| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658 |
- #pragma once
- // GGML internal header
- #include "ggml.h"
- #include "gguf.h"
- #include <assert.h>
- #include <math.h>
- #include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
- #include <stdbool.h>
- #include <stdint.h>
- #include <string.h>
- #ifdef __ARM_FEATURE_SVE
- #include <arm_sve.h>
- #endif // __ARM_FEATURE_SVE
- #if defined(__ARM_NEON) && !defined(__CUDACC__) && !defined(__MUSACC__)
- // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
- //
- // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
- //
- #include <arm_neon.h>
- #endif
- #if defined(__F16C__)
- #include <immintrin.h>
- #endif
- #ifdef __cplusplus
- extern "C" {
- #endif
- void ggml_print_backtrace(void);
- #ifndef MIN
- # define MIN(a, b) ((a) < (b) ? (a) : (b))
- #endif
- #ifndef MAX
- # define MAX(a, b) ((a) > (b) ? (a) : (b))
- #endif
- // required for mmap as gguf only guarantees 32-byte alignment
- #define TENSOR_ALIGNMENT 32
- // static_assert should be a #define, but if it's not,
- // fall back to the _Static_assert C11 keyword.
- // if C99 - static_assert is noop
- // ref: https://stackoverflow.com/a/53923785/4039976
- #ifndef __cplusplus
- #ifndef static_assert
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
- #define static_assert(cond, msg) _Static_assert(cond, msg)
- #else
- #define static_assert(cond, msg) struct global_scope_noop_trick
- #endif
- #endif
- #endif
- static inline int ggml_up32(int n) {
- return (n + 31) & ~31;
- }
- //static inline int ggml_up64(int n) {
- // return (n + 63) & ~63;
- //}
- static inline int ggml_up(int n, int m) {
- // assert m is a power of 2
- GGML_ASSERT((m & (m - 1)) == 0);
- return (n + m - 1) & ~(m - 1);
- }
- // TODO: move to ggml.h? (won't be able to inline)
- static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
- if (a->type != b->type) {
- return false;
- }
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- if (a->ne[i] != b->ne[i]) {
- return false;
- }
- if (a->nb[i] != b->nb[i]) {
- return false;
- }
- }
- return true;
- }
- static bool ggml_op_is_empty(enum ggml_op op) {
- switch (op) {
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- return true;
- default:
- return false;
- }
- }
- static inline float ggml_softplus(float input) {
- return (input > 20.0f) ? input : logf(1 + expf(input));
- }
- //
- // logging
- //
- GGML_ATTRIBUTE_FORMAT(2, 3)
- GGML_API void ggml_log_internal (enum ggml_log_level level, const char * format, ...);
- GGML_API void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data);
- #define GGML_LOG(...) ggml_log_internal(GGML_LOG_LEVEL_NONE , __VA_ARGS__)
- #define GGML_LOG_INFO(...) ggml_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
- #define GGML_LOG_WARN(...) ggml_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
- #define GGML_LOG_ERROR(...) ggml_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
- #define GGML_LOG_DEBUG(...) ggml_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
- #define GGML_LOG_CONT(...) ggml_log_internal(GGML_LOG_LEVEL_CONT , __VA_ARGS__)
- #define GGML_DEBUG 0
- #if (GGML_DEBUG >= 1)
- #define GGML_PRINT_DEBUG(...) GGML_LOG_DEBUG(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG(...)
- #endif
- #if (GGML_DEBUG >= 5)
- #define GGML_PRINT_DEBUG_5(...) GGML_LOG_DEBUG(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_5(...)
- #endif
- #if (GGML_DEBUG >= 10)
- #define GGML_PRINT_DEBUG_10(...) GGML_LOG_DEBUG(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_10(...)
- #endif
- // tensor params
- static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
- GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
- assert(params_size <= GGML_MAX_OP_PARAMS);
- memcpy(tensor->op_params, params, params_size);
- }
- static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
- return ((const int32_t *)(tensor->op_params))[i];
- }
- static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
- return ((const float *)(tensor->op_params))[i];
- }
- static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
- ((int32_t *)(tensor->op_params))[i] = value;
- }
- static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
- ((float *)(tensor->op_params))[i] = value;
- }
- struct ggml_map_custom1_op_params {
- ggml_custom1_op_t fun;
- int n_tasks;
- void * userdata;
- };
- struct ggml_map_custom2_op_params {
- ggml_custom2_op_t fun;
- int n_tasks;
- void * userdata;
- };
- struct ggml_map_custom3_op_params {
- ggml_custom3_op_t fun;
- int n_tasks;
- void * userdata;
- };
- struct ggml_custom_op_params {
- ggml_custom_op_t fun;
- int n_tasks;
- void * userdata;
- };
- // bitset
- typedef uint32_t ggml_bitset_t;
- static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated");
- #define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8)
- #define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1)
- static size_t ggml_bitset_size(size_t n) {
- return (n + BITSET_MASK) >> BITSET_SHR;
- }
- static inline bool ggml_bitset_get(const ggml_bitset_t * bitset, size_t i) {
- return !!(bitset[i >> BITSET_SHR] & (1u << (i & BITSET_MASK)));
- }
- static inline void ggml_bitset_set(ggml_bitset_t * bitset, size_t i) {
- bitset[i >> BITSET_SHR] |= (1u << (i & BITSET_MASK));
- }
- static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) {
- bitset[i >> BITSET_SHR] &= ~(1u << (i & BITSET_MASK));
- }
- // hash set
- #define GGML_HASHSET_FULL ((size_t)-1)
- #define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2)
- struct ggml_hash_set {
- size_t size;
- ggml_bitset_t * used; // whether or not the keys are in use i.e. set
- struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i)
- };
- struct ggml_hash_set ggml_hash_set_new(size_t size);
- void ggml_hash_set_free(struct ggml_hash_set * hash_set);
- // returns the minimum size for a hash set that can hold min_sz elements
- size_t ggml_hash_size(size_t min_sz);
- // remove all elements from the hash set
- void ggml_hash_set_reset(struct ggml_hash_set * hash_set);
- // returns true if key is in the hash set
- static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key);
- // returns GGML_HASHSET_FULL if table is full, otherwise the current index of the key or where it should be inserted
- static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, const struct ggml_tensor * key);
- // returns GGML_HASHSET_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
- static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
- // return index, asserts if table is full
- static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
- // hash function for ggml_tensor
- static inline size_t ggml_hash(const struct ggml_tensor * p) {
- // the last 4 bits are always zero due to alignment
- return (size_t)(uintptr_t)p >> 4;
- }
- static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, const struct ggml_tensor * key) {
- size_t h = ggml_hash(key) % hash_set->size;
- // linear probing
- size_t i = h;
- while (ggml_bitset_get(hash_set->used, i) && hash_set->keys[i] != key) {
- i = (i + 1) % hash_set->size;
- if (i == h) {
- // visited all hash table entries -> not found
- return GGML_HASHSET_FULL;
- }
- }
- return i;
- }
- static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
- size_t i = ggml_hash_find(hash_set, key);
- return i != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, i);
- }
- static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
- size_t h = ggml_hash(key) % hash_set->size;
- // linear probing
- size_t i = h;
- do {
- if (!ggml_bitset_get(hash_set->used, i)) {
- ggml_bitset_set(hash_set->used, i);
- hash_set->keys[i] = key;
- return i;
- }
- if (hash_set->keys[i] == key) {
- return GGML_HASHSET_ALREADY_EXISTS;
- }
- i = (i + 1) % hash_set->size;
- } while (i != h);
- // visited all hash table entries -> not found
- GGML_ABORT("fatal error");
- }
- static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
- size_t h = ggml_hash(key) % hash_set->size;
- // linear probing
- size_t i = h;
- do {
- if (!ggml_bitset_get(hash_set->used, i)) {
- ggml_bitset_set(hash_set->used, i);
- hash_set->keys[i] = key;
- return i;
- }
- if (hash_set->keys[i] == key) {
- return i;
- }
- i = (i + 1) % hash_set->size;
- } while (i != h);
- // visited all hash table entries -> not found
- GGML_ABORT("fatal error");
- }
- // computation graph
- enum ggml_cgraph_eval_order {
- GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
- GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
- GGML_CGRAPH_EVAL_ORDER_COUNT
- };
- struct ggml_cgraph {
- int size; // maximum number of nodes/leafs/grads/grad_accs
- int n_nodes; // number of nodes currently in use
- int n_leafs; // number of leafs currently in use
- struct ggml_tensor ** nodes; // tensors with data that can change if the graph is evaluated
- struct ggml_tensor ** grads; // the outputs of these tensors are the gradients of the nodes
- struct ggml_tensor ** grad_accs; // accumulators for node gradients
- struct ggml_tensor ** leafs; // tensors with constant data
- int32_t * use_counts;// number of uses of each tensor, indexed by hash table slot
- struct ggml_hash_set visited_hash_set;
- enum ggml_cgraph_eval_order order;
- };
- // returns a slice of cgraph with nodes [i0, i1)
- // the slice does not have leafs or gradients
- // if you need the gradients, get them from the original graph
- struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
- // ggml-alloc.c: true if the operation can reuse memory from its sources
- GGML_API bool ggml_op_can_inplace(enum ggml_op op);
- // Memory allocation
- GGML_API void * ggml_aligned_malloc(size_t size);
- GGML_API void ggml_aligned_free(void * ptr, size_t size);
- // FP16 <-> FP32
- // ref: https://github.com/Maratyszcza/FP16
- static inline float fp32_from_bits(uint32_t w) {
- union {
- uint32_t as_bits;
- float as_value;
- } fp32;
- fp32.as_bits = w;
- return fp32.as_value;
- }
- static inline uint32_t fp32_to_bits(float f) {
- union {
- float as_value;
- uint32_t as_bits;
- } fp32;
- fp32.as_value = f;
- return fp32.as_bits;
- }
- static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
- const uint32_t w = (uint32_t) h << 16;
- const uint32_t sign = w & UINT32_C(0x80000000);
- const uint32_t two_w = w + w;
- const uint32_t exp_offset = UINT32_C(0xE0) << 23;
- #if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)) && (!defined(__cplusplus) || __cplusplus >= 201703L)
- const float exp_scale = 0x1.0p-112f;
- #else
- const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
- #endif
- const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
- const uint32_t magic_mask = UINT32_C(126) << 23;
- const float magic_bias = 0.5f;
- const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
- const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
- const uint32_t result = sign |
- (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
- return fp32_from_bits(result);
- }
- static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
- #if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)) && (!defined(__cplusplus) || __cplusplus >= 201703L)
- const float scale_to_inf = 0x1.0p+112f;
- const float scale_to_zero = 0x1.0p-110f;
- #else
- const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
- const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
- #endif
- float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
- const uint32_t w = fp32_to_bits(f);
- const uint32_t shl1_w = w + w;
- const uint32_t sign = w & UINT32_C(0x80000000);
- uint32_t bias = shl1_w & UINT32_C(0xFF000000);
- if (bias < UINT32_C(0x71000000)) {
- bias = UINT32_C(0x71000000);
- }
- base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
- const uint32_t bits = fp32_to_bits(base);
- const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
- const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
- const uint32_t nonsign = exp_bits + mantissa_bits;
- return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
- }
- #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
- #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
- #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
- #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
- static inline float ggml_e8m0_to_fp32(uint8_t x) {
- uint32_t bits; // Stores the raw bit representation of the float
- // Handle special case for minimum exponent (denormalized float)
- if (x == 0) {
- // Bit pattern for 2^(-127):
- // - Sign bit: 0 (positive)
- // - Exponent: 0 (denormalized number)
- // - Mantissa: 0x400000 (0.5 in fractional form)
- // Value = 0.5 * 2^(-126) = 2^(-127)
- bits = 0x00400000;
- }
- // note: disabled as we don't need to handle NaNs
- //// Handle special case for NaN (all bits set)
- //else if (x == 0xFF) {
- // // Standard quiet NaN pattern:
- // // - Sign bit: 0
- // // - Exponent: all 1s (0xFF)
- // // - Mantissa: 0x400000 (quiet NaN flag)
- // bits = 0x7FC00000;
- //}
- // Normalized values (most common case)
- else {
- // Construct normalized float by shifting exponent into position:
- // - Exponent field: 8 bits (positions 30-23)
- // - Mantissa: 0 (implicit leading 1)
- // Value = 2^(x - 127)
- bits = (uint32_t) x << 23;
- }
- float result; // Final float value
- // Safely reinterpret bit pattern as float without type-punning issues
- memcpy(&result, &bits, sizeof(float));
- return result;
- }
- // Equal to ggml_e8m0_to_fp32/2
- // Useful with MXFP4 quantization since the E0M2 values are doubled
- static inline float ggml_e8m0_to_fp32_half(uint8_t x) {
- uint32_t bits;
- // For x < 2: use precomputed denormal patterns
- if (x < 2) {
- // 0x00200000 = 2^(-128), 0x00400000 = 2^(-127)
- bits = 0x00200000 << x;
- }
- // For x >= 2: normalized exponent adjustment
- else {
- // 0.5 * 2^(x-127) = 2^(x-128) = normalized with exponent (x-1)
- bits = (uint32_t)(x - 1) << 23;
- }
- // Note: NaNs are not handled here
- float result;
- memcpy(&result, &bits, sizeof(float));
- return result;
- }
- #define GGML_E8M0_TO_FP32(x) ggml_e8m0_to_fp32(x)
- #define GGML_E8M0_TO_FP32_HALF(x) ggml_e8m0_to_fp32_half(x)
- /**
- * Converts brain16 to float32.
- *
- * The bfloat16 floating point format has the following structure:
- *
- * ┌sign
- * │
- * │ ┌exponent
- * │ │
- * │ │ ┌mantissa
- * │ │ │
- * │┌──┴───┐┌─┴───┐
- * 0b0000000000000000 brain16
- *
- * Since bf16 has the same number of exponent bits as a 32bit float,
- * encoding and decoding numbers becomes relatively straightforward.
- *
- * ┌sign
- * │
- * │ ┌exponent
- * │ │
- * │ │ ┌mantissa
- * │ │ │
- * │┌──┴───┐┌─┴───────────────────┐
- * 0b00000000000000000000000000000000 IEEE binary32
- *
- * For comparison, the standard fp16 format has fewer exponent bits.
- *
- * ┌sign
- * │
- * │ ┌exponent
- * │ │
- * │ │ ┌mantissa
- * │ │ │
- * │┌─┴─┐┌─┴──────┐
- * 0b0000000000000000 IEEE binary16
- *
- * @see IEEE 754-2008
- */
- static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
- union {
- float f;
- uint32_t i;
- } u;
- u.i = (uint32_t)h.bits << 16;
- return u.f;
- }
- /**
- * Converts float32 to brain16.
- *
- * This is binary identical with Google Brain float conversion.
- * Floats shall round to nearest even, and NANs shall be quiet.
- * Subnormals aren't flushed to zero, except perhaps when used.
- * This code should vectorize nicely if using modern compilers.
- */
- static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
- ggml_bf16_t h;
- union {
- float f;
- uint32_t i;
- } u;
- u.f = s;
- if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
- h.bits = (u.i >> 16) | 64; /* force to quiet */
- return h;
- }
- h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
- return h;
- }
- #define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
- #define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
- // return true if the node's results are only used by N other nodes
- // and can be fused into their calculations.
- static inline bool ggml_node_has_n_uses(const struct ggml_cgraph * cgraph, int node_idx, int32_t n_uses) {
- const struct ggml_tensor * node = cgraph->nodes[node_idx];
- // check the use count against how many we're replacing
- size_t hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node);
- if (!ggml_bitset_get(cgraph->visited_hash_set.used, hash_pos) || cgraph->use_counts[hash_pos] != n_uses) {
- return false;
- }
- // if node is a view, some other node might be using the intermediate result
- // via the view source.
- if (node->view_src) {
- return false;
- }
- // If the user requested output for the node, can't fuse
- if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
- return false;
- }
- return true;
- }
- // Returns true if nodes with indices { node_idxs } are the sequence of ggml_ops in ops[]
- // and are fusable. Nodes are considered fusable according to this function if:
- // - all nodes except the last have only one use and are not views/outputs (see ggml_node_has_N_uses).
- // - all nodes except the last are a src of the following node.
- // - all nodes are the same shape.
- // TODO: Consider allowing GGML_OP_NONE nodes in between
- static inline bool ggml_can_fuse_ext(const struct ggml_cgraph * cgraph, const int * node_idxs, const enum ggml_op * ops, int num_ops) {
- for (int i = 0; i < num_ops; ++i) {
- if (node_idxs[i] >= cgraph->n_nodes) {
- return false;
- }
- struct ggml_tensor * node = cgraph->nodes[node_idxs[i]];
- if (node->op != ops[i]) {
- return false;
- }
- if (i < num_ops - 1 && !ggml_node_has_n_uses(cgraph, node_idxs[i], 1)) {
- return false;
- }
- if (i > 0) {
- struct ggml_tensor * prev = cgraph->nodes[node_idxs[i - 1]];
- if (node->src[0] != prev && node->src[1] != prev) {
- return false;
- }
- if (!ggml_are_same_shape(node, prev)) {
- return false;
- }
- }
- }
- return true;
- }
- // same as above, for sequential indices starting at node_idx
- static inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, const enum ggml_op * ops, int num_ops) {
- assert(num_ops < 32);
- if (node_idx + num_ops > cgraph->n_nodes) {
- return false;
- }
- int idxs[32];
- for (int i = 0; i < num_ops; ++i) {
- idxs[i] = node_idx + i;
- }
- return ggml_can_fuse_ext(cgraph, idxs, ops, num_ops);
- }
- #ifdef __cplusplus
- }
- #endif
- #ifdef __cplusplus
- #include <initializer_list>
- #include <vector>
- // nicer C++ syntax for ggml_can_fuse
- inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
- return ggml_can_fuse(cgraph, node_idx, ops.begin(), (int)ops.size());
- }
- // expose GGUF internals for test code
- GGML_API size_t gguf_type_size(enum gguf_type type);
- GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
- GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta);
- #endif // __cplusplus
|