| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128 |
- // NOTE: This is modified from clip.cpp only for LLaVA,
- // so there might be still unnecessary artifacts hanging around
- // I'll gradually clean and extend it
- #include <cassert>
- #include <cmath>
- #include <cstdlib>
- #include <cstring>
- #include <fstream>
- #include <iostream>
- #include <map>
- #include <regex>
- #include <stdexcept>
- #include <vector>
- #include "clip.h"
- #include "ggml.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #ifdef GGML_USE_CUBLAS
- #include "ggml-cuda.h"
- #endif
- #ifdef GGML_USE_METAL
- #include "ggml-metal.h"
- #endif
- #define STB_IMAGE_IMPLEMENTATION
- #include "stb_image.h"
- static std::string format(const char * fmt, ...) {
- va_list ap;
- va_list ap2;
- va_start(ap, fmt);
- va_copy(ap2, ap);
- int size = vsnprintf(NULL, 0, fmt, ap);
- GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
- std::vector<char> buf(size + 1);
- int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
- GGML_ASSERT(size2 == size);
- va_end(ap2);
- va_end(ap);
- return std::string(buf.data(), buf.size());
- }
- //
- // key constants
- //
- #define KEY_FTYPE "general.file_type"
- #define KEY_NAME "general.name"
- #define KEY_DESCRIPTION "general.description"
- #define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
- #define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
- #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
- #define KEY_USE_GELU "clip.use_gelu"
- #define KEY_N_EMBD "clip.%s.embedding_length"
- #define KEY_N_FF "clip.%s.feed_forward_length"
- #define KEY_N_BLOCK "clip.%s.block_count"
- #define KEY_N_HEAD "clip.%s.attention.head_count"
- #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
- #define KEY_PROJ_DIM "clip.%s.projection_dim"
- #define KEY_TOKENS "tokenizer.ggml.tokens"
- #define KEY_N_POSITIONS "clip.text.context_length"
- #define KEY_IMAGE_SIZE "clip.vision.image_size"
- #define KEY_PATCH_SIZE "clip.vision.patch_size"
- #define KEY_IMAGE_MEAN "clip.vision.image_mean"
- #define KEY_IMAGE_STD "clip.vision.image_std"
- //
- // tensor name constants
- //
- #define TN_TOKEN_EMBD "%s.token_embd.weight"
- #define TN_POS_EMBD "%s.position_embd.weight"
- #define TN_CLASS_EMBD "v.class_embd"
- #define TN_PATCH_EMBD "v.patch_embd.weight"
- #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
- #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
- #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
- #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
- #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
- #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
- #define TN_LN_1 "%s.blk.%d.ln1.%s"
- #define TN_LN_2 "%s.blk.%d.ln2.%s"
- #define TN_LN_PRE "%s.pre_ln.%s"
- #define TN_LN_POST "%s.post_ln.%s"
- #define TN_TEXT_PROJ "text_projection.weight"
- #define TN_VIS_PROJ "visual_projection.weight"
- #define TN_LLAVA_PROJ "mm.%d.%s"
- //
- // utilities to get data from a gguf file
- //
- static int get_key_idx(const gguf_context * ctx, const char * key) {
- int i = gguf_find_key(ctx, key);
- if (i == -1) {
- fprintf(stderr, "key %s not found in file\n", key);
- throw std::runtime_error(format("Missing required key: %s", key));
- }
- return i;
- }
- static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
- const int i = get_key_idx(ctx, key.c_str());
- return gguf_get_val_u32(ctx, i);
- }
- static float get_f32(const gguf_context * ctx, const std::string & key) {
- const int i = get_key_idx(ctx, key.c_str());
- return gguf_get_val_f32(ctx, i);
- }
- static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
- if (!cur) {
- throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
- }
- return cur;
- }
- static std::string get_ftype(int ftype) {
- switch (ftype) {
- case 0:
- return "f32";
- case 1:
- return "f16";
- case 2:
- return "q4_0";
- case 3:
- return "q4_1";
- case 6:
- return "q5_0";
- case 7:
- return "q5_1";
- case 8:
- return "q8_0";
- default:
- throw std::runtime_error(format("%s: Unrecognized file type: %d\n", __func__, ftype));
- }
- }
- //
- // image data
- //
- // RGB uint8 image
- struct clip_image_u8 {
- int nx;
- int ny;
- std::vector<uint8_t> buf;
- };
- // RGB float32 image (NHWC)
- // Memory layout: RGBRGBRGB...
- struct clip_image_f32 {
- int nx;
- int ny;
- std::vector<float> buf;
- };
- //
- // clip layers
- //
- struct clip_layer {
- // attention
- struct ggml_tensor * k_w;
- struct ggml_tensor * k_b;
- struct ggml_tensor * q_w;
- struct ggml_tensor * q_b;
- struct ggml_tensor * v_w;
- struct ggml_tensor * v_b;
- struct ggml_tensor * o_w;
- struct ggml_tensor * o_b;
- // layernorm 1
- struct ggml_tensor * ln_1_w;
- struct ggml_tensor * ln_1_b;
- // ff
- struct ggml_tensor * ff_i_w;
- struct ggml_tensor * ff_i_b;
- struct ggml_tensor * ff_o_w;
- struct ggml_tensor * ff_o_b;
- // layernorm 2
- struct ggml_tensor * ln_2_w;
- struct ggml_tensor * ln_2_b;
- };
- struct clip_vision_model {
- struct clip_vision_hparams hparams;
- // embeddings
- struct ggml_tensor * class_embedding;
- struct ggml_tensor * patch_embeddings;
- struct ggml_tensor * position_embeddings;
- struct ggml_tensor * pre_ln_w;
- struct ggml_tensor * pre_ln_b;
- std::vector<clip_layer> layers;
- struct ggml_tensor * post_ln_w;
- struct ggml_tensor * post_ln_b;
- struct ggml_tensor * projection;
- // LLaVA projection
- struct ggml_tensor * mm_0_w;
- struct ggml_tensor * mm_0_b;
- struct ggml_tensor * mm_2_w;
- struct ggml_tensor * mm_2_b;
- };
- struct clip_ctx {
- bool has_text_encoder = false;
- bool has_vision_encoder = false;
- bool has_llava_projector = false;
- struct clip_vision_model vision_model;
- float image_mean[3];
- float image_std[3];
- bool use_gelu = false;
- int32_t ftype = 1;
- struct gguf_context * ctx_gguf;
- struct ggml_context * ctx_data;
- std::vector<uint8_t> buf_compute_meta;
- // memory buffers to evaluate the model
- ggml_backend_buffer_t params_buffer = NULL;
- ggml_backend_buffer_t compute_buffer = NULL;
- ggml_backend_t backend = NULL;
- ggml_allocr * compute_alloc = NULL;
- };
- static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
- if (!ctx->has_vision_encoder) {
- printf("This gguf file seems to have no vision encoder\n");
- return nullptr;
- }
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- const int image_size = hparams.image_size;
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
- const int num_positions = num_patches + 1;
- const int hidden_size = hparams.hidden_size;
- const int n_head = hparams.n_head;
- const int d_head = hidden_size / n_head;
- const int n_layer = hparams.n_layer;
- //const int n_intermediate = hparams.n_intermediate;
- //const int projection_dim = hparams.projection_dim;
- const float eps = hparams.eps;
- int batch_size = imgs->size;
- if (ctx->has_llava_projector) {
- GGML_ASSERT(batch_size == 1);
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
- ggml_allocr_alloc(ctx->compute_alloc, inp_raw);
- if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
- float * data = (float *)malloc(ggml_nbytes(inp_raw));
- for (size_t i = 0; i < imgs->size; i++) {
- const int nx = imgs->data[i].nx;
- const int ny = imgs->data[i].ny;
- GGML_ASSERT(nx == image_size && ny == image_size);
- const int n = nx * ny;
- for (int b = 0; b < batch_size; b++) {
- for (int k = 0; k < 3; k++) {
- for (int y = 0; y < ny; y++) {
- for (int x = 0; x < nx; x++) {
- data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
- }
- }
- }
- }
- }
- ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
- free(data);
- }
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
- // concat class_embeddings and patch_embeddings
- struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
- ggml_allocr_alloc(ctx->compute_alloc, embeddings);
- if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
- void* zero_mem = malloc(ggml_nbytes(embeddings));
- memset(zero_mem, 0, ggml_nbytes(embeddings));
- ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
- free(zero_mem);
- }
- embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
- embeddings = ggml_acc(ctx0, embeddings, inp,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
- struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
- ggml_allocr_alloc(ctx->compute_alloc, positions);
- if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
- int* positions_data = (int*)malloc(ggml_nbytes(positions));
- for (int i = 0; i < num_positions; i++) {
- positions_data[i] = i;
- }
- ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
- free(positions_data);
- }
- embeddings =
- ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
- // pre-layernorm
- {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
- }
- // loop over layers
- for (int il = 0; il < n_layer - 1; il++) {
- struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
- //const size_t nb_q_w = model.layers[il].q_w->nb[0];
- // layernorm1
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
- model.layers[il].ln_1_b);
- }
- // self-attention
- {
- struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
- Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * K =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * V =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_inplace(ctx0, KQ);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
- KQV = ggml_cont(ctx0, ggml_permute(ctx0, KQV, 0, 2, 1, 3));
- cur = ggml_cpy(ctx0, KQV, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size));
- }
- // attention output
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
- embeddings = cur; // embeddings = residual, cur = hidden_states
- // layernorm2
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
- if (ctx->use_gelu) {
- cur = ggml_gelu_inplace(ctx0, cur);
- } else {
- cur = ggml_gelu_quick_inplace(ctx0, cur);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
- embeddings = cur;
- }
- // llava projector
- {
- embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
- struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
- ggml_allocr_alloc(ctx->compute_alloc, patches);
- if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
- int* patches_data = (int*)malloc(ggml_nbytes(patches));
- for (int i = 0; i < num_patches; i++) {
- patches_data[i] = i + 1;
- }
- ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
- free(patches_data);
- }
- embeddings = ggml_get_rows(ctx0, embeddings, patches);
- // mm projection 0
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- embeddings = ggml_gelu(ctx0, embeddings);
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- ggml_free(ctx0);
- return gf;
- }
- // read and create ggml_context containing the tensors and their data
- struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
- struct ggml_context * meta = NULL;
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &meta,
- };
- struct gguf_context * ctx = gguf_init_from_file(fname, params);
- if (!ctx) {
- throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
- }
- if (verbosity >= 1) {
- const int n_tensors = gguf_get_n_tensors(ctx);
- const int n_kv = gguf_get_n_kv(ctx);
- const int ftype = get_u32(ctx, KEY_FTYPE);
- const std::string ftype_str = get_ftype(ftype);
- const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
- const std::string description = gguf_get_val_str(ctx, idx_desc);
- const int idx_name = gguf_find_key(ctx, KEY_NAME);
- if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
- const std::string name = gguf_get_val_str(ctx, idx_name);
- printf("%s: model name: %s\n", __func__, name.c_str());
- }
- printf("%s: description: %s\n", __func__, description.c_str());
- printf("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
- printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
- printf("%s: n_tensors: %d\n", __func__, n_tensors);
- printf("%s: n_kv: %d\n", __func__, n_kv);
- printf("%s: ftype: %s\n", __func__, ftype_str.c_str());
- printf("\n");
- }
- const int n_tensors = gguf_get_n_tensors(ctx);
- // kv
- if (verbosity >= 3) {
- const int n_kv = gguf_get_n_kv(ctx);
- for (int i = 0; i < n_kv; ++i) {
- const char * key = gguf_get_key(ctx, i);
- printf("%s: kv[%d]: key = %s\n", __func__, i, key);
- }
- printf("\n");
- }
- // data
- size_t buffer_size = 0;
- {
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx, i);
- const size_t offset = gguf_get_tensor_offset(ctx, i);
- struct ggml_tensor * cur = ggml_get_tensor(meta, name);
- size_t tensor_size = ggml_nbytes(cur);
- buffer_size += tensor_size;
- if (verbosity >= 3) {
- printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu\n", __func__, i,
- ggml_n_dims(cur), cur->name, tensor_size, offset);
- }
- }
- }
- buffer_size += n_tensors * 128 /* CLIP PADDING */;
- clip_ctx * new_clip = new clip_ctx;
- #ifdef GGML_USE_CUBLAS
- new_clip->backend = ggml_backend_cuda_init(0);
- printf("%s: CLIP using CUDA backend\n", __func__);
- #endif
- #ifdef GGML_USE_METAL
- new_clip->backend = ggml_backend_metal_init();
- printf("%s: CLIP using Metal backend\n", __func__);
- #endif
- if (!new_clip->backend) {
- new_clip->backend = ggml_backend_cpu_init();
- printf("%s: CLIP using CPU backend\n", __func__);
- }
- // model size and capabilities
- {
- int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
- new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
- idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
- new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
- idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
- if (idx != -1) {
- new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
- }
- GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
- GGML_ASSERT(new_clip->has_vision_encoder);
- GGML_ASSERT(!new_clip->has_text_encoder);
- idx = get_key_idx(ctx, KEY_USE_GELU);
- new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
- if (verbosity >= 1) {
- printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
- printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
- printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
- printf("%s: model size: %.2f MB\n", __func__, buffer_size / 1024.0 / 1024.0);
- printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
- }
- }
- printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, buffer_size / (1024.0 * 1024.0), n_tensors);
- // load tensors
- {
- std::vector<uint8_t> read_buf;
- struct ggml_init_params params = {
- /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- new_clip->ctx_data = ggml_init(params);
- if (!new_clip->ctx_data) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- clip_free(new_clip);
- return nullptr;
- }
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- printf("cannot open model file for loading tensors\n");
- clip_free(new_clip);
- return nullptr;
- }
- // add tensors to context
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx, i);
- struct ggml_tensor * t = ggml_get_tensor(meta, name);
- struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
- ggml_set_name(cur, name);
- }
- // alloc memory and offload data
- new_clip->params_buffer = ggml_backend_alloc_buffer(new_clip->backend, buffer_size);
- ggml_allocr* alloc = ggml_allocr_new_from_buffer(new_clip->params_buffer);
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx, i);
- struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
- ggml_allocr_alloc(alloc, cur);
- const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
- fin.seekg(offset, std::ios::beg);
- if (!fin) {
- printf("%s: failed to seek for tensor %s\n", __func__, name);
- clip_free(new_clip);
- return nullptr;
- }
- int num_bytes = ggml_nbytes(cur);
- if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
- // for the CPU and Metal backend, we can read directly into the tensor
- fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
- } else {
- // read into a temporary buffer first, then copy to device memory
- read_buf.resize(num_bytes);
- fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
- ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
- }
- }
- ggml_allocr_free(alloc);
- fin.close();
- }
- // vision model
- if (new_clip->has_vision_encoder) {
- // load vision model
- auto & vision_model = new_clip->vision_model;
- auto & hparams = vision_model.hparams;
- hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
- hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
- hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
- hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
- hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
- hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
- hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
- hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
- int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
- int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
- for (int i = 0; i < 3; ++i) {
- new_clip->image_mean[i] = *((const float *)gguf_get_arr_data(ctx, idx_mean));
- new_clip->image_std[i] = *((const float *)gguf_get_arr_data(ctx, idx_std));
- }
- if (verbosity >= 2) {
- printf("\n%s: vision model hparams\n", __func__);
- printf("image_size %d\n", hparams.image_size);
- printf("patch_size %d\n", hparams.patch_size);
- printf("v_hidden_size %d\n", hparams.hidden_size);
- printf("v_n_intermediate %d\n", hparams.n_intermediate);
- printf("v_projection_dim %d\n", hparams.projection_dim);
- printf("v_n_head %d\n", hparams.n_head);
- printf("v_n_layer %d\n", hparams.n_layer);
- }
- vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
- vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
- vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
- vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
- vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
- vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
- vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
- vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
- vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
- vision_model.layers.resize(hparams.n_layer);
- for (int il = 0; il < hparams.n_layer; ++il) {
- auto & layer = vision_model.layers[il];
- layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
- layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
- layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
- layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
- layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
- layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
- layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
- layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
- layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
- layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
- layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
- layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
- layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
- layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
- layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
- layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
- }
- }
- ggml_free(meta);
- new_clip->ctx_gguf = ctx;
- // measure mem requirement and allocate
- {
- new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
- new_clip->compute_alloc = ggml_allocr_new_measure_from_backend(new_clip->backend);
- clip_image_f32_batch batch;
- batch.size = 1;
- ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
- size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(new_clip->compute_alloc, gf);
- ggml_allocr_free(new_clip->compute_alloc);
- new_clip->compute_buffer = ggml_backend_alloc_buffer(new_clip->backend, compute_memory_buffer_size);
- new_clip->compute_alloc = ggml_allocr_new_from_buffer(new_clip->compute_buffer);
- printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
- }
- return new_clip;
- }
- struct clip_image_u8 * clip_image_u8_init() {
- return new clip_image_u8();
- }
- struct clip_image_f32 * clip_image_f32_init() {
- return new clip_image_f32();
- }
- void clip_image_u8_free (struct clip_image_u8 * img) { delete img; }
- void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
- static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
- img->nx = nx;
- img->ny = ny;
- img->buf.resize(3 * nx * ny);
- memcpy(img->buf.data(), data, img->buf.size());
- }
- bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
- int nx, ny, nc;
- auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
- if (!data) {
- fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname);
- return false;
- }
- build_clip_img_from_data(data, nx, ny, img);
- stbi_image_free(data);
- return true;
- }
- bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
- int nx, ny, nc;
- auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
- if (!data) {
- fprintf(stderr, "%s: failed to decode image bytes\n", __func__);
- return false;
- }
- build_clip_img_from_data(data, nx, ny, img);
- stbi_image_free(data);
- return true;
- }
- // normalize: x = (x - mean) / std
- // TODO: implement bicubic interpolation instead of linear.
- bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32 * res, const bool pad2square) {
- if (!ctx->has_vision_encoder) {
- printf("This gguf file seems to have no vision encoder\n");
- return false;
- }
- // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
- // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
- clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
- if (pad2square && img->nx != img->ny) {
- int longer_side = std::max(img->nx, img->ny);
- temp->nx = longer_side;
- temp->ny = longer_side;
- temp->buf.resize(3 * longer_side * longer_side);
- const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA
- // fill with background color
- for (size_t i = 0; i < temp->buf.size(); i++) {
- temp->buf[i] = bc[i % 3];
- }
- // copy from the input image
- for (int y = 0; y < img->ny; y++) {
- for (int x = 0; x < img->nx; x++) {
- const int i = 3 * (y * img->nx + x);
- const int j = 3 * (y * temp->nx + x);
- temp->buf[j] = img->buf[i];
- temp->buf[j+1] = img->buf[i+1];
- temp->buf[j+2] = img->buf[i+2];
- }
- }
- } else {
- temp->nx = img->nx;
- temp->ny = img->ny;
- temp->buf.resize(img->buf.size());
- memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
- }
- const int nx = temp->nx;
- const int ny = temp->ny;
- const int nx2 = ctx->vision_model.hparams.image_size;
- const int ny2 = ctx->vision_model.hparams.image_size;
- res->nx = nx2;
- res->ny = ny2;
- res->buf.resize(3 * nx2 * ny2);
- const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
- const int nx3 = int(nx / scale + 0.5f);
- const int ny3 = int(ny / scale + 0.5f);
- const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
- const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
- for (int y = 0; y < ny3; y++) {
- for (int x = 0; x < nx3; x++) {
- for (int c = 0; c < 3; c++) {
- // linear interpolation
- const float sx = (x + 0.5f) * scale - 0.5f;
- const float sy = (y + 0.5f) * scale - 0.5f;
- const int x0 = std::max(0, (int)std::floor(sx));
- const int y0 = std::max(0, (int)std::floor(sy));
- const int x1 = std::min(x0 + 1, nx - 1);
- const int y1 = std::min(y0 + 1, ny - 1);
- const float dx = sx - x0;
- const float dy = sy - y0;
- const int j00 = 3 * (y0 * nx + x0) + c;
- const int j01 = 3 * (y0 * nx + x1) + c;
- const int j10 = 3 * (y1 * nx + x0) + c;
- const int j11 = 3 * (y1 * nx + x1) + c;
- const float v00 = temp->buf[j00];
- const float v01 = temp->buf[j01];
- const float v10 = temp->buf[j10];
- const float v11 = temp->buf[j11];
- const float v0 = v00 * (1.0f - dx) + v01 * dx;
- const float v1 = v10 * (1.0f - dx) + v11 * dx;
- const float v = v0 * (1.0f - dy) + v1 * dy;
- const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
- const int i = 3 * (y * nx3 + x) + c;
- res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
- }
- }
- }
- clip_image_u8_free(temp);
- return true;
- }
- void clip_free(clip_ctx * ctx) {
- ggml_free(ctx->ctx_data);
- gguf_free(ctx->ctx_gguf);
- delete ctx;
- }
- bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
- if (!ctx->has_vision_encoder) {
- printf("This gguf file seems to have no vision encoder\n");
- return false;
- }
- clip_image_f32_batch imgs{};
- imgs.size = 1;
- imgs.data = img;
- return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
- }
- bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
- if (!ctx->has_vision_encoder) {
- printf("This gguf file seems to have no vision encoder\n");
- return false;
- }
- int batch_size = imgs->size;
- if(ctx->has_llava_projector) {
- GGML_ASSERT(batch_size == 1); // TODO: support multiple images
- }
- // reset alloc buffer to clean the memory from previous invocations
- ggml_allocr_reset(ctx->compute_alloc);
- // build the inference graph
- ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
- ggml_allocr_alloc_graph(ctx->compute_alloc, gf);
- if (ggml_backend_is_cpu(ctx->backend)) {
- ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
- }
- #ifdef GGML_USE_METAL
- if (ggml_backend_is_metal(ctx->backend)) {
- ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
- }
- #endif
- ggml_backend_graph_compute(ctx->backend, gf);
- // the last node is the embedding tensor
- struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
- // copy the embeddings to the location passed by the user
- ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
- return true;
- }
- bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
- ggml_type type = GGML_TYPE_Q4_1;
- switch (itype) {
- case 2:
- type = GGML_TYPE_Q4_0;
- break;
- case 3:
- type = GGML_TYPE_Q4_1;
- break;
- case 6:
- type = GGML_TYPE_Q5_0;
- break;
- case 7:
- type = GGML_TYPE_Q5_1;
- break;
- case 8:
- type = GGML_TYPE_Q8_0;
- break;
- default:
- fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype);
- return false;
- };
- auto * ctx_clip = clip_model_load(fname_inp, 2);
- const auto & ctx_src = ctx_clip->ctx_gguf;
- const auto & ctx_data = ctx_clip->ctx_data;
- auto * ctx_out = gguf_init_empty();
- gguf_set_kv(ctx_out, ctx_src);
- gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
- gguf_set_val_u32(ctx_out, "general.file_type", itype);
- auto fout = std::ofstream(fname_out, std::ios::binary);
- const int n_tensors = gguf_get_n_tensors(ctx_src);
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
- gguf_add_tensor(ctx_out, cur);
- }
- const size_t meta_size = gguf_get_meta_size(ctx_out);
- for (size_t i = 0; i < meta_size; ++i) {
- fout.put(0);
- }
- // regexes of tensor names to be quantized
- const std::vector<std::string> k_names = {
- ".*weight",
- };
- std::vector<uint8_t> read_data(512);
- std::vector<uint8_t> work(512);
- std::vector<float> conv_buf(512);
- std::vector<int64_t> hist_all(1 << 4, 0);
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- for (int i = 0; i < n_tensors; ++i) {
- const std::string name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- bool quantize = false;
- for (const auto & s : k_names) {
- if (std::regex_match(name, std::regex(s))) {
- quantize = true;
- break;
- }
- }
- // quantize only 2D tensors
- quantize &= (ggml_n_dims(cur) == 2);
- if (quantize) {
- new_type = type;
- const size_t n_elms = ggml_nelements(cur);
- float * f32_data;
- switch (cur->type) {
- case GGML_TYPE_F32:
- f32_data = (float *)cur->data;
- break;
- case GGML_TYPE_F16:
- if (conv_buf.size() < n_elms) {
- conv_buf.resize(n_elms);
- }
- for (size_t j = 0; j < n_elms; ++j) {
- conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
- }
- f32_data = (float *)conv_buf.data();
- break;
- default:
- printf("Please use an input file in f32 or f16\n");
- return false;
- }
- if (work.size() < n_elms * 4) {
- work.resize(n_elms * 4);
- }
- new_data = work.data();
- std::vector<int64_t> hist_cur(1 << 4, 0);
- switch (new_type) {
- case GGML_TYPE_Q4_0: {
- new_size = ggml_quantize_q4_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q4_1: {
- new_size = ggml_quantize_q4_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q5_0: {
- new_size = ggml_quantize_q5_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q5_1: {
- new_size = ggml_quantize_q5_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q8_0: {
- new_size = ggml_quantize_q8_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
- } break;
- default: {
- fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, new_type);
- return false;
- }
- }
- for (size_t j = 0; j < hist_cur.size(); ++j) {
- hist_all[j] += hist_cur[j];
- }
- } else {
- new_type = cur->type;
- new_data = cur->data;
- new_size = ggml_nbytes(cur);
- }
- const size_t orig_size = ggml_nbytes(cur);
- total_size_org += orig_size;
- total_size_new += new_size;
- gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
- gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
- fout.write((const char *)new_data, new_size);
- size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
- for (size_t j = 0; j < pad; ++j) {
- fout.put(0);
- }
- printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
- orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
- }
- // go back to beginning of file and write the updated metadata
- fout.seekp(0, std::ios::beg);
- std::vector<uint8_t> meta(meta_size);
- gguf_get_meta_data(ctx_out, meta.data());
- fout.write((const char *)meta.data(), meta_size);
- fout.close();
- clip_free(ctx_clip);
- gguf_free(ctx_out);
- {
- printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
- printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
- int64_t sum_all = 0;
- for (size_t i = 0; i < hist_all.size(); ++i) {
- sum_all += hist_all[i];
- }
- printf("%s: hist: ", __func__);
- for (size_t i = 0; i < hist_all.size(); ++i) {
- printf("%5.3f ", hist_all[i] / (float)sum_all);
- }
- printf("\n");
- }
- return true;
- }
- int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
- return ctx->vision_model.mm_2_b->ne[0];
- }
- int clip_n_patches(const struct clip_ctx * ctx) {
- auto & params = ctx->vision_model.hparams;
- return (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
- }
- size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
- return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
- }
|