lookup.cpp 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cmath>
  4. #include <cstdio>
  5. #include <string>
  6. #include <vector>
  7. int main(int argc, char ** argv){
  8. gpt_params params;
  9. if (!gpt_params_parse(argc, argv, params)) {
  10. return 1;
  11. }
  12. // max/min n-grams size to search for in prompt
  13. const int ngram_max = 4;
  14. const int ngram_min = 1;
  15. // length of the candidate / draft sequence, if match is found
  16. const int n_draft = params.n_draft;
  17. const bool dump_kv_cache = params.dump_kv_cache;
  18. #ifndef LOG_DISABLE_LOGS
  19. log_set_target(log_filename_generator("lookup", "log"));
  20. LOG_TEE("Log start\n");
  21. log_dump_cmdline(argc, argv);
  22. #endif // LOG_DISABLE_LOGS
  23. // init llama.cpp
  24. llama_backend_init(params.numa);
  25. llama_model * model = NULL;
  26. llama_context * ctx = NULL;
  27. // load the model
  28. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  29. // tokenize the prompt
  30. const bool add_bos = llama_should_add_bos_token(model);
  31. LOG("add_bos tgt: %d\n", add_bos);
  32. std::vector<llama_token> inp;
  33. inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
  34. const int max_context_size = llama_n_ctx(ctx);
  35. const int max_tokens_list_size = max_context_size - 4;
  36. if ((int) inp.size() > max_tokens_list_size) {
  37. fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
  38. return 1;
  39. }
  40. fprintf(stderr, "\n\n");
  41. for (auto id : inp) {
  42. fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
  43. }
  44. fflush(stderr);
  45. const int n_input = inp.size();
  46. const auto t_enc_start = ggml_time_us();
  47. llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
  48. llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
  49. const auto t_enc_end = ggml_time_us();
  50. int n_predict = 0;
  51. int n_drafted = 0;
  52. int n_accept = 0;
  53. int n_past = inp.size();
  54. bool has_eos = false;
  55. struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
  56. std::vector<llama_token> draft;
  57. llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
  58. // debug
  59. struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
  60. const auto t_dec_start = ggml_time_us();
  61. while (true) {
  62. // debug
  63. if (dump_kv_cache) {
  64. llama_kv_cache_view_update(ctx, &kvc_view);
  65. dump_kv_cache_view_seqs(kvc_view, 40);
  66. }
  67. // print current draft sequence
  68. LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
  69. int i_dft = 0;
  70. while (true) {
  71. // sample from the target model
  72. llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft);
  73. llama_sampling_accept(ctx_sampling, ctx, id, true);
  74. const std::string token_str = llama_token_to_piece(ctx, id);
  75. if (!params.use_color) {
  76. printf("%s", token_str.c_str());
  77. }
  78. if (id == llama_token_eos(model)) {
  79. has_eos = true;
  80. }
  81. ++n_predict;
  82. // check if the target token matches the draft
  83. if (i_dft < (int) draft.size() && id == draft[i_dft]) {
  84. LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
  85. ++n_accept;
  86. ++n_past;
  87. ++i_dft;
  88. inp.push_back(id);
  89. if (params.use_color) {
  90. // color accepted draft token
  91. printf("\033[34m%s\033[0m", token_str.c_str());
  92. fflush(stdout);
  93. }
  94. continue;
  95. }
  96. if (params.use_color) {
  97. printf("%s", token_str.c_str());
  98. }
  99. fflush(stdout);
  100. LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
  101. draft.clear();
  102. draft.push_back(id);
  103. inp.push_back(id);
  104. break;
  105. }
  106. if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
  107. break;
  108. }
  109. // KV cache management
  110. // clean the cache of draft tokens that weren't accepted
  111. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  112. llama_batch_clear(batch_tgt);
  113. llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
  114. // generate n_pred tokens through prompt lookup
  115. auto prompt_lookup = [&]() -> void {
  116. int inp_size = inp.size();
  117. for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
  118. const llama_token * ngram = &inp[inp_size - ngram_size];
  119. for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {
  120. bool match = true;
  121. for (int j = 0; j < ngram_size; ++j) {
  122. if (inp[i + j] != ngram[j]) {
  123. match = false;
  124. break;
  125. }
  126. }
  127. if (match) {
  128. const int startIdx = i + ngram_size;
  129. const int endIdx = startIdx + n_draft;
  130. if (endIdx < inp_size) {
  131. for (int j = startIdx; j < endIdx; ++j) {
  132. LOG(" - draft candidate %d: %d\n", j, inp[j]);
  133. draft.push_back(inp[j]);
  134. llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true);
  135. ++n_drafted;
  136. }
  137. return;
  138. }
  139. }
  140. }
  141. }
  142. return;
  143. };
  144. prompt_lookup();
  145. llama_decode(ctx, batch_tgt);
  146. ++n_past;
  147. draft.erase(draft.begin());
  148. }
  149. auto t_dec_end = ggml_time_us();
  150. LOG_TEE("\n\n");
  151. LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
  152. LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
  153. LOG_TEE("\n");
  154. LOG_TEE("n_draft = %d\n", n_draft);
  155. LOG_TEE("n_predict = %d\n", n_predict);
  156. LOG_TEE("n_drafted = %d\n", n_drafted);
  157. LOG_TEE("n_accept = %d\n", n_accept);
  158. LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
  159. LOG_TEE("\ntarget:\n");
  160. llama_print_timings(ctx);
  161. llama_sampling_free(ctx_sampling);
  162. llama_batch_free(batch_tgt);
  163. llama_free(ctx);
  164. llama_free_model(model);
  165. llama_backend_free();
  166. fprintf(stderr, "\n\n");
  167. return 0;
  168. }