utils.h 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include <string>
  4. #include <unordered_map>
  5. #include <vector>
  6. #include <random>
  7. #include <thread>
  8. //
  9. // CLI argument parsing
  10. //
  11. struct gpt_params {
  12. int32_t seed = -1; // RNG seed
  13. int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
  14. int32_t n_predict = 128; // new tokens to predict
  15. int32_t repeat_last_n = 64; // last n tokens to penalize
  16. int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
  17. int32_t n_ctx = 512; //context size
  18. // sampling parameters
  19. int32_t top_k = 40;
  20. float top_p = 0.95f;
  21. float temp = 0.80f;
  22. float repeat_penalty = 1.10f;
  23. int32_t n_batch = 8; // batch size for prompt processing
  24. std::string model = "models/lamma-7B/ggml-model.bin"; // model path
  25. std::string prompt = "";
  26. std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
  27. bool memory_f16 = false; // use f16 instead of f32 for memory kv
  28. bool random_prompt = false; // do not randomize prompt if none provided
  29. bool use_color = false; // use color to distinguish generations and inputs
  30. bool interactive = false; // interactive mode
  31. bool interactive_start = false; // reverse prompt immediately
  32. bool instruct = false; // instruction mode (used for Alpaca models)
  33. bool ignore_eos = false; // do not stop generating after eos
  34. bool perplexity = false; // compute perplexity over the prompt
  35. };
  36. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  37. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  38. std::string gpt_random_prompt(std::mt19937 & rng);
  39. //
  40. // Model file parsing
  41. //
  42. #define FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
  43. #define FILE_MAGIC 0x67676d66 // 'ggmf' in hex
  44. #define FILE_VERSION 1
  45. //
  46. // Vocab utils
  47. //
  48. struct llama_vocab {
  49. using id = int32_t;
  50. using token = std::string;
  51. struct token_score {
  52. token tok;
  53. float score;
  54. };
  55. std::unordered_map<token, id> token_to_id;
  56. std::vector<token_score> id_to_token;
  57. };
  58. void replace(std::string & str, const std::string & needle, const std::string & replacement);
  59. // poor-man's JSON parsing
  60. std::unordered_map<std::string, int32_t> json_parse(const std::string & fname);
  61. // TODO: temporary until #77 is merged, need this now for some tokenizer tests
  62. bool llama_vocab_load(const std::string & fname, llama_vocab & vocab);
  63. // TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
  64. // ref: https://github.com/google/sentencepiece
  65. std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos);
  66. // sample next token given probabilities for each embedding
  67. //
  68. // - consider only the top K tokens
  69. // - from them, consider only the top tokens with cumulative probability > P
  70. //
  71. llama_vocab::id llama_sample_top_p_top_k(
  72. const llama_vocab & vocab,
  73. const float * logits,
  74. std::vector<llama_vocab::id> & last_n_tokens,
  75. double repeat_penalty,
  76. int top_k,
  77. double top_p,
  78. double temp,
  79. std::mt19937 & rng);
  80. // filer to top K tokens from list of logits
  81. void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k);
  82. //
  83. // Quantization
  84. //
  85. size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
  86. size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);