| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022 |
- #define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows
- #define _USE_MATH_DEFINES // For M_PI on MSVC
- #include "ggml-backend.h"
- #include "ggml-impl.h"
- #include "ggml-threading.h"
- #include "ggml-cpu.h"
- #include "ggml.h"
- // FIXME: required here for quantization functions
- #include "ggml-quants.h"
- #ifdef GGML_USE_CPU_HBM
- #include <hbwmalloc.h>
- #endif
- #if defined(_MSC_VER) || defined(__MINGW32__)
- #include <malloc.h> // using malloc.h with MSC/MINGW
- #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
- #include <alloca.h>
- #endif
- #include <assert.h>
- #include <errno.h>
- #include <time.h>
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdint.h>
- #include <inttypes.h>
- #include <stdio.h>
- #include <float.h>
- #include <limits.h>
- #include <stdarg.h>
- #include <signal.h>
- #if defined(__gnu_linux__)
- #include <syscall.h>
- #endif
- #if defined(__APPLE__)
- #include <unistd.h>
- #include <mach/mach.h>
- #include <TargetConditionals.h>
- #endif
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #endif
- #define UNUSED GGML_UNUSED
- #if defined(_MSC_VER)
- #define m512bh(p) p
- #define m512i(p) p
- #else
- #define m512bh(p) (__m512bh)(p)
- #define m512i(p) (__m512i)(p)
- #endif
- #if defined(__linux__) || \
- defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \
- (defined(__APPLE__) && !TARGET_OS_TV && !TARGET_OS_WATCH)
- #include <unistd.h>
- #include <sys/types.h>
- #include <sys/stat.h>
- #include <sys/wait.h>
- #if defined(__linux__)
- #include <sys/prctl.h>
- #endif
- #if defined(__ANDROID__)
- #include <unwind.h>
- #include <dlfcn.h>
- #include <stdio.h>
- struct backtrace_state {
- void ** current;
- void ** end;
- };
- static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
- struct backtrace_state * state = (struct backtrace_state *)arg;
- uintptr_t pc = _Unwind_GetIP(context);
- if (pc) {
- if (state->current == state->end) {
- return _URC_END_OF_STACK;
- } else {
- *state->current++ = (void*)pc;
- }
- }
- return _URC_NO_REASON;
- }
- static void ggml_print_backtrace_symbols(void) {
- const int max = 100;
- void* buffer[max];
- struct backtrace_state state = {buffer, buffer + max};
- _Unwind_Backtrace(unwind_callback, &state);
- int count = state.current - buffer;
- for (int idx = 0; idx < count; ++idx) {
- const void * addr = buffer[idx];
- const char * symbol = "";
- Dl_info info;
- if (dladdr(addr, &info) && info.dli_sname) {
- symbol = info.dli_sname;
- }
- fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
- }
- }
- #elif defined(__linux__) && defined(__GLIBC__)
- #include <execinfo.h>
- static void ggml_print_backtrace_symbols(void) {
- void * trace[100];
- int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
- backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
- }
- #else
- static void ggml_print_backtrace_symbols(void) {
- // platform not supported
- }
- #endif
- void ggml_print_backtrace(void) {
- const char * GGML_NO_BACKTRACE = getenv("GGML_NO_BACKTRACE");
- if (GGML_NO_BACKTRACE) {
- return;
- }
- #if defined(__linux__)
- FILE * f = fopen("/proc/self/status", "r");
- size_t size = 0;
- char * line = NULL;
- ssize_t length = 0;
- while ((length = getline(&line, &size, f)) > 0) {
- if (!strncmp(line, "TracerPid:", sizeof("TracerPid:") - 1) &&
- (length != sizeof("TracerPid:\t0\n") - 1 || line[length - 2] != '0')) {
- // Already being debugged, and the breakpoint is the later abort()
- free(line);
- fclose(f);
- return;
- }
- }
- free(line);
- fclose(f);
- int lock[2] = { -1, -1 };
- (void) !pipe(lock); // Don't start gdb until after PR_SET_PTRACER
- #endif
- const int parent_pid = getpid();
- const int child_pid = fork();
- if (child_pid < 0) { // error
- #if defined(__linux__)
- close(lock[1]);
- close(lock[0]);
- #endif
- return;
- } else if (child_pid == 0) { // child
- char attach[32];
- snprintf(attach, sizeof(attach), "attach %d", parent_pid);
- #if defined(__linux__)
- close(lock[1]);
- (void) !read(lock[0], lock, 1);
- close(lock[0]);
- #endif
- // try gdb
- execlp("gdb", "gdb", "--batch",
- "-ex", "set style enabled on",
- "-ex", attach,
- "-ex", "bt -frame-info source-and-location",
- "-ex", "detach",
- "-ex", "quit",
- (char *) NULL);
- // try lldb
- execlp("lldb", "lldb", "--batch",
- "-o", "bt",
- "-o", "quit",
- "-p", &attach[sizeof("attach ") - 1],
- (char *) NULL);
- // gdb failed, fallback to backtrace_symbols
- ggml_print_backtrace_symbols();
- _Exit(0);
- } else { // parent
- #if defined(__linux__)
- prctl(PR_SET_PTRACER, child_pid);
- close(lock[1]);
- close(lock[0]);
- #endif
- waitpid(child_pid, NULL, 0);
- }
- }
- #else
- void ggml_print_backtrace(void) {
- // platform not supported
- }
- #endif
- static ggml_abort_callback_t g_abort_callback = NULL;
- // Set the abort callback (passing null will restore original abort functionality: printing a message to stdout)
- GGML_API ggml_abort_callback_t ggml_set_abort_callback(ggml_abort_callback_t callback) {
- ggml_abort_callback_t ret_val = g_abort_callback;
- g_abort_callback = callback;
- return ret_val;
- }
- void ggml_abort(const char * file, int line, const char * fmt, ...) {
- fflush(stdout);
- char message[2048];
- int offset = snprintf(message, sizeof(message), "%s:%d: ", file, line);
- va_list args;
- va_start(args, fmt);
- vsnprintf(message + offset, sizeof(message) - offset, fmt, args);
- va_end(args);
- if (g_abort_callback) {
- g_abort_callback(message);
- } else {
- // default: print error and backtrace to stderr
- fprintf(stderr, "%s\n", message);
- ggml_print_backtrace();
- }
- abort();
- }
- // ggml_print_backtrace is registered with std::set_terminate by ggml.cpp
- //
- // logging
- //
- struct ggml_logger_state {
- ggml_log_callback log_callback;
- void * log_callback_user_data;
- };
- static struct ggml_logger_state g_logger_state = {ggml_log_callback_default, NULL};
- static void ggml_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
- if (format == NULL) {
- return;
- }
- va_list args_copy;
- va_copy(args_copy, args);
- char buffer[128];
- int len = vsnprintf(buffer, 128, format, args);
- if (len < 128) {
- g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
- } else {
- char * buffer2 = (char *) calloc(len + 1, sizeof(char));
- vsnprintf(buffer2, len + 1, format, args_copy);
- buffer2[len] = 0;
- g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
- free(buffer2);
- }
- va_end(args_copy);
- }
- void ggml_log_internal(enum ggml_log_level level, const char * format, ...) {
- va_list args;
- va_start(args, format);
- ggml_log_internal_v(level, format, args);
- va_end(args);
- }
- void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
- (void) level;
- (void) user_data;
- fputs(text, stderr);
- fflush(stderr);
- }
- //
- // end of logging block
- //
- #ifdef GGML_USE_ACCELERATE
- // uncomment to use vDSP for soft max computation
- // note: not sure if it is actually faster
- //#define GGML_SOFT_MAX_ACCELERATE
- #endif
- void * ggml_aligned_malloc(size_t size) {
- #if defined(__s390x__)
- const int alignment = 256;
- #else
- const int alignment = 64;
- #endif
- #if defined(_MSC_VER) || defined(__MINGW32__)
- return _aligned_malloc(size, alignment);
- #else
- if (size == 0) {
- GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
- return NULL;
- }
- void * aligned_memory = NULL;
- #ifdef GGML_USE_CPU_HBM
- int result = hbw_posix_memalign(&aligned_memory, alignment, size);
- #elif TARGET_OS_OSX
- GGML_UNUSED(alignment);
- kern_return_t alloc_status = vm_allocate((vm_map_t) mach_task_self(), (vm_address_t *) &aligned_memory, size, VM_FLAGS_ANYWHERE);
- int result = EFAULT;
- switch (alloc_status) {
- case KERN_SUCCESS:
- result = 0;
- break;
- case KERN_INVALID_ADDRESS:
- result = EINVAL;
- break;
- case KERN_NO_SPACE:
- result = ENOMEM;
- break;
- default:
- result = EFAULT;
- break;
- }
- #else
- int result = posix_memalign(&aligned_memory, alignment, size);
- #endif
- if (result != 0) {
- // Handle allocation failure
- const char *error_desc = "unknown allocation error";
- switch (result) {
- case EINVAL:
- error_desc = "invalid alignment value";
- break;
- case ENOMEM:
- error_desc = "insufficient memory";
- break;
- }
- GGML_LOG_ERROR("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
- return NULL;
- }
- return aligned_memory;
- #endif
- }
- void ggml_aligned_free(void * ptr, size_t size) {
- GGML_UNUSED(size);
- #if defined(_MSC_VER) || defined(__MINGW32__)
- _aligned_free(ptr);
- #elif GGML_USE_CPU_HBM
- if (ptr != NULL) {
- hbw_free(ptr);
- }
- #elif TARGET_OS_OSX
- if (ptr != NULL) {
- vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ptr, size);
- }
- #else
- free(ptr);
- #endif
- }
- inline static void * ggml_malloc(size_t size) {
- if (size == 0) {
- GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
- return NULL;
- }
- void * result = malloc(size);
- if (result == NULL) {
- GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
- GGML_ABORT("fatal error");
- }
- return result;
- }
- // calloc
- inline static void * ggml_calloc(size_t num, size_t size) {
- if (num == 0 || size == 0) {
- GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
- return NULL;
- }
- void * result = calloc(num, size);
- if (result == NULL) {
- GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
- GGML_ABORT("fatal error");
- }
- return result;
- }
- #define GGML_MALLOC(size) ggml_malloc(size)
- #define GGML_CALLOC(num, size) ggml_calloc(num, size)
- #define GGML_FREE(ptr) free(ptr)
- const char * ggml_status_to_string(enum ggml_status status) {
- switch (status) {
- case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
- case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
- case GGML_STATUS_SUCCESS: return "GGML status: success";
- case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
- }
- return "GGML status: unknown";
- }
- float ggml_fp16_to_fp32(ggml_fp16_t x) {
- #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
- return GGML_FP16_TO_FP32(x);
- }
- ggml_fp16_t ggml_fp32_to_fp16(float x) {
- #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
- return GGML_FP32_TO_FP16(x);
- }
- float ggml_bf16_to_fp32(ggml_bf16_t x) {
- #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
- return GGML_BF16_TO_FP32(x); // it just left shifts
- }
- ggml_bf16_t ggml_fp32_to_bf16(float x) {
- #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
- return GGML_FP32_TO_BF16(x);
- }
- void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
- for (int64_t i = 0; i < n; i++) {
- y[i] = GGML_FP16_TO_FP32(x[i]);
- }
- }
- void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
- int i = 0;
- for (; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(x[i]);
- }
- }
- void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
- int i = 0;
- for (; i < n; ++i) {
- y[i] = GGML_BF16_TO_FP32(x[i]);
- }
- }
- void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
- for (int i = 0; i < n; i++) {
- y[i] = ggml_compute_fp32_to_bf16(x[i]);
- }
- }
- void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
- int i = 0;
- #if defined(__AVX512BF16__)
- // subnormals are flushed to zero on this platform
- for (; i + 32 <= n; i += 32) {
- _mm512_storeu_si512(
- (__m512i *)(y + i),
- m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
- _mm512_loadu_ps(x + i))));
- }
- #endif
- for (; i < n; i++) {
- y[i] = GGML_FP32_TO_BF16(x[i]);
- }
- }
- bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
- return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
- }
- const char * ggml_version(void) {
- return GGML_VERSION;
- }
- const char * ggml_commit(void) {
- return GGML_COMMIT;
- }
- //
- // timing
- //
- #if defined(_MSC_VER) || defined(__MINGW32__)
- static int64_t timer_freq, timer_start;
- void ggml_time_init(void) {
- LARGE_INTEGER t;
- QueryPerformanceFrequency(&t);
- timer_freq = t.QuadPart;
- // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
- // and the uptime is high enough.
- // We subtract the program start time to reduce the likelihood of that happening.
- QueryPerformanceCounter(&t);
- timer_start = t.QuadPart;
- }
- int64_t ggml_time_ms(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return ((t.QuadPart-timer_start) * 1000) / timer_freq;
- }
- int64_t ggml_time_us(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
- }
- #else
- void ggml_time_init(void) {}
- int64_t ggml_time_ms(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
- }
- int64_t ggml_time_us(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
- }
- #endif
- int64_t ggml_cycles(void) {
- return clock();
- }
- int64_t ggml_cycles_per_ms(void) {
- return CLOCKS_PER_SEC/1000;
- }
- //
- // cross-platform UTF-8 file paths
- //
- #ifdef _WIN32
- static wchar_t * ggml_mbstowcs(const char * mbs) {
- int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
- if (!wlen) {
- errno = EINVAL;
- return NULL;
- }
- wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
- wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
- if (!wlen) {
- GGML_FREE(wbuf);
- errno = EINVAL;
- return NULL;
- }
- return wbuf;
- }
- #endif
- FILE * ggml_fopen(const char * fname, const char * mode) {
- #ifdef _WIN32
- FILE * file = NULL;
- // convert fname (UTF-8)
- wchar_t * wfname = ggml_mbstowcs(fname);
- if (wfname) {
- // convert mode (ANSI)
- wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
- wchar_t * wmode_p = wmode;
- do {
- *wmode_p++ = (wchar_t)*mode;
- } while (*mode++);
- // open file
- file = _wfopen(wfname, wmode);
- GGML_FREE(wfname);
- GGML_FREE(wmode);
- }
- return file;
- #else
- return fopen(fname, mode);
- #endif
- }
- static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
- [GGML_TYPE_I8] = {
- .type_name = "i8",
- .blck_size = 1,
- .type_size = sizeof(int8_t),
- .is_quantized = false,
- },
- [GGML_TYPE_I16] = {
- .type_name = "i16",
- .blck_size = 1,
- .type_size = sizeof(int16_t),
- .is_quantized = false,
- },
- [GGML_TYPE_I32] = {
- .type_name = "i32",
- .blck_size = 1,
- .type_size = sizeof(int32_t),
- .is_quantized = false,
- },
- [GGML_TYPE_I64] = {
- .type_name = "i64",
- .blck_size = 1,
- .type_size = sizeof(int64_t),
- .is_quantized = false,
- },
- [GGML_TYPE_F64] = {
- .type_name = "f64",
- .blck_size = 1,
- .type_size = sizeof(double),
- .is_quantized = false,
- },
- [GGML_TYPE_F32] = {
- .type_name = "f32",
- .blck_size = 1,
- .type_size = sizeof(float),
- .is_quantized = false,
- },
- [GGML_TYPE_F16] = {
- .type_name = "f16",
- .blck_size = 1,
- .type_size = sizeof(ggml_fp16_t),
- .is_quantized = false,
- .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
- .from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
- },
- [GGML_TYPE_Q4_0] = {
- .type_name = "q4_0",
- .blck_size = QK4_0,
- .type_size = sizeof(block_q4_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_0,
- .from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
- },
- [GGML_TYPE_Q4_1] = {
- .type_name = "q4_1",
- .blck_size = QK4_1,
- .type_size = sizeof(block_q4_1),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_1,
- .from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
- },
- [4] = { // GGML_TYPE_Q4_2
- .type_name = "DEPRECATED",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- },
- [5] = { // GGML_TYPE_Q4_3
- .type_name = "DEPRECATED",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- },
- [GGML_TYPE_Q5_0] = {
- .type_name = "q5_0",
- .blck_size = QK5_0,
- .type_size = sizeof(block_q5_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_0,
- .from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
- },
- [GGML_TYPE_Q5_1] = {
- .type_name = "q5_1",
- .blck_size = QK5_1,
- .type_size = sizeof(block_q5_1),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_1,
- .from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
- },
- [GGML_TYPE_Q8_0] = {
- .type_name = "q8_0",
- .blck_size = QK8_0,
- .type_size = sizeof(block_q8_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q8_0,
- .from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
- },
- [GGML_TYPE_Q8_1] = {
- .type_name = "q8_1",
- .blck_size = QK8_1,
- .type_size = sizeof(block_q8_1),
- .is_quantized = true,
- .from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
- },
- [GGML_TYPE_MXFP4] = {
- .type_name = "mxfp4",
- .blck_size = QK_MXFP4,
- .type_size = sizeof(block_mxfp4),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_mxfp4,
- .from_float_ref = (ggml_from_float_t)quantize_row_mxfp4_ref,
- },
- [GGML_TYPE_Q2_K] = {
- .type_name = "q2_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q2_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q2_K,
- .from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
- },
- [GGML_TYPE_Q3_K] = {
- .type_name = "q3_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q3_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q3_K,
- .from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
- },
- [GGML_TYPE_Q4_K] = {
- .type_name = "q4_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q4_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_K,
- .from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
- },
- [GGML_TYPE_Q5_K] = {
- .type_name = "q5_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q5_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_K,
- .from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
- },
- [GGML_TYPE_Q6_K] = {
- .type_name = "q6_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q6_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q6_K,
- .from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
- },
- [GGML_TYPE_IQ2_XXS] = {
- .type_name = "iq2_xxs",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq2_xxs),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
- .from_float_ref = NULL,
- },
- [GGML_TYPE_IQ2_XS] = {
- .type_name = "iq2_xs",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq2_xs),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
- .from_float_ref = NULL,
- },
- [GGML_TYPE_IQ3_XXS] = {
- .type_name = "iq3_xxs",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq3_xxs),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
- .from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
- },
- [GGML_TYPE_IQ3_S] = {
- .type_name = "iq3_s",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq3_s),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
- .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
- },
- [GGML_TYPE_IQ2_S] = {
- .type_name = "iq2_s",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq2_s),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
- .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
- },
- [GGML_TYPE_IQ1_S] = {
- .type_name = "iq1_s",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq1_s),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
- .from_float_ref = NULL,
- },
- [GGML_TYPE_IQ1_M] = {
- .type_name = "iq1_m",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq1_m),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
- .from_float_ref = NULL,
- },
- [GGML_TYPE_IQ4_NL] = {
- .type_name = "iq4_nl",
- .blck_size = QK4_NL,
- .type_size = sizeof(block_iq4_nl),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
- .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
- },
- [GGML_TYPE_IQ4_XS] = {
- .type_name = "iq4_xs",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq4_xs),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
- .from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
- },
- [GGML_TYPE_Q8_K] = {
- .type_name = "q8_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q8_K),
- .is_quantized = true,
- },
- [GGML_TYPE_BF16] = {
- .type_name = "bf16",
- .blck_size = 1,
- .type_size = sizeof(ggml_bf16_t),
- .is_quantized = false,
- .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
- .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
- },
- [31] = { // GGML_TYPE_Q4_0_4_4
- .type_name = "TYPE_Q4_0_4_4 REMOVED, use Q4_0 with runtime repacking",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- },
- [32] = { // GGML_TYPE_Q4_0_4_8
- .type_name = "TYPE_Q4_0_4_8 REMOVED, use Q4_0 with runtime repacking",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- },
- [33] = { // GGML_TYPE_Q4_0_8_8
- .type_name = "TYPE_Q4_0_8_8 REMOVED, use Q4_0 with runtime repacking",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- },
- [GGML_TYPE_TQ1_0] = {
- .type_name = "tq1_0",
- .blck_size = QK_K,
- .type_size = sizeof(block_tq1_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_tq1_0,
- .from_float_ref = (ggml_from_float_t) quantize_row_tq1_0_ref,
- },
- [GGML_TYPE_TQ2_0] = {
- .type_name = "tq2_0",
- .blck_size = QK_K,
- .type_size = sizeof(block_tq2_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_tq2_0,
- .from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref,
- },
- [36] = { // GGML_TYPE_IQ4_NL_4_4
- .type_name = "TYPE_IQ4_NL_4_4 REMOVED, use IQ4_NL with runtime repacking",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- },
- [37] = { // GGML_TYPE_IQ4_NL_4_8
- .type_name = "TYPE_IQ4_NL_4_8 REMOVED, use IQ4_NL with runtime repacking",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- },
- [38] = { // GGML_TYPE_IQ4_NL_8_8
- .type_name = "TYPE_IQ4_NL_8_8 REMOVED, use IQ4_NL with runtime repacking",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- },
- };
- const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type) {
- GGML_ASSERT(type < GGML_TYPE_COUNT);
- return &type_traits[type];
- }
- //
- // ggml object
- //
- struct ggml_object {
- size_t offs;
- size_t size;
- struct ggml_object * next;
- enum ggml_object_type type;
- char padding[4];
- };
- static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
- //
- // ggml context
- //
- struct ggml_context {
- size_t mem_size;
- void * mem_buffer;
- bool mem_buffer_owned;
- bool no_alloc;
- int n_objects;
- struct ggml_object * objects_begin;
- struct ggml_object * objects_end;
- };
- //
- // data types
- //
- static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
- "NONE",
- "DUP",
- "ADD",
- "ADD_ID",
- "ADD1",
- "ACC",
- "SUB",
- "MUL",
- "DIV",
- "SQR",
- "SQRT",
- "LOG",
- "SIN",
- "COS",
- "SUM",
- "SUM_ROWS",
- "MEAN",
- "ARGMAX",
- "COUNT_EQUAL",
- "REPEAT",
- "REPEAT_BACK",
- "CONCAT",
- "SILU_BACK",
- "NORM",
- "RMS_NORM",
- "RMS_NORM_BACK",
- "GROUP_NORM",
- "L2_NORM",
- "MUL_MAT",
- "MUL_MAT_ID",
- "OUT_PROD",
- "SCALE",
- "SET",
- "CPY",
- "CONT",
- "RESHAPE",
- "VIEW",
- "PERMUTE",
- "TRANSPOSE",
- "GET_ROWS",
- "GET_ROWS_BACK",
- "SET_ROWS",
- "DIAG",
- "DIAG_MASK_INF",
- "DIAG_MASK_ZERO",
- "SOFT_MAX",
- "SOFT_MAX_BACK",
- "ROPE",
- "ROPE_BACK",
- "CLAMP",
- "CONV_TRANSPOSE_1D",
- "IM2COL",
- "IM2COL_BACK",
- "CONV_2D",
- "CONV_2D_DW",
- "CONV_TRANSPOSE_2D",
- "POOL_1D",
- "POOL_2D",
- "POOL_2D_BACK",
- "UPSCALE",
- "PAD",
- "PAD_REFLECT_1D",
- "ROLL",
- "ARANGE",
- "TIMESTEP_EMBEDDING",
- "ARGSORT",
- "LEAKY_RELU",
- "FLASH_ATTN_EXT",
- "FLASH_ATTN_BACK",
- "SSM_CONV",
- "SSM_SCAN",
- "WIN_PART",
- "WIN_UNPART",
- "GET_REL_POS",
- "ADD_REL_POS",
- "RWKV_WKV6",
- "GATED_LINEAR_ATTN",
- "RWKV_WKV7",
- "UNARY",
- "MAP_CUSTOM1",
- "MAP_CUSTOM2",
- "MAP_CUSTOM3",
- "CUSTOM",
- "CROSS_ENTROPY_LOSS",
- "CROSS_ENTROPY_LOSS_BACK",
- "OPT_STEP_ADAMW",
- "GLU",
- };
- static_assert(GGML_OP_COUNT == 87, "GGML_OP_COUNT != 87");
- static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
- "none",
- "x",
- "x+y",
- "x[i]+y",
- "x+y",
- "view(x,nb,offset)+=y->x",
- "x-y",
- "x*y",
- "x/y",
- "x^2",
- "√x",
- "log(x)",
- "sin(x)",
- "cos(x)",
- "Σx",
- "Σx_k",
- "Σx/n",
- "argmax(x)",
- "count_equal(x)",
- "repeat(x)",
- "repeat_back(x)",
- "concat(x, y)",
- "silu_back(x)",
- "norm(x)",
- "rms_norm(x)",
- "rms_norm_back(x)",
- "group_norm(x)",
- "l2_norm(x)",
- "X*Y",
- "X[i]*Y",
- "X*Y",
- "x*v",
- "y-\\>view(x)",
- "x-\\>y",
- "cont(x)",
- "reshape(x)",
- "view(x)",
- "permute(x)",
- "transpose(x)",
- "get_rows(x)",
- "get_rows_back(x)",
- "set_rows(x)",
- "diag(x)",
- "diag_mask_inf(x)",
- "diag_mask_zero(x)",
- "soft_max(x)",
- "soft_max_back(x)",
- "rope(x)",
- "rope_back(x)",
- "clamp(x)",
- "conv_transpose_1d(x)",
- "im2col(x)",
- "im2col_back(x)",
- "conv_2d(x)",
- "conv_2d_dw(x)",
- "conv_transpose_2d(x)",
- "pool_1d(x)",
- "pool_2d(x)",
- "pool_2d_back(x)",
- "upscale(x)",
- "pad(x)",
- "pad_reflect_1d(x)",
- "roll(x)",
- "arange(start, stop, step)",
- "timestep_embedding(timesteps, dim, max_period)",
- "argsort(x)",
- "leaky_relu(x)",
- "flash_attn_ext(x)",
- "flash_attn_back(x)",
- "ssm_conv(x)",
- "ssm_scan(x)",
- "win_part(x)",
- "win_unpart(x)",
- "get_rel_pos(x)",
- "add_rel_pos(x)",
- "rwkv_wkv6(k, v, r, tf, td, s)",
- "gated_linear_attn(k, v, q, gate, s)",
- "rwkv_wkv7(r, w, k, v, a, b, s)",
- "unary(x)",
- "map_custom(x)",
- "map_custom(x,y)",
- "map_custom(x,y,z)",
- "custom(x)",
- "cross_entropy_loss(x,y)",
- "cross_entropy_loss_back(x,y)",
- "adamw(x)",
- "glu(x)",
- };
- static_assert(GGML_OP_COUNT == 87, "GGML_OP_COUNT != 87");
- static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
- static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
- "ABS",
- "SGN",
- "NEG",
- "STEP",
- "TANH",
- "ELU",
- "RELU",
- "SIGMOID",
- "GELU",
- "GELU_QUICK",
- "SILU",
- "HARDSWISH",
- "HARDSIGMOID",
- "EXP",
- "GELU_ERF",
- };
- static_assert(GGML_UNARY_OP_COUNT == 15, "GGML_UNARY_OP_COUNT != 15");
- static const char * GGML_GLU_OP_NAME[GGML_GLU_OP_COUNT] = {
- "REGLU",
- "GEGLU",
- "SWIGLU",
- "SWIGLU_OAI",
- "GEGLU_ERF",
- "GEGLU_QUICK",
- };
- static_assert(GGML_GLU_OP_COUNT == 6, "GGML_GLU_OP_COUNT != 6");
- static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
- static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_print_object(const struct ggml_object * obj) {
- GGML_LOG_INFO(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
- obj->type, obj->offs, obj->size, (const void *) obj->next);
- }
- void ggml_print_objects(const struct ggml_context * ctx) {
- struct ggml_object * obj = ctx->objects_begin;
- GGML_LOG_INFO("%s: objects in context %p:\n", __func__, (const void *) ctx);
- while (obj != NULL) {
- ggml_print_object(obj);
- obj = obj->next;
- }
- GGML_LOG_INFO("%s: --- end ---\n", __func__);
- }
- int64_t ggml_nelements(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
- }
- int64_t ggml_nrows(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
- }
- size_t ggml_nbytes(const struct ggml_tensor * tensor) {
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- if (tensor->ne[i] <= 0) {
- return 0;
- }
- }
- size_t nbytes;
- const size_t blck_size = ggml_blck_size(tensor->type);
- if (blck_size == 1) {
- nbytes = ggml_type_size(tensor->type);
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
- }
- }
- else {
- nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
- for (int i = 1; i < GGML_MAX_DIMS; ++i) {
- nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
- }
- }
- return nbytes;
- }
- size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
- return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
- }
- int64_t ggml_blck_size(enum ggml_type type) {
- return type_traits[type].blck_size;
- }
- size_t ggml_type_size(enum ggml_type type) {
- return type_traits[type].type_size;
- }
- size_t ggml_row_size(enum ggml_type type, int64_t ne) {
- assert(ne % ggml_blck_size(type) == 0);
- return ggml_type_size(type)*ne/ggml_blck_size(type);
- }
- double ggml_type_sizef(enum ggml_type type) {
- return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
- }
- const char * ggml_type_name(enum ggml_type type) {
- return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
- }
- bool ggml_is_quantized(enum ggml_type type) {
- return type_traits[type].is_quantized;
- }
- const char * ggml_op_name(enum ggml_op op) {
- return GGML_OP_NAME[op];
- }
- const char * ggml_op_symbol(enum ggml_op op) {
- return GGML_OP_SYMBOL[op];
- }
- const char * ggml_unary_op_name(enum ggml_unary_op op) {
- return GGML_UNARY_OP_NAME[op];
- }
- const char * ggml_glu_op_name(enum ggml_glu_op op) {
- return GGML_GLU_OP_NAME[op];
- }
- const char * ggml_op_desc(const struct ggml_tensor * t) {
- if (t->op == GGML_OP_UNARY) {
- enum ggml_unary_op uop = ggml_get_unary_op(t);
- return ggml_unary_op_name(uop);
- }
- if (t->op == GGML_OP_GLU) {
- enum ggml_glu_op gop = ggml_get_glu_op(t);
- return ggml_glu_op_name(gop);
- }
- return ggml_op_name(t->op);
- }
- size_t ggml_element_size(const struct ggml_tensor * tensor) {
- return ggml_type_size(tensor->type);
- }
- bool ggml_is_scalar(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- bool ggml_is_vector(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- bool ggml_is_matrix(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- bool ggml_is_3d(const struct ggml_tensor * tensor) {
- return tensor->ne[3] == 1;
- }
- int ggml_n_dims(const struct ggml_tensor * tensor) {
- for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
- if (tensor->ne[i] > 1) {
- return i + 1;
- }
- }
- return 1;
- }
- enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
- enum ggml_type wtype = GGML_TYPE_COUNT;
- switch (ftype) {
- case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
- case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
- case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
- case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
- case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
- case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
- case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
- case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
- case GGML_FTYPE_MOSTLY_MXFP4: wtype = GGML_TYPE_MXFP4; break;
- case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
- case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
- case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
- case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
- case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
- case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
- case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
- case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
- case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
- case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
- case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
- case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
- case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
- case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
- case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
- case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
- }
- GGML_ASSERT(wtype != GGML_TYPE_COUNT);
- return wtype;
- }
- size_t ggml_tensor_overhead(void) {
- return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
- }
- bool ggml_is_transposed(const struct ggml_tensor * tensor) {
- return tensor->nb[0] > tensor->nb[1];
- }
- static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
- size_t next_nb = ggml_type_size(tensor->type);
- if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
- return false;
- }
- next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- if (tensor->ne[i] != 1) {
- if (i > n) {
- if (tensor->nb[i] != next_nb) {
- return false;
- }
- next_nb *= tensor->ne[i];
- } else {
- // this dimension does not need to be contiguous
- next_nb = tensor->ne[i]*tensor->nb[i];
- }
- }
- }
- return true;
- }
- bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
- return ggml_is_contiguous_0(tensor);
- }
- bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
- return ggml_is_contiguous_n(tensor, 0);
- }
- bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
- return ggml_is_contiguous_n(tensor, 1);
- }
- bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
- return ggml_is_contiguous_n(tensor, 2);
- }
- bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor) {
- return ggml_nbytes(tensor) == ggml_nelements(tensor) * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
- }
- bool ggml_is_permuted(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
- }
- bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor) {
- return
- tensor->nb[0] > tensor->nb[2] &&
- tensor->nb[1] > tensor->nb[0] &&
- tensor->nb[2] == ggml_type_size(tensor->type);
- }
- bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor) {
- return
- tensor->ne[0] == ggml_blck_size(tensor->type) ||
- tensor->nb[0] == ggml_type_size(tensor->type);
- }
- static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == ggml_type_size(tensor->type) &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- bool ggml_is_empty(const struct ggml_tensor * tensor) {
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- if (tensor->ne[i] == 0) {
- // empty if any dimension has no elements
- return true;
- }
- }
- return false;
- }
- bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t0->ne[0] == t1->ne[0]) &&
- (t0->ne[1] == t1->ne[1]) &&
- (t0->ne[2] == t1->ne[2]) &&
- (t0->ne[3] == t1->ne[3]);
- }
- bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t0->nb[0] == t1->nb[0]) &&
- (t0->nb[1] == t1->nb[1]) &&
- (t0->nb[2] == t1->nb[2]) &&
- (t0->nb[3] == t1->nb[3]);
- }
- // check if t1 can be represented as a repetition of t0
- bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return ggml_is_empty(t0) ? ggml_is_empty(t1) :
- (t1->ne[0]%t0->ne[0] == 0) &&
- (t1->ne[1]%t0->ne[1] == 0) &&
- (t1->ne[2]%t0->ne[2] == 0) &&
- (t1->ne[3]%t0->ne[3] == 0);
- }
- static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
- }
- // assert that pointer is aligned to GGML_MEM_ALIGN
- #define GGML_ASSERT_ALIGNED(ptr) \
- GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
- ////////////////////////////////////////////////////////////////////////////////
- struct ggml_context * ggml_init(struct ggml_init_params params) {
- static bool is_first_call = true;
- ggml_critical_section_start();
- if (is_first_call) {
- // initialize time system (required on Windows)
- ggml_time_init();
- is_first_call = false;
- }
- ggml_critical_section_end();
- struct ggml_context * ctx = GGML_MALLOC(sizeof(struct ggml_context));
- // allow to call ggml_init with 0 size
- if (params.mem_size == 0) {
- params.mem_size = GGML_MEM_ALIGN;
- }
- const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
- *ctx = (struct ggml_context) {
- /*.mem_size =*/ mem_size,
- /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : ggml_aligned_malloc(mem_size),
- /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
- /*.no_alloc =*/ params.no_alloc,
- /*.n_objects =*/ 0,
- /*.objects_begin =*/ NULL,
- /*.objects_end =*/ NULL,
- };
- GGML_ASSERT(ctx->mem_buffer != NULL);
- GGML_ASSERT_ALIGNED(ctx->mem_buffer);
- GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
- return ctx;
- }
- void ggml_reset(struct ggml_context * ctx) {
- if (ctx == NULL) {
- return;
- }
- ctx->n_objects = 0;
- ctx->objects_begin = NULL;
- ctx->objects_end = NULL;
- }
- void ggml_free(struct ggml_context * ctx) {
- if (ctx == NULL) {
- return;
- }
- if (ctx->mem_buffer_owned) {
- ggml_aligned_free(ctx->mem_buffer, ctx->mem_size);
- }
- GGML_FREE(ctx);
- }
- size_t ggml_used_mem(const struct ggml_context * ctx) {
- return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
- }
- bool ggml_get_no_alloc(struct ggml_context * ctx) {
- return ctx->no_alloc;
- }
- void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
- ctx->no_alloc = no_alloc;
- }
- void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
- return ctx->mem_buffer;
- }
- size_t ggml_get_mem_size(const struct ggml_context * ctx) {
- return ctx->mem_size;
- }
- size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
- size_t max_size = 0;
- for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
- size_t bytes = ggml_nbytes(tensor);
- max_size = MAX(max_size, bytes);
- }
- return max_size;
- }
- ////////////////////////////////////////////////////////////////////////////////
- static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
- // always insert objects at the end of the context's memory pool
- struct ggml_object * obj_cur = ctx->objects_end;
- const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
- const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
- const size_t cur_end = cur_offs + cur_size;
- // align to GGML_MEM_ALIGN
- size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
- char * const mem_buffer = ctx->mem_buffer;
- struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
- if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
- GGML_LOG_WARN("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
- __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
- #ifndef NDEBUG
- GGML_ABORT("not enough space in the context's memory pool");
- #endif
- return NULL;
- }
- *obj_new = (struct ggml_object) {
- .offs = cur_end + GGML_OBJECT_SIZE,
- .size = size_needed,
- .next = NULL,
- .type = type,
- };
- GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
- if (obj_cur != NULL) {
- obj_cur->next = obj_new;
- } else {
- // this is the first object in this context
- ctx->objects_begin = obj_new;
- }
- ctx->objects_end = obj_new;
- //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
- return obj_new;
- }
- static struct ggml_tensor * ggml_new_tensor_impl(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t * ne,
- struct ggml_tensor * view_src,
- size_t view_offs) {
- GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT);
- GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
- // find the base tensor and absolute offset
- if (view_src != NULL && view_src->view_src != NULL) {
- view_offs += view_src->view_offs;
- view_src = view_src->view_src;
- }
- size_t data_size = ggml_row_size(type, ne[0]);
- for (int i = 1; i < n_dims; i++) {
- data_size *= ne[i];
- }
- GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
- void * data = view_src != NULL ? view_src->data : NULL;
- if (data != NULL) {
- data = (char *) data + view_offs;
- }
- size_t obj_alloc_size = 0;
- if (view_src == NULL && !ctx->no_alloc) {
- // allocate tensor data in the context's memory pool
- obj_alloc_size = data_size;
- }
- struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
- GGML_ASSERT(obj_new);
- struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
- *result = (struct ggml_tensor) {
- /*.type =*/ type,
- /*.buffer =*/ NULL,
- /*.ne =*/ { 1, 1, 1, 1 },
- /*.nb =*/ { 0, 0, 0, 0 },
- /*.op =*/ GGML_OP_NONE,
- /*.op_params =*/ { 0 },
- /*.flags =*/ 0,
- /*.src =*/ { NULL },
- /*.view_src =*/ view_src,
- /*.view_offs =*/ view_offs,
- /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
- /*.name =*/ { 0 },
- /*.extra =*/ NULL,
- /*.padding =*/ { 0 },
- };
- // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
- //GGML_ASSERT_ALIGNED(result->data);
- for (int i = 0; i < n_dims; i++) {
- result->ne[i] = ne[i];
- }
- result->nb[0] = ggml_type_size(type);
- result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
- for (int i = 2; i < GGML_MAX_DIMS; i++) {
- result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
- }
- ctx->n_objects++;
- return result;
- }
- struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t * ne) {
- return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
- }
- struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0) {
- return ggml_new_tensor(ctx, type, 1, &ne0);
- }
- struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1) {
- const int64_t ne[2] = { ne0, ne1 };
- return ggml_new_tensor(ctx, type, 2, ne);
- }
- struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- const int64_t ne[3] = { ne0, ne1, ne2 };
- return ggml_new_tensor(ctx, type, 3, ne);
- }
- struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- return ggml_new_tensor(ctx, type, 4, ne);
- }
- void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes) {
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, nbytes);
- return (uint8_t *)ctx->mem_buffer + obj->offs;
- }
- struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
- return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
- }
- void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
- const int64_t ne2 = tensor->ne[2];
- const int64_t ne1 = tensor->ne[1];
- const int64_t ne0 = tensor->ne[0];
- const int64_t i3_ = (i/(ne2*ne1*ne0));
- const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
- const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
- const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
- if (i0) {
- * i0 = i0_;
- }
- if (i1) {
- * i1 = i1_;
- }
- if (i2) {
- * i2 = i2_;
- }
- if (i3) {
- * i3 = i3_;
- }
- }
- void * ggml_get_data(const struct ggml_tensor * tensor) {
- return tensor->data;
- }
- float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
- assert(tensor->type == GGML_TYPE_F32);
- return (float *)(tensor->data);
- }
- enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
- GGML_ASSERT(tensor->op == GGML_OP_UNARY);
- return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
- }
- enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor) {
- GGML_ASSERT(tensor->op == GGML_OP_GLU);
- return (enum ggml_glu_op) ggml_get_op_params_i32(tensor, 0);
- }
- const char * ggml_get_name(const struct ggml_tensor * tensor) {
- return tensor->name;
- }
- struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
- size_t i;
- for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
- tensor->name[i] = name[i];
- }
- tensor->name[i] = '\0';
- return tensor;
- }
- struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
- va_list args;
- va_start(args, fmt);
- vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
- va_end(args);
- return tensor;
- }
- struct ggml_tensor * ggml_view_tensor(
- struct ggml_context * ctx,
- struct ggml_tensor * src) {
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
- ggml_format_name(result, "%s (view)", src->name);
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- result->nb[i] = src->nb[i];
- }
- return result;
- }
- struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
- struct ggml_object * obj = ctx->objects_begin;
- char * const mem_buffer = ctx->mem_buffer;
- while (obj != NULL) {
- if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
- return (struct ggml_tensor *)(mem_buffer + obj->offs);
- }
- obj = obj->next;
- }
- return NULL;
- }
- struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
- struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
- obj = obj->next;
- char * const mem_buffer = ctx->mem_buffer;
- while (obj != NULL) {
- if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
- return (struct ggml_tensor *)(mem_buffer + obj->offs);
- }
- obj = obj->next;
- }
- return NULL;
- }
- struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
- struct ggml_object * obj = ctx->objects_begin;
- char * const mem_buffer = ctx->mem_buffer;
- while (obj != NULL) {
- if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
- struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
- if (strcmp(cur->name, name) == 0) {
- return cur;
- }
- }
- obj = obj->next;
- }
- return NULL;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // ggml_dup
- static struct ggml_tensor * ggml_dup_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_DUP;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_dup_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, true);
- }
- // ggml_add
- static struct ggml_tensor * ggml_add_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_can_repeat(b, a));
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ADD;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_add_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, true);
- }
- // ggml_add_cast
- static struct ggml_tensor * ggml_add_cast_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_type type) {
- // TODO: support less-strict constraint
- // GGML_ASSERT(ggml_can_repeat(b, a));
- GGML_ASSERT(ggml_can_repeat_rows(b, a));
- // currently only supported for quantized input and f16
- GGML_ASSERT(ggml_is_quantized(a->type) ||
- a->type == GGML_TYPE_F16 ||
- a->type == GGML_TYPE_BF16);
- struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
- result->op = GGML_OP_ADD;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_add_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_type type) {
- return ggml_add_cast_impl(ctx, a, b, type);
- }
- struct ggml_tensor * ggml_add_id(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * ids) {
- GGML_ASSERT(a->ne[0] == b->ne[0]);
- GGML_ASSERT(a->ne[1] == ids->ne[0]);
- GGML_ASSERT(a->ne[2] == ids->ne[1]);
- GGML_ASSERT(ids->type == GGML_TYPE_I32);
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ADD_ID;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = ids;
- return result;
- }
- // ggml_add1
- static struct ggml_tensor * ggml_add1_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_is_scalar(b));
- GGML_ASSERT(ggml_is_padded_1d(a));
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ADD1;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_add1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add1_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_add1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add1_impl(ctx, a, b, true);
- }
- // ggml_acc
- static struct ggml_tensor * ggml_acc_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- GGML_ASSERT(b->type == GGML_TYPE_F32);
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_ACC;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_acc(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
- }
- struct ggml_tensor * ggml_acc_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
- }
- // ggml_sub
- static struct ggml_tensor * ggml_sub_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_can_repeat(b, a));
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SUB;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_sub_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, true);
- }
- // ggml_mul
- static struct ggml_tensor * ggml_mul_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_can_repeat(b, a));
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_MUL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_mul_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, true);
- }
- // ggml_div
- static struct ggml_tensor * ggml_div_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_can_repeat(b, a));
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_DIV;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_div_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, true);
- }
- // ggml_sqr
- static struct ggml_tensor * ggml_sqr_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SQR;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sqr_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, true);
- }
- // ggml_sqrt
- static struct ggml_tensor * ggml_sqrt_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SQRT;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sqrt_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, true);
- }
- // ggml_log
- static struct ggml_tensor * ggml_log_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_LOG;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_log(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_log_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_log_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_log_impl(ctx, a, true);
- }
- // ggml_sin
- static struct ggml_tensor * ggml_sin_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SIN;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_sin(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sin_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sin_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sin_impl(ctx, a, true);
- }
- // ggml_cos
- static struct ggml_tensor * ggml_cos_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_COS;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_cos(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_cos_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_cos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_cos_impl(ctx, a, true);
- }
- // ggml_sum
- struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
- result->op = GGML_OP_SUM;
- result->src[0] = a;
- return result;
- }
- // ggml_sum_rows
- struct ggml_tensor * ggml_sum_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- int64_t ne[GGML_MAX_DIMS] = { 1 };
- for (int i = 1; i < GGML_MAX_DIMS; ++i) {
- ne[i] = a->ne[i];
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
- result->op = GGML_OP_SUM_ROWS;
- result->src[0] = a;
- return result;
- }
- // ggml_mean
- struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- result->op = GGML_OP_MEAN;
- result->src[0] = a;
- return result;
- }
- // ggml_argmax
- struct ggml_tensor * ggml_argmax(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- GGML_ASSERT(ggml_is_matrix(a));
- GGML_ASSERT(a->ne[0] <= INT32_MAX);
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
- result->op = GGML_OP_ARGMAX;
- result->src[0] = a;
- return result;
- }
- // ggml_count_equal
- struct ggml_tensor * ggml_count_equal(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, 1);
- result->op = GGML_OP_COUNT_EQUAL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_repeat
- struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_repeat(a, b));
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
- result->op = GGML_OP_REPEAT;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_repeat_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
- const bool can_repeat = ggml_is_empty(a) || (
- (ne0 % a->ne[0] == 0) &&
- (ne1 % a->ne[1] == 0) &&
- (ne2 % a->ne[2] == 0) &&
- (ne3 % a->ne[3] == 0)
- );
- GGML_ASSERT(can_repeat);
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
- result->op = GGML_OP_REPEAT;
- result->src[0] = a;
- return result;
- }
- // ggml_repeat_back
- struct ggml_tensor * ggml_repeat_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_repeat(b, a));
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
- result->op = GGML_OP_REPEAT_BACK;
- result->src[0] = a;
- return result;
- }
- // ggml_concat
- struct ggml_tensor * ggml_concat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int dim) {
- GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
- GGML_ASSERT(a->type == b->type);
- int64_t ne[GGML_MAX_DIMS];
- for (int d = 0; d < GGML_MAX_DIMS; ++d) {
- if (d == dim) {
- ne[d] = a->ne[d] + b->ne[d];
- continue;
- }
- GGML_ASSERT(a->ne[d] == b->ne[d]);
- ne[d] = a->ne[d];
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
- ggml_set_op_params_i32(result, 0, dim);
- result->op = GGML_OP_CONCAT;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_abs
- struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
- }
- struct ggml_tensor * ggml_abs_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
- }
- // ggml_sgn
- struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
- }
- struct ggml_tensor * ggml_sgn_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
- }
- // ggml_neg
- struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
- }
- struct ggml_tensor * ggml_neg_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
- }
- // ggml_step
- struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
- }
- struct ggml_tensor * ggml_step_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
- }
- // ggml_tanh
- struct ggml_tensor * ggml_tanh(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
- }
- struct ggml_tensor * ggml_tanh_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
- }
- // ggml_elu
- struct ggml_tensor * ggml_elu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
- }
- struct ggml_tensor * ggml_elu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
- }
- // ggml_relu
- struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
- }
- struct ggml_tensor * ggml_relu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
- }
- // ggml_leaky_relu
- struct ggml_tensor * ggml_leaky_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float negative_slope,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
- result->op = GGML_OP_LEAKY_RELU;
- result->src[0] = a;
- return result;
- }
- // ggml_sigmoid
- struct ggml_tensor * ggml_sigmoid(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
- }
- struct ggml_tensor * ggml_sigmoid_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
- }
- // ggml_gelu
- struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
- }
- struct ggml_tensor * ggml_gelu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
- }
- // ggml_gelu_erf
- struct ggml_tensor * ggml_gelu_erf(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_ERF);
- }
- struct ggml_tensor * ggml_gelu_erf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_ERF);
- }
- // ggml_gelu_quick
- struct ggml_tensor * ggml_gelu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
- }
- struct ggml_tensor * ggml_gelu_quick_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
- }
- // ggml_silu
- struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
- }
- struct ggml_tensor * ggml_silu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
- }
- // ggml_silu_back
- struct ggml_tensor * ggml_silu_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SILU_BACK;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml hardswish
- struct ggml_tensor * ggml_hardswish(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
- }
- // ggml hardsigmoid
- struct ggml_tensor * ggml_hardsigmoid(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
- }
- // ggml exp
- struct ggml_tensor * ggml_exp(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_EXP);
- }
- struct ggml_tensor * ggml_exp_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP);
- }
- // ggml_glu
- static struct ggml_tensor * ggml_glu_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_glu_op op,
- bool swapped) {
- GGML_ASSERT(ggml_is_contiguous_1(a));
- if (b) {
- GGML_ASSERT(ggml_is_contiguous_1(b));
- GGML_ASSERT(ggml_are_same_shape(a, b));
- GGML_ASSERT(a->type == b->type);
- }
- int64_t ne[GGML_MAX_DIMS] = { a->ne[0] / 2 }; for (int i = 1; i < GGML_MAX_DIMS; i++) ne[i] = a->ne[i];
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b ? a->ne : ne, NULL, 0);
- ggml_set_op_params_i32(result, 0, (int32_t) op);
- ggml_set_op_params_i32(result, 1, (int32_t) swapped);
- result->op = GGML_OP_GLU;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_glu(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_glu_op op,
- bool swapped) {
- return ggml_glu_impl(ctx, a, NULL, op, swapped);
- }
- struct ggml_tensor * ggml_glu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_glu_op op) {
- return ggml_glu_impl(ctx, a, b, op, false);
- }
- // ggml_reglu
- struct ggml_tensor * ggml_reglu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_REGLU, false);
- }
- struct ggml_tensor * ggml_reglu_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_REGLU, true);
- }
- struct ggml_tensor * ggml_reglu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_REGLU, false);
- }
- // ggml_geglu
- struct ggml_tensor * ggml_geglu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU, false);
- }
- struct ggml_tensor * ggml_geglu_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU, true);
- }
- struct ggml_tensor * ggml_geglu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_GEGLU, false);
- }
- // ggml_swiglu
- struct ggml_tensor * ggml_swiglu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_SWIGLU, false);
- }
- struct ggml_tensor * ggml_swiglu_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_SWIGLU, true);
- }
- struct ggml_tensor * ggml_swiglu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_SWIGLU, false);
- }
- // ggml_geglu_erf
- struct ggml_tensor * ggml_geglu_erf(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_ERF, false);
- }
- struct ggml_tensor * ggml_geglu_erf_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_ERF, true);
- }
- struct ggml_tensor * ggml_geglu_erf_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_GEGLU_ERF, false);
- }
- // ggml_geglu_quick
- struct ggml_tensor * ggml_geglu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_QUICK, false);
- }
- struct ggml_tensor * ggml_geglu_quick_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_glu_impl(ctx, a, NULL, GGML_GLU_OP_GEGLU_QUICK, true);
- }
- struct ggml_tensor * ggml_geglu_quick_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_GEGLU_QUICK, false);
- }
- struct ggml_tensor * ggml_swiglu_oai(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float alpha,
- float limit) {
- struct ggml_tensor * result = ggml_glu_impl(ctx, a, b, GGML_GLU_OP_SWIGLU_OAI, false);
- ggml_set_op_params_f32(result, 2, alpha);
- ggml_set_op_params_f32(result, 3, limit);
- return result;
- }
- // ggml_norm
- static struct ggml_tensor * ggml_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &eps, sizeof(eps));
- result->op = GGML_OP_NORM;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_norm_impl(ctx, a, eps, false);
- }
- struct ggml_tensor * ggml_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_norm_impl(ctx, a, eps, true);
- }
- // ggml_rms_norm
- static struct ggml_tensor * ggml_rms_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &eps, sizeof(eps));
- result->op = GGML_OP_RMS_NORM;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_rms_norm_impl(ctx, a, eps, false);
- }
- struct ggml_tensor * ggml_rms_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_rms_norm_impl(ctx, a, eps, true);
- }
- // ggml_rms_norm_back
- struct ggml_tensor * ggml_rms_norm_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float eps) {
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &eps, sizeof(eps));
- result->op = GGML_OP_RMS_NORM_BACK;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_group_norm
- static struct ggml_tensor * ggml_group_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- float eps,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params_i32(result, 0, n_groups);
- ggml_set_op_params_f32(result, 1, eps);
- result->op = GGML_OP_GROUP_NORM;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_group_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- float eps) {
- return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
- }
- struct ggml_tensor * ggml_group_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- float eps) {
- return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
- }
- // ggml_l2_norm
- static struct ggml_tensor * ggml_l2_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params_f32(result, 0, eps);
- result->op = GGML_OP_L2_NORM;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_l2_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_l2_norm_impl(ctx, a, eps, false);
- }
- struct ggml_tensor * ggml_l2_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_l2_norm_impl(ctx, a, eps, true);
- }
- // ggml_mul_mat
- static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (t0->ne[0] == t1->ne[0]) &&
- (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
- (t1->ne[3]%t0->ne[3] == 0);
- }
- struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_mul_mat(a, b));
- GGML_ASSERT(!ggml_is_transposed(a));
- const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- result->op = GGML_OP_MUL_MAT;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- void ggml_mul_mat_set_prec(
- struct ggml_tensor * a,
- enum ggml_prec prec) {
- GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
- const int32_t prec_i32 = (int32_t) prec;
- ggml_set_op_params_i32(a, 0, prec_i32);
- }
- // ggml_mul_mat_id
- /*
- c = ggml_mul_mat_id(ctx, as, b, ids);
- as -> [cols, rows, n_expert]
- b -> [cols, n_expert_used, n_tokens]
- ids -> [n_expert_used, n_tokens] (i32)
- c -> [rows, n_expert_used, n_tokens]
- in b, n_expert_used can be broadcasted to match the n_expert_used of ids
- c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
- */
- struct ggml_tensor * ggml_mul_mat_id(
- struct ggml_context * ctx,
- struct ggml_tensor * as,
- struct ggml_tensor * b,
- struct ggml_tensor * ids) {
- GGML_ASSERT(!ggml_is_transposed(as));
- GGML_ASSERT(ids->type == GGML_TYPE_I32);
- GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
- GGML_ASSERT(b->ne[3] == 1); // b is 3d
- GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
- GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
- GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
- GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
- const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- result->op = GGML_OP_MUL_MAT_ID;
- result->src[0] = as;
- result->src[1] = b;
- result->src[2] = ids;
- return result;
- }
- // ggml_out_prod
- static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (t0->ne[1] == t1->ne[1]) &&
- (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
- (t1->ne[3]%t0->ne[3] == 0);
- }
- struct ggml_tensor * ggml_out_prod(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_out_prod(a, b));
- GGML_ASSERT(!ggml_is_transposed(a));
- // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
- const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- result->op = GGML_OP_OUT_PROD;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_scale
- static struct ggml_tensor * ggml_scale_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s,
- float b,
- bool inplace) {
- GGML_ASSERT(ggml_is_padded_1d(a));
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- float params[2] = { s, b };
- ggml_set_op_params(result, ¶ms, sizeof(params));
- result->op = GGML_OP_SCALE;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s) {
- return ggml_scale_impl(ctx, a, s, 0.0, false);
- }
- struct ggml_tensor * ggml_scale_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s) {
- return ggml_scale_impl(ctx, a, s, 0.0, true);
- }
- struct ggml_tensor * ggml_scale_bias(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s,
- float b) {
- return ggml_scale_impl(ctx, a, s, b, false);
- }
- struct ggml_tensor * ggml_scale_bias_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s,
- float b) {
- return ggml_scale_impl(ctx, a, s, b, true);
- }
- // ggml_set
- static struct ggml_tensor * ggml_set_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
- // make a view of the destination
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- GGML_ASSERT(offset < (size_t)(1 << 30));
- int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_SET;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_set(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
- }
- struct ggml_tensor * ggml_set_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
- }
- struct ggml_tensor * ggml_set_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
- }
- struct ggml_tensor * ggml_set_1d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
- }
- struct ggml_tensor * ggml_set_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
- }
- struct ggml_tensor * ggml_set_2d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
- }
- // ggml_cpy
- static struct ggml_tensor * ggml_cpy_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
- // make a view of the destination
- struct ggml_tensor * result = ggml_view_tensor(ctx, b);
- if (strlen(b->name) > 0) {
- ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
- } else {
- ggml_format_name(result, "%s (copy)", a->name);
- }
- result->op = GGML_OP_CPY;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_cpy_impl(ctx, a, b);
- }
- struct ggml_tensor * ggml_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_type type) {
- struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
- ggml_format_name(result, "%s (copy)", a->name);
- result->op = GGML_OP_CPY;
- result->src[0] = a;
- result->src[1] = result;
- return result;
- }
- // ggml_cont
- static struct ggml_tensor * ggml_cont_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- ggml_format_name(result, "%s (cont)", a->name);
- result->op = GGML_OP_CONT;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_cont(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_cont_impl(ctx, a);
- }
- // make contiguous, with new shape
- GGML_API struct ggml_tensor * ggml_cont_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0) {
- return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
- }
- GGML_API struct ggml_tensor * ggml_cont_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1) {
- return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
- }
- GGML_API struct ggml_tensor * ggml_cont_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
- }
- struct ggml_tensor * ggml_cont_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
- ggml_format_name(result, "%s (cont)", a->name);
- result->op = GGML_OP_CONT;
- result->src[0] = a;
- return result;
- }
- // ggml_reshape
- struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_contiguous(a));
- // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0);
- const int64_t ne[1] = { ne0 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
- const int64_t ne[2] = { ne0, ne1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
- const int64_t ne[3] = { ne0, ne1, ne2 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->src[0] = a;
- return result;
- }
- static struct ggml_tensor * ggml_view_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_dims,
- const int64_t * ne,
- size_t offset) {
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
- ggml_format_name(result, "%s (view)", a->name);
- ggml_set_op_params(result, &offset, sizeof(offset));
- result->op = GGML_OP_VIEW;
- result->src[0] = a;
- return result;
- }
- // ggml_view_1d
- struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- size_t offset) {
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
- return result;
- }
- // ggml_view_2d
- struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- size_t nb1,
- size_t offset) {
- const int64_t ne[2] = { ne0, ne1 };
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
- result->nb[1] = nb1;
- result->nb[2] = result->nb[1]*ne1;
- result->nb[3] = result->nb[2];
- return result;
- }
- // ggml_view_3d
- struct ggml_tensor * ggml_view_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- size_t nb1,
- size_t nb2,
- size_t offset) {
- const int64_t ne[3] = { ne0, ne1, ne2 };
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
- result->nb[1] = nb1;
- result->nb[2] = nb2;
- result->nb[3] = result->nb[2]*ne2;
- return result;
- }
- // ggml_view_4d
- struct ggml_tensor * ggml_view_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
- result->nb[1] = nb1;
- result->nb[2] = nb2;
- result->nb[3] = nb3;
- return result;
- }
- // ggml_permute
- struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3) {
- GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
- GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
- GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
- GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
- GGML_ASSERT(axis0 != axis1);
- GGML_ASSERT(axis0 != axis2);
- GGML_ASSERT(axis0 != axis3);
- GGML_ASSERT(axis1 != axis2);
- GGML_ASSERT(axis1 != axis3);
- GGML_ASSERT(axis2 != axis3);
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- ggml_format_name(result, "%s (permuted)", a->name);
- int ne[GGML_MAX_DIMS];
- int nb[GGML_MAX_DIMS];
- ne[axis0] = a->ne[0];
- ne[axis1] = a->ne[1];
- ne[axis2] = a->ne[2];
- ne[axis3] = a->ne[3];
- nb[axis0] = a->nb[0];
- nb[axis1] = a->nb[1];
- nb[axis2] = a->nb[2];
- nb[axis3] = a->nb[3];
- result->ne[0] = ne[0];
- result->ne[1] = ne[1];
- result->ne[2] = ne[2];
- result->ne[3] = ne[3];
- result->nb[0] = nb[0];
- result->nb[1] = nb[1];
- result->nb[2] = nb[2];
- result->nb[3] = nb[3];
- result->op = GGML_OP_PERMUTE;
- result->src[0] = a;
- int32_t params[] = { axis0, axis1, axis2, axis3 };
- ggml_set_op_params(result, params, sizeof(params));
- return result;
- }
- // ggml_transpose
- struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- ggml_format_name(result, "%s (transposed)", a->name);
- result->ne[0] = a->ne[1];
- result->ne[1] = a->ne[0];
- result->nb[0] = a->nb[1];
- result->nb[1] = a->nb[0];
- result->op = GGML_OP_TRANSPOSE;
- result->src[0] = a;
- return result;
- }
- // ggml_get_rows
- struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(a->ne[2] == b->ne[1]);
- GGML_ASSERT(b->ne[3] == 1);
- GGML_ASSERT(b->type == GGML_TYPE_I32);
- // TODO: implement non F32 return
- enum ggml_type type = GGML_TYPE_F32;
- if (a->type == GGML_TYPE_I32) {
- type = a->type;
- }
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
- result->op = GGML_OP_GET_ROWS;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_get_rows_back
- struct ggml_tensor * ggml_get_rows_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c) {
- GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
- // TODO: implement non F32 return
- //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
- struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
- result->op = GGML_OP_GET_ROWS_BACK;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_set_rows
- struct ggml_tensor * ggml_set_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c) {
- GGML_ASSERT(a->ne[0] == b->ne[0]);
- GGML_ASSERT(a->ne[2] == b->ne[2]);
- GGML_ASSERT(a->ne[3] == b->ne[3]);
- GGML_ASSERT(b->ne[1] == c->ne[0]);
- GGML_ASSERT(b->ne[2] % c->ne[1] == 0);
- GGML_ASSERT(b->ne[3] % c->ne[2] == 0);
- GGML_ASSERT(c->ne[3] == 1);
- GGML_ASSERT(b->type == GGML_TYPE_F32);
- GGML_ASSERT(c->type == GGML_TYPE_I64);
- GGML_ASSERT(ggml_is_contiguous_rows(a));
- GGML_ASSERT(ggml_is_contiguous_rows(b));
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- result->op = GGML_OP_SET_ROWS;
- result->src[0] = b;
- result->src[1] = c;
- return result;
- }
- // ggml_diag
- struct ggml_tensor * ggml_diag(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- GGML_ASSERT(a->ne[1] == 1);
- const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
- result->op = GGML_OP_DIAG;
- result->src[0] = a;
- return result;
- }
- // ggml_diag_mask_inf
- static struct ggml_tensor * ggml_diag_mask_inf_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[] = { n_past };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_DIAG_MASK_INF;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
- }
- struct ggml_tensor * ggml_diag_mask_inf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
- }
- // ggml_diag_mask_zero
- static struct ggml_tensor * ggml_diag_mask_zero_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[] = { n_past };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_DIAG_MASK_ZERO;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_diag_mask_zero(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
- }
- struct ggml_tensor * ggml_diag_mask_zero_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
- }
- // ggml_soft_max
- static struct ggml_tensor * ggml_soft_max_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * mask,
- float scale,
- float max_bias,
- bool inplace) {
- GGML_ASSERT(ggml_is_contiguous(a));
- if (mask) {
- GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_is_contiguous(mask));
- GGML_ASSERT(mask->ne[0] == a->ne[0]);
- GGML_ASSERT(mask->ne[1] >= a->ne[1]);
- GGML_ASSERT(a->ne[2]%mask->ne[2] == 0);
- GGML_ASSERT(a->ne[3]%mask->ne[3] == 0);
- }
- if (max_bias > 0.0f) {
- GGML_ASSERT(mask);
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- float params[] = { scale, max_bias };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_SOFT_MAX;
- result->src[0] = a;
- result->src[1] = mask;
- return result;
- }
- struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
- }
- struct ggml_tensor * ggml_soft_max_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
- }
- struct ggml_tensor * ggml_soft_max_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * mask,
- float scale,
- float max_bias) {
- return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
- }
- void ggml_soft_max_add_sinks(
- struct ggml_tensor * a,
- struct ggml_tensor * sinks) {
- if (!sinks) {
- a->src[2] = NULL;
- return;
- }
- GGML_ASSERT(a->op == GGML_OP_SOFT_MAX);
- GGML_ASSERT(a->src[2] == NULL);
- GGML_ASSERT(a->src[0]->ne[2] == sinks->ne[0]);
- GGML_ASSERT(sinks->type == GGML_TYPE_F32);
- a->src[2] = sinks;
- }
- // ggml_soft_max_ext_back
- static struct ggml_tensor * ggml_soft_max_ext_back_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float scale,
- float max_bias,
- bool inplace) {
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SOFT_MAX_BACK;
- result->src[0] = a;
- result->src[1] = b;
- memcpy((float *) result->op_params + 0, &scale, sizeof(float));
- memcpy((float *) result->op_params + 1, &max_bias, sizeof(float));
- return result;
- }
- struct ggml_tensor * ggml_soft_max_ext_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float scale,
- float max_bias) {
- return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, false);
- }
- struct ggml_tensor * ggml_soft_max_ext_back_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float scale,
- float max_bias) {
- return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, true);
- }
- // ggml_rope
- static struct ggml_tensor * ggml_rope_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow,
- bool inplace) {
- GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
- GGML_ASSERT(ggml_is_vector(b));
- GGML_ASSERT(b->type == GGML_TYPE_I32);
- GGML_ASSERT(a->ne[2] == b->ne[0]);
- if (c) {
- GGML_ASSERT(c->type == GGML_TYPE_F32);
- GGML_ASSERT(c->ne[0] >= n_dims / 2);
- }
- int sections[4] = {0, 0, 0, 0};
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[15] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
- memcpy(params + 5, &freq_base, sizeof(float));
- memcpy(params + 6, &freq_scale, sizeof(float));
- memcpy(params + 7, &ext_factor, sizeof(float));
- memcpy(params + 8, &attn_factor, sizeof(float));
- memcpy(params + 9, &beta_fast, sizeof(float));
- memcpy(params + 10, &beta_slow, sizeof(float));
- memcpy(params + 11, §ions, sizeof(int)*4);
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_ROPE;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
- return result;
- }
- struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode) {
- return ggml_rope_impl(
- ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
- );
- }
- struct ggml_tensor * ggml_rope_multi(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int sections[4],
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- // Multimodal Rotary Position Embedding
- GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
- GGML_ASSERT(ggml_is_vector(b));
- GGML_ASSERT(b->type == GGML_TYPE_I32);
- GGML_ASSERT(a->ne[2] * 4 == b->ne[0]); // mrope expecting 4 position ids per token
- if (c) {
- GGML_ASSERT(c->type == GGML_TYPE_F32);
- GGML_ASSERT(c->ne[0] >= n_dims / 2);
- }
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- int32_t params[11 + 4] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
- memcpy(params + 5, &freq_base, sizeof(float));
- memcpy(params + 6, &freq_scale, sizeof(float));
- memcpy(params + 7, &ext_factor, sizeof(float));
- memcpy(params + 8, &attn_factor, sizeof(float));
- memcpy(params + 9, &beta_fast, sizeof(float));
- memcpy(params + 10, &beta_slow, sizeof(float));
- memcpy(¶ms[11], sections, sizeof(int)*4);
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_ROPE;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
- return result;
- }
- struct ggml_tensor * ggml_rope_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode) {
- return ggml_rope_impl(
- ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
- );
- }
- struct ggml_tensor * ggml_rope_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- return ggml_rope_impl(
- ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow, false
- );
- }
- struct ggml_tensor * ggml_rope_ext_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- return ggml_rope_impl(
- ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow, true
- );
- }
- struct ggml_tensor * ggml_rope_custom(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- return ggml_rope_impl(
- ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow, false
- );
- }
- struct ggml_tensor * ggml_rope_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- return ggml_rope_impl(
- ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow, true
- );
- }
- // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
- // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
- static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
- return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
- }
- void ggml_rope_yarn_corr_dims(
- int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
- ) {
- // start and end correction dims
- float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
- float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
- dims[0] = MAX(0, start);
- dims[1] = MIN(n_dims - 1, end);
- }
- // ggml_rope_back
- struct ggml_tensor * ggml_rope_ext_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- struct ggml_tensor * result = ggml_rope_ext(
- ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
- result->op = GGML_OP_ROPE_BACK;
- return result;
- }
- struct ggml_tensor * ggml_rope_multi_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int sections[4],
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- struct ggml_tensor * result = ggml_rope_multi(
- ctx, a, b, c, n_dims, sections, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
- result->op = GGML_OP_ROPE_BACK;
- return result;
- }
- // ggml_clamp
- struct ggml_tensor * ggml_clamp(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float min,
- float max) {
- // TODO: when implement backward, fix this:
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- float params[] = { min, max };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_CLAMP;
- result->src[0] = a;
- return result;
- }
- static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
- return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
- }
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- // a: [OC,IC, KH, KW]
- // b: [N, IC, IH, IW]
- // result: [N, OH, OW, IC*KH*KW]
- struct ggml_tensor * ggml_im2col(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1,
- bool is_2D,
- enum ggml_type dst_type) {
- if (is_2D) {
- GGML_ASSERT(a->ne[2] == b->ne[2]);
- } else {
- //GGML_ASSERT(b->ne[1] % a->ne[1] == 0);
- GGML_ASSERT(b->ne[1] == a->ne[1]);
- GGML_ASSERT(b->ne[3] == 1);
- }
- const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
- const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
- GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a");
- GGML_ASSERT((OW > 0) && "b too small compared to a");
- const int64_t ne[4] = {
- is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
- OW,
- is_2D ? OH : b->ne[2],
- is_2D ? b->ne[3] : 1,
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
- int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_IM2COL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_im2col_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int64_t * ne,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1,
- bool is_2D) {
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_IM2COL_BACK;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_conv_1d
- struct ggml_tensor * ggml_conv_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int p0,
- int d0) {
- struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
- struct ggml_tensor * result =
- ggml_mul_mat(ctx,
- ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
- ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
- result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
- return result;
- }
- // ggml_conv_1d_ph
- struct ggml_tensor* ggml_conv_1d_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s,
- int d) {
- return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
- }
- // ggml_conv_1d_dw
- struct ggml_tensor * ggml_conv_1d_dw(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int p0,
- int d0) {
- struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], 1, a->ne[1], a->ne[2]);
- struct ggml_tensor * new_b = ggml_reshape_4d(ctx, b, b->ne[0], 1, b->ne[1], b->ne[2]);
- struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, new_b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16);
- struct ggml_tensor * result = ggml_mul_mat(ctx, im2col, a);
- result = ggml_reshape_3d(ctx, result, b->ne[0], b->ne[1], 1);
- return result;
- }
- // ggml_conv_1d_dw_ph
- struct ggml_tensor * ggml_conv_1d_dw_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int d0) {
- return ggml_conv_1d_dw(ctx, a, b, s0, a->ne[0] / 2, d0);
- }
- // ggml_conv_transpose_1d
- static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
- return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
- }
- GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int p0,
- int d0) {
- GGML_ASSERT(ggml_is_matrix(b));
- GGML_ASSERT(a->ne[2] == b->ne[1]);
- GGML_ASSERT(a->ne[3] == 1);
- GGML_ASSERT(p0 == 0);
- GGML_ASSERT(d0 == 1);
- const int64_t ne[4] = {
- ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
- a->ne[1], b->ne[2], 1,
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- int32_t params[] = { s0, p0, d0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_CONV_TRANSPOSE_1D;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_conv_2d
- // a: [OC,IC, KH, KW]
- // b: [N, IC, IH, IW]
- // result: [N, OC, OH, OW]
- struct ggml_tensor * ggml_conv_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1) {
- struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); // [N, OH, OW, IC * KH * KW]
- struct ggml_tensor * result =
- ggml_mul_mat(ctx,
- ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
- ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
- result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
- result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
- return result;
- }
- // ggml_conv_2d_sk_p0
- struct ggml_tensor * ggml_conv_2d_sk_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
- }
- // ggml_conv_2d_s1_ph
- struct ggml_tensor * ggml_conv_2d_s1_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
- }
- // ggml_conv_2d_dw
- struct ggml_tensor * ggml_conv_2d_dw(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1) {
- struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
- struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
- ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
- s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
- struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
- new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
- struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
- result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
- return result;
- }
- // ggml_conv_2d_dw_direct
- struct ggml_tensor * ggml_conv_2d_dw_direct(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int stride0,
- int stride1,
- int pad0,
- int pad1,
- int dilation0,
- int dilation1) {
- GGML_ASSERT(a->ne[2] == 1);
- GGML_ASSERT(a->ne[3] == b->ne[2]);
- int64_t ne[4];
- ne[0] = ggml_calc_conv_output_size(b->ne[0], a->ne[0], stride0, pad0, dilation0);
- ne[1] = ggml_calc_conv_output_size(b->ne[1], a->ne[1], stride1, pad1, dilation1);
- ne[2] = b->ne[2];
- ne[3] = b->ne[3];
- struct ggml_tensor * result = ggml_new_tensor(ctx, b->type, 4, ne);
- if (ggml_is_contiguous_channels(b)) {
- // Result will be permuted the same way as input (CWHN order)
- const int64_t type_size = ggml_type_size(result->type);
- GGML_ASSERT(ggml_blck_size(result->type) == 1);
- result->nb[0] = result->ne[2] * type_size;
- result->nb[1] = result->ne[0] * result->nb[0];
- result->nb[2] = type_size;
- }
- int32_t params[] = { stride0, stride1, pad0, pad1, dilation0, dilation1 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_CONV_2D_DW;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_conv_2d_direct
- struct ggml_tensor * ggml_conv_2d_direct(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel [KW, KH, IC, OC]
- struct ggml_tensor * b, // input data [W, H, C, N]
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1) {// dilation dimension 1
- GGML_ASSERT(a->ne[2] == b->ne[2]);
- //GGML_ASSERT(a->type == b->type);
- int64_t ne[4];
- ne[0] = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
- ne[1] = ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1);
- ne[2] = a->ne[3];
- ne[3] = b->ne[3];
- struct ggml_tensor * result = ggml_new_tensor(ctx, b->type, 4, ne);
- ggml_set_op_params_i32(result, 0, s0);
- ggml_set_op_params_i32(result, 1, s1);
- ggml_set_op_params_i32(result, 2, p0);
- ggml_set_op_params_i32(result, 3, p1);
- ggml_set_op_params_i32(result, 4, d0);
- ggml_set_op_params_i32(result, 5, d1);
- result->op = GGML_OP_CONV_2D;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_conv_transpose_2d_p0
- static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
- return (ins - 1) * s - 2 * p + ks;
- }
- struct ggml_tensor * ggml_conv_transpose_2d_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int stride) {
- GGML_ASSERT(a->ne[3] == b->ne[2]);
- const int64_t ne[4] = {
- ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
- ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
- a->ne[2], b->ne[3],
- };
- struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- ggml_set_op_params_i32(result, 0, stride);
- result->op = GGML_OP_CONV_TRANSPOSE_2D;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_pool_*
- static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
- return (ins + 2 * p - ks) / s + 1;
- }
- // ggml_pool_1d
- struct ggml_tensor * ggml_pool_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int s0,
- int p0) {
- const int64_t ne[4] = {
- ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
- a->ne[1],
- a->ne[2],
- a->ne[3],
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- int32_t params[] = { op, k0, s0, p0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_POOL_1D;
- result->src[0] = a;
- return result;
- }
- // ggml_pool_2d
- struct ggml_tensor * ggml_pool_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- float p0,
- float p1) {
- struct ggml_tensor * result;
- const int64_t ne[4] = {
- ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
- ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
- a->ne[2],
- a->ne[3],
- };
- result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_POOL_2D;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_pool_2d_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * af,
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- float p0,
- float p1) {
- struct ggml_tensor * result;
- result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne);
- int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_POOL_2D_BACK;
- result->src[0] = a;
- result->src[1] = af;
- return result;
- }
- // ggml_upscale / ggml_interpolate
- static struct ggml_tensor * ggml_interpolate_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- uint32_t mode) {
- GGML_ASSERT((mode & 0xFF) < GGML_SCALE_MODE_COUNT);
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
- ggml_set_op_params_i32(result, 0, (int32_t)mode);
- result->op = GGML_OP_UPSCALE;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_upscale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int scale_factor,
- enum ggml_scale_mode mode) {
- GGML_ASSERT(scale_factor > 1);
- return ggml_interpolate_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3], mode);
- }
- struct ggml_tensor * ggml_upscale_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int ne0,
- int ne1,
- int ne2,
- int ne3,
- enum ggml_scale_mode mode) {
- return ggml_interpolate_impl(ctx, a, ne0, ne1, ne2, ne3, mode);
- }
- struct ggml_tensor * ggml_interpolate(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- uint32_t mode) {
- return ggml_interpolate_impl(ctx, a, ne0, ne1, ne2, ne3, mode);
- }
- // ggml_pad
- struct ggml_tensor * ggml_pad(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int p0,
- int p1,
- int p2,
- int p3) {
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
- a->ne[0] + p0,
- a->ne[1] + p1,
- a->ne[2] + p2,
- a->ne[3] + p3);
- result->op = GGML_OP_PAD;
- result->src[0] = a;
- return result;
- }
- // ggml_pad_reflect_1d
- struct ggml_tensor * ggml_pad_reflect_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int p0,
- int p1) {
- GGML_ASSERT(p0 >= 0);
- GGML_ASSERT(p1 >= 0);
- GGML_ASSERT(p0 < a->ne[0]); // padding length on each size must be less than the
- GGML_ASSERT(p1 < a->ne[0]); // existing length of the dimension being padded
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
- a->ne[0] + p0 + p1,
- a->ne[1],
- a->ne[2],
- a->ne[3]);
- int32_t params[] = { p0, p1 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_PAD_REFLECT_1D;
- result->src[0] = a;
- return result;
- }
- // ggml_roll
- struct ggml_tensor * ggml_roll(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int shift0,
- int shift1,
- int shift2,
- int shift3) {
- GGML_ASSERT(a->nb[0] == ggml_type_size(a->type));
- GGML_ASSERT(abs(shift0) < a->ne[0]);
- GGML_ASSERT(abs(shift1) < a->ne[1]);
- GGML_ASSERT(abs(shift2) < a->ne[2]);
- GGML_ASSERT(abs(shift3) < a->ne[3]);
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- ggml_set_op_params_i32(result, 0, shift0);
- ggml_set_op_params_i32(result, 1, shift1);
- ggml_set_op_params_i32(result, 2, shift2);
- ggml_set_op_params_i32(result, 3, shift3);
- result->op = GGML_OP_ROLL;
- result->src[0] = a;
- return result;
- }
- // ggml_arange
- struct ggml_tensor * ggml_arange(
- struct ggml_context * ctx,
- float start,
- float stop,
- float step) {
- GGML_ASSERT(stop > start);
- const int64_t steps = (int64_t) ceilf((stop - start) / step);
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
- ggml_set_op_params_f32(result, 0, start);
- ggml_set_op_params_f32(result, 1, stop);
- ggml_set_op_params_f32(result, 2, step);
- result->op = GGML_OP_ARANGE;
- return result;
- }
- // ggml_timestep_embedding
- struct ggml_tensor * ggml_timestep_embedding(
- struct ggml_context * ctx,
- struct ggml_tensor * timesteps,
- int dim,
- int max_period) {
- int actual_dim = dim;
- if (dim % 2 != 0) {
- actual_dim = dim + 1;
- }
- struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
- ggml_set_op_params_i32(result, 0, dim);
- ggml_set_op_params_i32(result, 1, max_period);
- result->op = GGML_OP_TIMESTEP_EMBEDDING;
- result->src[0] = timesteps;
- return result;
- }
- // ggml_argsort
- struct ggml_tensor * ggml_argsort(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_sort_order order) {
- GGML_ASSERT(a->ne[0] <= INT32_MAX);
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
- ggml_set_op_params_i32(result, 0, (int32_t) order);
- result->op = GGML_OP_ARGSORT;
- result->src[0] = a;
- return result;
- }
- // ggml_top_k
- struct ggml_tensor * ggml_top_k(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int k) {
- GGML_ASSERT(a->ne[0] >= k);
- struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
- result = ggml_view_4d(ctx, result,
- k, result->ne[1], result->ne[2], result->ne[3],
- result->nb[1], result->nb[2], result->nb[3],
- 0);
- return result;
- }
- // ggml_flash_attn_ext
- struct ggml_tensor * ggml_flash_attn_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * mask,
- float scale,
- float max_bias,
- float logit_softcap) {
- GGML_ASSERT(ggml_can_mul_mat(k, q));
- // TODO: check if vT can be multiplied by (k*qT)
- GGML_ASSERT(q->ne[3] == k->ne[3]);
- GGML_ASSERT(q->ne[3] == v->ne[3]);
- if (mask) {
- GGML_ASSERT(ggml_is_contiguous(mask));
- GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
- "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
- //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
- GGML_ASSERT(q->ne[2] % mask->ne[2] == 0);
- GGML_ASSERT(q->ne[3] % mask->ne[3] == 0);
- }
- if (max_bias > 0.0f) {
- GGML_ASSERT(mask);
- }
- // permute(0, 2, 1, 3)
- int64_t ne[4] = { v->ne[0], q->ne[2], q->ne[1], q->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- float params[] = { scale, max_bias, logit_softcap };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_FLASH_ATTN_EXT;
- result->src[0] = q;
- result->src[1] = k;
- result->src[2] = v;
- result->src[3] = mask;
- return result;
- }
- void ggml_flash_attn_ext_set_prec(
- struct ggml_tensor * a,
- enum ggml_prec prec) {
- GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
- const int32_t prec_i32 = (int32_t) prec;
- ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
- }
- enum ggml_prec ggml_flash_attn_ext_get_prec(
- const struct ggml_tensor * a) {
- GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
- const int32_t prec_i32 = ggml_get_op_params_i32(a, 3);
- return (enum ggml_prec) prec_i32;
- }
- void ggml_flash_attn_ext_add_sinks(
- struct ggml_tensor * a,
- struct ggml_tensor * sinks) {
- if (!sinks) {
- a->src[4] = NULL;
- return;
- }
- GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
- GGML_ASSERT(a->src[4] == NULL);
- GGML_ASSERT(a->src[0]->ne[2] == sinks->ne[0]);
- GGML_ASSERT(sinks->type == GGML_TYPE_F32);
- a->src[4] = sinks;
- }
- // ggml_flash_attn_back
- struct ggml_tensor * ggml_flash_attn_back(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * d,
- bool masked) {
- GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
- GGML_ASSERT(ggml_can_mul_mat(k, q));
- // TODO: check if vT can be multiplied by (k*qT)
- // d shape [D,N,ne2,ne3]
- // q shape [D,N,ne2,ne3]
- // k shape [D,M,kvne2,ne3]
- // v shape [M,D,kvne2,ne3]
- const int64_t D = q->ne[0];
- const int64_t N = q->ne[1];
- const int64_t M = k->ne[1];
- const int64_t ne2 = q->ne[2];
- const int64_t ne3 = q->ne[3];
- const int64_t kvne2 = k->ne[2];
- GGML_ASSERT(k->ne[0] == D);
- GGML_ASSERT(v->ne[0] == M);
- GGML_ASSERT(v->ne[1] == D);
- GGML_ASSERT(d->ne[0] == D);
- GGML_ASSERT(d->ne[1] == N);
- GGML_ASSERT(k->ne[2] == kvne2);
- GGML_ASSERT(k->ne[3] == ne3);
- GGML_ASSERT(v->ne[2] == kvne2);
- GGML_ASSERT(v->ne[3] == ne3);
- GGML_ASSERT(d->ne[2] == ne2);
- GGML_ASSERT(d->ne[3] == ne3);
- GGML_ASSERT(ne2 % kvne2 == 0);
- // store gradients of q, k and v as continuous tensors concatenated in result.
- // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
- const int64_t elem_q = ggml_nelements(q);
- const int64_t elem_k = ggml_nelements(k);
- const int64_t elem_v = ggml_nelements(v);
- enum ggml_type result_type = GGML_TYPE_F32;
- GGML_ASSERT(ggml_blck_size(result_type) == 1);
- const size_t tsize = ggml_type_size(result_type);
- const size_t offs_q = 0;
- const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
- const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
- const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
- const size_t nelements = (end + tsize - 1)/tsize;
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
- int32_t masked_i = masked ? 1 : 0;
- ggml_set_op_params(result, &masked_i, sizeof(masked_i));
- result->op = GGML_OP_FLASH_ATTN_BACK;
- result->src[0] = q;
- result->src[1] = k;
- result->src[2] = v;
- result->src[3] = d;
- return result;
- }
- // ggml_ssm_conv
- struct ggml_tensor * ggml_ssm_conv(
- struct ggml_context * ctx,
- struct ggml_tensor * sx,
- struct ggml_tensor * c) {
- GGML_ASSERT(ggml_is_3d(sx));
- GGML_ASSERT(ggml_is_matrix(c));
- const int64_t d_conv = c->ne[0];
- const int64_t d_inner = c->ne[1];
- const int64_t n_t = sx->ne[0] - d_conv + 1; // tokens per sequence
- const int64_t n_s = sx->ne[2];
- // TODO: maybe support other strides than 1?
- GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t);
- GGML_ASSERT(sx->ne[1] == d_inner);
- GGML_ASSERT(n_t >= 0);
- struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s);
- result->op = GGML_OP_SSM_CONV;
- result->src[0] = sx;
- result->src[1] = c;
- return result;
- }
- // ggml_ssm_scan
- struct ggml_tensor * ggml_ssm_scan(
- struct ggml_context * ctx,
- struct ggml_tensor * s,
- struct ggml_tensor * x,
- struct ggml_tensor * dt,
- struct ggml_tensor * A,
- struct ggml_tensor * B,
- struct ggml_tensor * C,
- struct ggml_tensor * ids) {
- GGML_ASSERT(ggml_is_contiguous(s));
- GGML_ASSERT(ggml_is_contiguous(dt));
- GGML_ASSERT(ggml_is_contiguous(A));
- GGML_ASSERT(x->nb[0] == ggml_type_size(x->type));
- GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
- GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
- GGML_ASSERT(x->nb[1] == x->ne[0]*x->nb[0]);
- GGML_ASSERT(B->nb[1] == B->ne[0]*B->nb[0]);
- GGML_ASSERT(C->nb[1] == C->ne[0]*C->nb[0]);
- GGML_ASSERT(ggml_are_same_shape(B, C));
- GGML_ASSERT(ids->type == GGML_TYPE_I32);
- {
- const int64_t d_state = s->ne[0];
- const int64_t head_dim = x->ne[0];
- const int64_t n_head = x->ne[1];
- const int64_t n_seq_tokens = x->ne[2];
- const int64_t n_seqs = x->ne[3];
- GGML_ASSERT(dt->ne[0] == n_head);
- GGML_ASSERT(dt->ne[1] == n_seq_tokens);
- GGML_ASSERT(dt->ne[2] == n_seqs);
- GGML_ASSERT(ggml_is_3d(dt));
- GGML_ASSERT(s->ne[1] == head_dim);
- GGML_ASSERT(s->ne[2] == n_head);
- GGML_ASSERT(B->ne[0] == d_state);
- GGML_ASSERT(B->ne[2] == n_seq_tokens);
- GGML_ASSERT(B->ne[3] == n_seqs);
- GGML_ASSERT(ids->ne[0] == n_seqs);
- GGML_ASSERT(ggml_is_vector(ids));
- GGML_ASSERT(A->ne[1] == n_head);
- GGML_ASSERT(ggml_is_matrix(A));
- if (A->ne[0] != 1) {
- // Mamba-1 has more granular decay factors
- GGML_ASSERT(A->ne[0] == d_state);
- }
- }
- // concatenated y + ssm_states
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + s->ne[0]*s->ne[1]*s->ne[2]*ids->ne[0]);
- result->op = GGML_OP_SSM_SCAN;
- result->src[0] = s;
- result->src[1] = x;
- result->src[2] = dt;
- result->src[3] = A;
- result->src[4] = B;
- result->src[5] = C;
- result->src[6] = ids;
- return result;
- }
- // ggml_win_part
- struct ggml_tensor * ggml_win_part(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w) {
- GGML_ASSERT(a->ne[3] == 1);
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- // padding
- const int px = (w - a->ne[1]%w)%w;
- const int py = (w - a->ne[2]%w)%w;
- const int npx = (px + a->ne[1])/w;
- const int npy = (py + a->ne[2])/w;
- const int np = npx*npy;
- const int64_t ne[4] = { a->ne[0], w, w, np, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- int32_t params[] = { npx, npy, w };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_WIN_PART;
- result->src[0] = a;
- return result;
- }
- // ggml_win_unpart
- struct ggml_tensor * ggml_win_unpart(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w0,
- int h0,
- int w) {
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
- int32_t params[] = { w };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_WIN_UNPART;
- result->src[0] = a;
- return result;
- }
- // ggml_get_rel_pos
- struct ggml_tensor * ggml_get_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int qh,
- int kh) {
- GGML_ASSERT(qh == kh);
- GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
- const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
- result->op = GGML_OP_GET_REL_POS;
- result->src[0] = a;
- return result;
- }
- // ggml_add_rel_pos
- static struct ggml_tensor * ggml_add_rel_pos_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(pw, ph));
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_is_contiguous(pw));
- GGML_ASSERT(ggml_is_contiguous(ph));
- GGML_ASSERT(ph->type == GGML_TYPE_F32);
- GGML_ASSERT(pw->type == GGML_TYPE_F32);
- GGML_ASSERT(pw->ne[3] == a->ne[2]);
- GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
- GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
- result->op = GGML_OP_ADD_REL_POS;
- result->src[0] = a;
- result->src[1] = pw;
- result->src[2] = ph;
- return result;
- }
- struct ggml_tensor * ggml_add_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph) {
- return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
- }
- struct ggml_tensor * ggml_add_rel_pos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph) {
- return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
- }
- // ggml_rwkv_wkv6
- struct ggml_tensor * ggml_rwkv_wkv6(
- struct ggml_context * ctx,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * r,
- struct ggml_tensor * tf,
- struct ggml_tensor * td,
- struct ggml_tensor * state) {
- GGML_ASSERT(ggml_is_contiguous(k));
- GGML_ASSERT(ggml_is_contiguous(v));
- GGML_ASSERT(ggml_is_contiguous(r));
- GGML_ASSERT(ggml_is_contiguous(tf));
- GGML_ASSERT(ggml_is_contiguous(td));
- GGML_ASSERT(ggml_is_contiguous(state));
- const int64_t S = k->ne[0];
- const int64_t H = k->ne[1];
- const int64_t n_tokens = k->ne[2];
- const int64_t n_seqs = state->ne[1];
- {
- GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens);
- GGML_ASSERT(r->ne[0] == S && r->ne[1] == H && r->ne[2] == n_tokens);
- GGML_ASSERT(td->ne[0] == S && td->ne[1] == H && td->ne[2] == n_tokens);
- GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
- }
- // concat output and new_state
- const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- result->op = GGML_OP_RWKV_WKV6;
- result->src[0] = k;
- result->src[1] = v;
- result->src[2] = r;
- result->src[3] = tf;
- result->src[4] = td;
- result->src[5] = state;
- return result;
- }
- // ggml_gated_linear_attn
- struct ggml_tensor * ggml_gated_linear_attn(
- struct ggml_context * ctx,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * q,
- struct ggml_tensor * g,
- struct ggml_tensor * state,
- float scale) {
- GGML_ASSERT(ggml_is_contiguous(k));
- GGML_ASSERT(ggml_is_contiguous(v));
- GGML_ASSERT(ggml_is_contiguous(q));
- GGML_ASSERT(ggml_is_contiguous(g));
- GGML_ASSERT(ggml_is_contiguous(state));
- const int64_t S = k->ne[0];
- const int64_t H = k->ne[1];
- const int64_t n_tokens = k->ne[2];
- const int64_t n_seqs = state->ne[1];
- {
- GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens);
- GGML_ASSERT(q->ne[0] == S && q->ne[1] == H && q->ne[2] == n_tokens);
- GGML_ASSERT(g->ne[0] == S && g->ne[1] == H && g->ne[2] == n_tokens);
- GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
- }
- // concat output and new_state
- const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- ggml_set_op_params_f32(result, 0, scale);
- result->op = GGML_OP_GATED_LINEAR_ATTN;
- result->src[0] = k;
- result->src[1] = v;
- result->src[2] = q;
- result->src[3] = g;
- result->src[4] = state;
- return result;
- }
- // ggml_rwkv_wkv7
- struct ggml_tensor * ggml_rwkv_wkv7(
- struct ggml_context * ctx,
- struct ggml_tensor * r,
- struct ggml_tensor * w,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * state) {
- GGML_ASSERT(ggml_is_contiguous(r));
- GGML_ASSERT(ggml_is_contiguous(w));
- GGML_ASSERT(ggml_is_contiguous(k));
- GGML_ASSERT(ggml_is_contiguous(v));
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_is_contiguous(b));
- GGML_ASSERT(ggml_is_contiguous(state));
- const int64_t S = k->ne[0];
- const int64_t H = k->ne[1];
- const int64_t n_tokens = k->ne[2];
- const int64_t n_seqs = state->ne[1];
- {
- GGML_ASSERT(w->ne[0] == S && w->ne[1] == H && w->ne[2] == n_tokens);
- GGML_ASSERT(k->ne[0] == S && k->ne[1] == H && k->ne[2] == n_tokens);
- GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens);
- GGML_ASSERT(a->ne[0] == S && a->ne[1] == H && a->ne[2] == n_tokens);
- GGML_ASSERT(b->ne[0] == S && b->ne[1] == H && b->ne[2] == n_tokens);
- GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
- }
- // concat output and new_state
- const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- result->op = GGML_OP_RWKV_WKV7;
- result->src[0] = r;
- result->src[1] = w;
- result->src[2] = k;
- result->src[3] = v;
- result->src[4] = a;
- result->src[5] = b;
- result->src[6] = state;
- return result;
- }
- // ggml_unary
- static struct ggml_tensor * ggml_unary_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op,
- bool inplace) {
- GGML_ASSERT(ggml_is_contiguous_1(a));
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params_i32(result, 0, (int32_t) op);
- result->op = GGML_OP_UNARY;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_unary(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op) {
- return ggml_unary_impl(ctx, a, op, false);
- }
- struct ggml_tensor * ggml_unary_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op) {
- return ggml_unary_impl(ctx, a, op, true);
- }
- // ggml_map_custom1
- static struct ggml_tensor * ggml_map_custom1_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_map_custom1_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, ¶ms, sizeof(params));
- result->op = GGML_OP_MAP_CUSTOM1;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_map_custom1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
- }
- struct ggml_tensor * ggml_map_custom1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
- }
- // ggml_map_custom2
- static struct ggml_tensor * ggml_map_custom2_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_map_custom2_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, ¶ms, sizeof(params));
- result->op = GGML_OP_MAP_CUSTOM2;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_map_custom2(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
- }
- struct ggml_tensor * ggml_map_custom2_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
- }
- // ggml_map_custom3
- static struct ggml_tensor * ggml_map_custom3_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_map_custom3_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, ¶ms, sizeof(params));
- result->op = GGML_OP_MAP_CUSTOM3;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
- return result;
- }
- struct ggml_tensor * ggml_map_custom3(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
- }
- struct ggml_tensor * ggml_map_custom3_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
- }
- struct ggml_tensor * ggml_custom_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- struct ggml_tensor ** args,
- int n_args,
- ggml_custom_op_t fun,
- int n_tasks,
- void * userdata) {
- GGML_ASSERT(n_args < GGML_MAX_SRC);
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
- struct ggml_custom_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, ¶ms, sizeof(params));
- result->op = GGML_OP_CUSTOM;
- for (int i = 0; i < n_args; i++) {
- result->src[i] = args[i];
- }
- return result;
- }
- struct ggml_tensor * ggml_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor ** args,
- int n_args,
- ggml_custom_op_t fun,
- int n_tasks,
- void * userdata) {
- GGML_ASSERT(n_args < GGML_MAX_SRC - 1);
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- struct ggml_custom_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, ¶ms, sizeof(params));
- result->op = GGML_OP_CUSTOM;
- result->src[0] = a;
- for (int i = 0; i < n_args; i++) {
- result->src[i + 1] = args[i];
- }
- return result;
- }
- // ggml_cross_entropy_loss
- struct ggml_tensor * ggml_cross_entropy_loss(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
- result->op = GGML_OP_CROSS_ENTROPY_LOSS;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_cross_entropy_loss_back
- struct ggml_tensor * ggml_cross_entropy_loss_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c) {
- GGML_ASSERT(ggml_is_scalar(a));
- GGML_ASSERT(ggml_are_same_shape(b, c));
- struct ggml_tensor * result = ggml_dup_tensor(ctx, b);
- result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
- return result;
- }
- // opt_step_adamw
- struct ggml_tensor * ggml_opt_step_adamw(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * grad,
- struct ggml_tensor * m,
- struct ggml_tensor * v,
- struct ggml_tensor * adamw_params) {
- GGML_ASSERT(a->flags & GGML_TENSOR_FLAG_PARAM);
- GGML_ASSERT(ggml_are_same_shape(a, grad));
- GGML_ASSERT(ggml_are_same_shape(a, m));
- GGML_ASSERT(ggml_are_same_shape(a, v));
- GGML_ASSERT(adamw_params->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_nelements(adamw_params) == 7);
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- result->op = GGML_OP_OPT_STEP_ADAMW;
- result->src[0] = a;
- result->src[1] = grad;
- result->src[2] = m;
- result->src[3] = v;
- result->src[4] = adamw_params;
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- struct ggml_hash_set ggml_hash_set_new(size_t size) {
- size = ggml_hash_size(size);
- struct ggml_hash_set result;
- result.size = size;
- result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
- result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
- return result;
- }
- void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
- memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
- }
- void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
- GGML_FREE(hash_set->used);
- GGML_FREE(hash_set->keys);
- }
- size_t ggml_hash_size(size_t min_sz) {
- // next primes after powers of two
- static const size_t primes[] = {
- 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
- 2053, 4099, 8209, 16411, 32771, 65537, 131101,
- 262147, 524309, 1048583, 2097169, 4194319, 8388617,
- 16777259, 33554467, 67108879, 134217757, 268435459,
- 536870923, 1073741827, 2147483659
- };
- static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
- // find the smallest prime that is larger or equal than min_sz
- size_t l = 0;
- size_t r = n_primes;
- while (l < r) {
- size_t m = (l + r)/2;
- if (primes[m] < min_sz) {
- l = m + 1;
- } else {
- r = m;
- }
- }
- size_t sz = l < n_primes ? primes[l] : min_sz | 1;
- return sz;
- }
- struct hash_map {
- struct ggml_hash_set set;
- struct ggml_tensor ** vals;
- };
- static struct hash_map * ggml_new_hash_map(size_t size) {
- struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
- result->set = ggml_hash_set_new(size);
- result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
- return result;
- }
- static void ggml_hash_map_free(struct hash_map * map) {
- ggml_hash_set_free(&map->set);
- GGML_FREE(map->vals);
- GGML_FREE(map);
- }
- // utility functions to change gradients
- // isrc is the index of tensor in cgraph->visited_has_set.keys
- // the corresponding gradient (accumulators) are also at position isrc
- // if tensor has a gradient accumulator, modify that accumulator in-place
- // else if there is no gradient for tensor, set the corresponding value
- // else, just add/subtract/etc. the gradients
- static void ggml_add_or_set(
- struct ggml_context * ctx,
- struct ggml_cgraph * cgraph,
- size_t isrc,
- struct ggml_tensor * tensor) {
- struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
- GGML_ASSERT(src);
- if (cgraph->grads[isrc]) {
- cgraph->grads[isrc] = ggml_add_impl(ctx, cgraph->grads[isrc], tensor, /*inplace =*/ cgraph->grad_accs[isrc]);
- } else {
- cgraph->grads[isrc] = tensor;
- }
- ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
- ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
- }
- static void ggml_acc_or_set(
- struct ggml_context * ctx,
- struct ggml_cgraph * cgraph,
- size_t isrc,
- struct ggml_tensor * tensor,
- const size_t nb1,
- const size_t nb2,
- const size_t nb3,
- const size_t offset) {
- struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
- GGML_ASSERT(src);
- if (cgraph->grads[isrc]) {
- cgraph->grads[isrc] = ggml_acc_impl(ctx, cgraph->grads[isrc], tensor, nb1, nb2, nb3, offset, cgraph->grad_accs[isrc]);
- } else {
- struct ggml_tensor * a_zero = ggml_scale(ctx, src, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
- cgraph->grads[isrc] = ggml_acc_impl(ctx, a_zero, tensor, nb1, nb2, nb3, offset, false);
- }
- ggml_format_name(cgraph->grads[isrc], "grad for %s", cgraph->visited_hash_set.keys[isrc]->name);
- ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
- }
- static void ggml_add1_or_set(
- struct ggml_context * ctx,
- struct ggml_cgraph * cgraph,
- size_t isrc,
- struct ggml_tensor * tensor) {
- struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
- GGML_ASSERT(src);
- if (cgraph->grads[isrc]) {
- cgraph->grads[isrc] = ggml_add1_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
- } else {
- cgraph->grads[isrc] = ggml_repeat(ctx, tensor, src);
- }
- ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
- ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
- }
- static void ggml_sub_or_set(
- struct ggml_context * ctx,
- struct ggml_cgraph * cgraph,
- size_t isrc,
- struct ggml_tensor * tensor) {
- struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
- GGML_ASSERT(src);
- if (cgraph->grads[isrc]) {
- cgraph->grads[isrc] = ggml_sub_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
- } else {
- cgraph->grads[isrc] = ggml_neg(ctx, tensor);
- }
- ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
- ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
- }
- static void ggml_compute_backward(
- struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i, const bool * grads_needed) {
- struct ggml_tensor * tensor = cgraph->nodes[i];
- struct ggml_tensor * grad = ggml_graph_get_grad(cgraph, tensor);
- if (!grad) {
- return;
- }
- struct ggml_tensor * src0 = tensor->src[0];
- struct ggml_tensor * src1 = tensor->src[1];
- struct ggml_tensor * src2 = tensor->src[2];
- struct ggml_hash_set * hash_set = &cgraph->visited_hash_set;
- const size_t isrc0 = src0 ? ggml_hash_find(hash_set, src0) : (size_t) -1;
- const size_t isrc1 = src1 ? ggml_hash_find(hash_set, src1) : (size_t) -1;
- const size_t isrc2 = src2 ? ggml_hash_find(hash_set, src2) : (size_t) -1;
- const bool src0_needs_grads = src0 && isrc0 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc0) && grads_needed[isrc0];
- const bool src1_needs_grads = src1 && isrc1 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc1) && grads_needed[isrc1];
- const bool src2_needs_grads = src2 && isrc2 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc2) && grads_needed[isrc2];
- switch (tensor->op) {
- case GGML_OP_DUP: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, grad);
- }
- } break;
- case GGML_OP_ADD: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, grad);
- }
- if (src1_needs_grads) {
- struct ggml_tensor * tmp = grad;
- if (!ggml_are_same_shape(src0, src1)) {
- tmp = ggml_repeat_back(ctx, tmp, src1);
- }
- ggml_add_or_set(ctx, cgraph, isrc1, tmp);
- }
- } break;
- case GGML_OP_ADD1: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, grad);
- }
- if (src1_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc1, ggml_mean(ctx, grad)); // TODO: should probably be sum instead of mean
- }
- } break;
- case GGML_OP_ACC: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, grad);
- }
- if (src1_needs_grads) {
- const size_t nb1 = ((int32_t *) tensor->op_params)[0];
- const size_t nb2 = ((int32_t *) tensor->op_params)[1];
- const size_t nb3 = ((int32_t *) tensor->op_params)[2];
- const size_t offset = ((int32_t *) tensor->op_params)[3];
- struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
- grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
- nb1, nb2, nb3, offset);
- ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1));
- }
- } break;
- case GGML_OP_SUB: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, grad);
- }
- if (src1_needs_grads) {
- ggml_sub_or_set(ctx, cgraph, isrc1, grad);
- }
- } break;
- case GGML_OP_MUL: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, src1));
- }
- if (src1_needs_grads) {
- struct ggml_tensor * tmp = ggml_mul(ctx, src0, grad);
- if (!ggml_are_same_shape(src0, src1)) {
- tmp = ggml_repeat_back(ctx, tmp, src1);
- }
- ggml_add_or_set(ctx, cgraph, isrc1, tmp);
- }
- } break;
- case GGML_OP_DIV: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src1));
- }
- if (src1_needs_grads) {
- ggml_sub_or_set(ctx, cgraph, isrc1, ggml_mul(ctx, grad, ggml_div(ctx, tensor, src1)));
- }
- } break;
- case GGML_OP_SQR: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_mul(ctx, src0, grad), 2.0f));
- }
- } break;
- case GGML_OP_SQRT: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_div(ctx, grad, tensor), 0.5f));
- }
- } break;
- case GGML_OP_LOG: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src0));
- }
- } break;
- case GGML_OP_SIN: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_cos(ctx, src0)));
- }
- } break;
- case GGML_OP_COS: {
- if (src0_needs_grads) {
- ggml_sub_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_sin(ctx, src0)));
- }
- } break;
- case GGML_OP_SUM: {
- if (src0_needs_grads) {
- ggml_add1_or_set(ctx, cgraph, isrc0, grad);
- }
- } break;
- case GGML_OP_SUM_ROWS: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0));
- }
- } break;
- case GGML_OP_MEAN: {
- if (src0_needs_grads) {
- ggml_add1_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], 0.0, false));
- }
- } break;
- case GGML_OP_REPEAT: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat_back(ctx, grad, src0));
- }
- } break;
- case GGML_OP_REPEAT_BACK: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0));
- }
- } break;
- case GGML_OP_RMS_NORM: {
- if (src0_needs_grads) {
- float eps;
- memcpy(&eps, tensor->op_params, sizeof(float));
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_rms_norm_back(ctx, grad, src0, eps));
- }
- } break;
- case GGML_OP_MUL_MAT: {
- // https://cs231n.github.io/optimization-2/#staged
- // # forward pass
- // s0 = np.random.randn(5, 10)
- // s1 = np.random.randn(10, 3)
- // t = s0.dot(s1)
- // # now suppose we had the gradient on t from above in the circuit
- // dt = np.random.randn(*t.shape) # same shape as t
- // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
- // ds1 = t.T.dot(dt)
- // tensor.shape [m,p,qq,rr]
- // src0.shape [n,m,q1,r1]
- // src1.shape [n,p,qq,rr]
- if (src0_needs_grads) {
- GGML_ASSERT(grad->ne[2] == src1->ne[2]);
- GGML_ASSERT(grad->ne[3] == src1->ne[3]);
- struct ggml_tensor * tmp =
- ggml_out_prod(ctx, // [n,m,qq,rr]
- src1, // [n,p,qq,rr]
- grad); // [m,p,qq,rr]
- if (!ggml_are_same_shape(tmp, src0)) {
- GGML_ASSERT(tmp->ne[0] == src0->ne[0]);
- GGML_ASSERT(tmp->ne[1] == src0->ne[1]);
- GGML_ASSERT(tmp->ne[3] == 1);
- const int64_t nr2 = tmp->ne[2] / src0->ne[2];
- const size_t nb2 = tmp->nb[2] * nr2;
- const size_t nb3 = tmp->nb[2];
- tmp = ggml_view_4d(ctx, tmp, src0->ne[0], src0->ne[1], src0->ne[2], nr2, tmp->nb[1], nb2, nb3, 0);
- tmp = ggml_repeat_back(ctx, tmp, src0);
- }
- ggml_add_or_set(ctx, cgraph, isrc0, tmp);
- }
- if (src1_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc1,
- // ggml_mul_mat(ctx, // [n,p,qq,rr]
- // ggml_cont(ctx, // [m,n,q1,r1]
- // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
- // grad), // [m,p,qq,rr]
- // when src0 is bigger than tensor->grad (this is mostly the case in llama),
- // avoid transpose of src0, rather transpose smaller tensor->grad
- // and then use ggml_out_prod
- ggml_out_prod(ctx, // [n,p,qq,rr]
- src0, // [n,m,q1,r1]
- ggml_transpose(ctx, // [p,m,qq,rr]
- grad))); // [m,p,qq,rr]
- }
- } break;
- case GGML_OP_SCALE: {
- if (src0_needs_grads) {
- float s;
- memcpy(&s, tensor->op_params, sizeof(float));
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, s, 0.0, false));
- }
- } break;
- case GGML_OP_SET: {
- const size_t nb1 = ((const int32_t *) tensor->op_params)[0];
- const size_t nb2 = ((const int32_t *) tensor->op_params)[1];
- const size_t nb3 = ((const int32_t *) tensor->op_params)[2];
- const size_t offset = ((const int32_t *) tensor->op_params)[3];
- struct ggml_tensor * tensor_grad_view = NULL;
- if (src0_needs_grads || src1_needs_grads) {
- GGML_ASSERT(src0->type == tensor->type);
- GGML_ASSERT(!cgraph->grads[isrc0] || cgraph->grads[isrc0]->type == grad->type);
- GGML_ASSERT(!cgraph->grads[isrc1] || !src1_needs_grads || cgraph->grads[isrc1]->type == grad->type);
- tensor_grad_view = ggml_view_4d(ctx,
- grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
- nb1, nb2, nb3, offset);
- }
- if (src0_needs_grads) {
- struct ggml_tensor * tmp = ggml_neg(ctx, tensor_grad_view);
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_acc_impl(ctx, grad, tmp, nb1, nb2, nb3, offset, false));
- }
- if (src1_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1));
- }
- } break;
- case GGML_OP_CPY: {
- // cpy overwrites value of src1 by src0 and returns view(src1)
- // the overwriting is mathematically equivalent to:
- // tensor = src0 * 1 + src1 * 0
- if (src0_needs_grads) {
- // dsrc0 = dtensor * 1
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_reshape(ctx, grad, src0));
- }
- if (src1_needs_grads) {
- // dsrc1 = dtensor * 0 -> noop
- }
- } break;
- case GGML_OP_CONT: {
- // same as cpy
- if (src0_needs_grads) {
- GGML_ASSERT(!cgraph->grads[isrc0] || ggml_is_contiguous(cgraph->grads[isrc0]));
- GGML_ASSERT(ggml_is_contiguous(grad));
- GGML_ASSERT(ggml_nelements(tensor) == ggml_nelements(src0));
- ggml_add_or_set(ctx, cgraph, isrc0,
- ggml_are_same_shape(tensor, src0) ? grad : ggml_reshape(ctx, grad, src0));
- }
- } break;
- case GGML_OP_RESHAPE: {
- if (src0_needs_grads) {
- struct ggml_tensor * grad_cont = ggml_is_contiguous(grad) ? grad : ggml_cont(ctx, grad);
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_reshape(ctx, grad_cont, src0));
- }
- } break;
- case GGML_OP_VIEW: {
- if (src0_needs_grads) {
- size_t offset;
- memcpy(&offset, tensor->op_params, sizeof(offset));
- size_t nb1 = tensor->nb[1];
- size_t nb2 = tensor->nb[2];
- size_t nb3 = tensor->nb[3];
- if (cgraph->grads[isrc0] && src0->type != cgraph->grads[isrc0]->type) {
- // gradient is typically F32, but src0 could be other type
- size_t ng = ggml_element_size(cgraph->grads[isrc0]);
- size_t n0 = ggml_element_size(src0);
- GGML_ASSERT(offset % n0 == 0);
- GGML_ASSERT(nb1 % n0 == 0);
- GGML_ASSERT(nb2 % n0 == 0);
- GGML_ASSERT(nb3 % n0 == 0);
- offset = (offset / n0) * ng;
- nb1 = (nb1 / n0) * ng;
- nb2 = (nb2 / n0) * ng;
- nb3 = (nb3 / n0) * ng;
- }
- ggml_acc_or_set(ctx, cgraph, isrc0, grad, nb1, nb2, nb3, offset);
- }
- } break;
- case GGML_OP_PERMUTE: {
- if (src0_needs_grads) {
- const int32_t * axes = (const int32_t *) tensor->op_params;
- const int axis0 = axes[0] & 0x3;
- const int axis1 = axes[1] & 0x3;
- const int axis2 = axes[2] & 0x3;
- const int axis3 = axes[3] & 0x3;
- int axb[4] = {0,0,0,0}; // axes backward
- axb[axis0] = 0;
- axb[axis1] = 1;
- axb[axis2] = 2;
- axb[axis3] = 3;
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_permute(ctx, grad, axb[0], axb[1], axb[2], axb[3]));
- }
- } break;
- case GGML_OP_TRANSPOSE: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_transpose(ctx, grad));
- }
- } break;
- case GGML_OP_GET_ROWS: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_get_rows_back(ctx, grad, src1, src0));
- }
- if (src1_needs_grads) {
- // noop
- }
- } break;
- case GGML_OP_DIAG_MASK_INF: {
- if (src0_needs_grads) {
- /* ggml_diag_mask_inf_impl() shouldn't be here */
- /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
- const int n_past = ((const int32_t *) tensor->op_params)[0];
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false));
- }
- } break;
- case GGML_OP_DIAG_MASK_ZERO: {
- if (src0_needs_grads) {
- const int n_past = ((const int32_t *) tensor->op_params)[0];
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false));
- }
- } break;
- case GGML_OP_SOFT_MAX: {
- if (src0_needs_grads) {
- float scale = 1.0f;
- float max_bias = 0.0f;
- memcpy(&scale, (const float *) tensor->op_params + 0, sizeof(float));
- memcpy(&max_bias, (const float *) tensor->op_params + 1, sizeof(float));
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_soft_max_ext_back(ctx, grad, tensor, scale, max_bias));
- }
- GGML_ASSERT((!src1 || !src1_needs_grads) && "backward pass for softmax mask not implemented");
- } break;
- case GGML_OP_ROPE: {
- if (src0_needs_grads) {
- //const int n_past = ((int32_t *) tensor->op_params)[0];
- const int n_dims = ((const int32_t *) tensor->op_params)[1];
- const int mode = ((const int32_t *) tensor->op_params)[2];
- //const int n_ctx = ((int32_t *) tensor->op_params)[3];
- const int n_ctx_orig = ((const int32_t *) tensor->op_params)[4];
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- int sections[4] = {0, 0, 0, 0};
- memcpy(&freq_base, (const float *) tensor->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (const float *) tensor->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (const float *) tensor->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (const float *) tensor->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (const float *) tensor->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (const float *) tensor->op_params + 10, sizeof(float));
- memcpy(§ions, tensor->op_params + 11, sizeof(sections));
- struct ggml_tensor * rope_back = grad->ne[2] == src1->ne[0] ?
- ggml_rope_ext_back(ctx, grad, src1, src2, n_dims,
- mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow) :
- ggml_rope_multi_back(ctx, grad, src1, src2, n_dims, sections,
- mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
- ggml_add_or_set(ctx, cgraph, isrc0, rope_back);
- }
- GGML_ASSERT((!src2 || !src2_needs_grads) && "gradients for freq factors not implemented");
- } break;
- case GGML_OP_IM2COL: {
- if (src1_needs_grads) {
- const int32_t s0 = ggml_get_op_params_i32(tensor, 0);
- const int32_t s1 = ggml_get_op_params_i32(tensor, 1);
- const int32_t p0 = ggml_get_op_params_i32(tensor, 2);
- const int32_t p1 = ggml_get_op_params_i32(tensor, 3);
- const int32_t d0 = ggml_get_op_params_i32(tensor, 4);
- const int32_t d1 = ggml_get_op_params_i32(tensor, 5);
- const bool is_2D = ggml_get_op_params_i32(tensor, 6) == 1;
- ggml_add_or_set(ctx, cgraph, isrc1, ggml_im2col_back(ctx, grad, src0, src1->ne, s0, s1, p0, p1, d0, d1, is_2D));
- }
- } break;
- case GGML_OP_POOL_2D: {
- if (src0_needs_grads) {
- const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0);
- const int32_t k0 = ggml_get_op_params_i32(tensor, 1);
- const int32_t k1 = ggml_get_op_params_i32(tensor, 2);
- const int32_t s0 = ggml_get_op_params_i32(tensor, 3);
- const int32_t s1 = ggml_get_op_params_i32(tensor, 4);
- const int32_t p0 = ggml_get_op_params_i32(tensor, 5);
- const int32_t p1 = ggml_get_op_params_i32(tensor, 6);
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_pool_2d_back(ctx, grad, src0, op, k0, k1, s0, s1, p0, p1));
- }
- } break;
- case GGML_OP_WIN_PART:
- case GGML_OP_WIN_UNPART:
- case GGML_OP_UNARY: {
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_ABS: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_sgn(ctx, src0), grad));
- }
- } break;
- case GGML_UNARY_OP_SGN: {
- // noop
- } break;
- case GGML_UNARY_OP_NEG: {
- if (src0_needs_grads) {
- ggml_sub_or_set(ctx, cgraph, isrc0, grad);
- }
- } break;
- case GGML_UNARY_OP_STEP: {
- // noop
- } break;
- case GGML_UNARY_OP_RELU: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_step(ctx, src0), grad));
- }
- } break;
- case GGML_UNARY_OP_SILU: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_silu_back(ctx, grad, src0));
- }
- } break;
- case GGML_UNARY_OP_EXP: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, tensor, grad));
- }
- } break;
- default: {
- fprintf(stderr, "%s: unsupported unary op for backward pass: %s\n",
- __func__, ggml_unary_op_name(ggml_get_unary_op(tensor)));
- GGML_ABORT("fatal error");
- } //break;
- }
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS: {
- if (src0_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_cross_entropy_loss_back(ctx, grad, src0, src1));
- }
- GGML_ASSERT(!src1_needs_grads && "backward pass for labels not implemented");
- } break;
- case GGML_OP_GLU: {
- switch (ggml_get_glu_op(tensor)) {
- case GGML_GLU_OP_SWIGLU: {
- if (src0_needs_grads) {
- GGML_ASSERT(src1 && "backward pass only implemented for split swiglu");
- ggml_add_or_set(ctx, cgraph, isrc0, ggml_silu_back(ctx, ggml_mul(ctx, grad, src1), src0));
- }
- if (src1_needs_grads) {
- ggml_add_or_set(ctx, cgraph, isrc1, ggml_mul(ctx, ggml_silu(ctx, src0), grad));
- }
- } break;
- default: {
- GGML_ABORT("unsupported glu op for backward pass: %s", ggml_glu_op_name(ggml_get_glu_op(tensor)));
- } //break;
- }
- } break;
- case GGML_OP_NONE: {
- // noop
- } break;
- case GGML_OP_COUNT:
- default: {
- GGML_ABORT("%s: unsupported ggml op for backward pass: %s\n", __func__, ggml_op_name(tensor->op));
- } //break;
- }
- GGML_ASSERT(!src0_needs_grads || ggml_are_same_shape(src0, cgraph->grads[isrc0]));
- GGML_ASSERT(!src1_needs_grads || ggml_are_same_shape(src1, cgraph->grads[isrc1]));
- GGML_ASSERT(!src2_needs_grads || ggml_are_same_shape(src2, cgraph->grads[isrc2]));
- }
- static size_t ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
- // check if already visited
- size_t node_hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node);
- GGML_ASSERT(node_hash_pos != GGML_HASHSET_FULL);
- if (!ggml_bitset_get(cgraph->visited_hash_set.used, node_hash_pos)) {
- // This is the first time we see this node in the current graph.
- cgraph->visited_hash_set.keys[node_hash_pos] = node;
- ggml_bitset_set(cgraph->visited_hash_set.used, node_hash_pos);
- cgraph->use_counts[node_hash_pos] = 0;
- } else {
- // already visited
- return node_hash_pos;
- }
- for (int i = 0; i < GGML_MAX_SRC; ++i) {
- const int k =
- (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
- (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
- /* unknown order, just fall back to using i */ i;
- struct ggml_tensor * src = node->src[k];
- if (src) {
- size_t src_hash_pos = ggml_visit_parents(cgraph, src);
- // Update the use count for this operand.
- cgraph->use_counts[src_hash_pos]++;
- }
- }
- if (node->op == GGML_OP_NONE && !(node->flags & GGML_TENSOR_FLAG_PARAM)) {
- // reached a leaf node, not part of the gradient graph (e.g. a constant)
- GGML_ASSERT(cgraph->n_leafs < cgraph->size);
- if (strlen(node->name) == 0) {
- ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
- }
- cgraph->leafs[cgraph->n_leafs] = node;
- cgraph->n_leafs++;
- } else {
- GGML_ASSERT(cgraph->n_nodes < cgraph->size);
- if (strlen(node->name) == 0) {
- ggml_format_name(node, "node_%d", cgraph->n_nodes);
- }
- cgraph->nodes[cgraph->n_nodes] = node;
- cgraph->n_nodes++;
- }
- return node_hash_pos;
- }
- static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
- if (!expand) {
- // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
- ggml_graph_clear(cgraph);
- }
- const int n0 = cgraph->n_nodes;
- ggml_visit_parents(cgraph, tensor);
- const int n_new = cgraph->n_nodes - n0;
- GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
- if (n_new > 0) {
- // the last added node should always be starting point
- GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
- }
- }
- void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
- ggml_build_forward_impl(cgraph, tensor, true);
- }
- void ggml_build_backward_expand(
- struct ggml_context * ctx,
- struct ggml_cgraph * cgraph,
- struct ggml_tensor ** grad_accs) {
- GGML_ASSERT(cgraph->n_nodes > 0);
- GGML_ASSERT(cgraph->grads);
- GGML_ASSERT(cgraph->grad_accs);
- const int n_nodes_f = cgraph->n_nodes;
- memset(cgraph->grads, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
- memset(cgraph->grad_accs, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
- bool * grads_needed = calloc(cgraph->visited_hash_set.size, sizeof(bool));
- {
- bool any_params = false;
- bool any_loss = false;
- for (int i = 0; i < n_nodes_f; ++i) {
- struct ggml_tensor * node = cgraph->nodes[i];
- any_params = any_params || (node->flags & GGML_TENSOR_FLAG_PARAM);
- any_loss = any_loss || (node->flags & GGML_TENSOR_FLAG_LOSS);
- }
- GGML_ASSERT(any_params && "no trainable parameters found, did you forget to call ggml_set_param?");
- GGML_ASSERT(any_loss && "no training loss found, did you forget to call ggml_set_loss?");
- }
- for (int i = 0; i < n_nodes_f; ++i) {
- struct ggml_tensor * node = cgraph->nodes[i];
- if (node->type == GGML_TYPE_I32) {
- continue;
- }
- bool node_needs_grad = (node->flags & GGML_TENSOR_FLAG_PARAM) || (node->flags & GGML_TENSOR_FLAG_LOSS);
- bool ignore_src[GGML_MAX_SRC] = {false};
- switch (node->op) {
- // gradients in node->src[0] for one reason or another have no effect on output gradients
- case GGML_OP_IM2COL: // only used for its shape
- case GGML_OP_IM2COL_BACK: // same as IM2COL
- ignore_src[0] = true;
- break;
- case GGML_OP_UNARY: {
- const enum ggml_unary_op uop = ggml_get_unary_op(node);
- // SGN and STEP unary ops are piecewise constant
- if (uop == GGML_UNARY_OP_SGN || uop == GGML_UNARY_OP_STEP) {
- ignore_src[0] = true;
- }
- } break;
- // gradients in node->src[1] for one reason or another have no effect on output gradients
- case GGML_OP_CPY: // gradients in CPY target are irrelevant
- case GGML_OP_GET_ROWS: // row indices not differentiable
- case GGML_OP_GET_ROWS_BACK: // same as for GET_ROWS
- case GGML_OP_ROPE: // positions not differentiable
- ignore_src[1] = true;
- break;
- default:
- break;
- }
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- if (!node->src[j] || ignore_src[j] || !grads_needed[ggml_hash_find(&cgraph->visited_hash_set, node->src[j])]) {
- continue;
- }
- GGML_ASSERT(node->src[j]->type == GGML_TYPE_F32 || node->src[j]->type == GGML_TYPE_F16);
- node_needs_grad = true;
- break;
- }
- if (!node_needs_grad) {
- continue;
- }
- // inplace operations are currently not supported
- GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW ||
- node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE);
- const size_t ihash = ggml_hash_find(&cgraph->visited_hash_set, node);
- GGML_ASSERT(ihash != GGML_HASHSET_FULL);
- GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, ihash));
- if (grad_accs && grad_accs[i]) {
- cgraph->grad_accs[ihash] = grad_accs[i];
- cgraph->grads[ihash] = cgraph->grad_accs[ihash];
- } else if (node->flags & GGML_TENSOR_FLAG_LOSS) {
- // loss tensors always need a gradient accumulator
- cgraph->grad_accs[ihash] = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
- cgraph->grads[ihash] = cgraph->grad_accs[ihash];
- }
- grads_needed[ihash] = true;
- }
- for (int i = n_nodes_f - 1; i >= 0; --i) {
- // inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
- // use allocator to automatically make inplace operations
- ggml_compute_backward(ctx, cgraph, i, grads_needed);
- }
- free(grads_needed);
- }
- static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
- void * ptr = *p;
- ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
- *p = (void *) ((char *) ptr + size);
- return ptr;
- }
- static size_t ggml_graph_nbytes(size_t size, bool grads) {
- size_t hash_size = ggml_hash_size(size * 2);
- void * p = 0;
- incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
- incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
- incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
- incr_ptr_aligned(&p, hash_size * sizeof(int32_t), sizeof(int32_t)); // use_counts
- incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
- if (grads) {
- incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
- incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grad_accs
- }
- incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
- size_t nbytes = (size_t) p;
- return nbytes;
- }
- size_t ggml_graph_overhead_custom(size_t size, bool grads) {
- return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
- }
- size_t ggml_graph_overhead(void) {
- return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
- }
- struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
- const size_t obj_size = ggml_graph_nbytes(size, grads);
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
- struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
- // the size of the hash table is doubled since it needs to hold both nodes and leafs
- size_t hash_size = ggml_hash_size(size * 2);
- void * p = cgraph + 1;
- struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
- struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
- int32_t * use_counts_ptr = incr_ptr_aligned(&p, hash_size * sizeof(int32_t), sizeof(int32_t));
- struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
- struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
- struct ggml_tensor ** grad_accs_ptr = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
- ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
- // check that we allocated the correct amount of memory
- assert(obj_size == (size_t)((char *)p - (char *)cgraph));
- *cgraph = (struct ggml_cgraph) {
- /*.size =*/ size,
- /*.n_nodes =*/ 0,
- /*.n_leafs =*/ 0,
- /*.nodes =*/ nodes_ptr,
- /*.grads =*/ grads_ptr,
- /*.grad_accs =*/ grad_accs_ptr,
- /*.leafs =*/ leafs_ptr,
- /*.use_counts =*/ use_counts_ptr,
- /*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
- /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
- };
- ggml_hash_set_reset(&cgraph->visited_hash_set);
- if (grads) {
- memset(cgraph->grads, 0, hash_size*sizeof(struct ggml_tensor *));
- memset(cgraph->grad_accs, 0, hash_size*sizeof(struct ggml_tensor *));
- }
- return cgraph;
- }
- struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
- return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
- }
- struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
- struct ggml_cgraph cgraph = {
- /*.size =*/ 0,
- /*.n_nodes =*/ i1 - i0,
- /*.n_leafs =*/ 0,
- /*.nodes =*/ cgraph0->nodes + i0,
- /*.grads =*/ NULL, // gradients would need visited_hash_set
- /*.grad_accs =*/ NULL,
- /*.leafs =*/ NULL,
- /*.use_counts =*/ cgraph0->use_counts,
- /*.visited_hash_set =*/ cgraph0->visited_hash_set,
- /*.order =*/ cgraph0->order,
- };
- return cgraph;
- }
- void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
- GGML_ASSERT(dst->size >= src->n_leafs);
- GGML_ASSERT(dst->size >= src->n_nodes);
- GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
- dst->n_leafs = src->n_leafs;
- dst->n_nodes = src->n_nodes;
- dst->order = src->order;
- for (int i = 0; i < src->n_leafs; ++i) {
- dst->leafs[i] = src->leafs[i];
- }
- for (int i = 0; i < src->n_nodes; ++i) {
- dst->nodes[i] = src->nodes[i];
- }
- for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
- // copy all hashset keys (tensors) that are in use
- if (ggml_bitset_get(src->visited_hash_set.used, i)) {
- size_t new_hash_pos = ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
- dst->use_counts[new_hash_pos] = src->use_counts[i];
- }
- }
- if (dst->grads) {
- memset(dst->grads, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
- memset(dst->grad_accs, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
- }
- if (src->grads) {
- GGML_ASSERT(dst->grads != NULL);
- GGML_ASSERT(dst->grad_accs != NULL);
- for (int i = 0; i < src->n_nodes; ++i) {
- const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]);
- const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]);
- GGML_ASSERT(igrad_src != GGML_HASHSET_FULL);
- GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src));
- GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL);
- GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst));
- dst->grads[igrad_dst] = src->grads[igrad_src];
- dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src];
- }
- }
- }
- struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads) {
- struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads || force_grads);
- ggml_graph_cpy(cgraph, result);
- return result;
- }
- struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
- if (ggml_is_empty(tensor)) {
- return tensor;
- }
- if (tensor->buffer) {
- ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor));
- } else {
- GGML_ASSERT(tensor->data);
- memset(tensor->data, 0, ggml_nbytes(tensor));
- }
- return tensor;
- }
- void ggml_graph_reset(struct ggml_cgraph * cgraph) {
- if (!cgraph) {
- return;
- }
- GGML_ASSERT(cgraph->grads != NULL);
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- struct ggml_tensor * grad_acc = ggml_graph_get_grad_acc(cgraph, node);
- if (node->op == GGML_OP_OPT_STEP_ADAMW) {
- // clear momenta
- ggml_set_zero(node->src[2]);
- ggml_set_zero(node->src[3]);
- }
- // initial gradients of loss should be 1, 0 otherwise
- if (grad_acc) {
- if (node->flags & GGML_TENSOR_FLAG_LOSS) {
- GGML_ASSERT(grad_acc->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_is_scalar(grad_acc));
- const float onef = 1.0f;
- if (grad_acc->buffer) {
- ggml_backend_tensor_set(grad_acc, &onef, 0, sizeof(float));
- } else {
- GGML_ASSERT(grad_acc->data);
- *((float *) grad_acc->data) = onef;
- }
- } else {
- ggml_set_zero(grad_acc);
- }
- }
- }
- }
- void ggml_graph_clear(struct ggml_cgraph * cgraph) {
- cgraph->n_leafs = 0;
- cgraph->n_nodes = 0;
- ggml_hash_set_reset(&cgraph->visited_hash_set);
- }
- int ggml_graph_size(struct ggml_cgraph * cgraph) {
- return cgraph->size;
- }
- struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) {
- if (i < 0) {
- GGML_ASSERT(cgraph->n_nodes + i >= 0);
- return cgraph->nodes[cgraph->n_nodes + i];
- }
- GGML_ASSERT(i < cgraph->n_nodes);
- return cgraph->nodes[i];
- }
- struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) {
- return cgraph->nodes;
- }
- int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) {
- return cgraph->n_nodes;
- }
- void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
- GGML_ASSERT(cgraph->size > cgraph->n_nodes);
- cgraph->nodes[cgraph->n_nodes] = tensor;
- cgraph->n_nodes++;
- }
- struct ggml_tensor * ggml_graph_get_tensor(const struct ggml_cgraph * cgraph, const char * name) {
- for (int i = 0; i < cgraph->n_leafs; i++) {
- struct ggml_tensor * leaf = cgraph->leafs[i];
- if (strcmp(leaf->name, name) == 0) {
- return leaf;
- }
- }
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- if (strcmp(node->name, name) == 0) {
- return node;
- }
- }
- return NULL;
- }
- struct ggml_tensor * ggml_graph_get_grad(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
- return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grads ? cgraph->grads[igrad] : NULL;
- }
- struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
- return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grad_accs ? cgraph->grad_accs[igrad] : NULL;
- }
- void ggml_graph_print(const struct ggml_cgraph * cgraph) {
- GGML_LOG_INFO("=== GRAPH ===\n");
- GGML_LOG_INFO("n_nodes = %d\n", cgraph->n_nodes);
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
- i,
- node->ne[0], node->ne[1], node->ne[2],
- ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" :
- ggml_graph_get_grad(cgraph, node) ? "g" : " ");
- }
- GGML_LOG_INFO("n_leafs = %d\n", cgraph->n_leafs);
- for (int i = 0; i < cgraph->n_leafs; i++) {
- struct ggml_tensor * node = cgraph->leafs[i];
- GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
- i,
- node->ne[0], node->ne[1],
- ggml_op_name(node->op),
- ggml_get_name(node));
- }
- GGML_LOG_INFO("========================================\n");
- }
- // check if node is part of the graph
- static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- if (cgraph == NULL) {
- return true;
- }
- for (int i = 0; i < cgraph->n_nodes; i++) {
- if (cgraph->nodes[i] == node) {
- return true;
- }
- }
- return false;
- }
- static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * parent = cgraph->nodes[i];
- struct ggml_tensor * grad = ggml_graph_get_grad(cgraph, parent);
- if (grad == node) {
- return parent;
- }
- }
- return NULL;
- }
- static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
- struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
- struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
- fprintf(fp, " \"%p\" -> \"%p\" [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
- gparent0 ? (void *) gparent0 : (void *) parent,
- gparent ? (void *) gparent : (void *) node,
- gparent ? "empty" : "vee",
- gparent ? "dashed" : "solid",
- label);
- }
- static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
- fprintf(fp, " \"%p\" -> \"%p\" [ label = \"%s\"; ]\n",
- (void *) parent,
- (void *) node,
- label);
- }
- void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
- char color[16];
- FILE * fp = ggml_fopen(filename, "w");
- GGML_ASSERT(fp);
- fprintf(fp, "digraph G {\n");
- fprintf(fp, " newrank = true;\n");
- fprintf(fp, " rankdir = TB;\n");
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
- struct ggml_tensor * grad = ggml_graph_get_grad(gb, node);
- if (ggml_graph_get_parent(gb, node) != NULL) {
- continue;
- }
- if (node->flags & GGML_TENSOR_FLAG_PARAM) {
- snprintf(color, sizeof(color), "yellow");
- } else if (grad) {
- if (ggml_graph_find(gf, node)) {
- snprintf(color, sizeof(color), "green");
- } else {
- snprintf(color, sizeof(color), "lightblue");
- }
- } else {
- snprintf(color, sizeof(color), "white");
- }
- fprintf(fp, " \"%p\" [ "
- "style = filled; fillcolor = %s; shape = record; "
- "label=\"",
- (void *) node, color);
- if (strlen(node->name) > 0) {
- fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
- } else {
- fprintf(fp, "(%s)|", ggml_type_name(node->type));
- }
- if (ggml_is_matrix(node)) {
- fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
- } else {
- fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
- }
- if (grad) {
- fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(grad->op));
- } else {
- fprintf(fp, "\"; ]\n");
- }
- }
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
- snprintf(color, sizeof(color), "pink");
- fprintf(fp, " \"%p\" [ "
- "style = filled; fillcolor = %s; shape = record; "
- "label=\"<x>",
- (void *) node, color);
- if (strlen(node->name) > 0) {
- fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
- } else {
- fprintf(fp, "(%s)|", ggml_type_name(node->type));
- }
- fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
- if (ggml_nelements(node) < 5 && node->data != NULL) {
- fprintf(fp, " | (");
- for (int j = 0; j < ggml_nelements(node); j++) {
- // FIXME: use ggml-backend to obtain the tensor data
- //if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
- // fprintf(fp, "%d", ggml_get_i32_1d(node, j));
- //}
- //else if (node->type == GGML_TYPE_F32 ||
- // node->type == GGML_TYPE_F16 ||
- // node->type == GGML_TYPE_BF16) {
- // fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
- //}
- //else
- {
- fprintf(fp, "#");
- }
- if (j < ggml_nelements(node) - 1) {
- fprintf(fp, ", ");
- }
- }
- fprintf(fp, ")");
- }
- fprintf(fp, "\"; ]\n");
- }
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j]) {
- char label[16];
- snprintf(label, sizeof(label), "src %d", j);
- ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
- }
- }
- }
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j]) {
- char label[16];
- snprintf(label, sizeof(label), "src %d", j);
- ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
- }
- }
- }
- fprintf(fp, "}\n");
- fclose(fp);
- GGML_LOG_INFO("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_set_input(struct ggml_tensor * tensor) {
- tensor->flags |= GGML_TENSOR_FLAG_INPUT;
- }
- void ggml_set_output(struct ggml_tensor * tensor) {
- tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
- }
- void ggml_set_param(struct ggml_tensor * tensor) {
- GGML_ASSERT(tensor->op == GGML_OP_NONE);
- tensor->flags |= GGML_TENSOR_FLAG_PARAM;
- }
- void ggml_set_loss(struct ggml_tensor * tensor) {
- GGML_ASSERT(ggml_is_scalar(tensor));
- GGML_ASSERT(tensor->type == GGML_TYPE_F32);
- tensor->flags |= GGML_TENSOR_FLAG_LOSS;
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_quantize_init(enum ggml_type type) {
- ggml_critical_section_start();
- switch (type) {
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
- case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
- case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
- default: // nothing
- break;
- }
- ggml_critical_section_end();
- }
- void ggml_quantize_free(void) {
- ggml_critical_section_start();
- iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
- iq2xs_free_impl(GGML_TYPE_IQ2_XS);
- iq2xs_free_impl(GGML_TYPE_IQ1_S);
- iq3xs_free_impl(256);
- ggml_critical_section_end();
- }
- bool ggml_quantize_requires_imatrix(enum ggml_type type) {
- return
- type == GGML_TYPE_IQ2_XXS ||
- type == GGML_TYPE_IQ2_XS ||
- type == GGML_TYPE_IQ1_S;// ||
- //type == GGML_TYPE_IQ1_M;
- }
- size_t ggml_quantize_chunk(
- enum ggml_type type,
- const float * src,
- void * dst,
- int64_t start,
- int64_t nrows,
- int64_t n_per_row,
- const float * imatrix) {
- const int64_t n = (int64_t) nrows * n_per_row;
- if (ggml_quantize_requires_imatrix(type)) {
- GGML_ASSERT(imatrix != NULL);
- }
- GGML_ASSERT(start % type_traits[type].blck_size == 0);
- GGML_ASSERT(start % n_per_row == 0);
- ggml_quantize_init(type); // this is noop if already initialized
- const size_t start_row = start / n_per_row;
- const size_t row_size = ggml_row_size(type, n_per_row);
- size_t result = 0;
- switch (type) {
- case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_MXFP4: result = quantize_mxfp4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_TQ1_0: result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_TQ2_0: result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_F16:
- {
- size_t elemsize = sizeof(ggml_fp16_t);
- ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
- result = n * elemsize;
- } break;
- case GGML_TYPE_BF16:
- {
- size_t elemsize = sizeof(ggml_bf16_t);
- ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
- result = n * elemsize;
- } break;
- case GGML_TYPE_F32:
- {
- size_t elemsize = sizeof(float);
- result = n * elemsize;
- memcpy((uint8_t *)dst + start * elemsize, src + start, result);
- } break;
- default:
- assert(false);
- }
- GGML_ASSERT(result == nrows * row_size);
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_log_set(ggml_log_callback log_callback, void * user_data) {
- g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default;
- g_logger_state.log_callback_user_data = user_data;
- }
- void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
- p->n_threads = n_threads;
- p->prio = 0; // default priority (usually means normal or inherited)
- p->poll = 50; // hybrid-polling enabled
- p->strict_cpu = false; // no strict placement (all threads share same cpumask)
- p->paused = false; // threads are ready to go
- memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
- }
- struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
- struct ggml_threadpool_params p;
- ggml_threadpool_params_init(&p, n_threads);
- return p;
- }
- bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
- if (p0->n_threads != p1->n_threads ) return false;
- if (p0->prio != p1->prio ) return false;
- if (p0->poll != p1->poll ) return false;
- if (p0->strict_cpu != p1->strict_cpu ) return false;
- return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
- }
|