggml_tensor * src0,
  4264. struct ggml_tensor * dst) {
  4265. assert(params->ith == 0);
  4266. assert(ggml_are_same_shape(src0, dst));
  4267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4268. return;
  4269. }
  4270. const int n = ggml_nrows(src0);
  4271. const int nc = src0->ne[0];
  4272. assert(dst->nb[0] == sizeof(float));
  4273. assert(src0->nb[0] == sizeof(float));
  4274. for (int i = 0; i < n; i++) {
  4275. ggml_vec_sgn_f32(nc,
  4276. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4277. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4278. }
  4279. }
  4280. static void ggml_compute_forward_sgn(
  4281. const struct ggml_compute_params * params,
  4282. const struct ggml_tensor * src0,
  4283. struct ggml_tensor * dst) {
  4284. switch (src0->type) {
  4285. case GGML_TYPE_F32:
  4286. {
  4287. ggml_compute_forward_sgn_f32(params, src0, dst);
  4288. } break;
  4289. case GGML_TYPE_Q4_0:
  4290. case GGML_TYPE_Q4_1:
  4291. case GGML_TYPE_I8:
  4292. case GGML_TYPE_I16:
  4293. case GGML_TYPE_I32:
  4294. case GGML_TYPE_F16:
  4295. case GGML_TYPE_COUNT:
  4296. {
  4297. GGML_ASSERT(false);
  4298. } break;
  4299. }
  4300. }
  4301. // ggml_compute_forward_neg
  4302. static void ggml_compute_forward_neg_f32(
  4303. const struct ggml_compute_params * params,
  4304. const struct ggml_tensor * src0,
  4305. struct ggml_tensor * dst) {
  4306. assert(params->ith == 0);
  4307. assert(ggml_are_same_shape(src0, dst));
  4308. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4309. return;
  4310. }
  4311. const int n = ggml_nrows(src0);
  4312. const int nc = src0->ne[0];
  4313. assert(dst->nb[0] == sizeof(float));
  4314. assert(src0->nb[0] == sizeof(float));
  4315. for (int i = 0; i < n; i++) {
  4316. ggml_vec_neg_f32(nc,
  4317. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4318. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4319. }
  4320. }
  4321. static void ggml_compute_forward_neg(
  4322. const struct ggml_compute_params * params,
  4323. const struct ggml_tensor * src0,
  4324. struct ggml_tensor * dst) {
  4325. switch (src0->type) {
  4326. case GGML_TYPE_F32:
  4327. {
  4328. ggml_compute_forward_neg_f32(params, src0, dst);
  4329. } break;
  4330. case GGML_TYPE_Q4_0:
  4331. case GGML_TYPE_Q4_1:
  4332. case GGML_TYPE_I8:
  4333. case GGML_TYPE_I16:
  4334. case GGML_TYPE_I32:
  4335. case GGML_TYPE_F16:
  4336. case GGML_TYPE_COUNT:
  4337. {
  4338. GGML_ASSERT(false);
  4339. } break;
  4340. }
  4341. }
  4342. // ggml_compute_forward_step
  4343. static void ggml_compute_forward_step_f32(
  4344. const struct ggml_compute_params * params,
  4345. const struct ggml_tensor * src0,
  4346. struct ggml_tensor * dst) {
  4347. assert(params->ith == 0);
  4348. assert(ggml_are_same_shape(src0, dst));
  4349. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4350. return;
  4351. }
  4352. const int n = ggml_nrows(src0);
  4353. const int nc = src0->ne[0];
  4354. assert(dst->nb[0] == sizeof(float));
  4355. assert(src0->nb[0] == sizeof(float));
  4356. for (int i = 0; i < n; i++) {
  4357. ggml_vec_step_f32(nc,
  4358. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4359. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4360. }
  4361. }
  4362. static void ggml_compute_forward_step(
  4363. const struct ggml_compute_params * params,
  4364. const struct ggml_tensor * src0,
  4365. struct ggml_tensor * dst) {
  4366. switch (src0->type) {
  4367. case GGML_TYPE_F32:
  4368. {
  4369. ggml_compute_forward_step_f32(params, src0, dst);
  4370. } break;
  4371. case GGML_TYPE_Q4_0:
  4372. case GGML_TYPE_Q4_1:
  4373. case GGML_TYPE_I8:
  4374. case GGML_TYPE_I16:
  4375. case GGML_TYPE_I32:
  4376. case GGML_TYPE_F16:
  4377. case GGML_TYPE_COUNT:
  4378. {
  4379. GGML_ASSERT(false);
  4380. } break;
  4381. }
  4382. }
  4383. // ggml_compute_forward_relu
  4384. static void ggml_compute_forward_relu_f32(
  4385. const struct ggml_compute_params * params,
  4386. const struct ggml_tensor * src0,
  4387. struct ggml_tensor * dst) {
  4388. assert(params->ith == 0);
  4389. assert(ggml_are_same_shape(src0, dst));
  4390. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4391. return;
  4392. }
  4393. const int n = ggml_nrows(src0);
  4394. const int nc = src0->ne[0];
  4395. assert(dst->nb[0] == sizeof(float));
  4396. assert(src0->nb[0] == sizeof(float));
  4397. for (int i = 0; i < n; i++) {
  4398. ggml_vec_relu_f32(nc,
  4399. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4400. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4401. }
  4402. }
  4403. static void ggml_compute_forward_relu(
  4404. const struct ggml_compute_params * params,
  4405. const struct ggml_tensor * src0,
  4406. struct ggml_tensor * dst) {
  4407. switch (src0->type) {
  4408. case GGML_TYPE_F32:
  4409. {
  4410. ggml_compute_forward_relu_f32(params, src0, dst);
  4411. } break;
  4412. case GGML_TYPE_Q4_0:
  4413. case GGML_TYPE_Q4_1:
  4414. case GGML_TYPE_I8:
  4415. case GGML_TYPE_I16:
  4416. case GGML_TYPE_I32:
  4417. case GGML_TYPE_F16:
  4418. case GGML_TYPE_COUNT:
  4419. {
  4420. GGML_ASSERT(false);
  4421. } break;
  4422. }
  4423. }
  4424. // ggml_compute_forward_gelu
  4425. static void ggml_compute_forward_gelu_f32(
  4426. const struct ggml_compute_params * params,
  4427. const struct ggml_tensor * src0,
  4428. struct ggml_tensor * dst) {
  4429. GGML_ASSERT(ggml_is_contiguous(src0));
  4430. GGML_ASSERT(ggml_is_contiguous(dst));
  4431. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4432. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4433. return;
  4434. }
  4435. const int ith = params->ith;
  4436. const int nth = params->nth;
  4437. const int nc = src0->ne[0];
  4438. const int nr = ggml_nrows(src0);
  4439. // rows per thread
  4440. const int dr = (nr + nth - 1)/nth;
  4441. // row range for this thread
  4442. const int ir0 = dr*ith;
  4443. const int ir1 = MIN(ir0 + dr, nr);
  4444. for (int i1 = ir0; i1 < ir1; i1++) {
  4445. ggml_vec_gelu_f32(nc,
  4446. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4447. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4448. #ifndef NDEBUG
  4449. for (int k = 0; k < nc; k++) {
  4450. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4451. UNUSED(x);
  4452. assert(!isnan(x));
  4453. assert(!isinf(x));
  4454. }
  4455. #endif
  4456. }
  4457. }
  4458. static void ggml_compute_forward_gelu(
  4459. const struct ggml_compute_params * params,
  4460. const struct ggml_tensor * src0,
  4461. struct ggml_tensor * dst) {
  4462. switch (src0->type) {
  4463. case GGML_TYPE_F32:
  4464. {
  4465. ggml_compute_forward_gelu_f32(params, src0, dst);
  4466. } break;
  4467. case GGML_TYPE_Q4_0:
  4468. case GGML_TYPE_Q4_1:
  4469. case GGML_TYPE_I8:
  4470. case GGML_TYPE_I16:
  4471. case GGML_TYPE_I32:
  4472. case GGML_TYPE_F16:
  4473. case GGML_TYPE_COUNT:
  4474. {
  4475. GGML_ASSERT(false);
  4476. } break;
  4477. }
  4478. //printf("XXXXXXXX gelu\n");
  4479. }
  4480. // ggml_compute_forward_silu
  4481. static void ggml_compute_forward_silu_f32(
  4482. const struct ggml_compute_params * params,
  4483. const struct ggml_tensor * src0,
  4484. struct ggml_tensor * dst) {
  4485. GGML_ASSERT(ggml_is_contiguous(src0));
  4486. GGML_ASSERT(ggml_is_contiguous(dst));
  4487. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4488. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4489. return;
  4490. }
  4491. const int ith = params->ith;
  4492. const int nth = params->nth;
  4493. const int nc = src0->ne[0];
  4494. const int nr = ggml_nrows(src0);
  4495. // rows per thread
  4496. const int dr = (nr + nth - 1)/nth;
  4497. // row range for this thread
  4498. const int ir0 = dr*ith;
  4499. const int ir1 = MIN(ir0 + dr, nr);
  4500. for (int i1 = ir0; i1 < ir1; i1++) {
  4501. ggml_vec_silu_f32(nc,
  4502. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4503. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4504. #ifndef NDEBUG
  4505. for (int k = 0; k < nc; k++) {
  4506. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4507. UNUSED(x);
  4508. assert(!isnan(x));
  4509. assert(!isinf(x));
  4510. }
  4511. #endif
  4512. }
  4513. }
  4514. static void ggml_compute_forward_silu(
  4515. const struct ggml_compute_params * params,
  4516. const struct ggml_tensor * src0,
  4517. struct ggml_tensor * dst) {
  4518. switch (src0->type) {
  4519. case GGML_TYPE_F32:
  4520. {
  4521. ggml_compute_forward_silu_f32(params, src0, dst);
  4522. } break;
  4523. case GGML_TYPE_Q4_0:
  4524. case GGML_TYPE_Q4_1:
  4525. case GGML_TYPE_I8:
  4526. case GGML_TYPE_I16:
  4527. case GGML_TYPE_I32:
  4528. case GGML_TYPE_F16:
  4529. case GGML_TYPE_COUNT:
  4530. {
  4531. GGML_ASSERT(false);
  4532. } break;
  4533. }
  4534. }
  4535. // ggml_compute_forward_norm
  4536. static void ggml_compute_forward_norm_f32(
  4537. const struct ggml_compute_params * params,
  4538. const struct ggml_tensor * src0,
  4539. struct ggml_tensor * dst) {
  4540. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4541. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4542. return;
  4543. }
  4544. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4545. const int ith = params->ith;
  4546. const int nth = params->nth;
  4547. const int ne00 = src0->ne[0];
  4548. const int ne01 = src0->ne[1];
  4549. const int ne02 = src0->ne[2];
  4550. const int ne03 = src0->ne[3];
  4551. const size_t nb01 = src0->nb[1];
  4552. const size_t nb02 = src0->nb[2];
  4553. const size_t nb03 = src0->nb[3];
  4554. const size_t nb1 = dst->nb[1];
  4555. const size_t nb2 = dst->nb[2];
  4556. const size_t nb3 = dst->nb[3];
  4557. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4558. // TODO: optimize
  4559. for (int i03 = 0; i03 < ne03; i03++) {
  4560. for (int i02 = 0; i02 < ne02; i02++) {
  4561. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4562. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4563. ggml_float mean = 0.0;
  4564. for (int i00 = 0; i00 < ne00; i00++) {
  4565. mean += x[i00];
  4566. }
  4567. mean /= ne00;
  4568. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4569. ggml_float sum2 = 0.0;
  4570. for (int i00 = 0; i00 < ne00; i00++) {
  4571. ggml_float v = x[i00] - mean;
  4572. y[i00] = v;
  4573. sum2 += v*v;
  4574. }
  4575. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4576. ggml_vec_scale_f32(ne00, y, scale);
  4577. }
  4578. }
  4579. }
  4580. }
  4581. static void ggml_compute_forward_norm(
  4582. const struct ggml_compute_params * params,
  4583. const struct ggml_tensor * src0,
  4584. struct ggml_tensor * dst) {
  4585. switch (src0->type) {
  4586. case GGML_TYPE_F32:
  4587. {
  4588. ggml_compute_forward_norm_f32(params, src0, dst);
  4589. } break;
  4590. case GGML_TYPE_Q4_0:
  4591. case GGML_TYPE_Q4_1:
  4592. case GGML_TYPE_I8:
  4593. case GGML_TYPE_I16:
  4594. case GGML_TYPE_I32:
  4595. case GGML_TYPE_F16:
  4596. case GGML_TYPE_COUNT:
  4597. {
  4598. GGML_ASSERT(false);
  4599. } break;
  4600. }
  4601. }
  4602. static void ggml_compute_forward_rms_norm_f32(
  4603. const struct ggml_compute_params * params,
  4604. const struct ggml_tensor * src0,
  4605. struct ggml_tensor * dst) {
  4606. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4607. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4608. return;
  4609. }
  4610. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4611. const int ith = params->ith;
  4612. const int nth = params->nth;
  4613. const int ne00 = src0->ne[0];
  4614. const int ne01 = src0->ne[1];
  4615. const int ne02 = src0->ne[2];
  4616. const int ne03 = src0->ne[3];
  4617. const size_t nb01 = src0->nb[1];
  4618. const size_t nb02 = src0->nb[2];
  4619. const size_t nb03 = src0->nb[3];
  4620. const size_t nb1 = dst->nb[1];
  4621. const size_t nb2 = dst->nb[2];
  4622. const size_t nb3 = dst->nb[3];
  4623. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4624. // TODO: optimize
  4625. for (int i03 = 0; i03 < ne03; i03++) {
  4626. for (int i02 = 0; i02 < ne02; i02++) {
  4627. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4628. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4629. ggml_float mean = 0.0;
  4630. for (int i00 = 0; i00 < ne00; i00++) {
  4631. mean += x[i00] * x[i00];
  4632. }
  4633. mean /= ne00;
  4634. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4635. memcpy(y, x, ne00 * sizeof(float));
  4636. // for (int i00 = 0; i00 < ne00; i00++) {
  4637. // y[i00] = x[i00];
  4638. // }
  4639. const float scale = 1.0/sqrt(mean + eps);
  4640. ggml_vec_scale_f32(ne00, y, scale);
  4641. }
  4642. }
  4643. }
  4644. }
  4645. static void ggml_compute_forward_rms_norm(
  4646. const struct ggml_compute_params * params,
  4647. const struct ggml_tensor * src0,
  4648. struct ggml_tensor * dst) {
  4649. switch (src0->type) {
  4650. case GGML_TYPE_F32:
  4651. {
  4652. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4653. } break;
  4654. case GGML_TYPE_Q4_0:
  4655. case GGML_TYPE_Q4_1:
  4656. case GGML_TYPE_I8:
  4657. case GGML_TYPE_I16:
  4658. case GGML_TYPE_I32:
  4659. case GGML_TYPE_F16:
  4660. case GGML_TYPE_COUNT:
  4661. {
  4662. GGML_ASSERT(false);
  4663. } break;
  4664. }
  4665. }
  4666. // ggml_compute_forward_mul_mat
  4667. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4668. // helper function to determine if it is better to use BLAS or not
  4669. // for large matrices, BLAS is faster
  4670. static bool ggml_compute_forward_mul_mat_use_blas(
  4671. const struct ggml_tensor * src0,
  4672. const struct ggml_tensor * src1,
  4673. struct ggml_tensor * dst) {
  4674. //const int ne00 = src0->ne[0];
  4675. //const int ne01 = src0->ne[1];
  4676. const int ne10 = src1->ne[0];
  4677. const int ne0 = dst->ne[0];
  4678. const int ne1 = dst->ne[1];
  4679. // TODO: find the optimal values for these
  4680. if (ggml_is_contiguous(src0) &&
  4681. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4682. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4683. return true;
  4684. }
  4685. return false;
  4686. }
  4687. #endif
  4688. static void ggml_compute_forward_mul_mat_f32(
  4689. const struct ggml_compute_params * params,
  4690. const struct ggml_tensor * src0,
  4691. const struct ggml_tensor * src1,
  4692. struct ggml_tensor * dst) {
  4693. int64_t t0 = ggml_perf_time_us();
  4694. UNUSED(t0);
  4695. const int ne00 = src0->ne[0];
  4696. const int ne01 = src0->ne[1];
  4697. const int ne02 = src0->ne[2];
  4698. const int ne03 = src0->ne[3];
  4699. const int ne10 = src1->ne[0];
  4700. const int ne11 = src1->ne[1];
  4701. //const int ne12 = src1->ne[2];
  4702. //const int ne13 = src1->ne[3];
  4703. //const int ne0 = dst->ne[0];
  4704. //const int ne1 = dst->ne[1];
  4705. //const int ne2 = dst->ne[2];
  4706. //const int ne3 = dst->ne[3];
  4707. //const int ne = ne0*ne1*ne2*ne3;
  4708. //const int nb00 = src0->nb[0];
  4709. const int nb01 = src0->nb[1];
  4710. const int nb02 = src0->nb[2];
  4711. const int nb03 = src0->nb[3];
  4712. const int nb10 = src1->nb[0];
  4713. const int nb11 = src1->nb[1];
  4714. const int nb12 = src1->nb[2];
  4715. const int nb13 = src1->nb[3];
  4716. const int nb0 = dst->nb[0];
  4717. const int nb1 = dst->nb[1];
  4718. const int nb2 = dst->nb[2];
  4719. const int nb3 = dst->nb[3];
  4720. const int ith = params->ith;
  4721. const int nth = params->nth;
  4722. assert(ne02 == ne12);
  4723. assert(ne03 == ne13);
  4724. assert(ne2 == ne12);
  4725. assert(ne3 == ne13);
  4726. // TODO: we don't support permuted src0
  4727. assert(nb00 == sizeof(float));
  4728. // dst cannot be transposed or permuted
  4729. assert(nb0 == sizeof(float));
  4730. assert(nb0 <= nb1);
  4731. assert(nb1 <= nb2);
  4732. assert(nb2 <= nb3);
  4733. assert(ne0 == ne01);
  4734. assert(ne1 == ne11);
  4735. assert(ne2 == ne02);
  4736. assert(ne3 == ne03);
  4737. // nb01 >= nb00 - src0 is not transposed
  4738. // compute by src0 rows
  4739. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4740. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4741. GGML_ASSERT(nb10 == sizeof(float));
  4742. if (params->ith != 0) {
  4743. return;
  4744. }
  4745. if (params->type == GGML_TASK_INIT) {
  4746. return;
  4747. }
  4748. if (params->type == GGML_TASK_FINALIZE) {
  4749. return;
  4750. }
  4751. for (int i03 = 0; i03 < ne03; i03++) {
  4752. for (int i02 = 0; i02 < ne02; i02++) {
  4753. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4754. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4755. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4756. // zT = y * xT
  4757. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4758. ne11, ne01, ne10,
  4759. 1.0f, y, ne10,
  4760. x, ne10,
  4761. 0.0f, d, ne01);
  4762. }
  4763. }
  4764. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4765. return;
  4766. }
  4767. #endif
  4768. if (params->type == GGML_TASK_INIT) {
  4769. return;
  4770. }
  4771. if (params->type == GGML_TASK_FINALIZE) {
  4772. return;
  4773. }
  4774. // TODO: do not support transposed src1
  4775. assert(nb10 == sizeof(float));
  4776. // parallelize by src0 rows using ggml_vec_dot_f32
  4777. // total rows in src0
  4778. const int nr = ne01*ne02*ne03;
  4779. // rows per thread
  4780. const int dr = (nr + nth - 1)/nth;
  4781. // row range for this thread
  4782. const int ir0 = dr*ith;
  4783. const int ir1 = MIN(ir0 + dr, nr);
  4784. for (int ir = ir0; ir < ir1; ++ir) {
  4785. // src0 indices
  4786. const int i03 = ir/(ne02*ne01);
  4787. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4788. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4789. for (int ic = 0; ic < ne11; ++ic) {
  4790. // src1 indices
  4791. const int i13 = i03;
  4792. const int i12 = i02;
  4793. const int i11 = ic;
  4794. // dst indices
  4795. const int i0 = i01;
  4796. const int i1 = i11;
  4797. const int i2 = i02;
  4798. const int i3 = i03;
  4799. ggml_vec_dot_f32(ne00,
  4800. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4801. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4802. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4803. }
  4804. }
  4805. //int64_t t1 = ggml_perf_time_us();
  4806. //static int64_t acc = 0;
  4807. //acc += t1 - t0;
  4808. //if (t1 - t0 > 10) {
  4809. // printf("\n");
  4810. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4811. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4812. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4813. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4814. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4815. //}
  4816. }
  4817. static void ggml_compute_forward_mul_mat_f16_f32(
  4818. const struct ggml_compute_params * params,
  4819. const struct ggml_tensor * src0,
  4820. const struct ggml_tensor * src1,
  4821. struct ggml_tensor * dst) {
  4822. int64_t t0 = ggml_perf_time_us();
  4823. UNUSED(t0);
  4824. const int ne00 = src0->ne[0];
  4825. const int ne01 = src0->ne[1];
  4826. const int ne02 = src0->ne[2];
  4827. const int ne03 = src0->ne[3];
  4828. const int ne10 = src1->ne[0];
  4829. const int ne11 = src1->ne[1];
  4830. const int ne12 = src1->ne[2];
  4831. const int ne13 = src1->ne[3];
  4832. const int ne0 = dst->ne[0];
  4833. const int ne1 = dst->ne[1];
  4834. const int ne2 = dst->ne[2];
  4835. const int ne3 = dst->ne[3];
  4836. //const int ne = ne0*ne1*ne2*ne3;
  4837. const int nb00 = src0->nb[0];
  4838. const int nb01 = src0->nb[1];
  4839. const int nb02 = src0->nb[2];
  4840. const int nb03 = src0->nb[3];
  4841. const int nb10 = src1->nb[0];
  4842. const int nb11 = src1->nb[1];
  4843. const int nb12 = src1->nb[2];
  4844. const int nb13 = src1->nb[3];
  4845. const int nb0 = dst->nb[0];
  4846. const int nb1 = dst->nb[1];
  4847. const int nb2 = dst->nb[2];
  4848. const int nb3 = dst->nb[3];
  4849. const int ith = params->ith;
  4850. const int nth = params->nth;
  4851. GGML_ASSERT(ne02 == ne12);
  4852. GGML_ASSERT(ne03 == ne13);
  4853. GGML_ASSERT(ne2 == ne12);
  4854. GGML_ASSERT(ne3 == ne13);
  4855. // TODO: we don't support permuted src0
  4856. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4857. // dst cannot be transposed or permuted
  4858. GGML_ASSERT(nb0 == sizeof(float));
  4859. GGML_ASSERT(nb0 <= nb1);
  4860. GGML_ASSERT(nb1 <= nb2);
  4861. GGML_ASSERT(nb2 <= nb3);
  4862. GGML_ASSERT(ne0 == ne01);
  4863. GGML_ASSERT(ne1 == ne11);
  4864. GGML_ASSERT(ne2 == ne02);
  4865. GGML_ASSERT(ne3 == ne03);
  4866. // nb01 >= nb00 - src0 is not transposed
  4867. // compute by src0 rows
  4868. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4869. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4870. GGML_ASSERT(nb10 == sizeof(float));
  4871. if (params->ith != 0) {
  4872. return;
  4873. }
  4874. if (params->type == GGML_TASK_INIT) {
  4875. return;
  4876. }
  4877. if (params->type == GGML_TASK_FINALIZE) {
  4878. return;
  4879. }
  4880. float * const wdata = params->wdata;
  4881. for (int i03 = 0; i03 < ne03; i03++) {
  4882. for (int i02 = 0; i02 < ne02; i02++) {
  4883. {
  4884. size_t id = 0;
  4885. for (int i01 = 0; i01 < ne01; ++i01) {
  4886. for (int i00 = 0; i00 < ne00; ++i00) {
  4887. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4888. }
  4889. }
  4890. }
  4891. const float * x = wdata;
  4892. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4893. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4894. // zT = y * xT
  4895. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4896. ne11, ne01, ne10,
  4897. 1.0f, y, ne10,
  4898. x, ne10,
  4899. 0.0f, d, ne01);
  4900. }
  4901. }
  4902. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4903. return;
  4904. }
  4905. #endif
  4906. if (params->type == GGML_TASK_INIT) {
  4907. ggml_fp16_t * const wdata = params->wdata;
  4908. size_t id = 0;
  4909. for (int i13 = 0; i13 < ne13; ++i13) {
  4910. for (int i12 = 0; i12 < ne12; ++i12) {
  4911. for (int i11 = 0; i11 < ne11; ++i11) {
  4912. for (int i10 = 0; i10 < ne10; ++i10) {
  4913. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4914. }
  4915. }
  4916. }
  4917. }
  4918. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4919. return;
  4920. }
  4921. if (params->type == GGML_TASK_FINALIZE) {
  4922. return;
  4923. }
  4924. // fp16 -> half the size, so divide by 2
  4925. // TODO: do not support transposed src1
  4926. assert(nb10/2 == sizeof(ggml_fp16_t));
  4927. // parallelize by src0 rows using ggml_vec_dot_f16
  4928. // total rows in src0
  4929. const int nr = ne01*ne02*ne03;
  4930. // rows per thread
  4931. const int dr = (nr + nth - 1)/nth;
  4932. // row range for this thread
  4933. const int ir0 = dr*ith;
  4934. const int ir1 = MIN(ir0 + dr, nr);
  4935. ggml_fp16_t * wdata = params->wdata;
  4936. for (int ir = ir0; ir < ir1; ++ir) {
  4937. // src0 indices
  4938. const int i03 = ir/(ne02*ne01);
  4939. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4940. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4941. const int i13 = i03;
  4942. const int i12 = i02;
  4943. const int i0 = i01;
  4944. const int i2 = i02;
  4945. const int i3 = i03;
  4946. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4947. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  4948. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  4949. for (int ic = 0; ic < ne11; ++ic) {
  4950. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  4951. }
  4952. }
  4953. //int64_t t1 = ggml_time_us();
  4954. //static int64_t acc = 0;
  4955. //acc += t1 - t0;
  4956. //if (t1 - t0 > 10) {
  4957. // printf("\n");
  4958. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4959. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4960. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4961. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4962. //}
  4963. }
  4964. static void ggml_compute_forward_mul_mat_q4_0_f32(
  4965. const struct ggml_compute_params * params,
  4966. const struct ggml_tensor * src0,
  4967. const struct ggml_tensor * src1,
  4968. struct ggml_tensor * dst) {
  4969. int64_t t0 = ggml_perf_time_us();
  4970. UNUSED(t0);
  4971. const int ne00 = src0->ne[0];
  4972. const int ne01 = src0->ne[1];
  4973. const int ne02 = src0->ne[2];
  4974. const int ne03 = src0->ne[3];
  4975. const int ne10 = src1->ne[0];
  4976. const int ne11 = src1->ne[1];
  4977. const int ne12 = src1->ne[2];
  4978. const int ne13 = src1->ne[3];
  4979. const int ne0 = dst->ne[0];
  4980. const int ne1 = dst->ne[1];
  4981. const int ne2 = dst->ne[2];
  4982. const int ne3 = dst->ne[3];
  4983. //const int ne = ne0*ne1*ne2*ne3;
  4984. const int nb00 = src0->nb[0];
  4985. const int nb01 = src0->nb[1];
  4986. const int nb02 = src0->nb[2];
  4987. const int nb03 = src0->nb[3];
  4988. const int nb10 = src1->nb[0];
  4989. const int nb11 = src1->nb[1];
  4990. const int nb12 = src1->nb[2];
  4991. const int nb13 = src1->nb[3];
  4992. const int nb0 = dst->nb[0];
  4993. const int nb1 = dst->nb[1];
  4994. const int nb2 = dst->nb[2];
  4995. const int nb3 = dst->nb[3];
  4996. const int ith = params->ith;
  4997. const int nth = params->nth;
  4998. GGML_ASSERT(ne02 == ne12);
  4999. GGML_ASSERT(ne03 == ne13);
  5000. GGML_ASSERT(ne2 == ne12);
  5001. GGML_ASSERT(ne3 == ne13);
  5002. // TODO: we don't support permuted src0
  5003. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5004. // dst cannot be transposed or permuted
  5005. GGML_ASSERT(nb0 == sizeof(float));
  5006. GGML_ASSERT(nb0 <= nb1);
  5007. GGML_ASSERT(nb1 <= nb2);
  5008. GGML_ASSERT(nb2 <= nb3);
  5009. GGML_ASSERT(ne0 == ne01);
  5010. GGML_ASSERT(ne1 == ne11);
  5011. GGML_ASSERT(ne2 == ne02);
  5012. GGML_ASSERT(ne3 == ne03);
  5013. // nb01 >= nb00 - src0 is not transposed
  5014. // compute by src0 rows
  5015. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5016. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5017. GGML_ASSERT(nb10 == sizeof(float));
  5018. if (params->ith != 0) {
  5019. return;
  5020. }
  5021. if (params->type == GGML_TASK_INIT) {
  5022. return;
  5023. }
  5024. if (params->type == GGML_TASK_FINALIZE) {
  5025. return;
  5026. }
  5027. float * const wdata = params->wdata;
  5028. for (int i03 = 0; i03 < ne03; i03++) {
  5029. for (int i02 = 0; i02 < ne02; i02++) {
  5030. {
  5031. size_t id = 0;
  5032. for (int i01 = 0; i01 < ne01; ++i01) {
  5033. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5034. id += ne00;
  5035. }
  5036. }
  5037. const float * x = wdata;
  5038. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5039. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5040. // zT = y * xT
  5041. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5042. ne11, ne01, ne10,
  5043. 1.0f, y, ne10,
  5044. x, ne10,
  5045. 0.0f, d, ne01);
  5046. }
  5047. }
  5048. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5049. return;
  5050. }
  5051. #endif
  5052. if (params->type == GGML_TASK_INIT) {
  5053. char * wdata = params->wdata;
  5054. for (int i13 = 0; i13 < ne13; ++i13) {
  5055. for (int i12 = 0; i12 < ne12; ++i12) {
  5056. for (int i11 = 0; i11 < ne11; ++i11) {
  5057. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5058. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5059. }
  5060. }
  5061. }
  5062. return;
  5063. }
  5064. if (params->type == GGML_TASK_FINALIZE) {
  5065. return;
  5066. }
  5067. // TODO: do not support transposed src1
  5068. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5069. // total rows in src0
  5070. const int nr = ne01*ne02*ne03;
  5071. // rows per thread
  5072. const int dr = (nr + nth - 1)/nth;
  5073. // row range for this thread
  5074. const int ir0 = dr*ith;
  5075. const int ir1 = MIN(ir0 + dr, nr);
  5076. void * wdata = params->wdata;
  5077. for (int ir = ir0; ir < ir1; ++ir) {
  5078. // src0 indices
  5079. const int i03 = ir/(ne02*ne01);
  5080. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5081. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5082. const int i13 = i03;
  5083. const int i12 = i02;
  5084. const int i0 = i01;
  5085. const int i2 = i02;
  5086. const int i3 = i03;
  5087. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5088. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5089. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5090. assert(ne00 % 32 == 0);
  5091. for (int ic = 0; ic < ne11; ++ic) {
  5092. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5093. }
  5094. }
  5095. //int64_t t1 = ggml_time_us();
  5096. //static int64_t acc = 0;
  5097. //acc += t1 - t0;
  5098. //if (t1 - t0 > 10) {
  5099. // printf("\n");
  5100. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5101. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5102. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5103. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5104. //}
  5105. }
  5106. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5107. const struct ggml_compute_params * params,
  5108. const struct ggml_tensor * src0,
  5109. const struct ggml_tensor * src1,
  5110. struct ggml_tensor * dst) {
  5111. int64_t t0 = ggml_perf_time_us();
  5112. UNUSED(t0);
  5113. const int ne00 = src0->ne[0];
  5114. const int ne01 = src0->ne[1];
  5115. const int ne02 = src0->ne[2];
  5116. const int ne03 = src0->ne[3];
  5117. const int ne10 = src1->ne[0];
  5118. const int ne11 = src1->ne[1];
  5119. const int ne12 = src1->ne[2];
  5120. const int ne13 = src1->ne[3];
  5121. const int ne0 = dst->ne[0];
  5122. const int ne1 = dst->ne[1];
  5123. const int ne2 = dst->ne[2];
  5124. const int ne3 = dst->ne[3];
  5125. //const int ne = ne0*ne1*ne2*ne3;
  5126. const int nb00 = src0->nb[0];
  5127. const int nb01 = src0->nb[1];
  5128. const int nb02 = src0->nb[2];
  5129. const int nb03 = src0->nb[3];
  5130. const int nb10 = src1->nb[0];
  5131. const int nb11 = src1->nb[1];
  5132. const int nb12 = src1->nb[2];
  5133. const int nb13 = src1->nb[3];
  5134. const int nb0 = dst->nb[0];
  5135. const int nb1 = dst->nb[1];
  5136. const int nb2 = dst->nb[2];
  5137. const int nb3 = dst->nb[3];
  5138. const int ith = params->ith;
  5139. const int nth = params->nth;
  5140. GGML_ASSERT(ne02 == ne12);
  5141. GGML_ASSERT(ne03 == ne13);
  5142. GGML_ASSERT(ne2 == ne12);
  5143. GGML_ASSERT(ne3 == ne13);
  5144. // TODO: we don't support permuted src0
  5145. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5146. // dst cannot be transposed or permuted
  5147. GGML_ASSERT(nb0 == sizeof(float));
  5148. GGML_ASSERT(nb0 <= nb1);
  5149. GGML_ASSERT(nb1 <= nb2);
  5150. GGML_ASSERT(nb2 <= nb3);
  5151. GGML_ASSERT(ne0 == ne01);
  5152. GGML_ASSERT(ne1 == ne11);
  5153. GGML_ASSERT(ne2 == ne02);
  5154. GGML_ASSERT(ne3 == ne03);
  5155. // nb01 >= nb00 - src0 is not transposed
  5156. // compute by src0 rows
  5157. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5158. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5159. GGML_ASSERT(nb10 == sizeof(float));
  5160. if (params->ith != 0) {
  5161. return;
  5162. }
  5163. if (params->type == GGML_TASK_INIT) {
  5164. return;
  5165. }
  5166. if (params->type == GGML_TASK_FINALIZE) {
  5167. return;
  5168. }
  5169. float * const wdata = params->wdata;
  5170. for (int i03 = 0; i03 < ne03; i03++) {
  5171. for (int i02 = 0; i02 < ne02; i02++) {
  5172. {
  5173. size_t id = 0;
  5174. for (int i01 = 0; i01 < ne01; ++i01) {
  5175. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5176. id += ne00;
  5177. }
  5178. }
  5179. const float * x = wdata;
  5180. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5181. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5182. // zT = y * xT
  5183. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5184. ne11, ne01, ne10,
  5185. 1.0f, y, ne10,
  5186. x, ne10,
  5187. 0.0f, d, ne01);
  5188. }
  5189. }
  5190. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5191. return;
  5192. }
  5193. #endif
  5194. if (params->type == GGML_TASK_INIT) {
  5195. char * wdata = params->wdata;
  5196. for (int i13 = 0; i13 < ne13; ++i13) {
  5197. for (int i12 = 0; i12 < ne12; ++i12) {
  5198. for (int i11 = 0; i11 < ne11; ++i11) {
  5199. //for (int i10 = 0; i10 < ne10; ++i10) {
  5200. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5201. //}
  5202. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5203. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5204. }
  5205. }
  5206. }
  5207. return;
  5208. }
  5209. if (params->type == GGML_TASK_FINALIZE) {
  5210. return;
  5211. }
  5212. // TODO: do not support transposed src1
  5213. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5214. // total rows in src0
  5215. const int nr = ne01*ne02*ne03;
  5216. // rows per thread
  5217. const int dr = (nr + nth - 1)/nth;
  5218. // row range for this thread
  5219. const int ir0 = dr*ith;
  5220. const int ir1 = MIN(ir0 + dr, nr);
  5221. void * wdata = params->wdata;
  5222. for (int ir = ir0; ir < ir1; ++ir) {
  5223. // src0 indices
  5224. const int i03 = ir/(ne02*ne01);
  5225. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5226. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5227. const int i13 = i03;
  5228. const int i12 = i02;
  5229. const int i0 = i01;
  5230. const int i2 = i02;
  5231. const int i3 = i03;
  5232. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5233. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5234. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5235. assert(ne00 % 32 == 0);
  5236. for (int ic = 0; ic < ne11; ++ic) {
  5237. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5238. }
  5239. }
  5240. //int64_t t1 = ggml_time_us();
  5241. //static int64_t acc = 0;
  5242. //acc += t1 - t0;
  5243. //if (t1 - t0 > 10) {
  5244. // printf("\n");
  5245. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5246. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5247. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5248. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5249. //}
  5250. }
  5251. static void ggml_compute_forward_mul_mat(
  5252. const struct ggml_compute_params * params,
  5253. const struct ggml_tensor * src0,
  5254. const struct ggml_tensor * src1,
  5255. struct ggml_tensor * dst) {
  5256. switch (src0->type) {
  5257. case GGML_TYPE_Q4_0:
  5258. {
  5259. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5260. } break;
  5261. case GGML_TYPE_Q4_1:
  5262. {
  5263. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5264. } break;
  5265. case GGML_TYPE_F16:
  5266. {
  5267. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5268. } break;
  5269. case GGML_TYPE_F32:
  5270. {
  5271. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5272. } break;
  5273. case GGML_TYPE_I8:
  5274. case GGML_TYPE_I16:
  5275. case GGML_TYPE_I32:
  5276. case GGML_TYPE_COUNT:
  5277. {
  5278. GGML_ASSERT(false);
  5279. } break;
  5280. }
  5281. #if 0
  5282. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5283. static int first = 8;
  5284. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5285. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5286. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5287. if (first) {
  5288. --first;
  5289. } else {
  5290. for (int k = 0; k < dst->ne[1]; ++k) {
  5291. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5292. for (int i = 0; i < 16; ++i) {
  5293. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5294. }
  5295. printf("\n");
  5296. }
  5297. printf("\n");
  5298. }
  5299. printf("\n");
  5300. exit(0);
  5301. }
  5302. } else {
  5303. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5304. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5305. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5306. }
  5307. #endif
  5308. }
  5309. // ggml_compute_forward_scale
  5310. static void ggml_compute_forward_scale_f32(
  5311. const struct ggml_compute_params * params,
  5312. const struct ggml_tensor * src0,
  5313. const struct ggml_tensor * src1,
  5314. struct ggml_tensor * dst) {
  5315. GGML_ASSERT(ggml_is_contiguous(src0));
  5316. GGML_ASSERT(ggml_is_contiguous(dst));
  5317. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5318. GGML_ASSERT(ggml_is_scalar(src1));
  5319. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5320. return;
  5321. }
  5322. // scale factor
  5323. const float v = *(float *) src1->data;
  5324. const int ith = params->ith;
  5325. const int nth = params->nth;
  5326. const int nc = src0->ne[0];
  5327. const int nr = ggml_nrows(src0);
  5328. // rows per thread
  5329. const int dr = (nr + nth - 1)/nth;
  5330. // row range for this thread
  5331. const int ir0 = dr*ith;
  5332. const int ir1 = MIN(ir0 + dr, nr);
  5333. for (int i1 = ir0; i1 < ir1; i1++) {
  5334. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5335. }
  5336. }
  5337. static void ggml_compute_forward_scale(
  5338. const struct ggml_compute_params * params,
  5339. const struct ggml_tensor * src0,
  5340. const struct ggml_tensor * src1,
  5341. struct ggml_tensor * dst) {
  5342. switch (src0->type) {
  5343. case GGML_TYPE_F32:
  5344. {
  5345. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5346. } break;
  5347. case GGML_TYPE_Q4_0:
  5348. case GGML_TYPE_Q4_1:
  5349. case GGML_TYPE_I8:
  5350. case GGML_TYPE_I16:
  5351. case GGML_TYPE_I32:
  5352. case GGML_TYPE_F16:
  5353. case GGML_TYPE_COUNT:
  5354. {
  5355. GGML_ASSERT(false);
  5356. } break;
  5357. }
  5358. }
  5359. // ggml_compute_forward_cpy
  5360. static void ggml_compute_forward_cpy(
  5361. const struct ggml_compute_params * params,
  5362. const struct ggml_tensor * src0,
  5363. struct ggml_tensor * dst) {
  5364. ggml_compute_forward_dup(params, src0, dst);
  5365. }
  5366. // ggml_compute_forward_reshape
  5367. static void ggml_compute_forward_reshape(
  5368. const struct ggml_compute_params * params,
  5369. const struct ggml_tensor * src0,
  5370. struct ggml_tensor * dst) {
  5371. // NOP
  5372. UNUSED(params);
  5373. UNUSED(src0);
  5374. UNUSED(dst);
  5375. }
  5376. // ggml_compute_forward_view
  5377. static void ggml_compute_forward_view(
  5378. const struct ggml_compute_params * params,
  5379. const struct ggml_tensor * src0) {
  5380. // NOP
  5381. UNUSED(params);
  5382. UNUSED(src0);
  5383. }
  5384. // ggml_compute_forward_permute
  5385. static void ggml_compute_forward_permute(
  5386. const struct ggml_compute_params * params,
  5387. const struct ggml_tensor * src0) {
  5388. // NOP
  5389. UNUSED(params);
  5390. UNUSED(src0);
  5391. }
  5392. // ggml_compute_forward_transpose
  5393. static void ggml_compute_forward_transpose(
  5394. const struct ggml_compute_params * params,
  5395. const struct ggml_tensor * src0) {
  5396. // NOP
  5397. UNUSED(params);
  5398. UNUSED(src0);
  5399. }
  5400. // ggml_compute_forward_get_rows
  5401. static void ggml_compute_forward_get_rows_q4_0(
  5402. const struct ggml_compute_params * params,
  5403. const struct ggml_tensor * src0,
  5404. const struct ggml_tensor * src1,
  5405. struct ggml_tensor * dst) {
  5406. assert(params->ith == 0);
  5407. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5408. return;
  5409. }
  5410. const int nc = src0->ne[0];
  5411. const int nr = ggml_nelements(src1);
  5412. assert( dst->ne[0] == nc);
  5413. assert( dst->ne[1] == nr);
  5414. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5415. for (int i = 0; i < nr; ++i) {
  5416. const int r = ((int32_t *) src1->data)[i];
  5417. dequantize_row_q4_0(
  5418. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5419. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5420. }
  5421. }
  5422. static void ggml_compute_forward_get_rows_q4_1(
  5423. const struct ggml_compute_params * params,
  5424. const struct ggml_tensor * src0,
  5425. const struct ggml_tensor * src1,
  5426. struct ggml_tensor * dst) {
  5427. assert(params->ith == 0);
  5428. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5429. return;
  5430. }
  5431. const int nc = src0->ne[0];
  5432. const int nr = ggml_nelements(src1);
  5433. assert( dst->ne[0] == nc);
  5434. assert( dst->ne[1] == nr);
  5435. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5436. for (int i = 0; i < nr; ++i) {
  5437. const int r = ((int32_t *) src1->data)[i];
  5438. dequantize_row_q4_1(
  5439. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5440. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5441. }
  5442. }
  5443. static void ggml_compute_forward_get_rows_f16(
  5444. const struct ggml_compute_params * params,
  5445. const struct ggml_tensor * src0,
  5446. const struct ggml_tensor * src1,
  5447. struct ggml_tensor * dst) {
  5448. assert(params->ith == 0);
  5449. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5450. return;
  5451. }
  5452. const int nc = src0->ne[0];
  5453. const int nr = ggml_nelements(src1);
  5454. assert( dst->ne[0] == nc);
  5455. assert( dst->ne[1] == nr);
  5456. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5457. for (int i = 0; i < nr; ++i) {
  5458. const int r = ((int32_t *) src1->data)[i];
  5459. for (int j = 0; j < nc; ++j) {
  5460. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5461. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5462. }
  5463. }
  5464. }
  5465. static void ggml_compute_forward_get_rows_f32(
  5466. const struct ggml_compute_params * params,
  5467. const struct ggml_tensor * src0,
  5468. const struct ggml_tensor * src1,
  5469. struct ggml_tensor * dst) {
  5470. assert(params->ith == 0);
  5471. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5472. return;
  5473. }
  5474. const int nc = src0->ne[0];
  5475. const int nr = ggml_nelements(src1);
  5476. assert( dst->ne[0] == nc);
  5477. assert( dst->ne[1] == nr);
  5478. assert(src0->nb[0] == sizeof(float));
  5479. for (int i = 0; i < nr; ++i) {
  5480. const int r = ((int32_t *) src1->data)[i];
  5481. ggml_vec_cpy_f32(nc,
  5482. (float *) ((char *) dst->data + i*dst->nb[1]),
  5483. (float *) ((char *) src0->data + r*src0->nb[1]));
  5484. }
  5485. }
  5486. static void ggml_compute_forward_get_rows(
  5487. const struct ggml_compute_params * params,
  5488. const struct ggml_tensor * src0,
  5489. const struct ggml_tensor * src1,
  5490. struct ggml_tensor * dst) {
  5491. switch (src0->type) {
  5492. case GGML_TYPE_Q4_0:
  5493. {
  5494. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5495. } break;
  5496. case GGML_TYPE_Q4_1:
  5497. {
  5498. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5499. } break;
  5500. case GGML_TYPE_F16:
  5501. {
  5502. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5503. } break;
  5504. case GGML_TYPE_F32:
  5505. {
  5506. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5507. } break;
  5508. case GGML_TYPE_I8:
  5509. case GGML_TYPE_I16:
  5510. case GGML_TYPE_I32:
  5511. case GGML_TYPE_COUNT:
  5512. {
  5513. GGML_ASSERT(false);
  5514. } break;
  5515. }
  5516. //static bool first = true;
  5517. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5518. //if (first) {
  5519. // first = false;
  5520. //} else {
  5521. // for (int k = 0; k < dst->ne[1]; ++k) {
  5522. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5523. // for (int i = 0; i < 16; ++i) {
  5524. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5525. // }
  5526. // printf("\n");
  5527. // }
  5528. // printf("\n");
  5529. // }
  5530. // printf("\n");
  5531. // exit(0);
  5532. //}
  5533. }
  5534. // ggml_compute_forward_diag_mask_inf
  5535. static void ggml_compute_forward_diag_mask_inf_f32(
  5536. const struct ggml_compute_params * params,
  5537. const struct ggml_tensor * src0,
  5538. const struct ggml_tensor * src1,
  5539. struct ggml_tensor * dst) {
  5540. assert(params->ith == 0);
  5541. assert(src1->type == GGML_TYPE_I32);
  5542. assert(ggml_nelements(src1) == 1);
  5543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5544. return;
  5545. }
  5546. const int n_past = ((int32_t *) src1->data)[0];
  5547. // TODO: handle transposed/permuted matrices
  5548. const int n = ggml_nrows(src0);
  5549. const int nc = src0->ne[0];
  5550. const int nr = src0->ne[1];
  5551. const int nz = n/nr;
  5552. assert( dst->nb[0] == sizeof(float));
  5553. assert(src0->nb[0] == sizeof(float));
  5554. for (int k = 0; k < nz; k++) {
  5555. for (int j = 0; j < nr; j++) {
  5556. for (int i = n_past; i < nc; i++) {
  5557. if (i > n_past + j) {
  5558. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5559. }
  5560. }
  5561. }
  5562. }
  5563. }
  5564. static void ggml_compute_forward_diag_mask_inf(
  5565. const struct ggml_compute_params * params,
  5566. const struct ggml_tensor * src0,
  5567. const struct ggml_tensor * src1,
  5568. struct ggml_tensor * dst) {
  5569. switch (src0->type) {
  5570. case GGML_TYPE_F32:
  5571. {
  5572. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5573. } break;
  5574. case GGML_TYPE_Q4_0:
  5575. case GGML_TYPE_Q4_1:
  5576. case GGML_TYPE_I8:
  5577. case GGML_TYPE_I16:
  5578. case GGML_TYPE_I32:
  5579. case GGML_TYPE_F16:
  5580. case GGML_TYPE_COUNT:
  5581. {
  5582. GGML_ASSERT(false);
  5583. } break;
  5584. }
  5585. }
  5586. // ggml_compute_forward_soft_max
  5587. static void ggml_compute_forward_soft_max_f32(
  5588. const struct ggml_compute_params * params,
  5589. const struct ggml_tensor * src0,
  5590. struct ggml_tensor * dst) {
  5591. GGML_ASSERT(ggml_is_contiguous(src0));
  5592. GGML_ASSERT(ggml_is_contiguous(dst));
  5593. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5594. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5595. return;
  5596. }
  5597. // TODO: handle transposed/permuted matrices
  5598. const int ith = params->ith;
  5599. const int nth = params->nth;
  5600. const int nc = src0->ne[0];
  5601. const int nr = ggml_nrows(src0);
  5602. // rows per thread
  5603. const int dr = (nr + nth - 1)/nth;
  5604. // row range for this thread
  5605. const int ir0 = dr*ith;
  5606. const int ir1 = MIN(ir0 + dr, nr);
  5607. for (int i1 = ir0; i1 < ir1; i1++) {
  5608. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5609. #ifndef NDEBUG
  5610. for (int i = 0; i < nc; ++i) {
  5611. //printf("p[%d] = %f\n", i, p[i]);
  5612. assert(!isnan(p[i]));
  5613. }
  5614. #endif
  5615. float max = -INFINITY;
  5616. ggml_vec_max_f32(nc, &max, p);
  5617. ggml_float sum = 0.0;
  5618. uint16_t scvt;
  5619. for (int i = 0; i < nc; i++) {
  5620. if (p[i] == -INFINITY) {
  5621. p[i] = 0.0f;
  5622. } else {
  5623. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5624. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5625. memcpy(&scvt, &s, sizeof(scvt));
  5626. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5627. sum += val;
  5628. p[i] = val;
  5629. }
  5630. }
  5631. assert(sum > 0.0f);
  5632. sum = 1.0/sum;
  5633. ggml_vec_scale_f32(nc, p, sum);
  5634. #ifndef NDEBUG
  5635. for (int i = 0; i < nc; ++i) {
  5636. assert(!isnan(p[i]));
  5637. assert(!isinf(p[i]));
  5638. }
  5639. #endif
  5640. }
  5641. }
  5642. static void ggml_compute_forward_soft_max(
  5643. const struct ggml_compute_params * params,
  5644. const struct ggml_tensor * src0,
  5645. struct ggml_tensor * dst) {
  5646. switch (src0->type) {
  5647. case GGML_TYPE_F32:
  5648. {
  5649. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5650. } break;
  5651. case GGML_TYPE_Q4_0:
  5652. case GGML_TYPE_Q4_1:
  5653. case GGML_TYPE_I8:
  5654. case GGML_TYPE_I16:
  5655. case GGML_TYPE_I32:
  5656. case GGML_TYPE_F16:
  5657. case GGML_TYPE_COUNT:
  5658. {
  5659. GGML_ASSERT(false);
  5660. } break;
  5661. }
  5662. }
  5663. // ggml_compute_forward_rope
  5664. static void ggml_compute_forward_rope_f32(
  5665. const struct ggml_compute_params * params,
  5666. const struct ggml_tensor * src0,
  5667. const struct ggml_tensor * src1,
  5668. struct ggml_tensor * dst) {
  5669. assert(params->ith == 0);
  5670. assert(src1->type == GGML_TYPE_I32);
  5671. assert(ggml_nelements(src1) == 3);
  5672. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5673. return;
  5674. }
  5675. const int n_past = ((int32_t *) src1->data)[0];
  5676. const int n_dims = ((int32_t *) src1->data)[1];
  5677. const int mode = ((int32_t *) src1->data)[2];
  5678. //const int ne0 = src0->ne[0];
  5679. const int ne1 = src0->ne[1];
  5680. const int ne2 = src0->ne[2];
  5681. const int ne3 = src0->ne[3];
  5682. const int nb0 = src0->nb[0];
  5683. const int nb1 = src0->nb[1];
  5684. const int nb2 = src0->nb[2];
  5685. const int nb3 = src0->nb[3];
  5686. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5687. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5688. assert(nb0 == sizeof(float));
  5689. // TODO: optimize
  5690. for (int i3 = 0; i3 < ne3; i3++) {
  5691. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5692. const int p = (mode == 0 ? n_past + i2 : i2);
  5693. for (int i1 = 0; i1 < ne1; i1++) {
  5694. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5695. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5696. const double cos_theta = cos(p*theta);
  5697. const double sin_theta = sin(p*theta);
  5698. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5699. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5700. double x0 = src[0];
  5701. double x1 = src[1];
  5702. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5703. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5704. }
  5705. }
  5706. }
  5707. }
  5708. }
  5709. static void ggml_compute_forward_rope_f16(
  5710. const struct ggml_compute_params * params,
  5711. const struct ggml_tensor * src0,
  5712. const struct ggml_tensor * src1,
  5713. struct ggml_tensor * dst) {
  5714. assert(params->ith == 0);
  5715. assert(src1->type == GGML_TYPE_I32);
  5716. assert(ggml_nelements(src1) == 3);
  5717. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5718. return;
  5719. }
  5720. const int n_past = ((int32_t *) src1->data)[0];
  5721. const int n_dims = ((int32_t *) src1->data)[1];
  5722. const int mode = ((int32_t *) src1->data)[2];
  5723. //const int ne0 = src0->ne[0];
  5724. const int ne1 = src0->ne[1];
  5725. const int ne2 = src0->ne[2];
  5726. const int ne3 = src0->ne[3];
  5727. const int nb0 = src0->nb[0];
  5728. const int nb1 = src0->nb[1];
  5729. const int nb2 = src0->nb[2];
  5730. const int nb3 = src0->nb[3];
  5731. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5732. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5733. assert(nb0 == sizeof(ggml_fp16_t));
  5734. for (int i3 = 0; i3 < ne3; i3++) {
  5735. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5736. const int p = (mode == 0 ? n_past + i2 : i2);
  5737. for (int i1 = 0; i1 < ne1; i1++) {
  5738. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5739. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5740. const double cos_theta = cos(p*theta);
  5741. const double sin_theta = sin(p*theta);
  5742. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5743. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5744. double x0 = ggml_fp16_to_fp32(src[0]);
  5745. double x1 = ggml_fp16_to_fp32(src[1]);
  5746. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5747. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5748. }
  5749. }
  5750. }
  5751. }
  5752. }
  5753. static void ggml_compute_forward_rope(
  5754. const struct ggml_compute_params * params,
  5755. const struct ggml_tensor * src0,
  5756. const struct ggml_tensor * src1,
  5757. struct ggml_tensor * dst) {
  5758. switch (src0->type) {
  5759. case GGML_TYPE_F16:
  5760. {
  5761. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5762. } break;
  5763. case GGML_TYPE_F32:
  5764. {
  5765. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5766. } break;
  5767. case GGML_TYPE_Q4_0:
  5768. case GGML_TYPE_Q4_1:
  5769. case GGML_TYPE_I8:
  5770. case GGML_TYPE_I16:
  5771. case GGML_TYPE_I32:
  5772. case GGML_TYPE_COUNT:
  5773. {
  5774. GGML_ASSERT(false);
  5775. } break;
  5776. }
  5777. }
  5778. // ggml_compute_forward_conv_1d_1s
  5779. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5780. const struct ggml_compute_params * params,
  5781. const struct ggml_tensor * src0,
  5782. const struct ggml_tensor * src1,
  5783. struct ggml_tensor * dst) {
  5784. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5785. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5786. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5787. int64_t t0 = ggml_perf_time_us();
  5788. UNUSED(t0);
  5789. const int ne00 = src0->ne[0];
  5790. const int ne01 = src0->ne[1];
  5791. const int ne02 = src0->ne[2];
  5792. //const int ne03 = src0->ne[3];
  5793. const int ne10 = src1->ne[0];
  5794. const int ne11 = src1->ne[1];
  5795. //const int ne12 = src1->ne[2];
  5796. //const int ne13 = src1->ne[3];
  5797. //const int ne0 = dst->ne[0];
  5798. //const int ne1 = dst->ne[1];
  5799. //const int ne2 = dst->ne[2];
  5800. //const int ne3 = dst->ne[3];
  5801. //const int ne = ne0*ne1*ne2*ne3;
  5802. const int nb00 = src0->nb[0];
  5803. const int nb01 = src0->nb[1];
  5804. const int nb02 = src0->nb[2];
  5805. //const int nb03 = src0->nb[3];
  5806. const int nb10 = src1->nb[0];
  5807. const int nb11 = src1->nb[1];
  5808. //const int nb12 = src1->nb[2];
  5809. //const int nb13 = src1->nb[3];
  5810. //const int nb0 = dst->nb[0];
  5811. const int nb1 = dst->nb[1];
  5812. //const int nb2 = dst->nb[2];
  5813. //const int nb3 = dst->nb[3];
  5814. const int ith = params->ith;
  5815. const int nth = params->nth;
  5816. const int nk = ne00;
  5817. const int nh = nk/2;
  5818. const int ew0 = ggml_up32(ne01);
  5819. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5820. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5821. GGML_ASSERT(nb10 == sizeof(float));
  5822. if (params->type == GGML_TASK_INIT) {
  5823. // TODO: fix this memset (wsize is overestimated)
  5824. memset(params->wdata, 0, params->wsize);
  5825. // prepare kernel data (src0)
  5826. {
  5827. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5828. for (int i02 = 0; i02 < ne02; i02++) {
  5829. for (int i01 = 0; i01 < ne01; i01++) {
  5830. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5831. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5832. for (int i00 = 0; i00 < ne00; i00++) {
  5833. dst_data[i00*ew0 + i01] = src[i00];
  5834. }
  5835. }
  5836. }
  5837. }
  5838. // prepare source data (src1)
  5839. {
  5840. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5841. for (int i11 = 0; i11 < ne11; i11++) {
  5842. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5843. ggml_fp16_t * dst_data = wdata;
  5844. for (int i10 = 0; i10 < ne10; i10++) {
  5845. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5846. }
  5847. }
  5848. }
  5849. return;
  5850. }
  5851. if (params->type == GGML_TASK_FINALIZE) {
  5852. return;
  5853. }
  5854. // total rows in dst
  5855. const int nr = ne02;
  5856. // rows per thread
  5857. const int dr = (nr + nth - 1)/nth;
  5858. // row range for this thread
  5859. const int ir0 = dr*ith;
  5860. const int ir1 = MIN(ir0 + dr, nr);
  5861. for (int i1 = ir0; i1 < ir1; i1++) {
  5862. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5863. for (int i0 = 0; i0 < ne10; ++i0) {
  5864. dst_data[i0] = 0;
  5865. for (int k = -nh; k <= nh; k++) {
  5866. float v = 0.0f;
  5867. ggml_vec_dot_f16(ew0, &v,
  5868. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5869. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5870. dst_data[i0] += v;
  5871. }
  5872. }
  5873. }
  5874. }
  5875. static void ggml_compute_forward_conv_1d_1s_f32(
  5876. const struct ggml_compute_params * params,
  5877. const struct ggml_tensor * src0,
  5878. const struct ggml_tensor * src1,
  5879. struct ggml_tensor * dst) {
  5880. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5881. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5882. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5883. int64_t t0 = ggml_perf_time_us();
  5884. UNUSED(t0);
  5885. const int ne00 = src0->ne[0];
  5886. const int ne01 = src0->ne[1];
  5887. const int ne02 = src0->ne[2];
  5888. //const int ne03 = src0->ne[3];
  5889. const int ne10 = src1->ne[0];
  5890. const int ne11 = src1->ne[1];
  5891. //const int ne12 = src1->ne[2];
  5892. //const int ne13 = src1->ne[3];
  5893. //const int ne0 = dst->ne[0];
  5894. //const int ne1 = dst->ne[1];
  5895. //const int ne2 = dst->ne[2];
  5896. //const int ne3 = dst->ne[3];
  5897. //const int ne = ne0*ne1*ne2*ne3;
  5898. const int nb00 = src0->nb[0];
  5899. const int nb01 = src0->nb[1];
  5900. const int nb02 = src0->nb[2];
  5901. //const int nb03 = src0->nb[3];
  5902. const int nb10 = src1->nb[0];
  5903. const int nb11 = src1->nb[1];
  5904. //const int nb12 = src1->nb[2];
  5905. //const int nb13 = src1->nb[3];
  5906. //const int nb0 = dst->nb[0];
  5907. const int nb1 = dst->nb[1];
  5908. //const int nb2 = dst->nb[2];
  5909. //const int nb3 = dst->nb[3];
  5910. const int ith = params->ith;
  5911. const int nth = params->nth;
  5912. const int nk = ne00;
  5913. const int nh = nk/2;
  5914. const int ew0 = ggml_up32(ne01);
  5915. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5916. GGML_ASSERT(nb00 == sizeof(float));
  5917. GGML_ASSERT(nb10 == sizeof(float));
  5918. if (params->type == GGML_TASK_INIT) {
  5919. // TODO: fix this memset (wsize is overestimated)
  5920. memset(params->wdata, 0, params->wsize);
  5921. // prepare kernel data (src0)
  5922. {
  5923. float * const wdata = (float *) params->wdata + 0;
  5924. for (int i02 = 0; i02 < ne02; i02++) {
  5925. for (int i01 = 0; i01 < ne01; i01++) {
  5926. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5927. float * dst_data = wdata + i02*ew0*ne00;
  5928. for (int i00 = 0; i00 < ne00; i00++) {
  5929. dst_data[i00*ew0 + i01] = src[i00];
  5930. }
  5931. }
  5932. }
  5933. }
  5934. // prepare source data (src1)
  5935. {
  5936. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5937. for (int i11 = 0; i11 < ne11; i11++) {
  5938. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5939. float * dst_data = wdata;
  5940. for (int i10 = 0; i10 < ne10; i10++) {
  5941. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5942. }
  5943. }
  5944. }
  5945. return;
  5946. }
  5947. if (params->type == GGML_TASK_FINALIZE) {
  5948. return;
  5949. }
  5950. // total rows in dst
  5951. const int nr = ne02;
  5952. // rows per thread
  5953. const int dr = (nr + nth - 1)/nth;
  5954. // row range for this thread
  5955. const int ir0 = dr*ith;
  5956. const int ir1 = MIN(ir0 + dr, nr);
  5957. for (int i1 = ir0; i1 < ir1; i1++) {
  5958. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5959. for (int i0 = 0; i0 < ne10; ++i0) {
  5960. dst_data[i0] = 0;
  5961. for (int k = -nh; k <= nh; k++) {
  5962. float v = 0.0f;
  5963. ggml_vec_dot_f32(ew0, &v,
  5964. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5965. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5966. dst_data[i0] += v;
  5967. }
  5968. }
  5969. }
  5970. }
  5971. static void ggml_compute_forward_conv_1d_1s(
  5972. const struct ggml_compute_params * params,
  5973. const struct ggml_tensor * src0,
  5974. const struct ggml_tensor * src1,
  5975. struct ggml_tensor * dst) {
  5976. switch (src0->type) {
  5977. case GGML_TYPE_F16:
  5978. {
  5979. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  5980. } break;
  5981. case GGML_TYPE_F32:
  5982. {
  5983. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  5984. } break;
  5985. case GGML_TYPE_Q4_0:
  5986. case GGML_TYPE_Q4_1:
  5987. case GGML_TYPE_I8:
  5988. case GGML_TYPE_I16:
  5989. case GGML_TYPE_I32:
  5990. case GGML_TYPE_COUNT:
  5991. {
  5992. GGML_ASSERT(false);
  5993. } break;
  5994. }
  5995. }
  5996. // ggml_compute_forward_conv_1d_2s
  5997. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  5998. const struct ggml_compute_params * params,
  5999. const struct ggml_tensor * src0,
  6000. const struct ggml_tensor * src1,
  6001. struct ggml_tensor * dst) {
  6002. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6003. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6004. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6005. int64_t t0 = ggml_perf_time_us();
  6006. UNUSED(t0);
  6007. const int ne00 = src0->ne[0];
  6008. const int ne01 = src0->ne[1];
  6009. const int ne02 = src0->ne[2];
  6010. //const int ne03 = src0->ne[3];
  6011. const int ne10 = src1->ne[0];
  6012. const int ne11 = src1->ne[1];
  6013. //const int ne12 = src1->ne[2];
  6014. //const int ne13 = src1->ne[3];
  6015. //const int ne0 = dst->ne[0];
  6016. //const int ne1 = dst->ne[1];
  6017. //const int ne2 = dst->ne[2];
  6018. //const int ne3 = dst->ne[3];
  6019. //const int ne = ne0*ne1*ne2*ne3;
  6020. const int nb00 = src0->nb[0];
  6021. const int nb01 = src0->nb[1];
  6022. const int nb02 = src0->nb[2];
  6023. //const int nb03 = src0->nb[3];
  6024. const int nb10 = src1->nb[0];
  6025. const int nb11 = src1->nb[1];
  6026. //const int nb12 = src1->nb[2];
  6027. //const int nb13 = src1->nb[3];
  6028. //const int nb0 = dst->nb[0];
  6029. const int nb1 = dst->nb[1];
  6030. //const int nb2 = dst->nb[2];
  6031. //const int nb3 = dst->nb[3];
  6032. const int ith = params->ith;
  6033. const int nth = params->nth;
  6034. const int nk = ne00;
  6035. const int nh = nk/2;
  6036. const int ew0 = ggml_up32(ne01);
  6037. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6038. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6039. GGML_ASSERT(nb10 == sizeof(float));
  6040. if (params->type == GGML_TASK_INIT) {
  6041. // TODO: fix this memset (wsize is overestimated)
  6042. memset(params->wdata, 0, params->wsize);
  6043. // prepare kernel data (src0)
  6044. {
  6045. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6046. for (int i02 = 0; i02 < ne02; i02++) {
  6047. for (int i01 = 0; i01 < ne01; i01++) {
  6048. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6049. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6050. for (int i00 = 0; i00 < ne00; i00++) {
  6051. dst_data[i00*ew0 + i01] = src[i00];
  6052. }
  6053. }
  6054. }
  6055. }
  6056. // prepare source data (src1)
  6057. {
  6058. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6059. for (int i11 = 0; i11 < ne11; i11++) {
  6060. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6061. ggml_fp16_t * dst_data = wdata;
  6062. for (int i10 = 0; i10 < ne10; i10++) {
  6063. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6064. }
  6065. }
  6066. }
  6067. return;
  6068. }
  6069. if (params->type == GGML_TASK_FINALIZE) {
  6070. return;
  6071. }
  6072. // total rows in dst
  6073. const int nr = ne02;
  6074. // rows per thread
  6075. const int dr = (nr + nth - 1)/nth;
  6076. // row range for this thread
  6077. const int ir0 = dr*ith;
  6078. const int ir1 = MIN(ir0 + dr, nr);
  6079. for (int i1 = ir0; i1 < ir1; i1++) {
  6080. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6081. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6082. dst_data[i0/2] = 0;
  6083. for (int k = -nh; k <= nh; k++) {
  6084. float v = 0.0f;
  6085. ggml_vec_dot_f16(ew0, &v,
  6086. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6087. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6088. dst_data[i0/2] += v;
  6089. }
  6090. }
  6091. }
  6092. }
  6093. static void ggml_compute_forward_conv_1d_2s_f32(
  6094. const struct ggml_compute_params * params,
  6095. const struct ggml_tensor * src0,
  6096. const struct ggml_tensor * src1,
  6097. struct ggml_tensor * dst) {
  6098. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6099. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6100. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6101. int64_t t0 = ggml_perf_time_us();
  6102. UNUSED(t0);
  6103. const int ne00 = src0->ne[0];
  6104. const int ne01 = src0->ne[1];
  6105. const int ne02 = src0->ne[2];
  6106. //const int ne03 = src0->ne[3];
  6107. const int ne10 = src1->ne[0];
  6108. const int ne11 = src1->ne[1];
  6109. //const int ne12 = src1->ne[2];
  6110. //const int ne13 = src1->ne[3];
  6111. //const int ne0 = dst->ne[0];
  6112. //const int ne1 = dst->ne[1];
  6113. //const int ne2 = dst->ne[2];
  6114. //const int ne3 = dst->ne[3];
  6115. //const int ne = ne0*ne1*ne2*ne3;
  6116. const int nb00 = src0->nb[0];
  6117. const int nb01 = src0->nb[1];
  6118. const int nb02 = src0->nb[2];
  6119. //const int nb03 = src0->nb[3];
  6120. const int nb10 = src1->nb[0];
  6121. const int nb11 = src1->nb[1];
  6122. //const int nb12 = src1->nb[2];
  6123. //const int nb13 = src1->nb[3];
  6124. //const int nb0 = dst->nb[0];
  6125. const int nb1 = dst->nb[1];
  6126. //const int nb2 = dst->nb[2];
  6127. //const int nb3 = dst->nb[3];
  6128. const int ith = params->ith;
  6129. const int nth = params->nth;
  6130. const int nk = ne00;
  6131. const int nh = nk/2;
  6132. const int ew0 = ggml_up32(ne01);
  6133. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6134. GGML_ASSERT(nb00 == sizeof(float));
  6135. GGML_ASSERT(nb10 == sizeof(float));
  6136. if (params->type == GGML_TASK_INIT) {
  6137. // TODO: fix this memset (wsize is overestimated)
  6138. memset(params->wdata, 0, params->wsize);
  6139. // prepare kernel data (src0)
  6140. {
  6141. float * const wdata = (float *) params->wdata + 0;
  6142. for (int i02 = 0; i02 < ne02; i02++) {
  6143. for (int i01 = 0; i01 < ne01; i01++) {
  6144. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6145. float * dst_data = wdata + i02*ew0*ne00;
  6146. for (int i00 = 0; i00 < ne00; i00++) {
  6147. dst_data[i00*ew0 + i01] = src[i00];
  6148. }
  6149. }
  6150. }
  6151. }
  6152. // prepare source data (src1)
  6153. {
  6154. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6155. for (int i11 = 0; i11 < ne11; i11++) {
  6156. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6157. float * dst_data = wdata;
  6158. for (int i10 = 0; i10 < ne10; i10++) {
  6159. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6160. }
  6161. }
  6162. }
  6163. return;
  6164. }
  6165. if (params->type == GGML_TASK_FINALIZE) {
  6166. return;
  6167. }
  6168. // total rows in dst
  6169. const int nr = ne02;
  6170. // rows per thread
  6171. const int dr = (nr + nth - 1)/nth;
  6172. // row range for this thread
  6173. const int ir0 = dr*ith;
  6174. const int ir1 = MIN(ir0 + dr, nr);
  6175. for (int i1 = ir0; i1 < ir1; i1++) {
  6176. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6177. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6178. dst_data[i0/2] = 0;
  6179. for (int k = -nh; k <= nh; k++) {
  6180. float v = 0.0f;
  6181. ggml_vec_dot_f32(ew0, &v,
  6182. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6183. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6184. dst_data[i0/2] += v;
  6185. }
  6186. }
  6187. }
  6188. }
  6189. static void ggml_compute_forward_conv_1d_2s(
  6190. const struct ggml_compute_params * params,
  6191. const struct ggml_tensor * src0,
  6192. const struct ggml_tensor * src1,
  6193. struct ggml_tensor * dst) {
  6194. switch (src0->type) {
  6195. case GGML_TYPE_F16:
  6196. {
  6197. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6198. } break;
  6199. case GGML_TYPE_F32:
  6200. {
  6201. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6202. } break;
  6203. case GGML_TYPE_Q4_0:
  6204. case GGML_TYPE_Q4_1:
  6205. case GGML_TYPE_I8:
  6206. case GGML_TYPE_I16:
  6207. case GGML_TYPE_I32:
  6208. case GGML_TYPE_COUNT:
  6209. {
  6210. GGML_ASSERT(false);
  6211. } break;
  6212. }
  6213. }
  6214. // ggml_compute_forward_flash_attn
  6215. static void ggml_compute_forward_flash_attn_f32(
  6216. const struct ggml_compute_params * params,
  6217. const struct ggml_tensor * q,
  6218. const struct ggml_tensor * k,
  6219. const struct ggml_tensor * v,
  6220. const bool masked,
  6221. struct ggml_tensor * dst) {
  6222. int64_t t0 = ggml_perf_time_us();
  6223. UNUSED(t0);
  6224. const int neq0 = q->ne[0];
  6225. const int neq1 = q->ne[1];
  6226. const int neq2 = q->ne[2];
  6227. const int neq3 = q->ne[3];
  6228. const int nek0 = k->ne[0];
  6229. const int nek1 = k->ne[1];
  6230. //const int nek2 = k->ne[2];
  6231. //const int nek3 = k->ne[3];
  6232. //const int nev0 = v->ne[0];
  6233. const int nev1 = v->ne[1];
  6234. //const int nev2 = v->ne[2];
  6235. //const int nev3 = v->ne[3];
  6236. const int ne0 = dst->ne[0];
  6237. const int ne1 = dst->ne[1];
  6238. //const int ne2 = dst->ne[2];
  6239. //const int ne3 = dst->ne[3];
  6240. const int nbk0 = k->nb[0];
  6241. const int nbk1 = k->nb[1];
  6242. const int nbk2 = k->nb[2];
  6243. const int nbk3 = k->nb[3];
  6244. const int nbq0 = q->nb[0];
  6245. const int nbq1 = q->nb[1];
  6246. const int nbq2 = q->nb[2];
  6247. const int nbq3 = q->nb[3];
  6248. const int nbv0 = v->nb[0];
  6249. const int nbv1 = v->nb[1];
  6250. const int nbv2 = v->nb[2];
  6251. const int nbv3 = v->nb[3];
  6252. const int nb0 = dst->nb[0];
  6253. const int nb1 = dst->nb[1];
  6254. const int nb2 = dst->nb[2];
  6255. const int nb3 = dst->nb[3];
  6256. const int ith = params->ith;
  6257. const int nth = params->nth;
  6258. const int D = neq0;
  6259. const int N = neq1;
  6260. const int P = nek1 - N;
  6261. const int M = P + N;
  6262. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6263. GGML_ASSERT(ne0 == D);
  6264. GGML_ASSERT(ne1 == N);
  6265. GGML_ASSERT(P >= 0);
  6266. GGML_ASSERT(nbq0 == sizeof(float));
  6267. GGML_ASSERT(nbk0 == sizeof(float));
  6268. GGML_ASSERT(nbv0 == sizeof(float));
  6269. GGML_ASSERT(neq0 == D);
  6270. GGML_ASSERT(nek0 == D);
  6271. GGML_ASSERT(nev1 == D);
  6272. GGML_ASSERT(neq1 == N);
  6273. GGML_ASSERT(nek1 == N + P);
  6274. GGML_ASSERT(nev1 == D);
  6275. // dst cannot be transposed or permuted
  6276. GGML_ASSERT(nb0 == sizeof(float));
  6277. GGML_ASSERT(nb0 <= nb1);
  6278. GGML_ASSERT(nb1 <= nb2);
  6279. GGML_ASSERT(nb2 <= nb3);
  6280. if (params->type == GGML_TASK_INIT) {
  6281. return;
  6282. }
  6283. if (params->type == GGML_TASK_FINALIZE) {
  6284. return;
  6285. }
  6286. // parallelize by q rows using ggml_vec_dot_f32
  6287. // total rows in q
  6288. const int nr = neq1*neq2*neq3;
  6289. // rows per thread
  6290. const int dr = (nr + nth - 1)/nth;
  6291. // row range for this thread
  6292. const int ir0 = dr*ith;
  6293. const int ir1 = MIN(ir0 + dr, nr);
  6294. const float scale = 1.0/sqrt((double) D);
  6295. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6296. for (int ir = ir0; ir < ir1; ++ir) {
  6297. // q indices
  6298. const int iq3 = ir/(neq2*neq1);
  6299. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6300. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6301. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6302. for (int i = M; i < Mup; ++i) {
  6303. S[i] = -INFINITY;
  6304. }
  6305. for (int ic = 0; ic < nek1; ++ic) {
  6306. // k indices
  6307. const int ik3 = iq3;
  6308. const int ik2 = iq2;
  6309. const int ik1 = ic;
  6310. // S indices
  6311. const int i1 = ik1;
  6312. ggml_vec_dot_f32(neq0,
  6313. S + i1,
  6314. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6315. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6316. }
  6317. // scale
  6318. ggml_vec_scale_f32(nek1, S, scale);
  6319. if (masked) {
  6320. for (int i = P; i < M; i++) {
  6321. if (i > P + iq1) {
  6322. S[i] = -INFINITY;
  6323. }
  6324. }
  6325. }
  6326. // softmax
  6327. {
  6328. float max = -INFINITY;
  6329. ggml_vec_max_f32(M, &max, S);
  6330. float sum = 0.0f;
  6331. {
  6332. #ifdef GGML_SOFT_MAX_ACCELERATE
  6333. max = -max;
  6334. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6335. vvexpf(S, S, &Mup);
  6336. ggml_vec_sum_f32(Mup, &sum, S);
  6337. #else
  6338. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6339. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6340. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6341. float * SS = S + i;
  6342. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6343. if (SS[j] == -INFINITY) {
  6344. SS[j] = 0.0f;
  6345. } else {
  6346. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6347. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6348. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6349. sump[j] += val;
  6350. SS[j] = val;
  6351. }
  6352. }
  6353. }
  6354. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6355. sum += sump[i];
  6356. }
  6357. #endif
  6358. }
  6359. assert(sum > 0.0f);
  6360. sum = 1.0/sum;
  6361. ggml_vec_scale_f32(M, S, sum);
  6362. #ifndef NDEBUG
  6363. for (int i = 0; i < M; ++i) {
  6364. assert(!isnan(S[i]));
  6365. assert(!isinf(S[i]));
  6366. }
  6367. #endif
  6368. }
  6369. for (int ic = 0; ic < nev1; ++ic) {
  6370. // dst indices
  6371. const int i1 = iq1;
  6372. const int i2 = iq2;
  6373. const int i3 = iq3;
  6374. ggml_vec_dot_f32(nek1,
  6375. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6376. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6377. S);
  6378. }
  6379. }
  6380. }
  6381. static void ggml_compute_forward_flash_attn_f16(
  6382. const struct ggml_compute_params * params,
  6383. const struct ggml_tensor * q,
  6384. const struct ggml_tensor * k,
  6385. const struct ggml_tensor * v,
  6386. const bool masked,
  6387. struct ggml_tensor * dst) {
  6388. int64_t t0 = ggml_perf_time_us();
  6389. UNUSED(t0);
  6390. const int neq0 = q->ne[0];
  6391. const int neq1 = q->ne[1];
  6392. const int neq2 = q->ne[2];
  6393. const int neq3 = q->ne[3];
  6394. const int nek0 = k->ne[0];
  6395. const int nek1 = k->ne[1];
  6396. //const int nek2 = k->ne[2];
  6397. //const int nek3 = k->ne[3];
  6398. //const int nev0 = v->ne[0];
  6399. const int nev1 = v->ne[1];
  6400. //const int nev2 = v->ne[2];
  6401. //const int nev3 = v->ne[3];
  6402. const int ne0 = dst->ne[0];
  6403. const int ne1 = dst->ne[1];
  6404. //const int ne2 = dst->ne[2];
  6405. //const int ne3 = dst->ne[3];
  6406. const int nbk0 = k->nb[0];
  6407. const int nbk1 = k->nb[1];
  6408. const int nbk2 = k->nb[2];
  6409. const int nbk3 = k->nb[3];
  6410. const int nbq0 = q->nb[0];
  6411. const int nbq1 = q->nb[1];
  6412. const int nbq2 = q->nb[2];
  6413. const int nbq3 = q->nb[3];
  6414. const int nbv0 = v->nb[0];
  6415. const int nbv1 = v->nb[1];
  6416. const int nbv2 = v->nb[2];
  6417. const int nbv3 = v->nb[3];
  6418. const int nb0 = dst->nb[0];
  6419. const int nb1 = dst->nb[1];
  6420. const int nb2 = dst->nb[2];
  6421. const int nb3 = dst->nb[3];
  6422. const int ith = params->ith;
  6423. const int nth = params->nth;
  6424. const int D = neq0;
  6425. const int N = neq1;
  6426. const int P = nek1 - N;
  6427. const int M = P + N;
  6428. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6429. GGML_ASSERT(ne0 == D);
  6430. GGML_ASSERT(ne1 == N);
  6431. GGML_ASSERT(P >= 0);
  6432. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6433. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6434. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6435. GGML_ASSERT(neq0 == D);
  6436. GGML_ASSERT(nek0 == D);
  6437. GGML_ASSERT(nev1 == D);
  6438. GGML_ASSERT(neq1 == N);
  6439. GGML_ASSERT(nek1 == N + P);
  6440. GGML_ASSERT(nev1 == D);
  6441. // dst cannot be transposed or permuted
  6442. GGML_ASSERT(nb0 == sizeof(float));
  6443. GGML_ASSERT(nb0 <= nb1);
  6444. GGML_ASSERT(nb1 <= nb2);
  6445. GGML_ASSERT(nb2 <= nb3);
  6446. if (params->type == GGML_TASK_INIT) {
  6447. return;
  6448. }
  6449. if (params->type == GGML_TASK_FINALIZE) {
  6450. return;
  6451. }
  6452. // parallelize by q rows using ggml_vec_dot_f32
  6453. // total rows in q
  6454. const int nr = neq1*neq2*neq3;
  6455. // rows per thread
  6456. const int dr = (nr + nth - 1)/nth;
  6457. // row range for this thread
  6458. const int ir0 = dr*ith;
  6459. const int ir1 = MIN(ir0 + dr, nr);
  6460. const float scale = 1.0/sqrt((double) D);
  6461. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6462. for (int ir = ir0; ir < ir1; ++ir) {
  6463. // q indices
  6464. const int iq3 = ir/(neq2*neq1);
  6465. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6466. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6467. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6468. for (int i = M; i < Mup; ++i) {
  6469. S[i] = -INFINITY;
  6470. }
  6471. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6472. for (int ic = 0; ic < nek1; ++ic) {
  6473. // k indices
  6474. const int ik3 = iq3;
  6475. const int ik2 = iq2;
  6476. const int ik1 = ic;
  6477. // S indices
  6478. const int i1 = ik1;
  6479. ggml_vec_dot_f16(neq0,
  6480. S + i1,
  6481. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6482. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6483. }
  6484. } else {
  6485. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6486. // k indices
  6487. const int ik3 = iq3;
  6488. const int ik2 = iq2;
  6489. const int ik1 = ic;
  6490. // S indices
  6491. const int i1 = ik1;
  6492. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6493. S + i1,
  6494. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6495. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6496. }
  6497. }
  6498. // scale
  6499. ggml_vec_scale_f32(nek1, S, scale);
  6500. if (masked) {
  6501. for (int i = P; i < M; i++) {
  6502. if (i > P + iq1) {
  6503. S[i] = -INFINITY;
  6504. }
  6505. }
  6506. }
  6507. // softmax
  6508. {
  6509. float max = -INFINITY;
  6510. ggml_vec_max_f32(M, &max, S);
  6511. float sum = 0.0f;
  6512. {
  6513. #ifdef GGML_SOFT_MAX_ACCELERATE
  6514. max = -max;
  6515. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6516. vvexpf(S, S, &Mup);
  6517. ggml_vec_sum_f32(Mup, &sum, S);
  6518. #else
  6519. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6520. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6521. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6522. float * SS = S + i;
  6523. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6524. if (SS[j] == -INFINITY) {
  6525. SS[j] = 0.0f;
  6526. } else {
  6527. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6528. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6529. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6530. sump[j] += val;
  6531. SS[j] = val;
  6532. }
  6533. }
  6534. }
  6535. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6536. sum += sump[i];
  6537. }
  6538. #endif
  6539. }
  6540. assert(sum > 0.0f);
  6541. sum = 1.0/sum;
  6542. ggml_vec_scale_f32(M, S, sum);
  6543. #ifndef NDEBUG
  6544. for (int i = 0; i < M; ++i) {
  6545. assert(!isnan(S[i]));
  6546. assert(!isinf(S[i]));
  6547. }
  6548. #endif
  6549. }
  6550. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6551. for (int i = 0; i < M; i++) {
  6552. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6553. }
  6554. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6555. for (int ic = 0; ic < nev1; ++ic) {
  6556. // dst indices
  6557. const int i1 = iq1;
  6558. const int i2 = iq2;
  6559. const int i3 = iq3;
  6560. ggml_vec_dot_f16(nek1,
  6561. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6562. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6563. S16);
  6564. }
  6565. } else {
  6566. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6567. // dst indices
  6568. const int i1 = iq1;
  6569. const int i2 = iq2;
  6570. const int i3 = iq3;
  6571. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6572. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6573. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6574. S16);
  6575. }
  6576. }
  6577. }
  6578. }
  6579. static void ggml_compute_forward_flash_attn(
  6580. const struct ggml_compute_params * params,
  6581. const struct ggml_tensor * q,
  6582. const struct ggml_tensor * k,
  6583. const struct ggml_tensor * v,
  6584. const bool masked,
  6585. struct ggml_tensor * dst) {
  6586. switch (q->type) {
  6587. case GGML_TYPE_F16:
  6588. {
  6589. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6590. } break;
  6591. case GGML_TYPE_F32:
  6592. {
  6593. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6594. } break;
  6595. case GGML_TYPE_Q4_0:
  6596. case GGML_TYPE_Q4_1:
  6597. case GGML_TYPE_I8:
  6598. case GGML_TYPE_I16:
  6599. case GGML_TYPE_I32:
  6600. case GGML_TYPE_COUNT:
  6601. {
  6602. GGML_ASSERT(false);
  6603. } break;
  6604. }
  6605. }
  6606. // ggml_compute_forward_flash_ff
  6607. static void ggml_compute_forward_flash_ff_f16(
  6608. const struct ggml_compute_params * params,
  6609. const struct ggml_tensor * a, // F16
  6610. const struct ggml_tensor * b0, // F16 fc_w
  6611. const struct ggml_tensor * b1, // F32 fc_b
  6612. const struct ggml_tensor * c0, // F16 proj_w
  6613. const struct ggml_tensor * c1, // F32 proj_b
  6614. struct ggml_tensor * dst) {
  6615. int64_t t0 = ggml_perf_time_us();
  6616. UNUSED(t0);
  6617. const int nea0 = a->ne[0];
  6618. const int nea1 = a->ne[1];
  6619. const int nea2 = a->ne[2];
  6620. const int nea3 = a->ne[3];
  6621. const int neb00 = b0->ne[0];
  6622. const int neb01 = b0->ne[1];
  6623. //const int neb02 = b0->ne[2];
  6624. //const int neb03 = b0->ne[3];
  6625. const int neb10 = b1->ne[0];
  6626. const int neb11 = b1->ne[1];
  6627. //const int neb12 = b1->ne[2];
  6628. //const int neb13 = b1->ne[3];
  6629. const int nec00 = c0->ne[0];
  6630. const int nec01 = c0->ne[1];
  6631. //const int nec02 = c0->ne[2];
  6632. //const int nec03 = c0->ne[3];
  6633. const int nec10 = c1->ne[0];
  6634. const int nec11 = c1->ne[1];
  6635. //const int nec12 = c1->ne[2];
  6636. //const int nec13 = c1->ne[3];
  6637. const int ne0 = dst->ne[0];
  6638. const int ne1 = dst->ne[1];
  6639. const int ne2 = dst->ne[2];
  6640. //const int ne3 = dst->ne[3];
  6641. const int nba0 = a->nb[0];
  6642. const int nba1 = a->nb[1];
  6643. const int nba2 = a->nb[2];
  6644. const int nba3 = a->nb[3];
  6645. const int nbb00 = b0->nb[0];
  6646. const int nbb01 = b0->nb[1];
  6647. const int nbb02 = b0->nb[2];
  6648. const int nbb03 = b0->nb[3];
  6649. const int nbb10 = b1->nb[0];
  6650. //const int nbb11 = b1->nb[1];
  6651. //const int nbb12 = b1->nb[2];
  6652. //const int nbb13 = b1->nb[3];
  6653. const int nbc00 = c0->nb[0];
  6654. const int nbc01 = c0->nb[1];
  6655. const int nbc02 = c0->nb[2];
  6656. const int nbc03 = c0->nb[3];
  6657. const int nbc10 = c1->nb[0];
  6658. //const int nbc11 = c1->nb[1];
  6659. //const int nbc12 = c1->nb[2];
  6660. //const int nbc13 = c1->nb[3];
  6661. const int nb0 = dst->nb[0];
  6662. const int nb1 = dst->nb[1];
  6663. const int nb2 = dst->nb[2];
  6664. const int nb3 = dst->nb[3];
  6665. const int ith = params->ith;
  6666. const int nth = params->nth;
  6667. const int D = nea0;
  6668. //const int N = nea1;
  6669. const int M = neb01;
  6670. GGML_ASSERT(ne0 == nea0);
  6671. GGML_ASSERT(ne1 == nea1);
  6672. GGML_ASSERT(ne2 == nea2);
  6673. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6674. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6675. GGML_ASSERT(nbb10 == sizeof(float));
  6676. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6677. GGML_ASSERT(nbc10 == sizeof(float));
  6678. GGML_ASSERT(neb00 == D);
  6679. GGML_ASSERT(neb01 == M);
  6680. GGML_ASSERT(neb10 == M);
  6681. GGML_ASSERT(neb11 == 1);
  6682. GGML_ASSERT(nec00 == M);
  6683. GGML_ASSERT(nec01 == D);
  6684. GGML_ASSERT(nec10 == D);
  6685. GGML_ASSERT(nec11 == 1);
  6686. // dst cannot be transposed or permuted
  6687. GGML_ASSERT(nb0 == sizeof(float));
  6688. GGML_ASSERT(nb0 <= nb1);
  6689. GGML_ASSERT(nb1 <= nb2);
  6690. GGML_ASSERT(nb2 <= nb3);
  6691. if (params->type == GGML_TASK_INIT) {
  6692. return;
  6693. }
  6694. if (params->type == GGML_TASK_FINALIZE) {
  6695. return;
  6696. }
  6697. // parallelize by a rows using ggml_vec_dot_f32
  6698. // total rows in a
  6699. const int nr = nea1*nea2*nea3;
  6700. // rows per thread
  6701. const int dr = (nr + nth - 1)/nth;
  6702. // row range for this thread
  6703. const int ir0 = dr*ith;
  6704. const int ir1 = MIN(ir0 + dr, nr);
  6705. for (int ir = ir0; ir < ir1; ++ir) {
  6706. // a indices
  6707. const int ia3 = ir/(nea2*nea1);
  6708. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6709. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6710. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6711. for (int ic = 0; ic < neb01; ++ic) {
  6712. // b0 indices
  6713. const int ib03 = ia3;
  6714. const int ib02 = ia2;
  6715. const int ib01 = ic;
  6716. // S indices
  6717. const int i1 = ib01;
  6718. ggml_vec_dot_f16(nea0,
  6719. S + i1,
  6720. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6721. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6722. }
  6723. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6724. //ggml_vec_gelu_f32(neb01, S, S);
  6725. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6726. for (int i = 0; i < M; i++) {
  6727. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6728. }
  6729. ggml_vec_gelu_f16(neb01, S16, S16);
  6730. {
  6731. // dst indices
  6732. const int i1 = ia1;
  6733. const int i2 = ia2;
  6734. const int i3 = ia3;
  6735. for (int ic = 0; ic < nec01; ++ic) {
  6736. ggml_vec_dot_f16(neb01,
  6737. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6738. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6739. S16);
  6740. }
  6741. ggml_vec_add_f32(nec01,
  6742. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6743. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6744. (float *) c1->data);
  6745. }
  6746. }
  6747. }
  6748. static void ggml_compute_forward_flash_ff(
  6749. const struct ggml_compute_params * params,
  6750. const struct ggml_tensor * a,
  6751. const struct ggml_tensor * b0,
  6752. const struct ggml_tensor * b1,
  6753. const struct ggml_tensor * c0,
  6754. const struct ggml_tensor * c1,
  6755. struct ggml_tensor * dst) {
  6756. switch (b0->type) {
  6757. case GGML_TYPE_F16:
  6758. {
  6759. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6760. } break;
  6761. case GGML_TYPE_F32:
  6762. {
  6763. GGML_ASSERT(false); // TODO
  6764. } break;
  6765. case GGML_TYPE_Q4_0:
  6766. case GGML_TYPE_Q4_1:
  6767. case GGML_TYPE_I8:
  6768. case GGML_TYPE_I16:
  6769. case GGML_TYPE_I32:
  6770. case GGML_TYPE_COUNT:
  6771. {
  6772. GGML_ASSERT(false);
  6773. } break;
  6774. }
  6775. }
  6776. /////////////////////////////////
  6777. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6778. GGML_ASSERT(params);
  6779. switch (tensor->op) {
  6780. case GGML_OP_DUP:
  6781. {
  6782. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6783. } break;
  6784. case GGML_OP_ADD:
  6785. {
  6786. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6787. } break;
  6788. case GGML_OP_SUB:
  6789. {
  6790. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6791. } break;
  6792. case GGML_OP_MUL:
  6793. {
  6794. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6795. } break;
  6796. case GGML_OP_DIV:
  6797. {
  6798. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6799. } break;
  6800. case GGML_OP_SQR:
  6801. {
  6802. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6803. } break;
  6804. case GGML_OP_SQRT:
  6805. {
  6806. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6807. } break;
  6808. case GGML_OP_SUM:
  6809. {
  6810. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6811. } break;
  6812. case GGML_OP_MEAN:
  6813. {
  6814. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6815. } break;
  6816. case GGML_OP_REPEAT:
  6817. {
  6818. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6819. } break;
  6820. case GGML_OP_ABS:
  6821. {
  6822. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6823. } break;
  6824. case GGML_OP_SGN:
  6825. {
  6826. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6827. } break;
  6828. case GGML_OP_NEG:
  6829. {
  6830. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6831. } break;
  6832. case GGML_OP_STEP:
  6833. {
  6834. ggml_compute_forward_step(params, tensor->src0, tensor);
  6835. } break;
  6836. case GGML_OP_RELU:
  6837. {
  6838. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6839. } break;
  6840. case GGML_OP_GELU:
  6841. {
  6842. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6843. } break;
  6844. case GGML_OP_SILU:
  6845. {
  6846. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6847. } break;
  6848. case GGML_OP_NORM:
  6849. {
  6850. ggml_compute_forward_norm(params, tensor->src0, tensor);
  6851. } break;
  6852. case GGML_OP_RMS_NORM:
  6853. {
  6854. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  6855. } break;
  6856. case GGML_OP_MUL_MAT:
  6857. {
  6858. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  6859. } break;
  6860. case GGML_OP_SCALE:
  6861. {
  6862. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  6863. } break;
  6864. case GGML_OP_CPY:
  6865. {
  6866. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  6867. } break;
  6868. case GGML_OP_RESHAPE:
  6869. {
  6870. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  6871. } break;
  6872. case GGML_OP_VIEW:
  6873. {
  6874. ggml_compute_forward_view(params, tensor->src0);
  6875. } break;
  6876. case GGML_OP_PERMUTE:
  6877. {
  6878. ggml_compute_forward_permute(params, tensor->src0);
  6879. } break;
  6880. case GGML_OP_TRANSPOSE:
  6881. {
  6882. ggml_compute_forward_transpose(params, tensor->src0);
  6883. } break;
  6884. case GGML_OP_GET_ROWS:
  6885. {
  6886. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  6887. } break;
  6888. case GGML_OP_DIAG_MASK_INF:
  6889. {
  6890. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  6891. } break;
  6892. case GGML_OP_SOFT_MAX:
  6893. {
  6894. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  6895. } break;
  6896. case GGML_OP_ROPE:
  6897. {
  6898. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  6899. } break;
  6900. case GGML_OP_CONV_1D_1S:
  6901. {
  6902. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  6903. } break;
  6904. case GGML_OP_CONV_1D_2S:
  6905. {
  6906. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  6907. } break;
  6908. case GGML_OP_FLASH_ATTN:
  6909. {
  6910. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  6911. GGML_ASSERT(t == 0 || t == 1);
  6912. bool masked = t != 0;
  6913. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  6914. } break;
  6915. case GGML_OP_FLASH_FF:
  6916. {
  6917. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  6918. } break;
  6919. case GGML_OP_NONE:
  6920. {
  6921. // nop
  6922. } break;
  6923. case GGML_OP_COUNT:
  6924. {
  6925. GGML_ASSERT(false);
  6926. } break;
  6927. }
  6928. }
  6929. ////////////////////////////////////////////////////////////////////////////////
  6930. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  6931. struct ggml_tensor * src0 = tensor->src0;
  6932. struct ggml_tensor * src1 = tensor->src1;
  6933. switch (tensor->op) {
  6934. case GGML_OP_DUP:
  6935. {
  6936. if (src0->grad) {
  6937. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6938. }
  6939. } break;
  6940. case GGML_OP_ADD:
  6941. {
  6942. if (src0->grad) {
  6943. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6944. }
  6945. if (src1->grad) {
  6946. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  6947. }
  6948. } break;
  6949. case GGML_OP_SUB:
  6950. {
  6951. if (src0->grad) {
  6952. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6953. }
  6954. if (src1->grad) {
  6955. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  6956. }
  6957. } break;
  6958. case GGML_OP_MUL:
  6959. {
  6960. if (src0->grad) {
  6961. src0->grad =
  6962. ggml_add_impl(ctx,
  6963. src0->grad,
  6964. ggml_mul(ctx, src1, tensor->grad),
  6965. inplace);
  6966. }
  6967. if (src1->grad) {
  6968. src1->grad =
  6969. ggml_add_impl(ctx,
  6970. src1->grad,
  6971. ggml_mul(ctx, src0, tensor->grad),
  6972. inplace);
  6973. }
  6974. } break;
  6975. case GGML_OP_DIV:
  6976. {
  6977. if (src0->grad) {
  6978. src0->grad =
  6979. ggml_add_impl(ctx,
  6980. src0->grad,
  6981. ggml_div(ctx, tensor->grad, src1),
  6982. inplace);
  6983. }
  6984. if (src1->grad) {
  6985. src1->grad =
  6986. ggml_sub_impl(ctx,
  6987. src1->grad,
  6988. ggml_mul(ctx,
  6989. tensor->grad,
  6990. ggml_div(ctx, tensor, src1)),
  6991. inplace);
  6992. }
  6993. } break;
  6994. case GGML_OP_SQR:
  6995. {
  6996. if (src0->grad) {
  6997. src0->grad =
  6998. ggml_add_impl(ctx,
  6999. src0->grad,
  7000. ggml_mul(ctx,
  7001. ggml_mul(ctx, src0, tensor->grad),
  7002. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7003. inplace);
  7004. }
  7005. } break;
  7006. case GGML_OP_SQRT:
  7007. {
  7008. if (src0->grad) {
  7009. src0->grad =
  7010. ggml_add_impl(ctx,
  7011. src0->grad,
  7012. ggml_div(ctx,
  7013. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7014. tensor),
  7015. inplace);
  7016. }
  7017. } break;
  7018. case GGML_OP_SUM:
  7019. {
  7020. if (src0->grad) {
  7021. src0->grad =
  7022. ggml_add_impl(ctx,
  7023. src0->grad,
  7024. ggml_repeat(ctx, tensor->grad, src0->grad),
  7025. inplace);
  7026. }
  7027. } break;
  7028. case GGML_OP_MEAN:
  7029. {
  7030. GGML_ASSERT(false); // TODO: implement
  7031. } break;
  7032. case GGML_OP_REPEAT:
  7033. {
  7034. if (src0->grad) {
  7035. src0->grad =
  7036. ggml_add_impl(ctx,
  7037. src0->grad,
  7038. ggml_sum(ctx, tensor->grad),
  7039. inplace);
  7040. }
  7041. } break;
  7042. case GGML_OP_ABS:
  7043. {
  7044. if (src0->grad) {
  7045. src0->grad =
  7046. ggml_add_impl(ctx,
  7047. src0->grad,
  7048. ggml_mul(ctx,
  7049. ggml_sgn(ctx, src0),
  7050. tensor->grad),
  7051. inplace);
  7052. }
  7053. } break;
  7054. case GGML_OP_SGN:
  7055. {
  7056. if (src0->grad) {
  7057. // noop
  7058. }
  7059. } break;
  7060. case GGML_OP_NEG:
  7061. {
  7062. if (src0->grad) {
  7063. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7064. }
  7065. } break;
  7066. case GGML_OP_STEP:
  7067. {
  7068. if (src0->grad) {
  7069. // noop
  7070. }
  7071. } break;
  7072. case GGML_OP_RELU:
  7073. {
  7074. if (src0->grad) {
  7075. src0->grad = ggml_sub_impl(ctx,
  7076. src0->grad,
  7077. ggml_mul(ctx,
  7078. ggml_step(ctx, src0),
  7079. tensor->grad),
  7080. inplace);
  7081. }
  7082. } break;
  7083. case GGML_OP_GELU:
  7084. {
  7085. GGML_ASSERT(false); // TODO: not implemented
  7086. } break;
  7087. case GGML_OP_SILU:
  7088. {
  7089. GGML_ASSERT(false); // TODO: not implemented
  7090. } break;
  7091. case GGML_OP_NORM:
  7092. {
  7093. GGML_ASSERT(false); // TODO: not implemented
  7094. } break;
  7095. case GGML_OP_RMS_NORM:
  7096. {
  7097. GGML_ASSERT(false); // TODO: not implemented
  7098. } break;
  7099. case GGML_OP_MUL_MAT:
  7100. {
  7101. if (src0->grad) {
  7102. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7103. GGML_ASSERT(false);
  7104. }
  7105. if (src1->grad) {
  7106. src1->grad =
  7107. ggml_add_impl(ctx,
  7108. src1->grad,
  7109. // TODO: fix transpose, the node will break the graph connections
  7110. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7111. inplace);
  7112. }
  7113. } break;
  7114. case GGML_OP_SCALE:
  7115. {
  7116. GGML_ASSERT(false); // TODO: not implemented
  7117. } break;
  7118. case GGML_OP_CPY:
  7119. {
  7120. GGML_ASSERT(false); // TODO: not implemented
  7121. } break;
  7122. case GGML_OP_RESHAPE:
  7123. {
  7124. GGML_ASSERT(false); // TODO: not implemented
  7125. } break;
  7126. case GGML_OP_VIEW:
  7127. {
  7128. GGML_ASSERT(false); // not supported
  7129. } break;
  7130. case GGML_OP_PERMUTE:
  7131. {
  7132. GGML_ASSERT(false); // TODO: not implemented
  7133. } break;
  7134. case GGML_OP_TRANSPOSE:
  7135. {
  7136. GGML_ASSERT(false); // TODO: not implemented
  7137. } break;
  7138. case GGML_OP_GET_ROWS:
  7139. {
  7140. GGML_ASSERT(false); // TODO: not implemented
  7141. } break;
  7142. case GGML_OP_DIAG_MASK_INF:
  7143. {
  7144. GGML_ASSERT(false); // TODO: not implemented
  7145. } break;
  7146. case GGML_OP_SOFT_MAX:
  7147. {
  7148. GGML_ASSERT(false); // TODO: not implemented
  7149. } break;
  7150. case GGML_OP_ROPE:
  7151. {
  7152. GGML_ASSERT(false); // TODO: not implemented
  7153. } break;
  7154. case GGML_OP_CONV_1D_1S:
  7155. {
  7156. GGML_ASSERT(false); // TODO: not implemented
  7157. } break;
  7158. case GGML_OP_CONV_1D_2S:
  7159. {
  7160. GGML_ASSERT(false); // TODO: not implemented
  7161. } break;
  7162. case GGML_OP_FLASH_ATTN:
  7163. {
  7164. GGML_ASSERT(false); // not supported
  7165. } break;
  7166. case GGML_OP_FLASH_FF:
  7167. {
  7168. GGML_ASSERT(false); // not supported
  7169. } break;
  7170. case GGML_OP_NONE:
  7171. {
  7172. // nop
  7173. } break;
  7174. case GGML_OP_COUNT:
  7175. {
  7176. GGML_ASSERT(false);
  7177. } break;
  7178. }
  7179. }
  7180. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7181. if (node->grad == NULL) {
  7182. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7183. // it can also happen during forward pass, if the user performs computations with constants
  7184. if (node->op != GGML_OP_NONE) {
  7185. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7186. }
  7187. }
  7188. // check if already visited
  7189. for (int i = 0; i < cgraph->n_nodes; i++) {
  7190. if (cgraph->nodes[i] == node) {
  7191. return;
  7192. }
  7193. }
  7194. for (int i = 0; i < cgraph->n_leafs; i++) {
  7195. if (cgraph->leafs[i] == node) {
  7196. return;
  7197. }
  7198. }
  7199. if (node->src0) {
  7200. ggml_visit_parents(cgraph, node->src0);
  7201. }
  7202. if (node->src1) {
  7203. ggml_visit_parents(cgraph, node->src1);
  7204. }
  7205. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7206. if (node->opt[i]) {
  7207. ggml_visit_parents(cgraph, node->opt[i]);
  7208. }
  7209. }
  7210. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7211. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7212. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7213. cgraph->leafs[cgraph->n_leafs] = node;
  7214. cgraph->n_leafs++;
  7215. } else {
  7216. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7217. cgraph->nodes[cgraph->n_nodes] = node;
  7218. cgraph->grads[cgraph->n_nodes] = node->grad;
  7219. cgraph->n_nodes++;
  7220. }
  7221. }
  7222. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7223. if (!expand) {
  7224. cgraph->n_nodes = 0;
  7225. cgraph->n_leafs = 0;
  7226. }
  7227. const int n0 = cgraph->n_nodes;
  7228. UNUSED(n0);
  7229. ggml_visit_parents(cgraph, tensor);
  7230. const int n_new = cgraph->n_nodes - n0;
  7231. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7232. if (n_new > 0) {
  7233. // the last added node should always be starting point
  7234. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7235. }
  7236. }
  7237. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7238. ggml_build_forward_impl(cgraph, tensor, true);
  7239. }
  7240. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7241. struct ggml_cgraph result = {
  7242. /*.n_nodes =*/ 0,
  7243. /*.n_leafs =*/ 0,
  7244. /*.n_threads =*/ 0,
  7245. /*.work_size =*/ 0,
  7246. /*.work =*/ NULL,
  7247. /*.nodes =*/ { NULL },
  7248. /*.grads =*/ { NULL },
  7249. /*.leafs =*/ { NULL },
  7250. /*.perf_runs =*/ 0,
  7251. /*.perf_cycles =*/ 0,
  7252. /*.perf_time_us =*/ 0,
  7253. };
  7254. ggml_build_forward_impl(&result, tensor, false);
  7255. return result;
  7256. }
  7257. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7258. struct ggml_cgraph result = *gf;
  7259. GGML_ASSERT(gf->n_nodes > 0);
  7260. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7261. if (keep) {
  7262. for (int i = 0; i < gf->n_nodes; i++) {
  7263. struct ggml_tensor * node = gf->nodes[i];
  7264. if (node->grad) {
  7265. node->grad = ggml_dup_tensor(ctx, node);
  7266. gf->grads[i] = node->grad;
  7267. }
  7268. }
  7269. }
  7270. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7271. struct ggml_tensor * node = gf->nodes[i];
  7272. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7273. if (node->grad) {
  7274. ggml_compute_backward(ctx, node, keep);
  7275. }
  7276. }
  7277. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7278. struct ggml_tensor * node = gf->nodes[i];
  7279. if (node->is_param) {
  7280. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7281. ggml_build_forward_impl(&result, node->grad, true);
  7282. }
  7283. }
  7284. return result;
  7285. }
  7286. //
  7287. // thread data
  7288. //
  7289. // synchronization is done via busy loops
  7290. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7291. //
  7292. #ifdef __APPLE__
  7293. //#include <os/lock.h>
  7294. //
  7295. //typedef os_unfair_lock ggml_lock_t;
  7296. //
  7297. //#define ggml_lock_init(x) UNUSED(x)
  7298. //#define ggml_lock_destroy(x) UNUSED(x)
  7299. //#define ggml_lock_lock os_unfair_lock_lock
  7300. //#define ggml_lock_unlock os_unfair_lock_unlock
  7301. //
  7302. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7303. typedef int ggml_lock_t;
  7304. #define ggml_lock_init(x) UNUSED(x)
  7305. #define ggml_lock_destroy(x) UNUSED(x)
  7306. #define ggml_lock_lock(x) UNUSED(x)
  7307. #define ggml_lock_unlock(x) UNUSED(x)
  7308. #define GGML_LOCK_INITIALIZER 0
  7309. typedef pthread_t ggml_thread_t;
  7310. #define ggml_thread_create pthread_create
  7311. #define ggml_thread_join pthread_join
  7312. #else
  7313. //typedef pthread_spinlock_t ggml_lock_t;
  7314. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7315. //#define ggml_lock_destroy pthread_spin_destroy
  7316. //#define ggml_lock_lock pthread_spin_lock
  7317. //#define ggml_lock_unlock pthread_spin_unlock
  7318. typedef int ggml_lock_t;
  7319. #define ggml_lock_init(x) UNUSED(x)
  7320. #define ggml_lock_destroy(x) UNUSED(x)
  7321. #define ggml_lock_lock(x) UNUSED(x)
  7322. #define ggml_lock_unlock(x) UNUSED(x)
  7323. #define GGML_LOCK_INITIALIZER 0
  7324. typedef pthread_t ggml_thread_t;
  7325. #define ggml_thread_create pthread_create
  7326. #define ggml_thread_join pthread_join
  7327. #endif
  7328. struct ggml_compute_state_shared {
  7329. ggml_lock_t spin;
  7330. int n_threads;
  7331. // synchronization primitives
  7332. atomic_int n_ready;
  7333. atomic_bool has_work;
  7334. atomic_bool stop; // stop all threads
  7335. };
  7336. struct ggml_compute_state {
  7337. ggml_thread_t thrd;
  7338. struct ggml_compute_params params;
  7339. struct ggml_tensor * node;
  7340. struct ggml_compute_state_shared * shared;
  7341. };
  7342. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7343. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7344. const int n_threads = state->shared->n_threads;
  7345. while (true) {
  7346. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7347. atomic_store(&state->shared->has_work, false);
  7348. } else {
  7349. while (atomic_load(&state->shared->has_work)) {
  7350. if (atomic_load(&state->shared->stop)) {
  7351. return 0;
  7352. }
  7353. ggml_lock_lock (&state->shared->spin);
  7354. ggml_lock_unlock(&state->shared->spin);
  7355. }
  7356. }
  7357. atomic_fetch_sub(&state->shared->n_ready, 1);
  7358. // wait for work
  7359. while (!atomic_load(&state->shared->has_work)) {
  7360. if (atomic_load(&state->shared->stop)) {
  7361. return 0;
  7362. }
  7363. ggml_lock_lock (&state->shared->spin);
  7364. ggml_lock_unlock(&state->shared->spin);
  7365. }
  7366. // check if we should stop
  7367. if (atomic_load(&state->shared->stop)) {
  7368. break;
  7369. }
  7370. if (state->node) {
  7371. if (state->params.ith < state->params.nth) {
  7372. ggml_compute_forward(&state->params, state->node);
  7373. }
  7374. state->node = NULL;
  7375. } else {
  7376. break;
  7377. }
  7378. }
  7379. return 0;
  7380. }
  7381. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7382. const int n_threads = cgraph->n_threads;
  7383. struct ggml_compute_state_shared state_shared = {
  7384. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7385. /*.n_threads =*/ n_threads,
  7386. /*.n_ready =*/ 0,
  7387. /*.has_work =*/ false,
  7388. /*.stop =*/ false,
  7389. };
  7390. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7391. // create thread pool
  7392. if (n_threads > 1) {
  7393. ggml_lock_init(&state_shared.spin);
  7394. atomic_store(&state_shared.has_work, true);
  7395. for (int j = 0; j < n_threads - 1; j++) {
  7396. workers[j] = (struct ggml_compute_state) {
  7397. .thrd = 0,
  7398. .params = {
  7399. .type = GGML_TASK_COMPUTE,
  7400. .ith = j + 1,
  7401. .nth = n_threads,
  7402. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7403. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7404. },
  7405. .node = NULL,
  7406. .shared = &state_shared,
  7407. };
  7408. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7409. GGML_ASSERT(rc == 0);
  7410. UNUSED(rc);
  7411. }
  7412. }
  7413. // initialize tasks + work buffer
  7414. {
  7415. size_t work_size = 0;
  7416. // thread scheduling for the different operations
  7417. for (int i = 0; i < cgraph->n_nodes; i++) {
  7418. struct ggml_tensor * node = cgraph->nodes[i];
  7419. switch (node->op) {
  7420. case GGML_OP_DUP:
  7421. {
  7422. node->n_tasks = 1;
  7423. } break;
  7424. case GGML_OP_ADD:
  7425. {
  7426. node->n_tasks = n_threads;
  7427. } break;
  7428. case GGML_OP_SUB:
  7429. case GGML_OP_MUL:
  7430. case GGML_OP_DIV:
  7431. case GGML_OP_SQR:
  7432. case GGML_OP_SQRT:
  7433. case GGML_OP_SUM:
  7434. case GGML_OP_MEAN:
  7435. case GGML_OP_REPEAT:
  7436. case GGML_OP_ABS:
  7437. case GGML_OP_SGN:
  7438. case GGML_OP_NEG:
  7439. case GGML_OP_STEP:
  7440. case GGML_OP_RELU:
  7441. {
  7442. node->n_tasks = 1;
  7443. } break;
  7444. case GGML_OP_GELU:
  7445. {
  7446. node->n_tasks = n_threads;
  7447. } break;
  7448. case GGML_OP_SILU:
  7449. {
  7450. node->n_tasks = n_threads;
  7451. } break;
  7452. case GGML_OP_NORM:
  7453. case GGML_OP_RMS_NORM:
  7454. {
  7455. node->n_tasks = n_threads;
  7456. } break;
  7457. case GGML_OP_MUL_MAT:
  7458. {
  7459. node->n_tasks = n_threads;
  7460. // TODO: use different scheduling for different matrix sizes
  7461. //const int nr0 = ggml_nrows(node->src0);
  7462. //const int nr1 = ggml_nrows(node->src1);
  7463. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7464. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7465. size_t cur = 0;
  7466. if (node->src0->type == GGML_TYPE_F16 &&
  7467. node->src1->type == GGML_TYPE_F32) {
  7468. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7469. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7470. node->n_tasks = 1; // TODO: this actually is doing nothing
  7471. // the threads are still spinning
  7472. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7473. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7474. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7475. //printf("cur = %zu\n", cur);
  7476. } else {
  7477. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7478. }
  7479. #else
  7480. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7481. #endif
  7482. } else if (node->src0->type == GGML_TYPE_F32 &&
  7483. node->src1->type == GGML_TYPE_F32) {
  7484. cur = 0;
  7485. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7486. node->src1->type == GGML_TYPE_F32) {
  7487. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7488. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7489. node->n_tasks = 1;
  7490. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7491. } else {
  7492. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7493. }
  7494. #else
  7495. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7496. #endif
  7497. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7498. node->src1->type == GGML_TYPE_F32) {
  7499. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7500. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7501. node->n_tasks = 1;
  7502. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7503. } else {
  7504. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7505. }
  7506. #else
  7507. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7508. #endif
  7509. } else {
  7510. GGML_ASSERT(false);
  7511. }
  7512. work_size = MAX(work_size, cur);
  7513. } break;
  7514. case GGML_OP_SCALE:
  7515. {
  7516. node->n_tasks = n_threads;
  7517. } break;
  7518. case GGML_OP_CPY:
  7519. case GGML_OP_RESHAPE:
  7520. case GGML_OP_VIEW:
  7521. case GGML_OP_PERMUTE:
  7522. case GGML_OP_TRANSPOSE:
  7523. case GGML_OP_GET_ROWS:
  7524. case GGML_OP_DIAG_MASK_INF:
  7525. {
  7526. node->n_tasks = 1;
  7527. } break;
  7528. case GGML_OP_SOFT_MAX:
  7529. {
  7530. node->n_tasks = n_threads;
  7531. } break;
  7532. case GGML_OP_ROPE:
  7533. {
  7534. node->n_tasks = 1;
  7535. } break;
  7536. case GGML_OP_CONV_1D_1S:
  7537. case GGML_OP_CONV_1D_2S:
  7538. {
  7539. node->n_tasks = n_threads;
  7540. GGML_ASSERT(node->src0->ne[3] == 1);
  7541. GGML_ASSERT(node->src1->ne[2] == 1);
  7542. GGML_ASSERT(node->src1->ne[3] == 1);
  7543. size_t cur = 0;
  7544. const int nk = node->src0->ne[0];
  7545. if (node->src0->type == GGML_TYPE_F16 &&
  7546. node->src1->type == GGML_TYPE_F32) {
  7547. cur = sizeof(ggml_fp16_t)*(
  7548. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7549. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7550. );
  7551. } else if (node->src0->type == GGML_TYPE_F32 &&
  7552. node->src1->type == GGML_TYPE_F32) {
  7553. cur = sizeof(float)*(
  7554. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7555. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7556. );
  7557. } else {
  7558. GGML_ASSERT(false);
  7559. }
  7560. work_size = MAX(work_size, cur);
  7561. } break;
  7562. case GGML_OP_FLASH_ATTN:
  7563. {
  7564. node->n_tasks = n_threads;
  7565. size_t cur = 0;
  7566. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7567. if (node->src1->type == GGML_TYPE_F32) {
  7568. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7569. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7570. }
  7571. if (node->src1->type == GGML_TYPE_F16) {
  7572. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7573. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7574. }
  7575. work_size = MAX(work_size, cur);
  7576. } break;
  7577. case GGML_OP_FLASH_FF:
  7578. {
  7579. node->n_tasks = n_threads;
  7580. size_t cur = 0;
  7581. if (node->src1->type == GGML_TYPE_F32) {
  7582. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7583. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7584. }
  7585. if (node->src1->type == GGML_TYPE_F16) {
  7586. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7587. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7588. }
  7589. work_size = MAX(work_size, cur);
  7590. } break;
  7591. case GGML_OP_NONE:
  7592. {
  7593. node->n_tasks = 1;
  7594. } break;
  7595. case GGML_OP_COUNT:
  7596. {
  7597. GGML_ASSERT(false);
  7598. } break;
  7599. }
  7600. }
  7601. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7602. GGML_ASSERT(false); // TODO: better handling
  7603. }
  7604. if (work_size > 0 && cgraph->work == NULL) {
  7605. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7606. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7607. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7608. }
  7609. }
  7610. const int64_t perf_start_cycles = ggml_perf_cycles();
  7611. const int64_t perf_start_time_us = ggml_perf_time_us();
  7612. for (int i = 0; i < cgraph->n_nodes; i++) {
  7613. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7614. struct ggml_tensor * node = cgraph->nodes[i];
  7615. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7616. //if (node->grad == NULL && node->perf_runs > 0) {
  7617. // continue;
  7618. //}
  7619. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7620. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7621. // INIT
  7622. struct ggml_compute_params params = {
  7623. /*.type =*/ GGML_TASK_INIT,
  7624. /*.ith =*/ 0,
  7625. /*.nth =*/ node->n_tasks,
  7626. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7627. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7628. };
  7629. ggml_compute_forward(&params, node);
  7630. // COMPUTE
  7631. if (node->n_tasks > 1) {
  7632. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7633. atomic_store(&state_shared.has_work, false);
  7634. }
  7635. while (atomic_load(&state_shared.has_work)) {
  7636. ggml_lock_lock (&state_shared.spin);
  7637. ggml_lock_unlock(&state_shared.spin);
  7638. }
  7639. // launch thread pool
  7640. for (int j = 0; j < n_threads - 1; j++) {
  7641. workers[j].params = (struct ggml_compute_params) {
  7642. .type = GGML_TASK_COMPUTE,
  7643. .ith = j + 1,
  7644. .nth = node->n_tasks,
  7645. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7646. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7647. };
  7648. workers[j].node = node;
  7649. }
  7650. atomic_fetch_sub(&state_shared.n_ready, 1);
  7651. while (atomic_load(&state_shared.n_ready) > 0) {
  7652. ggml_lock_lock (&state_shared.spin);
  7653. ggml_lock_unlock(&state_shared.spin);
  7654. }
  7655. atomic_store(&state_shared.has_work, true);
  7656. }
  7657. params.type = GGML_TASK_COMPUTE;
  7658. ggml_compute_forward(&params, node);
  7659. // wait for thread pool
  7660. if (node->n_tasks > 1) {
  7661. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7662. atomic_store(&state_shared.has_work, false);
  7663. }
  7664. while (atomic_load(&state_shared.has_work)) {
  7665. ggml_lock_lock (&state_shared.spin);
  7666. ggml_lock_unlock(&state_shared.spin);
  7667. }
  7668. atomic_fetch_sub(&state_shared.n_ready, 1);
  7669. while (atomic_load(&state_shared.n_ready) != 0) {
  7670. ggml_lock_lock (&state_shared.spin);
  7671. ggml_lock_unlock(&state_shared.spin);
  7672. }
  7673. }
  7674. // FINALIZE
  7675. if (node->n_tasks > 1) {
  7676. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7677. atomic_store(&state_shared.has_work, false);
  7678. }
  7679. while (atomic_load(&state_shared.has_work)) {
  7680. ggml_lock_lock (&state_shared.spin);
  7681. ggml_lock_unlock(&state_shared.spin);
  7682. }
  7683. // launch thread pool
  7684. for (int j = 0; j < n_threads - 1; j++) {
  7685. workers[j].params = (struct ggml_compute_params) {
  7686. .type = GGML_TASK_FINALIZE,
  7687. .ith = j + 1,
  7688. .nth = node->n_tasks,
  7689. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7690. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7691. };
  7692. workers[j].node = node;
  7693. }
  7694. atomic_fetch_sub(&state_shared.n_ready, 1);
  7695. while (atomic_load(&state_shared.n_ready) > 0) {
  7696. ggml_lock_lock (&state_shared.spin);
  7697. ggml_lock_unlock(&state_shared.spin);
  7698. }
  7699. atomic_store(&state_shared.has_work, true);
  7700. }
  7701. params.type = GGML_TASK_FINALIZE;
  7702. ggml_compute_forward(&params, node);
  7703. // wait for thread pool
  7704. if (node->n_tasks > 1) {
  7705. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7706. atomic_store(&state_shared.has_work, false);
  7707. }
  7708. while (atomic_load(&state_shared.has_work)) {
  7709. ggml_lock_lock (&state_shared.spin);
  7710. ggml_lock_unlock(&state_shared.spin);
  7711. }
  7712. atomic_fetch_sub(&state_shared.n_ready, 1);
  7713. while (atomic_load(&state_shared.n_ready) != 0) {
  7714. ggml_lock_lock (&state_shared.spin);
  7715. ggml_lock_unlock(&state_shared.spin);
  7716. }
  7717. }
  7718. // performance stats (node)
  7719. {
  7720. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7721. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7722. node->perf_runs++;
  7723. node->perf_cycles += perf_cycles_cur;
  7724. node->perf_time_us += perf_time_us_cur;
  7725. }
  7726. }
  7727. // join thread pool
  7728. if (n_threads > 1) {
  7729. atomic_store(&state_shared.stop, true);
  7730. atomic_store(&state_shared.has_work, true);
  7731. for (int j = 0; j < n_threads - 1; j++) {
  7732. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7733. GGML_ASSERT(rc == 0);
  7734. UNUSED(rc);
  7735. }
  7736. ggml_lock_destroy(&state_shared.spin);
  7737. }
  7738. // performance stats (graph)
  7739. {
  7740. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7741. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7742. cgraph->perf_runs++;
  7743. cgraph->perf_cycles += perf_cycles_cur;
  7744. cgraph->perf_time_us += perf_time_us_cur;
  7745. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7746. __func__, cgraph->perf_runs,
  7747. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7748. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7749. (double) perf_time_us_cur / 1000.0,
  7750. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7751. }
  7752. }
  7753. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7754. for (int i = 0; i < cgraph->n_nodes; i++) {
  7755. struct ggml_tensor * grad = cgraph->grads[i];
  7756. if (grad) {
  7757. ggml_set_zero(grad);
  7758. }
  7759. }
  7760. }
  7761. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7762. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7763. GGML_PRINT("=== GRAPH ===\n");
  7764. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7765. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7766. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7767. for (int i = 0; i < cgraph->n_nodes; i++) {
  7768. struct ggml_tensor * node = cgraph->nodes[i];
  7769. perf_total_per_op_us[node->op] += node->perf_time_us;
  7770. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7771. i,
  7772. node->ne[0], node->ne[1], node->ne[2],
  7773. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7774. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7775. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7776. (double) node->perf_time_us / 1000.0,
  7777. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7778. }
  7779. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7780. for (int i = 0; i < cgraph->n_leafs; i++) {
  7781. struct ggml_tensor * node = cgraph->leafs[i];
  7782. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7783. i,
  7784. node->ne[0], node->ne[1],
  7785. GGML_OP_LABEL[node->op]);
  7786. }
  7787. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7788. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7789. }
  7790. GGML_PRINT("========================================\n");
  7791. }
  7792. // check if node is part of the graph
  7793. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7794. if (cgraph == NULL) {
  7795. return true;
  7796. }
  7797. for (int i = 0; i < cgraph->n_nodes; i++) {
  7798. if (cgraph->nodes[i] == node) {
  7799. return true;
  7800. }
  7801. }
  7802. return false;
  7803. }
  7804. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7805. for (int i = 0; i < cgraph->n_nodes; i++) {
  7806. struct ggml_tensor * parent = cgraph->nodes[i];
  7807. if (parent->grad == node) {
  7808. return parent;
  7809. }
  7810. }
  7811. return NULL;
  7812. }
  7813. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7814. char color[16];
  7815. FILE * fp = fopen(filename, "w");
  7816. GGML_ASSERT(fp);
  7817. fprintf(fp, "digraph G {\n");
  7818. fprintf(fp, " newrank = true;\n");
  7819. fprintf(fp, " rankdir = LR;\n");
  7820. for (int i = 0; i < gb->n_nodes; i++) {
  7821. struct ggml_tensor * node = gb->nodes[i];
  7822. if (ggml_graph_get_parent(gb, node) != NULL) {
  7823. continue;
  7824. }
  7825. if (node->is_param) {
  7826. snprintf(color, sizeof(color), "yellow");
  7827. } else if (node->grad) {
  7828. if (ggml_graph_find(gf, node)) {
  7829. snprintf(color, sizeof(color), "green");
  7830. } else {
  7831. snprintf(color, sizeof(color), "lightblue");
  7832. }
  7833. } else {
  7834. snprintf(color, sizeof(color), "white");
  7835. }
  7836. fprintf(fp, " \"%p\" [ \
  7837. style = filled; fillcolor = %s; shape = record; \
  7838. label=\"%d [%d, %d] | <x>%s",
  7839. (void *) node, color,
  7840. i, node->ne[0], node->ne[1],
  7841. GGML_OP_SYMBOL[node->op]);
  7842. if (node->grad) {
  7843. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7844. } else {
  7845. fprintf(fp, "\"; ]\n");
  7846. }
  7847. }
  7848. for (int i = 0; i < gb->n_leafs; i++) {
  7849. struct ggml_tensor * node = gb->leafs[i];
  7850. snprintf(color, sizeof(color), "pink");
  7851. if (ggml_nelements(node) == 1) {
  7852. fprintf(fp, " \"%p\" [ \
  7853. style = filled; fillcolor = %s; shape = record; \
  7854. label=\"<x>%.1e\"; ]\n",
  7855. (void *) node, color, ggml_get_f32_1d(node, 0));
  7856. } else {
  7857. fprintf(fp, " \"%p\" [ \
  7858. style = filled; fillcolor = %s; shape = record; \
  7859. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7860. (void *) node, color,
  7861. i, node->ne[0], node->ne[1]);
  7862. }
  7863. }
  7864. for (int i = 0; i < gb->n_nodes; i++) {
  7865. struct ggml_tensor * node = gb->nodes[i];
  7866. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  7867. if (node->src0) {
  7868. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  7869. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  7870. parent0 ? (void *) parent0 : (void *) node->src0,
  7871. parent0 ? "g" : "x",
  7872. parent ? (void *) parent : (void *) node,
  7873. parent ? "g" : "x",
  7874. parent ? "empty" : "vee",
  7875. parent ? "dashed" : "solid");
  7876. }
  7877. if (node->src1) {
  7878. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  7879. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  7880. parent1 ? (void *) parent1 : (void *) node->src1,
  7881. parent1 ? "g" : "x",
  7882. parent ? (void *) parent : (void *) node,
  7883. parent ? "g" : "x",
  7884. parent ? "empty" : "vee",
  7885. parent ? "dashed" : "solid");
  7886. }
  7887. }
  7888. for (int i = 0; i < gb->n_leafs; i++) {
  7889. struct ggml_tensor * node = gb->leafs[i];
  7890. if (node->src0) {
  7891. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  7892. (void *) node->src0, "x",
  7893. (void *) node, "x");
  7894. }
  7895. if (node->src1) {
  7896. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  7897. (void *) node->src1, "x",
  7898. (void *) node, "x");
  7899. }
  7900. }
  7901. fprintf(fp, "}\n");
  7902. fclose(fp);
  7903. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  7904. }
  7905. ////////////////////////////////////////////////////////////////////////////////
  7906. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  7907. int i = 0;
  7908. for (int p = 0; p < np; ++p) {
  7909. const int ne = ggml_nelements(ps[p]) ;
  7910. // TODO: add function to set tensor from array
  7911. for (int j = 0; j < ne; ++j) {
  7912. ggml_set_f32_1d(ps[p], j, x[i++]);
  7913. }
  7914. }
  7915. }
  7916. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  7917. int i = 0;
  7918. for (int p = 0; p < np; ++p) {
  7919. const int ne = ggml_nelements(ps[p]) ;
  7920. // TODO: add function to get all elements at once
  7921. for (int j = 0; j < ne; ++j) {
  7922. x[i++] = ggml_get_f32_1d(ps[p], j);
  7923. }
  7924. }
  7925. }
  7926. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  7927. int i = 0;
  7928. for (int p = 0; p < np; ++p) {
  7929. const int ne = ggml_nelements(ps[p]) ;
  7930. // TODO: add function to get all elements at once
  7931. for (int j = 0; j < ne; ++j) {
  7932. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  7933. }
  7934. }
  7935. }
  7936. //
  7937. // ADAM
  7938. //
  7939. // ref: https://arxiv.org/pdf/1412.6980.pdf
  7940. //
  7941. static enum ggml_opt_result ggml_opt_adam(
  7942. struct ggml_context * ctx,
  7943. struct ggml_opt_params params,
  7944. struct ggml_tensor * f,
  7945. struct ggml_cgraph * gf,
  7946. struct ggml_cgraph * gb) {
  7947. GGML_ASSERT(ggml_is_scalar(f));
  7948. gf->n_threads = params.n_threads;
  7949. gb->n_threads = params.n_threads;
  7950. // these will store the parameters we want to optimize
  7951. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  7952. int np = 0;
  7953. int nx = 0;
  7954. for (int i = 0; i < gf->n_nodes; ++i) {
  7955. if (gf->nodes[i]->is_param) {
  7956. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  7957. GGML_ASSERT(np < GGML_MAX_PARAMS);
  7958. ps[np++] = gf->nodes[i];
  7959. nx += ggml_nelements(gf->nodes[i]);
  7960. }
  7961. }
  7962. // constants
  7963. const float alpha = params.adam.alpha;
  7964. const float beta1 = params.adam.beta1;
  7965. const float beta2 = params.adam.beta2;
  7966. const float eps = params.adam.eps;
  7967. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  7968. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  7969. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  7970. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  7971. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  7972. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  7973. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  7974. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  7975. // initialize
  7976. ggml_vec_set_f32(nx, m, 0.0f);
  7977. ggml_vec_set_f32(nx, v, 0.0f);
  7978. // update view
  7979. ggml_opt_get_params(np, ps, x);
  7980. // compute the function value
  7981. ggml_graph_reset (gf);
  7982. ggml_set_f32 (f->grad, 1.0f);
  7983. ggml_graph_compute(ctx, gb);
  7984. float fx_prev = ggml_get_f32_1d(f, 0);
  7985. if (pf) {
  7986. pf[0] = fx_prev;
  7987. }
  7988. int n_no_improvement = 0;
  7989. float fx_best = fx_prev;
  7990. // run the optimizer
  7991. for (int t = 0; t < params.adam.n_iter; ++t) {
  7992. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  7993. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  7994. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  7995. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  7996. for (int i = 0; i < np; ++i) {
  7997. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  7998. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  7999. }
  8000. const int64_t t_start_wall = ggml_time_us();
  8001. const int64_t t_start_cpu = ggml_cycles();
  8002. UNUSED(t_start_wall);
  8003. UNUSED(t_start_cpu);
  8004. {
  8005. // update the gradient
  8006. ggml_opt_get_grad(np, ps, g1);
  8007. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8008. ggml_vec_scale_f32(nx, m, beta1);
  8009. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8010. // g2 = g1^2
  8011. ggml_vec_sqr_f32 (nx, g2, g1);
  8012. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8013. ggml_vec_scale_f32(nx, v, beta2);
  8014. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8015. // m^hat = m_t / (1 - beta1^t)
  8016. // v^hat = v_t / (1 - beta2^t)
  8017. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8018. ggml_vec_cpy_f32 (nx, mh, m);
  8019. ggml_vec_cpy_f32 (nx, vh, v);
  8020. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8021. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8022. ggml_vec_sqrt_f32 (nx, vh, vh);
  8023. ggml_vec_acc1_f32 (nx, vh, eps);
  8024. ggml_vec_div_f32 (nx, mh, mh, vh);
  8025. ggml_vec_sub_f32 (nx, x, x, mh);
  8026. // update the parameters
  8027. ggml_opt_set_params(np, ps, x);
  8028. }
  8029. ggml_graph_reset (gf);
  8030. ggml_set_f32 (f->grad, 1.0f);
  8031. ggml_graph_compute(ctx, gb);
  8032. const float fx = ggml_get_f32_1d(f, 0);
  8033. // check convergence
  8034. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8035. GGML_PRINT_DEBUG("converged\n");
  8036. return GGML_OPT_OK;
  8037. }
  8038. // delta-based convergence test
  8039. if (pf != NULL) {
  8040. // need at least params.past iterations to start checking for convergence
  8041. if (params.past <= t) {
  8042. const float rate = (pf[t%params.past] - fx)/fx;
  8043. if (fabs(rate) < params.delta) {
  8044. return GGML_OPT_OK;
  8045. }
  8046. }
  8047. pf[t%params.past] = fx;
  8048. }
  8049. // check for improvement
  8050. if (params.max_no_improvement > 0) {
  8051. if (fx_best > fx) {
  8052. fx_best = fx;
  8053. n_no_improvement = 0;
  8054. } else {
  8055. ++n_no_improvement;
  8056. if (n_no_improvement >= params.max_no_improvement) {
  8057. return GGML_OPT_OK;
  8058. }
  8059. }
  8060. }
  8061. fx_prev = fx;
  8062. {
  8063. const int64_t t_end_cpu = ggml_cycles();
  8064. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8065. UNUSED(t_end_cpu);
  8066. const int64_t t_end_wall = ggml_time_us();
  8067. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8068. UNUSED(t_end_wall);
  8069. }
  8070. }
  8071. return GGML_OPT_DID_NOT_CONVERGE;
  8072. }
  8073. //
  8074. // L-BFGS
  8075. //
  8076. // the L-BFGS implementation below is based on the following implementation:
  8077. //
  8078. // https://github.com/chokkan/liblbfgs
  8079. //
  8080. struct ggml_lbfgs_iteration_data {
  8081. float alpha;
  8082. float ys;
  8083. float * s;
  8084. float * y;
  8085. };
  8086. static enum ggml_opt_result linesearch_backtracking(
  8087. struct ggml_context * ctx,
  8088. const struct ggml_opt_params * params,
  8089. int nx,
  8090. float * x,
  8091. float * fx,
  8092. float * g,
  8093. float * d,
  8094. float * step,
  8095. const float * xp,
  8096. struct ggml_tensor * f,
  8097. struct ggml_cgraph * gf,
  8098. struct ggml_cgraph * gb,
  8099. const int np,
  8100. struct ggml_tensor * ps[]) {
  8101. int count = 0;
  8102. float width = 0.0f;
  8103. float dg = 0.0f;
  8104. float finit = 0.0f;
  8105. float dginit = 0.0f;
  8106. float dgtest = 0.0f;
  8107. const float dec = 0.5f;
  8108. const float inc = 2.1f;
  8109. if (*step <= 0.) {
  8110. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8111. }
  8112. // compute the initial gradient in the search direction
  8113. ggml_vec_dot_f32(nx, &dginit, g, d);
  8114. // make sure that d points to a descent direction
  8115. if (0 < dginit) {
  8116. return GGML_LINESEARCH_FAIL;
  8117. }
  8118. // initialize local variables
  8119. finit = *fx;
  8120. dgtest = params->lbfgs.ftol*dginit;
  8121. while (true) {
  8122. ggml_vec_cpy_f32(nx, x, xp);
  8123. ggml_vec_mad_f32(nx, x, d, *step);
  8124. // evaluate the function and gradient values
  8125. {
  8126. ggml_opt_set_params(np, ps, x);
  8127. ggml_graph_reset (gf);
  8128. ggml_set_f32 (f->grad, 1.0f);
  8129. ggml_graph_compute(ctx, gb);
  8130. ggml_opt_get_grad(np, ps, g);
  8131. *fx = ggml_get_f32_1d(f, 0);
  8132. }
  8133. ++count;
  8134. if (*fx > finit + (*step)*dgtest) {
  8135. width = dec;
  8136. } else {
  8137. // Armijo condition is satisfied
  8138. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8139. return count;
  8140. }
  8141. ggml_vec_dot_f32(nx, &dg, g, d);
  8142. // check the Wolfe condition
  8143. if (dg < params->lbfgs.wolfe * dginit) {
  8144. width = inc;
  8145. } else {
  8146. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8147. // regular Wolfe conditions
  8148. return count;
  8149. }
  8150. if(dg > -params->lbfgs.wolfe*dginit) {
  8151. width = dec;
  8152. } else {
  8153. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8154. return count;
  8155. }
  8156. return count;
  8157. }
  8158. }
  8159. if (*step < params->lbfgs.min_step) {
  8160. return GGML_LINESEARCH_MINIMUM_STEP;
  8161. }
  8162. if (*step > params->lbfgs.max_step) {
  8163. return GGML_LINESEARCH_MAXIMUM_STEP;
  8164. }
  8165. if (params->lbfgs.max_linesearch <= count) {
  8166. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8167. }
  8168. (*step) *= width;
  8169. }
  8170. return GGML_LINESEARCH_FAIL;
  8171. }
  8172. static enum ggml_opt_result ggml_opt_lbfgs(
  8173. struct ggml_context * ctx,
  8174. struct ggml_opt_params params,
  8175. struct ggml_tensor * f,
  8176. struct ggml_cgraph * gf,
  8177. struct ggml_cgraph * gb) {
  8178. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8179. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8180. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8181. return GGML_OPT_INVALID_WOLFE;
  8182. }
  8183. }
  8184. gf->n_threads = params.n_threads;
  8185. gb->n_threads = params.n_threads;
  8186. const int m = params.lbfgs.m;
  8187. // these will store the parameters we want to optimize
  8188. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8189. int np = 0;
  8190. int nx = 0;
  8191. for (int i = 0; i < gf->n_nodes; ++i) {
  8192. if (gf->nodes[i]->is_param) {
  8193. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8194. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8195. ps[np++] = gf->nodes[i];
  8196. nx += ggml_nelements(gf->nodes[i]);
  8197. }
  8198. }
  8199. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8200. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8201. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8202. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8203. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8204. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8205. float fx = 0.0f; // cost function value
  8206. float xnorm = 0.0f; // ||x||
  8207. float gnorm = 0.0f; // ||g||
  8208. float step = 0.0f;
  8209. // initialize x from the graph nodes
  8210. ggml_opt_get_params(np, ps, x);
  8211. // the L-BFGS memory
  8212. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8213. for (int i = 0; i < m; ++i) {
  8214. lm[i].alpha = 0.0f;
  8215. lm[i].ys = 0.0f;
  8216. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8217. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8218. }
  8219. // evaluate the function value and its gradient
  8220. {
  8221. ggml_opt_set_params(np, ps, x);
  8222. ggml_graph_reset (gf);
  8223. ggml_set_f32 (f->grad, 1.0f);
  8224. ggml_graph_compute(ctx, gb);
  8225. ggml_opt_get_grad(np, ps, g);
  8226. fx = ggml_get_f32_1d(f, 0);
  8227. }
  8228. if (pf) {
  8229. pf[0] = fx;
  8230. }
  8231. float fx_best = fx;
  8232. // search direction = -gradient
  8233. ggml_vec_neg_f32(nx, d, g);
  8234. // ||x||, ||g||
  8235. ggml_vec_norm_f32(nx, &xnorm, x);
  8236. ggml_vec_norm_f32(nx, &gnorm, g);
  8237. if (xnorm < 1.0f) {
  8238. xnorm = 1.0f;
  8239. }
  8240. // already optimized
  8241. if (gnorm/xnorm <= params.lbfgs.eps) {
  8242. return GGML_OPT_OK;
  8243. }
  8244. // initial step
  8245. ggml_vec_norm_inv_f32(nx, &step, d);
  8246. int j = 0;
  8247. int k = 1;
  8248. int ls = 0;
  8249. int end = 0;
  8250. int bound = 0;
  8251. int n_no_improvement = 0;
  8252. float ys = 0.0f;
  8253. float yy = 0.0f;
  8254. float beta = 0.0f;
  8255. while (true) {
  8256. // store the current position and gradient vectors
  8257. ggml_vec_cpy_f32(nx, xp, x);
  8258. ggml_vec_cpy_f32(nx, gp, g);
  8259. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8260. if (ls < 0) {
  8261. // linesearch failed - go back to the previous point and return
  8262. ggml_vec_cpy_f32(nx, x, xp);
  8263. ggml_vec_cpy_f32(nx, g, gp);
  8264. return ls;
  8265. }
  8266. ggml_vec_norm_f32(nx, &xnorm, x);
  8267. ggml_vec_norm_f32(nx, &gnorm, g);
  8268. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8269. if (xnorm < 1.0) {
  8270. xnorm = 1.0;
  8271. }
  8272. if (gnorm/xnorm <= params.lbfgs.eps) {
  8273. // converged
  8274. return GGML_OPT_OK;
  8275. }
  8276. // delta-based convergence test
  8277. if (pf != NULL) {
  8278. // need at least params.past iterations to start checking for convergence
  8279. if (params.past <= k) {
  8280. const float rate = (pf[k%params.past] - fx)/fx;
  8281. if (fabs(rate) < params.delta) {
  8282. return GGML_OPT_OK;
  8283. }
  8284. }
  8285. pf[k%params.past] = fx;
  8286. }
  8287. // check for improvement
  8288. if (params.max_no_improvement > 0) {
  8289. if (fx < fx_best) {
  8290. fx_best = fx;
  8291. n_no_improvement = 0;
  8292. } else {
  8293. n_no_improvement++;
  8294. if (n_no_improvement >= params.max_no_improvement) {
  8295. return GGML_OPT_OK;
  8296. }
  8297. }
  8298. }
  8299. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8300. // reached the maximum number of iterations
  8301. return GGML_OPT_DID_NOT_CONVERGE;
  8302. }
  8303. // update vectors s and y:
  8304. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8305. // y_{k+1} = g_{k+1} - g_{k}.
  8306. //
  8307. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8308. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8309. // compute scalars ys and yy:
  8310. // ys = y^t \cdot s -> 1 / \rho.
  8311. // yy = y^t \cdot y.
  8312. //
  8313. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8314. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8315. lm[end].ys = ys;
  8316. // find new search direction
  8317. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8318. bound = (m <= k) ? m : k;
  8319. k++;
  8320. end = (end + 1)%m;
  8321. // initialize search direction with -g
  8322. ggml_vec_neg_f32(nx, d, g);
  8323. j = end;
  8324. for (int i = 0; i < bound; ++i) {
  8325. j = (j + m - 1) % m;
  8326. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8327. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8328. lm[j].alpha /= lm[j].ys;
  8329. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8330. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8331. }
  8332. ggml_vec_scale_f32(nx, d, ys/yy);
  8333. for (int i = 0; i < bound; ++i) {
  8334. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8335. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8336. beta /= lm[j].ys;
  8337. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8338. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8339. j = (j + 1)%m;
  8340. }
  8341. step = 1.0;
  8342. }
  8343. return GGML_OPT_DID_NOT_CONVERGE;
  8344. }
  8345. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8346. struct ggml_opt_params result;
  8347. switch (type) {
  8348. case GGML_OPT_ADAM:
  8349. {
  8350. result = (struct ggml_opt_params) {
  8351. .type = GGML_OPT_ADAM,
  8352. .n_threads = 1,
  8353. .past = 0,
  8354. .delta = 1e-5f,
  8355. .max_no_improvement = 100,
  8356. .print_forward_graph = true,
  8357. .print_backward_graph = true,
  8358. .adam = {
  8359. .n_iter = 10000,
  8360. .alpha = 0.001f,
  8361. .beta1 = 0.9f,
  8362. .beta2 = 0.999f,
  8363. .eps = 1e-8f,
  8364. .eps_f = 1e-5f,
  8365. .eps_g = 1e-3f,
  8366. },
  8367. };
  8368. } break;
  8369. case GGML_OPT_LBFGS:
  8370. {
  8371. result = (struct ggml_opt_params) {
  8372. .type = GGML_OPT_LBFGS,
  8373. .n_threads = 1,
  8374. .past = 0,
  8375. .delta = 1e-5f,
  8376. .max_no_improvement = 0,
  8377. .print_forward_graph = true,
  8378. .print_backward_graph = true,
  8379. .lbfgs = {
  8380. .m = 6,
  8381. .n_iter = 100,
  8382. .max_linesearch = 20,
  8383. .eps = 1e-5f,
  8384. .ftol = 1e-4f,
  8385. .wolfe = 0.9f,
  8386. .min_step = 1e-20f,
  8387. .max_step = 1e+20f,
  8388. .linesearch = GGML_LINESEARCH_DEFAULT,
  8389. },
  8390. };
  8391. } break;
  8392. }
  8393. return result;
  8394. }
  8395. enum ggml_opt_result ggml_opt(
  8396. struct ggml_context * ctx,
  8397. struct ggml_opt_params params,
  8398. struct ggml_tensor * f) {
  8399. bool free_ctx = false;
  8400. if (ctx == NULL) {
  8401. struct ggml_init_params params_ctx = {
  8402. .mem_size = 16*1024*1024,
  8403. .mem_buffer = NULL,
  8404. };
  8405. ctx = ggml_init(params_ctx);
  8406. if (ctx == NULL) {
  8407. return GGML_OPT_NO_CONTEXT;
  8408. }
  8409. free_ctx = true;
  8410. }
  8411. enum ggml_opt_result result = GGML_OPT_OK;
  8412. // build forward + backward compute graphs
  8413. struct ggml_cgraph gf = ggml_build_forward (f);
  8414. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8415. switch (params.type) {
  8416. case GGML_OPT_ADAM:
  8417. {
  8418. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8419. } break;
  8420. case GGML_OPT_LBFGS:
  8421. {
  8422. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8423. } break;
  8424. }
  8425. if (params.print_forward_graph) {
  8426. ggml_graph_print (&gf);
  8427. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8428. }
  8429. if (params.print_backward_graph) {
  8430. ggml_graph_print (&gb);
  8431. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8432. }
  8433. if (free_ctx) {
  8434. ggml_free(ctx);
  8435. }
  8436. return result;
  8437. }
  8438. ////////////////////////////////////////////////////////////////////////////////
  8439. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8440. const int nb = k / qk;
  8441. const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
  8442. const size_t row_size = nb*bs;
  8443. assert(k % qk == 0);
  8444. char * pdst = (char *) dst;
  8445. for (int j = 0; j < n; j += k) {
  8446. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8447. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8448. quantize_row_q4_0_reference(src + j, pd, k);
  8449. for (int i = 0; i < nb; i++) {
  8450. for (int l = 0; l < qk; l += 2) {
  8451. const uint8_t vi0 = pb[l/2] & 0xF;
  8452. const uint8_t vi1 = pb[l/2] >> 4;
  8453. hist[vi0]++;
  8454. hist[vi1]++;
  8455. }
  8456. pb += bs;
  8457. }
  8458. }
  8459. return (n/k)*row_size;
  8460. }
  8461. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8462. const int nb = k / qk;
  8463. const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
  8464. const size_t row_size = nb*bs;
  8465. assert(k % qk == 0);
  8466. char * pdst = (char *) dst;
  8467. for (int j = 0; j < n; j += k) {
  8468. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8469. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
  8470. quantize_row_q4_1(src + j, pd, k);
  8471. for (int i = 0; i < nb; i++) {
  8472. for (int l = 0; l < qk; l += 2) {
  8473. const uint8_t vi0 = pb[l/2] & 0xF;
  8474. const uint8_t vi1 = pb[l/2] >> 4;
  8475. hist[vi0]++;
  8476. hist[vi1]++;
  8477. }
  8478. pb += bs;
  8479. }
  8480. }
  8481. return (n/k)*row_size;
  8482. }
  8483. ////////////////////////////////////////////////////////////////////////////////
  8484. int ggml_cpu_has_avx(void) {
  8485. #if defined(__AVX__)
  8486. return 1;
  8487. #else
  8488. return 0;
  8489. #endif
  8490. }
  8491. int ggml_cpu_has_avx2(void) {
  8492. #if defined(__AVX2__)
  8493. return 1;
  8494. #else
  8495. return 0;
  8496. #endif
  8497. }
  8498. int ggml_cpu_has_avx512(void) {
  8499. #if defined(__AVX512F__)
  8500. return 1;
  8501. #else
  8502. return 0;
  8503. #endif
  8504. }
  8505. int ggml_cpu_has_fma(void) {
  8506. #if defined(__FMA__)
  8507. return 1;
  8508. #else
  8509. return 0;
  8510. #endif
  8511. }
  8512. int ggml_cpu_has_neon(void) {
  8513. #if defined(__ARM_NEON)
  8514. return 1;
  8515. #else
  8516. return 0;
  8517. #endif
  8518. }
  8519. int ggml_cpu_has_arm_fma(void) {
  8520. #if defined(__ARM_FEATURE_FMA)
  8521. return 1;
  8522. #else
  8523. return 0;
  8524. #endif
  8525. }
  8526. int ggml_cpu_has_f16c(void) {
  8527. #if defined(__F16C__)
  8528. return 1;
  8529. #else
  8530. return 0;
  8531. #endif
  8532. }
  8533. int ggml_cpu_has_fp16_va(void) {
  8534. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8535. return 1;
  8536. #else
  8537. return 0;
  8538. #endif
  8539. }
  8540. int ggml_cpu_has_wasm_simd(void) {
  8541. #if defined(__wasm_simd128__)
  8542. return 1;
  8543. #else
  8544. return 0;
  8545. #endif
  8546. }
  8547. int ggml_cpu_has_blas(void) {
  8548. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8549. return 1;
  8550. #else
  8551. return 0;
  8552. #endif
  8553. }
  8554. int ggml_cpu_has_sse3(void) {
  8555. #if defined(__SSE3__)
  8556. return 1;
  8557. #else
  8558. return 0;
  8559. #endif
  8560. }
  8561. int ggml_cpu_has_vsx(void) {
  8562. #if defined(__POWER9_VECTOR__)
  8563. return 1;
  8564. #else
  8565. return 0;
  8566. #endif
  8567. }
  8568. ////////////////////////////////////////////////////////////////////////////////