ggml-backend.cpp 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027
  1. // Note: porting this file to C++ is a work in progress
  2. #ifdef _WIN32
  3. #define WIN32_LEAN_AND_MEAN
  4. #ifndef NOMINMAX
  5. # define NOMINMAX
  6. #endif
  7. #include <windows.h>
  8. #endif
  9. #include "ggml-backend.h"
  10. #include "ggml-backend-impl.h"
  11. #include "ggml-alloc.h"
  12. #include "ggml-impl.h"
  13. #include <assert.h>
  14. #include <limits.h>
  15. #include <stdarg.h>
  16. #include <stdio.h>
  17. #include <stdlib.h>
  18. #include <string.h>
  19. #include <string>
  20. #include <vector>
  21. #include <algorithm>
  22. #ifdef __APPLE__
  23. #include <sys/types.h>
  24. #include <sys/sysctl.h>
  25. #endif
  26. // backend buffer type
  27. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  28. return buft->iface.get_name(buft);
  29. }
  30. ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  31. if (size == 0) {
  32. // return a dummy buffer for zero-sized allocations
  33. return ggml_backend_buffer_init(buft, {}, NULL, 0);
  34. }
  35. return buft->iface.alloc_buffer(buft, size);
  36. }
  37. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  38. return buft->iface.get_alignment(buft);
  39. }
  40. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  41. // get_max_size is optional, defaults to SIZE_MAX
  42. if (buft->iface.get_max_size) {
  43. return buft->iface.get_max_size(buft);
  44. }
  45. return SIZE_MAX;
  46. }
  47. size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
  48. // get_alloc_size is optional, defaults to ggml_nbytes
  49. if (buft->iface.get_alloc_size) {
  50. size_t size = buft->iface.get_alloc_size(buft, tensor);
  51. assert(size >= ggml_nbytes(tensor));
  52. return size;
  53. }
  54. return ggml_nbytes(tensor);
  55. }
  56. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  57. if (buft->iface.is_host) {
  58. return buft->iface.is_host(buft);
  59. }
  60. return false;
  61. }
  62. ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
  63. return buft->device;
  64. }
  65. // backend buffer
  66. ggml_backend_buffer_t ggml_backend_buffer_init(
  67. ggml_backend_buffer_type_t buft,
  68. struct ggml_backend_buffer_i iface,
  69. void * context,
  70. size_t size) {
  71. ggml_backend_buffer_t buffer = new ggml_backend_buffer {
  72. /* .interface = */ iface,
  73. /* .buft = */ buft,
  74. /* .context = */ context,
  75. /* .size = */ size,
  76. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  77. };
  78. return buffer;
  79. }
  80. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  81. return ggml_backend_buft_name(ggml_backend_buffer_get_type(buffer));
  82. }
  83. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  84. if (buffer == NULL) {
  85. return;
  86. }
  87. if (buffer->iface.free_buffer != NULL) {
  88. buffer->iface.free_buffer(buffer);
  89. }
  90. delete buffer;
  91. }
  92. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  93. return buffer->size;
  94. }
  95. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  96. // get_base is optional if the buffer is zero-sized
  97. if (buffer->size == 0) {
  98. return NULL;
  99. }
  100. void * base = buffer->iface.get_base(buffer);
  101. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  102. return base;
  103. }
  104. enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  105. // init_tensor is optional
  106. if (buffer->iface.init_tensor) {
  107. return buffer->iface.init_tensor(buffer, tensor);
  108. }
  109. return GGML_STATUS_SUCCESS;
  110. }
  111. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  112. // clear is optional if the buffer is zero-sized
  113. if (buffer->size == 0) {
  114. return;
  115. }
  116. buffer->iface.clear(buffer, value);
  117. }
  118. size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
  119. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  120. }
  121. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  122. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  123. }
  124. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor) {
  125. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  126. }
  127. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  128. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  129. }
  130. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  131. buffer->usage = usage;
  132. // FIXME: add a generic callback to the buffer interface
  133. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  134. ggml_backend_multi_buffer_set_usage(buffer, usage);
  135. }
  136. }
  137. enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
  138. return buffer->usage;
  139. }
  140. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  141. return buffer->buft;
  142. }
  143. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  144. if (buffer->iface.reset) {
  145. buffer->iface.reset(buffer);
  146. }
  147. }
  148. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  149. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  150. if (dst_buf->iface.cpy_tensor) {
  151. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  152. }
  153. return false;
  154. }
  155. // backend
  156. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  157. if (backend == NULL) {
  158. return NULL;
  159. }
  160. return backend->guid;
  161. }
  162. const char * ggml_backend_name(ggml_backend_t backend) {
  163. if (backend == NULL) {
  164. return "NULL";
  165. }
  166. return backend->iface.get_name(backend);
  167. }
  168. void ggml_backend_free(ggml_backend_t backend) {
  169. if (backend == NULL) {
  170. return;
  171. }
  172. backend->iface.free(backend);
  173. }
  174. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  175. return ggml_backend_dev_buffer_type(backend->device);
  176. }
  177. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  178. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  179. }
  180. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  181. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  182. }
  183. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  184. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  185. }
  186. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  187. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  188. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  189. if (backend->iface.set_tensor_async == NULL) {
  190. ggml_backend_tensor_set(tensor, data, offset, size);
  191. } else {
  192. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  193. }
  194. }
  195. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  196. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  197. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  198. if (backend->iface.get_tensor_async == NULL) {
  199. ggml_backend_tensor_get(tensor, data, offset, size);
  200. } else {
  201. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  202. }
  203. }
  204. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  205. GGML_ASSERT(tensor);
  206. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  207. if (size == 0) {
  208. return;
  209. }
  210. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  211. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  212. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  213. buf->iface.set_tensor(buf, tensor, data, offset, size);
  214. }
  215. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  216. GGML_ASSERT(tensor);
  217. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  218. if (size == 0) {
  219. return;
  220. }
  221. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  222. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  223. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  224. buf->iface.get_tensor(buf, tensor, data, offset, size);
  225. }
  226. void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  227. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  228. if (size == 0) {
  229. return;
  230. }
  231. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  232. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  233. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  234. GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not implemented by backend buffer");
  235. buf->iface.memset_tensor(buf, tensor, value, offset, size);
  236. }
  237. void ggml_backend_synchronize(ggml_backend_t backend) {
  238. if (backend->iface.synchronize == NULL) {
  239. return;
  240. }
  241. backend->iface.synchronize(backend);
  242. }
  243. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  244. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  245. return backend->iface.graph_plan_create(backend, cgraph);
  246. }
  247. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  248. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  249. backend->iface.graph_plan_free(backend, plan);
  250. }
  251. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  252. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  253. return backend->iface.graph_plan_compute(backend, plan);
  254. }
  255. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  256. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  257. ggml_backend_synchronize(backend);
  258. return err;
  259. }
  260. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  261. return backend->iface.graph_compute(backend, cgraph);
  262. }
  263. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  264. return ggml_backend_dev_supports_op(backend->device, op);
  265. }
  266. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  267. return ggml_backend_dev_supports_buft(backend->device, buft);
  268. }
  269. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  270. return ggml_backend_dev_offload_op(backend->device, op);
  271. }
  272. ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
  273. return backend->device;
  274. }
  275. // backend copy
  276. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  277. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  278. if (src == dst) {
  279. return;
  280. }
  281. if (ggml_backend_buffer_is_host(src->buffer)) {
  282. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  283. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  284. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  285. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  286. #ifndef NDEBUG
  287. GGML_LOG_DEBUG("%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  288. #endif
  289. size_t nbytes = ggml_nbytes(src);
  290. void * data = malloc(nbytes);
  291. ggml_backend_tensor_get(src, data, 0, nbytes);
  292. ggml_backend_tensor_set(dst, data, 0, nbytes);
  293. free(data);
  294. }
  295. }
  296. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  297. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  298. if (src == dst) {
  299. return;
  300. }
  301. if (backend_dst->iface.cpy_tensor_async != NULL) {
  302. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  303. return;
  304. }
  305. }
  306. // an async copy would normally happen after all the queued operations on both backends are completed
  307. // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
  308. ggml_backend_synchronize(backend_src);
  309. ggml_backend_synchronize(backend_dst);
  310. ggml_backend_tensor_copy(src, dst);
  311. }
  312. // events
  313. ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) {
  314. // null device is allowed for the transition period to the device interface
  315. if (device == NULL || device->iface.event_new == NULL) {
  316. return NULL;
  317. }
  318. return device->iface.event_new(device);
  319. }
  320. void ggml_backend_event_free(ggml_backend_event_t event) {
  321. if (event == NULL) {
  322. return;
  323. }
  324. event->device->iface.event_free(event->device, event);
  325. }
  326. void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
  327. GGML_ASSERT(backend->iface.event_record != NULL);
  328. backend->iface.event_record(backend, event);
  329. }
  330. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  331. GGML_ASSERT(event->device->iface.event_synchronize);
  332. event->device->iface.event_synchronize(event->device, event);
  333. }
  334. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  335. GGML_ASSERT(backend->iface.event_wait != NULL);
  336. backend->iface.event_wait(backend, event);
  337. }
  338. // Backend device
  339. const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
  340. return device->iface.get_name(device);
  341. }
  342. const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
  343. return device->iface.get_description(device);
  344. }
  345. void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
  346. device->iface.get_memory(device, free, total);
  347. }
  348. enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
  349. return device->iface.get_type(device);
  350. }
  351. void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
  352. memset(props, 0, sizeof(*props));
  353. device->iface.get_props(device, props);
  354. }
  355. ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
  356. return device->reg;
  357. }
  358. ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
  359. return device->iface.init_backend(device, params);
  360. }
  361. ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
  362. return device->iface.get_buffer_type(device);
  363. }
  364. ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
  365. if (device->iface.get_host_buffer_type == NULL) {
  366. return NULL;
  367. }
  368. return device->iface.get_host_buffer_type(device);
  369. }
  370. ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
  371. return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
  372. }
  373. bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  374. return device->iface.supports_op(device, op);
  375. }
  376. bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
  377. return device->iface.supports_buft(device, buft);
  378. }
  379. bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  380. if (device->iface.offload_op != NULL) {
  381. return device->iface.offload_op(device, op);
  382. }
  383. return false;
  384. }
  385. // Backend (reg)
  386. const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
  387. return reg->iface.get_name(reg);
  388. }
  389. size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
  390. return reg->iface.get_device_count(reg);
  391. }
  392. ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
  393. return reg->iface.get_device(reg, index);
  394. }
  395. void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  396. if (!reg->iface.get_proc_address) {
  397. return NULL;
  398. }
  399. return reg->iface.get_proc_address(reg, name);
  400. }
  401. // multi-buffer buffer
  402. struct ggml_backend_multi_buffer_context {
  403. ggml_backend_buffer_t * buffers;
  404. size_t n_buffers;
  405. };
  406. static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  407. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  408. for (size_t i = 0; i < ctx->n_buffers; i++) {
  409. ggml_backend_buffer_free(ctx->buffers[i]);
  410. }
  411. free(ctx->buffers);
  412. free(ctx);
  413. }
  414. static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  415. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  416. for (size_t i = 0; i < ctx->n_buffers; i++) {
  417. ggml_backend_buffer_clear(ctx->buffers[i], value);
  418. }
  419. }
  420. static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
  421. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  422. /* .get_base = */ NULL,
  423. /* .init_tensor = */ NULL,
  424. /* .memset_tensor = */ NULL,
  425. /* .set_tensor = */ NULL,
  426. /* .get_tensor = */ NULL,
  427. /* .cpy_tensor = */ NULL,
  428. /* .clear = */ ggml_backend_multi_buffer_clear,
  429. /* .reset = */ NULL,
  430. };
  431. ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  432. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  433. ctx->n_buffers = n_buffers;
  434. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  435. GGML_ASSERT(ctx->buffers != NULL);
  436. size_t total_size = 0;
  437. for (size_t i = 0; i < n_buffers; i++) {
  438. ctx->buffers[i] = buffers[i];
  439. total_size += ggml_backend_buffer_get_size(buffers[i]);
  440. }
  441. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_i, ctx, total_size);
  442. }
  443. bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  444. return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
  445. }
  446. void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  447. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  448. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  449. for (size_t i = 0; i < ctx->n_buffers; i++) {
  450. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  451. }
  452. }
  453. // creates a copy of the tensor with the same memory layout
  454. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  455. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  456. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  457. dup->nb[i] = tensor->nb[i];
  458. }
  459. return dup;
  460. }
  461. static bool ggml_is_view_op(enum ggml_op op) {
  462. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  463. }
  464. // scheduler
  465. #ifndef GGML_SCHED_MAX_BACKENDS
  466. #define GGML_SCHED_MAX_BACKENDS 16
  467. #endif
  468. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  469. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  470. #endif
  471. #ifndef GGML_SCHED_MAX_COPIES
  472. #define GGML_SCHED_MAX_COPIES 4
  473. #endif
  474. struct ggml_backend_sched_split {
  475. int backend_id;
  476. int i_start;
  477. int i_end;
  478. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  479. int n_inputs;
  480. // graph view of this split
  481. struct ggml_cgraph graph;
  482. };
  483. struct ggml_backend_sched {
  484. bool is_reset; // true if the scheduler has been reset since the last graph split
  485. bool is_alloc;
  486. int n_backends;
  487. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  488. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  489. ggml_gallocr_t galloc;
  490. // hash map of the nodes in the graph
  491. struct ggml_hash_set hash_set;
  492. int * hv_tensor_backend_ids; // [hash_set.size]
  493. struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
  494. int * node_backend_ids; // [graph_size]
  495. int * leaf_backend_ids; // [graph_size]
  496. int * prev_node_backend_ids; // [graph_size]
  497. int * prev_leaf_backend_ids; // [graph_size]
  498. // copy of the graph with modified inputs
  499. struct ggml_cgraph graph;
  500. // graph splits
  501. struct ggml_backend_sched_split * splits;
  502. int n_splits;
  503. int splits_capacity;
  504. // pipeline parallelism support
  505. int n_copies;
  506. int cur_copy;
  507. int next_copy;
  508. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  509. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  510. int n_graph_inputs;
  511. struct ggml_context * ctx;
  512. ggml_backend_sched_eval_callback callback_eval;
  513. void * callback_eval_user_data;
  514. char * context_buffer;
  515. size_t context_buffer_size;
  516. bool op_offload;
  517. int debug;
  518. };
  519. #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
  520. #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
  521. #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
  522. #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
  523. // returns the priority of the backend, lower id is higher priority
  524. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  525. for (int i = 0; i < sched->n_backends; i++) {
  526. if (sched->backends[i] == backend) {
  527. return i;
  528. }
  529. }
  530. return -1;
  531. }
  532. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  533. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  534. if (buffer == NULL) {
  535. return -1;
  536. }
  537. // find highest prio backend that supports the buffer type and the op
  538. for (int i = 0; i < sched->n_backends; i++) {
  539. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  540. ggml_backend_supports_op(sched->backends[i], op)) {
  541. return i;
  542. }
  543. }
  544. #ifndef NDEBUG
  545. GGML_LOG_DEBUG("%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  546. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  547. #endif
  548. return -1;
  549. }
  550. #if 0
  551. #define GGML_SCHED_MAX_SPLITS_DEBUG 4096
  552. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  553. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  554. #define GET_CAUSE(node) causes[hash_id(node)]
  555. #else
  556. #define SET_CAUSE(node, ...)
  557. #define GET_CAUSE(node) ""
  558. #endif
  559. // returns the backend that should be used for the node based on the current locations
  560. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  561. // assign pre-allocated nodes to their backend
  562. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  563. if (cur_backend_id != -1) {
  564. SET_CAUSE(tensor, "1.dst");
  565. return cur_backend_id;
  566. }
  567. // view_src
  568. if (tensor->view_src != NULL) {
  569. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  570. if (cur_backend_id != -1) {
  571. SET_CAUSE(tensor, "1.vsrc");
  572. return cur_backend_id;
  573. }
  574. }
  575. if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
  576. // since the tensor is pre-allocated, it cannot be moved to another backend
  577. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  578. GGML_ABORT("pre-allocated tensor (%s) in a buffer (%s) that cannot run the operation (%s)", tensor->name, ggml_backend_buffer_name(buffer), ggml_op_name(tensor->op));
  579. }
  580. // graph input
  581. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  582. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  583. SET_CAUSE(tensor, "1.inp");
  584. return cur_backend_id;
  585. }
  586. // operations with weights are preferably run on the same backend as the weights
  587. for (int i = 0; i < GGML_MAX_SRC; i++) {
  588. const struct ggml_tensor * src = tensor->src[i];
  589. if (src == NULL) {
  590. continue;
  591. }
  592. // skip ROPE since the rope freqs tensor is too small to choose a backend based on it
  593. // not an ideal solution
  594. if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  595. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  596. // check if a backend with higher prio wants to offload the op
  597. if (sched->op_offload && src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
  598. for (int b = 0; b < src_backend_id; b++) {
  599. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  600. SET_CAUSE(tensor, "1.off");
  601. return b;
  602. }
  603. }
  604. }
  605. SET_CAUSE(tensor, "1.wgt%d", i);
  606. return src_backend_id;
  607. }
  608. }
  609. return -1;
  610. }
  611. static char * fmt_size(size_t size) {
  612. static char buffer[128];
  613. if (size >= 1024*1024) {
  614. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  615. } else {
  616. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  617. }
  618. return buffer;
  619. }
  620. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  621. int cur_split = 0;
  622. for (int i = 0; i < graph->n_nodes; i++) {
  623. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  624. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  625. GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs", cur_split, ggml_backend_name(split_backend),
  626. sched->splits[cur_split].n_inputs);
  627. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  628. if (j == 0) {
  629. GGML_LOG_DEBUG(": ");
  630. }
  631. GGML_LOG_DEBUG("[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  632. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  633. }
  634. GGML_LOG_DEBUG("\n");
  635. cur_split++;
  636. }
  637. struct ggml_tensor * node = graph->nodes[i];
  638. if (ggml_is_view_op(node->op)) {
  639. continue;
  640. }
  641. if (sched->debug > 1) {
  642. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  643. GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s] use=%d:", i, ggml_op_name(node->op), node->name,
  644. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node),
  645. graph->use_counts[ggml_hash_find(&graph->visited_hash_set, node)]);
  646. for (int j = 0; j < GGML_MAX_SRC; j++) {
  647. struct ggml_tensor * src = node->src[j];
  648. if (src == NULL) {
  649. continue;
  650. }
  651. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  652. GGML_LOG_DEBUG(" %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  653. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  654. }
  655. GGML_LOG_DEBUG("\n");
  656. }
  657. }
  658. }
  659. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  660. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  661. ggml_backend_buffer_type_t buft = NULL;
  662. if (buf) {
  663. // the tensor is already allocated
  664. buft = buf->buft;
  665. } else {
  666. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  667. int tensor_backend_id = tensor_backend_id(t);
  668. if (tensor_backend_id == -1 && t->view_src) {
  669. tensor_backend_id = tensor_backend_id(t->view_src);
  670. }
  671. if (tensor_backend_id != -1) {
  672. buft = sched->bufts[tensor_backend_id];
  673. }
  674. }
  675. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  676. }
  677. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  678. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  679. *node_backend_id = cur_backend_id;
  680. SET_CAUSE(node, "2.sup");
  681. }
  682. }
  683. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  684. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  685. // reset splits
  686. sched->n_splits = 0;
  687. sched->n_graph_inputs = 0;
  688. sched->is_reset = false;
  689. struct ggml_init_params params = {
  690. /* .mem_size = */ sched->context_buffer_size,
  691. /* .mem_buffer = */ sched->context_buffer,
  692. /* .no_alloc = */ true
  693. };
  694. ggml_free(sched->ctx);
  695. sched->ctx = ggml_init(params);
  696. if (sched->ctx == NULL) {
  697. GGML_ABORT("%s: failed to initialize context\n", __func__);
  698. }
  699. // pass 1: assign backends to ops with pre-allocated inputs
  700. for (int i = 0; i < graph->n_leafs; i++) {
  701. struct ggml_tensor * leaf = graph->leafs[i];
  702. int * leaf_backend_id = &tensor_backend_id(leaf);
  703. // do not overwrite user assignments
  704. if (*leaf_backend_id == -1) {
  705. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  706. }
  707. }
  708. for (int i = 0; i < graph->n_nodes; i++) {
  709. struct ggml_tensor * node = graph->nodes[i];
  710. int * node_backend_id = &tensor_backend_id(node);
  711. // do not overwrite user assignments
  712. if (*node_backend_id == -1) {
  713. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  714. #if 0
  715. // src
  716. if (node->op == GGML_OP_NONE) {
  717. continue;
  718. }
  719. for (int j = 0; j < GGML_MAX_SRC; j++) {
  720. struct ggml_tensor * src = node->src[j];
  721. if (src == NULL) {
  722. continue;
  723. }
  724. int * src_backend_id = &tensor_backend_id(src);
  725. if (*src_backend_id == -1) {
  726. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  727. }
  728. }
  729. #endif
  730. }
  731. }
  732. // pass 2: expand current backend assignments
  733. // assign the same backend to adjacent nodes
  734. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  735. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  736. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  737. // expand gpu down
  738. {
  739. int cur_backend_id = -1;
  740. for (int i = 0; i < graph->n_nodes; i++) {
  741. struct ggml_tensor * node = graph->nodes[i];
  742. if (ggml_is_view_op(node->op)) {
  743. continue;
  744. }
  745. int * node_backend_id = &tensor_backend_id(node);
  746. if (*node_backend_id != -1) {
  747. if (*node_backend_id == sched->n_backends - 1) {
  748. // skip cpu (lowest prio backend)
  749. cur_backend_id = -1;
  750. } else {
  751. cur_backend_id = *node_backend_id;
  752. }
  753. } else if (cur_backend_id != -1) {
  754. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  755. }
  756. }
  757. }
  758. // expand gpu up
  759. {
  760. int cur_backend_id = -1;
  761. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  762. struct ggml_tensor * node = graph->nodes[i];
  763. if (ggml_is_view_op(node->op)) {
  764. continue;
  765. }
  766. int * node_backend_id = &tensor_backend_id(node);
  767. if (*node_backend_id != -1) {
  768. if (*node_backend_id == sched->n_backends - 1) {
  769. // skip cpu (lowest prio backend)
  770. cur_backend_id = -1;
  771. } else {
  772. cur_backend_id = *node_backend_id;
  773. }
  774. } else if (cur_backend_id != -1) {
  775. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  776. }
  777. }
  778. }
  779. // expand rest down
  780. {
  781. int cur_backend_id = -1;
  782. for (int i = 0; i < graph->n_nodes; i++) {
  783. struct ggml_tensor * node = graph->nodes[i];
  784. if (ggml_is_view_op(node->op)) {
  785. continue;
  786. }
  787. int * node_backend_id = &tensor_backend_id(node);
  788. if (*node_backend_id != -1) {
  789. cur_backend_id = *node_backend_id;
  790. } else if (cur_backend_id != -1) {
  791. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  792. }
  793. }
  794. }
  795. // expand rest up
  796. {
  797. int cur_backend_id = -1;
  798. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  799. struct ggml_tensor * node = graph->nodes[i];
  800. if (ggml_is_view_op(node->op)) {
  801. continue;
  802. }
  803. int * node_backend_id = &tensor_backend_id(node);
  804. if (*node_backend_id != -1) {
  805. cur_backend_id = *node_backend_id;
  806. } else if (cur_backend_id != -1) {
  807. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  808. }
  809. }
  810. }
  811. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  812. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  813. // however, we also need to verify that the sources are in compatible buffer types
  814. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  815. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  816. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  817. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  818. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  819. for (int i = 0; i < graph->n_nodes; i++) {
  820. struct ggml_tensor * node = graph->nodes[i];
  821. if (ggml_is_view_op(node->op)) {
  822. continue;
  823. }
  824. int * node_backend_id = &tensor_backend_id(node);
  825. if (*node_backend_id == -1) {
  826. // unassigned node: find the backend with the most supported inputs
  827. int n_supported_best = -1;
  828. for (int b = 0; b < sched->n_backends; b++) {
  829. if (ggml_backend_supports_op(sched->backends[b], node)) {
  830. int n_supported = 0;
  831. for (int j = 0; j < GGML_MAX_SRC; j++) {
  832. struct ggml_tensor * src = node->src[j];
  833. if (src == NULL) {
  834. continue;
  835. }
  836. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  837. n_supported++;
  838. }
  839. }
  840. if (n_supported > n_supported_best) {
  841. n_supported_best = n_supported;
  842. *node_backend_id = b;
  843. SET_CAUSE(node, "3.best");
  844. }
  845. }
  846. }
  847. } else {
  848. // assigned node: upgrade to higher prio backend if possible
  849. for (int b = 0; b < *node_backend_id; b++) {
  850. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  851. bool supported = true;
  852. for (int j = 0; j < GGML_MAX_SRC; j++) {
  853. struct ggml_tensor * src = node->src[j];
  854. if (src == NULL) {
  855. continue;
  856. }
  857. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  858. supported = false;
  859. break;
  860. }
  861. }
  862. if (supported) {
  863. *node_backend_id = b;
  864. SET_CAUSE(node, "3.upg");
  865. break;
  866. }
  867. }
  868. }
  869. }
  870. }
  871. // pass 4: assign backends to remaining src from dst and view_src
  872. for (int i = 0; i < graph->n_nodes; i++) {
  873. struct ggml_tensor * node = graph->nodes[i];
  874. int * cur_backend_id = &tensor_backend_id(node);
  875. if (node->view_src != NULL && *cur_backend_id == -1) {
  876. *cur_backend_id = tensor_backend_id(node->view_src);
  877. SET_CAUSE(node, "4.vsrc");
  878. }
  879. for (int j = 0; j < GGML_MAX_SRC; j++) {
  880. struct ggml_tensor * src = node->src[j];
  881. if (src == NULL) {
  882. continue;
  883. }
  884. int * src_backend_id = &tensor_backend_id(src);
  885. if (*src_backend_id == -1) {
  886. if (src->view_src != NULL) {
  887. // views are always on the same backend as the source
  888. *src_backend_id = tensor_backend_id(src->view_src);
  889. SET_CAUSE(src, "4.vsrc");
  890. } else {
  891. *src_backend_id = *cur_backend_id;
  892. SET_CAUSE(src, "4.cur");
  893. }
  894. }
  895. }
  896. // if the node is still unassigned, assign it to the first backend that supports it
  897. for (int b = 0; b < sched->n_backends && *cur_backend_id == -1; b++) {
  898. ggml_backend_sched_set_if_supported(sched, node, b, cur_backend_id);
  899. }
  900. GGML_ASSERT(*cur_backend_id != -1);
  901. }
  902. // pass 5: split graph, find tensors that need to be copied
  903. {
  904. int i_split = 0;
  905. struct ggml_backend_sched_split * split = &sched->splits[0];
  906. // find the backend of the first split, skipping view ops
  907. int i = 0;
  908. for (; i < graph->n_nodes; i++) {
  909. struct ggml_tensor * node = graph->nodes[i];
  910. if (!ggml_is_view_op(node->op)) {
  911. split->backend_id = tensor_backend_id(node);
  912. break;
  913. }
  914. }
  915. split->i_start = 0;
  916. split->n_inputs = 0;
  917. int cur_backend_id = split->backend_id;
  918. for (; i < graph->n_nodes; i++) {
  919. struct ggml_tensor * node = graph->nodes[i];
  920. if (ggml_is_view_op(node->op)) {
  921. continue;
  922. }
  923. const int node_backend_id = tensor_backend_id(node);
  924. GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now, this can happen if there is no CPU fallback
  925. // check if we should start a new split based on the sources of the current node
  926. bool need_new_split = false;
  927. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  928. for (int j = 0; j < GGML_MAX_SRC; j++) {
  929. struct ggml_tensor * src = node->src[j];
  930. if (src == NULL) {
  931. continue;
  932. }
  933. // check if a weight is on a different and incompatible backend
  934. // by starting a new split, the memory of the previously offloaded weights can be reused
  935. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  936. int src_backend_id = tensor_backend_id(src);
  937. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  938. need_new_split = true;
  939. break;
  940. }
  941. }
  942. // check if the split has too many inputs
  943. // FIXME: count the number of inputs instead of only checking when full
  944. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  945. const size_t id = hash_id(src);
  946. int src_backend_id = sched->hv_tensor_backend_ids[id];
  947. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  948. if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
  949. need_new_split = true;
  950. break;
  951. }
  952. }
  953. }
  954. }
  955. if (node_backend_id != cur_backend_id || need_new_split) {
  956. split->i_end = i;
  957. i_split++;
  958. if (i_split >= sched->splits_capacity) {
  959. sched->splits_capacity *= 2;
  960. sched->splits = (ggml_backend_sched_split *)
  961. realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  962. GGML_ASSERT(sched->splits != NULL);
  963. }
  964. split = &sched->splits[i_split];
  965. split->backend_id = node_backend_id;
  966. split->i_start = i;
  967. split->n_inputs = 0;
  968. cur_backend_id = node_backend_id;
  969. }
  970. // find inputs that are not on the same backend
  971. for (int j = 0; j < GGML_MAX_SRC; j++) {
  972. struct ggml_tensor * src = node->src[j];
  973. if (src == NULL) {
  974. continue;
  975. }
  976. size_t src_id = hash_id(src);
  977. const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
  978. GGML_ASSERT(src_backend_id != -1); // all inputs should be assigned by now
  979. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  980. if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
  981. ggml_backend_t backend = sched->backends[src_backend_id];
  982. for (int c = 0; c < sched->n_copies; c++) {
  983. struct ggml_tensor * tensor_copy;
  984. if (c == sched->cur_copy) {
  985. tensor_copy = src; // use the original tensor as the current copy
  986. } else {
  987. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  988. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  989. }
  990. if (sched->n_copies > 1) {
  991. ggml_set_input(tensor_copy);
  992. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  993. }
  994. tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
  995. SET_CAUSE(tensor_copy, "4.cpy");
  996. }
  997. int n_graph_inputs = sched->n_graph_inputs++;
  998. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  999. sched->graph_inputs[n_graph_inputs] = src;
  1000. }
  1001. }
  1002. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1003. // create a copy of the input in the split's backend
  1004. if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
  1005. ggml_backend_t backend = sched->backends[cur_backend_id];
  1006. for (int c = 0; c < sched->n_copies; c++) {
  1007. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1008. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1009. if (sched->n_copies > 1) {
  1010. ggml_set_input(tensor_copy);
  1011. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1012. }
  1013. tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
  1014. SET_CAUSE(tensor_copy, "4.cpy");
  1015. }
  1016. int n_inputs = split->n_inputs++;
  1017. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1018. split->inputs[n_inputs] = src;
  1019. }
  1020. node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
  1021. }
  1022. }
  1023. }
  1024. split->i_end = graph->n_nodes;
  1025. sched->n_splits = i_split + 1;
  1026. }
  1027. if (sched->debug) {
  1028. ggml_backend_sched_print_assignments(sched, graph);
  1029. }
  1030. // swap node_backend_ids and leaf _backend_ids with prevs
  1031. {
  1032. int * tmp = sched->node_backend_ids;
  1033. sched->node_backend_ids = sched->prev_node_backend_ids;
  1034. sched->prev_node_backend_ids = tmp;
  1035. tmp = sched->leaf_backend_ids;
  1036. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1037. sched->prev_leaf_backend_ids = tmp;
  1038. }
  1039. int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
  1040. if (sched->graph.size < graph_size) {
  1041. sched->graph.size = graph_size;
  1042. sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
  1043. sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
  1044. GGML_ASSERT(sched->graph.nodes != NULL);
  1045. GGML_ASSERT(sched->graph.leafs != NULL);
  1046. }
  1047. sched->graph.n_nodes = 0;
  1048. sched->graph.n_leafs = 0;
  1049. struct ggml_cgraph * graph_copy = &sched->graph;
  1050. for (int i = 0; i < sched->n_splits; i++) {
  1051. struct ggml_backend_sched_split * split = &sched->splits[i];
  1052. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1053. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1054. for (int j = 0; j < split->n_inputs; j++) {
  1055. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1056. struct ggml_tensor * input = split->inputs[j];
  1057. const size_t input_id = hash_id(input);
  1058. struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
  1059. // add a dependency to the input source so that it is not freed before the copy is done
  1060. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1061. input_dep->src[0] = input;
  1062. sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
  1063. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1064. // add a dependency to the input copy so that it is allocated at the start of the split
  1065. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1066. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1067. }
  1068. for (int j = split->i_start; j < split->i_end; j++) {
  1069. assert(graph_copy->size > graph_copy->n_nodes);
  1070. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1071. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1072. }
  1073. }
  1074. if (sched->n_copies > 1) {
  1075. // add input copies as leafs so that they are allocated first
  1076. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1077. struct ggml_tensor * input = sched->graph_inputs[i];
  1078. size_t id = hash_id(input);
  1079. int backend_id = tensor_backend_id(input);
  1080. for (int c = 0; c < sched->n_copies; c++) {
  1081. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1082. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1083. assert(graph_copy->size > graph_copy->n_leafs);
  1084. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1085. }
  1086. }
  1087. for (int i = 0; i < sched->n_splits; i++) {
  1088. struct ggml_backend_sched_split * split = &sched->splits[i];
  1089. int backend_id = split->backend_id;
  1090. for (int j = 0; j < split->n_inputs; j++) {
  1091. struct ggml_tensor * input = split->inputs[j];
  1092. size_t id = hash_id(input);
  1093. for (int c = 0; c < sched->n_copies; c++) {
  1094. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1095. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1096. assert(graph_copy->size > graph_copy->n_leafs);
  1097. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1098. }
  1099. }
  1100. }
  1101. }
  1102. // add leafs from the original graph
  1103. for (int i = 0; i < graph->n_leafs; i++) {
  1104. struct ggml_tensor * leaf = graph->leafs[i];
  1105. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1106. assert(graph_copy->size > graph_copy->n_leafs);
  1107. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1108. }
  1109. }
  1110. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1111. bool backend_ids_changed = false;
  1112. for (int i = 0; i < sched->graph.n_nodes; i++) {
  1113. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1114. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1115. backend_ids_changed = true;
  1116. break;
  1117. }
  1118. }
  1119. if (!backend_ids_changed) {
  1120. for (int i = 0; i < sched->graph.n_leafs; i++) {
  1121. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1122. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1123. backend_ids_changed = true;
  1124. break;
  1125. }
  1126. }
  1127. }
  1128. // allocate graph
  1129. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1130. // the re-allocation may cause the split inputs to be moved to a different address
  1131. // synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
  1132. for (int i = 0; i < sched->n_backends; i++) {
  1133. ggml_backend_synchronize(sched->backends[i]);
  1134. }
  1135. #ifndef NDEBUG
  1136. GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
  1137. #endif
  1138. ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1139. if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1140. GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);
  1141. return false;
  1142. }
  1143. }
  1144. return true;
  1145. }
  1146. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1147. struct ggml_backend_sched_split * splits = sched->splits;
  1148. for (int i = 0; i < sched->n_splits; i++) {
  1149. struct ggml_backend_sched_split * split = &splits[i];
  1150. int split_backend_id = split->backend_id;
  1151. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1152. // copy the input tensors to the split backend
  1153. for (int j = 0; j < split->n_inputs; j++) {
  1154. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1155. struct ggml_tensor * input = split->inputs[j];
  1156. struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
  1157. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1158. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1159. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1160. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1161. } else {
  1162. ggml_backend_synchronize(split_backend);
  1163. }
  1164. ggml_backend_tensor_copy(input, input_cpy);
  1165. } else {
  1166. // wait for the split backend to finish using the input before overwriting it
  1167. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1168. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1169. } else {
  1170. ggml_backend_synchronize(split_backend);
  1171. }
  1172. // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
  1173. // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
  1174. if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
  1175. ggml_backend_synchronize(input_backend);
  1176. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1177. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1178. } else {
  1179. ggml_backend_synchronize(split_backend);
  1180. }
  1181. ggml_backend_tensor_copy(input, input_cpy);
  1182. }
  1183. }
  1184. }
  1185. if (!sched->callback_eval) {
  1186. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1187. if (ec != GGML_STATUS_SUCCESS) {
  1188. return ec;
  1189. }
  1190. } else {
  1191. // similar to ggml_backend_compare_graph_backend
  1192. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1193. struct ggml_tensor * t = split->graph.nodes[j0];
  1194. // check if the user needs data from this node
  1195. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1196. int j1 = j0;
  1197. // determine the range [j0, j1] of nodes that can be computed together
  1198. while (!need && j1 < split->graph.n_nodes - 1) {
  1199. t = split->graph.nodes[++j1];
  1200. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1201. }
  1202. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1203. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1204. if (ec != GGML_STATUS_SUCCESS) {
  1205. return ec;
  1206. }
  1207. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1208. ggml_backend_synchronize(split_backend);
  1209. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1210. break;
  1211. }
  1212. j0 = j1;
  1213. }
  1214. }
  1215. // record the event of this copy
  1216. if (split->n_inputs > 0) {
  1217. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1218. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend);
  1219. }
  1220. }
  1221. }
  1222. return GGML_STATUS_SUCCESS;
  1223. }
  1224. ggml_backend_sched_t ggml_backend_sched_new(
  1225. ggml_backend_t * backends,
  1226. ggml_backend_buffer_type_t * bufts,
  1227. int n_backends,
  1228. size_t graph_size,
  1229. bool parallel,
  1230. bool op_offload) {
  1231. GGML_ASSERT(n_backends > 0);
  1232. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1233. GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
  1234. struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));
  1235. const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
  1236. sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
  1237. sched->n_backends = n_backends;
  1238. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1239. // initialize hash table
  1240. // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
  1241. sched->hash_set = ggml_hash_set_new(graph_size);
  1242. sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1243. sched->hv_tensor_copies = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1244. const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
  1245. const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1246. sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1247. sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1248. sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1249. sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1250. sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
  1251. sched->context_buffer = (char *) malloc(sched->context_buffer_size);
  1252. const int initial_splits_capacity = 16;
  1253. sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1254. sched->splits_capacity = initial_splits_capacity;
  1255. for (int b = 0; b < n_backends; b++) {
  1256. sched->backends[b] = backends[b];
  1257. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1258. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1259. if (sched->n_copies > 1) {
  1260. for (int c = 0; c < sched->n_copies; c++) {
  1261. sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
  1262. }
  1263. }
  1264. }
  1265. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1266. sched->op_offload = op_offload;
  1267. ggml_backend_sched_reset(sched);
  1268. return sched;
  1269. }
  1270. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1271. if (sched == NULL) {
  1272. return;
  1273. }
  1274. for (int b = 0; b < sched->n_backends; b++) {
  1275. for (int c = 0; c < sched->n_copies; c++) {
  1276. ggml_backend_event_free(sched->events[b][c]);
  1277. }
  1278. }
  1279. ggml_gallocr_free(sched->galloc);
  1280. ggml_free(sched->ctx);
  1281. ggml_hash_set_free(&sched->hash_set);
  1282. free(sched->splits);
  1283. free(sched->hv_tensor_backend_ids);
  1284. free(sched->hv_tensor_copies);
  1285. free(sched->node_backend_ids);
  1286. free(sched->leaf_backend_ids);
  1287. free(sched->prev_node_backend_ids);
  1288. free(sched->prev_leaf_backend_ids);
  1289. free(sched->context_buffer);
  1290. free(sched->graph.nodes);
  1291. free(sched->graph.leafs);
  1292. free(sched);
  1293. }
  1294. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1295. // reset state for the next run
  1296. if (!sched->is_reset) {
  1297. ggml_hash_set_reset(&sched->hash_set);
  1298. memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1299. memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1300. sched->is_reset = true;
  1301. }
  1302. sched->is_alloc = false;
  1303. }
  1304. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1305. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
  1306. ggml_backend_sched_synchronize(sched);
  1307. ggml_backend_sched_split_graph(sched, measure_graph);
  1308. if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1309. return false;
  1310. }
  1311. ggml_backend_sched_reset(sched);
  1312. return true;
  1313. }
  1314. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1315. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
  1316. GGML_ASSERT(!sched->is_alloc);
  1317. sched->cur_copy = sched->next_copy;
  1318. sched->next_copy = (sched->next_copy + 1) % sched->n_copies;
  1319. ggml_backend_sched_split_graph(sched, graph);
  1320. if (!ggml_backend_sched_alloc_splits(sched)) {
  1321. return false;
  1322. }
  1323. sched->is_alloc = true;
  1324. return true;
  1325. }
  1326. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1327. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1328. ggml_backend_sched_synchronize(sched);
  1329. return err;
  1330. }
  1331. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1332. if (!sched->is_reset && !sched->is_alloc) {
  1333. ggml_backend_sched_reset(sched);
  1334. }
  1335. if (!sched->is_alloc) {
  1336. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1337. return GGML_STATUS_ALLOC_FAILED;
  1338. }
  1339. }
  1340. return ggml_backend_sched_compute_splits(sched);
  1341. }
  1342. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1343. for (int i = 0; i < sched->n_backends; i++) {
  1344. ggml_backend_synchronize(sched->backends[i]);
  1345. }
  1346. if (!sched->is_alloc) {
  1347. // if the graph is not already allocated, always use copy 0 after a synchronization
  1348. // this ensures that during generation the same copy is used every time,
  1349. // which avoids changes in the graph that could cause CUDA or other graphs to be disabled
  1350. sched->next_copy = 0;
  1351. }
  1352. }
  1353. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1354. sched->callback_eval = callback;
  1355. sched->callback_eval_user_data = user_data;
  1356. }
  1357. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1358. return sched->n_splits;
  1359. }
  1360. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1361. return sched->n_copies;
  1362. }
  1363. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1364. return sched->n_backends;
  1365. }
  1366. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1367. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1368. return sched->backends[i];
  1369. }
  1370. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1371. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1372. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1373. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1374. }
  1375. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1376. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1377. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1378. tensor_backend_id(node) = backend_index;
  1379. SET_CAUSE(node, "usr");
  1380. sched->is_reset = false;
  1381. }
  1382. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1383. int backend_index = tensor_backend_id(node);
  1384. if (backend_index == -1) {
  1385. return NULL;
  1386. }
  1387. return sched->backends[backend_index];
  1388. }
  1389. // utils
  1390. enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
  1391. GGML_ASSERT(tensor->buffer == NULL);
  1392. GGML_ASSERT(tensor->view_src != NULL);
  1393. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1394. GGML_ASSERT(tensor->view_src->data != NULL);
  1395. tensor->buffer = tensor->view_src->buffer;
  1396. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1397. return ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1398. }
  1399. enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1400. GGML_ASSERT(tensor->buffer == NULL);
  1401. GGML_ASSERT(tensor->data == NULL);
  1402. GGML_ASSERT(tensor->view_src == NULL);
  1403. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1404. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1405. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1406. tensor->buffer = buffer;
  1407. tensor->data = addr;
  1408. return ggml_backend_buffer_init_tensor(buffer, tensor);
  1409. }
  1410. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1411. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1412. GGML_ASSERT(src != NULL);
  1413. GGML_ASSERT(src->data && "graph must be allocated");
  1414. size_t id = ggml_hash_insert(&hash_set, src);
  1415. if (id == GGML_HASHSET_ALREADY_EXISTS) {
  1416. return node_copies[ggml_hash_find(&hash_set, src)];
  1417. }
  1418. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1419. if (src->view_src != NULL) {
  1420. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1421. dst->view_offs = src->view_offs;
  1422. }
  1423. dst->op = src->op;
  1424. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1425. ggml_set_name(dst, src->name);
  1426. // copy src
  1427. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1428. struct ggml_tensor * s = src->src[i];
  1429. if (s == NULL) {
  1430. continue;
  1431. }
  1432. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1433. }
  1434. node_copies[id] = dst;
  1435. return dst;
  1436. }
  1437. static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1438. size_t id = ggml_hash_find(hash_set, src);
  1439. if (node_init[id]) {
  1440. return;
  1441. }
  1442. node_init[id] = true;
  1443. struct ggml_tensor * dst = node_copies[id];
  1444. if (dst->view_src != NULL) {
  1445. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1446. enum ggml_status status = ggml_backend_view_init(dst);
  1447. GGML_ASSERT(status == GGML_STATUS_SUCCESS);
  1448. }
  1449. else {
  1450. ggml_backend_tensor_copy(src, dst);
  1451. }
  1452. // init src
  1453. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1454. struct ggml_tensor * s = src->src[i];
  1455. if (s == NULL) {
  1456. continue;
  1457. }
  1458. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1459. }
  1460. }
  1461. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1462. struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
  1463. struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1464. bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
  1465. struct ggml_init_params params = {
  1466. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1467. /* .mem_buffer = */ NULL,
  1468. /* .no_alloc = */ true
  1469. };
  1470. struct ggml_context * ctx_allocated = ggml_init(params);
  1471. struct ggml_context * ctx_unallocated = ggml_init(params);
  1472. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1473. GGML_LOG_ERROR("%s: failed to allocate context for graph copy\n", __func__);
  1474. ggml_hash_set_free(&hash_set);
  1475. free(node_copies);
  1476. free(node_init);
  1477. ggml_free(ctx_allocated);
  1478. ggml_free(ctx_unallocated);
  1479. return {
  1480. /* .buffer = */ NULL,
  1481. /* .ctx_allocated = */ NULL,
  1482. /* .ctx_unallocated = */ NULL,
  1483. /* .graph = */ NULL,
  1484. };
  1485. }
  1486. // dup nodes
  1487. for (int i = 0; i < graph->n_nodes; i++) {
  1488. struct ggml_tensor * node = graph->nodes[i];
  1489. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1490. }
  1491. // allocate nodes
  1492. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1493. if (buffer == NULL) {
  1494. GGML_LOG_ERROR("%s: failed to allocate buffer for graph copy\n", __func__);
  1495. ggml_hash_set_free(&hash_set);
  1496. free(node_copies);
  1497. free(node_init);
  1498. ggml_free(ctx_allocated);
  1499. ggml_free(ctx_unallocated);
  1500. return {
  1501. /* .buffer = */ NULL,
  1502. /* .ctx_allocated = */ NULL,
  1503. /* .ctx_unallocated = */ NULL,
  1504. /* .graph = */ NULL,
  1505. };
  1506. }
  1507. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1508. // copy data and init views
  1509. for (int i = 0; i < graph->n_nodes; i++) {
  1510. struct ggml_tensor * node = graph->nodes[i];
  1511. graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
  1512. }
  1513. // build graph copy
  1514. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1515. for (int i = 0; i < graph->n_nodes; i++) {
  1516. struct ggml_tensor * node = graph->nodes[i];
  1517. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
  1518. graph_copy->nodes[i] = node_copy;
  1519. }
  1520. graph_copy->n_nodes = graph->n_nodes;
  1521. ggml_hash_set_free(&hash_set);
  1522. free(node_copies);
  1523. free(node_init);
  1524. return {
  1525. /* .buffer = */ buffer,
  1526. /* .ctx_allocated = */ ctx_allocated,
  1527. /* .ctx_unallocated = */ ctx_unallocated,
  1528. /* .graph = */ graph_copy,
  1529. };
  1530. }
  1531. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1532. ggml_backend_buffer_free(copy.buffer);
  1533. ggml_free(copy.ctx_allocated);
  1534. ggml_free(copy.ctx_unallocated);
  1535. }
  1536. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node) {
  1537. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1538. if (copy.buffer == NULL) {
  1539. return false;
  1540. }
  1541. struct ggml_cgraph * g1 = graph;
  1542. struct ggml_cgraph * g2 = copy.graph;
  1543. assert(g1->n_nodes == g2->n_nodes);
  1544. if (test_node != nullptr) {
  1545. // Compute the whole graph and only test the output for a specific tensor
  1546. ggml_backend_graph_compute(backend1, g1);
  1547. ggml_backend_graph_compute(backend2, g2);
  1548. int test_node_idx = -1;
  1549. for (int i = 0; i < g1->n_nodes; i++) {
  1550. struct ggml_tensor * t1 = g1->nodes[i];
  1551. if (t1 == test_node) {
  1552. test_node_idx = i;
  1553. break;
  1554. }
  1555. }
  1556. GGML_ASSERT(test_node_idx != -1);
  1557. callback(test_node_idx, g1->nodes[test_node_idx], g2->nodes[test_node_idx], user_data);
  1558. } else {
  1559. for (int i = 0; i < g1->n_nodes; i++) {
  1560. struct ggml_tensor * t1 = g1->nodes[i];
  1561. struct ggml_tensor * t2 = g2->nodes[i];
  1562. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1563. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1564. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1565. ggml_backend_graph_compute(backend1, &g1v);
  1566. ggml_backend_graph_compute(backend2, &g2v);
  1567. if (ggml_is_view_op(t1->op)) {
  1568. continue;
  1569. }
  1570. // compare results, calculate rms etc
  1571. if (!callback(i, t1, t2, user_data)) {
  1572. break;
  1573. }
  1574. }
  1575. }
  1576. ggml_backend_graph_copy_free(copy);
  1577. return true;
  1578. }
  1579. // CPU backend - buffer
  1580. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  1581. uintptr_t data = (uintptr_t)buffer->context;
  1582. // align the buffer
  1583. if (data % TENSOR_ALIGNMENT != 0) {
  1584. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  1585. }
  1586. return (void *)data;
  1587. }
  1588. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  1589. ggml_aligned_free(buffer->context, buffer->size);
  1590. }
  1591. static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  1592. memset((char *)tensor->data + offset, value, size);
  1593. GGML_UNUSED(buffer);
  1594. }
  1595. static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1596. memcpy((char *)tensor->data + offset, data, size);
  1597. GGML_UNUSED(buffer);
  1598. }
  1599. static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1600. memcpy(data, (const char *)tensor->data + offset, size);
  1601. GGML_UNUSED(buffer);
  1602. }
  1603. static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  1604. if (ggml_backend_buffer_is_host(src->buffer)) {
  1605. memcpy(dst->data, src->data, ggml_nbytes(src));
  1606. return true;
  1607. }
  1608. return false;
  1609. GGML_UNUSED(buffer);
  1610. }
  1611. static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  1612. memset(buffer->context, value, buffer->size);
  1613. }
  1614. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
  1615. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  1616. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1617. /* .init_tensor = */ NULL, // no initialization required
  1618. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1619. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1620. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1621. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1622. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1623. /* .reset = */ NULL,
  1624. };
  1625. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
  1626. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  1627. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1628. /* .init_tensor = */ NULL, // no initialization required
  1629. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1630. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1631. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1632. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1633. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1634. /* .reset = */ NULL,
  1635. };
  1636. // CPU backend buffer type
  1637. // this buffer type is defined here to make it available to all backends
  1638. static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  1639. return "CPU";
  1640. GGML_UNUSED(buft);
  1641. }
  1642. static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  1643. void * data = ggml_aligned_malloc(size);
  1644. if (data == NULL) {
  1645. GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n", __func__, size);
  1646. return NULL;
  1647. }
  1648. return ggml_backend_buffer_init(buft, ggml_backend_cpu_buffer_i, data, size);
  1649. }
  1650. static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  1651. return TENSOR_ALIGNMENT;
  1652. GGML_UNUSED(buft);
  1653. }
  1654. static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  1655. return true;
  1656. GGML_UNUSED(buft);
  1657. }
  1658. ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  1659. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1660. /* .iface = */ {
  1661. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  1662. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1663. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1664. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1665. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1666. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1667. },
  1668. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1669. /* .context = */ NULL,
  1670. };
  1671. return &ggml_backend_cpu_buffer_type;
  1672. }
  1673. static const char * ggml_backend_cpu_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
  1674. return "CPU_Mapped";
  1675. GGML_UNUSED(buft);
  1676. }
  1677. static ggml_backend_buffer_type_t ggml_backend_cpu_buffer_from_ptr_type(void) {
  1678. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1679. /* .iface = */ {
  1680. /* .get_name = */ ggml_backend_cpu_buffer_from_ptr_type_get_name,
  1681. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1682. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1683. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1684. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1685. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1686. },
  1687. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1688. /* .context = */ NULL,
  1689. };
  1690. return &ggml_backend_cpu_buffer_type;
  1691. }
  1692. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  1693. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  1694. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_from_ptr_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
  1695. }