ggml-backend.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  11. // backend buffer type
  12. ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  13. return buft->iface.alloc_buffer(buft, size);
  14. }
  15. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  16. return buft->iface.get_alignment(buft);
  17. }
  18. size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  19. // get_alloc_size is optional, defaults to ggml_nbytes
  20. if (buft->iface.get_alloc_size) {
  21. return buft->iface.get_alloc_size(buft, tensor);
  22. }
  23. return ggml_nbytes(tensor);
  24. }
  25. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  26. return buft->iface.supports_backend(buft, backend);
  27. }
  28. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  29. if (buft->iface.is_host) {
  30. return buft->iface.is_host(buft);
  31. }
  32. return false;
  33. }
  34. // backend buffer
  35. ggml_backend_buffer_t ggml_backend_buffer_init(
  36. ggml_backend_buffer_type_t buft,
  37. struct ggml_backend_buffer_i iface,
  38. ggml_backend_buffer_context_t context,
  39. size_t size) {
  40. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  41. GGML_ASSERT(iface.get_base != NULL);
  42. (*buffer) = (struct ggml_backend_buffer) {
  43. /* .interface = */ iface,
  44. /* .buft = */ buft,
  45. /* .context = */ context,
  46. /* .size = */ size,
  47. };
  48. return buffer;
  49. }
  50. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  51. if (buffer == NULL) {
  52. return;
  53. }
  54. if (buffer->iface.free_buffer != NULL) {
  55. buffer->iface.free_buffer(buffer);
  56. }
  57. free(buffer);
  58. }
  59. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  60. return buffer->size;
  61. }
  62. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  63. void * base = buffer->iface.get_base(buffer);
  64. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  65. return base;
  66. }
  67. void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  68. // init_tensor is optional
  69. if (buffer->iface.init_tensor) {
  70. buffer->iface.init_tensor(buffer, tensor);
  71. }
  72. }
  73. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  74. return ggml_backend_buft_get_alignment(ggml_backend_buffer_type(buffer));
  75. }
  76. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  77. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor);
  78. }
  79. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  80. buffer->iface.clear(buffer, value);
  81. }
  82. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  83. return ggml_backend_buft_is_host(ggml_backend_buffer_type(buffer));
  84. }
  85. ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) {
  86. return buffer->buft;
  87. }
  88. // backend
  89. const char * ggml_backend_name(ggml_backend_t backend) {
  90. if (backend == NULL) {
  91. return "NULL";
  92. }
  93. return backend->iface.get_name(backend);
  94. }
  95. void ggml_backend_free(ggml_backend_t backend) {
  96. if (backend == NULL) {
  97. return;
  98. }
  99. backend->iface.free(backend);
  100. }
  101. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  102. return backend->iface.get_default_buffer_type(backend);
  103. }
  104. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  105. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  106. }
  107. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  108. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  109. }
  110. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  111. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  112. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  113. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  114. }
  115. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  116. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  117. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  118. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  119. }
  120. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  121. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  122. GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
  123. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  124. tensor->buffer->iface.set_tensor(tensor->buffer, tensor, data, offset, size);
  125. }
  126. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  127. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  128. GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
  129. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  130. tensor->buffer->iface.get_tensor(tensor->buffer, tensor, data, offset, size);
  131. }
  132. void ggml_backend_synchronize(ggml_backend_t backend) {
  133. if (backend->iface.synchronize == NULL) {
  134. return;
  135. }
  136. backend->iface.synchronize(backend);
  137. }
  138. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  139. return backend->iface.graph_plan_create(backend, cgraph);
  140. }
  141. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  142. backend->iface.graph_plan_free(backend, plan);
  143. }
  144. void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  145. backend->iface.graph_plan_compute(backend, plan);
  146. // TODO: optional sync
  147. ggml_backend_synchronize(backend);
  148. }
  149. void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  150. backend->iface.graph_compute(backend, cgraph);
  151. // TODO: optional sync
  152. ggml_backend_synchronize(backend);
  153. }
  154. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  155. return backend->iface.supports_op(backend, op);
  156. }
  157. // backend copy
  158. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  159. if (a->type != b->type) {
  160. return false;
  161. }
  162. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  163. if (a->ne[i] != b->ne[i]) {
  164. return false;
  165. }
  166. if (a->nb[i] != b->nb[i]) {
  167. return false;
  168. }
  169. }
  170. return true;
  171. }
  172. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  173. //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
  174. //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
  175. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  176. // fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
  177. if (src == dst) {
  178. return;
  179. }
  180. // TODO: allow backends to support copy to/from same backend
  181. if (dst->buffer->iface.cpy_tensor_from != NULL) {
  182. dst->buffer->iface.cpy_tensor_from(dst->buffer, src, dst);
  183. } else if (src->buffer->iface.cpy_tensor_to != NULL) {
  184. src->buffer->iface.cpy_tensor_to(src->buffer, src, dst);
  185. } else {
  186. // shouldn't be hit when copying from/to CPU
  187. #ifndef NDEBUG
  188. fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to "
  189. "are implemented for %s and %s, falling back to get/set\n", src->name, dst->name);
  190. #endif
  191. size_t nbytes = ggml_nbytes(src);
  192. void * data = malloc(nbytes);
  193. ggml_backend_tensor_get(src, data, 0, nbytes);
  194. ggml_backend_tensor_set(dst, data, 0, nbytes);
  195. free(data);
  196. }
  197. }
  198. // backend registry
  199. #define GGML_MAX_BACKENDS_REG 16
  200. struct ggml_backend_reg {
  201. char name[128];
  202. ggml_backend_init_fn init_fn;
  203. ggml_backend_buffer_type_t default_buffer_type;
  204. void * user_data;
  205. };
  206. static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
  207. static size_t ggml_backend_registry_count = 0;
  208. static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  209. static void ggml_backend_registry_init(void) {
  210. static bool initialized = false;
  211. if (initialized) {
  212. return;
  213. }
  214. initialized = true;
  215. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  216. // add forward decls here to avoid including the backend headers
  217. #ifdef GGML_USE_CUBLAS
  218. extern void ggml_backend_cuda_reg_devices(void);
  219. ggml_backend_cuda_reg_devices();
  220. #endif
  221. #ifdef GGML_USE_METAL
  222. extern ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  223. extern ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  224. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  225. #endif
  226. }
  227. void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  228. GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
  229. size_t id = ggml_backend_registry_count;
  230. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  231. /* .name = */ {0},
  232. /* .fn = */ init_fn,
  233. /* .default_buffer_type = */ default_buffer_type,
  234. /* .user_data = */ user_data,
  235. };
  236. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  237. #ifndef NDEBUG
  238. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  239. #endif
  240. ggml_backend_registry_count++;
  241. }
  242. size_t ggml_backend_reg_get_count(void) {
  243. ggml_backend_registry_init();
  244. return ggml_backend_registry_count;
  245. }
  246. size_t ggml_backend_reg_find_by_name(const char * name) {
  247. ggml_backend_registry_init();
  248. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  249. // TODO: case insensitive in a portable way
  250. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  251. return i;
  252. }
  253. }
  254. // not found
  255. return SIZE_MAX;
  256. }
  257. // init from backend:params string
  258. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  259. ggml_backend_registry_init();
  260. const char * params = strchr(backend_str, ':');
  261. char backend_name[128];
  262. if (params == NULL) {
  263. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  264. params = "";
  265. } else {
  266. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  267. params++;
  268. }
  269. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  270. if (backend_i == SIZE_MAX) {
  271. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  272. return NULL;
  273. }
  274. return ggml_backend_reg_init_backend(backend_i, params);
  275. }
  276. const char * ggml_backend_reg_get_name(size_t i) {
  277. ggml_backend_registry_init();
  278. GGML_ASSERT(i < ggml_backend_registry_count);
  279. return ggml_backend_registry[i].name;
  280. }
  281. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  282. ggml_backend_registry_init();
  283. GGML_ASSERT(i < ggml_backend_registry_count);
  284. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  285. }
  286. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  287. ggml_backend_registry_init();
  288. GGML_ASSERT(i < ggml_backend_registry_count);
  289. return ggml_backend_registry[i].default_buffer_type;
  290. }
  291. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  292. ggml_backend_registry_init();
  293. GGML_ASSERT(i < ggml_backend_registry_count);
  294. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  295. }
  296. // backend CPU
  297. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  298. return (void *)buffer->context;
  299. }
  300. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  301. free(buffer->context);
  302. }
  303. static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  304. memcpy((char *)tensor->data + offset, data, size);
  305. GGML_UNUSED(buffer);
  306. }
  307. static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  308. memcpy(data, (const char *)tensor->data + offset, size);
  309. GGML_UNUSED(buffer);
  310. }
  311. static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
  312. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  313. GGML_UNUSED(buffer);
  314. }
  315. static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
  316. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  317. GGML_UNUSED(buffer);
  318. }
  319. static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  320. memset(buffer->context, value, buffer->size);
  321. }
  322. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  323. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  324. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  325. /* .init_tensor = */ NULL, // no initialization required
  326. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  327. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  328. /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
  329. /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
  330. /* .clear = */ ggml_backend_cpu_buffer_clear,
  331. };
  332. // for buffers from ptr, free is not called
  333. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  334. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  335. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  336. /* .init_tensor = */ NULL, // no initialization required
  337. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  338. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  339. /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
  340. /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
  341. /* .clear = */ ggml_backend_cpu_buffer_clear,
  342. };
  343. static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
  344. static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  345. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  346. void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
  347. GGML_ASSERT(data != NULL && "failed to allocate buffer");
  348. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  349. }
  350. static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  351. return TENSOR_ALIGNMENT;
  352. GGML_UNUSED(buft);
  353. }
  354. static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  355. return ggml_backend_is_cpu(backend);
  356. GGML_UNUSED(buft);
  357. }
  358. static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  359. return true;
  360. GGML_UNUSED(buft);
  361. }
  362. ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  363. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  364. /* .iface = */ {
  365. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  366. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  367. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  368. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  369. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  370. },
  371. /* .context = */ NULL,
  372. };
  373. return &ggml_backend_cpu_buffer_type;
  374. }
  375. #ifdef GGML_USE_CPU_HBM
  376. // buffer type HBM
  377. #include <hbwmalloc.h>
  378. static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  379. hbw_free(buffer->context);
  380. }
  381. static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  382. //void * ptr = hbw_malloc(size);
  383. void * ptr;
  384. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  385. if (result != 0) {
  386. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  387. return NULL;
  388. }
  389. // FIXME: this is a hack to avoid having to implement a new buffer type
  390. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  391. buffer->buft = buft;
  392. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  393. return buffer;
  394. }
  395. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type() {
  396. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  397. /* .iface = */ {
  398. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  399. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  400. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  401. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  402. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  403. },
  404. /* .context = */ NULL,
  405. };
  406. return &ggml_backend_cpu_buffer_type_hbm;
  407. }
  408. #endif
  409. struct ggml_backend_cpu_context {
  410. int n_threads;
  411. void * work_data;
  412. size_t work_size;
  413. };
  414. static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  415. return "CPU";
  416. GGML_UNUSED(backend);
  417. }
  418. static void ggml_backend_cpu_free(ggml_backend_t backend) {
  419. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  420. free(cpu_ctx->work_data);
  421. free(cpu_ctx);
  422. free(backend);
  423. }
  424. static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  425. return ggml_backend_cpu_buffer_type();
  426. GGML_UNUSED(backend);
  427. }
  428. struct ggml_backend_plan_cpu {
  429. struct ggml_cplan cplan;
  430. struct ggml_cgraph cgraph;
  431. };
  432. static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  433. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  434. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  435. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  436. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  437. if (cpu_plan->cplan.work_size > 0) {
  438. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  439. }
  440. return cpu_plan;
  441. }
  442. static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  443. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  444. free(cpu_plan->cplan.work_data);
  445. free(cpu_plan);
  446. GGML_UNUSED(backend);
  447. }
  448. static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  449. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  450. ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  451. GGML_UNUSED(backend);
  452. }
  453. static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  454. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  455. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  456. if (cpu_ctx->work_size < cplan.work_size) {
  457. // TODO: may be faster to free and use malloc to avoid the copy
  458. cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
  459. cpu_ctx->work_size = cplan.work_size;
  460. }
  461. cplan.work_data = cpu_ctx->work_data;
  462. ggml_graph_compute(cgraph, &cplan);
  463. }
  464. static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  465. switch (op->op) {
  466. case GGML_OP_MUL_MAT:
  467. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  468. default:
  469. return true;
  470. }
  471. GGML_UNUSED(backend);
  472. }
  473. static struct ggml_backend_i cpu_backend_i = {
  474. /* .get_name = */ ggml_backend_cpu_name,
  475. /* .free = */ ggml_backend_cpu_free,
  476. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  477. /* .set_tensor_async = */ NULL,
  478. /* .get_tensor_async = */ NULL,
  479. /* .cpy_tensor_from_async = */ NULL,
  480. /* .cpy_tensor_to_async = */ NULL,
  481. /* .synchronize = */ NULL,
  482. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  483. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  484. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  485. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  486. /* .supports_op = */ ggml_backend_cpu_supports_op,
  487. };
  488. ggml_backend_t ggml_backend_cpu_init(void) {
  489. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  490. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  491. ctx->work_data = NULL;
  492. ctx->work_size = 0;
  493. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  494. *cpu_backend = (struct ggml_backend) {
  495. /* .interface = */ cpu_backend_i,
  496. /* .context = */ ctx
  497. };
  498. return cpu_backend;
  499. }
  500. bool ggml_backend_is_cpu(ggml_backend_t backend) {
  501. return backend->iface.get_name == ggml_backend_cpu_name;
  502. }
  503. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  504. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  505. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  506. ctx->n_threads = n_threads;
  507. }
  508. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  509. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  510. }
  511. static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  512. return ggml_backend_cpu_init();
  513. GGML_UNUSED(params);
  514. GGML_UNUSED(user_data);
  515. }
  516. // scheduler
  517. #define GGML_MAX_BACKENDS 4
  518. #define GGML_MAX_SPLITS 256
  519. #define GGML_MAX_SPLIT_INPUTS 16
  520. struct ggml_backend_sched_split {
  521. ggml_tallocr_t tallocr;
  522. int i_start;
  523. int i_end;
  524. struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
  525. int n_inputs;
  526. struct ggml_cgraph graph;
  527. };
  528. struct ggml_backend_sched {
  529. int n_backends;
  530. ggml_backend_t backends[GGML_MAX_BACKENDS];
  531. ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
  532. ggml_gallocr_t galloc;
  533. struct ggml_hash_set hash_set;
  534. ggml_tallocr_t * node_talloc; // [hash_set.size]
  535. struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
  536. struct ggml_cgraph * graph;
  537. struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
  538. int n_splits;
  539. struct ggml_context * ctx;
  540. // align context_buffer to GGML_MEM_ALIGN
  541. #ifdef _MSC_VER
  542. __declspec(align(GGML_MEM_ALIGN))
  543. #else
  544. __attribute__((aligned(GGML_MEM_ALIGN)))
  545. #endif
  546. char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  547. };
  548. #define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
  549. #define node_allocr(node) sched->node_talloc[hash_id(node)]
  550. static bool ggml_is_view_op(enum ggml_op op) {
  551. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  552. }
  553. // returns the priority of the backend, lower is better
  554. static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
  555. for (int i = 0; i < sched->n_backends; i++) {
  556. if (sched->backends[i] == backend) {
  557. return i;
  558. }
  559. }
  560. return INT_MAX;
  561. }
  562. static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
  563. for (int i = 0; i < sched->n_backends; i++) {
  564. if (sched->tallocs[i] == allocr) {
  565. return i;
  566. }
  567. }
  568. return INT_MAX;
  569. }
  570. static ggml_backend_t get_buffer_backend(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
  571. if (buffer == NULL) {
  572. return NULL;
  573. }
  574. // find highest prio backend that supports the buffer type
  575. for (int i = 0; i < sched->n_backends; i++) {
  576. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  577. return sched->backends[i];
  578. }
  579. }
  580. GGML_ASSERT(false && "tensor buffer type not supported by any backend");
  581. }
  582. static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
  583. if (allocr == NULL) {
  584. return NULL;
  585. }
  586. // find highest prio backend that supports the buffer type
  587. for (int i = 0; i < sched->n_backends; i++) {
  588. if (sched->tallocs[i] == allocr) {
  589. return sched->backends[i];
  590. }
  591. }
  592. GGML_UNREACHABLE();
  593. }
  594. #if 0
  595. static char causes[GGML_DEFAULT_GRAPH_SIZE*8 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
  596. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  597. #define GET_CAUSE(node) causes[hash_id(node)]
  598. #else
  599. #define SET_CAUSE(node, ...)
  600. #define GET_CAUSE(node) ""
  601. #endif
  602. // returns the backend that should be used for the node based on the current locations
  603. static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  604. // if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
  605. // ie. kv cache updates
  606. // note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
  607. // dst
  608. ggml_backend_t cur_backend = get_buffer_backend(sched, node->buffer);
  609. if (cur_backend != NULL) {
  610. SET_CAUSE(node, "1.dst");
  611. return cur_backend;
  612. }
  613. // view_src
  614. if (node->view_src != NULL && get_buffer_backend(sched, node->view_src->buffer) != NULL) {
  615. SET_CAUSE(node, "1.vsrc");
  616. return get_buffer_backend(sched, node->view_src->buffer);
  617. }
  618. // src
  619. int cur_prio = INT_MAX;
  620. size_t cur_size = 0;
  621. for (int i = 0; i < GGML_MAX_SRC; i++) {
  622. const struct ggml_tensor * src = node->src[i];
  623. if (src == NULL) {
  624. break;
  625. }
  626. ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer);
  627. if (src_backend != NULL) {
  628. int src_prio = sched_backend_prio(sched, src_backend);
  629. size_t src_size = ggml_nbytes(src);
  630. if (src_prio < cur_prio && src_size >= cur_size) {
  631. cur_prio = src_prio;
  632. cur_size = src_size;
  633. cur_backend = src_backend;
  634. SET_CAUSE(node, "1.src%d", i);
  635. }
  636. }
  637. }
  638. return cur_backend;
  639. }
  640. static char * fmt_size(size_t size) {
  641. static char buffer[128];
  642. if (size >= 1024*1024) {
  643. sprintf(buffer, "%zuM", size/1024/1024);
  644. } else {
  645. sprintf(buffer, "%zuK", size/1024);
  646. }
  647. return buffer;
  648. }
  649. static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  650. int cur_split = 0;
  651. for (int i = 0; i < graph->n_nodes; i++) {
  652. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  653. ggml_backend_t split_backend = get_allocr_backend(sched, sched->splits[cur_split].tallocr);
  654. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  655. sched->splits[cur_split].n_inputs);
  656. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  657. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  658. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  659. }
  660. fprintf(stderr, "\n");
  661. cur_split++;
  662. }
  663. struct ggml_tensor * node = graph->nodes[i];
  664. if (ggml_is_view_op(node->op)) {
  665. continue;
  666. }
  667. ggml_tallocr_t node_allocr = node_allocr(node);
  668. ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME:
  669. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name,
  670. fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node));
  671. for (int j = 0; j < GGML_MAX_SRC; j++) {
  672. struct ggml_tensor * src = node->src[j];
  673. if (src == NULL) {
  674. break;
  675. }
  676. ggml_tallocr_t src_allocr = node_allocr(src);
  677. ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL;
  678. fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name,
  679. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  680. }
  681. fprintf(stderr, "\n");
  682. }
  683. }
  684. // creates a copy of the tensor with the same memory layout
  685. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  686. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  687. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  688. dup->nb[i] = tensor->nb[i];
  689. }
  690. return dup;
  691. }
  692. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  693. // TODO: merge passes
  694. static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  695. // reset state
  696. size_t hash_size = sched->hash_set.size;
  697. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
  698. memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
  699. memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
  700. sched->n_splits = 0;
  701. struct ggml_init_params params = {
  702. /* .mem_size = */ sizeof(sched->context_buffer),
  703. /* .mem_buffer = */ sched->context_buffer,
  704. /* .no_alloc = */ true
  705. };
  706. if (sched->ctx != NULL) {
  707. ggml_free(sched->ctx);
  708. }
  709. sched->ctx = ggml_init(params);
  710. // pass 1: assign backends to ops with allocated inputs
  711. for (int i = 0; i < graph->n_leafs; i++) {
  712. struct ggml_tensor * leaf = graph->leafs[i];
  713. if (node_allocr(leaf) != NULL) {
  714. // do not overwrite user assignments
  715. continue;
  716. }
  717. ggml_backend_t leaf_backend = get_buffer_backend(sched, leaf->buffer);
  718. if (leaf_backend == NULL && leaf->view_src != NULL) {
  719. leaf_backend = get_buffer_backend(sched, leaf->view_src->buffer);
  720. }
  721. if (leaf_backend != NULL) {
  722. node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
  723. }
  724. }
  725. for (int i = 0; i < graph->n_nodes; i++) {
  726. struct ggml_tensor * node = graph->nodes[i];
  727. if (node_allocr(node) != NULL) {
  728. // do not overwrite user assignments
  729. continue;
  730. }
  731. ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
  732. if (node_backend != NULL) {
  733. node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
  734. }
  735. }
  736. //printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  737. // pass 2: assign backends to ops from current assignments
  738. // TODO:
  739. // - reuse sched_backend_from_cur
  740. for (int i = 0; i < graph->n_nodes; i++) {
  741. struct ggml_tensor * node = graph->nodes[i];
  742. ggml_tallocr_t node_allocr = node_allocr(node);
  743. if (node_allocr == NULL) {
  744. int cur_prio = INT_MAX;
  745. size_t cur_size = 0;
  746. for (int j = 0; j < GGML_MAX_SRC; j++) {
  747. struct ggml_tensor * src = node->src[j];
  748. if (src == NULL) {
  749. break;
  750. }
  751. ggml_tallocr_t src_allocr = node_allocr(src);
  752. if (src_allocr != NULL) {
  753. int src_prio = sched_allocr_prio(sched, src_allocr);
  754. size_t src_size = ggml_nbytes(src);
  755. if (src_prio < cur_prio && src_size >= cur_size) {
  756. cur_prio = src_prio;
  757. cur_size = src_size;
  758. node_allocr = src_allocr;
  759. SET_CAUSE(node, "2.src%d", j);
  760. }
  761. }
  762. }
  763. if (node_allocr != NULL) {
  764. node_allocr(node) = node_allocr;
  765. }
  766. }
  767. }
  768. //printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  769. // pass 3: assign backends to remaining src from dst (should only be leafs)
  770. for (int i = 0; i < graph->n_nodes; i++) {
  771. struct ggml_tensor * node = graph->nodes[i];
  772. ggml_tallocr_t node_allocr = node_allocr(node);
  773. for (int j = 0; j < GGML_MAX_SRC; j++) {
  774. struct ggml_tensor * src = node->src[j];
  775. if (src == NULL) {
  776. break;
  777. }
  778. ggml_tallocr_t src_allocr = node_allocr(src);
  779. if (src_allocr == NULL) {
  780. node_allocr(src) = node_allocr;
  781. }
  782. }
  783. }
  784. //printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  785. // pass 4: split graph, find tensors that need to be copied
  786. // TODO:
  787. // - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
  788. // find first backend
  789. int cur_split = 0;
  790. for (int i = 0; i < graph->n_nodes; i++) {
  791. struct ggml_tensor * node = graph->nodes[i];
  792. if (node->view_src == NULL) {
  793. sched->splits[0].tallocr = node_allocr(node);
  794. break;
  795. }
  796. }
  797. sched->splits[0].i_start = 0;
  798. sched->splits[0].n_inputs = 0;
  799. memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
  800. ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
  801. size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
  802. for (int i = 0; i < graph->n_nodes; i++) {
  803. struct ggml_tensor * node = graph->nodes[i];
  804. if (ggml_is_view_op(node->op)) {
  805. continue;
  806. }
  807. ggml_tallocr_t node_allocr = node_allocr(node);
  808. if (node_allocr != cur_allocr) {
  809. sched->splits[cur_split].i_end = i;
  810. cur_split++;
  811. GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
  812. sched->splits[cur_split].tallocr = node_allocr;
  813. sched->splits[cur_split].i_start = i;
  814. sched->splits[cur_split].n_inputs = 0;
  815. memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
  816. cur_allocr = node_allocr;
  817. cur_backend_id = sched_allocr_prio(sched, cur_allocr);
  818. }
  819. // find inputs that are not on the same backend
  820. for (int j = 0; j < GGML_MAX_SRC; j++) {
  821. struct ggml_tensor * src = node->src[j];
  822. if (src == NULL) {
  823. break;
  824. }
  825. ggml_tallocr_t src_allocr = node_allocr(src);
  826. if (src_allocr != node_allocr) {
  827. int n_inputs = sched->splits[cur_split].n_inputs++;
  828. GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
  829. sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
  830. // create copies
  831. size_t id = hash_id(src);
  832. if (sched->node_copies[id][cur_backend_id] == NULL) {
  833. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  834. sched->node_copies[id][cur_backend_id] = tensor_copy;
  835. node_allocr(tensor_copy) = cur_allocr;
  836. ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
  837. ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
  838. }
  839. node->src[j] = sched->node_copies[id][cur_backend_id];
  840. }
  841. }
  842. }
  843. sched->splits[cur_split].i_end = graph->n_nodes;
  844. sched->n_splits = cur_split + 1;
  845. //fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
  846. #if 1
  847. // sanity check: all sources should have the same backend as the node
  848. for (int i = 0; i < graph->n_nodes; i++) {
  849. struct ggml_tensor * node = graph->nodes[i];
  850. ggml_tallocr_t node_allocr = node_allocr(node);
  851. if (node_allocr == NULL) {
  852. fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
  853. }
  854. for (int j = 0; j < GGML_MAX_SRC; j++) {
  855. struct ggml_tensor * src = node->src[j];
  856. if (src == NULL) {
  857. break;
  858. }
  859. ggml_tallocr_t src_allocr = node_allocr(src);
  860. if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
  861. fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
  862. node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
  863. j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL");
  864. }
  865. }
  866. }
  867. #endif
  868. // create copies of the graph for each split
  869. // FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
  870. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
  871. for (int i = 0; i < sched->n_splits; i++) {
  872. struct ggml_backend_sched_split * split = &sched->splits[i];
  873. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  874. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  875. for (int j = 0; j < split->n_inputs; j++) {
  876. struct ggml_tensor * input = split->inputs[j];
  877. struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
  878. input_cpy->src[0] = input;
  879. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  880. }
  881. for (int j = split->i_start; j < split->i_end; j++) {
  882. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  883. }
  884. }
  885. sched->graph = graph_copy;
  886. }
  887. static void sched_alloc_splits(ggml_backend_sched_t sched) {
  888. ggml_gallocr_alloc_graph_n(
  889. sched->galloc,
  890. sched->graph,
  891. sched->hash_set,
  892. sched->node_talloc);
  893. }
  894. static void sched_compute_splits(ggml_backend_sched_t sched) {
  895. uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
  896. uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
  897. struct ggml_backend_sched_split * splits = sched->splits;
  898. for (int i = 0; i < sched->n_splits; i++) {
  899. struct ggml_backend_sched_split * split = &splits[i];
  900. ggml_backend_t split_backend = get_allocr_backend(sched, split->tallocr);
  901. int split_backend_id = sched_backend_prio(sched, split_backend);
  902. // copy the input tensors to the split backend
  903. uint64_t copy_start_us = ggml_time_us();
  904. for (int j = 0; j < split->n_inputs; j++) {
  905. struct ggml_tensor * input = split->inputs[j];
  906. struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_backend_prio(sched, split_backend)];
  907. if (input->buffer == NULL) {
  908. if (input->view_src == NULL) {
  909. fprintf(stderr, "input %s has no buffer and no view_src\n", input->name);
  910. exit(1);
  911. }
  912. // FIXME: may need to use the sched buffer instead
  913. ggml_backend_view_init(input->view_src->buffer, input);
  914. }
  915. if (input_cpy->buffer == NULL) {
  916. fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
  917. exit(1);
  918. }
  919. //GGML_ASSERT(input->buffer->backend != input_cpy->buffer->backend);
  920. //GGML_ASSERT(input_cpy->buffer->backend == split_backend);
  921. ggml_backend_tensor_copy(input, input_cpy);
  922. }
  923. // ggml_backend_synchronize(split_backend);
  924. int64_t copy_end_us = ggml_time_us();
  925. copy_us[split_backend_id] += copy_end_us - copy_start_us;
  926. #if 0
  927. char split_filename[GGML_MAX_NAME];
  928. snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
  929. ggml_graph_dump_dot(split->graph, NULL, split_filename);
  930. #endif
  931. uint64_t compute_start_us = ggml_time_us();
  932. ggml_backend_graph_compute(split_backend, &split->graph);
  933. // ggml_backend_synchronize(split_backend);
  934. uint64_t compute_end_us = ggml_time_us();
  935. compute_us[split_backend_id] += compute_end_us - compute_start_us;
  936. }
  937. #if 0
  938. // per-backend timings
  939. fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
  940. for (int i = 0; i < sched->n_backends; i++) {
  941. if (copy_us[i] > 0 || compute_us[i] > 0) {
  942. fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
  943. }
  944. }
  945. #endif
  946. }
  947. static void sched_reset(ggml_backend_sched_t sched) {
  948. for (int i = 0; i < sched->n_backends; i++) {
  949. ggml_tallocr_reset(sched->tallocs[i]);
  950. }
  951. }
  952. ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
  953. GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
  954. struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
  955. memset(sched, 0, sizeof(struct ggml_backend_sched));
  956. sched->n_backends = n_backends;
  957. for (int i = 0; i < n_backends; i++) {
  958. sched->backends[i] = backends[i];
  959. }
  960. sched->galloc = ggml_gallocr_new();
  961. // init measure allocs for each backend
  962. for (int i = 0; i < n_backends; i++) {
  963. sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
  964. }
  965. return sched;
  966. }
  967. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  968. if (sched == NULL) {
  969. return;
  970. }
  971. for (int i = 0; i < sched->n_backends; i++) {
  972. ggml_tallocr_free(sched->tallocs[i]);
  973. }
  974. ggml_gallocr_free(sched->galloc);
  975. free(sched->hash_set.keys);
  976. free(sched->node_talloc);
  977. free(sched->node_copies);
  978. free(sched);
  979. }
  980. void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  981. // initialize hash tables
  982. size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
  983. sched->hash_set.size = hash_size;
  984. sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
  985. sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
  986. sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
  987. sched_split_graph(sched, measure_graph);
  988. sched_alloc_splits(sched);
  989. // allocate buffers and reset allocators
  990. for (int i = 0; i < sched->n_backends; i++) {
  991. size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
  992. ggml_tallocr_free(sched->tallocs[i]);
  993. sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
  994. }
  995. sched_reset(sched);
  996. }
  997. void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  998. GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
  999. sched_split_graph(sched, graph);
  1000. sched_alloc_splits(sched);
  1001. sched_compute_splits(sched);
  1002. sched_reset(sched);
  1003. }
  1004. ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1005. int backend_index = sched_backend_prio(sched, backend);
  1006. return sched->tallocs[backend_index];
  1007. }
  1008. ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1009. int backend_index = sched_backend_prio(sched, backend);
  1010. return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
  1011. }
  1012. void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1013. int backend_index = sched_backend_prio(sched, backend);
  1014. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1015. node_allocr(node) = sched->tallocs[backend_index];
  1016. }
  1017. // utils
  1018. void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  1019. GGML_ASSERT(tensor->buffer == NULL);
  1020. //GGML_ASSERT(tensor->data == NULL); // views of pre-allocted tensors may have the data set, but still need to be initialized
  1021. GGML_ASSERT(tensor->view_src != NULL);
  1022. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1023. GGML_ASSERT(tensor->view_src->data != NULL);
  1024. tensor->buffer = buffer;
  1025. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1026. tensor->backend = tensor->view_src->backend;
  1027. ggml_backend_buffer_init_tensor(buffer, tensor);
  1028. }
  1029. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1030. GGML_ASSERT(tensor->buffer == NULL);
  1031. GGML_ASSERT(tensor->data == NULL);
  1032. GGML_ASSERT(tensor->view_src == NULL);
  1033. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1034. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1035. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1036. tensor->buffer = buffer;
  1037. tensor->data = addr;
  1038. ggml_backend_buffer_init_tensor(buffer, tensor);
  1039. }
  1040. static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1041. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1042. GGML_ASSERT(src != NULL);
  1043. GGML_ASSERT(src->data && "graph must be allocated");
  1044. size_t id = ggml_hash_insert(hash_set, src);
  1045. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1046. return node_copies[ggml_hash_find(hash_set, src)];
  1047. }
  1048. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1049. if (src->view_src != NULL) {
  1050. dst->view_src = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1051. dst->view_offs = src->view_offs;
  1052. }
  1053. dst->op = src->op;
  1054. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1055. ggml_set_name(dst, src->name);
  1056. // copy src
  1057. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1058. struct ggml_tensor * s = src->src[i];
  1059. if (s == NULL) {
  1060. break;
  1061. }
  1062. dst->src[i] = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1063. }
  1064. node_copies[id] = dst;
  1065. return dst;
  1066. }
  1067. static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1068. size_t id = ggml_hash_find(hash_set, src);
  1069. if (node_init[id]) {
  1070. return;
  1071. }
  1072. node_init[id] = true;
  1073. struct ggml_tensor * dst = node_copies[id];
  1074. if (dst->view_src != NULL) {
  1075. ggml_backend_view_init(dst->view_src->buffer, dst);
  1076. }
  1077. else {
  1078. ggml_backend_tensor_copy(src, dst);
  1079. }
  1080. // init src
  1081. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1082. struct ggml_tensor * s = src->src[i];
  1083. if (s == NULL) {
  1084. break;
  1085. }
  1086. graph_init_tensor(hash_set, node_copies, node_init, s);
  1087. }
  1088. }
  1089. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1090. struct ggml_hash_set hash_set = {
  1091. /* .size = */ graph->visited_hash_table.size,
  1092. /* .keys = */ calloc(sizeof(hash_set.keys[0]) * graph->visited_hash_table.size, 1)
  1093. };
  1094. struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]) * hash_set.size, 1);
  1095. bool * node_init = calloc(sizeof(node_init[0]) * hash_set.size, 1);
  1096. struct ggml_init_params params = {
  1097. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1098. /* .mem_buffer = */ NULL,
  1099. /* .no_alloc = */ true
  1100. };
  1101. struct ggml_context * ctx_allocated = ggml_init(params);
  1102. struct ggml_context * ctx_unallocated = ggml_init(params);
  1103. // dup nodes
  1104. for (int i = 0; i < graph->n_nodes; i++) {
  1105. struct ggml_tensor * node = graph->nodes[i];
  1106. graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1107. }
  1108. // allocate nodes
  1109. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1110. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1111. // copy data and init views
  1112. for (int i = 0; i < graph->n_nodes; i++) {
  1113. struct ggml_tensor * node = graph->nodes[i];
  1114. graph_init_tensor(hash_set, node_copies, node_init, node);
  1115. }
  1116. // build graph copy
  1117. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1118. for (int i = 0; i < graph->n_nodes; i++) {
  1119. struct ggml_tensor * node = graph->nodes[i];
  1120. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1121. graph_copy->nodes[i] = node_copy;
  1122. }
  1123. graph_copy->n_nodes = graph->n_nodes;
  1124. free(hash_set.keys);
  1125. free(node_copies);
  1126. free(node_init);
  1127. return (struct ggml_backend_graph_copy) {
  1128. /* .buffer = */ buffer,
  1129. /* .ctx_allocated = */ ctx_allocated,
  1130. /* .ctx_unallocated = */ ctx_unallocated,
  1131. /* .graph = */ graph_copy,
  1132. };
  1133. }
  1134. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1135. ggml_backend_buffer_free(copy.buffer);
  1136. ggml_free(copy.ctx_allocated);
  1137. ggml_free(copy.ctx_unallocated);
  1138. }
  1139. void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1140. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1141. struct ggml_cgraph * g1 = graph;
  1142. struct ggml_cgraph * g2 = copy.graph;
  1143. assert(g1->n_nodes == g2->n_nodes);
  1144. for (int i = 0; i < g1->n_nodes; i++) {
  1145. //printf("eval %d/%d\n", i, g1->n_nodes);
  1146. struct ggml_tensor * t1 = g1->nodes[i];
  1147. struct ggml_tensor * t2 = g2->nodes[i];
  1148. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1149. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1150. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1151. ggml_backend_graph_compute(backend1, &g1v);
  1152. ggml_backend_graph_compute(backend2, &g2v);
  1153. if (ggml_is_view_op(t1->op)) {
  1154. continue;
  1155. }
  1156. // compare results, calculate rms etc
  1157. if (!callback(i, t1, t2, user_data)) {
  1158. break;
  1159. }
  1160. }
  1161. ggml_backend_graph_copy_free(copy);
  1162. }