llama.cpp 727 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_CLBLAST)
  13. # include "ggml-opencl.h"
  14. #elif defined(GGML_USE_VULKAN)
  15. # include "ggml-vulkan.h"
  16. #elif defined(GGML_USE_SYCL)
  17. # include "ggml-sycl.h"
  18. #elif defined(GGML_USE_KOMPUTE)
  19. # include "ggml-kompute.h"
  20. #endif
  21. #ifdef GGML_USE_METAL
  22. # include "ggml-metal.h"
  23. #endif
  24. #ifdef GGML_USE_MPI
  25. # include "ggml-mpi.h"
  26. #endif
  27. #ifndef QK_K
  28. # ifdef GGML_QKK_64
  29. # define QK_K 64
  30. # else
  31. # define QK_K 256
  32. # endif
  33. #endif
  34. #ifdef __has_include
  35. #if __has_include(<unistd.h>)
  36. #include <unistd.h>
  37. #if defined(_POSIX_MAPPED_FILES)
  38. #include <sys/mman.h>
  39. #include <fcntl.h>
  40. #endif
  41. #if defined(_POSIX_MEMLOCK_RANGE)
  42. #include <sys/resource.h>
  43. #endif
  44. #endif
  45. #endif
  46. #if defined(_WIN32)
  47. #define WIN32_LEAN_AND_MEAN
  48. #ifndef NOMINMAX
  49. #define NOMINMAX
  50. #endif
  51. #include <windows.h>
  52. #ifndef PATH_MAX
  53. #define PATH_MAX MAX_PATH
  54. #endif
  55. #include <io.h>
  56. #endif
  57. #include <algorithm>
  58. #include <array>
  59. #include <cassert>
  60. #include <cctype>
  61. #include <cfloat>
  62. #include <cinttypes>
  63. #include <climits>
  64. #include <cmath>
  65. #include <cstdarg>
  66. #include <cstddef>
  67. #include <cstdint>
  68. #include <cstdio>
  69. #include <cstring>
  70. #include <ctime>
  71. #include <forward_list>
  72. #include <fstream>
  73. #include <functional>
  74. #include <future>
  75. #include <initializer_list>
  76. #include <locale>
  77. #include <map>
  78. #include <memory>
  79. #include <mutex>
  80. #include <numeric>
  81. #include <queue>
  82. #include <random>
  83. #include <regex>
  84. #include <set>
  85. #include <sstream>
  86. #include <thread>
  87. #include <type_traits>
  88. #include <unordered_map>
  89. #if defined(_MSC_VER)
  90. #pragma warning(disable: 4244 4267) // possible loss of data
  91. #endif
  92. #ifdef __GNUC__
  93. #ifdef __MINGW32__
  94. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  95. #else
  96. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  97. #endif
  98. #else
  99. #define LLAMA_ATTRIBUTE_FORMAT(...)
  100. #endif
  101. #define LLAMA_MAX_NODES 8192
  102. #define LLAMA_MAX_EXPERTS 60
  103. //
  104. // logging
  105. //
  106. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  107. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  108. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  109. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  110. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  111. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  112. //
  113. // helpers
  114. //
  115. static size_t utf8_len(char src) {
  116. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  117. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  118. return lookup[highbits];
  119. }
  120. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  121. std::string result;
  122. for (size_t pos = 0; ; pos += search.length()) {
  123. auto new_pos = s.find(search, pos);
  124. if (new_pos == std::string::npos) {
  125. result += s.substr(pos, s.size() - pos);
  126. break;
  127. }
  128. result += s.substr(pos, new_pos - pos) + replace;
  129. pos = new_pos;
  130. }
  131. s = std::move(result);
  132. }
  133. static bool is_float_close(float a, float b, float abs_tol) {
  134. // Check for non-negative tolerance
  135. if (abs_tol < 0.0) {
  136. throw std::invalid_argument("Tolerance must be non-negative");
  137. }
  138. // Exact equality check
  139. if (a == b) {
  140. return true;
  141. }
  142. // Check for infinities
  143. if (std::isinf(a) || std::isinf(b)) {
  144. return false;
  145. }
  146. // Regular comparison using the provided absolute tolerance
  147. return std::fabs(b - a) <= abs_tol;
  148. }
  149. static void zeros(std::ofstream & file, size_t n) {
  150. char zero = 0;
  151. for (size_t i = 0; i < n; ++i) {
  152. file.write(&zero, 1);
  153. }
  154. }
  155. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  156. static std::string format(const char * fmt, ...) {
  157. va_list ap;
  158. va_list ap2;
  159. va_start(ap, fmt);
  160. va_copy(ap2, ap);
  161. int size = vsnprintf(NULL, 0, fmt, ap);
  162. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  163. std::vector<char> buf(size + 1);
  164. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  165. GGML_ASSERT(size2 == size);
  166. va_end(ap2);
  167. va_end(ap);
  168. return std::string(buf.data(), size);
  169. }
  170. //
  171. // gguf constants (sync with gguf.py)
  172. //
  173. enum llm_arch {
  174. LLM_ARCH_LLAMA,
  175. LLM_ARCH_FALCON,
  176. LLM_ARCH_BAICHUAN,
  177. LLM_ARCH_GROK,
  178. LLM_ARCH_GPT2,
  179. LLM_ARCH_GPTJ,
  180. LLM_ARCH_GPTNEOX,
  181. LLM_ARCH_MPT,
  182. LLM_ARCH_STARCODER,
  183. LLM_ARCH_PERSIMMON,
  184. LLM_ARCH_REFACT,
  185. LLM_ARCH_BERT,
  186. LLM_ARCH_NOMIC_BERT,
  187. LLM_ARCH_JINA_BERT_V2,
  188. LLM_ARCH_BLOOM,
  189. LLM_ARCH_STABLELM,
  190. LLM_ARCH_QWEN,
  191. LLM_ARCH_QWEN2,
  192. LLM_ARCH_QWEN2MOE,
  193. LLM_ARCH_PHI2,
  194. LLM_ARCH_PHI3,
  195. LLM_ARCH_PLAMO,
  196. LLM_ARCH_CODESHELL,
  197. LLM_ARCH_ORION,
  198. LLM_ARCH_INTERNLM2,
  199. LLM_ARCH_MINICPM,
  200. LLM_ARCH_GEMMA,
  201. LLM_ARCH_STARCODER2,
  202. LLM_ARCH_MAMBA,
  203. LLM_ARCH_XVERSE,
  204. LLM_ARCH_COMMAND_R,
  205. LLM_ARCH_DBRX,
  206. LLM_ARCH_OLMO,
  207. LLM_ARCH_UNKNOWN,
  208. };
  209. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  210. { LLM_ARCH_LLAMA, "llama" },
  211. { LLM_ARCH_FALCON, "falcon" },
  212. { LLM_ARCH_GROK, "grok" },
  213. { LLM_ARCH_GPT2, "gpt2" },
  214. { LLM_ARCH_GPTJ, "gptj" },
  215. { LLM_ARCH_GPTNEOX, "gptneox" },
  216. { LLM_ARCH_MPT, "mpt" },
  217. { LLM_ARCH_BAICHUAN, "baichuan" },
  218. { LLM_ARCH_STARCODER, "starcoder" },
  219. { LLM_ARCH_PERSIMMON, "persimmon" },
  220. { LLM_ARCH_REFACT, "refact" },
  221. { LLM_ARCH_BERT, "bert" },
  222. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  223. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  224. { LLM_ARCH_BLOOM, "bloom" },
  225. { LLM_ARCH_STABLELM, "stablelm" },
  226. { LLM_ARCH_QWEN, "qwen" },
  227. { LLM_ARCH_QWEN2, "qwen2" },
  228. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  229. { LLM_ARCH_PHI2, "phi2" },
  230. { LLM_ARCH_PHI3, "phi3" },
  231. { LLM_ARCH_PLAMO, "plamo" },
  232. { LLM_ARCH_CODESHELL, "codeshell" },
  233. { LLM_ARCH_ORION, "orion" },
  234. { LLM_ARCH_INTERNLM2, "internlm2" },
  235. { LLM_ARCH_MINICPM, "minicpm" },
  236. { LLM_ARCH_GEMMA, "gemma" },
  237. { LLM_ARCH_STARCODER2, "starcoder2" },
  238. { LLM_ARCH_MAMBA, "mamba" },
  239. { LLM_ARCH_XVERSE, "xverse" },
  240. { LLM_ARCH_COMMAND_R, "command-r" },
  241. { LLM_ARCH_DBRX, "dbrx" },
  242. { LLM_ARCH_OLMO, "olmo" },
  243. { LLM_ARCH_UNKNOWN, "(unknown)" },
  244. };
  245. enum llm_kv {
  246. LLM_KV_GENERAL_ARCHITECTURE,
  247. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  248. LLM_KV_GENERAL_ALIGNMENT,
  249. LLM_KV_GENERAL_NAME,
  250. LLM_KV_GENERAL_AUTHOR,
  251. LLM_KV_GENERAL_VERSION,
  252. LLM_KV_GENERAL_URL,
  253. LLM_KV_GENERAL_DESCRIPTION,
  254. LLM_KV_GENERAL_LICENSE,
  255. LLM_KV_GENERAL_SOURCE_URL,
  256. LLM_KV_GENERAL_SOURCE_HF_REPO,
  257. LLM_KV_VOCAB_SIZE,
  258. LLM_KV_CONTEXT_LENGTH,
  259. LLM_KV_EMBEDDING_LENGTH,
  260. LLM_KV_BLOCK_COUNT,
  261. LLM_KV_FEED_FORWARD_LENGTH,
  262. LLM_KV_USE_PARALLEL_RESIDUAL,
  263. LLM_KV_TENSOR_DATA_LAYOUT,
  264. LLM_KV_EXPERT_COUNT,
  265. LLM_KV_EXPERT_USED_COUNT,
  266. LLM_KV_POOLING_TYPE,
  267. LLM_KV_LOGIT_SCALE,
  268. LLM_KV_ATTENTION_HEAD_COUNT,
  269. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  270. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  271. LLM_KV_ATTENTION_CLAMP_KQV,
  272. LLM_KV_ATTENTION_KEY_LENGTH,
  273. LLM_KV_ATTENTION_VALUE_LENGTH,
  274. LLM_KV_ATTENTION_LAYERNORM_EPS,
  275. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  276. LLM_KV_ATTENTION_CAUSAL,
  277. LLM_KV_ROPE_DIMENSION_COUNT,
  278. LLM_KV_ROPE_FREQ_BASE,
  279. LLM_KV_ROPE_SCALE_LINEAR,
  280. LLM_KV_ROPE_SCALING_TYPE,
  281. LLM_KV_ROPE_SCALING_FACTOR,
  282. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  283. LLM_KV_ROPE_SCALING_FINETUNED,
  284. LLM_KV_SPLIT_NO,
  285. LLM_KV_SPLIT_COUNT,
  286. LLM_KV_SPLIT_TENSORS_COUNT,
  287. LLM_KV_SSM_INNER_SIZE,
  288. LLM_KV_SSM_CONV_KERNEL,
  289. LLM_KV_SSM_STATE_SIZE,
  290. LLM_KV_SSM_TIME_STEP_RANK,
  291. LLM_KV_TOKENIZER_MODEL,
  292. LLM_KV_TOKENIZER_PRE,
  293. LLM_KV_TOKENIZER_LIST,
  294. LLM_KV_TOKENIZER_TOKEN_TYPE,
  295. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  296. LLM_KV_TOKENIZER_SCORES,
  297. LLM_KV_TOKENIZER_MERGES,
  298. LLM_KV_TOKENIZER_BOS_ID,
  299. LLM_KV_TOKENIZER_EOS_ID,
  300. LLM_KV_TOKENIZER_UNK_ID,
  301. LLM_KV_TOKENIZER_SEP_ID,
  302. LLM_KV_TOKENIZER_PAD_ID,
  303. LLM_KV_TOKENIZER_CLS_ID,
  304. LLM_KV_TOKENIZER_MASK_ID,
  305. LLM_KV_TOKENIZER_ADD_BOS,
  306. LLM_KV_TOKENIZER_ADD_EOS,
  307. LLM_KV_TOKENIZER_ADD_PREFIX,
  308. LLM_KV_TOKENIZER_HF_JSON,
  309. LLM_KV_TOKENIZER_RWKV,
  310. LLM_KV_TOKENIZER_PREFIX_ID,
  311. LLM_KV_TOKENIZER_SUFFIX_ID,
  312. LLM_KV_TOKENIZER_MIDDLE_ID,
  313. LLM_KV_TOKENIZER_EOT_ID,
  314. };
  315. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  316. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  317. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  318. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  319. { LLM_KV_GENERAL_NAME, "general.name" },
  320. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  321. { LLM_KV_GENERAL_VERSION, "general.version" },
  322. { LLM_KV_GENERAL_URL, "general.url" },
  323. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  324. { LLM_KV_GENERAL_LICENSE, "general.license" },
  325. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  326. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  327. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  328. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  329. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  330. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  331. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  332. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  333. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  334. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  335. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  336. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  337. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  338. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  339. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  340. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  341. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  342. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  343. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  344. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  345. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  346. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  347. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  348. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  349. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  350. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  351. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  352. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  353. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  354. { LLM_KV_SPLIT_NO, "split.no" },
  355. { LLM_KV_SPLIT_COUNT, "split.count" },
  356. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  357. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  358. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  359. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  360. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  361. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  362. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  363. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  364. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  365. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  366. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  367. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  368. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  369. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  370. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  371. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  372. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  373. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  374. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  375. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  376. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  377. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  378. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  379. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  380. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  381. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  382. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  383. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  384. };
  385. struct LLM_KV {
  386. LLM_KV(llm_arch arch) : arch(arch) {}
  387. llm_arch arch;
  388. std::string operator()(llm_kv kv) const {
  389. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  390. }
  391. };
  392. enum llm_tensor {
  393. LLM_TENSOR_TOKEN_EMBD,
  394. LLM_TENSOR_TOKEN_EMBD_NORM,
  395. LLM_TENSOR_TOKEN_TYPES,
  396. LLM_TENSOR_POS_EMBD,
  397. LLM_TENSOR_OUTPUT,
  398. LLM_TENSOR_OUTPUT_NORM,
  399. LLM_TENSOR_ROPE_FREQS,
  400. LLM_TENSOR_ATTN_Q,
  401. LLM_TENSOR_ATTN_K,
  402. LLM_TENSOR_ATTN_V,
  403. LLM_TENSOR_ATTN_QKV,
  404. LLM_TENSOR_ATTN_OUT,
  405. LLM_TENSOR_ATTN_NORM,
  406. LLM_TENSOR_ATTN_NORM_2,
  407. LLM_TENSOR_ATTN_OUT_NORM,
  408. LLM_TENSOR_ATTN_ROT_EMBD,
  409. LLM_TENSOR_FFN_GATE_INP,
  410. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  411. LLM_TENSOR_FFN_NORM,
  412. LLM_TENSOR_FFN_GATE,
  413. LLM_TENSOR_FFN_DOWN,
  414. LLM_TENSOR_FFN_UP,
  415. LLM_TENSOR_FFN_ACT,
  416. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  417. LLM_TENSOR_FFN_GATE_EXP,
  418. LLM_TENSOR_FFN_UP_EXP,
  419. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  420. LLM_TENSOR_FFN_GATE_EXPS,
  421. LLM_TENSOR_FFN_UP_EXPS,
  422. LLM_TENSOR_FFN_DOWN_SHEXP,
  423. LLM_TENSOR_FFN_GATE_SHEXP,
  424. LLM_TENSOR_FFN_UP_SHEXP,
  425. LLM_TENSOR_ATTN_Q_NORM,
  426. LLM_TENSOR_ATTN_K_NORM,
  427. LLM_TENSOR_LAYER_OUT_NORM,
  428. LLM_TENSOR_SSM_IN,
  429. LLM_TENSOR_SSM_CONV1D,
  430. LLM_TENSOR_SSM_X,
  431. LLM_TENSOR_SSM_DT,
  432. LLM_TENSOR_SSM_A,
  433. LLM_TENSOR_SSM_D,
  434. LLM_TENSOR_SSM_OUT,
  435. };
  436. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  437. {
  438. LLM_ARCH_LLAMA,
  439. {
  440. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  441. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  442. { LLM_TENSOR_OUTPUT, "output" },
  443. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  444. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  445. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  446. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  447. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  448. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  449. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  450. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  451. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  452. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  453. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  454. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  455. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  456. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  457. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  458. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  459. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  460. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  461. },
  462. },
  463. {
  464. LLM_ARCH_BAICHUAN,
  465. {
  466. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  467. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  468. { LLM_TENSOR_OUTPUT, "output" },
  469. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  470. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  471. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  472. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  473. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  474. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  475. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  476. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  477. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  478. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  479. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  480. },
  481. },
  482. {
  483. LLM_ARCH_FALCON,
  484. {
  485. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  486. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  487. { LLM_TENSOR_OUTPUT, "output" },
  488. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  489. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  490. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  491. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  492. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  493. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  494. },
  495. },
  496. {
  497. LLM_ARCH_GROK,
  498. {
  499. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  500. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  501. { LLM_TENSOR_OUTPUT, "output" },
  502. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  503. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  504. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  505. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  506. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  507. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  508. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  509. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  510. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  511. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  512. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  513. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  514. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  515. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  516. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  517. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  518. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  519. },
  520. },
  521. {
  522. LLM_ARCH_GPT2,
  523. {
  524. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  525. { LLM_TENSOR_POS_EMBD, "position_embd" },
  526. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  527. { LLM_TENSOR_OUTPUT, "output" },
  528. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  529. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  530. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  531. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  532. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  533. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  534. },
  535. },
  536. {
  537. LLM_ARCH_GPTJ,
  538. {
  539. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  540. },
  541. },
  542. {
  543. LLM_ARCH_GPTNEOX,
  544. {
  545. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  546. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  547. { LLM_TENSOR_OUTPUT, "output" },
  548. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  549. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  550. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  551. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  552. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  553. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  554. },
  555. },
  556. {
  557. LLM_ARCH_PERSIMMON,
  558. {
  559. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  560. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  561. { LLM_TENSOR_OUTPUT, "output"},
  562. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  563. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  564. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  565. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  566. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  567. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  568. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  569. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  570. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  571. },
  572. },
  573. {
  574. LLM_ARCH_MPT,
  575. {
  576. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  577. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  578. { LLM_TENSOR_OUTPUT, "output"},
  579. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  580. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  581. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  582. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  583. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  584. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  585. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  586. { LLM_TENSOR_POS_EMBD, "position_embd" },
  587. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  588. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  589. },
  590. },
  591. {
  592. LLM_ARCH_STARCODER,
  593. {
  594. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  595. { LLM_TENSOR_POS_EMBD, "position_embd" },
  596. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  597. { LLM_TENSOR_OUTPUT, "output" },
  598. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  599. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  600. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  601. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  602. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  603. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  604. },
  605. },
  606. {
  607. LLM_ARCH_REFACT,
  608. {
  609. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  610. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  611. { LLM_TENSOR_OUTPUT, "output" },
  612. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  613. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  614. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  615. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  616. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  617. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  618. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  619. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  620. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  621. },
  622. },
  623. {
  624. LLM_ARCH_BERT,
  625. {
  626. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  627. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  628. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  629. { LLM_TENSOR_POS_EMBD, "position_embd" },
  630. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  631. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  632. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  633. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  634. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  635. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  636. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  637. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  638. },
  639. },
  640. {
  641. LLM_ARCH_NOMIC_BERT,
  642. {
  643. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  644. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  645. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  646. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  647. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  648. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  649. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  650. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  651. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  652. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  653. },
  654. },
  655. {
  656. LLM_ARCH_JINA_BERT_V2,
  657. {
  658. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  659. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  660. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  661. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  662. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  663. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  664. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  665. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  666. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  667. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  668. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  669. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  670. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  671. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  672. },
  673. },
  674. {
  675. LLM_ARCH_BLOOM,
  676. {
  677. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  678. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  679. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  680. { LLM_TENSOR_OUTPUT, "output" },
  681. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  682. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  683. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  684. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  685. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  686. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  687. },
  688. },
  689. {
  690. LLM_ARCH_STABLELM,
  691. {
  692. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  693. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  694. { LLM_TENSOR_OUTPUT, "output" },
  695. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  696. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  697. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  698. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  699. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  700. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  701. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  702. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  703. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  704. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  705. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  706. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  707. },
  708. },
  709. {
  710. LLM_ARCH_QWEN,
  711. {
  712. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  713. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  714. { LLM_TENSOR_OUTPUT, "output" },
  715. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  716. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  717. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  718. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  719. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  720. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  721. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  722. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  723. },
  724. },
  725. {
  726. LLM_ARCH_QWEN2,
  727. {
  728. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  729. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  730. { LLM_TENSOR_OUTPUT, "output" },
  731. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  732. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  733. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  734. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  735. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  736. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  737. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  738. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  739. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  740. },
  741. },
  742. {
  743. LLM_ARCH_QWEN2MOE,
  744. {
  745. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  746. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  747. { LLM_TENSOR_OUTPUT, "output" },
  748. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  749. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  750. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  751. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  752. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  753. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  754. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  755. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  756. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  757. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  758. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  759. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  760. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  761. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  762. },
  763. },
  764. {
  765. LLM_ARCH_PHI2,
  766. {
  767. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  768. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  769. { LLM_TENSOR_OUTPUT, "output" },
  770. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  771. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  772. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  773. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  774. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  775. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  776. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  777. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  778. },
  779. },
  780. {
  781. LLM_ARCH_PHI3,
  782. {
  783. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  784. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  785. { LLM_TENSOR_OUTPUT, "output" },
  786. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  787. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  788. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  789. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  790. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  791. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  792. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  793. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  794. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  795. },
  796. },
  797. {
  798. LLM_ARCH_PLAMO,
  799. {
  800. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  801. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  802. { LLM_TENSOR_OUTPUT, "output" },
  803. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  804. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  805. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  806. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  807. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  808. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  809. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  810. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  811. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  812. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  813. },
  814. },
  815. {
  816. LLM_ARCH_CODESHELL,
  817. {
  818. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  819. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  820. { LLM_TENSOR_OUTPUT, "output" },
  821. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  822. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  823. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  824. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  825. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  826. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  827. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  828. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  829. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  830. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  831. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  832. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  833. },
  834. },
  835. {
  836. LLM_ARCH_ORION,
  837. {
  838. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  839. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  840. { LLM_TENSOR_OUTPUT, "output" },
  841. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  842. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  843. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  844. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  845. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  846. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  847. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  848. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  849. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  850. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  851. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  852. },
  853. },
  854. {
  855. LLM_ARCH_INTERNLM2,
  856. {
  857. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  858. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  859. { LLM_TENSOR_OUTPUT, "output" },
  860. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  861. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  862. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  863. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  864. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  865. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  866. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  867. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  868. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  869. },
  870. },
  871. {
  872. LLM_ARCH_MINICPM,
  873. {
  874. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  875. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  876. { LLM_TENSOR_OUTPUT, "output" },
  877. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  878. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  879. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  880. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  881. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  882. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  883. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  884. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  885. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  886. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  887. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  888. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  889. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  890. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  891. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  892. },
  893. },
  894. {
  895. LLM_ARCH_GEMMA,
  896. {
  897. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  898. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  899. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  900. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  901. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  902. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  903. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  904. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  905. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  906. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  907. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  908. },
  909. },
  910. {
  911. LLM_ARCH_STARCODER2,
  912. {
  913. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  914. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  915. { LLM_TENSOR_OUTPUT, "output" },
  916. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  917. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  918. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  919. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  920. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  921. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  922. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  923. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  924. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  925. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  926. },
  927. },
  928. {
  929. LLM_ARCH_MAMBA,
  930. {
  931. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  932. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  933. { LLM_TENSOR_OUTPUT, "output" },
  934. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  935. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  936. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  937. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  938. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  939. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  940. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  941. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  942. },
  943. },
  944. {
  945. LLM_ARCH_XVERSE,
  946. {
  947. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  948. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  949. { LLM_TENSOR_OUTPUT, "output" },
  950. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  951. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  952. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  953. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  954. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  955. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  956. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  957. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  958. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  959. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  960. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  961. },
  962. },
  963. {
  964. LLM_ARCH_COMMAND_R,
  965. {
  966. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  967. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  968. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  969. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  970. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  971. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  972. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  973. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  974. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  975. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  976. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  977. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  978. },
  979. },
  980. {
  981. LLM_ARCH_DBRX,
  982. {
  983. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  984. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  985. { LLM_TENSOR_OUTPUT, "output" },
  986. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  987. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  988. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  989. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  990. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  991. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  992. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  993. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  994. },
  995. },
  996. {
  997. LLM_ARCH_OLMO,
  998. {
  999. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1000. { LLM_TENSOR_OUTPUT, "output" },
  1001. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1002. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1003. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1004. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1005. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1006. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1007. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1008. },
  1009. },
  1010. {
  1011. LLM_ARCH_UNKNOWN,
  1012. {
  1013. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1014. },
  1015. },
  1016. };
  1017. static llm_arch llm_arch_from_string(const std::string & name) {
  1018. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1019. if (kv.second == name) {
  1020. return kv.first;
  1021. }
  1022. }
  1023. return LLM_ARCH_UNKNOWN;
  1024. }
  1025. // helper to handle gguf constants
  1026. // usage:
  1027. //
  1028. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1029. //
  1030. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1031. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1032. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1033. //
  1034. struct LLM_TN {
  1035. LLM_TN(llm_arch arch) : arch(arch) {}
  1036. llm_arch arch;
  1037. std::string operator()(llm_tensor tensor) const {
  1038. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1039. return "__missing__";
  1040. }
  1041. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1042. }
  1043. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1044. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1045. return "__missing__";
  1046. }
  1047. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1048. }
  1049. std::string operator()(llm_tensor tensor, int bid) const {
  1050. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1051. return "__missing__";
  1052. }
  1053. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1054. }
  1055. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1056. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1057. return "__missing__";
  1058. }
  1059. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1060. }
  1061. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1062. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1063. return "__missing__";
  1064. }
  1065. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1066. }
  1067. };
  1068. //
  1069. // gguf helpers
  1070. //
  1071. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1072. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1073. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1074. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1075. };
  1076. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1077. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1078. if (kv.second == name) {
  1079. return (llama_rope_scaling_type) kv.first;
  1080. }
  1081. }
  1082. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1083. }
  1084. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1085. switch (type) {
  1086. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1087. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1088. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1089. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1090. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1091. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1092. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1093. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1094. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1095. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1096. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1097. default: return format("unknown type %d", type);
  1098. }
  1099. }
  1100. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1101. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1102. switch (type) {
  1103. case GGUF_TYPE_STRING:
  1104. return gguf_get_val_str(ctx_gguf, i);
  1105. case GGUF_TYPE_ARRAY:
  1106. {
  1107. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1108. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1109. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1110. std::stringstream ss;
  1111. ss << "[";
  1112. for (int j = 0; j < arr_n; j++) {
  1113. if (arr_type == GGUF_TYPE_STRING) {
  1114. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1115. // escape quotes
  1116. replace_all(val, "\\", "\\\\");
  1117. replace_all(val, "\"", "\\\"");
  1118. ss << '"' << val << '"';
  1119. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1120. ss << "???";
  1121. } else {
  1122. ss << gguf_data_to_str(arr_type, data, j);
  1123. }
  1124. if (j < arr_n - 1) {
  1125. ss << ", ";
  1126. }
  1127. }
  1128. ss << "]";
  1129. return ss.str();
  1130. }
  1131. default:
  1132. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1133. }
  1134. }
  1135. //
  1136. // llama helpers
  1137. //
  1138. #if defined(_WIN32)
  1139. static std::string llama_format_win_err(DWORD err) {
  1140. LPSTR buf;
  1141. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1142. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1143. if (!size) {
  1144. return "FormatMessageA failed";
  1145. }
  1146. std::string ret(buf, size);
  1147. LocalFree(buf);
  1148. return ret;
  1149. }
  1150. #endif
  1151. template <typename T>
  1152. struct no_init {
  1153. T value;
  1154. no_init() { /* do nothing */ }
  1155. };
  1156. struct llama_file {
  1157. // use FILE * so we don't have to re-open the file to mmap
  1158. FILE * fp;
  1159. size_t size;
  1160. llama_file(const char * fname, const char * mode) {
  1161. fp = ggml_fopen(fname, mode);
  1162. if (fp == NULL) {
  1163. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1164. }
  1165. seek(0, SEEK_END);
  1166. size = tell();
  1167. seek(0, SEEK_SET);
  1168. }
  1169. size_t tell() const {
  1170. #ifdef _WIN32
  1171. __int64 ret = _ftelli64(fp);
  1172. #else
  1173. long ret = std::ftell(fp);
  1174. #endif
  1175. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1176. return (size_t) ret;
  1177. }
  1178. void seek(size_t offset, int whence) const {
  1179. #ifdef _WIN32
  1180. int ret = _fseeki64(fp, (__int64) offset, whence);
  1181. #else
  1182. int ret = std::fseek(fp, (long) offset, whence);
  1183. #endif
  1184. GGML_ASSERT(ret == 0); // same
  1185. }
  1186. void read_raw(void * ptr, size_t len) const {
  1187. if (len == 0) {
  1188. return;
  1189. }
  1190. errno = 0;
  1191. std::size_t ret = std::fread(ptr, len, 1, fp);
  1192. if (ferror(fp)) {
  1193. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1194. }
  1195. if (ret != 1) {
  1196. throw std::runtime_error("unexpectedly reached end of file");
  1197. }
  1198. }
  1199. uint32_t read_u32() const {
  1200. uint32_t ret;
  1201. read_raw(&ret, sizeof(ret));
  1202. return ret;
  1203. }
  1204. void write_raw(const void * ptr, size_t len) const {
  1205. if (len == 0) {
  1206. return;
  1207. }
  1208. errno = 0;
  1209. size_t ret = std::fwrite(ptr, len, 1, fp);
  1210. if (ret != 1) {
  1211. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1212. }
  1213. }
  1214. void write_u32(std::uint32_t val) const {
  1215. write_raw(&val, sizeof(val));
  1216. }
  1217. ~llama_file() {
  1218. if (fp) {
  1219. std::fclose(fp);
  1220. }
  1221. }
  1222. };
  1223. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1224. struct llama_mmap {
  1225. void * addr;
  1226. size_t size;
  1227. llama_mmap(const llama_mmap &) = delete;
  1228. #ifdef _POSIX_MAPPED_FILES
  1229. static constexpr bool SUPPORTED = true;
  1230. // list of mapped fragments (first_offset, last_offset)
  1231. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1232. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1233. size = file->size;
  1234. int fd = fileno(file->fp);
  1235. int flags = MAP_SHARED;
  1236. // prefetch/readahead impairs performance on NUMA systems
  1237. if (numa) { prefetch = 0; }
  1238. #ifdef __linux__
  1239. // advise the kernel to read the file sequentially (increases readahead)
  1240. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1241. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1242. strerror(errno));
  1243. }
  1244. if (prefetch) { flags |= MAP_POPULATE; }
  1245. #endif
  1246. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1247. if (addr == MAP_FAILED) { // NOLINT
  1248. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1249. }
  1250. if (prefetch > 0) {
  1251. // advise the kernel to preload the mapped memory
  1252. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1253. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1254. strerror(errno));
  1255. }
  1256. }
  1257. if (numa) {
  1258. // advise the kernel not to use readahead
  1259. // (because the next page might not belong on the same node)
  1260. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1261. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1262. strerror(errno));
  1263. }
  1264. }
  1265. // initialize list of mapped_fragments
  1266. mapped_fragments.emplace_back(0, file->size);
  1267. }
  1268. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1269. // align first to the next page
  1270. size_t offset_in_page = *first & (page_size - 1);
  1271. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1272. *first += offset_to_page;
  1273. // align last to the previous page
  1274. *last = *last & ~(page_size - 1);
  1275. if (*last <= *first) {
  1276. *last = *first;
  1277. }
  1278. }
  1279. // partially unmap the file in the range [first, last)
  1280. void unmap_fragment(size_t first, size_t last) {
  1281. // note: this function must not be called multiple times with overlapping ranges
  1282. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1283. int page_size = sysconf(_SC_PAGESIZE);
  1284. align_range(&first, &last, page_size);
  1285. size_t len = last - first;
  1286. if (len == 0) {
  1287. return;
  1288. }
  1289. GGML_ASSERT(first % page_size == 0);
  1290. GGML_ASSERT(last % page_size == 0);
  1291. GGML_ASSERT(last > first);
  1292. void * next_page_start = (uint8_t *) addr + first;
  1293. // unmap the range
  1294. if (munmap(next_page_start, len)) {
  1295. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1296. }
  1297. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1298. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1299. for (const auto & frag : mapped_fragments) {
  1300. if (frag.first < first && frag.second > last) {
  1301. // the range is in the middle of the fragment, split it
  1302. new_mapped_fragments.emplace_back(frag.first, first);
  1303. new_mapped_fragments.emplace_back(last, frag.second);
  1304. } else if (frag.first < first && frag.second > first) {
  1305. // the range starts in the middle of the fragment
  1306. new_mapped_fragments.emplace_back(frag.first, first);
  1307. } else if (frag.first < last && frag.second > last) {
  1308. // the range ends in the middle of the fragment
  1309. new_mapped_fragments.emplace_back(last, frag.second);
  1310. } else if (frag.first >= first && frag.second <= last) {
  1311. // the range covers the entire fragment
  1312. } else {
  1313. // the range is outside the fragment
  1314. new_mapped_fragments.push_back(frag);
  1315. }
  1316. }
  1317. mapped_fragments = std::move(new_mapped_fragments);
  1318. }
  1319. ~llama_mmap() {
  1320. for (const auto & frag : mapped_fragments) {
  1321. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1322. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1323. }
  1324. }
  1325. }
  1326. #elif defined(_WIN32)
  1327. static constexpr bool SUPPORTED = true;
  1328. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1329. GGML_UNUSED(numa);
  1330. size = file->size;
  1331. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1332. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1333. if (hMapping == NULL) {
  1334. DWORD error = GetLastError();
  1335. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1336. }
  1337. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1338. DWORD error = GetLastError();
  1339. CloseHandle(hMapping);
  1340. if (addr == NULL) {
  1341. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1342. }
  1343. if (prefetch > 0) {
  1344. #if _WIN32_WINNT >= 0x602
  1345. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1346. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1347. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1348. // may fail on pre-Windows 8 systems
  1349. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1350. if (pPrefetchVirtualMemory) {
  1351. // advise the kernel to preload the mapped memory
  1352. WIN32_MEMORY_RANGE_ENTRY range;
  1353. range.VirtualAddress = addr;
  1354. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1355. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1356. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1357. llama_format_win_err(GetLastError()).c_str());
  1358. }
  1359. }
  1360. #else
  1361. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1362. #endif
  1363. }
  1364. }
  1365. void unmap_fragment(size_t first, size_t last) {
  1366. // not supported
  1367. GGML_UNUSED(first);
  1368. GGML_UNUSED(last);
  1369. }
  1370. ~llama_mmap() {
  1371. if (!UnmapViewOfFile(addr)) {
  1372. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1373. llama_format_win_err(GetLastError()).c_str());
  1374. }
  1375. }
  1376. #else
  1377. static constexpr bool SUPPORTED = false;
  1378. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1379. GGML_UNUSED(file);
  1380. GGML_UNUSED(prefetch);
  1381. GGML_UNUSED(numa);
  1382. throw std::runtime_error("mmap not supported");
  1383. }
  1384. void unmap_fragment(size_t first, size_t last) {
  1385. GGML_UNUSED(first);
  1386. GGML_UNUSED(last);
  1387. throw std::runtime_error("mmap not supported");
  1388. }
  1389. #endif
  1390. };
  1391. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1392. // Represents some region of memory being locked using mlock or VirtualLock;
  1393. // will automatically unlock on destruction.
  1394. struct llama_mlock {
  1395. void * addr = NULL;
  1396. size_t size = 0;
  1397. bool failed_already = false;
  1398. llama_mlock() {}
  1399. llama_mlock(const llama_mlock &) = delete;
  1400. ~llama_mlock() {
  1401. if (size) {
  1402. raw_unlock(addr, size);
  1403. }
  1404. }
  1405. void init(void * ptr) {
  1406. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1407. addr = ptr;
  1408. }
  1409. void grow_to(size_t target_size) {
  1410. GGML_ASSERT(addr);
  1411. if (failed_already) {
  1412. return;
  1413. }
  1414. size_t granularity = lock_granularity();
  1415. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1416. if (target_size > size) {
  1417. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1418. size = target_size;
  1419. } else {
  1420. failed_already = true;
  1421. }
  1422. }
  1423. }
  1424. #ifdef _POSIX_MEMLOCK_RANGE
  1425. static constexpr bool SUPPORTED = true;
  1426. static size_t lock_granularity() {
  1427. return (size_t) sysconf(_SC_PAGESIZE);
  1428. }
  1429. #ifdef __APPLE__
  1430. #define MLOCK_SUGGESTION \
  1431. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1432. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1433. #else
  1434. #define MLOCK_SUGGESTION \
  1435. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1436. #endif
  1437. bool raw_lock(const void * addr, size_t size) const {
  1438. if (!mlock(addr, size)) {
  1439. return true;
  1440. }
  1441. char* errmsg = std::strerror(errno);
  1442. bool suggest = (errno == ENOMEM);
  1443. // Check if the resource limit is fine after all
  1444. struct rlimit lock_limit;
  1445. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1446. suggest = false;
  1447. }
  1448. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1449. suggest = false;
  1450. }
  1451. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1452. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1453. return false;
  1454. }
  1455. #undef MLOCK_SUGGESTION
  1456. static void raw_unlock(void * addr, size_t size) {
  1457. if (munlock(addr, size)) {
  1458. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1459. }
  1460. }
  1461. #elif defined(_WIN32)
  1462. static constexpr bool SUPPORTED = true;
  1463. static size_t lock_granularity() {
  1464. SYSTEM_INFO si;
  1465. GetSystemInfo(&si);
  1466. return (size_t) si.dwPageSize;
  1467. }
  1468. bool raw_lock(void * ptr, size_t len) const {
  1469. for (int tries = 1; ; tries++) {
  1470. if (VirtualLock(ptr, len)) {
  1471. return true;
  1472. }
  1473. if (tries == 2) {
  1474. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1475. len, size, llama_format_win_err(GetLastError()).c_str());
  1476. return false;
  1477. }
  1478. // It failed but this was only the first try; increase the working
  1479. // set size and try again.
  1480. SIZE_T min_ws_size, max_ws_size;
  1481. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1482. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1483. llama_format_win_err(GetLastError()).c_str());
  1484. return false;
  1485. }
  1486. // Per MSDN: "The maximum number of pages that a process can lock
  1487. // is equal to the number of pages in its minimum working set minus
  1488. // a small overhead."
  1489. // Hopefully a megabyte is enough overhead:
  1490. size_t increment = len + 1048576;
  1491. // The minimum must be <= the maximum, so we need to increase both:
  1492. min_ws_size += increment;
  1493. max_ws_size += increment;
  1494. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1495. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1496. llama_format_win_err(GetLastError()).c_str());
  1497. return false;
  1498. }
  1499. }
  1500. }
  1501. static void raw_unlock(void * ptr, size_t len) {
  1502. if (!VirtualUnlock(ptr, len)) {
  1503. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1504. llama_format_win_err(GetLastError()).c_str());
  1505. }
  1506. }
  1507. #else
  1508. static constexpr bool SUPPORTED = false;
  1509. static size_t lock_granularity() {
  1510. return (size_t) 65536;
  1511. }
  1512. bool raw_lock(const void * addr, size_t len) const {
  1513. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1514. return false;
  1515. }
  1516. static void raw_unlock(const void * addr, size_t len) {}
  1517. #endif
  1518. };
  1519. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1520. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1521. std::vector<char> result(8, 0);
  1522. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1523. if (n_tokens < 0) {
  1524. result.resize(-n_tokens);
  1525. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1526. GGML_ASSERT(check == -n_tokens);
  1527. }
  1528. else {
  1529. result.resize(n_tokens);
  1530. }
  1531. return std::string(result.data(), result.size());
  1532. }
  1533. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1534. ggml_backend_buffer_type_t buft = nullptr;
  1535. #if defined(GGML_USE_CUDA)
  1536. // host buffers should only be used when data is expected to be copied to/from the GPU
  1537. if (host_buffer) {
  1538. buft = ggml_backend_cuda_host_buffer_type();
  1539. }
  1540. #elif defined(GGML_USE_SYCL)
  1541. if (host_buffer) {
  1542. buft = ggml_backend_sycl_host_buffer_type();
  1543. }
  1544. #elif defined(GGML_USE_CPU_HBM)
  1545. buft = ggml_backend_cpu_hbm_buffer_type();
  1546. #elif defined(GGML_USE_VULKAN)
  1547. if (host_buffer) {
  1548. buft = ggml_backend_vk_host_buffer_type();
  1549. }
  1550. #endif
  1551. if (buft == nullptr) {
  1552. buft = ggml_backend_cpu_buffer_type();
  1553. }
  1554. return buft;
  1555. GGML_UNUSED(host_buffer);
  1556. }
  1557. //
  1558. // globals
  1559. //
  1560. struct llama_state {
  1561. llama_state() {
  1562. #ifdef GGML_USE_METAL
  1563. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1564. #endif
  1565. }
  1566. // We save the log callback globally
  1567. ggml_log_callback log_callback = llama_log_callback_default;
  1568. void * log_callback_user_data = nullptr;
  1569. };
  1570. static llama_state g_state;
  1571. // available llama models
  1572. enum e_model {
  1573. MODEL_UNKNOWN,
  1574. MODEL_17M,
  1575. MODEL_22M,
  1576. MODEL_33M,
  1577. MODEL_109M,
  1578. MODEL_137M,
  1579. MODEL_335M,
  1580. MODEL_0_5B,
  1581. MODEL_1B,
  1582. MODEL_2B,
  1583. MODEL_3B,
  1584. MODEL_4B,
  1585. MODEL_7B,
  1586. MODEL_8B,
  1587. MODEL_12B,
  1588. MODEL_13B,
  1589. MODEL_14B,
  1590. MODEL_15B,
  1591. MODEL_20B,
  1592. MODEL_30B,
  1593. MODEL_34B,
  1594. MODEL_35B,
  1595. MODEL_40B,
  1596. MODEL_65B,
  1597. MODEL_70B,
  1598. MODEL_314B,
  1599. MODEL_SMALL,
  1600. MODEL_MEDIUM,
  1601. MODEL_LARGE,
  1602. MODEL_XL,
  1603. MODEL_A2_7B,
  1604. MODEL_8x7B,
  1605. MODEL_8x22B,
  1606. MODEL_16x12B,
  1607. };
  1608. static const size_t kiB = 1024;
  1609. static const size_t MiB = 1024*kiB;
  1610. static const size_t GiB = 1024*MiB;
  1611. struct llama_hparams {
  1612. bool vocab_only;
  1613. bool rope_finetuned;
  1614. uint32_t n_vocab;
  1615. uint32_t n_ctx_train; // context size the model was trained on
  1616. uint32_t n_embd;
  1617. uint32_t n_head;
  1618. uint32_t n_head_kv;
  1619. uint32_t n_layer;
  1620. uint32_t n_rot;
  1621. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1622. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1623. uint32_t n_ff;
  1624. uint32_t n_expert = 0;
  1625. uint32_t n_expert_used = 0;
  1626. uint32_t n_vocab_type = 0; // for BERT-style token types
  1627. float f_norm_eps;
  1628. float f_norm_rms_eps;
  1629. float rope_freq_base_train;
  1630. float rope_freq_scale_train;
  1631. uint32_t n_yarn_orig_ctx;
  1632. // for State Space Models
  1633. uint32_t ssm_d_conv = 0;
  1634. uint32_t ssm_d_inner = 0;
  1635. uint32_t ssm_d_state = 0;
  1636. uint32_t ssm_dt_rank = 0;
  1637. float f_clamp_kqv = 0.0f;
  1638. float f_max_alibi_bias = 0.0f;
  1639. float f_logit_scale = 0.0f;
  1640. bool causal_attn = true;
  1641. bool use_alibi = false;
  1642. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1643. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1644. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1645. bool operator!=(const llama_hparams & other) const {
  1646. if (this->vocab_only != other.vocab_only) return true;
  1647. if (this->n_vocab != other.n_vocab) return true;
  1648. if (this->n_ctx_train != other.n_ctx_train) return true;
  1649. if (this->n_embd != other.n_embd) return true;
  1650. if (this->n_head != other.n_head) return true;
  1651. if (this->n_head_kv != other.n_head_kv) return true;
  1652. if (this->n_layer != other.n_layer) return true;
  1653. if (this->n_rot != other.n_rot) return true;
  1654. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1655. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1656. if (this->n_ff != other.n_ff) return true;
  1657. if (this->n_expert != other.n_expert) return true;
  1658. if (this->n_expert_used != other.n_expert_used) return true;
  1659. if (this->rope_finetuned != other.rope_finetuned) return true;
  1660. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1661. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1662. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1663. if (this->ssm_d_state != other.ssm_d_state) return true;
  1664. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1665. const float EPSILON = 1e-9f;
  1666. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1667. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1668. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1669. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1670. return false;
  1671. }
  1672. uint32_t n_gqa() const {
  1673. if (n_head_kv == 0) {
  1674. return 0;
  1675. }
  1676. return n_head/n_head_kv;
  1677. }
  1678. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1679. return n_embd_head_k * n_head_kv;
  1680. }
  1681. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1682. return n_embd_head_v * n_head_kv;
  1683. }
  1684. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1685. // corresponds to Mamba's conv_states size
  1686. // TODO: maybe support other convolution strides than 1
  1687. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1688. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1689. }
  1690. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1691. // corresponds to Mamba's ssm_states size
  1692. return ssm_d_state * ssm_d_inner;
  1693. }
  1694. };
  1695. struct llama_cparams {
  1696. uint32_t n_ctx; // context size used during inference
  1697. uint32_t n_batch;
  1698. uint32_t n_ubatch;
  1699. uint32_t n_seq_max;
  1700. uint32_t n_threads; // number of threads to use for generation
  1701. uint32_t n_threads_batch; // number of threads to use for batch processing
  1702. float rope_freq_base;
  1703. float rope_freq_scale;
  1704. uint32_t n_yarn_orig_ctx;
  1705. // These hyperparameters are not exposed in GGUF, because all
  1706. // existing YaRN models use the same values for them.
  1707. float yarn_ext_factor;
  1708. float yarn_attn_factor;
  1709. float yarn_beta_fast;
  1710. float yarn_beta_slow;
  1711. float defrag_thold;
  1712. bool embeddings;
  1713. bool causal_attn;
  1714. bool offload_kqv;
  1715. bool flash_attn;
  1716. enum llama_pooling_type pooling_type;
  1717. ggml_backend_sched_eval_callback cb_eval;
  1718. void * cb_eval_user_data;
  1719. };
  1720. struct llama_layer {
  1721. // normalization
  1722. struct ggml_tensor * attn_norm;
  1723. struct ggml_tensor * attn_norm_b;
  1724. struct ggml_tensor * attn_norm_2;
  1725. struct ggml_tensor * attn_norm_2_b;
  1726. struct ggml_tensor * attn_q_norm;
  1727. struct ggml_tensor * attn_q_norm_b;
  1728. struct ggml_tensor * attn_k_norm;
  1729. struct ggml_tensor * attn_k_norm_b;
  1730. struct ggml_tensor * attn_out_norm;
  1731. struct ggml_tensor * attn_out_norm_b;
  1732. // attention
  1733. struct ggml_tensor * wq;
  1734. struct ggml_tensor * wk;
  1735. struct ggml_tensor * wv;
  1736. struct ggml_tensor * wo;
  1737. struct ggml_tensor * wqkv;
  1738. // attention bias
  1739. struct ggml_tensor * bq;
  1740. struct ggml_tensor * bk;
  1741. struct ggml_tensor * bv;
  1742. struct ggml_tensor * bo;
  1743. struct ggml_tensor * bqkv;
  1744. // normalization
  1745. struct ggml_tensor * ffn_norm;
  1746. struct ggml_tensor * ffn_norm_b;
  1747. struct ggml_tensor * layer_out_norm;
  1748. struct ggml_tensor * layer_out_norm_b;
  1749. // ff
  1750. struct ggml_tensor * ffn_gate; // w1
  1751. struct ggml_tensor * ffn_down; // w2
  1752. struct ggml_tensor * ffn_up; // w3
  1753. // ff MoE
  1754. struct ggml_tensor * ffn_gate_inp;
  1755. struct ggml_tensor * ffn_gate_exps;
  1756. struct ggml_tensor * ffn_down_exps;
  1757. struct ggml_tensor * ffn_up_exps ;
  1758. // ff shared expert (shexp)
  1759. struct ggml_tensor * ffn_gate_inp_shexp;
  1760. struct ggml_tensor * ffn_gate_shexp;
  1761. struct ggml_tensor * ffn_down_shexp;
  1762. struct ggml_tensor * ffn_up_shexp;
  1763. // ff bias
  1764. struct ggml_tensor * ffn_down_b; // b2
  1765. struct ggml_tensor * ffn_up_b; // b3
  1766. struct ggml_tensor * ffn_act;
  1767. // mamba proj
  1768. struct ggml_tensor * ssm_in;
  1769. struct ggml_tensor * ssm_x;
  1770. struct ggml_tensor * ssm_dt;
  1771. struct ggml_tensor * ssm_out;
  1772. // mamba
  1773. struct ggml_tensor * ssm_conv1d;
  1774. struct ggml_tensor * ssm_a;
  1775. struct ggml_tensor * ssm_d;
  1776. // mamba bias
  1777. struct ggml_tensor * ssm_conv1d_b;
  1778. struct ggml_tensor * ssm_dt_b;
  1779. };
  1780. struct llama_kv_cell {
  1781. llama_pos pos = -1;
  1782. llama_pos delta = 0;
  1783. int32_t src = 0; // used by recurrent state models to copy states
  1784. std::set<llama_seq_id> seq_id;
  1785. bool has_seq_id(const llama_seq_id & id) const {
  1786. return seq_id.find(id) != seq_id.end();
  1787. }
  1788. bool is_empty() const {
  1789. return seq_id.empty();
  1790. }
  1791. bool is_same_seq(const llama_kv_cell & other) const {
  1792. return seq_id == other.seq_id;
  1793. }
  1794. };
  1795. // ring-buffer of cached KV data
  1796. struct llama_kv_cache {
  1797. bool has_shift = false;
  1798. bool do_defrag = false;
  1799. bool do_copy = false;
  1800. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1801. bool v_trans = true; // the value tensor is transposed
  1802. // Note: The value of head isn't only used to optimize searching
  1803. // for a free KV slot. llama_decode_internal also uses it, so it
  1804. // cannot be freely changed after a slot has been allocated.
  1805. uint32_t head = 0;
  1806. uint32_t size = 0;
  1807. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1808. // computed before each graph build
  1809. uint32_t n = 0;
  1810. ggml_type type_k = GGML_TYPE_F16;
  1811. ggml_type type_v = GGML_TYPE_F16;
  1812. std::vector<llama_kv_cell> cells;
  1813. std::vector<struct ggml_tensor *> k_l; // per layer
  1814. std::vector<struct ggml_tensor *> v_l;
  1815. std::vector<struct ggml_context *> ctxs;
  1816. std::vector<ggml_backend_buffer_t> bufs;
  1817. size_t total_size() const {
  1818. size_t size = 0;
  1819. for (ggml_backend_buffer_t buf : bufs) {
  1820. size += ggml_backend_buffer_get_size(buf);
  1821. }
  1822. return size;
  1823. }
  1824. ~llama_kv_cache() {
  1825. for (struct ggml_context * ctx : ctxs) {
  1826. ggml_free(ctx);
  1827. }
  1828. for (ggml_backend_buffer_t buf : bufs) {
  1829. ggml_backend_buffer_free(buf);
  1830. }
  1831. }
  1832. };
  1833. struct llama_control_vector {
  1834. std::vector<struct ggml_tensor *> tensors; // per layer
  1835. std::vector<struct ggml_context *> ctxs;
  1836. std::vector<ggml_backend_buffer_t> bufs;
  1837. int32_t layer_start = -1;
  1838. int32_t layer_end = -1;
  1839. ggml_tensor * tensor_for(int il) const {
  1840. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1841. return nullptr;
  1842. }
  1843. return tensors[il];
  1844. }
  1845. ~llama_control_vector() {
  1846. for (struct ggml_context * ctx : ctxs) {
  1847. ggml_free(ctx);
  1848. }
  1849. for (ggml_backend_buffer_t buf : bufs) {
  1850. ggml_backend_buffer_free(buf);
  1851. }
  1852. }
  1853. };
  1854. struct llama_vocab {
  1855. using id = int32_t;
  1856. using token = std::string;
  1857. using ttype = llama_token_type;
  1858. struct token_data {
  1859. token text;
  1860. float score;
  1861. ttype type;
  1862. };
  1863. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1864. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1865. std::unordered_map<token, id> token_to_id;
  1866. std::vector<token_data> id_to_token;
  1867. std::unordered_map<token, id> special_tokens_cache;
  1868. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1869. // default LLaMA special tokens
  1870. id special_bos_id = 1;
  1871. id special_eos_id = 2;
  1872. id special_unk_id = 0;
  1873. id special_sep_id = -1;
  1874. id special_pad_id = -1;
  1875. id special_cls_id = -1;
  1876. id special_mask_id = -1;
  1877. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1878. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1879. id linefeed_id = 13;
  1880. id special_prefix_id = -1;
  1881. id special_suffix_id = -1;
  1882. id special_middle_id = -1;
  1883. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1884. bool add_space_prefix = true;
  1885. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1886. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1887. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1888. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1889. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1890. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1891. if (it == bpe_ranks.end()) {
  1892. return -1;
  1893. }
  1894. return it->second;
  1895. }
  1896. };
  1897. struct llama_model {
  1898. e_model type = MODEL_UNKNOWN;
  1899. llm_arch arch = LLM_ARCH_UNKNOWN;
  1900. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1901. std::string name = "n/a";
  1902. llama_hparams hparams = {};
  1903. llama_vocab vocab;
  1904. struct ggml_tensor * tok_embd;
  1905. struct ggml_tensor * type_embd;
  1906. struct ggml_tensor * pos_embd;
  1907. struct ggml_tensor * tok_norm;
  1908. struct ggml_tensor * tok_norm_b;
  1909. struct ggml_tensor * output_norm;
  1910. struct ggml_tensor * output_norm_b;
  1911. struct ggml_tensor * output;
  1912. struct ggml_tensor * output_b;
  1913. std::vector<llama_layer> layers;
  1914. llama_split_mode split_mode;
  1915. int main_gpu;
  1916. int n_gpu_layers;
  1917. std::vector<std::string> rpc_servers;
  1918. // gguf metadata
  1919. std::unordered_map<std::string, std::string> gguf_kv;
  1920. // layer -> buffer type mapping
  1921. struct layer_buft {
  1922. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1923. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1924. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1925. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1926. ggml_backend_buffer_type_t buft; // everything else
  1927. };
  1928. layer_buft buft_input;
  1929. layer_buft buft_output;
  1930. std::vector<layer_buft> buft_layer;
  1931. // contexts where the model tensors metadata is stored
  1932. std::vector<struct ggml_context *> ctxs;
  1933. // the model memory buffers for the tensor data
  1934. std::vector<ggml_backend_buffer_t> bufs;
  1935. // model memory mapped files
  1936. llama_mmaps mappings;
  1937. // objects representing data potentially being locked in memory
  1938. llama_mlocks mlock_bufs;
  1939. llama_mlocks mlock_mmaps;
  1940. // for quantize-stats only
  1941. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1942. int64_t t_load_us = 0;
  1943. int64_t t_start_us = 0;
  1944. ~llama_model() {
  1945. for (struct ggml_context * ctx : ctxs) {
  1946. ggml_free(ctx);
  1947. }
  1948. for (ggml_backend_buffer_t buf : bufs) {
  1949. #ifdef GGML_USE_CUDA
  1950. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1951. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1952. }
  1953. #endif
  1954. ggml_backend_buffer_free(buf);
  1955. }
  1956. }
  1957. };
  1958. struct llama_context {
  1959. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1960. ~llama_context() {
  1961. ggml_backend_sched_free(sched);
  1962. for (ggml_backend_t backend : backends) {
  1963. ggml_backend_free(backend);
  1964. }
  1965. ggml_backend_buffer_free(buf_output);
  1966. }
  1967. llama_cparams cparams;
  1968. std::vector<ggml_backend_t> backends;
  1969. #ifdef GGML_USE_METAL
  1970. ggml_backend_t backend_metal = nullptr;
  1971. #endif
  1972. ggml_backend_t backend_cpu = nullptr;
  1973. const llama_model & model;
  1974. // key + value cache for the self attention
  1975. struct llama_kv_cache kv_self;
  1976. std::mt19937 rng;
  1977. bool has_evaluated_once = false;
  1978. int64_t t_start_us;
  1979. int64_t t_load_us;
  1980. int64_t t_sample_us = 0;
  1981. int64_t t_p_eval_us = 0;
  1982. int64_t t_eval_us = 0;
  1983. int64_t t_compute_start_us = 0;
  1984. int64_t n_queued_tokens = 0;
  1985. int32_t n_sample = 0; // number of tokens sampled
  1986. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1987. int32_t n_eval = 0; // number of eval calls
  1988. // host buffer for the model output (logits and embeddings)
  1989. ggml_backend_buffer_t buf_output = nullptr;
  1990. // decode output (2-dimensional array: [n_outputs][n_vocab])
  1991. size_t logits_size = 0; // capacity (of floats) for logits
  1992. float * logits = nullptr;
  1993. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  1994. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  1995. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  1996. bool logits_all = false;
  1997. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  1998. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  1999. size_t embd_size = 0; // capacity (of floats) for embeddings
  2000. float * embd = nullptr;
  2001. // sequence embeddings output (map of [n_embd] vectors)
  2002. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2003. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2004. // memory buffers used to evaluate the model
  2005. std::vector<uint8_t> buf_compute_meta;
  2006. ggml_backend_sched_t sched = nullptr;
  2007. ggml_abort_callback abort_callback = nullptr;
  2008. void * abort_callback_data = nullptr;
  2009. // input tensors
  2010. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2011. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2012. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2013. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2014. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2015. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2016. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2017. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2018. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2019. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2020. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2021. // control vectors
  2022. struct llama_control_vector cvec;
  2023. #ifdef GGML_USE_MPI
  2024. ggml_mpi_context * ctx_mpi = NULL;
  2025. #endif
  2026. };
  2027. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2028. ggml_backend_buffer_type_t buft = nullptr;
  2029. #ifdef GGML_USE_RPC
  2030. std::string endpoint = model.rpc_servers[gpu];
  2031. buft = ggml_backend_rpc_buffer_type(endpoint.c_str());
  2032. #elif defined(GGML_USE_METAL)
  2033. buft = ggml_backend_metal_buffer_type();
  2034. #elif defined(GGML_USE_CUDA)
  2035. buft = ggml_backend_cuda_buffer_type(gpu);
  2036. #elif defined(GGML_USE_VULKAN)
  2037. buft = ggml_backend_vk_buffer_type(gpu);
  2038. #elif defined(GGML_USE_SYCL)
  2039. buft = ggml_backend_sycl_buffer_type(gpu);
  2040. #elif defined(GGML_USE_CLBLAST)
  2041. buft = ggml_backend_opencl_buffer_type();
  2042. #elif defined(GGML_USE_KOMPUTE)
  2043. buft = ggml_backend_kompute_buffer_type(gpu);
  2044. if (buft == nullptr) {
  2045. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2046. }
  2047. #endif
  2048. if (buft == nullptr) {
  2049. buft = llama_default_buffer_type_cpu(true);
  2050. }
  2051. return buft;
  2052. GGML_UNUSED(model);
  2053. GGML_UNUSED(gpu);
  2054. }
  2055. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2056. ggml_backend_buffer_type_t buft = nullptr;
  2057. #ifdef GGML_USE_CUDA
  2058. if (ggml_backend_cuda_get_device_count() > 1) {
  2059. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2060. }
  2061. #endif
  2062. #ifdef GGML_USE_SYCL
  2063. if (ggml_backend_sycl_get_device_count() > 1) {
  2064. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2065. }
  2066. #endif
  2067. if (buft == nullptr) {
  2068. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2069. }
  2070. return buft;
  2071. GGML_UNUSED(tensor_split);
  2072. }
  2073. static size_t llama_get_device_count(const llama_model & model) {
  2074. #if defined(GGML_USE_RPC)
  2075. return model.rpc_servers.size();
  2076. #elif defined(GGML_USE_CUDA)
  2077. return ggml_backend_cuda_get_device_count();
  2078. #elif defined(GGML_USE_SYCL)
  2079. return ggml_backend_sycl_get_device_count();
  2080. #elif defined(GGML_USE_VULKAN)
  2081. return ggml_backend_vk_get_device_count();
  2082. #else
  2083. return 1;
  2084. #endif
  2085. GGML_UNUSED(model);
  2086. }
  2087. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2088. #if defined(GGML_USE_RPC)
  2089. size_t total;
  2090. size_t free;
  2091. std::string endpoint = model.rpc_servers[device];
  2092. ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total);
  2093. return free;
  2094. #elif defined(GGML_USE_CUDA)
  2095. size_t total;
  2096. size_t free;
  2097. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2098. return free;
  2099. #elif defined(GGML_USE_SYCL)
  2100. size_t total;
  2101. size_t free;
  2102. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2103. return free;
  2104. #elif defined(GGML_USE_VULKAN)
  2105. size_t total;
  2106. size_t free;
  2107. ggml_backend_vk_get_device_memory(device, &free, &total);
  2108. return free;
  2109. #else
  2110. return 1;
  2111. #endif
  2112. GGML_UNUSED(model);
  2113. GGML_UNUSED(device);
  2114. }
  2115. //
  2116. // kv cache helpers
  2117. //
  2118. static bool llama_kv_cache_init(
  2119. struct llama_kv_cache & cache,
  2120. const llama_context * ctx,
  2121. ggml_type type_k,
  2122. ggml_type type_v,
  2123. uint32_t kv_size,
  2124. bool offload) {
  2125. const llama_model & model = ctx->model;
  2126. const llama_cparams & cparams = ctx->cparams;
  2127. const struct llama_hparams & hparams = model.hparams;
  2128. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2129. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2130. const int64_t n_layer = hparams.n_layer;
  2131. cache.has_shift = false;
  2132. // TODO: find a nicer way to add other recurrent model architectures
  2133. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2134. cache.v_trans = !cparams.flash_attn;
  2135. // TODO: support mixed recurrent Transformer architectures
  2136. // NOTE: (!a || b) is a logical implication (a -> b)
  2137. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2138. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2139. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2140. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2141. cache.head = 0;
  2142. cache.size = kv_size;
  2143. cache.used = 0;
  2144. cache.type_k = type_k;
  2145. cache.type_v = type_v;
  2146. cache.cells.clear();
  2147. cache.cells.resize(kv_size);
  2148. if (cache.recurrent) {
  2149. // init state copy sources
  2150. for (uint32_t i = 0; i < cache.size; ++i) {
  2151. cache.cells[i].src = i;
  2152. }
  2153. }
  2154. #ifdef GGML_USE_CLBLAST
  2155. offload = false;
  2156. #endif
  2157. // count used buffer types
  2158. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2159. if (offload) {
  2160. for (int64_t i = 0; i < n_layer; ++i) {
  2161. buft_layer_count[model.buft_layer[i].buft]++;
  2162. }
  2163. } else {
  2164. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2165. }
  2166. // create a context for each buffer type
  2167. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2168. for (auto & it : buft_layer_count) {
  2169. int n_layers = it.second;
  2170. struct ggml_init_params params = {
  2171. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2172. /*.mem_buffer =*/ NULL,
  2173. /*.no_alloc =*/ true,
  2174. };
  2175. ggml_context * ctx = ggml_init(params);
  2176. if (!ctx) {
  2177. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2178. return false;
  2179. }
  2180. ctx_map[it.first] = ctx;
  2181. cache.ctxs.push_back(ctx);
  2182. }
  2183. cache.k_l.reserve(n_layer);
  2184. cache.v_l.reserve(n_layer);
  2185. for (int i = 0; i < (int) n_layer; i++) {
  2186. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2187. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2188. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2189. ggml_format_name(k, "cache_k_l%d", i);
  2190. ggml_format_name(v, "cache_v_l%d", i);
  2191. cache.k_l.push_back(k);
  2192. cache.v_l.push_back(v);
  2193. }
  2194. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2195. for (auto it : ctx_map) {
  2196. ggml_backend_buffer_type_t buft = it.first;
  2197. ggml_context * ctx = it.second;
  2198. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2199. if (!buf) {
  2200. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2201. return false;
  2202. }
  2203. ggml_backend_buffer_clear(buf, 0);
  2204. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2205. cache.bufs.push_back(buf);
  2206. }
  2207. return true;
  2208. }
  2209. // find an empty slot of size "n_tokens" in the cache
  2210. // updates the cache head
  2211. // Note: On success, it's important that cache.head points
  2212. // to the first cell of the slot.
  2213. static bool llama_kv_cache_find_slot(
  2214. struct llama_kv_cache & cache,
  2215. const struct llama_batch & batch) {
  2216. const uint32_t n_ctx = cache.size;
  2217. const uint32_t n_tokens = batch.n_tokens;
  2218. if (cache.recurrent) {
  2219. // For recurrent state architectures (like Mamba),
  2220. // each KV cache cell can store the state for a whole sequence.
  2221. llama_seq_id min = cache.size - 1;
  2222. llama_seq_id max = 0;
  2223. for (uint32_t i = 0; i < n_tokens; ++i) {
  2224. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2225. llama_seq_id seq_id = batch.seq_id[i][j];
  2226. // make sure it's a valid seq_id
  2227. if ((uint32_t) seq_id < cache.size) {
  2228. if (seq_id > max) {
  2229. max = seq_id;
  2230. }
  2231. if (seq_id < min) {
  2232. min = seq_id;
  2233. }
  2234. // Assuming the tokens are in-order
  2235. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2236. // What should happen when the pos backtracks or skips a value?
  2237. // Clearing the state mid-batch would require special-casing which isn't done.
  2238. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2239. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2240. }
  2241. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2242. cache.used += 1;
  2243. }
  2244. cache.cells[seq_id].pos = batch.pos[i];
  2245. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2246. } else {
  2247. // too big seq_id
  2248. // TODO: would it be possible to resize the KV cache size instead?
  2249. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2250. return false;
  2251. }
  2252. }
  2253. }
  2254. // allow getting the range of used cells, from head to head + n
  2255. cache.head = min;
  2256. cache.n = max - min + 1;
  2257. // sanity check
  2258. return max >= min;
  2259. }
  2260. // otherwise, one cell per token.
  2261. if (n_tokens > n_ctx) {
  2262. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2263. return false;
  2264. }
  2265. uint32_t n_tested = 0;
  2266. while (true) {
  2267. if (cache.head + n_tokens > n_ctx) {
  2268. n_tested += n_ctx - cache.head;
  2269. cache.head = 0;
  2270. continue;
  2271. }
  2272. bool found = true;
  2273. for (uint32_t i = 0; i < n_tokens; i++) {
  2274. if (cache.cells[cache.head + i].pos >= 0) {
  2275. found = false;
  2276. cache.head += i + 1;
  2277. n_tested += i + 1;
  2278. break;
  2279. }
  2280. }
  2281. if (found) {
  2282. break;
  2283. }
  2284. if (n_tested >= n_ctx) {
  2285. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2286. return false;
  2287. }
  2288. }
  2289. for (uint32_t i = 0; i < n_tokens; i++) {
  2290. cache.cells[cache.head + i].pos = batch.pos[i];
  2291. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2292. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2293. }
  2294. }
  2295. cache.used += n_tokens;
  2296. return true;
  2297. }
  2298. // find how many cells are currently in use
  2299. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2300. for (uint32_t i = cache.size; i > 0; --i) {
  2301. const llama_kv_cell & cell = cache.cells[i - 1];
  2302. if (cell.pos >= 0 && !cell.is_empty()) {
  2303. return i;
  2304. }
  2305. }
  2306. return 0;
  2307. }
  2308. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2309. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2310. cache.cells[i].pos = -1;
  2311. cache.cells[i].seq_id.clear();
  2312. }
  2313. cache.head = 0;
  2314. cache.used = 0;
  2315. for (auto & buf : cache.bufs) {
  2316. ggml_backend_buffer_clear(buf, 0);
  2317. }
  2318. }
  2319. static bool llama_kv_cache_seq_rm(
  2320. struct llama_kv_cache & cache,
  2321. llama_seq_id seq_id,
  2322. llama_pos p0,
  2323. llama_pos p1) {
  2324. uint32_t new_head = cache.size;
  2325. if (p0 < 0) p0 = 0;
  2326. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2327. // models like Mamba can't have a state partially erased
  2328. if (cache.recurrent) {
  2329. if (seq_id >= (int64_t) cache.size) {
  2330. // could be fatal
  2331. return false;
  2332. }
  2333. if (0 <= seq_id) {
  2334. // partial intersection is invalid
  2335. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2336. return false;
  2337. }
  2338. } else {
  2339. // seq_id is negative, then the range should include everything or nothing
  2340. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2341. return false;
  2342. }
  2343. }
  2344. }
  2345. for (uint32_t i = 0; i < cache.size; ++i) {
  2346. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2347. if (seq_id < 0) {
  2348. cache.cells[i].seq_id.clear();
  2349. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2350. cache.cells[i].seq_id.erase(seq_id);
  2351. } else {
  2352. continue;
  2353. }
  2354. if (cache.cells[i].is_empty()) {
  2355. // keep count of the number of used cells
  2356. if (cache.cells[i].pos >= 0) cache.used--;
  2357. cache.cells[i].pos = -1;
  2358. if (new_head == cache.size) new_head = i;
  2359. }
  2360. }
  2361. }
  2362. // If we freed up a slot, set head to it so searching can start there.
  2363. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2364. return true;
  2365. }
  2366. static void llama_kv_cache_seq_cp(
  2367. struct llama_kv_cache & cache,
  2368. llama_seq_id seq_id_src,
  2369. llama_seq_id seq_id_dst,
  2370. llama_pos p0,
  2371. llama_pos p1) {
  2372. if (p0 < 0) p0 = 0;
  2373. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2374. if (cache.recurrent) {
  2375. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2376. seq_id_src = cache.cells[seq_id_src].src;
  2377. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2378. // intent to "copy from"
  2379. // supports copy chains thanks to taking the source of the source
  2380. cache.cells[seq_id_dst].src = seq_id_src;
  2381. // preserve the "keep or clear" status of the copied sequence
  2382. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2383. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2384. } else {
  2385. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2386. }
  2387. cache.do_copy = true;
  2388. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2389. }
  2390. return;
  2391. }
  2392. // otherwise, this is the KV cache of a Transformer-like model
  2393. cache.head = 0;
  2394. for (uint32_t i = 0; i < cache.size; ++i) {
  2395. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2396. cache.cells[i].seq_id.insert(seq_id_dst);
  2397. }
  2398. }
  2399. }
  2400. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2401. uint32_t new_head = cache.size;
  2402. for (uint32_t i = 0; i < cache.size; ++i) {
  2403. if (!cache.cells[i].has_seq_id(seq_id)) {
  2404. if (cache.cells[i].pos >= 0) cache.used--;
  2405. cache.cells[i].pos = -1;
  2406. cache.cells[i].seq_id.clear();
  2407. if (new_head == cache.size) new_head = i;
  2408. } else {
  2409. cache.cells[i].seq_id.clear();
  2410. cache.cells[i].seq_id.insert(seq_id);
  2411. }
  2412. }
  2413. // If we freed up a slot, set head to it so searching can start there.
  2414. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2415. }
  2416. static void llama_kv_cache_seq_add(
  2417. struct llama_kv_cache & cache,
  2418. llama_seq_id seq_id,
  2419. llama_pos p0,
  2420. llama_pos p1,
  2421. llama_pos delta) {
  2422. uint32_t new_head = cache.size;
  2423. if (p0 < 0) p0 = 0;
  2424. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2425. if (cache.recurrent) {
  2426. // for Mamba-like models, only the pos needs to be shifted
  2427. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2428. llama_kv_cell & cell = cache.cells[seq_id];
  2429. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2430. cell.pos += delta;
  2431. }
  2432. }
  2433. return;
  2434. }
  2435. for (uint32_t i = 0; i < cache.size; ++i) {
  2436. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2437. cache.has_shift = true;
  2438. cache.cells[i].pos += delta;
  2439. cache.cells[i].delta += delta;
  2440. if (cache.cells[i].pos < 0) {
  2441. if (!cache.cells[i].is_empty()) {
  2442. cache.used--;
  2443. }
  2444. cache.cells[i].pos = -1;
  2445. cache.cells[i].seq_id.clear();
  2446. if (new_head == cache.size) {
  2447. new_head = i;
  2448. }
  2449. }
  2450. }
  2451. }
  2452. // If we freed up a slot, set head to it so searching can start there.
  2453. // Otherwise we just start the next search from the beginning.
  2454. cache.head = new_head != cache.size ? new_head : 0;
  2455. }
  2456. static void llama_kv_cache_seq_div(
  2457. struct llama_kv_cache & cache,
  2458. llama_seq_id seq_id,
  2459. llama_pos p0,
  2460. llama_pos p1,
  2461. int d) {
  2462. if (p0 < 0) p0 = 0;
  2463. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2464. if (cache.recurrent) {
  2465. // for Mamba-like models, only the pos needs to be changed
  2466. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2467. llama_kv_cell & cell = cache.cells[seq_id];
  2468. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2469. cell.pos /= d;
  2470. }
  2471. }
  2472. return;
  2473. }
  2474. for (uint32_t i = 0; i < cache.size; ++i) {
  2475. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2476. cache.has_shift = true;
  2477. {
  2478. llama_pos p_old = cache.cells[i].pos;
  2479. cache.cells[i].pos /= d;
  2480. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2481. }
  2482. }
  2483. }
  2484. }
  2485. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2486. llama_pos result = 0;
  2487. for (uint32_t i = 0; i < cache.size; ++i) {
  2488. if (cache.cells[i].has_seq_id(seq_id)) {
  2489. result = std::max(result, cache.cells[i].pos);
  2490. }
  2491. }
  2492. return result;
  2493. }
  2494. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2495. cache.do_defrag = true;
  2496. }
  2497. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2498. // the FA kernels require padding to avoid extra runtime boundary checks
  2499. return cparams.flash_attn ? 256u : 32u;
  2500. }
  2501. //
  2502. // model loading and saving
  2503. //
  2504. enum llama_fver {
  2505. GGUF_FILE_VERSION_V1 = 1,
  2506. GGUF_FILE_VERSION_V2 = 2,
  2507. GGUF_FILE_VERSION_V3 = 3,
  2508. };
  2509. static const char * llama_file_version_name(llama_fver version) {
  2510. switch (version) {
  2511. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2512. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2513. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2514. }
  2515. return "unknown";
  2516. }
  2517. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2518. char buf[256];
  2519. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2520. for (size_t i = 1; i < ne.size(); i++) {
  2521. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2522. }
  2523. return buf;
  2524. }
  2525. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2526. char buf[256];
  2527. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2528. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2529. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2530. }
  2531. return buf;
  2532. }
  2533. namespace GGUFMeta {
  2534. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2535. struct GKV_Base_Type {
  2536. static constexpr gguf_type gt = gt_;
  2537. static T getter(const gguf_context * ctx, const int kid) {
  2538. return gfun(ctx, kid);
  2539. }
  2540. };
  2541. template<typename T> struct GKV_Base;
  2542. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2543. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2544. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2545. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2546. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2547. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2548. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2549. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2550. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2551. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2552. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2553. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2554. template<> struct GKV_Base<std::string> {
  2555. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2556. static std::string getter(const gguf_context * ctx, const int kid) {
  2557. return gguf_get_val_str(ctx, kid);
  2558. }
  2559. };
  2560. struct ArrayInfo {
  2561. const gguf_type gt;
  2562. const size_t length;
  2563. const void * data;
  2564. };
  2565. template<> struct GKV_Base<ArrayInfo> {
  2566. public:
  2567. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2568. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2569. return ArrayInfo {
  2570. gguf_get_arr_type(ctx, k),
  2571. size_t(gguf_get_arr_n(ctx, k)),
  2572. gguf_get_arr_data(ctx, k),
  2573. };
  2574. }
  2575. };
  2576. template<typename T>
  2577. class GKV : public GKV_Base<T> {
  2578. GKV() = delete;
  2579. public:
  2580. static T get_kv(const gguf_context * ctx, const int k) {
  2581. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2582. if (kt != GKV::gt) {
  2583. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2584. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2585. }
  2586. return GKV::getter(ctx, k);
  2587. }
  2588. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2589. switch (ty) {
  2590. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2591. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2592. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2593. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2594. }
  2595. return "unknown";
  2596. }
  2597. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2598. if (!ovrd) { return false; }
  2599. if (ovrd->tag == expected_type) {
  2600. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2601. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2602. switch (ovrd->tag) {
  2603. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2604. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2605. } break;
  2606. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2607. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2608. } break;
  2609. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2610. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2611. } break;
  2612. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2613. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2614. } break;
  2615. default:
  2616. // Shouldn't be possible to end up here, but just in case...
  2617. throw std::runtime_error(
  2618. format("Unsupported attempt to override %s type for metadata key %s\n",
  2619. override_type_to_str(ovrd->tag), ovrd->key));
  2620. }
  2621. return true;
  2622. }
  2623. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2624. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2625. return false;
  2626. }
  2627. template<typename OT>
  2628. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2629. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2630. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2631. target = ovrd->val_bool;
  2632. return true;
  2633. }
  2634. return false;
  2635. }
  2636. template<typename OT>
  2637. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2638. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2639. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2640. target = ovrd->val_i64;
  2641. return true;
  2642. }
  2643. return false;
  2644. }
  2645. template<typename OT>
  2646. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2647. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2648. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2649. target = ovrd->val_f64;
  2650. return true;
  2651. }
  2652. return false;
  2653. }
  2654. template<typename OT>
  2655. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2656. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2657. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2658. target = ovrd->val_str;
  2659. return true;
  2660. }
  2661. return false;
  2662. }
  2663. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2664. if (try_override<T>(target, ovrd)) {
  2665. return true;
  2666. }
  2667. if (k < 0) { return false; }
  2668. target = get_kv(ctx, k);
  2669. return true;
  2670. }
  2671. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2672. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2673. }
  2674. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2675. return set(ctx, key.c_str(), target, ovrd);
  2676. }
  2677. };
  2678. }
  2679. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2680. struct llama_model_loader {
  2681. int n_kv = 0;
  2682. int n_tensors = 0;
  2683. int n_created = 0;
  2684. int64_t n_elements = 0;
  2685. size_t n_bytes = 0;
  2686. bool use_mmap = false;
  2687. bool check_tensors;
  2688. llama_files files;
  2689. llama_ftype ftype;
  2690. llama_fver fver;
  2691. llama_mmaps mappings;
  2692. // Holds information on a model weight
  2693. struct llama_tensor_weight {
  2694. uint16_t idx; // source file index
  2695. size_t offs; // tensor data offset in the original file
  2696. ggml_tensor * tensor;
  2697. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2698. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2699. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2700. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2701. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2702. }
  2703. }
  2704. };
  2705. std::vector<llama_tensor_weight> weights;
  2706. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2707. struct gguf_context * meta = NULL;
  2708. std::vector<ggml_context *> contexts;
  2709. std::string arch_name;
  2710. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2711. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2712. int trace = 0;
  2713. if (getenv("LLAMA_TRACE")) {
  2714. trace = atoi(getenv("LLAMA_TRACE"));
  2715. }
  2716. if (param_overrides_p != nullptr) {
  2717. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2718. kv_overrides.insert({std::string(p->key), *p});
  2719. }
  2720. }
  2721. struct ggml_context * ctx = NULL;
  2722. struct gguf_init_params params = {
  2723. /*.no_alloc = */ true,
  2724. /*.ctx = */ &ctx,
  2725. };
  2726. meta = gguf_init_from_file(fname.c_str(), params);
  2727. if (!meta) {
  2728. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2729. }
  2730. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2731. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2732. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2733. contexts.emplace_back(ctx);
  2734. // Save tensors data offset of the main file.
  2735. // For subsidiary files, `meta` tensor data offset must not be used,
  2736. // so we build a unified tensors index for weights.
  2737. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2738. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2739. }
  2740. uint16_t n_split = 0;
  2741. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2742. // Load additional GGML contexts
  2743. if (n_split > 1) {
  2744. uint16_t idx = 0;
  2745. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2746. if (idx != 0) {
  2747. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2748. }
  2749. char split_prefix[PATH_MAX] = {0};
  2750. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2751. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2752. }
  2753. if (trace > 0) {
  2754. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2755. }
  2756. char split_path[PATH_MAX] = {0};
  2757. for (idx = 1; idx < n_split; idx++) {
  2758. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2759. struct gguf_init_params split_params = {
  2760. /*.no_alloc = */ true,
  2761. /*.ctx = */ &ctx,
  2762. };
  2763. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2764. if (!ctx_gguf) {
  2765. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2766. }
  2767. files.emplace_back(new llama_file(split_path, "rb"));
  2768. contexts.emplace_back(ctx);
  2769. // Save tensors data offset info of the shard.
  2770. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2771. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2772. }
  2773. gguf_free(ctx_gguf);
  2774. }
  2775. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2776. // sanity check
  2777. {
  2778. const int n_tensors_loaded = (int) weights.size();
  2779. if (n_tensors != n_tensors_loaded) {
  2780. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2781. }
  2782. }
  2783. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2784. }
  2785. n_kv = gguf_get_n_kv(meta);
  2786. n_tensors = weights.size();
  2787. fver = (enum llama_fver) gguf_get_version(meta);
  2788. std::set<std::string> tensor_names;
  2789. for (auto & w : weights) {
  2790. n_elements += ggml_nelements(w.tensor);
  2791. n_bytes += ggml_nbytes(w.tensor);
  2792. // make sure there is no duplicated tensor names
  2793. const std::string name(w.tensor->name);
  2794. auto found = tensor_names.find(name);
  2795. if (found != tensor_names.end()) {
  2796. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2797. }
  2798. tensor_names.insert(name);
  2799. }
  2800. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2801. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2802. // determine file type based on the number of tensors for each quantization and print meta data
  2803. // TODO: make optional
  2804. {
  2805. std::map<enum ggml_type, uint32_t> n_type;
  2806. uint32_t n_type_max = 0;
  2807. enum ggml_type type_max = GGML_TYPE_F32;
  2808. for (int i = 0; i < n_tensors; i++) {
  2809. const ggml_tensor * tensor = weights.at(i).tensor;
  2810. enum ggml_type type = tensor->type;
  2811. n_type[type]++;
  2812. if (n_type_max < n_type[type]) {
  2813. n_type_max = n_type[type];
  2814. type_max = type;
  2815. }
  2816. if (trace > 0) {
  2817. const uint16_t sid = weights.at(i).idx;
  2818. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2819. }
  2820. }
  2821. switch (type_max) {
  2822. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2823. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2824. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2825. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2826. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2827. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2828. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2829. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2830. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2831. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2832. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2833. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2834. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2835. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2836. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2837. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2838. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2839. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2840. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2841. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2842. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2843. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2844. default:
  2845. {
  2846. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2847. ftype = LLAMA_FTYPE_ALL_F32;
  2848. } break;
  2849. }
  2850. // this is a way to mark that we have "guessed" the file type
  2851. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2852. {
  2853. const int kid = gguf_find_key(meta, "general.file_type");
  2854. if (kid >= 0) {
  2855. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2856. }
  2857. }
  2858. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2859. for (int i = 0; i < n_kv; i++) {
  2860. const char * name = gguf_get_key(meta, i);
  2861. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2862. const std::string type_name =
  2863. type == GGUF_TYPE_ARRAY
  2864. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2865. : gguf_type_name(type);
  2866. std::string value = gguf_kv_to_str(meta, i);
  2867. const size_t MAX_VALUE_LEN = 40;
  2868. if (value.size() > MAX_VALUE_LEN) {
  2869. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2870. }
  2871. replace_all(value, "\n", "\\n");
  2872. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2873. }
  2874. // print type counts
  2875. for (auto & kv : n_type) {
  2876. if (kv.second == 0) {
  2877. continue;
  2878. }
  2879. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2880. }
  2881. }
  2882. if (!llama_mmap::SUPPORTED) {
  2883. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2884. use_mmap = false;
  2885. }
  2886. this->use_mmap = use_mmap;
  2887. this->check_tensors = check_tensors;
  2888. }
  2889. ~llama_model_loader() {
  2890. if (meta) {
  2891. gguf_free(meta);
  2892. }
  2893. for (auto * ctx : contexts) {
  2894. ggml_free(ctx);
  2895. }
  2896. }
  2897. template<typename T>
  2898. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2899. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2900. const int kid = gguf_find_key(meta, key.c_str());
  2901. if (kid < 0) {
  2902. if (required) {
  2903. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2904. }
  2905. return false;
  2906. }
  2907. struct GGUFMeta::ArrayInfo arr_info =
  2908. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2909. result = arr_info.length;
  2910. return true;
  2911. }
  2912. template<typename T>
  2913. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2914. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2915. return get_arr_n(llm_kv(kid), result, required);
  2916. }
  2917. template<typename T>
  2918. bool get_key(const std::string & key, T & result, const bool required = true) {
  2919. auto it = kv_overrides.find(key);
  2920. const struct llama_model_kv_override * override =
  2921. it != kv_overrides.end() ? &it->second : nullptr;
  2922. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2923. if (required && !found) {
  2924. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2925. }
  2926. return found;
  2927. }
  2928. template<typename T>
  2929. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2930. return get_key(llm_kv(kid), result, required);
  2931. }
  2932. std::string get_arch_name() const {
  2933. return arch_name;
  2934. }
  2935. enum llm_arch get_arch() const {
  2936. return llm_kv.arch;
  2937. }
  2938. const char * get_tensor_name(int i) const {
  2939. return weights.at(i).tensor->name;
  2940. }
  2941. const llama_tensor_weight * get_weight(const char * name) const {
  2942. for (const auto & weight : weights) {
  2943. if (strcmp(name, weight.tensor->name) == 0) {
  2944. return &weight;
  2945. }
  2946. }
  2947. return nullptr;
  2948. }
  2949. const llama_tensor_weight * get_weight(int i) const {
  2950. return get_weight(get_tensor_name(i));
  2951. }
  2952. const llama_tensor_weight & require_weight(const char * name) const {
  2953. const llama_tensor_weight * weight = get_weight(name);
  2954. if (!weight) {
  2955. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2956. }
  2957. return *weight;
  2958. }
  2959. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2960. const auto * weight = get_weight(name);
  2961. if (!weight) {
  2962. return nullptr;
  2963. }
  2964. return weight->tensor;
  2965. }
  2966. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2967. struct ggml_tensor * tensor = get_tensor_meta(name);
  2968. if (!tensor) {
  2969. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2970. }
  2971. return tensor;
  2972. }
  2973. struct ggml_tensor * get_tensor_meta(int i) const {
  2974. return get_tensor_meta(get_tensor_name(i));
  2975. }
  2976. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2977. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2978. ggml_set_name(tensor, ggml_get_name(cur));
  2979. n_created++;
  2980. return tensor;
  2981. }
  2982. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2983. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2984. if (cur == NULL) {
  2985. if (!required) {
  2986. return NULL;
  2987. }
  2988. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2989. }
  2990. {
  2991. bool is_ok = true;
  2992. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2993. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2994. is_ok = false;
  2995. break;
  2996. }
  2997. }
  2998. if (!is_ok) {
  2999. throw std::runtime_error(
  3000. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3001. __func__, name.c_str(),
  3002. llama_format_tensor_shape(ne).c_str(),
  3003. llama_format_tensor_shape(cur).c_str()));
  3004. }
  3005. }
  3006. return cur;
  3007. }
  3008. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  3009. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3010. if (cur == NULL) {
  3011. return NULL;
  3012. }
  3013. return create_tensor_for(ctx, cur);
  3014. }
  3015. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3016. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3017. if (cur == NULL) {
  3018. return NULL;
  3019. }
  3020. if (cur->type != base->type) {
  3021. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3022. }
  3023. std::array<int64_t, GGML_MAX_DIMS> dims;
  3024. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3025. dims[i] = i < ne.size() ? ne[i] : 1;
  3026. }
  3027. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3028. dims[0], dims[1], dims[2], dims[3],
  3029. cur->nb[1], cur->nb[2], cur->nb[3],
  3030. offset);
  3031. ggml_set_name(tensor, name.c_str());
  3032. n_created++;
  3033. return tensor;
  3034. }
  3035. void done_getting_tensors() const {
  3036. if (n_created != n_tensors) {
  3037. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3038. }
  3039. }
  3040. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3041. if (use_mmap) {
  3042. mappings.reserve(files.size());
  3043. mmaps_used.reserve(files.size());
  3044. for (const auto & file : files) {
  3045. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3046. mmaps_used.emplace_back(mapping->size, 0);
  3047. if (mlock_mmaps) {
  3048. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3049. mlock_mmap->init(mapping->addr);
  3050. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3051. }
  3052. mappings.emplace_back(std::move(mapping));
  3053. }
  3054. }
  3055. // compute the total size of all tensors for progress reporting
  3056. for (auto & w : weights) {
  3057. size_data += ggml_nbytes(w.tensor);
  3058. }
  3059. }
  3060. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3061. GGML_ASSERT(!mappings.empty());
  3062. const auto & mapping = mappings.at(idx);
  3063. *first = mapping->size;
  3064. *last = 0;
  3065. *addr = mapping->addr;
  3066. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3067. try {
  3068. const auto * weight = get_weight(ggml_get_name(tensor));
  3069. if (!weight) {
  3070. continue;
  3071. }
  3072. if (weight->idx != idx) {
  3073. continue;
  3074. }
  3075. *first = std::min(*first, weight->offs);
  3076. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3077. } catch(...) {
  3078. // the tensor is not in the model
  3079. }
  3080. }
  3081. }
  3082. // for backwards compatibility, does not support ggml-backend
  3083. void load_data_for(struct ggml_tensor * cur) const {
  3084. const auto & w = require_weight(ggml_get_name(cur));
  3085. if (use_mmap) {
  3086. const auto & mapping = mappings.at(w.idx);
  3087. if (cur->data == nullptr) {
  3088. cur->data = (uint8_t *)mapping->addr + w.offs;
  3089. } else {
  3090. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3091. }
  3092. } else {
  3093. GGML_ASSERT(cur->data != nullptr);
  3094. GGML_ASSERT(w.idx < files.size());
  3095. const auto & file = files.at(w.idx);
  3096. file->seek(w.offs, SEEK_SET);
  3097. file->read_raw(cur->data, ggml_nbytes(cur));
  3098. }
  3099. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3100. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3101. }
  3102. }
  3103. size_t size_done = 0;
  3104. size_t size_data = 0;
  3105. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3106. // Returns false if cancelled by progress_callback
  3107. bool load_all_data(
  3108. struct ggml_context * ctx,
  3109. llama_buf_map & bufs_mmap,
  3110. llama_mlocks * lmlocks,
  3111. llama_progress_callback progress_callback,
  3112. void * progress_callback_user_data) {
  3113. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3114. std::vector<no_init<uint8_t>> read_buf;
  3115. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3116. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3117. const auto * weight = get_weight(ggml_get_name(cur));
  3118. if (weight == nullptr) {
  3119. // this can happen with split experts models
  3120. continue;
  3121. }
  3122. if (progress_callback) {
  3123. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3124. return false;
  3125. }
  3126. }
  3127. size_t n_size = ggml_nbytes(cur);
  3128. if (use_mmap) {
  3129. const auto & mapping = mappings.at(weight->idx);
  3130. ggml_backend_buffer_t buf_mmap = nullptr;
  3131. if (bufs_mmap.count(weight->idx)) {
  3132. buf_mmap = bufs_mmap.at(weight->idx);
  3133. }
  3134. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3135. if (check_tensors) {
  3136. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3137. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3138. }));
  3139. }
  3140. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3141. if (buf_mmap && cur->data == nullptr) {
  3142. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3143. if (lmlocks) {
  3144. const auto & lmlock = lmlocks->at(weight->idx);
  3145. lmlock->grow_to(weight->offs + n_size);
  3146. }
  3147. auto & mmap_used = mmaps_used[weight->idx];
  3148. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3149. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3150. } else {
  3151. ggml_backend_tensor_set(cur, data, 0, n_size);
  3152. }
  3153. } else {
  3154. GGML_ASSERT(weight->idx < files.size());
  3155. const auto & file = files.at(weight->idx);
  3156. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3157. file->seek(weight->offs, SEEK_SET);
  3158. file->read_raw(cur->data, n_size);
  3159. if (check_tensors) {
  3160. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3161. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3162. }));
  3163. }
  3164. } else {
  3165. read_buf.resize(n_size);
  3166. file->seek(weight->offs, SEEK_SET);
  3167. file->read_raw(read_buf.data(), n_size);
  3168. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3169. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3170. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3171. }
  3172. }
  3173. }
  3174. size_done += n_size;
  3175. }
  3176. // check validation results
  3177. bool validation_failed = false;
  3178. for (auto & future : validation_result) {
  3179. auto result = future.get();
  3180. if (!result.second) {
  3181. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3182. validation_failed = true;
  3183. }
  3184. }
  3185. if (validation_failed) {
  3186. throw std::runtime_error("found tensors with invalid data");
  3187. }
  3188. // check if this is the last call and do final cleanup
  3189. if (size_done >= size_data) {
  3190. // unmap offloaded tensors and metadata
  3191. if (use_mmap) {
  3192. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3193. const auto & mmap_used = mmaps_used.at(idx);
  3194. auto & mapping = mappings.at(idx);
  3195. mapping->unmap_fragment(0, mmap_used.first);
  3196. if (mmap_used.second != 0) {
  3197. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3198. }
  3199. }
  3200. }
  3201. if (progress_callback) {
  3202. // Even though the model is done loading, we still honor
  3203. // cancellation since we need to free allocations.
  3204. return progress_callback(1.0f, progress_callback_user_data);
  3205. }
  3206. }
  3207. return true;
  3208. }
  3209. };
  3210. template<>
  3211. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3212. uint32_t tmp;
  3213. const bool found = get_key(kid, tmp, required);
  3214. if (found) {
  3215. result = (enum llama_pooling_type) tmp;
  3216. } else {
  3217. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3218. }
  3219. return found;
  3220. }
  3221. //
  3222. // load LLaMA models
  3223. //
  3224. static const char * llama_model_arch_name(llm_arch arch) {
  3225. auto it = LLM_ARCH_NAMES.find(arch);
  3226. if (it == LLM_ARCH_NAMES.end()) {
  3227. return "unknown";
  3228. }
  3229. return it->second;
  3230. }
  3231. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3232. if (ftype & LLAMA_FTYPE_GUESSED) {
  3233. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3234. }
  3235. switch (ftype) {
  3236. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3237. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3238. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3239. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3240. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3241. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3242. return "Q4_1, some F16";
  3243. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3244. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3245. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3246. // K-quants
  3247. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3248. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3249. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3250. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3251. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3252. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3253. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3254. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3255. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3256. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3257. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3258. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3259. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3260. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3261. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3262. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3263. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3264. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3265. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3266. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3267. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3268. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3269. default: return "unknown, may not work";
  3270. }
  3271. }
  3272. static const char * llama_model_type_name(e_model type) {
  3273. switch (type) {
  3274. case MODEL_22M: return "22M";
  3275. case MODEL_33M: return "33M";
  3276. case MODEL_109M: return "109M";
  3277. case MODEL_137M: return "137M";
  3278. case MODEL_0_5B: return "0.5B";
  3279. case MODEL_1B: return "1B";
  3280. case MODEL_2B: return "2B";
  3281. case MODEL_3B: return "3B";
  3282. case MODEL_7B: return "7B";
  3283. case MODEL_8B: return "8B";
  3284. case MODEL_12B: return "12B";
  3285. case MODEL_13B: return "13B";
  3286. case MODEL_14B: return "14B";
  3287. case MODEL_15B: return "15B";
  3288. case MODEL_20B: return "20B";
  3289. case MODEL_30B: return "30B";
  3290. case MODEL_34B: return "34B";
  3291. case MODEL_35B: return "35B";
  3292. case MODEL_40B: return "40B";
  3293. case MODEL_65B: return "65B";
  3294. case MODEL_70B: return "70B";
  3295. case MODEL_314B: return "314B";
  3296. case MODEL_SMALL: return "0.1B";
  3297. case MODEL_MEDIUM: return "0.4B";
  3298. case MODEL_LARGE: return "0.8B";
  3299. case MODEL_XL: return "1.5B";
  3300. case MODEL_A2_7B: return "A2.7B";
  3301. case MODEL_8x7B: return "8x7B";
  3302. case MODEL_8x22B: return "8x22B";
  3303. case MODEL_16x12B: return "16x12B";
  3304. default: return "?B";
  3305. }
  3306. }
  3307. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3308. switch (type) {
  3309. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3310. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3311. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3312. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3313. default: return "unknown";
  3314. }
  3315. }
  3316. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3317. model.arch = ml.get_arch();
  3318. if (model.arch == LLM_ARCH_UNKNOWN) {
  3319. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3320. }
  3321. }
  3322. static void llm_load_hparams(
  3323. llama_model_loader & ml,
  3324. llama_model & model) {
  3325. auto & hparams = model.hparams;
  3326. const gguf_context * ctx = ml.meta;
  3327. // get metadata as string
  3328. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3329. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3330. if (type == GGUF_TYPE_ARRAY) {
  3331. continue;
  3332. }
  3333. const char * name = gguf_get_key(ctx, i);
  3334. const std::string value = gguf_kv_to_str(ctx, i);
  3335. model.gguf_kv.emplace(name, value);
  3336. }
  3337. // get general kv
  3338. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3339. // get hparams kv
  3340. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3341. // everything past this point is not vocab-related
  3342. if (hparams.vocab_only) {
  3343. return;
  3344. }
  3345. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3346. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3347. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3348. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3349. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3350. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3351. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3352. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3353. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3354. if (hparams.n_expert > 0) {
  3355. GGML_ASSERT(hparams.n_expert_used > 0);
  3356. } else {
  3357. GGML_ASSERT(hparams.n_expert_used == 0);
  3358. }
  3359. // n_head_kv is optional, default to n_head
  3360. hparams.n_head_kv = hparams.n_head;
  3361. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3362. bool rope_finetuned = false;
  3363. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3364. hparams.rope_finetuned = rope_finetuned;
  3365. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3366. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3367. // rope_freq_base (optional)
  3368. hparams.rope_freq_base_train = 10000.0f;
  3369. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3370. std::string rope_scaling("linear");
  3371. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3372. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3373. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3374. // rope_freq_scale (inverse of the kv) is optional
  3375. float ropescale = 0.0f;
  3376. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3377. // try the old key name
  3378. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3379. }
  3380. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3381. // sanity check for n_rot (optional)
  3382. {
  3383. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3384. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3385. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3386. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3387. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3388. }
  3389. }
  3390. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3391. // gpt-j n_rot = rotary_dim
  3392. }
  3393. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3394. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3395. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3396. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3397. // arch-specific KVs
  3398. switch (model.arch) {
  3399. case LLM_ARCH_LLAMA:
  3400. {
  3401. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3402. if (hparams.n_expert == 8) {
  3403. switch (hparams.n_layer) {
  3404. case 32: model.type = e_model::MODEL_8x7B; break;
  3405. case 56: model.type = e_model::MODEL_8x22B; break;
  3406. default: model.type = e_model::MODEL_UNKNOWN;
  3407. }
  3408. } else {
  3409. switch (hparams.n_layer) {
  3410. case 22: model.type = e_model::MODEL_1B; break;
  3411. case 26: model.type = e_model::MODEL_3B; break;
  3412. case 32: model.type = hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B; break;
  3413. case 40: model.type = e_model::MODEL_13B; break;
  3414. case 48: model.type = e_model::MODEL_34B; break;
  3415. case 60: model.type = e_model::MODEL_30B; break;
  3416. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3417. default: model.type = e_model::MODEL_UNKNOWN;
  3418. }
  3419. }
  3420. } break;
  3421. case LLM_ARCH_MINICPM:
  3422. {
  3423. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3424. switch (hparams.n_layer) {
  3425. case 40: model.type = e_model::MODEL_2B; break;
  3426. default: model.type = e_model::MODEL_UNKNOWN;
  3427. }
  3428. } break;
  3429. case LLM_ARCH_GROK:
  3430. {
  3431. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3432. switch (hparams.n_layer) {
  3433. case 64: model.type = e_model::MODEL_314B; break;
  3434. default: model.type = e_model::MODEL_UNKNOWN;
  3435. }
  3436. } break;
  3437. case LLM_ARCH_FALCON:
  3438. {
  3439. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3440. switch (hparams.n_layer) {
  3441. case 32: model.type = e_model::MODEL_7B; break;
  3442. case 60: model.type = e_model::MODEL_40B; break;
  3443. default: model.type = e_model::MODEL_UNKNOWN;
  3444. }
  3445. } break;
  3446. case LLM_ARCH_BAICHUAN:
  3447. {
  3448. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3449. switch (hparams.n_layer) {
  3450. case 32: model.type = e_model::MODEL_7B; break;
  3451. case 40: model.type = e_model::MODEL_13B; break;
  3452. default: model.type = e_model::MODEL_UNKNOWN;
  3453. }
  3454. if (model.type == e_model::MODEL_13B) {
  3455. // TODO: become GGUF KV parameter
  3456. hparams.f_max_alibi_bias = 8.0f;
  3457. }
  3458. } break;
  3459. case LLM_ARCH_STARCODER:
  3460. {
  3461. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3462. switch (hparams.n_layer) {
  3463. case 24: model.type = e_model::MODEL_1B; break;
  3464. case 36: model.type = e_model::MODEL_3B; break;
  3465. case 42: model.type = e_model::MODEL_7B; break;
  3466. case 40: model.type = e_model::MODEL_15B; break;
  3467. default: model.type = e_model::MODEL_UNKNOWN;
  3468. }
  3469. } break;
  3470. case LLM_ARCH_PERSIMMON:
  3471. {
  3472. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3473. switch (hparams.n_layer) {
  3474. case 36: model.type = e_model::MODEL_8B; break;
  3475. default: model.type = e_model::MODEL_UNKNOWN;
  3476. }
  3477. } break;
  3478. case LLM_ARCH_REFACT:
  3479. {
  3480. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3481. switch (hparams.n_layer) {
  3482. case 32: model.type = e_model::MODEL_1B; break;
  3483. default: model.type = e_model::MODEL_UNKNOWN;
  3484. }
  3485. // TODO: become GGUF KV parameter
  3486. hparams.f_max_alibi_bias = 8.0f;
  3487. } break;
  3488. case LLM_ARCH_BERT:
  3489. {
  3490. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3491. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3492. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3493. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3494. switch (hparams.n_layer) {
  3495. case 3:
  3496. model.type = e_model::MODEL_17M; break; // bge-micro
  3497. case 6:
  3498. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3499. case 12:
  3500. switch (hparams.n_embd) {
  3501. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3502. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3503. } break;
  3504. case 24:
  3505. model.type = e_model::MODEL_335M; break; // bge-large
  3506. }
  3507. } break;
  3508. case LLM_ARCH_JINA_BERT_V2:
  3509. {
  3510. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3511. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3512. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3513. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3514. hparams.f_max_alibi_bias = 8.0f;
  3515. switch (hparams.n_layer) {
  3516. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3517. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3518. }
  3519. } break;
  3520. case LLM_ARCH_NOMIC_BERT:
  3521. {
  3522. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3523. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3524. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3525. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3526. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3527. model.type = e_model::MODEL_137M;
  3528. }
  3529. } break;
  3530. case LLM_ARCH_BLOOM:
  3531. {
  3532. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3533. switch (hparams.n_layer) {
  3534. case 24: model.type = e_model::MODEL_1B; break;
  3535. case 30:
  3536. switch (hparams.n_embd) {
  3537. case 2560: model.type = e_model::MODEL_3B; break;
  3538. case 4096: model.type = e_model::MODEL_7B; break;
  3539. } break;
  3540. }
  3541. // TODO: become GGUF KV parameter
  3542. hparams.f_max_alibi_bias = 8.0f;
  3543. } break;
  3544. case LLM_ARCH_MPT:
  3545. {
  3546. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3547. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3548. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3549. switch (hparams.n_layer) {
  3550. case 32: model.type = e_model::MODEL_7B; break;
  3551. case 48: model.type = e_model::MODEL_30B; break;
  3552. default: model.type = e_model::MODEL_UNKNOWN;
  3553. }
  3554. } break;
  3555. case LLM_ARCH_STABLELM:
  3556. {
  3557. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3558. switch (hparams.n_layer) {
  3559. case 24: model.type = e_model::MODEL_1B; break;
  3560. case 32: model.type = e_model::MODEL_3B; break;
  3561. case 40: model.type = e_model::MODEL_12B; break;
  3562. default: model.type = e_model::MODEL_UNKNOWN;
  3563. }
  3564. } break;
  3565. case LLM_ARCH_QWEN:
  3566. {
  3567. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3568. switch (hparams.n_layer) {
  3569. case 32: model.type = e_model::MODEL_7B; break;
  3570. case 40: model.type = e_model::MODEL_13B; break;
  3571. default: model.type = e_model::MODEL_UNKNOWN;
  3572. }
  3573. } break;
  3574. case LLM_ARCH_QWEN2:
  3575. {
  3576. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3577. switch (hparams.n_layer) {
  3578. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3579. case 32: model.type = e_model::MODEL_7B; break;
  3580. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3581. case 80: model.type = e_model::MODEL_70B; break;
  3582. default: model.type = e_model::MODEL_UNKNOWN;
  3583. }
  3584. } break;
  3585. case LLM_ARCH_QWEN2MOE:
  3586. {
  3587. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3588. switch (hparams.n_layer) {
  3589. case 24: model.type = e_model::MODEL_A2_7B; break;
  3590. default: model.type = e_model::MODEL_UNKNOWN;
  3591. }
  3592. } break;
  3593. case LLM_ARCH_PHI2:
  3594. {
  3595. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3596. switch (hparams.n_layer) {
  3597. case 24: model.type = e_model::MODEL_1B; break;
  3598. case 32: model.type = e_model::MODEL_3B; break;
  3599. default: model.type = e_model::MODEL_UNKNOWN;
  3600. }
  3601. } break;
  3602. case LLM_ARCH_PHI3:
  3603. {
  3604. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3605. switch (hparams.n_layer) {
  3606. case 24: model.type = e_model::MODEL_1B; break;
  3607. case 32: model.type = e_model::MODEL_3B; break;
  3608. default: model.type = e_model::MODEL_UNKNOWN;
  3609. }
  3610. } break;
  3611. case LLM_ARCH_PLAMO:
  3612. {
  3613. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3614. switch (hparams.n_layer) {
  3615. case 40: model.type = e_model::MODEL_13B; break;
  3616. default: model.type = e_model::MODEL_UNKNOWN;
  3617. }
  3618. } break;
  3619. case LLM_ARCH_GPT2:
  3620. {
  3621. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3622. switch (hparams.n_layer) {
  3623. case 12: model.type = e_model::MODEL_SMALL; break;
  3624. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3625. case 36: model.type = e_model::MODEL_LARGE; break;
  3626. case 48: model.type = e_model::MODEL_XL; break;
  3627. default: model.type = e_model::MODEL_UNKNOWN;
  3628. }
  3629. } break;
  3630. case LLM_ARCH_CODESHELL:
  3631. {
  3632. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3633. switch (hparams.n_layer) {
  3634. case 42: model.type = e_model::MODEL_SMALL; break;
  3635. default: model.type = e_model::MODEL_UNKNOWN;
  3636. }
  3637. } break;
  3638. case LLM_ARCH_ORION:
  3639. {
  3640. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3641. switch (hparams.n_layer) {
  3642. case 40: model.type = e_model::MODEL_14B; break;
  3643. default: model.type = e_model::MODEL_UNKNOWN;
  3644. }
  3645. } break;
  3646. case LLM_ARCH_INTERNLM2:
  3647. {
  3648. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3649. switch (hparams.n_layer) {
  3650. case 32: model.type = e_model::MODEL_7B; break;
  3651. case 48: model.type = e_model::MODEL_20B; break;
  3652. default: model.type = e_model::MODEL_UNKNOWN;
  3653. }
  3654. } break;
  3655. case LLM_ARCH_GEMMA:
  3656. {
  3657. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3658. switch (hparams.n_layer) {
  3659. case 18: model.type = e_model::MODEL_2B; break;
  3660. case 28: model.type = e_model::MODEL_7B; break;
  3661. default: model.type = e_model::MODEL_UNKNOWN;
  3662. }
  3663. } break;
  3664. case LLM_ARCH_STARCODER2:
  3665. {
  3666. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3667. switch (hparams.n_layer) {
  3668. case 30: model.type = e_model::MODEL_3B; break;
  3669. case 32: model.type = e_model::MODEL_7B; break;
  3670. case 40: model.type = e_model::MODEL_15B; break;
  3671. default: model.type = e_model::MODEL_UNKNOWN;
  3672. }
  3673. } break;
  3674. case LLM_ARCH_MAMBA:
  3675. {
  3676. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3677. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3678. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3679. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3680. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3681. switch (hparams.n_layer) {
  3682. case 24:
  3683. switch (hparams.n_embd) {
  3684. case 768: model.type = e_model::MODEL_SMALL; break;
  3685. default: model.type = e_model::MODEL_UNKNOWN;
  3686. } break;
  3687. case 48:
  3688. switch (hparams.n_embd) {
  3689. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3690. case 1536: model.type = e_model::MODEL_LARGE; break;
  3691. case 2048: model.type = e_model::MODEL_XL; break;
  3692. default: model.type = e_model::MODEL_UNKNOWN;
  3693. } break;
  3694. case 64:
  3695. switch (hparams.n_embd) {
  3696. case 2560: model.type = e_model::MODEL_3B; break;
  3697. default: model.type = e_model::MODEL_UNKNOWN;
  3698. } break;
  3699. default: model.type = e_model::MODEL_UNKNOWN;
  3700. }
  3701. } break;
  3702. case LLM_ARCH_XVERSE:
  3703. {
  3704. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3705. switch (hparams.n_layer) {
  3706. case 32: model.type = e_model::MODEL_7B; break;
  3707. case 40: model.type = e_model::MODEL_13B; break;
  3708. case 80: model.type = e_model::MODEL_65B; break;
  3709. default: model.type = e_model::MODEL_UNKNOWN;
  3710. }
  3711. } break;
  3712. case LLM_ARCH_COMMAND_R:
  3713. {
  3714. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3715. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3716. switch (hparams.n_layer) {
  3717. case 40: model.type = e_model::MODEL_35B; break;
  3718. default: model.type = e_model::MODEL_UNKNOWN;
  3719. }
  3720. } break;
  3721. case LLM_ARCH_DBRX:
  3722. {
  3723. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3724. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3725. switch (hparams.n_layer) {
  3726. case 40: model.type = e_model::MODEL_16x12B; break;
  3727. default: model.type = e_model::MODEL_UNKNOWN;
  3728. }
  3729. } break;
  3730. case LLM_ARCH_OLMO:
  3731. {
  3732. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3733. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3734. switch (hparams.n_layer) {
  3735. case 22: model.type = e_model::MODEL_1B; break;
  3736. case 32: model.type = e_model::MODEL_7B; break;
  3737. case 80: model.type = e_model::MODEL_70B; break;
  3738. default: model.type = e_model::MODEL_UNKNOWN;
  3739. }
  3740. } break;
  3741. default: (void)0;
  3742. }
  3743. model.ftype = ml.ftype;
  3744. if (hparams.f_max_alibi_bias > 0.0f) {
  3745. hparams.use_alibi = true;
  3746. }
  3747. hparams.rope_type = llama_rope_type(&model);
  3748. }
  3749. // TODO: This should probably be in llama.h
  3750. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3751. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3752. );
  3753. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3754. static void llm_load_vocab(
  3755. llama_model_loader & ml,
  3756. llama_model & model) {
  3757. auto & vocab = model.vocab;
  3758. struct gguf_context * ctx = ml.meta;
  3759. const auto kv = LLM_KV(model.arch);
  3760. // determine vocab type
  3761. {
  3762. std::string tokenizer_model;
  3763. std::string tokenizer_pre;
  3764. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3765. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3766. if (tokenizer_model == "no_vocab") {
  3767. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3768. // default special tokens
  3769. vocab.special_bos_id = -1;
  3770. vocab.special_eos_id = -1;
  3771. vocab.special_unk_id = -1;
  3772. vocab.special_sep_id = -1;
  3773. vocab.special_pad_id = -1;
  3774. vocab.special_cls_id = -1;
  3775. vocab.special_mask_id = -1;
  3776. vocab.linefeed_id = -1;
  3777. return;
  3778. } else if (tokenizer_model == "llama") {
  3779. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3780. // default special tokens
  3781. vocab.special_bos_id = 1;
  3782. vocab.special_eos_id = 2;
  3783. vocab.special_unk_id = 0;
  3784. vocab.special_sep_id = -1;
  3785. vocab.special_pad_id = -1;
  3786. vocab.special_cls_id = -1;
  3787. vocab.special_mask_id = -1;
  3788. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3789. // prior to support of FIM special tokens in GGUF, the following
  3790. // will allow those models to continue to work. The general names
  3791. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3792. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3793. // new versions of these models have been published.
  3794. std::string gen_name;
  3795. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3796. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3797. [](unsigned char c){ return std::tolower(c); });
  3798. if (gen_name.find("code") != std::string::npos) {
  3799. if (model.arch == LLM_ARCH_LLAMA) {
  3800. vocab.special_prefix_id = 32007;
  3801. vocab.special_suffix_id = 32008;
  3802. vocab.special_middle_id = 32009;
  3803. vocab.special_eot_id = 32010;
  3804. } else if (model.arch == LLM_ARCH_GEMMA) {
  3805. vocab.special_prefix_id = 67;
  3806. vocab.special_suffix_id = 69;
  3807. vocab.special_middle_id = 68;
  3808. // TODO: this is not EOT, it is "file separator" token, needs fix
  3809. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3810. //vocab.special_eot_id = 70;
  3811. vocab.special_eot_id = 107;
  3812. }
  3813. }
  3814. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3815. if (add_space_prefix_keyidx != -1) {
  3816. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3817. } // The default value of add_space_prefix is true.
  3818. } else if (tokenizer_model == "bert") {
  3819. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3820. // default special tokens
  3821. vocab.special_bos_id = -1;
  3822. vocab.special_eos_id = -1;
  3823. vocab.special_unk_id = 100;
  3824. vocab.special_sep_id = 102;
  3825. vocab.special_pad_id = 0;
  3826. vocab.special_cls_id = 101;
  3827. vocab.special_mask_id = 103;
  3828. vocab.add_space_prefix = false;
  3829. } else {
  3830. if (tokenizer_model == "gpt2") {
  3831. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3832. } else {
  3833. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
  3834. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3835. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3836. return;
  3837. }
  3838. // read bpe merges and populate bpe ranks
  3839. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3840. if (merges_keyidx == -1) {
  3841. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3842. }
  3843. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3844. for (int i = 0; i < n_merges; i++) {
  3845. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3846. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3847. std::string first;
  3848. std::string second;
  3849. const size_t pos = word.find(' ', 1);
  3850. if (pos != std::string::npos) {
  3851. first = word.substr(0, pos);
  3852. second = word.substr(pos + 1);
  3853. }
  3854. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3855. }
  3856. // default special tokens
  3857. vocab.special_bos_id = 11;
  3858. vocab.special_eos_id = 11;
  3859. vocab.special_unk_id = -1;
  3860. vocab.special_sep_id = -1;
  3861. vocab.special_pad_id = -1;
  3862. vocab.special_cls_id = -1;
  3863. vocab.special_mask_id = -1;
  3864. }
  3865. // for now, only BPE models have pre-tokenizers
  3866. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  3867. if (tokenizer_pre.empty()) {
  3868. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  3869. LLAMA_LOG_WARN("%s: \n", __func__);
  3870. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3871. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  3872. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  3873. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3874. LLAMA_LOG_WARN("%s: \n", __func__);
  3875. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3876. } else if (
  3877. tokenizer_pre == "default") {
  3878. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3879. } else if (
  3880. tokenizer_pre == "llama3" ||
  3881. tokenizer_pre == "llama-v3" ||
  3882. tokenizer_pre == "llama-bpe") {
  3883. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  3884. } else if (
  3885. tokenizer_pre == "deepseek-llm") {
  3886. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  3887. } else if (
  3888. tokenizer_pre == "deepseek-coder") {
  3889. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  3890. } else if (
  3891. tokenizer_pre == "falcon") {
  3892. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  3893. } else if (
  3894. tokenizer_pre == "mpt") {
  3895. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  3896. } else if (
  3897. tokenizer_pre == "starcoder") {
  3898. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  3899. } else if (
  3900. tokenizer_pre == "gpt-2" ||
  3901. tokenizer_pre == "jina-es" ||
  3902. tokenizer_pre == "jina-de" ||
  3903. tokenizer_pre == "jina-v2-es" ||
  3904. tokenizer_pre == "jina-v2-de") {
  3905. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  3906. } else if (
  3907. tokenizer_pre == "refact") {
  3908. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  3909. } else if (
  3910. tokenizer_pre == "command-r") {
  3911. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  3912. } else if (
  3913. tokenizer_pre == "qwen2") {
  3914. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  3915. } else if (
  3916. tokenizer_pre == "olmo") {
  3917. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  3918. } else if (
  3919. tokenizer_pre == "dbrx") {
  3920. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  3921. } else {
  3922. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  3923. }
  3924. } else {
  3925. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3926. }
  3927. }
  3928. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3929. if (token_idx == -1) {
  3930. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3931. }
  3932. const float * scores = nullptr;
  3933. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3934. if (score_idx != -1) {
  3935. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3936. }
  3937. const int * toktypes = nullptr;
  3938. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3939. if (toktype_idx != -1) {
  3940. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3941. }
  3942. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3943. vocab.id_to_token.resize(n_vocab);
  3944. for (uint32_t i = 0; i < n_vocab; i++) {
  3945. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3946. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3947. vocab.token_to_id[word] = i;
  3948. auto & token_data = vocab.id_to_token[i];
  3949. token_data.text = std::move(word);
  3950. token_data.score = scores ? scores[i] : 0.0f;
  3951. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3952. }
  3953. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3954. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3955. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3956. try {
  3957. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3958. } catch (const std::exception & e) {
  3959. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3960. vocab.linefeed_id = vocab.special_pad_id;
  3961. }
  3962. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3963. vocab.linefeed_id = vocab.special_pad_id;
  3964. } else {
  3965. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3966. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3967. vocab.linefeed_id = ids[0];
  3968. }
  3969. // special tokens
  3970. {
  3971. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3972. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3973. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3974. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3975. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3976. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3977. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3978. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3979. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3980. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  3981. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  3982. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  3983. };
  3984. for (const auto & it : special_token_types) {
  3985. const std::string & key = kv(std::get<0>(it));
  3986. int32_t & id = std::get<1>(it);
  3987. uint32_t new_id;
  3988. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3989. continue;
  3990. }
  3991. if (new_id >= vocab.id_to_token.size()) {
  3992. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3993. __func__, key.c_str(), new_id, id);
  3994. } else {
  3995. id = new_id;
  3996. }
  3997. }
  3998. // Handle add_bos_token and add_eos_token
  3999. {
  4000. bool temp = true;
  4001. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4002. vocab.special_add_bos = int(temp);
  4003. }
  4004. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4005. vocab.special_add_eos = int(temp);
  4006. }
  4007. }
  4008. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4009. //
  4010. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4011. // for now, we apply this workaround to find the EOT token based on its text
  4012. if (vocab.special_eot_id == -1) {
  4013. for (const auto & t : vocab.token_to_id) {
  4014. if (
  4015. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4016. // need to fix convert script
  4017. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4018. (t.first == "<|eot_id|>" ||
  4019. t.first == "<|im_end|>" ||
  4020. t.first == "<|end|>" ||
  4021. t.first == "<end_of_turn>"
  4022. )
  4023. ) {
  4024. vocab.special_eot_id = t.second;
  4025. break;
  4026. }
  4027. }
  4028. }
  4029. }
  4030. // build special tokens cache
  4031. {
  4032. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  4033. // and will always be correctly labeled in 'added_tokens.json' etc.
  4034. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  4035. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  4036. // are special tokens.
  4037. // From testing, this appears to correlate 1:1 with special tokens.
  4038. //
  4039. // Counting special tokens and verifying in only one direction
  4040. // is sufficient to detect difference in those two sets.
  4041. //
  4042. uint32_t special_tokens_count_by_type = 0;
  4043. uint32_t special_tokens_count_from_verification = 0;
  4044. bool special_tokens_definition_mismatch = false;
  4045. for (const auto & t : vocab.token_to_id) {
  4046. const auto & token = t.first;
  4047. const auto & id = t.second;
  4048. // Count all non-normal tokens in the vocab while iterating
  4049. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  4050. special_tokens_count_by_type++;
  4051. }
  4052. // Skip single character tokens
  4053. if (token.length() > 1) {
  4054. bool is_tokenizable = false;
  4055. // Split token string representation in two, in all possible ways
  4056. // and check if both halves can be matched to a valid token
  4057. for (unsigned i = 1; i < token.length();) {
  4058. const auto left = token.substr(0, i);
  4059. const auto right = token.substr(i);
  4060. // check if we didnt partition in the middle of a utf sequence
  4061. auto utf = utf8_len(left.at(left.length() - 1));
  4062. if (utf == 1) {
  4063. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  4064. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  4065. is_tokenizable = true;
  4066. break;
  4067. }
  4068. i++;
  4069. } else {
  4070. // skip over the rest of multibyte utf sequence
  4071. i += utf - 1;
  4072. }
  4073. }
  4074. if (!is_tokenizable) {
  4075. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  4076. // it's faster to re-filter them here, since there are way less candidates now
  4077. // Calculate a total "utf" length of a token string representation
  4078. size_t utf8_str_len = 0;
  4079. for (unsigned i = 0; i < token.length();) {
  4080. utf8_str_len++;
  4081. i += utf8_len(token.at(i));
  4082. }
  4083. // And skip the ones which are one character
  4084. if (utf8_str_len > 1) {
  4085. // At this point what we have left are special tokens only
  4086. vocab.special_tokens_cache[token] = id;
  4087. // Count manually found special tokens
  4088. special_tokens_count_from_verification++;
  4089. // If this manually found special token is not marked as such, flag a mismatch
  4090. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  4091. special_tokens_definition_mismatch = true;
  4092. }
  4093. }
  4094. }
  4095. }
  4096. }
  4097. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  4098. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  4099. __func__,
  4100. special_tokens_count_from_verification, vocab.id_to_token.size(),
  4101. special_tokens_count_by_type, vocab.id_to_token.size()
  4102. );
  4103. } else {
  4104. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  4105. __func__,
  4106. special_tokens_count_from_verification, vocab.id_to_token.size()
  4107. );
  4108. }
  4109. }
  4110. }
  4111. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4112. const auto & hparams = model.hparams;
  4113. const auto & vocab = model.vocab;
  4114. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4115. // hparams
  4116. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4117. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4118. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4119. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4120. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4121. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4122. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4123. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4124. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4125. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4126. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4127. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4128. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4129. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4130. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4131. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4132. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4133. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4134. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4135. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4136. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4137. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4138. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4139. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4140. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4141. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4142. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4143. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4144. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4145. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4146. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4147. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4148. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4149. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4150. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4151. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4152. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4153. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4154. if (ml.n_elements >= 1e12) {
  4155. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4156. } else if (ml.n_elements >= 1e9) {
  4157. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4158. } else if (ml.n_elements >= 1e6) {
  4159. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4160. } else {
  4161. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4162. }
  4163. if (ml.n_bytes < GiB) {
  4164. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4165. } else {
  4166. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4167. }
  4168. // general kv
  4169. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4170. // special tokens
  4171. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4172. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4173. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4174. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4175. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4176. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4177. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4178. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4179. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4180. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4181. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4182. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4183. }
  4184. // Returns false if cancelled by progress_callback
  4185. static bool llm_load_tensors(
  4186. llama_model_loader & ml,
  4187. llama_model & model,
  4188. int n_gpu_layers,
  4189. enum llama_split_mode split_mode,
  4190. int main_gpu,
  4191. const float * tensor_split,
  4192. bool use_mlock,
  4193. llama_progress_callback progress_callback,
  4194. void * progress_callback_user_data) {
  4195. model.t_start_us = ggml_time_us();
  4196. auto & hparams = model.hparams;
  4197. #ifdef GGML_USE_SYCL
  4198. // disable MoE with SYCL until mul_mat_id is updated
  4199. if (hparams.n_expert > 0) {
  4200. n_gpu_layers = 0;
  4201. }
  4202. #endif
  4203. model.split_mode = split_mode;
  4204. model.main_gpu = main_gpu;
  4205. model.n_gpu_layers = n_gpu_layers;
  4206. const int64_t n_layer = hparams.n_layer;
  4207. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4208. bool use_mmap_buffer = true;
  4209. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4210. model.buft_input = llama_default_buffer_type_cpu(true);
  4211. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4212. model.buft_layer.resize(n_layer);
  4213. // assign cpu layers
  4214. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4215. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4216. }
  4217. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4218. // calculate the split points
  4219. int device_count = llama_get_device_count(model);
  4220. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4221. std::vector<float> splits(device_count);
  4222. if (all_zero) {
  4223. // default split, by free memory
  4224. for (int i = 0; i < device_count; ++i) {
  4225. splits[i] = llama_get_device_memory(model, i);
  4226. }
  4227. } else {
  4228. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4229. }
  4230. // sum and normalize the splits to get the split points
  4231. float split_sum = 0.0f;
  4232. for (int i = 0; i < device_count; ++i) {
  4233. split_sum += splits[i];
  4234. splits[i] = split_sum;
  4235. }
  4236. for (int i = 0; i < device_count; ++i) {
  4237. splits[i] /= split_sum;
  4238. }
  4239. // assign the repeating layers to the devices according to the splits
  4240. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4241. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4242. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4243. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4244. }
  4245. // assign the output layer
  4246. if (n_gpu_layers > n_layer) {
  4247. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4248. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4249. } else {
  4250. model.buft_output = llama_default_buffer_type_cpu(true);
  4251. }
  4252. } else {
  4253. ggml_backend_buffer_type_t split_buft;
  4254. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4255. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4256. } else {
  4257. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4258. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4259. }
  4260. // assign the repeating layers
  4261. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4262. model.buft_layer[i] = {
  4263. split_buft,
  4264. llama_default_buffer_type_offload(model, main_gpu)
  4265. };
  4266. }
  4267. // assign the output layer
  4268. if (n_gpu_layers > n_layer) {
  4269. model.buft_output = {
  4270. split_buft,
  4271. llama_default_buffer_type_offload(model, main_gpu)
  4272. };
  4273. } else {
  4274. model.buft_output = llama_default_buffer_type_cpu(true);
  4275. }
  4276. }
  4277. // count used buffer types
  4278. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4279. buft_layer_count[model.buft_input.buft]++;
  4280. buft_layer_count[model.buft_input.buft_matrix]++;
  4281. buft_layer_count[model.buft_output.buft]++;
  4282. buft_layer_count[model.buft_output.buft_matrix]++;
  4283. for (int64_t i = 0; i < n_layer; ++i) {
  4284. buft_layer_count[model.buft_layer[i].buft]++;
  4285. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4286. }
  4287. // create one context per buffer type
  4288. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4289. // for moe merged tensors
  4290. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4291. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4292. for (auto & it : buft_layer_count) {
  4293. struct ggml_init_params params = {
  4294. /*.mem_size =*/ ctx_size,
  4295. /*.mem_buffer =*/ NULL,
  4296. /*.no_alloc =*/ true,
  4297. };
  4298. ggml_context * ctx = ggml_init(params);
  4299. if (!ctx) {
  4300. throw std::runtime_error(format("failed to create context"));
  4301. }
  4302. ctx_map[it.first] = ctx;
  4303. model.ctxs.push_back(ctx);
  4304. }
  4305. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4306. // create tensors for the weights
  4307. {
  4308. const int64_t n_embd = hparams.n_embd;
  4309. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4310. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4311. const int64_t n_embd_gqa = n_embd_v_gqa;
  4312. const int64_t n_vocab = hparams.n_vocab;
  4313. const int64_t n_vocab_type = hparams.n_vocab_type;
  4314. const int64_t n_ff = hparams.n_ff;
  4315. const int64_t n_expert = hparams.n_expert;
  4316. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4317. throw std::runtime_error("model has expert layers but no expert layers are used");
  4318. }
  4319. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4320. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4321. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4322. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4323. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4324. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4325. model.layers.resize(n_layer);
  4326. const auto tn = LLM_TN(model.arch);
  4327. switch (model.arch) {
  4328. case LLM_ARCH_LLAMA:
  4329. case LLM_ARCH_REFACT:
  4330. case LLM_ARCH_MINICPM:
  4331. {
  4332. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4333. // output
  4334. {
  4335. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4336. if (model.arch != LLM_ARCH_MINICPM){
  4337. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4338. // if output is NULL, init from the input tok embed
  4339. if (model.output == NULL) {
  4340. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4341. ml.n_created--; // artificial tensor
  4342. ml.size_data += ggml_nbytes(model.output);
  4343. }
  4344. }
  4345. }
  4346. for (int i = 0; i < n_layer; ++i) {
  4347. ggml_context * ctx_layer = ctx_for_layer(i);
  4348. ggml_context * ctx_split = ctx_for_layer_split(i);
  4349. auto & layer = model.layers[i];
  4350. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4351. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4352. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4353. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4354. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4355. // optional bias tensors
  4356. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4357. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4358. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4359. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4360. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4361. if (n_expert == 0) {
  4362. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4363. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4364. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4365. } else {
  4366. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4367. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4368. if (layer.ffn_gate_exps) {
  4369. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4370. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4371. } else {
  4372. // merge split expert into a single tensor for compatibility with older models
  4373. // requires disabling mmap
  4374. use_mmap_buffer = false;
  4375. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4376. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4377. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4378. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4379. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4380. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4381. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4382. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4383. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4384. for (uint32_t x = 0; x < n_expert; ++x) {
  4385. // the individual experts are loaded into a view of the merged tensor
  4386. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4387. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4388. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4389. }
  4390. }
  4391. }
  4392. }
  4393. } break;
  4394. case LLM_ARCH_GROK:
  4395. {
  4396. if (n_expert == 0) {
  4397. throw std::runtime_error("Grok model cannot have zero experts");
  4398. }
  4399. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4400. // output
  4401. {
  4402. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4403. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4404. // if output is NULL, init from the input tok embed
  4405. if (model.output == NULL) {
  4406. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4407. ml.n_created--; // artificial tensor
  4408. ml.size_data += ggml_nbytes(model.output);
  4409. }
  4410. }
  4411. for (int i = 0; i < n_layer; ++i) {
  4412. ggml_context * ctx_layer = ctx_for_layer(i);
  4413. ggml_context * ctx_split = ctx_for_layer_split(i);
  4414. auto & layer = model.layers[i];
  4415. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4416. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4417. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4418. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4419. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4420. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4421. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4422. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4423. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4424. if (layer.ffn_gate_exps) {
  4425. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4426. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4427. } else {
  4428. // merge split expert into a single tensor for compatibility with older models
  4429. // requires disabling mmap
  4430. use_mmap_buffer = false;
  4431. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4432. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4433. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4434. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4435. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4436. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4437. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4438. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4439. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4440. for (uint32_t x = 0; x < n_expert; ++x) {
  4441. // the individual experts are loaded into a view of the merged tensor
  4442. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4443. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4444. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4445. }
  4446. }
  4447. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4448. }
  4449. } break;
  4450. case LLM_ARCH_DBRX:
  4451. {
  4452. if (n_expert == 0) {
  4453. throw std::runtime_error("DBRX model cannot have zero experts");
  4454. }
  4455. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4456. // output
  4457. {
  4458. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4459. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4460. }
  4461. for (int i = 0; i < n_layer; ++i) {
  4462. ggml_context * ctx_layer = ctx_for_layer(i);
  4463. ggml_context * ctx_split = ctx_for_layer_split(i);
  4464. auto & layer = model.layers[i];
  4465. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4466. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4467. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4468. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4469. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4470. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4471. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4472. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4473. }
  4474. } break;
  4475. case LLM_ARCH_BAICHUAN:
  4476. {
  4477. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4478. {
  4479. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4480. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4481. }
  4482. for (int i = 0; i < n_layer; ++i) {
  4483. ggml_context * ctx_layer = ctx_for_layer(i);
  4484. ggml_context * ctx_split = ctx_for_layer_split(i);
  4485. auto & layer = model.layers[i];
  4486. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4487. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4488. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4489. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4490. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4491. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4492. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4493. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4494. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4495. }
  4496. } break;
  4497. case LLM_ARCH_FALCON:
  4498. {
  4499. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4500. // output
  4501. {
  4502. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4503. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4504. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4505. if (!model.output) {
  4506. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4507. ml.n_created--; // artificial tensor
  4508. ml.size_data += ggml_nbytes(model.output);
  4509. }
  4510. }
  4511. for (int i = 0; i < n_layer; ++i) {
  4512. ggml_context * ctx_layer = ctx_for_layer(i);
  4513. ggml_context * ctx_split = ctx_for_layer_split(i);
  4514. auto & layer = model.layers[i];
  4515. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4516. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4517. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4518. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4519. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4520. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4521. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4522. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4523. }
  4524. } break;
  4525. case LLM_ARCH_STARCODER:
  4526. {
  4527. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4528. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4529. // output
  4530. {
  4531. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4532. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4533. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4534. }
  4535. for (int i = 0; i < n_layer; ++i) {
  4536. ggml_context * ctx_layer = ctx_for_layer(i);
  4537. ggml_context * ctx_split = ctx_for_layer_split(i);
  4538. auto & layer = model.layers[i];
  4539. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4540. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4541. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4542. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4543. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4544. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4545. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4546. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4547. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4548. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4549. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4550. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4551. }
  4552. } break;
  4553. case LLM_ARCH_PERSIMMON:
  4554. {
  4555. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4556. {
  4557. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4558. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4559. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4560. }
  4561. for (int i = 0; i < n_layer; ++i) {
  4562. ggml_context * ctx_layer = ctx_for_layer(i);
  4563. ggml_context * ctx_split = ctx_for_layer_split(i);
  4564. auto & layer = model.layers[i];
  4565. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4566. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4567. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4568. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4569. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4570. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4571. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4572. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4573. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4574. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4575. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4576. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4577. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4578. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4579. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4580. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4581. }
  4582. } break;
  4583. case LLM_ARCH_BERT:
  4584. case LLM_ARCH_NOMIC_BERT:
  4585. {
  4586. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4587. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4588. if (model.arch == LLM_ARCH_BERT) {
  4589. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4590. }
  4591. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4592. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4593. for (int i = 0; i < n_layer; ++i) {
  4594. ggml_context * ctx_layer = ctx_for_layer(i);
  4595. ggml_context * ctx_split = ctx_for_layer_split(i);
  4596. auto & layer = model.layers[i];
  4597. if (model.arch == LLM_ARCH_BERT) {
  4598. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4599. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4600. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4601. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4602. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4603. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4604. } else {
  4605. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4606. }
  4607. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4608. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4609. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4610. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4611. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4612. if (model.arch == LLM_ARCH_BERT) {
  4613. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4614. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4615. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4616. } else {
  4617. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4618. }
  4619. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4620. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4621. }
  4622. } break;
  4623. case LLM_ARCH_JINA_BERT_V2:
  4624. {
  4625. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  4626. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  4627. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  4628. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  4629. for (int i = 0; i < n_layer; ++i) {
  4630. ggml_context * ctx_layer = ctx_for_layer(i);
  4631. ggml_context * ctx_split = ctx_for_layer_split(i);
  4632. auto & layer = model.layers[i]; // JinaBertLayer
  4633. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4634. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4635. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4636. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4637. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4638. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4639. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4640. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4641. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4642. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4643. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  4644. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  4645. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  4646. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4647. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4648. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4649. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4650. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4651. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4652. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4653. }
  4654. } break;
  4655. case LLM_ARCH_BLOOM:
  4656. {
  4657. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4658. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4659. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4660. // output
  4661. {
  4662. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4663. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4664. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4665. }
  4666. for (int i = 0; i < n_layer; ++i) {
  4667. ggml_context * ctx_layer = ctx_for_layer(i);
  4668. ggml_context * ctx_split = ctx_for_layer_split(i);
  4669. auto & layer = model.layers[i];
  4670. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4671. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4672. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4673. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4674. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4675. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4676. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4677. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4678. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4679. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4680. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4681. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4682. }
  4683. } break;
  4684. case LLM_ARCH_MPT:
  4685. {
  4686. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4687. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4688. // output
  4689. {
  4690. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4691. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4692. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4693. if (!model.output) {
  4694. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4695. ml.n_created--; // artificial tensor
  4696. ml.size_data += ggml_nbytes(model.output);
  4697. }
  4698. }
  4699. for (int i = 0; i < n_layer; ++i) {
  4700. ggml_context * ctx_layer = ctx_for_layer(i);
  4701. ggml_context * ctx_split = ctx_for_layer_split(i);
  4702. auto & layer = model.layers[i];
  4703. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4704. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4705. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4706. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4707. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4708. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4709. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4710. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4711. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4712. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4713. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4714. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4715. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4716. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4717. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4718. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4719. // AWQ ScaleActivation layer
  4720. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4721. }
  4722. } break;
  4723. case LLM_ARCH_STABLELM:
  4724. {
  4725. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4726. // output
  4727. {
  4728. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4729. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4730. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4731. }
  4732. for (int i = 0; i < n_layer; ++i) {
  4733. ggml_context * ctx_layer = ctx_for_layer(i);
  4734. ggml_context * ctx_split = ctx_for_layer_split(i);
  4735. auto & layer = model.layers[i];
  4736. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4737. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4738. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4739. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4740. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4741. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4742. // optional bias tensors, present in Stable LM 2 1.6B
  4743. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4744. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4745. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4746. // optional q and k layernorms, present in StableLM 2 12B
  4747. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4748. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4749. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4750. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4751. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4752. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4753. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4754. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4755. }
  4756. } break;
  4757. case LLM_ARCH_QWEN:
  4758. {
  4759. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4760. // output
  4761. {
  4762. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4763. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4764. }
  4765. for (int i = 0; i < n_layer; ++i) {
  4766. ggml_context * ctx_layer = ctx_for_layer(i);
  4767. ggml_context * ctx_split = ctx_for_layer_split(i);
  4768. auto & layer = model.layers[i];
  4769. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4770. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4771. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4772. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4773. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4774. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4775. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4776. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4777. }
  4778. } break;
  4779. case LLM_ARCH_QWEN2:
  4780. {
  4781. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4782. // output
  4783. {
  4784. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4785. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4786. // if output is NULL, init from the input tok embed
  4787. if (model.output == NULL) {
  4788. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4789. ml.n_created--; // artificial tensor
  4790. ml.size_data += ggml_nbytes(model.output);
  4791. }
  4792. }
  4793. for (int i = 0; i < n_layer; ++i) {
  4794. ggml_context * ctx_layer = ctx_for_layer(i);
  4795. ggml_context * ctx_split = ctx_for_layer_split(i);
  4796. auto & layer = model.layers[i];
  4797. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4798. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4799. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4800. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4801. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4802. // optional bias tensors
  4803. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4804. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4805. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4806. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4807. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4808. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4809. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4810. }
  4811. } break;
  4812. case LLM_ARCH_QWEN2MOE:
  4813. {
  4814. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4815. // output
  4816. {
  4817. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4818. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4819. }
  4820. for (int i = 0; i < n_layer; ++i) {
  4821. ggml_context * ctx_layer = ctx_for_layer(i);
  4822. ggml_context * ctx_split = ctx_for_layer_split(i);
  4823. auto & layer = model.layers[i];
  4824. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4825. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4826. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4827. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4828. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4829. // optional bias tensors
  4830. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4831. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4832. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4833. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4834. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4835. GGML_ASSERT(hparams.n_expert > 0);
  4836. GGML_ASSERT(hparams.n_expert_used > 0);
  4837. // MoE branch
  4838. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4839. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4840. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4841. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4842. // Shared expert branch
  4843. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4844. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4845. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4846. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4847. }
  4848. } break;
  4849. case LLM_ARCH_PHI2:
  4850. {
  4851. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4852. // output
  4853. {
  4854. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4855. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4856. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4857. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4858. }
  4859. for (int i = 0; i < n_layer; ++i) {
  4860. ggml_context * ctx_layer = ctx_for_layer(i);
  4861. ggml_context * ctx_split = ctx_for_layer_split(i);
  4862. auto & layer = model.layers[i];
  4863. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4864. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4865. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4866. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4867. if (layer.wqkv == nullptr) {
  4868. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4869. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4870. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4871. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4872. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4873. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4874. }
  4875. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4876. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4877. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4878. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4879. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4880. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4881. }
  4882. } break;
  4883. case LLM_ARCH_PHI3:
  4884. {
  4885. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4886. // output
  4887. {
  4888. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4889. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4890. }
  4891. for (int i = 0; i < n_layer; ++i) {
  4892. ggml_context* ctx_layer = ctx_for_layer(i);
  4893. ggml_context* ctx_split = ctx_for_layer_split(i);
  4894. auto& layer = model.layers[i];
  4895. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4896. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
  4897. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4898. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4899. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4900. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4901. }
  4902. } break;
  4903. case LLM_ARCH_PLAMO:
  4904. {
  4905. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4906. // output
  4907. {
  4908. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4909. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4910. }
  4911. for (int i = 0; i < n_layer; ++i) {
  4912. ggml_context * ctx_layer = ctx_for_layer(i);
  4913. ggml_context * ctx_split = ctx_for_layer_split(i);
  4914. auto & layer = model.layers[i];
  4915. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4916. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4917. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4918. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4919. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4920. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4921. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4922. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4923. }
  4924. } break;
  4925. case LLM_ARCH_GPT2:
  4926. {
  4927. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4928. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4929. // output
  4930. {
  4931. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4932. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4933. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4934. }
  4935. for (int i = 0; i < n_layer; ++i) {
  4936. ggml_context * ctx_layer = ctx_for_layer(i);
  4937. ggml_context * ctx_split = ctx_for_layer_split(i);
  4938. auto & layer = model.layers[i];
  4939. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4940. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4941. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4942. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4943. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4944. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4945. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4946. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4947. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4948. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4949. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4950. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4951. }
  4952. } break;
  4953. case LLM_ARCH_CODESHELL:
  4954. {
  4955. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4956. // output
  4957. {
  4958. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4959. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4960. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4961. }
  4962. for (int i = 0; i < n_layer; ++i) {
  4963. ggml_context * ctx_layer = ctx_for_layer(i);
  4964. ggml_context * ctx_split = ctx_for_layer_split(i);
  4965. auto & layer = model.layers[i];
  4966. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4967. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4968. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4969. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4970. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4971. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4972. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4973. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4974. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4975. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4976. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4977. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4978. }
  4979. } break;
  4980. case LLM_ARCH_ORION:
  4981. {
  4982. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4983. {
  4984. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4985. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4986. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4987. }
  4988. for (int i = 0; i < n_layer; ++i) {
  4989. ggml_context * ctx_layer = ctx_for_layer(i);
  4990. ggml_context * ctx_split = ctx_for_layer_split(i);
  4991. auto & layer = model.layers[i];
  4992. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4993. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4994. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4995. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4996. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4997. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4998. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4999. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5000. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5001. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5002. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5003. }
  5004. } break;
  5005. case LLM_ARCH_INTERNLM2:
  5006. {
  5007. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5008. // output
  5009. {
  5010. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5011. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5012. }
  5013. for (int i = 0; i < n_layer; ++i) {
  5014. ggml_context * ctx_layer = ctx_for_layer(i);
  5015. ggml_context * ctx_split = ctx_for_layer_split(i);
  5016. auto & layer = model.layers[i];
  5017. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5018. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5019. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5020. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5021. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5022. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5023. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5024. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5025. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5026. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5027. }
  5028. } break;
  5029. case LLM_ARCH_GEMMA:
  5030. {
  5031. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5032. // output
  5033. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5034. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  5035. ml.n_created--; // artificial tensor
  5036. ml.size_data += ggml_nbytes(model.output);
  5037. const int64_t n_ff = hparams.n_ff;
  5038. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5039. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5040. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5041. for (uint32_t i = 0; i < n_layer; ++i) {
  5042. ggml_context * ctx_layer = ctx_for_layer(i);
  5043. ggml_context * ctx_split = ctx_for_layer_split(i);
  5044. auto & layer = model.layers[i];
  5045. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5046. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5047. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5048. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5049. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5050. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5051. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5052. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5053. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5054. }
  5055. } break;
  5056. case LLM_ARCH_STARCODER2:
  5057. {
  5058. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5059. // output
  5060. {
  5061. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5062. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5063. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5064. // if output is NULL, init from the input tok embed
  5065. if (model.output == NULL) {
  5066. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5067. ml.n_created--; // artificial tensor
  5068. ml.size_data += ggml_nbytes(model.output);
  5069. }
  5070. }
  5071. for (int i = 0; i < n_layer; ++i) {
  5072. ggml_context * ctx_layer = ctx_for_layer(i);
  5073. ggml_context * ctx_split = ctx_for_layer_split(i);
  5074. auto & layer = model.layers[i];
  5075. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5076. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5077. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5078. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5079. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5080. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5081. // optional bias tensors
  5082. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5083. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5084. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5085. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5086. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5087. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5088. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5089. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5090. // optional bias tensors
  5091. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5092. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5093. }
  5094. } break;
  5095. case LLM_ARCH_MAMBA:
  5096. {
  5097. const int64_t d_conv = hparams.ssm_d_conv;
  5098. const int64_t d_inner = hparams.ssm_d_inner;
  5099. const int64_t d_state = hparams.ssm_d_state;
  5100. const int64_t dt_rank = hparams.ssm_dt_rank;
  5101. // only an expansion factor of 2 is supported for now
  5102. GGML_ASSERT(2 * n_embd == d_inner);
  5103. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5104. // output
  5105. {
  5106. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5107. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5108. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5109. if (model.output == NULL) {
  5110. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5111. ml.n_created--; // artificial tensor
  5112. ml.size_data += ggml_nbytes(model.output);
  5113. }
  5114. }
  5115. for (int i = 0; i < n_layer; ++i) {
  5116. ggml_context * ctx_layer = ctx_for_layer(i);
  5117. ggml_context * ctx_split = ctx_for_layer_split(i);
  5118. auto & layer = model.layers[i];
  5119. // norm
  5120. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5121. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5122. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5123. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5124. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5125. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5126. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5127. // no "weight" suffix for these
  5128. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5129. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5130. // out_proj
  5131. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5132. }
  5133. } break;
  5134. case LLM_ARCH_XVERSE:
  5135. {
  5136. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5137. {
  5138. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5139. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5140. }
  5141. for (int i = 0; i < n_layer; ++i) {
  5142. ggml_context * ctx_layer = ctx_for_layer(i);
  5143. ggml_context * ctx_split = ctx_for_layer_split(i);
  5144. auto & layer = model.layers[i];
  5145. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5146. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5147. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5148. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5149. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5150. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5151. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5152. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5153. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5154. }
  5155. } break;
  5156. case LLM_ARCH_COMMAND_R:
  5157. {
  5158. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5159. // output
  5160. {
  5161. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5162. // init output from the input tok embed
  5163. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5164. ml.n_created--; // artificial tensor
  5165. ml.size_data += ggml_nbytes(model.output);
  5166. }
  5167. for (int i = 0; i < n_layer; ++i) {
  5168. ggml_context * ctx_layer = ctx_for_layer(i);
  5169. ggml_context * ctx_split = ctx_for_layer_split(i);
  5170. auto & layer = model.layers[i];
  5171. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5172. if (n_layer >= 64){
  5173. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5174. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5175. }
  5176. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5177. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5178. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5179. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5180. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5181. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5182. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5183. }
  5184. } break;
  5185. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5186. {
  5187. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5188. // output
  5189. {
  5190. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5191. // if output is NULL, init from the input tok embed
  5192. if (model.output == NULL) {
  5193. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5194. ml.n_created--; // artificial tensor
  5195. ml.size_data += ggml_nbytes(model.output);
  5196. }
  5197. }
  5198. for (int i = 0; i < n_layer; ++i) {
  5199. ggml_context * ctx_split = ctx_for_layer_split(i);
  5200. auto & layer = model.layers[i];
  5201. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5202. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5203. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5204. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5205. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5206. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5207. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5208. }
  5209. } break;
  5210. default:
  5211. throw std::runtime_error("unknown architecture");
  5212. }
  5213. }
  5214. ml.done_getting_tensors();
  5215. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5216. model.mappings.reserve(ml.mappings.size());
  5217. // create the backend buffers
  5218. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5219. ctx_bufs.reserve(ctx_map.size());
  5220. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5221. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5222. model.bufs.reserve(n_max_backend_buffer);
  5223. for (auto & it : ctx_map) {
  5224. ggml_backend_buffer_type_t buft = it.first;
  5225. ggml_context * ctx = it.second;
  5226. llama_buf_map bufs;
  5227. bufs.reserve(n_max_backend_buffer);
  5228. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5229. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5230. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5231. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5232. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5233. void * addr = nullptr;
  5234. size_t first, last;
  5235. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5236. if (first >= last) {
  5237. continue;
  5238. }
  5239. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5240. if (buf == nullptr) {
  5241. throw std::runtime_error("unable to allocate backend CPU buffer");
  5242. }
  5243. model.bufs.push_back(buf);
  5244. bufs.emplace(idx, buf);
  5245. #ifdef GGML_USE_CUDA
  5246. if (n_layer >= n_gpu_layers) {
  5247. ggml_backend_cuda_register_host_buffer(
  5248. ggml_backend_buffer_get_base(buf),
  5249. ggml_backend_buffer_get_size(buf));
  5250. }
  5251. #endif
  5252. }
  5253. }
  5254. #ifdef GGML_USE_METAL
  5255. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5256. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5257. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5258. void * addr = nullptr;
  5259. size_t first, last;
  5260. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5261. if (first >= last) {
  5262. continue;
  5263. }
  5264. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5265. if (buf == nullptr) {
  5266. throw std::runtime_error("unable to allocate backend metal buffer");
  5267. }
  5268. model.bufs.push_back(buf);
  5269. bufs.emplace(idx, buf);
  5270. }
  5271. }
  5272. #endif
  5273. else {
  5274. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5275. if (buf == nullptr) {
  5276. throw std::runtime_error("unable to allocate backend buffer");
  5277. }
  5278. model.bufs.push_back(buf);
  5279. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5280. model.mlock_bufs.emplace_back(new llama_mlock);
  5281. auto & mlock_buf = model.mlock_bufs.back();
  5282. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5283. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5284. }
  5285. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5286. bufs.emplace(idx, buf);
  5287. }
  5288. }
  5289. if (bufs.empty()) {
  5290. throw std::runtime_error("failed to allocate buffer");
  5291. }
  5292. for (auto & buf : bufs) {
  5293. // indicate that this buffer contains weights
  5294. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5295. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5296. }
  5297. ctx_bufs.emplace_back(ctx, bufs);
  5298. }
  5299. if (llama_supports_gpu_offload()) {
  5300. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5301. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5302. if (n_gpu_layers > (int) hparams.n_layer) {
  5303. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5304. }
  5305. const int max_backend_supported_layers = hparams.n_layer + 1;
  5306. const int max_offloadable_layers = hparams.n_layer + 1;
  5307. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5308. }
  5309. // print memory requirements
  5310. for (ggml_backend_buffer_t buf : model.bufs) {
  5311. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5312. }
  5313. // populate tensors_by_name
  5314. for (ggml_context * ctx : model.ctxs) {
  5315. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5316. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5317. }
  5318. }
  5319. // load tensor data
  5320. for (auto & it : ctx_bufs) {
  5321. ggml_context * ctx = it.first;
  5322. auto & bufs = it.second;
  5323. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5324. return false;
  5325. }
  5326. }
  5327. if (use_mmap_buffer) {
  5328. for (auto & mapping : ml.mappings) {
  5329. model.mappings.emplace_back(std::move(mapping));
  5330. }
  5331. }
  5332. // loading time will be recalculate after the first eval, so
  5333. // we take page faults deferred by mmap() into consideration
  5334. model.t_load_us = ggml_time_us() - model.t_start_us;
  5335. return true;
  5336. }
  5337. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5338. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5339. try {
  5340. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5341. model.hparams.vocab_only = params.vocab_only;
  5342. try {
  5343. llm_load_arch(ml, model);
  5344. } catch(const std::exception & e) {
  5345. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5346. }
  5347. try {
  5348. llm_load_hparams(ml, model);
  5349. } catch(const std::exception & e) {
  5350. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5351. }
  5352. try {
  5353. llm_load_vocab(ml, model);
  5354. } catch(const std::exception & e) {
  5355. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5356. }
  5357. llm_load_print_meta(ml, model);
  5358. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5359. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5360. throw std::runtime_error("vocab size mismatch");
  5361. }
  5362. if (params.vocab_only) {
  5363. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5364. return 0;
  5365. }
  5366. #ifdef GGML_USE_KOMPUTE
  5367. if (params.n_gpu_layers > 0 && (
  5368. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5369. || !(
  5370. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5371. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5372. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5373. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5374. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5375. )
  5376. )) {
  5377. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5378. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5379. params.n_gpu_layers = 0;
  5380. }
  5381. #endif
  5382. #ifdef GGML_USE_SYCL
  5383. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5384. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5385. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5386. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5387. } else {
  5388. ggml_backend_sycl_set_mul_device_mode();
  5389. }
  5390. #endif
  5391. if (!llm_load_tensors(
  5392. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5393. params.progress_callback, params.progress_callback_user_data
  5394. )) {
  5395. return -2;
  5396. }
  5397. } catch (const std::exception & err) {
  5398. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5399. return -1;
  5400. }
  5401. return 0;
  5402. }
  5403. //
  5404. // llm_build
  5405. //
  5406. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5407. enum llm_ffn_op_type {
  5408. LLM_FFN_SILU,
  5409. LLM_FFN_GELU,
  5410. LLM_FFN_RELU,
  5411. LLM_FFN_RELU_SQR,
  5412. };
  5413. enum llm_ffn_gate_type {
  5414. LLM_FFN_SEQ,
  5415. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5416. };
  5417. enum llm_norm_type {
  5418. LLM_NORM,
  5419. LLM_NORM_RMS,
  5420. };
  5421. static struct ggml_tensor * llm_build_inp_embd(
  5422. struct ggml_context * ctx,
  5423. struct llama_context & lctx,
  5424. const llama_hparams & hparams,
  5425. const llama_batch & batch,
  5426. struct ggml_tensor * tok_embd,
  5427. const llm_build_cb & cb) {
  5428. const int64_t n_embd = hparams.n_embd;
  5429. struct ggml_tensor * inpL;
  5430. if (batch.token) {
  5431. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5432. cb(lctx.inp_tokens, "inp_tokens", -1);
  5433. ggml_set_input(lctx.inp_tokens);
  5434. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5435. } else {
  5436. #ifdef GGML_USE_MPI
  5437. GGML_ASSERT(false && "not implemented");
  5438. #endif
  5439. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5440. inpL = lctx.inp_embd;
  5441. ggml_set_input(lctx.inp_embd);
  5442. }
  5443. cb(inpL, "inp_embd", -1);
  5444. return inpL;
  5445. }
  5446. static void llm_build_kv_store(
  5447. struct ggml_context * ctx,
  5448. const llama_hparams & hparams,
  5449. const llama_cparams & cparams,
  5450. const llama_kv_cache & kv,
  5451. struct ggml_cgraph * graph,
  5452. struct ggml_tensor * k_cur,
  5453. struct ggml_tensor * v_cur,
  5454. int32_t n_tokens,
  5455. int32_t kv_head,
  5456. const llm_build_cb & cb,
  5457. int64_t il) {
  5458. const int64_t n_ctx = cparams.n_ctx;
  5459. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5460. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5461. GGML_ASSERT(kv.size == n_ctx);
  5462. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5463. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5464. cb(k_cache_view, "k_cache_view", il);
  5465. // note: storing RoPE-ed version of K in the KV cache
  5466. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5467. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5468. struct ggml_tensor * v_cache_view = nullptr;
  5469. if (cparams.flash_attn) {
  5470. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5471. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5472. } else {
  5473. // note: the V cache is transposed when not using flash attention
  5474. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5475. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5476. (kv_head)*ggml_element_size(kv.v_l[il]));
  5477. v_cur = ggml_transpose(ctx, v_cur);
  5478. }
  5479. cb(v_cache_view, "v_cache_view", il);
  5480. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5481. }
  5482. static struct ggml_tensor * llm_build_norm(
  5483. struct ggml_context * ctx,
  5484. struct ggml_tensor * cur,
  5485. const llama_hparams & hparams,
  5486. struct ggml_tensor * mw,
  5487. struct ggml_tensor * mb,
  5488. llm_norm_type type,
  5489. const llm_build_cb & cb,
  5490. int il) {
  5491. switch (type) {
  5492. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5493. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5494. }
  5495. if (mw || mb) {
  5496. cb(cur, "norm", il);
  5497. }
  5498. if (mw) {
  5499. cur = ggml_mul(ctx, cur, mw);
  5500. if (mb) {
  5501. cb(cur, "norm_w", il);
  5502. }
  5503. }
  5504. if (mb) {
  5505. cur = ggml_add(ctx, cur, mb);
  5506. }
  5507. return cur;
  5508. }
  5509. static struct ggml_tensor * llm_build_ffn(
  5510. struct ggml_context * ctx,
  5511. struct ggml_tensor * cur,
  5512. struct ggml_tensor * up,
  5513. struct ggml_tensor * up_b,
  5514. struct ggml_tensor * gate,
  5515. struct ggml_tensor * gate_b,
  5516. struct ggml_tensor * down,
  5517. struct ggml_tensor * down_b,
  5518. struct ggml_tensor * act_scales,
  5519. llm_ffn_op_type type_op,
  5520. llm_ffn_gate_type type_gate,
  5521. const llm_build_cb & cb,
  5522. int il) {
  5523. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  5524. cb(tmp, "ffn_up", il);
  5525. if (up_b) {
  5526. tmp = ggml_add(ctx, tmp, up_b);
  5527. cb(tmp, "ffn_up_b", il);
  5528. }
  5529. if (gate) {
  5530. switch (type_gate) {
  5531. case LLM_FFN_SEQ:
  5532. {
  5533. cur = ggml_mul_mat(ctx, gate, tmp);
  5534. cb(cur, "ffn_gate", il);
  5535. } break;
  5536. case LLM_FFN_PAR:
  5537. {
  5538. cur = ggml_mul_mat(ctx, gate, cur);
  5539. cb(cur, "ffn_gate", il);
  5540. } break;
  5541. }
  5542. if (gate_b) {
  5543. cur = ggml_add(ctx, cur, gate_b);
  5544. cb(cur, "ffn_gate_b", il);
  5545. }
  5546. } else {
  5547. cur = tmp;
  5548. }
  5549. switch (type_op) {
  5550. case LLM_FFN_SILU:
  5551. {
  5552. cur = ggml_silu(ctx, cur);
  5553. cb(cur, "ffn_silu", il);
  5554. } break;
  5555. case LLM_FFN_GELU:
  5556. {
  5557. cur = ggml_gelu(ctx, cur);
  5558. cb(cur, "ffn_gelu", il);
  5559. if (act_scales != NULL) {
  5560. cur = ggml_div(ctx, cur, act_scales);
  5561. cb(cur, "ffn_act", il);
  5562. }
  5563. } break;
  5564. case LLM_FFN_RELU:
  5565. {
  5566. cur = ggml_relu(ctx, cur);
  5567. cb(cur, "ffn_relu", il);
  5568. } break;
  5569. case LLM_FFN_RELU_SQR:
  5570. {
  5571. cur = ggml_relu(ctx, cur);
  5572. cb(cur, "ffn_relu", il);
  5573. cur = ggml_sqr(ctx, cur);
  5574. cb(cur, "ffn_sqr(relu)", il);
  5575. } break;
  5576. }
  5577. if (type_gate == LLM_FFN_PAR) {
  5578. cur = ggml_mul(ctx, cur, tmp);
  5579. cb(cur, "ffn_gate_par", il);
  5580. }
  5581. cur = ggml_mul_mat(ctx, down, cur);
  5582. if (down_b) {
  5583. cb(cur, "ffn_down", il);
  5584. }
  5585. if (down_b) {
  5586. cur = ggml_add(ctx, cur, down_b);
  5587. }
  5588. return cur;
  5589. }
  5590. static struct ggml_tensor * llm_build_moe_ffn(
  5591. struct ggml_context * ctx,
  5592. struct ggml_tensor * cur,
  5593. struct ggml_tensor * gate_inp,
  5594. struct ggml_tensor * up_exps,
  5595. struct ggml_tensor * gate_exps,
  5596. struct ggml_tensor * down_exps,
  5597. int64_t n_expert,
  5598. int64_t n_expert_used,
  5599. llm_ffn_op_type type_op,
  5600. bool norm_w,
  5601. const llm_build_cb & cb,
  5602. int il) {
  5603. int64_t n_embd = cur->ne[0];
  5604. int64_t n_tokens = cur->ne[1];
  5605. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5606. cb(logits, "ffn_moe_logits", il);
  5607. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5608. cb(probs, "ffn_moe_probs", il);
  5609. // select experts
  5610. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5611. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5612. cb(selected_experts, "ffn_moe_topk", il);
  5613. ggml_tensor * weights = ggml_get_rows(ctx,
  5614. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5615. cb(weights, "ffn_moe_weights", il);
  5616. if (norm_w) {
  5617. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5618. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5619. cb(weights_sum, "ffn_moe_weights_sum", il);
  5620. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5621. cb(weights, "ffn_moe_weights_norm", il);
  5622. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5623. }
  5624. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5625. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5626. cb(up, "ffn_moe_up", il);
  5627. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5628. cb(gate, "ffn_moe_gate", il);
  5629. switch (type_op) {
  5630. case LLM_FFN_SILU:
  5631. {
  5632. gate = ggml_silu(ctx, gate);
  5633. cb(gate, "ffn_moe_silu", il);
  5634. } break;
  5635. case LLM_FFN_GELU:
  5636. {
  5637. gate = ggml_gelu(ctx, gate);
  5638. cb(gate, "ffn_moe_gelu", il);
  5639. } break;
  5640. default:
  5641. GGML_ASSERT(false);
  5642. }
  5643. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5644. cb(par, "ffn_moe_gate_par", il);
  5645. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5646. cb(experts, "ffn_moe_down", il);
  5647. experts = ggml_mul(ctx, experts, weights);
  5648. // aggregate experts
  5649. ggml_tensor * moe_out = nullptr;
  5650. for (int i = 0; i < n_expert_used; ++i) {
  5651. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5652. experts->nb[2], i*experts->nb[1]);
  5653. if (i == 0) {
  5654. moe_out = cur_expert;
  5655. } else {
  5656. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5657. }
  5658. }
  5659. if (n_expert_used == 1) {
  5660. // avoid returning a non-contiguous tensor
  5661. moe_out = ggml_cont(ctx, moe_out);
  5662. }
  5663. return moe_out;
  5664. }
  5665. static struct ggml_tensor * llm_build_kqv(
  5666. struct ggml_context * ctx,
  5667. const llama_model & model,
  5668. const llama_hparams & hparams,
  5669. const llama_cparams & cparams,
  5670. const llama_kv_cache & kv,
  5671. struct ggml_cgraph * graph,
  5672. struct ggml_tensor * wo,
  5673. struct ggml_tensor * wo_b,
  5674. struct ggml_tensor * q_cur,
  5675. struct ggml_tensor * kq_mask,
  5676. int32_t n_tokens,
  5677. int32_t n_kv,
  5678. float kq_scale,
  5679. const llm_build_cb & cb,
  5680. int il) {
  5681. const int64_t n_ctx = cparams.n_ctx;
  5682. const int64_t n_head = hparams.n_head;
  5683. const int64_t n_head_kv = hparams.n_head_kv;
  5684. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5685. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5686. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5687. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5688. cb(q, "q", il);
  5689. struct ggml_tensor * k =
  5690. ggml_view_3d(ctx, kv.k_l[il],
  5691. n_embd_head_k, n_kv, n_head_kv,
  5692. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5693. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5694. 0);
  5695. cb(k, "k", il);
  5696. struct ggml_tensor * cur;
  5697. if (cparams.flash_attn) {
  5698. GGML_UNUSED(model);
  5699. GGML_UNUSED(n_ctx);
  5700. // split cached v into n_head heads (not transposed)
  5701. struct ggml_tensor * v =
  5702. ggml_view_3d(ctx, kv.v_l[il],
  5703. n_embd_head_v, n_kv, n_head_kv,
  5704. ggml_row_size(kv.v_l[il]->type, n_embd_k_gqa),
  5705. ggml_row_size(kv.v_l[il]->type, n_embd_head_k),
  5706. 0);
  5707. cb(v, "v", il);
  5708. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5709. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5710. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  5711. }
  5712. cur = ggml_reshape_2d(ctx, cur, n_embd_head_k*n_head, n_tokens);
  5713. } else {
  5714. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5715. cb(kq, "kq", il);
  5716. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5717. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5718. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5719. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5720. }
  5721. if (model.arch == LLM_ARCH_GROK) {
  5722. // need to do the following:
  5723. // multiply by attn_output_multiplyer of 0.08838834764831845
  5724. // and then :
  5725. // kq = 30 * tanh(kq / 30)
  5726. // before the softmax below
  5727. //try from phi2
  5728. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5729. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5730. kq = ggml_scale(ctx, kq, 30);
  5731. }
  5732. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5733. cb(kq, "kq_soft_max_ext", il);
  5734. GGML_ASSERT(kv.size == n_ctx);
  5735. // split cached v into n_head heads
  5736. struct ggml_tensor * v =
  5737. ggml_view_3d(ctx, kv.v_l[il],
  5738. n_kv, n_embd_head_v, n_head_kv,
  5739. ggml_element_size(kv.v_l[il])*n_ctx,
  5740. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5741. 0);
  5742. cb(v, "v", il);
  5743. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5744. cb(kqv, "kqv", il);
  5745. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5746. cb(kqv_merged, "kqv_merged", il);
  5747. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  5748. cb(cur, "kqv_merged_cont", il);
  5749. }
  5750. ggml_build_forward_expand(graph, cur);
  5751. cur = ggml_mul_mat(ctx, wo, cur);
  5752. if (wo_b) {
  5753. cb(cur, "kqv_wo", il);
  5754. }
  5755. if (wo_b) {
  5756. cur = ggml_add(ctx, cur, wo_b);
  5757. }
  5758. return cur;
  5759. }
  5760. static struct ggml_tensor * llm_build_kv(
  5761. struct ggml_context * ctx,
  5762. const llama_model & model,
  5763. const llama_hparams & hparams,
  5764. const llama_cparams & cparams,
  5765. const llama_kv_cache & kv,
  5766. struct ggml_cgraph * graph,
  5767. struct ggml_tensor * wo,
  5768. struct ggml_tensor * wo_b,
  5769. struct ggml_tensor * k_cur,
  5770. struct ggml_tensor * v_cur,
  5771. struct ggml_tensor * q_cur,
  5772. struct ggml_tensor * kq_mask,
  5773. int32_t n_tokens,
  5774. int32_t kv_head,
  5775. int32_t n_kv,
  5776. float kq_scale,
  5777. const llm_build_cb & cb,
  5778. int il) {
  5779. // these nodes are added to the graph together so that they are not reordered
  5780. // by doing so, the number of splits in the graph is reduced
  5781. ggml_build_forward_expand(graph, q_cur);
  5782. ggml_build_forward_expand(graph, k_cur);
  5783. ggml_build_forward_expand(graph, v_cur);
  5784. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  5785. struct ggml_tensor * cur;
  5786. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  5787. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  5788. cb(cur, "kqv_out", il);
  5789. return cur;
  5790. }
  5791. struct llm_build_context {
  5792. const llama_model & model;
  5793. llama_context & lctx;
  5794. const llama_hparams & hparams;
  5795. const llama_cparams & cparams;
  5796. const llama_batch & batch;
  5797. const llama_kv_cache & kv_self;
  5798. const int64_t n_embd;
  5799. const int64_t n_layer;
  5800. const int64_t n_rot;
  5801. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5802. const int64_t n_head;
  5803. const int64_t n_head_kv;
  5804. const int64_t n_embd_head_k;
  5805. const int64_t n_embd_k_gqa;
  5806. const int64_t n_embd_head_v;
  5807. const int64_t n_embd_v_gqa;
  5808. const int64_t n_expert;
  5809. const int64_t n_expert_used;
  5810. const float freq_base;
  5811. const float freq_scale;
  5812. const float ext_factor;
  5813. const float attn_factor;
  5814. const float beta_fast;
  5815. const float beta_slow;
  5816. const float norm_eps;
  5817. const float norm_rms_eps;
  5818. const int32_t n_tokens;
  5819. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5820. const int32_t n_outputs;
  5821. const int32_t kv_head; // index of where we store new KV data in the cache
  5822. const int32_t n_orig_ctx;
  5823. const bool flash_attn;
  5824. const enum llama_pooling_type pooling_type;
  5825. const enum llama_rope_type rope_type;
  5826. const llm_build_cb & cb;
  5827. std::vector<uint8_t> & buf_compute_meta;
  5828. struct ggml_context * ctx0 = nullptr;
  5829. // TODO: consider making the entire interface noexcept
  5830. llm_build_context(
  5831. llama_context & lctx,
  5832. const llama_batch & batch,
  5833. const llm_build_cb & cb,
  5834. bool worst_case) :
  5835. model (lctx.model),
  5836. lctx (lctx),
  5837. hparams (model.hparams),
  5838. cparams (lctx.cparams),
  5839. batch (batch),
  5840. kv_self (lctx.kv_self),
  5841. n_embd (hparams.n_embd),
  5842. n_layer (hparams.n_layer),
  5843. n_rot (hparams.n_rot),
  5844. n_ctx (cparams.n_ctx),
  5845. n_head (hparams.n_head),
  5846. n_head_kv (hparams.n_head_kv),
  5847. n_embd_head_k (hparams.n_embd_head_k),
  5848. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5849. n_embd_head_v (hparams.n_embd_head_v),
  5850. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5851. n_expert (hparams.n_expert),
  5852. n_expert_used (hparams.n_expert_used),
  5853. freq_base (cparams.rope_freq_base),
  5854. freq_scale (cparams.rope_freq_scale),
  5855. ext_factor (cparams.yarn_ext_factor),
  5856. attn_factor (cparams.yarn_attn_factor),
  5857. beta_fast (cparams.yarn_beta_fast),
  5858. beta_slow (cparams.yarn_beta_slow),
  5859. norm_eps (hparams.f_norm_eps),
  5860. norm_rms_eps (hparams.f_norm_rms_eps),
  5861. n_tokens (batch.n_tokens),
  5862. n_kv (worst_case ? kv_self.size : kv_self.n),
  5863. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5864. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5865. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5866. flash_attn (cparams.flash_attn),
  5867. pooling_type (cparams.pooling_type),
  5868. rope_type (hparams.rope_type),
  5869. cb (cb),
  5870. buf_compute_meta (lctx.buf_compute_meta) {
  5871. // all initializations should be done in init()
  5872. }
  5873. void init() {
  5874. struct ggml_init_params params = {
  5875. /*.mem_size =*/ buf_compute_meta.size(),
  5876. /*.mem_buffer =*/ buf_compute_meta.data(),
  5877. /*.no_alloc =*/ true,
  5878. };
  5879. ctx0 = ggml_init(params);
  5880. lctx.inp_tokens = nullptr;
  5881. lctx.inp_embd = nullptr;
  5882. lctx.inp_pos = nullptr;
  5883. lctx.inp_out_ids = nullptr;
  5884. lctx.inp_KQ_mask = nullptr;
  5885. lctx.inp_K_shift = nullptr;
  5886. lctx.inp_mean = nullptr;
  5887. lctx.inp_cls = nullptr;
  5888. lctx.inp_s_copy = nullptr;
  5889. lctx.inp_s_mask = nullptr;
  5890. lctx.inp_s_seq = nullptr;
  5891. }
  5892. void free() {
  5893. if (ctx0) {
  5894. ggml_free(ctx0);
  5895. ctx0 = nullptr;
  5896. }
  5897. }
  5898. struct ggml_cgraph * build_k_shift() {
  5899. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5900. GGML_ASSERT(kv_self.size == n_ctx);
  5901. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5902. cb(lctx.inp_K_shift, "K_shift", -1);
  5903. ggml_set_input(lctx.inp_K_shift);
  5904. for (int il = 0; il < n_layer; ++il) {
  5905. struct ggml_tensor * tmp =
  5906. // we rotate only the first n_rot dimensions
  5907. ggml_rope_custom_inplace(ctx0,
  5908. ggml_view_3d(ctx0, kv_self.k_l[il],
  5909. n_embd_head_k, n_head_kv, n_ctx,
  5910. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5911. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5912. 0),
  5913. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5914. ext_factor, attn_factor, beta_fast, beta_slow);
  5915. cb(tmp, "K_shifted", il);
  5916. ggml_build_forward_expand(gf, tmp);
  5917. }
  5918. return gf;
  5919. }
  5920. struct ggml_cgraph * build_s_copy() {
  5921. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5922. GGML_ASSERT(kv_self.recurrent);
  5923. struct ggml_tensor * state_copy = build_inp_s_copy();
  5924. for (int il = 0; il < n_layer; ++il) {
  5925. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5926. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5927. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5928. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5929. // TODO: name the intermediate tensors with cb()
  5930. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5931. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5932. }
  5933. return gf;
  5934. }
  5935. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5936. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5937. for (uint32_t i = 0; i < ids.size(); ++i) {
  5938. const uint32_t id = ids[i];
  5939. if (i == id || id == ids.size()) {
  5940. continue;
  5941. }
  5942. uint32_t nm = 1;
  5943. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5944. nm++;
  5945. }
  5946. for (int il = 0; il < n_layer; ++il) {
  5947. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5948. n_embd_k_gqa, nm,
  5949. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5950. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5951. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5952. n_embd_k_gqa, nm,
  5953. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5954. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5955. ggml_tensor * view_v_src;
  5956. ggml_tensor * view_v_dst;
  5957. if (flash_attn) {
  5958. // NOTE: the V cache is not transposed when using flash attention
  5959. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5960. n_embd_v_gqa, nm,
  5961. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5962. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  5963. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5964. n_embd_v_gqa, nm,
  5965. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5966. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  5967. } else {
  5968. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5969. nm, n_embd_v_gqa,
  5970. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5971. ggml_row_size(kv_self.v_l[il]->type, i));
  5972. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5973. nm, n_embd_v_gqa,
  5974. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5975. ggml_row_size(kv_self.v_l[il]->type, id));
  5976. }
  5977. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5978. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5979. }
  5980. i += nm - 1;
  5981. }
  5982. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5983. return gf;
  5984. }
  5985. struct ggml_tensor * build_inp_pos() {
  5986. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5987. cb(lctx.inp_pos, "inp_pos", -1);
  5988. ggml_set_input(lctx.inp_pos);
  5989. return lctx.inp_pos;
  5990. }
  5991. struct ggml_tensor * build_inp_out_ids() {
  5992. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5993. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5994. ggml_set_input(lctx.inp_out_ids);
  5995. return lctx.inp_out_ids;
  5996. }
  5997. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5998. if (causal) {
  5999. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6000. } else {
  6001. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6002. }
  6003. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6004. ggml_set_input(lctx.inp_KQ_mask);
  6005. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6006. }
  6007. struct ggml_tensor * build_inp_mean() {
  6008. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6009. cb(lctx.inp_mean, "inp_mean", -1);
  6010. ggml_set_input(lctx.inp_mean);
  6011. return lctx.inp_mean;
  6012. }
  6013. struct ggml_tensor * build_inp_cls() {
  6014. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6015. cb(lctx.inp_cls, "inp_cls", -1);
  6016. ggml_set_input(lctx.inp_cls);
  6017. return lctx.inp_cls;
  6018. }
  6019. struct ggml_tensor * build_inp_s_copy() {
  6020. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6021. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6022. ggml_set_input(lctx.inp_s_copy);
  6023. return lctx.inp_s_copy;
  6024. }
  6025. struct ggml_tensor * build_inp_s_mask() {
  6026. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6027. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6028. ggml_set_input(lctx.inp_s_mask);
  6029. return lctx.inp_s_mask;
  6030. }
  6031. struct ggml_tensor * build_inp_s_seq() {
  6032. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6033. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6034. ggml_set_input(lctx.inp_s_seq);
  6035. return lctx.inp_s_seq;
  6036. }
  6037. struct ggml_cgraph * build_llama() {
  6038. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6039. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6040. int32_t n_tokens = this->n_tokens;
  6041. const int64_t n_embd_head = hparams.n_embd_head_v;
  6042. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6043. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6044. struct ggml_tensor * cur;
  6045. struct ggml_tensor * inpL;
  6046. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6047. // inp_pos - contains the positions
  6048. struct ggml_tensor * inp_pos = build_inp_pos();
  6049. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6050. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6051. for (int il = 0; il < n_layer; ++il) {
  6052. struct ggml_tensor * inpSA = inpL;
  6053. // norm
  6054. cur = llm_build_norm(ctx0, inpL, hparams,
  6055. model.layers[il].attn_norm, NULL,
  6056. LLM_NORM_RMS, cb, il);
  6057. cb(cur, "attn_norm", il);
  6058. // self-attention
  6059. {
  6060. // compute Q and K and RoPE them
  6061. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6062. cb(Qcur, "Qcur", il);
  6063. if (model.layers[il].bq) {
  6064. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6065. cb(Qcur, "Qcur", il);
  6066. }
  6067. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6068. cb(Kcur, "Kcur", il);
  6069. if (model.layers[il].bk) {
  6070. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6071. cb(Kcur, "Kcur", il);
  6072. }
  6073. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6074. cb(Vcur, "Vcur", il);
  6075. if (model.layers[il].bv) {
  6076. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6077. cb(Vcur, "Vcur", il);
  6078. }
  6079. Qcur = ggml_rope_custom(
  6080. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6081. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6082. ext_factor, attn_factor, beta_fast, beta_slow
  6083. );
  6084. cb(Qcur, "Qcur", il);
  6085. Kcur = ggml_rope_custom(
  6086. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6087. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6088. ext_factor, attn_factor, beta_fast, beta_slow
  6089. );
  6090. cb(Kcur, "Kcur", il);
  6091. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6092. model.layers[il].wo, model.layers[il].bo,
  6093. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6094. }
  6095. if (il == n_layer - 1) {
  6096. // skip computing output for unused tokens
  6097. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6098. n_tokens = n_outputs;
  6099. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6100. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6101. }
  6102. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6103. cb(ffn_inp, "ffn_inp", il);
  6104. // feed-forward network
  6105. if (model.layers[il].ffn_gate_inp == nullptr) {
  6106. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6107. model.layers[il].ffn_norm, NULL,
  6108. LLM_NORM_RMS, cb, il);
  6109. cb(cur, "ffn_norm", il);
  6110. cur = llm_build_ffn(ctx0, cur,
  6111. model.layers[il].ffn_up, NULL,
  6112. model.layers[il].ffn_gate, NULL,
  6113. model.layers[il].ffn_down, NULL,
  6114. NULL,
  6115. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6116. cb(cur, "ffn_out", il);
  6117. } else {
  6118. // MoE branch
  6119. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6120. model.layers[il].ffn_norm, NULL,
  6121. LLM_NORM_RMS, cb, il);
  6122. cb(cur, "ffn_norm", il);
  6123. cur = llm_build_moe_ffn(ctx0, cur,
  6124. model.layers[il].ffn_gate_inp,
  6125. model.layers[il].ffn_up_exps,
  6126. model.layers[il].ffn_gate_exps,
  6127. model.layers[il].ffn_down_exps,
  6128. n_expert, n_expert_used,
  6129. LLM_FFN_SILU, true,
  6130. cb, il);
  6131. cb(cur, "ffn_moe_out", il);
  6132. }
  6133. cur = ggml_add(ctx0, cur, ffn_inp);
  6134. cb(cur, "ffn_out", il);
  6135. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6136. if (layer_dir != nullptr) {
  6137. cur = ggml_add(ctx0, cur, layer_dir);
  6138. }
  6139. cb(cur, "l_out", il);
  6140. // input for next layer
  6141. inpL = cur;
  6142. }
  6143. cur = inpL;
  6144. cur = llm_build_norm(ctx0, cur, hparams,
  6145. model.output_norm, NULL,
  6146. LLM_NORM_RMS, cb, -1);
  6147. cb(cur, "result_norm", -1);
  6148. // lm_head
  6149. cur = ggml_mul_mat(ctx0, model.output, cur);
  6150. cb(cur, "result_output", -1);
  6151. ggml_build_forward_expand(gf, cur);
  6152. return gf;
  6153. }
  6154. struct ggml_cgraph * build_baichuan() {
  6155. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6156. const int64_t n_embd_head = hparams.n_embd_head_v;
  6157. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6158. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6159. struct ggml_tensor * cur;
  6160. struct ggml_tensor * inpL;
  6161. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6162. // inp_pos - contains the positions
  6163. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6164. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6165. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6166. for (int il = 0; il < n_layer; ++il) {
  6167. struct ggml_tensor * inpSA = inpL;
  6168. cur = llm_build_norm(ctx0, inpL, hparams,
  6169. model.layers[il].attn_norm, NULL,
  6170. LLM_NORM_RMS, cb, il);
  6171. cb(cur, "attn_norm", il);
  6172. // self-attention
  6173. {
  6174. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6175. cb(Qcur, "Qcur", il);
  6176. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6177. cb(Kcur, "Kcur", il);
  6178. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6179. cb(Vcur, "Vcur", il);
  6180. switch (model.type) {
  6181. case MODEL_7B:
  6182. Qcur = ggml_rope_custom(
  6183. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6184. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6185. ext_factor, attn_factor, beta_fast, beta_slow
  6186. );
  6187. Kcur = ggml_rope_custom(
  6188. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6189. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6190. ext_factor, attn_factor, beta_fast, beta_slow
  6191. );
  6192. break;
  6193. case MODEL_13B:
  6194. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6195. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6196. break;
  6197. default:
  6198. GGML_ASSERT(false);
  6199. }
  6200. cb(Qcur, "Qcur", il);
  6201. cb(Kcur, "Kcur", il);
  6202. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6203. model.layers[il].wo, NULL,
  6204. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6205. }
  6206. if (il == n_layer - 1) {
  6207. // skip computing output for unused tokens
  6208. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6209. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6210. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6211. }
  6212. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6213. cb(ffn_inp, "ffn_inp", il);
  6214. // feed-forward network
  6215. {
  6216. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6217. model.layers[il].ffn_norm, NULL,
  6218. LLM_NORM_RMS, cb, il);
  6219. cb(cur, "ffn_norm", il);
  6220. cur = llm_build_ffn(ctx0, cur,
  6221. model.layers[il].ffn_up, NULL,
  6222. model.layers[il].ffn_gate, NULL,
  6223. model.layers[il].ffn_down, NULL,
  6224. NULL,
  6225. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6226. cb(cur, "ffn_out", il);
  6227. }
  6228. cur = ggml_add(ctx0, cur, ffn_inp);
  6229. cb(cur, "l_out", il);
  6230. // input for next layer
  6231. inpL = cur;
  6232. }
  6233. cur = inpL;
  6234. cur = llm_build_norm(ctx0, cur, hparams,
  6235. model.output_norm, NULL,
  6236. LLM_NORM_RMS, cb, -1);
  6237. cb(cur, "result_norm", -1);
  6238. // lm_head
  6239. cur = ggml_mul_mat(ctx0, model.output, cur);
  6240. cb(cur, "result_output", -1);
  6241. ggml_build_forward_expand(gf, cur);
  6242. return gf;
  6243. }
  6244. struct ggml_cgraph * build_xverse() {
  6245. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6246. const int64_t n_embd_head = hparams.n_embd_head_v;
  6247. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6248. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6249. struct ggml_tensor * cur;
  6250. struct ggml_tensor * inpL;
  6251. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6252. // inp_pos - contains the positions
  6253. struct ggml_tensor * inp_pos = build_inp_pos();
  6254. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6255. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6256. for (int il = 0; il < n_layer; ++il) {
  6257. struct ggml_tensor * inpSA = inpL;
  6258. cur = llm_build_norm(ctx0, inpL, hparams,
  6259. model.layers[il].attn_norm, NULL,
  6260. LLM_NORM_RMS, cb, il);
  6261. cb(cur, "attn_norm", il);
  6262. // self-attention
  6263. {
  6264. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6265. cb(Qcur, "Qcur", il);
  6266. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6267. cb(Kcur, "Kcur", il);
  6268. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6269. cb(Vcur, "Vcur", il);
  6270. Qcur = ggml_rope_custom(
  6271. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6272. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6273. ext_factor, attn_factor, beta_fast, beta_slow
  6274. );
  6275. cb(Qcur, "Qcur", il);
  6276. Kcur = ggml_rope_custom(
  6277. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6278. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6279. ext_factor, attn_factor, beta_fast, beta_slow
  6280. );
  6281. cb(Kcur, "Kcur", il);
  6282. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6283. model.layers[il].wo, NULL,
  6284. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6285. }
  6286. if (il == n_layer - 1) {
  6287. // skip computing output for unused tokens
  6288. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6289. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6290. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6291. }
  6292. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6293. cb(ffn_inp, "ffn_inp", il);
  6294. // feed-forward network
  6295. {
  6296. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6297. model.layers[il].ffn_norm, NULL,
  6298. LLM_NORM_RMS, cb, il);
  6299. cb(cur, "ffn_norm", il);
  6300. cur = llm_build_ffn(ctx0, cur,
  6301. model.layers[il].ffn_up, NULL,
  6302. model.layers[il].ffn_gate, NULL,
  6303. model.layers[il].ffn_down, NULL,
  6304. NULL,
  6305. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6306. cb(cur, "ffn_out", il);
  6307. }
  6308. cur = ggml_add(ctx0, cur, ffn_inp);
  6309. cb(cur, "l_out", il);
  6310. // input for next layer
  6311. inpL = cur;
  6312. }
  6313. cur = inpL;
  6314. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6315. cb(cur, "result_norm", -1);
  6316. // lm_head
  6317. cur = ggml_mul_mat(ctx0, model.output, cur);
  6318. cb(cur, "result_output", -1);
  6319. ggml_build_forward_expand(gf, cur);
  6320. return gf;
  6321. }
  6322. struct ggml_cgraph * build_falcon() {
  6323. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6324. const int64_t n_embd_head = hparams.n_embd_head_v;
  6325. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6326. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6327. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6328. struct ggml_tensor * cur;
  6329. struct ggml_tensor * inpL;
  6330. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6331. // inp_pos - contains the positions
  6332. struct ggml_tensor * inp_pos = build_inp_pos();
  6333. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6334. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6335. for (int il = 0; il < n_layer; ++il) {
  6336. struct ggml_tensor * attn_norm;
  6337. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6338. model.layers[il].attn_norm,
  6339. model.layers[il].attn_norm_b,
  6340. LLM_NORM, cb, il);
  6341. cb(attn_norm, "attn_norm", il);
  6342. // self-attention
  6343. {
  6344. if (model.layers[il].attn_norm_2) {
  6345. // Falcon-40B
  6346. cur = llm_build_norm(ctx0, inpL, hparams,
  6347. model.layers[il].attn_norm_2,
  6348. model.layers[il].attn_norm_2_b,
  6349. LLM_NORM, cb, il);
  6350. cb(cur, "attn_norm_2", il);
  6351. } else {
  6352. cur = attn_norm;
  6353. }
  6354. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6355. cb(cur, "wqkv", il);
  6356. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6357. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6358. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6359. cb(Qcur, "Qcur", il);
  6360. cb(Kcur, "Kcur", il);
  6361. cb(Vcur, "Vcur", il);
  6362. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6363. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6364. // using mode = 2 for neox mode
  6365. Qcur = ggml_rope_custom(
  6366. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6367. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6368. );
  6369. cb(Qcur, "Qcur", il);
  6370. Kcur = ggml_rope_custom(
  6371. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6372. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6373. );
  6374. cb(Kcur, "Kcur", il);
  6375. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6376. model.layers[il].wo, NULL,
  6377. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6378. }
  6379. if (il == n_layer - 1) {
  6380. // skip computing output for unused tokens
  6381. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6382. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6383. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6384. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6385. }
  6386. struct ggml_tensor * ffn_inp = cur;
  6387. // feed forward
  6388. {
  6389. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6390. model.layers[il].ffn_up, NULL,
  6391. NULL, NULL,
  6392. model.layers[il].ffn_down, NULL,
  6393. NULL,
  6394. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6395. cb(cur, "ffn_out", il);
  6396. }
  6397. cur = ggml_add(ctx0, cur, ffn_inp);
  6398. cb(cur, "l_out", il);
  6399. cur = ggml_add(ctx0, cur, inpL);
  6400. cb(cur, "l_out", il);
  6401. // input for next layer
  6402. inpL = cur;
  6403. }
  6404. cur = inpL;
  6405. // norm
  6406. cur = llm_build_norm(ctx0, cur, hparams,
  6407. model.output_norm,
  6408. model.output_norm_b,
  6409. LLM_NORM, cb, -1);
  6410. cb(cur, "result_norm", -1);
  6411. cur = ggml_mul_mat(ctx0, model.output, cur);
  6412. cb(cur, "result_output", -1);
  6413. ggml_build_forward_expand(gf, cur);
  6414. return gf;
  6415. }
  6416. struct ggml_cgraph * build_grok() {
  6417. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6418. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6419. int32_t n_tokens = this->n_tokens;
  6420. const int64_t n_embd_head = hparams.n_embd_head_v;
  6421. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6422. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6423. struct ggml_tensor * cur;
  6424. struct ggml_tensor * inpL;
  6425. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6426. // multiply by embedding_multiplier_scale of 78.38367176906169
  6427. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6428. // inp_pos - contains the positions
  6429. struct ggml_tensor * inp_pos = build_inp_pos();
  6430. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6431. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6432. for (int il = 0; il < n_layer; ++il) {
  6433. struct ggml_tensor * inpSA = inpL;
  6434. // norm
  6435. cur = llm_build_norm(ctx0, inpL, hparams,
  6436. model.layers[il].attn_norm, NULL,
  6437. LLM_NORM_RMS, cb, il);
  6438. cb(cur, "attn_norm", il);
  6439. // self-attention
  6440. {
  6441. // compute Q and K and RoPE them
  6442. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6443. cb(Qcur, "Qcur", il);
  6444. if (model.layers[il].bq) {
  6445. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6446. cb(Qcur, "Qcur", il);
  6447. }
  6448. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6449. cb(Kcur, "Kcur", il);
  6450. if (model.layers[il].bk) {
  6451. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6452. cb(Kcur, "Kcur", il);
  6453. }
  6454. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6455. cb(Vcur, "Vcur", il);
  6456. if (model.layers[il].bv) {
  6457. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6458. cb(Vcur, "Vcur", il);
  6459. }
  6460. Qcur = ggml_rope_custom(
  6461. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6462. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6463. ext_factor, attn_factor, beta_fast, beta_slow
  6464. );
  6465. cb(Qcur, "Qcur", il);
  6466. Kcur = ggml_rope_custom(
  6467. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6468. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6469. ext_factor, attn_factor, beta_fast, beta_slow
  6470. );
  6471. cb(Kcur, "Kcur", il);
  6472. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6473. model.layers[il].wo, model.layers[il].bo,
  6474. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6475. }
  6476. if (il == n_layer - 1) {
  6477. // skip computing output for unused tokens
  6478. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6479. n_tokens = n_outputs;
  6480. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6481. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6482. }
  6483. // Grok
  6484. // if attn_out_norm is present then apply it before adding the input
  6485. if (model.layers[il].attn_out_norm) {
  6486. cur = llm_build_norm(ctx0, cur, hparams,
  6487. model.layers[il].attn_out_norm, NULL,
  6488. LLM_NORM_RMS, cb, il);
  6489. cb(cur, "attn_out_norm", il);
  6490. }
  6491. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6492. cb(ffn_inp, "ffn_inp", il);
  6493. // feed-forward network
  6494. // MoE branch
  6495. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6496. model.layers[il].ffn_norm, NULL,
  6497. LLM_NORM_RMS, cb, il);
  6498. cb(cur, "ffn_norm", il);
  6499. cur = llm_build_moe_ffn(ctx0, cur,
  6500. model.layers[il].ffn_gate_inp,
  6501. model.layers[il].ffn_up_exps,
  6502. model.layers[il].ffn_gate_exps,
  6503. model.layers[il].ffn_down_exps,
  6504. n_expert, n_expert_used,
  6505. LLM_FFN_GELU, true,
  6506. cb, il);
  6507. cb(cur, "ffn_moe_out", il);
  6508. // Grok
  6509. // if layer_out_norm is present then apply it before adding the input
  6510. // Idea: maybe ffn_out_norm is a better name
  6511. if (model.layers[il].layer_out_norm) {
  6512. cur = llm_build_norm(ctx0, cur, hparams,
  6513. model.layers[il].layer_out_norm, NULL,
  6514. LLM_NORM_RMS, cb, il);
  6515. cb(cur, "layer_out_norm", il);
  6516. }
  6517. cur = ggml_add(ctx0, cur, ffn_inp);
  6518. cb(cur, "ffn_out", il);
  6519. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6520. if (layer_dir != nullptr) {
  6521. cur = ggml_add(ctx0, cur, layer_dir);
  6522. }
  6523. cb(cur, "l_out", il);
  6524. // input for next layer
  6525. inpL = cur;
  6526. }
  6527. cur = inpL;
  6528. cur = llm_build_norm(ctx0, cur, hparams,
  6529. model.output_norm, NULL,
  6530. LLM_NORM_RMS, cb, -1);
  6531. cb(cur, "result_norm", -1);
  6532. // lm_head
  6533. cur = ggml_mul_mat(ctx0, model.output, cur);
  6534. // Grok
  6535. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6536. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6537. cb(cur, "result_output", -1);
  6538. ggml_build_forward_expand(gf, cur);
  6539. return gf;
  6540. }
  6541. struct ggml_cgraph * build_dbrx() {
  6542. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6543. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6544. int32_t n_tokens = this->n_tokens;
  6545. const int64_t n_embd_head = hparams.n_embd_head_v;
  6546. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6547. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6548. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6549. struct ggml_tensor * cur;
  6550. struct ggml_tensor * inpL;
  6551. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6552. // inp_pos - contains the positions
  6553. struct ggml_tensor * inp_pos = build_inp_pos();
  6554. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6555. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6556. for (int il = 0; il < n_layer; ++il) {
  6557. struct ggml_tensor * inpSA = inpL;
  6558. // norm
  6559. cur = llm_build_norm(ctx0, inpL, hparams,
  6560. model.layers[il].attn_norm, NULL,
  6561. LLM_NORM, cb, il);
  6562. cb(cur, "attn_norm", il);
  6563. // self-attention
  6564. {
  6565. struct ggml_tensor * Qcur = nullptr;
  6566. struct ggml_tensor * Kcur = nullptr;
  6567. struct ggml_tensor * Vcur = nullptr;
  6568. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6569. cb(cur, "wqkv", il);
  6570. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6571. cb(cur, "wqkv_clamped", il);
  6572. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6573. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6574. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6575. cb(Qcur, "Qcur", il);
  6576. cb(Kcur, "Kcur", il);
  6577. cb(Vcur, "Vcur", il);
  6578. Qcur = ggml_rope_custom(
  6579. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6580. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6581. ext_factor, attn_factor, beta_fast, beta_slow
  6582. );
  6583. cb(Qcur, "Qcur", il);
  6584. Kcur = ggml_rope_custom(
  6585. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6586. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6587. ext_factor, attn_factor, beta_fast, beta_slow
  6588. );
  6589. cb(Kcur, "Kcur", il);
  6590. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6591. model.layers[il].wo, NULL,
  6592. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6593. }
  6594. if (il == n_layer - 1) {
  6595. // skip computing output for unused tokens
  6596. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6597. n_tokens = n_outputs;
  6598. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6599. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6600. }
  6601. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6602. cb(ffn_inp, "ffn_inp", il);
  6603. // feed-forward network
  6604. // MoE branch
  6605. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6606. model.layers[il].attn_out_norm, NULL,
  6607. LLM_NORM, cb, il);
  6608. cb(cur, "attn_out_norm", il);
  6609. cur = llm_build_moe_ffn(ctx0, cur,
  6610. model.layers[il].ffn_gate_inp,
  6611. model.layers[il].ffn_up_exps,
  6612. model.layers[il].ffn_gate_exps,
  6613. model.layers[il].ffn_down_exps,
  6614. n_expert, n_expert_used,
  6615. LLM_FFN_SILU, true,
  6616. cb, il);
  6617. cb(cur, "ffn_moe_out", il);
  6618. cur = ggml_add(ctx0, cur, ffn_inp);
  6619. cb(cur, "ffn_out", il);
  6620. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6621. if (layer_dir != nullptr) {
  6622. cur = ggml_add(ctx0, cur, layer_dir);
  6623. }
  6624. cb(cur, "l_out", il);
  6625. // input for next layer
  6626. inpL = cur;
  6627. }
  6628. cur = inpL;
  6629. cur = llm_build_norm(ctx0, cur, hparams,
  6630. model.output_norm, NULL,
  6631. LLM_NORM, cb, -1);
  6632. cb(cur, "result_norm", -1);
  6633. // lm_head
  6634. cur = ggml_mul_mat(ctx0, model.output, cur);
  6635. cb(cur, "result_output", -1);
  6636. ggml_build_forward_expand(gf, cur);
  6637. return gf;
  6638. }
  6639. struct ggml_cgraph * build_starcoder() {
  6640. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6641. const int64_t n_embd_head = hparams.n_embd_head_v;
  6642. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6643. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6644. struct ggml_tensor * cur;
  6645. struct ggml_tensor * inpL;
  6646. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6647. // inp_pos - contains the positions
  6648. struct ggml_tensor * inp_pos = build_inp_pos();
  6649. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6650. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6651. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6652. cb(pos, "pos_embd", -1);
  6653. inpL = ggml_add(ctx0, inpL, pos);
  6654. cb(inpL, "inpL", -1);
  6655. for (int il = 0; il < n_layer; ++il) {
  6656. cur = llm_build_norm(ctx0, inpL, hparams,
  6657. model.layers[il].attn_norm,
  6658. model.layers[il].attn_norm_b,
  6659. LLM_NORM, cb, il);
  6660. cb(cur, "attn_norm", il);
  6661. // self-attention
  6662. {
  6663. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6664. cb(cur, "wqkv", il);
  6665. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6666. cb(cur, "bqkv", il);
  6667. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6668. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6669. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6670. cb(Qcur, "Qcur", il);
  6671. cb(Kcur, "Kcur", il);
  6672. cb(Vcur, "Vcur", il);
  6673. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6674. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6675. model.layers[il].wo, model.layers[il].bo,
  6676. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6677. }
  6678. if (il == n_layer - 1) {
  6679. // skip computing output for unused tokens
  6680. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6681. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6682. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6683. }
  6684. // add the input
  6685. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6686. cb(ffn_inp, "ffn_inp", il);
  6687. // FF
  6688. {
  6689. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6690. model.layers[il].ffn_norm,
  6691. model.layers[il].ffn_norm_b,
  6692. LLM_NORM, cb, il);
  6693. cb(cur, "ffn_norm", il);
  6694. cur = llm_build_ffn(ctx0, cur,
  6695. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6696. NULL, NULL,
  6697. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6698. NULL,
  6699. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6700. cb(cur, "ffn_out", il);
  6701. }
  6702. inpL = ggml_add(ctx0, cur, ffn_inp);
  6703. cb(inpL, "l_out", il);
  6704. }
  6705. cur = llm_build_norm(ctx0, inpL, hparams,
  6706. model.output_norm,
  6707. model.output_norm_b,
  6708. LLM_NORM, cb, -1);
  6709. cb(cur, "result_norm", -1);
  6710. cur = ggml_mul_mat(ctx0, model.output, cur);
  6711. cb(cur, "result_output", -1);
  6712. ggml_build_forward_expand(gf, cur);
  6713. return gf;
  6714. }
  6715. struct ggml_cgraph * build_persimmon() {
  6716. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6717. const int64_t n_embd_head = hparams.n_embd_head_v;
  6718. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6719. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6720. struct ggml_tensor * cur;
  6721. struct ggml_tensor * inpL;
  6722. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6723. // inp_pos - contains the positions
  6724. struct ggml_tensor * inp_pos = build_inp_pos();
  6725. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6726. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6727. for (int il = 0; il < n_layer; ++il) {
  6728. struct ggml_tensor * residual = inpL;
  6729. cur = llm_build_norm(ctx0, inpL, hparams,
  6730. model.layers[il].attn_norm,
  6731. model.layers[il].attn_norm_b,
  6732. LLM_NORM, cb, il);
  6733. cb(cur, "attn_norm", il);
  6734. // self attention
  6735. {
  6736. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6737. cb(cur, "wqkv", il);
  6738. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6739. cb(cur, "bqkv", il);
  6740. // split qkv
  6741. GGML_ASSERT(n_head_kv == n_head);
  6742. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6743. cb(tmpqkv, "tmpqkv", il);
  6744. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6745. cb(tmpqkv_perm, "tmpqkv", il);
  6746. struct ggml_tensor * tmpq = ggml_view_3d(
  6747. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6748. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6749. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6750. 0
  6751. );
  6752. cb(tmpq, "tmpq", il);
  6753. struct ggml_tensor * tmpk = ggml_view_3d(
  6754. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6755. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6756. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6757. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6758. );
  6759. cb(tmpk, "tmpk", il);
  6760. // Q/K Layernorm
  6761. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6762. model.layers[il].attn_q_norm,
  6763. model.layers[il].attn_q_norm_b,
  6764. LLM_NORM, cb, il);
  6765. cb(tmpq, "tmpq", il);
  6766. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6767. model.layers[il].attn_k_norm,
  6768. model.layers[il].attn_k_norm_b,
  6769. LLM_NORM, cb, il);
  6770. cb(tmpk, "tmpk", il);
  6771. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6772. struct ggml_tensor * qrot = ggml_view_3d(
  6773. ctx0, tmpq, n_rot, n_head, n_tokens,
  6774. ggml_element_size(tmpq) * n_embd_head,
  6775. ggml_element_size(tmpq) * n_embd_head * n_head,
  6776. 0
  6777. );
  6778. cb(qrot, "qrot", il);
  6779. struct ggml_tensor * krot = ggml_view_3d(
  6780. ctx0, tmpk, n_rot, n_head, n_tokens,
  6781. ggml_element_size(tmpk) * n_embd_head,
  6782. ggml_element_size(tmpk) * n_embd_head * n_head,
  6783. 0
  6784. );
  6785. cb(krot, "krot", il);
  6786. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6787. struct ggml_tensor * qpass = ggml_view_3d(
  6788. ctx0, tmpq, n_rot, n_head, n_tokens,
  6789. ggml_element_size(tmpq) * n_embd_head,
  6790. ggml_element_size(tmpq) * n_embd_head * n_head,
  6791. ggml_element_size(tmpq) * n_rot
  6792. );
  6793. cb(qpass, "qpass", il);
  6794. struct ggml_tensor * kpass = ggml_view_3d(
  6795. ctx0, tmpk, n_rot, n_head, n_tokens,
  6796. ggml_element_size(tmpk) * n_embd_head,
  6797. ggml_element_size(tmpk) * n_embd_head * n_head,
  6798. ggml_element_size(tmpk) * n_rot
  6799. );
  6800. cb(kpass, "kpass", il);
  6801. struct ggml_tensor * qrotated = ggml_rope_custom(
  6802. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6803. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6804. );
  6805. cb(qrotated, "qrotated", il);
  6806. struct ggml_tensor * krotated = ggml_rope_custom(
  6807. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6808. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6809. );
  6810. cb(krotated, "krotated", il);
  6811. // ggml currently only supports concatenation on dim=2
  6812. // so we need to permute qrot, qpass, concat, then permute back.
  6813. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6814. cb(qrotated, "qrotated", il);
  6815. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6816. cb(krotated, "krotated", il);
  6817. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6818. cb(qpass, "qpass", il);
  6819. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6820. cb(kpass, "kpass", il);
  6821. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6822. cb(Qcur, "Qcur", il);
  6823. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6824. cb(Kcur, "Kcur", il);
  6825. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6826. cb(Q, "Q", il);
  6827. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6828. cb(Kcur, "Kcur", il);
  6829. struct ggml_tensor * Vcur = ggml_view_3d(
  6830. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6831. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6832. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6833. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6834. );
  6835. cb(Vcur, "Vcur", il);
  6836. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6837. model.layers[il].wo, model.layers[il].bo,
  6838. Kcur, Vcur, Q, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6839. }
  6840. if (il == n_layer - 1) {
  6841. // skip computing output for unused tokens
  6842. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6843. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6844. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6845. }
  6846. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6847. cb(ffn_inp, "ffn_inp", il);
  6848. // feed-forward network
  6849. {
  6850. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6851. model.layers[il].ffn_norm,
  6852. model.layers[il].ffn_norm_b,
  6853. LLM_NORM, cb, il);
  6854. cb(cur, "ffn_norm", il);
  6855. cur = llm_build_ffn(ctx0, cur,
  6856. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6857. NULL, NULL,
  6858. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6859. NULL,
  6860. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6861. cb(cur, "ffn_out", il);
  6862. }
  6863. cur = ggml_add(ctx0, cur, ffn_inp);
  6864. cb(cur, "l_out", il);
  6865. inpL = cur;
  6866. }
  6867. cur = inpL;
  6868. cur = llm_build_norm(ctx0, cur, hparams,
  6869. model.output_norm,
  6870. model.output_norm_b,
  6871. LLM_NORM, cb, -1);
  6872. cb(cur, "result_norm", -1);
  6873. cur = ggml_mul_mat(ctx0, model.output, cur);
  6874. cb(cur, "result_output", -1);
  6875. ggml_build_forward_expand(gf, cur);
  6876. return gf;
  6877. }
  6878. struct ggml_cgraph * build_refact() {
  6879. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6880. const int64_t n_embd_head = hparams.n_embd_head_v;
  6881. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6882. struct ggml_tensor * cur;
  6883. struct ggml_tensor * inpL;
  6884. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6885. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6886. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6887. for (int il = 0; il < n_layer; ++il) {
  6888. struct ggml_tensor * inpSA = inpL;
  6889. cur = llm_build_norm(ctx0, inpL, hparams,
  6890. model.layers[il].attn_norm, NULL,
  6891. LLM_NORM_RMS, cb, il);
  6892. cb(cur, "attn_norm", il);
  6893. // self-attention
  6894. {
  6895. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6896. cb(Qcur, "Qcur", il);
  6897. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6898. cb(Kcur, "Kcur", il);
  6899. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6900. cb(Vcur, "Vcur", il);
  6901. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6902. cb(Kcur, "Kcur", il);
  6903. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6904. cb(Qcur, "Qcur", il);
  6905. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6906. model.layers[il].wo, NULL,
  6907. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6908. }
  6909. if (il == n_layer - 1) {
  6910. // skip computing output for unused tokens
  6911. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6912. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6913. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6914. }
  6915. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6916. cb(ffn_inp, "ffn_inp", il);
  6917. // feed-forward network
  6918. {
  6919. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6920. model.layers[il].ffn_norm, NULL,
  6921. LLM_NORM_RMS, cb, il);
  6922. cb(cur, "ffn_norm", il);
  6923. cur = llm_build_ffn(ctx0, cur,
  6924. model.layers[il].ffn_up, NULL,
  6925. model.layers[il].ffn_gate, NULL,
  6926. model.layers[il].ffn_down, NULL,
  6927. NULL,
  6928. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6929. cb(cur, "ffn_out", il);
  6930. }
  6931. cur = ggml_add(ctx0, cur, ffn_inp);
  6932. cb(cur, "l_out", il);
  6933. // input for next layer
  6934. inpL = cur;
  6935. }
  6936. cur = inpL;
  6937. cur = llm_build_norm(ctx0, cur, hparams,
  6938. model.output_norm, NULL,
  6939. LLM_NORM_RMS, cb, -1);
  6940. cb(cur, "result_norm", -1);
  6941. // lm_head
  6942. cur = ggml_mul_mat(ctx0, model.output, cur);
  6943. cb(cur, "result_output", -1);
  6944. ggml_build_forward_expand(gf, cur);
  6945. return gf;
  6946. }
  6947. struct ggml_cgraph * build_bert() {
  6948. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6949. const int64_t n_embd_head = hparams.n_embd_head_v;
  6950. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6951. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6952. struct ggml_tensor * cur;
  6953. struct ggml_tensor * inpL;
  6954. struct ggml_tensor * inp_pos = nullptr;
  6955. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  6956. inp_pos = build_inp_pos();
  6957. }
  6958. struct ggml_tensor * inp_mean = build_inp_mean();
  6959. struct ggml_tensor * inp_cls = build_inp_cls();
  6960. // construct input embeddings (token, type, position)
  6961. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6962. // token types are hardcoded to zero ("Sentence A")
  6963. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6964. inpL = ggml_add(ctx0, inpL, type_row0);
  6965. if (model.arch == LLM_ARCH_BERT) {
  6966. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6967. }
  6968. cb(inpL, "inp_embd", -1);
  6969. // embed layer norm
  6970. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6971. cb(inpL, "inp_norm", -1);
  6972. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6973. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6974. // iterate layers
  6975. for (int il = 0; il < n_layer; ++il) {
  6976. struct ggml_tensor * cur = inpL;
  6977. struct ggml_tensor * Qcur;
  6978. struct ggml_tensor * Kcur;
  6979. struct ggml_tensor * Vcur;
  6980. // self-attention
  6981. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  6982. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6983. cb(Qcur, "Qcur", il);
  6984. if (model.layers[il].attn_q_norm) {
  6985. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6986. model.layers[il].attn_q_norm,
  6987. model.layers[il].attn_q_norm_b,
  6988. LLM_NORM, cb, il);
  6989. }
  6990. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6991. cb(Kcur, "Kcur", il);
  6992. if (model.layers[il].attn_k_norm) {
  6993. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  6994. model.layers[il].attn_k_norm,
  6995. model.layers[il].attn_k_norm_b,
  6996. LLM_NORM, cb, il);
  6997. }
  6998. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6999. cb(Vcur, "Vcur", il);
  7000. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7001. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7002. } else {
  7003. // compute Q and K and RoPE them
  7004. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7005. cb(cur, "wqkv", il);
  7006. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7007. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7008. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7009. cb(Qcur, "Qcur", il);
  7010. cb(Kcur, "Kcur", il);
  7011. cb(Vcur, "Vcur", il);
  7012. Qcur = ggml_rope_custom(
  7013. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7014. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7015. ext_factor, attn_factor, beta_fast, beta_slow
  7016. );
  7017. cb(Qcur, "Qcur", il);
  7018. Kcur = ggml_rope_custom(
  7019. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7020. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7021. ext_factor, attn_factor, beta_fast, beta_slow
  7022. );
  7023. cb(Kcur, "Kcur", il);
  7024. }
  7025. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7026. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7027. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7028. cb(kq, "kq", il);
  7029. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7030. cb(kq, "kq_soft_max_ext", il);
  7031. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7032. cb(v, "v", il);
  7033. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7034. cb(kqv, "kqv", il);
  7035. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7036. cb(kqv_merged, "kqv_merged", il);
  7037. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7038. cb(cur, "kqv_merged_cont", il);
  7039. ggml_build_forward_expand(gf, cur);
  7040. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7041. if (model.layers[il].bo) {
  7042. cb(cur, "kqv_wo", il);
  7043. }
  7044. if (model.layers[il].bo) {
  7045. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7046. }
  7047. cb(cur, "kqv_out", il);
  7048. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7049. // skip computing output for unused tokens
  7050. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7051. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7052. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7053. }
  7054. // re-add the layer input
  7055. cur = ggml_add(ctx0, cur, inpL);
  7056. // attention layer norm
  7057. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7058. struct ggml_tensor * ffn_inp = cur;
  7059. cb(ffn_inp, "ffn_inp", il);
  7060. // feed-forward network
  7061. if (model.arch == LLM_ARCH_BERT) {
  7062. cur = llm_build_ffn(ctx0, cur,
  7063. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7064. NULL, NULL,
  7065. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7066. NULL,
  7067. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7068. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7069. cur = llm_build_ffn(ctx0, cur,
  7070. model.layers[il].ffn_up, NULL,
  7071. model.layers[il].ffn_gate, NULL,
  7072. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7073. NULL,
  7074. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7075. } else {
  7076. cur = llm_build_ffn(ctx0, cur,
  7077. model.layers[il].ffn_up, NULL,
  7078. model.layers[il].ffn_gate, NULL,
  7079. model.layers[il].ffn_down, NULL,
  7080. NULL,
  7081. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7082. }
  7083. cb(cur, "ffn_out", il);
  7084. // attentions bypass the intermediate layer
  7085. cur = ggml_add(ctx0, cur, ffn_inp);
  7086. // output layer norm
  7087. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7088. // input for next layer
  7089. inpL = cur;
  7090. }
  7091. // final output
  7092. cur = inpL;
  7093. cb(cur, "result_embd", -1);
  7094. // pooling layer
  7095. switch (pooling_type) {
  7096. case LLAMA_POOLING_TYPE_NONE:
  7097. {
  7098. // nop
  7099. } break;
  7100. case LLAMA_POOLING_TYPE_MEAN:
  7101. {
  7102. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7103. cb(cur, "result_embd_pooled", -1);
  7104. } break;
  7105. case LLAMA_POOLING_TYPE_CLS:
  7106. {
  7107. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7108. cb(cur, "result_embd_pooled", -1);
  7109. } break;
  7110. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7111. {
  7112. GGML_ASSERT(false && "Invalid pooling type");
  7113. } break;
  7114. }
  7115. ggml_build_forward_expand(gf, cur);
  7116. return gf;
  7117. }
  7118. struct ggml_cgraph * build_bloom() {
  7119. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7120. const int64_t n_embd_head = hparams.n_embd_head_v;
  7121. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7122. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7123. struct ggml_tensor * cur;
  7124. struct ggml_tensor * inpL;
  7125. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7126. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7127. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7128. inpL = llm_build_norm(ctx0, inpL, hparams,
  7129. model.tok_norm,
  7130. model.tok_norm_b,
  7131. LLM_NORM, cb, -1);
  7132. cb(inpL, "inp_norm", -1);
  7133. for (int il = 0; il < n_layer; ++il) {
  7134. cur = llm_build_norm(ctx0, inpL, hparams,
  7135. model.layers[il].attn_norm,
  7136. model.layers[il].attn_norm_b,
  7137. LLM_NORM, cb, il);
  7138. cb(cur, "attn_norm", il);
  7139. // self-attention
  7140. {
  7141. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7142. cb(cur, "wqkv", il);
  7143. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7144. cb(cur, "bqkv", il);
  7145. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7146. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7147. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7148. cb(Qcur, "Qcur", il);
  7149. cb(Kcur, "Kcur", il);
  7150. cb(Vcur, "Vcur", il);
  7151. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7152. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7153. model.layers[il].wo, model.layers[il].bo,
  7154. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7155. }
  7156. if (il == n_layer - 1) {
  7157. // skip computing output for unused tokens
  7158. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7159. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7160. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7161. }
  7162. // Add the input
  7163. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7164. cb(ffn_inp, "ffn_inp", il);
  7165. // FF
  7166. {
  7167. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7168. model.layers[il].ffn_norm,
  7169. model.layers[il].ffn_norm_b,
  7170. LLM_NORM, cb, il);
  7171. cb(cur, "ffn_norm", il);
  7172. cur = llm_build_ffn(ctx0, cur,
  7173. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7174. NULL, NULL,
  7175. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7176. NULL,
  7177. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7178. cb(cur, "ffn_out", il);
  7179. }
  7180. inpL = ggml_add(ctx0, cur, ffn_inp);
  7181. cb(inpL, "l_out", il);
  7182. }
  7183. cur = llm_build_norm(ctx0, inpL, hparams,
  7184. model.output_norm,
  7185. model.output_norm_b,
  7186. LLM_NORM, cb, -1);
  7187. cb(cur, "result_norm", -1);
  7188. cur = ggml_mul_mat(ctx0, model.output, cur);
  7189. cb(cur, "result_output", -1);
  7190. ggml_build_forward_expand(gf, cur);
  7191. return gf;
  7192. }
  7193. struct ggml_cgraph * build_mpt() {
  7194. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7195. const int64_t n_embd_head = hparams.n_embd_head_v;
  7196. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7197. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7198. struct ggml_tensor * cur;
  7199. struct ggml_tensor * pos;
  7200. struct ggml_tensor * inpL;
  7201. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7202. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7203. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7204. if (model.pos_embd) {
  7205. // inp_pos - contains the positions
  7206. struct ggml_tensor * inp_pos = build_inp_pos();
  7207. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7208. cb(pos, "pos_embd", -1);
  7209. inpL = ggml_add(ctx0, inpL, pos);
  7210. cb(inpL, "inpL", -1);
  7211. }
  7212. for (int il = 0; il < n_layer; ++il) {
  7213. struct ggml_tensor * attn_norm;
  7214. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7215. model.layers[il].attn_norm,
  7216. model.layers[il].attn_norm_b,
  7217. LLM_NORM, cb, il);
  7218. cb(attn_norm, "attn_norm", il);
  7219. // self-attention
  7220. {
  7221. cur = attn_norm;
  7222. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7223. cb(cur, "wqkv", il);
  7224. if (model.layers[il].bqkv){
  7225. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7226. cb(cur, "bqkv", il);
  7227. }
  7228. if (hparams.f_clamp_kqv > 0.0f) {
  7229. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7230. cb(cur, "wqkv_clamped", il);
  7231. }
  7232. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7233. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7234. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7235. cb(Qcur, "Qcur", il);
  7236. cb(Kcur, "Kcur", il);
  7237. cb(Vcur, "Vcur", il);
  7238. // Q/K Layernorm
  7239. if (model.layers[il].attn_q_norm) {
  7240. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7241. model.layers[il].attn_q_norm,
  7242. model.layers[il].attn_q_norm_b,
  7243. LLM_NORM, cb, il);
  7244. cb(Qcur, "Qcur", il);
  7245. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7246. model.layers[il].attn_k_norm,
  7247. model.layers[il].attn_k_norm_b,
  7248. LLM_NORM, cb, il);
  7249. cb(Kcur, "Kcur", il);
  7250. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7251. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7252. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7253. model.layers[il].wo, model.layers[il].bo,
  7254. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7255. } else {
  7256. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7257. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7258. model.layers[il].wo, model.layers[il].bo,
  7259. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7260. }
  7261. }
  7262. if (il == n_layer - 1) {
  7263. // skip computing output for unused tokens
  7264. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7265. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7266. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7267. }
  7268. // Add the input
  7269. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7270. cb(ffn_inp, "ffn_inp", il);
  7271. // feed forward
  7272. {
  7273. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7274. model.layers[il].ffn_norm,
  7275. model.layers[il].ffn_norm_b,
  7276. LLM_NORM, cb, il);
  7277. cb(cur, "ffn_norm", il);
  7278. cur = llm_build_ffn(ctx0, cur,
  7279. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7280. NULL, NULL,
  7281. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7282. model.layers[il].ffn_act,
  7283. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7284. cb(cur, "ffn_out", il);
  7285. }
  7286. cur = ggml_add(ctx0, cur, ffn_inp);
  7287. cb(cur, "l_out", il);
  7288. // input for next layer
  7289. inpL = cur;
  7290. }
  7291. cur = inpL;
  7292. cur = llm_build_norm(ctx0, cur, hparams,
  7293. model.output_norm,
  7294. model.output_norm_b,
  7295. LLM_NORM, cb, -1);
  7296. cb(cur, "result_norm", -1);
  7297. cur = ggml_mul_mat(ctx0, model.output, cur);
  7298. cb(cur, "result_output", -1);
  7299. ggml_build_forward_expand(gf, cur);
  7300. return gf;
  7301. }
  7302. struct ggml_cgraph * build_stablelm() {
  7303. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7304. const int64_t n_embd_head = hparams.n_embd_head_v;
  7305. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7306. struct ggml_tensor * cur;
  7307. struct ggml_tensor * inpL;
  7308. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7309. // inp_pos - contains the positions
  7310. struct ggml_tensor * inp_pos = build_inp_pos();
  7311. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7312. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7313. for (int il = 0; il < n_layer; ++il) {
  7314. // norm
  7315. cur = llm_build_norm(ctx0, inpL, hparams,
  7316. model.layers[il].attn_norm,
  7317. model.layers[il].attn_norm_b,
  7318. LLM_NORM, cb, il);
  7319. cb(cur, "attn_norm", il);
  7320. struct ggml_tensor * inpSA = cur;
  7321. // self-attention
  7322. {
  7323. // compute Q and K and RoPE them
  7324. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7325. cb(Qcur, "Qcur", il);
  7326. if (model.layers[il].bq) {
  7327. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7328. cb(Qcur, "Qcur", il);
  7329. }
  7330. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7331. cb(Kcur, "Kcur", il);
  7332. if (model.layers[il].bk) {
  7333. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7334. cb(Kcur, "Kcur", il);
  7335. }
  7336. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7337. cb(Vcur, "Vcur", il);
  7338. if (model.layers[il].bv) {
  7339. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7340. cb(Vcur, "Vcur", il);
  7341. }
  7342. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7343. cb(Qcur, "Qcur", il);
  7344. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7345. cb(Kcur, "Kcur", il);
  7346. if (model.layers[il].attn_q_norm) {
  7347. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7348. model.layers[il].attn_q_norm,
  7349. NULL,
  7350. LLM_NORM, cb, il);
  7351. cb(Qcur, "Qcur", il);
  7352. }
  7353. if (model.layers[il].attn_k_norm) {
  7354. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7355. model.layers[il].attn_k_norm,
  7356. NULL,
  7357. LLM_NORM, cb, il);
  7358. cb(Kcur, "Kcur", il);
  7359. }
  7360. Qcur = ggml_rope_custom(
  7361. ctx0, Qcur, inp_pos,
  7362. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7363. ext_factor, attn_factor, beta_fast, beta_slow
  7364. );
  7365. cb(Qcur, "Qcur", il);
  7366. Kcur = ggml_rope_custom(
  7367. ctx0, Kcur, inp_pos,
  7368. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7369. ext_factor, attn_factor, beta_fast, beta_slow
  7370. );
  7371. cb(Kcur, "Kcur", il);
  7372. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7373. model.layers[il].wo, NULL,
  7374. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7375. }
  7376. if (il == n_layer - 1) {
  7377. // skip computing output for unused tokens
  7378. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7379. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7380. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7381. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7382. }
  7383. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7384. cb(ffn_inp, "ffn_inp", il);
  7385. // feed-forward network
  7386. {
  7387. if (model.layers[il].ffn_norm) {
  7388. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7389. model.layers[il].ffn_norm,
  7390. model.layers[il].ffn_norm_b,
  7391. LLM_NORM, cb, il);
  7392. cb(cur, "ffn_norm", il);
  7393. } else {
  7394. // parallel residual
  7395. cur = inpSA;
  7396. }
  7397. cur = llm_build_ffn(ctx0, cur,
  7398. model.layers[il].ffn_up, NULL,
  7399. model.layers[il].ffn_gate, NULL,
  7400. model.layers[il].ffn_down, NULL,
  7401. NULL,
  7402. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7403. cb(cur, "ffn_out", il);
  7404. }
  7405. cur = ggml_add(ctx0, cur, ffn_inp);
  7406. cb(cur, "l_out", il);
  7407. // input for next layer
  7408. inpL = cur;
  7409. }
  7410. cur = inpL;
  7411. cur = llm_build_norm(ctx0, cur, hparams,
  7412. model.output_norm,
  7413. model.output_norm_b,
  7414. LLM_NORM, cb, -1);
  7415. cb(cur, "result_norm", -1);
  7416. // lm_head
  7417. cur = ggml_mul_mat(ctx0, model.output, cur);
  7418. cb(cur, "result_output", -1);
  7419. ggml_build_forward_expand(gf, cur);
  7420. return gf;
  7421. }
  7422. struct ggml_cgraph * build_qwen() {
  7423. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7424. const int64_t n_embd_head = hparams.n_embd_head_v;
  7425. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7426. struct ggml_tensor * cur;
  7427. struct ggml_tensor * inpL;
  7428. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7429. // inp_pos - contains the positions
  7430. struct ggml_tensor * inp_pos = build_inp_pos();
  7431. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7432. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7433. for (int il = 0; il < n_layer; ++il) {
  7434. struct ggml_tensor * inpSA = inpL;
  7435. cur = llm_build_norm(ctx0, inpL, hparams,
  7436. model.layers[il].attn_norm, NULL,
  7437. LLM_NORM_RMS, cb, il);
  7438. cb(cur, "attn_norm", il);
  7439. // self-attention
  7440. {
  7441. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7442. cb(cur, "wqkv", il);
  7443. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7444. cb(cur, "bqkv", il);
  7445. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7446. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7447. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7448. cb(Qcur, "Qcur", il);
  7449. cb(Kcur, "Kcur", il);
  7450. cb(Vcur, "Vcur", il);
  7451. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7452. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7453. // using mode = 2 for neox mode
  7454. Qcur = ggml_rope_custom(
  7455. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7456. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7457. );
  7458. cb(Qcur, "Qcur", il);
  7459. Kcur = ggml_rope_custom(
  7460. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7461. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7462. );
  7463. cb(Kcur, "Kcur", il);
  7464. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7465. model.layers[il].wo, NULL,
  7466. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7467. }
  7468. if (il == n_layer - 1) {
  7469. // skip computing output for unused tokens
  7470. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7471. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7472. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7473. }
  7474. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7475. cb(ffn_inp, "ffn_inp", il);
  7476. // feed-forward forward
  7477. {
  7478. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7479. model.layers[il].ffn_norm, NULL,
  7480. LLM_NORM_RMS, cb, il);
  7481. cb(cur, "ffn_norm", il);
  7482. cur = llm_build_ffn(ctx0, cur,
  7483. model.layers[il].ffn_up, NULL,
  7484. model.layers[il].ffn_gate, NULL,
  7485. model.layers[il].ffn_down, NULL,
  7486. NULL,
  7487. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7488. cb(cur, "ffn_out", il);
  7489. }
  7490. cur = ggml_add(ctx0, cur, ffn_inp);
  7491. cb(cur, "l_out", il);
  7492. // input for next layer
  7493. inpL = cur;
  7494. }
  7495. cur = inpL;
  7496. cur = llm_build_norm(ctx0, cur, hparams,
  7497. model.output_norm, NULL,
  7498. LLM_NORM_RMS, cb, -1);
  7499. cb(cur, "result_norm", -1);
  7500. // lm_head
  7501. cur = ggml_mul_mat(ctx0, model.output, cur);
  7502. cb(cur, "result_output", -1);
  7503. ggml_build_forward_expand(gf, cur);
  7504. return gf;
  7505. }
  7506. struct ggml_cgraph * build_qwen2() {
  7507. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7508. const int64_t n_embd_head = hparams.n_embd_head_v;
  7509. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7510. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7511. struct ggml_tensor * cur;
  7512. struct ggml_tensor * inpL;
  7513. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7514. // inp_pos - contains the positions
  7515. struct ggml_tensor * inp_pos = build_inp_pos();
  7516. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7517. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7518. for (int il = 0; il < n_layer; ++il) {
  7519. struct ggml_tensor * inpSA = inpL;
  7520. // norm
  7521. cur = llm_build_norm(ctx0, inpL, hparams,
  7522. model.layers[il].attn_norm, NULL,
  7523. LLM_NORM_RMS, cb, il);
  7524. cb(cur, "attn_norm", il);
  7525. // self-attention
  7526. {
  7527. // compute Q and K and RoPE them
  7528. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7529. cb(Qcur, "Qcur", il);
  7530. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7531. cb(Qcur, "Qcur", il);
  7532. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7533. cb(Kcur, "Kcur", il);
  7534. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7535. cb(Kcur, "Kcur", il);
  7536. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7537. cb(Vcur, "Vcur", il);
  7538. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7539. cb(Vcur, "Vcur", il);
  7540. Qcur = ggml_rope_custom(
  7541. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7542. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7543. ext_factor, attn_factor, beta_fast, beta_slow
  7544. );
  7545. cb(Qcur, "Qcur", il);
  7546. Kcur = ggml_rope_custom(
  7547. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7548. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7549. ext_factor, attn_factor, beta_fast, beta_slow
  7550. );
  7551. cb(Kcur, "Kcur", il);
  7552. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7553. model.layers[il].wo, model.layers[il].bo,
  7554. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7555. }
  7556. if (il == n_layer - 1) {
  7557. // skip computing output for unused tokens
  7558. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7559. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7560. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7561. }
  7562. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7563. cb(ffn_inp, "ffn_inp", il);
  7564. // feed-forward network
  7565. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7566. model.layers[il].ffn_norm, NULL,
  7567. LLM_NORM_RMS, cb, il);
  7568. cb(cur, "ffn_norm", il);
  7569. cur = llm_build_ffn(ctx0, cur,
  7570. model.layers[il].ffn_up, NULL,
  7571. model.layers[il].ffn_gate, NULL,
  7572. model.layers[il].ffn_down, NULL,
  7573. NULL,
  7574. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7575. cb(cur, "ffn_out", il);
  7576. cur = ggml_add(ctx0, cur, ffn_inp);
  7577. cb(cur, "l_out", il);
  7578. // input for next layer
  7579. inpL = cur;
  7580. }
  7581. cur = inpL;
  7582. cur = llm_build_norm(ctx0, cur, hparams,
  7583. model.output_norm, NULL,
  7584. LLM_NORM_RMS, cb, -1);
  7585. cb(cur, "result_norm", -1);
  7586. // lm_head
  7587. cur = ggml_mul_mat(ctx0, model.output, cur);
  7588. cb(cur, "result_output", -1);
  7589. ggml_build_forward_expand(gf, cur);
  7590. return gf;
  7591. }
  7592. struct ggml_cgraph * build_qwen2moe() {
  7593. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7594. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7595. int32_t n_tokens = this->n_tokens;
  7596. const int64_t n_embd_head = hparams.n_embd_head_v;
  7597. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7598. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7599. struct ggml_tensor * cur;
  7600. struct ggml_tensor * inpL;
  7601. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7602. // inp_pos - contains the positions
  7603. struct ggml_tensor * inp_pos = build_inp_pos();
  7604. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7605. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7606. for (int il = 0; il < n_layer; ++il) {
  7607. struct ggml_tensor * inpSA = inpL;
  7608. // norm
  7609. cur = llm_build_norm(ctx0, inpL, hparams,
  7610. model.layers[il].attn_norm, NULL,
  7611. LLM_NORM_RMS, cb, il);
  7612. cb(cur, "attn_norm", il);
  7613. // self_attention
  7614. {
  7615. // compute Q and K and RoPE them
  7616. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7617. cb(Qcur, "Qcur", il);
  7618. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7619. cb(Qcur, "Qcur", il);
  7620. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7621. cb(Kcur, "Kcur", il);
  7622. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7623. cb(Kcur, "Kcur", il);
  7624. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7625. cb(Vcur, "Vcur", il);
  7626. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7627. cb(Vcur, "Vcur", il);
  7628. Qcur = ggml_rope_custom(
  7629. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7630. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7631. ext_factor, attn_factor, beta_fast, beta_slow
  7632. );
  7633. cb(Qcur, "Qcur", il);
  7634. Kcur = ggml_rope_custom(
  7635. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7636. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7637. ext_factor, attn_factor, beta_fast, beta_slow
  7638. );
  7639. cb(Kcur, "Kcur", il);
  7640. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7641. model.layers[il].wo, model.layers[il].bo,
  7642. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7643. }
  7644. if (il == n_layer - 1) {
  7645. // skip computing output for unused tokens
  7646. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7647. n_tokens = n_outputs;
  7648. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7649. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7650. }
  7651. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7652. cb(ffn_inp, "ffn_inp", il);
  7653. // MoE branch
  7654. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7655. model.layers[il].ffn_norm, NULL,
  7656. LLM_NORM_RMS, cb, il);
  7657. cb(cur, "ffn_norm", il);
  7658. ggml_tensor * moe_out =
  7659. llm_build_moe_ffn(ctx0, cur,
  7660. model.layers[il].ffn_gate_inp,
  7661. model.layers[il].ffn_up_exps,
  7662. model.layers[il].ffn_gate_exps,
  7663. model.layers[il].ffn_down_exps,
  7664. n_expert, n_expert_used,
  7665. LLM_FFN_SILU, false,
  7666. cb, il);
  7667. cb(cur, "ffn_moe_out", il);
  7668. // FFN shared expert
  7669. {
  7670. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7671. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7672. // sigmoid
  7673. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7674. cb(cur_gate, "ffn_shexp_gate", il);
  7675. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7676. model.layers[il].ffn_up_shexp, NULL,
  7677. model.layers[il].ffn_gate_shexp, NULL,
  7678. model.layers[il].ffn_down_shexp, NULL,
  7679. NULL,
  7680. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7681. cb(cur_ffn, "ffn_shexp", il);
  7682. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7683. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7684. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7685. cb(moe_out, "ffn_out", il);
  7686. cur = moe_out;
  7687. }
  7688. cur = ggml_add(ctx0, cur, ffn_inp);
  7689. cb(cur, "l_out", il);
  7690. // input for next layer
  7691. inpL = cur;
  7692. }
  7693. cur = inpL;
  7694. cur = llm_build_norm(ctx0, cur, hparams,
  7695. model.output_norm, NULL,
  7696. LLM_NORM_RMS, cb, -1);
  7697. cb(cur, "result_norm", -1);
  7698. // lm_head
  7699. cur = ggml_mul_mat(ctx0, model.output, cur);
  7700. cb(cur, "result_output", -1);
  7701. ggml_build_forward_expand(gf, cur);
  7702. return gf;
  7703. }
  7704. struct ggml_cgraph * build_phi2() {
  7705. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7706. const int64_t n_embd_head = hparams.n_embd_head_v;
  7707. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7708. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7709. struct ggml_tensor * cur;
  7710. struct ggml_tensor * attn_norm_output;
  7711. struct ggml_tensor * ffn_output;
  7712. struct ggml_tensor * inpL;
  7713. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7714. // inp_pos - contains the positions
  7715. struct ggml_tensor * inp_pos = build_inp_pos();
  7716. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7717. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7718. for (int il = 0; il < n_layer; ++il) {
  7719. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7720. model.layers[il].attn_norm,
  7721. model.layers[il].attn_norm_b,
  7722. LLM_NORM, cb, il);
  7723. cb(attn_norm_output, "attn_norm", il);
  7724. // self-attention
  7725. {
  7726. struct ggml_tensor * Qcur = nullptr;
  7727. struct ggml_tensor * Kcur = nullptr;
  7728. struct ggml_tensor * Vcur = nullptr;
  7729. if (model.layers[il].wqkv) {
  7730. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7731. cb(cur, "wqkv", il);
  7732. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7733. cb(cur, "bqkv", il);
  7734. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7735. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7736. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7737. } else {
  7738. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7739. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7740. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7741. }
  7742. cb(Qcur, "Qcur", il);
  7743. cb(Kcur, "Kcur", il);
  7744. cb(Vcur, "Vcur", il);
  7745. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7746. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7747. Qcur = ggml_rope_custom(
  7748. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7749. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7750. );
  7751. cb(Qcur, "Qcur", il);
  7752. // with phi2, we scale the Q to avoid precision issues
  7753. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7754. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7755. cb(Qcur, "Qcur", il);
  7756. Kcur = ggml_rope_custom(
  7757. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7758. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7759. );
  7760. cb(Kcur, "Kcur", il);
  7761. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7762. model.layers[il].wo, model.layers[il].bo,
  7763. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7764. }
  7765. if (il == n_layer - 1) {
  7766. // skip computing output for unused tokens
  7767. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7768. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7769. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7770. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7771. }
  7772. // FF
  7773. {
  7774. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7775. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7776. NULL, NULL,
  7777. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7778. NULL,
  7779. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7780. cb(ffn_output, "ffn_out", il);
  7781. }
  7782. cur = ggml_add(ctx0, cur, ffn_output);
  7783. cb(cur, "l_out", il);
  7784. cur = ggml_add(ctx0, cur, inpL);
  7785. cb(cur, "l_out", il);
  7786. inpL = cur;
  7787. }
  7788. cur = llm_build_norm(ctx0, inpL, hparams,
  7789. model.output_norm,
  7790. model.output_norm_b,
  7791. LLM_NORM, cb, -1);
  7792. cb(cur, "result_norm", -1);
  7793. cur = ggml_mul_mat(ctx0, model.output, cur);
  7794. cb(cur, "result_output_no_bias", -1);
  7795. cur = ggml_add(ctx0, cur, model.output_b);
  7796. cb(cur, "result_output", -1);
  7797. ggml_build_forward_expand(gf, cur);
  7798. return gf;
  7799. }
  7800. struct ggml_cgraph * build_phi3() {
  7801. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7802. const int64_t n_embd_head = hparams.n_embd_head_v;
  7803. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7804. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7805. struct ggml_tensor * cur;
  7806. struct ggml_tensor * inpL;
  7807. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7808. // inp_pos - contains the positions
  7809. struct ggml_tensor * inp_pos = build_inp_pos();
  7810. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7811. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7812. for (int il = 0; il < n_layer; ++il) {
  7813. auto residual = inpL;
  7814. // self-attention
  7815. {
  7816. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7817. model.layers[il].attn_norm,
  7818. NULL,
  7819. LLM_NORM_RMS, cb, il);
  7820. cb(attn_norm_output, "attn_norm", il);
  7821. struct ggml_tensor * Qcur = nullptr;
  7822. struct ggml_tensor * Kcur = nullptr;
  7823. struct ggml_tensor * Vcur = nullptr;
  7824. if (model.layers[il].wqkv) {
  7825. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7826. cb(cur, "wqkv", il);
  7827. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7828. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7829. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7830. }
  7831. else {
  7832. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7833. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7834. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7835. }
  7836. cb(Qcur, "Qcur", il);
  7837. cb(Kcur, "Kcur", il);
  7838. cb(Vcur, "Vcur", il);
  7839. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7840. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7841. Qcur = ggml_rope_custom(
  7842. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7843. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7844. );
  7845. cb(Qcur, "Qcur", il);
  7846. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7847. cb(Qcur, "Qcur", il);
  7848. Kcur = ggml_rope_custom(
  7849. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7850. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7851. );
  7852. cb(Kcur, "Kcur", il);
  7853. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7854. model.layers[il].wo, model.layers[il].bo,
  7855. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7856. }
  7857. if (il == n_layer - 1) {
  7858. // skip computing output for unused tokens
  7859. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7860. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7861. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7862. }
  7863. cur = ggml_add(ctx0, cur, residual);
  7864. residual = cur;
  7865. cur = llm_build_norm(ctx0, cur, hparams,
  7866. model.layers[il].ffn_norm, NULL,
  7867. LLM_NORM_RMS, cb, il);
  7868. cb(cur, "ffn_norm", il);
  7869. // FF
  7870. // special-case: the up and gate tensors are merged into a single tensor
  7871. // TOOD: support into llm_build_ffn
  7872. {
  7873. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7874. cb(up, "ffn_up", il);
  7875. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7876. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7877. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7878. cb(y, "ffn_gate", il);
  7879. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7880. cb(down, "ffn_down", il);
  7881. cur = down;
  7882. cb(cur, "ffn_out", il);
  7883. }
  7884. cur = ggml_add(ctx0, residual, cur);
  7885. cb(cur, "l_out", il);
  7886. inpL = cur;
  7887. }
  7888. cur = llm_build_norm(ctx0, inpL, hparams,
  7889. model.output_norm,
  7890. NULL,
  7891. LLM_NORM_RMS, cb, -1);
  7892. cb(cur, "result_norm", -1);
  7893. cur = ggml_mul_mat(ctx0, model.output, cur);
  7894. cb(cur, "result_output", -1);
  7895. ggml_build_forward_expand(gf, cur);
  7896. return gf;
  7897. }
  7898. struct ggml_cgraph * build_plamo() {
  7899. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7900. const int64_t n_embd_head = hparams.n_embd_head_v;
  7901. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7902. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7903. struct ggml_tensor * cur;
  7904. struct ggml_tensor * inpL;
  7905. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7906. // inp_pos - contains the positions
  7907. struct ggml_tensor * inp_pos = build_inp_pos();
  7908. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7909. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7910. for (int il = 0; il < n_layer; ++il) {
  7911. // norm
  7912. cur = llm_build_norm(ctx0, inpL, hparams,
  7913. model.layers[il].attn_norm, NULL,
  7914. LLM_NORM_RMS, cb, il);
  7915. cb(cur, "attn_norm", il);
  7916. struct ggml_tensor * attention_norm = cur;
  7917. // self-attention
  7918. {
  7919. // compute Q and K and RoPE them
  7920. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7921. cb(Qcur, "Qcur", il);
  7922. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7923. cb(Kcur, "Kcur", il);
  7924. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7925. cb(Vcur, "Vcur", il);
  7926. Qcur = ggml_rope_custom(
  7927. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  7928. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7929. ext_factor, attn_factor, beta_fast, beta_slow);
  7930. cb(Qcur, "Qcur", il);
  7931. Kcur = ggml_rope_custom(
  7932. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  7933. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7934. ext_factor, attn_factor, beta_fast, beta_slow);
  7935. cb(Kcur, "Kcur", il);
  7936. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7937. model.layers[il].wo, NULL,
  7938. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7939. }
  7940. struct ggml_tensor * sa_out = cur;
  7941. cur = attention_norm;
  7942. if (il == n_layer - 1) {
  7943. // skip computing output for unused tokens
  7944. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7945. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7946. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7947. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7948. }
  7949. // feed-forward network
  7950. {
  7951. cur = llm_build_ffn(ctx0, cur,
  7952. model.layers[il].ffn_up, NULL,
  7953. model.layers[il].ffn_gate, NULL,
  7954. model.layers[il].ffn_down, NULL,
  7955. NULL,
  7956. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7957. cb(cur, "ffn_out", il);
  7958. }
  7959. cur = ggml_add(ctx0, cur, sa_out);
  7960. cb(cur, "l_out", il);
  7961. cur = ggml_add(ctx0, cur, inpL);
  7962. cb(cur, "l_out", il);
  7963. // input for next layer
  7964. inpL = cur;
  7965. }
  7966. cur = inpL;
  7967. cur = llm_build_norm(ctx0, cur, hparams,
  7968. model.output_norm, NULL,
  7969. LLM_NORM_RMS, cb, -1);
  7970. cb(cur, "result_norm", -1);
  7971. // lm_head
  7972. cur = ggml_mul_mat(ctx0, model.output, cur);
  7973. cb(cur, "result_output", -1);
  7974. ggml_build_forward_expand(gf, cur);
  7975. return gf;
  7976. }
  7977. struct ggml_cgraph * build_gpt2() {
  7978. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7979. const int64_t n_embd_head = hparams.n_embd_head_v;
  7980. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7981. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7982. struct ggml_tensor * cur;
  7983. struct ggml_tensor * pos;
  7984. struct ggml_tensor * inpL;
  7985. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7986. // inp_pos - contains the positions
  7987. struct ggml_tensor * inp_pos = build_inp_pos();
  7988. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7989. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7990. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7991. cb(pos, "pos_embd", -1);
  7992. inpL = ggml_add(ctx0, inpL, pos);
  7993. cb(inpL, "inpL", -1);
  7994. for (int il = 0; il < n_layer; ++il) {
  7995. cur = llm_build_norm(ctx0, inpL, hparams,
  7996. model.layers[il].attn_norm,
  7997. model.layers[il].attn_norm_b,
  7998. LLM_NORM, cb, il);
  7999. cb(cur, "attn_norm", il);
  8000. // self-attention
  8001. {
  8002. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8003. cb(cur, "wqkv", il);
  8004. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8005. cb(cur, "bqkv", il);
  8006. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8007. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8008. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8009. cb(Qcur, "Qcur", il);
  8010. cb(Kcur, "Kcur", il);
  8011. cb(Vcur, "Vcur", il);
  8012. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8013. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8014. model.layers[il].wo, model.layers[il].bo,
  8015. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8016. }
  8017. if (il == n_layer - 1) {
  8018. // skip computing output for unused tokens
  8019. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8020. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8021. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8022. }
  8023. // add the input
  8024. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8025. cb(ffn_inp, "ffn_inp", il);
  8026. // FF
  8027. {
  8028. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8029. model.layers[il].ffn_norm,
  8030. model.layers[il].ffn_norm_b,
  8031. LLM_NORM, cb, il);
  8032. cb(cur, "ffn_norm", il);
  8033. cur = llm_build_ffn(ctx0, cur,
  8034. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8035. NULL, NULL,
  8036. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8037. NULL,
  8038. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8039. cb(cur, "ffn_out", il);
  8040. }
  8041. inpL = ggml_add(ctx0, cur, ffn_inp);
  8042. cb(inpL, "l_out", il);
  8043. }
  8044. cur = llm_build_norm(ctx0, inpL, hparams,
  8045. model.output_norm,
  8046. model.output_norm_b,
  8047. LLM_NORM, cb, -1);
  8048. cb(cur, "result_norm", -1);
  8049. cur = ggml_mul_mat(ctx0, model.output, cur);
  8050. cb(cur, "result_output", -1);
  8051. ggml_build_forward_expand(gf, cur);
  8052. return gf;
  8053. }
  8054. struct ggml_cgraph * build_codeshell() {
  8055. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8056. const int64_t n_embd_head = hparams.n_embd_head_v;
  8057. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8058. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8059. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8060. struct ggml_tensor * cur;
  8061. struct ggml_tensor * inpL;
  8062. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8063. // inp_pos - contains the positions
  8064. struct ggml_tensor * inp_pos = build_inp_pos();
  8065. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8066. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8067. for (int il = 0; il < n_layer; ++il) {
  8068. cur = llm_build_norm(ctx0, inpL, hparams,
  8069. model.layers[il].attn_norm,
  8070. model.layers[il].attn_norm_b,
  8071. LLM_NORM, cb, il);
  8072. cb(cur, "attn_norm", il);
  8073. // self-attention
  8074. {
  8075. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8076. cb(cur, "wqkv", il);
  8077. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8078. cb(cur, "bqkv", il);
  8079. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8080. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8081. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8082. cb(tmpq, "tmpq", il);
  8083. cb(tmpk, "tmpk", il);
  8084. cb(Vcur, "Vcur", il);
  8085. struct ggml_tensor * Qcur = ggml_rope_custom(
  8086. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  8087. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8088. ext_factor, attn_factor, beta_fast, beta_slow
  8089. );
  8090. cb(Qcur, "Qcur", il);
  8091. struct ggml_tensor * Kcur = ggml_rope_custom(
  8092. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8093. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8094. ext_factor, attn_factor, beta_fast, beta_slow
  8095. );
  8096. cb(Kcur, "Kcur", il);
  8097. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8098. model.layers[il].wo, model.layers[il].bo,
  8099. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8100. }
  8101. if (il == n_layer - 1) {
  8102. // skip computing output for unused tokens
  8103. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8104. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8105. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8106. }
  8107. // add the input
  8108. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8109. cb(ffn_inp, "ffn_inp", il);
  8110. // FF
  8111. {
  8112. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8113. model.layers[il].ffn_norm,
  8114. model.layers[il].ffn_norm_b,
  8115. LLM_NORM, cb, il);
  8116. cb(cur, "ffn_norm", il);
  8117. cur = llm_build_ffn(ctx0, cur,
  8118. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8119. NULL, NULL,
  8120. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8121. NULL,
  8122. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8123. cb(cur, "ffn_out", il);
  8124. }
  8125. inpL = ggml_add(ctx0, cur, ffn_inp);
  8126. cb(inpL, "l_out", il);
  8127. }
  8128. cur = llm_build_norm(ctx0, inpL, hparams,
  8129. model.output_norm,
  8130. model.output_norm_b,
  8131. LLM_NORM, cb, -1);
  8132. cb(cur, "result_norm", -1);
  8133. cur = ggml_mul_mat(ctx0, model.output, cur);
  8134. cb(cur, "result_output", -1);
  8135. ggml_build_forward_expand(gf, cur);
  8136. return gf;
  8137. }
  8138. struct ggml_cgraph * build_orion() {
  8139. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8140. const int64_t n_embd_head = hparams.n_embd_head_v;
  8141. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8142. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8143. struct ggml_tensor * cur;
  8144. struct ggml_tensor * inpL;
  8145. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8146. // inp_pos - contains the positions
  8147. struct ggml_tensor * inp_pos = build_inp_pos();
  8148. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8149. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8150. for (int il = 0; il < n_layer; ++il) {
  8151. struct ggml_tensor * inpSA = inpL;
  8152. // norm
  8153. cur = llm_build_norm(ctx0, inpL, hparams,
  8154. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8155. LLM_NORM, cb, il);
  8156. cb(cur, "attn_norm", il);
  8157. // self-attention
  8158. {
  8159. // compute Q and K and RoPE them
  8160. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8161. cb(Qcur, "Qcur", il);
  8162. // if (model.layers[il].bq) {
  8163. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8164. // cb(Qcur, "Qcur", il);
  8165. // }
  8166. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8167. cb(Kcur, "Kcur", il);
  8168. // if (model.layers[il].bk) {
  8169. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8170. // cb(Kcur, "Kcur", il);
  8171. // }
  8172. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8173. cb(Vcur, "Vcur", il);
  8174. // if (model.layers[il].bv) {
  8175. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8176. // cb(Vcur, "Vcur", il);
  8177. // }
  8178. Qcur = ggml_rope_custom(
  8179. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8180. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8181. ext_factor, attn_factor, beta_fast, beta_slow
  8182. );
  8183. cb(Qcur, "Qcur", il);
  8184. Kcur = ggml_rope_custom(
  8185. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8186. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8187. ext_factor, attn_factor, beta_fast, beta_slow
  8188. );
  8189. cb(Kcur, "Kcur", il);
  8190. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8191. model.layers[il].wo, NULL,
  8192. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8193. }
  8194. if (il == n_layer - 1) {
  8195. // skip computing output for unused tokens
  8196. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8197. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8198. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8199. }
  8200. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8201. cb(ffn_inp, "ffn_inp", il);
  8202. // feed-forward network
  8203. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8204. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8205. LLM_NORM, cb, il);
  8206. cb(cur, "ffn_norm", il);
  8207. cur = llm_build_ffn(ctx0, cur,
  8208. model.layers[il].ffn_up, NULL,
  8209. model.layers[il].ffn_gate, NULL,
  8210. model.layers[il].ffn_down, NULL,
  8211. NULL,
  8212. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8213. cb(cur, "ffn_out", il);
  8214. cur = ggml_add(ctx0, cur, ffn_inp);
  8215. cb(cur, "l_out", il);
  8216. // input for next layer
  8217. inpL = cur;
  8218. }
  8219. cur = inpL;
  8220. cur = llm_build_norm(ctx0, cur, hparams,
  8221. model.output_norm, model.output_norm_b,
  8222. LLM_NORM, cb, -1);
  8223. cb(cur, "result_norm", -1);
  8224. // lm_head
  8225. cur = ggml_mul_mat(ctx0, model.output, cur);
  8226. cb(cur, "result_output", -1);
  8227. ggml_build_forward_expand(gf, cur);
  8228. return gf;
  8229. }
  8230. struct ggml_cgraph * build_internlm2() {
  8231. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8232. const int64_t n_embd_head = hparams.n_embd_head_v;
  8233. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8234. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8235. struct ggml_tensor * cur;
  8236. struct ggml_tensor * inpL;
  8237. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8238. // inp_pos - contains the positions
  8239. struct ggml_tensor * inp_pos = build_inp_pos();
  8240. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8241. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8242. for (int il = 0; il < n_layer; ++il) {
  8243. struct ggml_tensor * inpSA = inpL;
  8244. // norm
  8245. cur = llm_build_norm(ctx0, inpL, hparams,
  8246. model.layers[il].attn_norm, NULL,
  8247. LLM_NORM_RMS, cb, il);
  8248. cb(cur, "attn_norm", il);
  8249. // self-attention
  8250. {
  8251. // compute Q and K and RoPE them
  8252. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8253. cb(Qcur, "Qcur", il);
  8254. if (model.layers[il].bq) {
  8255. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8256. cb(Qcur, "Qcur", il);
  8257. }
  8258. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8259. cb(Kcur, "Kcur", il);
  8260. if (model.layers[il].bk) {
  8261. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8262. cb(Kcur, "Kcur", il);
  8263. }
  8264. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8265. cb(Vcur, "Vcur", il);
  8266. if (model.layers[il].bv) {
  8267. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8268. cb(Vcur, "Vcur", il);
  8269. }
  8270. Qcur = ggml_rope_custom(
  8271. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8272. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8273. ext_factor, attn_factor, beta_fast, beta_slow
  8274. );
  8275. cb(Qcur, "Qcur", il);
  8276. Kcur = ggml_rope_custom(
  8277. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8278. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8279. ext_factor, attn_factor, beta_fast, beta_slow
  8280. );
  8281. cb(Kcur, "Kcur", il);
  8282. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8283. model.layers[il].wo, model.layers[il].bo,
  8284. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8285. }
  8286. if (il == n_layer - 1) {
  8287. // skip computing output for unused tokens
  8288. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8289. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8290. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8291. }
  8292. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8293. cb(ffn_inp, "ffn_inp", il);
  8294. // feed-forward network
  8295. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8296. model.layers[il].ffn_norm, NULL,
  8297. LLM_NORM_RMS, cb, il);
  8298. cb(cur, "ffn_norm", il);
  8299. cur = llm_build_ffn(ctx0, cur,
  8300. model.layers[il].ffn_up, NULL,
  8301. model.layers[il].ffn_gate, NULL,
  8302. model.layers[il].ffn_down, NULL,
  8303. NULL,
  8304. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8305. cb(cur, "ffn_out", il);
  8306. cur = ggml_add(ctx0, cur, ffn_inp);
  8307. cb(cur, "l_out", il);
  8308. // input for next layer
  8309. inpL = cur;
  8310. }
  8311. cur = inpL;
  8312. cur = llm_build_norm(ctx0, cur, hparams,
  8313. model.output_norm, NULL,
  8314. LLM_NORM_RMS, cb, -1);
  8315. cb(cur, "result_norm", -1);
  8316. // lm_head
  8317. cur = ggml_mul_mat(ctx0, model.output, cur);
  8318. cb(cur, "result_output", -1);
  8319. ggml_build_forward_expand(gf, cur);
  8320. return gf;
  8321. }
  8322. // ref: https://arxiv.org/abs/2203.03466
  8323. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8324. // based on the original build_llama() function
  8325. struct ggml_cgraph * build_minicpm() {
  8326. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8327. const int64_t n_embd_head = hparams.n_embd_head_v;
  8328. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8329. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8330. const int64_t n_embd = hparams.n_embd;
  8331. //TODO: if the model varies, these parameters need to be read from the model
  8332. const int64_t n_embd_base = 256;
  8333. const float scale_embd = 12.0f;
  8334. const float scale_depth = 1.4f;
  8335. struct ggml_tensor * cur;
  8336. struct ggml_tensor * inpL;
  8337. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8338. // scale the input embeddings
  8339. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8340. cb(inpL, "inp_scaled", -1);
  8341. // inp_pos - contains the positions
  8342. struct ggml_tensor * inp_pos = build_inp_pos();
  8343. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8344. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8345. for (int il = 0; il < n_layer; ++il) {
  8346. struct ggml_tensor * inpSA = inpL;
  8347. // norm
  8348. cur = llm_build_norm(ctx0, inpL, hparams,
  8349. model.layers[il].attn_norm, NULL,
  8350. LLM_NORM_RMS, cb, il);
  8351. cb(cur, "attn_norm", il);
  8352. // self-attention
  8353. {
  8354. // compute Q and K and RoPE them
  8355. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8356. cb(Qcur, "Qcur", il);
  8357. if (model.layers[il].bq) {
  8358. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8359. cb(Qcur, "Qcur", il);
  8360. }
  8361. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8362. cb(Kcur, "Kcur", il);
  8363. if (model.layers[il].bk) {
  8364. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8365. cb(Kcur, "Kcur", il);
  8366. }
  8367. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8368. cb(Vcur, "Vcur", il);
  8369. if (model.layers[il].bv) {
  8370. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8371. cb(Vcur, "Vcur", il);
  8372. }
  8373. Qcur = ggml_rope_custom(
  8374. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8375. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8376. ext_factor, attn_factor, beta_fast, beta_slow
  8377. );
  8378. cb(Qcur, "Qcur", il);
  8379. Kcur = ggml_rope_custom(
  8380. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8381. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8382. ext_factor, attn_factor, beta_fast, beta_slow
  8383. );
  8384. cb(Kcur, "Kcur", il);
  8385. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8386. model.layers[il].wo, model.layers[il].bo,
  8387. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8388. }
  8389. if (il == n_layer - 1) {
  8390. // skip computing output for unused tokens
  8391. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8392. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8393. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8394. }
  8395. // scale_res - scale the hidden states for residual connection
  8396. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8397. cur = ggml_scale(ctx0, cur, scale_res);
  8398. cb(cur, "hidden_scaled", -1);
  8399. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8400. cb(ffn_inp, "ffn_inp", il);
  8401. // feed-forward network
  8402. {
  8403. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8404. model.layers[il].ffn_norm, NULL,
  8405. LLM_NORM_RMS, cb, il);
  8406. cb(cur, "ffn_norm", il);
  8407. cur = llm_build_ffn(ctx0, cur,
  8408. model.layers[il].ffn_up, NULL,
  8409. model.layers[il].ffn_gate, NULL,
  8410. model.layers[il].ffn_down, NULL,
  8411. NULL,
  8412. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8413. cb(cur, "ffn_out", il);
  8414. }
  8415. // scale the hidden states for residual connection
  8416. cur = ggml_scale(ctx0, cur, scale_res);
  8417. cb(cur, "hidden_scaled_ffn", -1);
  8418. cur = ggml_add(ctx0, cur, ffn_inp);
  8419. cb(cur, "l_out", il);
  8420. // input for next layer
  8421. inpL = cur;
  8422. }
  8423. cur = inpL;
  8424. cur = llm_build_norm(ctx0, cur, hparams,
  8425. model.output_norm, NULL,
  8426. LLM_NORM_RMS, cb, -1);
  8427. cb(cur, "result_norm", -1);
  8428. // lm_head scaling
  8429. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8430. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8431. cb(cur, "lmhead_scaling", -1);
  8432. // lm_head
  8433. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8434. cb(cur, "result_output", -1);
  8435. ggml_build_forward_expand(gf, cur);
  8436. return gf;
  8437. }
  8438. struct ggml_cgraph * build_gemma() {
  8439. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8440. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8441. struct ggml_tensor * cur;
  8442. struct ggml_tensor * inpL;
  8443. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8444. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8445. cb(inpL, "inp_scaled", -1);
  8446. // inp_pos - contains the positions
  8447. struct ggml_tensor * inp_pos = build_inp_pos();
  8448. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8449. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8450. for (int il = 0; il < n_layer; ++il) {
  8451. // norm
  8452. cur = llm_build_norm(ctx0, inpL, hparams,
  8453. model.layers[il].attn_norm, NULL,
  8454. LLM_NORM_RMS, cb, il);
  8455. cb(cur, "attn_norm", il);
  8456. // self-attention
  8457. {
  8458. // compute Q and K and RoPE them
  8459. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8460. cb(Qcur, "Qcur", il);
  8461. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8462. cb(Kcur, "Kcur", il);
  8463. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8464. cb(Vcur, "Vcur", il);
  8465. Qcur = ggml_rope_custom(
  8466. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  8467. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8468. ext_factor, attn_factor, beta_fast, beta_slow);
  8469. cb(Qcur, "Qcur", il);
  8470. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8471. cb(Qcur, "Qcur_scaled", il);
  8472. Kcur = ggml_rope_custom(
  8473. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  8474. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8475. ext_factor, attn_factor, beta_fast, beta_slow);
  8476. cb(Kcur, "Kcur", il);
  8477. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8478. model.layers[il].wo, NULL,
  8479. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8480. }
  8481. if (il == n_layer - 1) {
  8482. // skip computing output for unused tokens
  8483. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8484. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8485. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8486. }
  8487. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8488. cb(sa_out, "sa_out", il);
  8489. cur = llm_build_norm(ctx0, sa_out, hparams,
  8490. model.layers[il].ffn_norm, NULL,
  8491. LLM_NORM_RMS, cb, il);
  8492. cb(cur, "ffn_norm", il);
  8493. // feed-forward network
  8494. {
  8495. cur = llm_build_ffn(ctx0, cur,
  8496. model.layers[il].ffn_up, NULL,
  8497. model.layers[il].ffn_gate, NULL,
  8498. model.layers[il].ffn_down, NULL,
  8499. NULL,
  8500. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8501. cb(cur, "ffn_out", il);
  8502. }
  8503. cur = ggml_add(ctx0, cur, sa_out);
  8504. cb(cur, "l_out", il);
  8505. // input for next layer
  8506. inpL = cur;
  8507. }
  8508. cur = inpL;
  8509. cur = llm_build_norm(ctx0, cur, hparams,
  8510. model.output_norm, NULL,
  8511. LLM_NORM_RMS, cb, -1);
  8512. cb(cur, "result_norm", -1);
  8513. // lm_head
  8514. cur = ggml_mul_mat(ctx0, model.output, cur);
  8515. cb(cur, "result_output", -1);
  8516. ggml_build_forward_expand(gf, cur);
  8517. return gf;
  8518. }
  8519. struct ggml_cgraph * build_starcoder2() {
  8520. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8521. const int64_t n_embd_head = hparams.n_embd_head_v;
  8522. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8523. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8524. struct ggml_tensor * cur;
  8525. struct ggml_tensor * inpL;
  8526. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8527. // inp_pos - contains the positions
  8528. struct ggml_tensor * inp_pos = build_inp_pos();
  8529. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8530. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8531. for (int il = 0; il < n_layer; ++il) {
  8532. struct ggml_tensor * inpSA = inpL;
  8533. // norm
  8534. cur = llm_build_norm(ctx0, inpL, hparams,
  8535. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8536. LLM_NORM, cb, il);
  8537. cb(cur, "attn_norm", il);
  8538. // self-attention
  8539. {
  8540. // compute Q and K and RoPE them
  8541. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8542. cb(Qcur, "Qcur", il);
  8543. if (model.layers[il].bq) {
  8544. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8545. cb(Qcur, "Qcur", il);
  8546. }
  8547. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8548. cb(Kcur, "Kcur", il);
  8549. if (model.layers[il].bk) {
  8550. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8551. cb(Kcur, "Kcur", il);
  8552. }
  8553. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8554. cb(Vcur, "Vcur", il);
  8555. if (model.layers[il].bv) {
  8556. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8557. cb(Vcur, "Vcur", il);
  8558. }
  8559. Qcur = ggml_rope_custom(
  8560. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8561. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8562. ext_factor, attn_factor, beta_fast, beta_slow
  8563. );
  8564. cb(Qcur, "Qcur", il);
  8565. Kcur = ggml_rope_custom(
  8566. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8567. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8568. ext_factor, attn_factor, beta_fast, beta_slow
  8569. );
  8570. cb(Kcur, "Kcur", il);
  8571. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8572. model.layers[il].wo, model.layers[il].bo,
  8573. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8574. }
  8575. if (il == n_layer - 1) {
  8576. // skip computing output for unused tokens
  8577. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8578. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8579. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8580. }
  8581. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8582. cb(ffn_inp, "ffn_inp", il);
  8583. // feed-forward network
  8584. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8585. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8586. LLM_NORM, cb, il);
  8587. cb(cur, "ffn_norm", il);
  8588. cur = llm_build_ffn(ctx0, cur,
  8589. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8590. NULL, NULL,
  8591. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8592. NULL,
  8593. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8594. cb(cur, "ffn_out", il);
  8595. cur = ggml_add(ctx0, cur, ffn_inp);
  8596. cb(cur, "l_out", il);
  8597. // input for next layer
  8598. inpL = cur;
  8599. }
  8600. cur = inpL;
  8601. cur = llm_build_norm(ctx0, cur, hparams,
  8602. model.output_norm, model.output_norm_b,
  8603. LLM_NORM, cb, -1);
  8604. cb(cur, "result_norm", -1);
  8605. // lm_head
  8606. cur = ggml_mul_mat(ctx0, model.output, cur);
  8607. cb(cur, "result_output", -1);
  8608. ggml_build_forward_expand(gf, cur);
  8609. return gf;
  8610. }
  8611. struct ggml_cgraph * build_mamba() {
  8612. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8613. const int64_t d_model = n_embd;
  8614. const int64_t d_conv = hparams.ssm_d_conv;
  8615. const int64_t d_inner = hparams.ssm_d_inner;
  8616. GGML_ASSERT(2 * d_model == d_inner);
  8617. const int64_t d_state = hparams.ssm_d_state;
  8618. const int64_t dt_rank = hparams.ssm_dt_rank;
  8619. struct ggml_tensor * cur;
  8620. struct ggml_tensor * inpL;
  8621. // {n_embd, n_tokens}
  8622. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8623. struct ggml_tensor * state_mask = build_inp_s_mask();
  8624. struct ggml_tensor * state_seq = build_inp_s_seq();
  8625. for (int il = 0; il < n_layer; ++il) {
  8626. // (ab)using the KV cache to store the states
  8627. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8628. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8629. // clear states of sequences which are starting at the beginning of this batch
  8630. {
  8631. conv_states = ggml_mul(ctx0,
  8632. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8633. state_mask);
  8634. ssm_states = ggml_mul(ctx0,
  8635. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8636. state_mask);
  8637. }
  8638. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8639. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8640. // norm
  8641. cur = llm_build_norm(ctx0, inpL, hparams,
  8642. model.layers[il].attn_norm, NULL,
  8643. LLM_NORM_RMS, cb, il);
  8644. cb(cur, "attn_norm", il);
  8645. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8646. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8647. // split the above in two
  8648. // => {d_inner, n_tokens}
  8649. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8650. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8651. // conv
  8652. {
  8653. // Custom operator which is needed only to ease simultaneous sequence processing.
  8654. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8655. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8656. // then element-wise multiply that with the conv1d weigth,
  8657. // then sum the elements of each row,
  8658. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8659. // then permute away the ne[0] dimension,
  8660. // and then you're left with the resulting x tensor.
  8661. // The new conv_states is the last (d_conv - 1) columns
  8662. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8663. // For simultaneous sequences, it's more complicated.
  8664. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8665. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8666. ggml_build_forward_expand(gf,
  8667. ggml_cpy(ctx0,
  8668. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8669. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8670. // extract x from x_conv
  8671. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8672. // bias
  8673. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8674. x = ggml_silu(ctx0, x);
  8675. }
  8676. // ssm
  8677. {
  8678. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8679. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8680. // split
  8681. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8682. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8683. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8684. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8685. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8686. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8687. // Custom operator to optimize the parallel associative scan
  8688. // as described in the Annex D of the Mamba paper.
  8689. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8690. // because only a single tensor can be returned.
  8691. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8692. // store last states (the second part of y_ssm_states)
  8693. ggml_build_forward_expand(gf,
  8694. ggml_cpy(ctx0,
  8695. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8696. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8697. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8698. if (il == n_layer - 1) {
  8699. // skip computing output for unused tokens
  8700. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8701. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8702. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8703. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8704. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8705. }
  8706. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8707. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8708. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8709. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8710. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8711. }
  8712. // residual
  8713. cur = ggml_add(ctx0, cur, inpL);
  8714. cb(cur, "l_out", il);
  8715. // input for next layer
  8716. inpL = cur;
  8717. }
  8718. // final rmsnorm
  8719. cur = llm_build_norm(ctx0, inpL, hparams,
  8720. model.output_norm, NULL,
  8721. LLM_NORM_RMS, cb, -1);
  8722. cb(cur, "result_norm", -1);
  8723. // lm_head
  8724. cur = ggml_mul_mat(ctx0, model.output, cur);
  8725. cb(cur, "result_output", -1);
  8726. ggml_build_forward_expand(gf, cur);
  8727. return gf;
  8728. }
  8729. struct ggml_cgraph * build_command_r() {
  8730. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8731. const int64_t n_embd_head = hparams.n_embd_head_v;
  8732. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8733. const float f_logit_scale = hparams.f_logit_scale;
  8734. struct ggml_tensor * cur;
  8735. struct ggml_tensor * inpL;
  8736. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8737. // inp_pos - contains the positions
  8738. struct ggml_tensor * inp_pos = build_inp_pos();
  8739. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8740. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8741. for (int il = 0; il < n_layer; ++il) {
  8742. // norm
  8743. cur = llm_build_norm(ctx0, inpL, hparams,
  8744. model.layers[il].attn_norm, NULL,
  8745. LLM_NORM, cb, il);
  8746. cb(cur, "attn_norm", il);
  8747. struct ggml_tensor * ffn_inp = cur;
  8748. // self-attention
  8749. {
  8750. // compute Q and K and RoPE them
  8751. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8752. cb(Qcur, "Qcur", il);
  8753. if (model.layers[il].bq) {
  8754. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8755. cb(Qcur, "Qcur", il);
  8756. }
  8757. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8758. cb(Kcur, "Kcur", il);
  8759. if (model.layers[il].bk) {
  8760. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8761. cb(Kcur, "Kcur", il);
  8762. }
  8763. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8764. cb(Vcur, "Vcur", il);
  8765. if (model.layers[il].bv) {
  8766. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8767. cb(Vcur, "Vcur", il);
  8768. }
  8769. if (model.layers[il].attn_q_norm) {
  8770. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8771. ggml_element_size(Qcur) * n_embd_head,
  8772. ggml_element_size(Qcur) * n_embd_head * n_head,
  8773. 0);
  8774. cb(Qcur, "Qcur", il);
  8775. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8776. ggml_element_size(Kcur) * n_embd_head,
  8777. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8778. 0);
  8779. cb(Kcur, "Kcur", il);
  8780. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8781. model.layers[il].attn_q_norm,
  8782. NULL,
  8783. LLM_NORM, cb, il);
  8784. cb(Qcur, "Qcur", il);
  8785. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8786. model.layers[il].attn_k_norm,
  8787. NULL,
  8788. LLM_NORM, cb, il);
  8789. cb(Kcur, "Kcur", il);
  8790. }
  8791. Qcur = ggml_rope_custom(
  8792. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8793. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8794. ext_factor, attn_factor, beta_fast, beta_slow
  8795. );
  8796. cb(Qcur, "Qcur", il);
  8797. Kcur = ggml_rope_custom(
  8798. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8799. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8800. ext_factor, attn_factor, beta_fast, beta_slow
  8801. );
  8802. cb(Kcur, "Kcur", il);
  8803. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8804. model.layers[il].wo, model.layers[il].bo,
  8805. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8806. }
  8807. if (il == n_layer - 1) {
  8808. // skip computing output for unused tokens
  8809. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8810. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8811. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8812. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8813. }
  8814. struct ggml_tensor * attn_out = cur;
  8815. // feed-forward network
  8816. {
  8817. cur = llm_build_ffn(ctx0, ffn_inp,
  8818. model.layers[il].ffn_up, NULL,
  8819. model.layers[il].ffn_gate, NULL,
  8820. model.layers[il].ffn_down, NULL,
  8821. NULL,
  8822. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8823. cb(cur, "ffn_out", il);
  8824. }
  8825. // add together residual + FFN + self-attention
  8826. cur = ggml_add(ctx0, cur, inpL);
  8827. cur = ggml_add(ctx0, cur, attn_out);
  8828. cb(cur, "l_out", il);
  8829. // input for next layer
  8830. inpL = cur;
  8831. }
  8832. cur = inpL;
  8833. cur = llm_build_norm(ctx0, cur, hparams,
  8834. model.output_norm, NULL,
  8835. LLM_NORM, cb, -1);
  8836. cb(cur, "result_norm", -1);
  8837. // lm_head
  8838. cur = ggml_mul_mat(ctx0, model.output, cur);
  8839. if (f_logit_scale) {
  8840. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8841. }
  8842. cb(cur, "result_output", -1);
  8843. ggml_build_forward_expand(gf, cur);
  8844. return gf;
  8845. }
  8846. // ref: https://allenai.org/olmo
  8847. // based on the original build_llama() function, changes:
  8848. // * non-parametric layer norm
  8849. // * clamp qkv
  8850. // * removed bias
  8851. // * removed MoE
  8852. struct ggml_cgraph * build_olmo() {
  8853. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8854. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8855. int32_t n_tokens = this->n_tokens;
  8856. const int64_t n_embd_head = hparams.n_embd_head_v;
  8857. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8858. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8859. struct ggml_tensor * cur;
  8860. struct ggml_tensor * inpL;
  8861. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8862. // inp_pos - contains the positions
  8863. struct ggml_tensor * inp_pos = build_inp_pos();
  8864. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8865. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8866. for (int il = 0; il < n_layer; ++il) {
  8867. struct ggml_tensor * inpSA = inpL;
  8868. // norm
  8869. cur = llm_build_norm(ctx0, inpL, hparams,
  8870. NULL, NULL,
  8871. LLM_NORM, cb, il);
  8872. cb(cur, "attn_norm", il);
  8873. // self-attention
  8874. {
  8875. // compute Q and K and RoPE them
  8876. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8877. cb(Qcur, "Qcur", il);
  8878. if (hparams.f_clamp_kqv > 0.0f) {
  8879. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8880. cb(Qcur, "Qcur", il);
  8881. }
  8882. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8883. cb(Kcur, "Kcur", il);
  8884. if (hparams.f_clamp_kqv > 0.0f) {
  8885. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8886. cb(Kcur, "Kcur", il);
  8887. }
  8888. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8889. cb(Vcur, "Vcur", il);
  8890. if (hparams.f_clamp_kqv > 0.0f) {
  8891. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8892. cb(Vcur, "Vcur", il);
  8893. }
  8894. Qcur = ggml_rope_custom(
  8895. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8896. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8897. ext_factor, attn_factor, beta_fast, beta_slow
  8898. );
  8899. cb(Qcur, "Qcur", il);
  8900. Kcur = ggml_rope_custom(
  8901. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8902. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8903. ext_factor, attn_factor, beta_fast, beta_slow
  8904. );
  8905. cb(Kcur, "Kcur", il);
  8906. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8907. model.layers[il].wo, nullptr,
  8908. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8909. }
  8910. if (il == n_layer - 1) {
  8911. // skip computing output for unused tokens
  8912. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8913. n_tokens = n_outputs;
  8914. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8915. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8916. }
  8917. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8918. cb(ffn_inp, "ffn_inp", il);
  8919. // feed-forward network
  8920. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8921. NULL, NULL,
  8922. LLM_NORM, cb, il);
  8923. cb(cur, "ffn_norm", il);
  8924. cur = llm_build_ffn(ctx0, cur,
  8925. model.layers[il].ffn_up, NULL,
  8926. model.layers[il].ffn_gate, NULL,
  8927. model.layers[il].ffn_down, NULL,
  8928. NULL,
  8929. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8930. cb(cur, "ffn_out", il);
  8931. cur = ggml_add(ctx0, cur, ffn_inp);
  8932. cb(cur, "ffn_out", il);
  8933. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8934. if (layer_dir != nullptr) {
  8935. cur = ggml_add(ctx0, cur, layer_dir);
  8936. }
  8937. cb(cur, "l_out", il);
  8938. // input for next layer
  8939. inpL = cur;
  8940. }
  8941. cur = inpL;
  8942. cur = llm_build_norm(ctx0, cur, hparams,
  8943. NULL, NULL,
  8944. LLM_NORM, cb, -1);
  8945. cb(cur, "result_norm", -1);
  8946. // lm_head
  8947. cur = ggml_mul_mat(ctx0, model.output, cur);
  8948. cb(cur, "result_output", -1);
  8949. ggml_build_forward_expand(gf, cur);
  8950. return gf;
  8951. }
  8952. };
  8953. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8954. llama_batch dummy;
  8955. dummy.n_tokens = 0;
  8956. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8957. struct llm_build_context llm(lctx, dummy, cb, false);
  8958. llm.init();
  8959. struct ggml_cgraph * result = llm.build_defrag(ids);
  8960. llm.free();
  8961. return result;
  8962. }
  8963. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8964. llama_batch dummy;
  8965. dummy.n_tokens = 0;
  8966. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8967. struct llm_build_context llm(lctx, dummy, cb, false);
  8968. llm.init();
  8969. struct ggml_cgraph * result = llm.build_k_shift();
  8970. llm.free();
  8971. return result;
  8972. }
  8973. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8974. llama_batch dummy;
  8975. dummy.n_tokens = 0;
  8976. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8977. struct llm_build_context llm(lctx, dummy, cb, false);
  8978. llm.init();
  8979. struct ggml_cgraph * result = llm.build_s_copy();
  8980. llm.free();
  8981. return result;
  8982. }
  8983. static struct ggml_cgraph * llama_build_graph(
  8984. llama_context & lctx,
  8985. const llama_batch & batch,
  8986. bool worst_case) {
  8987. const auto & model = lctx.model;
  8988. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8989. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  8990. if (il >= 0) {
  8991. ggml_format_name(cur, "%s-%d", name, il);
  8992. } else {
  8993. ggml_set_name(cur, name);
  8994. }
  8995. if (!lctx.cparams.offload_kqv) {
  8996. if (strcmp(name, "kqv_merged_cont") == 0) {
  8997. // all nodes between the KV store and the attention output are run on the CPU
  8998. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  8999. }
  9000. }
  9001. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9002. // FIXME: fix in ggml_backend_sched
  9003. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9004. if (batch.n_tokens < 32 || full_offload) {
  9005. if (il != -1 && strcmp(name, "norm") == 0) {
  9006. for (auto * backend : lctx.backends) {
  9007. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  9008. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9009. break;
  9010. }
  9011. }
  9012. }
  9013. }
  9014. };
  9015. struct ggml_cgraph * result = NULL;
  9016. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9017. llm.init();
  9018. switch (model.arch) {
  9019. case LLM_ARCH_LLAMA:
  9020. {
  9021. result = llm.build_llama();
  9022. } break;
  9023. case LLM_ARCH_BAICHUAN:
  9024. {
  9025. result = llm.build_baichuan();
  9026. } break;
  9027. case LLM_ARCH_FALCON:
  9028. {
  9029. result = llm.build_falcon();
  9030. } break;
  9031. case LLM_ARCH_GROK:
  9032. {
  9033. result = llm.build_grok();
  9034. } break;
  9035. case LLM_ARCH_STARCODER:
  9036. {
  9037. result = llm.build_starcoder();
  9038. } break;
  9039. case LLM_ARCH_PERSIMMON:
  9040. {
  9041. result = llm.build_persimmon();
  9042. } break;
  9043. case LLM_ARCH_REFACT:
  9044. {
  9045. result = llm.build_refact();
  9046. } break;
  9047. case LLM_ARCH_BERT:
  9048. case LLM_ARCH_JINA_BERT_V2:
  9049. case LLM_ARCH_NOMIC_BERT:
  9050. {
  9051. result = llm.build_bert();
  9052. } break;
  9053. case LLM_ARCH_BLOOM:
  9054. {
  9055. result = llm.build_bloom();
  9056. } break;
  9057. case LLM_ARCH_MPT:
  9058. {
  9059. result = llm.build_mpt();
  9060. } break;
  9061. case LLM_ARCH_STABLELM:
  9062. {
  9063. result = llm.build_stablelm();
  9064. } break;
  9065. case LLM_ARCH_QWEN:
  9066. {
  9067. result = llm.build_qwen();
  9068. } break;
  9069. case LLM_ARCH_QWEN2:
  9070. {
  9071. result = llm.build_qwen2();
  9072. } break;
  9073. case LLM_ARCH_QWEN2MOE:
  9074. {
  9075. result = llm.build_qwen2moe();
  9076. } break;
  9077. case LLM_ARCH_PHI2:
  9078. {
  9079. result = llm.build_phi2();
  9080. } break;
  9081. case LLM_ARCH_PHI3:
  9082. {
  9083. result = llm.build_phi3();
  9084. } break;
  9085. case LLM_ARCH_PLAMO:
  9086. {
  9087. result = llm.build_plamo();
  9088. } break;
  9089. case LLM_ARCH_GPT2:
  9090. {
  9091. result = llm.build_gpt2();
  9092. } break;
  9093. case LLM_ARCH_CODESHELL:
  9094. {
  9095. result = llm.build_codeshell();
  9096. } break;
  9097. case LLM_ARCH_ORION:
  9098. {
  9099. result = llm.build_orion();
  9100. } break;
  9101. case LLM_ARCH_INTERNLM2:
  9102. {
  9103. result = llm.build_internlm2();
  9104. } break;
  9105. case LLM_ARCH_MINICPM:
  9106. {
  9107. result = llm.build_minicpm();
  9108. } break;
  9109. case LLM_ARCH_GEMMA:
  9110. {
  9111. result = llm.build_gemma();
  9112. } break;
  9113. case LLM_ARCH_STARCODER2:
  9114. {
  9115. result = llm.build_starcoder2();
  9116. } break;
  9117. case LLM_ARCH_MAMBA:
  9118. {
  9119. result = llm.build_mamba();
  9120. } break;
  9121. case LLM_ARCH_XVERSE:
  9122. {
  9123. result = llm.build_xverse();
  9124. } break;
  9125. case LLM_ARCH_COMMAND_R:
  9126. {
  9127. result = llm.build_command_r();
  9128. } break;
  9129. case LLM_ARCH_DBRX:
  9130. {
  9131. result = llm.build_dbrx();
  9132. } break;
  9133. case LLM_ARCH_OLMO:
  9134. {
  9135. result = llm.build_olmo();
  9136. } break;
  9137. default:
  9138. GGML_ASSERT(false);
  9139. }
  9140. llm.free();
  9141. return result;
  9142. }
  9143. static void llama_set_k_shift(llama_context & lctx) {
  9144. const int64_t kv_size = lctx.kv_self.size;
  9145. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9146. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9147. for (int i = 0; i < kv_size; ++i) {
  9148. data[i] = lctx.kv_self.cells[i].delta;
  9149. }
  9150. }
  9151. static void llama_set_s_copy(llama_context & lctx) {
  9152. const int64_t kv_size = lctx.kv_self.size;
  9153. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9154. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9155. for (int i = 0; i < kv_size; ++i) {
  9156. data[i] = lctx.kv_self.cells[i].src;
  9157. }
  9158. }
  9159. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9160. //
  9161. // set input data
  9162. //
  9163. const auto & hparams = lctx.model.hparams;
  9164. const auto & cparams = lctx.cparams;
  9165. const auto & kv_self = lctx.kv_self;
  9166. if (batch.token) {
  9167. const int64_t n_tokens = batch.n_tokens;
  9168. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9169. }
  9170. if (batch.embd) {
  9171. const int64_t n_embd = hparams.n_embd;
  9172. const int64_t n_tokens = batch.n_tokens;
  9173. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9174. }
  9175. if (batch.pos && lctx.inp_pos) {
  9176. const int64_t n_tokens = batch.n_tokens;
  9177. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9178. }
  9179. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9180. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9181. const int64_t n_tokens = batch.n_tokens;
  9182. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9183. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9184. if (lctx.n_outputs == n_tokens) {
  9185. for (int i = 0; i < n_tokens; ++i) {
  9186. data[i] = i;
  9187. }
  9188. } else if (batch.logits) {
  9189. int32_t n_outputs = 0;
  9190. for (int i = 0; i < n_tokens; ++i) {
  9191. if (batch.logits[i]) {
  9192. data[n_outputs++] = i;
  9193. }
  9194. }
  9195. // the graph needs to have been passed the correct number of outputs
  9196. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9197. } else if (lctx.n_outputs == 1) {
  9198. // only keep last output
  9199. data[0] = n_tokens - 1;
  9200. } else {
  9201. GGML_ASSERT(lctx.n_outputs == 0);
  9202. }
  9203. }
  9204. GGML_ASSERT(
  9205. // (!a || b) is a logical implication (a -> b)
  9206. // !hparams.causal_attn -> !cparams.causal_attn
  9207. (hparams.causal_attn || !cparams.causal_attn) &&
  9208. "causal attention with embedding models is not supported"
  9209. );
  9210. if (lctx.inp_KQ_mask) {
  9211. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9212. if (cparams.causal_attn) {
  9213. const int64_t n_kv = kv_self.n;
  9214. const int64_t n_tokens = batch.n_tokens;
  9215. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9216. float * data = (float *) lctx.inp_KQ_mask->data;
  9217. // For causal attention, use only the previous KV cells
  9218. // of the correct sequence for each token of the batch.
  9219. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9220. for (int h = 0; h < 1; ++h) {
  9221. for (int j = 0; j < n_tokens; ++j) {
  9222. const llama_pos pos = batch.pos[j];
  9223. const llama_seq_id seq_id = batch.seq_id[j][0];
  9224. for (int i = 0; i < n_kv; ++i) {
  9225. float f;
  9226. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9227. f = -INFINITY;
  9228. } else {
  9229. if (hparams.use_alibi) {
  9230. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9231. } else {
  9232. f = 0.0f;
  9233. }
  9234. }
  9235. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9236. }
  9237. }
  9238. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  9239. for (int j = 0; j < n_kv; ++j) {
  9240. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  9241. }
  9242. }
  9243. }
  9244. } else {
  9245. // when using kv cache, the mask needs to match the kv cache size
  9246. const int64_t n_tokens = batch.n_tokens;
  9247. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9248. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9249. float * data = (float *) lctx.inp_KQ_mask->data;
  9250. for (int h = 0; h < 1; ++h) {
  9251. for (int j = 0; j < n_tokens; ++j) {
  9252. const llama_seq_id seq_id = batch.seq_id[j][0];
  9253. for (int i = 0; i < n_tokens; ++i) {
  9254. float f = -INFINITY;
  9255. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9256. if (batch.seq_id[i][s] == seq_id) {
  9257. if (hparams.use_alibi) {
  9258. f = -fabs(batch.pos[i] - batch.pos[j]);
  9259. } else {
  9260. f = 0.0f;
  9261. }
  9262. break;
  9263. }
  9264. }
  9265. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9266. }
  9267. for (int i = n_tokens; i < n_stride; ++i) {
  9268. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9269. }
  9270. }
  9271. }
  9272. }
  9273. }
  9274. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9275. const int64_t n_tokens = batch.n_tokens;
  9276. GGML_ASSERT(lctx.inp_mean);
  9277. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9278. float * data = (float *) lctx.inp_mean->data;
  9279. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9280. std::vector<uint64_t> sum(n_tokens, 0);
  9281. for (int i = 0; i < n_tokens; ++i) {
  9282. const llama_seq_id seq_id = batch.seq_id[i][0];
  9283. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9284. sum[seq_id] += 1;
  9285. }
  9286. std::vector<float> div(n_tokens, 0.0f);
  9287. for (int i = 0; i < n_tokens; ++i) {
  9288. const uint64_t s = sum[i];
  9289. if (s > 0) {
  9290. div[i] = 1.0f/float(s);
  9291. }
  9292. }
  9293. for (int i = 0; i < n_tokens; ++i) {
  9294. const llama_seq_id seq_id = batch.seq_id[i][0];
  9295. data[seq_id*n_tokens + i] = div[seq_id];
  9296. }
  9297. }
  9298. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9299. const int64_t n_tokens = batch.n_tokens;
  9300. GGML_ASSERT(lctx.inp_cls);
  9301. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9302. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9303. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9304. for (int i = 0; i < n_tokens; ++i) {
  9305. const llama_seq_id seq_id = batch.seq_id[i][0];
  9306. const llama_pos pos = batch.pos[i];
  9307. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9308. if (pos == 0) {
  9309. data[seq_id] = i;
  9310. }
  9311. }
  9312. }
  9313. if (kv_self.recurrent) {
  9314. const int64_t n_kv = kv_self.n;
  9315. if (lctx.inp_s_mask) {
  9316. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9317. float * data = (float *) lctx.inp_s_mask->data;
  9318. // states which are not affected by the current batch are left untouched
  9319. for (int i = 0; i < n_kv; ++i) {
  9320. llama_seq_id seq_id = i + lctx.kv_self.head;
  9321. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9322. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9323. data[i] = (float) has_self_seq;
  9324. // ensure current sequences will be kept
  9325. if (!has_self_seq && kv_cell.pos >= 0) {
  9326. kv_cell.seq_id.insert(seq_id);
  9327. }
  9328. }
  9329. }
  9330. // For Mamba (and other recurrent architectures),
  9331. // update the correct state(s)/sequence(s) for each token of the batch.
  9332. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9333. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9334. if (lctx.inp_s_seq) {
  9335. const int64_t n_tokens = batch.n_tokens;
  9336. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9337. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9338. for (int j = 0; j < n_tokens; ++j) {
  9339. const int32_t n_seq = batch.n_seq_id[j];
  9340. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9341. for (int i = 0; i < n_kv; ++i) {
  9342. if (i < n_seq) {
  9343. // for this type of model, the head is the minimum seq_id of the batch
  9344. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9345. } else {
  9346. data[j*n_kv + i] = -1;
  9347. }
  9348. }
  9349. }
  9350. }
  9351. }
  9352. }
  9353. // Make sure enough space is available for outputs.
  9354. // Returns max number of outputs for which space was reserved.
  9355. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9356. const auto & cparams = lctx.cparams;
  9357. const auto & hparams = lctx.model.hparams;
  9358. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9359. const auto n_batch = cparams.n_batch;
  9360. const auto n_vocab = hparams.n_vocab;
  9361. const auto n_embd = hparams.n_embd;
  9362. // TODO: use a per-batch flag for logits presence instead
  9363. const bool has_logits = cparams.causal_attn;
  9364. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9365. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9366. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9367. if (lctx.output_ids.empty()) {
  9368. // init, never resized afterwards
  9369. lctx.output_ids.resize(n_batch);
  9370. }
  9371. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9372. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9373. // alloc only when more than the current capacity is required
  9374. // TODO: also consider shrinking the buffer
  9375. if (!lctx.buf_output || prev_size < new_size) {
  9376. if (lctx.buf_output) {
  9377. #ifndef NDEBUG
  9378. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9379. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9380. #endif
  9381. ggml_backend_buffer_free(lctx.buf_output);
  9382. lctx.buf_output = nullptr;
  9383. lctx.logits = nullptr;
  9384. lctx.embd = nullptr;
  9385. }
  9386. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9387. if (lctx.buf_output == nullptr) {
  9388. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9389. return 0;
  9390. }
  9391. }
  9392. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9393. lctx.logits = has_logits ? output_base : nullptr;
  9394. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9395. lctx.output_size = n_outputs_max;
  9396. lctx.logits_size = logits_size;
  9397. lctx.embd_size = embd_size;
  9398. // set all ids as invalid (negative)
  9399. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9400. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9401. lctx.n_outputs = 0;
  9402. return n_outputs_max;
  9403. }
  9404. static void llama_graph_compute(
  9405. llama_context & lctx,
  9406. ggml_cgraph * gf,
  9407. int n_threads) {
  9408. #ifdef GGML_USE_MPI
  9409. const int64_t n_layer = lctx.model.hparams.n_layer;
  9410. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  9411. #endif
  9412. #ifdef GGML_USE_METAL
  9413. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9414. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9415. }
  9416. #endif
  9417. if (lctx.backend_cpu != nullptr) {
  9418. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9419. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9420. }
  9421. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9422. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9423. #ifdef GGML_USE_MPI
  9424. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  9425. #endif
  9426. }
  9427. // decode a batch of tokens by evaluating the transformer
  9428. //
  9429. // - lctx: llama context
  9430. // - batch: batch to evaluate
  9431. //
  9432. // return 0 on success
  9433. // return positive int on warning
  9434. // return negative int on error
  9435. //
  9436. static int llama_decode_internal(
  9437. llama_context & lctx,
  9438. llama_batch batch_all) { // TODO: rename back to batch
  9439. const uint32_t n_tokens_all = batch_all.n_tokens;
  9440. if (n_tokens_all == 0) {
  9441. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9442. return -1;
  9443. }
  9444. const auto & model = lctx.model;
  9445. const auto & hparams = model.hparams;
  9446. const auto & cparams = lctx.cparams;
  9447. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9448. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9449. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9450. if (lctx.t_compute_start_us == 0) {
  9451. lctx.t_compute_start_us = ggml_time_us();
  9452. }
  9453. lctx.n_queued_tokens += n_tokens_all;
  9454. #ifdef GGML_USE_MPI
  9455. // TODO: needs fix after #3228
  9456. GGML_ASSERT(false && "not implemented");
  9457. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  9458. #endif
  9459. auto & kv_self = lctx.kv_self;
  9460. const int64_t n_embd = hparams.n_embd;
  9461. const int64_t n_vocab = hparams.n_vocab;
  9462. uint32_t n_outputs = 0;
  9463. uint32_t n_outputs_prev = 0;
  9464. const auto n_ubatch = cparams.n_ubatch;
  9465. std::vector<llama_pos> pos;
  9466. std::vector<int32_t> n_seq_id;
  9467. std::vector<llama_seq_id *> seq_id_arr;
  9468. std::vector<std::vector<llama_seq_id>> seq_id;
  9469. // count outputs
  9470. if (batch_all.logits) {
  9471. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9472. n_outputs += batch_all.logits[i] != 0;
  9473. }
  9474. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9475. n_outputs = n_tokens_all;
  9476. } else {
  9477. // keep last output only
  9478. n_outputs = 1;
  9479. }
  9480. // reserve output buffer
  9481. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9482. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9483. return -2;
  9484. };
  9485. // set output mappings
  9486. if (batch_all.logits) {
  9487. int32_t i_logits = 0;
  9488. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9489. if (batch_all.logits[i]) {
  9490. lctx.output_ids[i] = i_logits++;
  9491. }
  9492. }
  9493. } else {
  9494. for (uint32_t i = 0; i < n_outputs; ++i) {
  9495. lctx.output_ids[i] = i;
  9496. }
  9497. }
  9498. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9499. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9500. llama_batch u_batch = {
  9501. /* .n_tokens = */ (int32_t) n_tokens,
  9502. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9503. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9504. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9505. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9506. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9507. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9508. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9509. /* .all_pos_1 = */ batch_all.all_pos_1,
  9510. /* .all_seq_id = */ batch_all.all_seq_id,
  9511. };
  9512. // count the outputs in this u_batch
  9513. {
  9514. int32_t n_outputs_new = 0;
  9515. if (u_batch.logits) {
  9516. for (uint32_t i = 0; i < n_tokens; i++) {
  9517. n_outputs_new += u_batch.logits[i] != 0;
  9518. }
  9519. } else if (n_outputs == n_tokens_all) {
  9520. n_outputs_new = n_tokens;
  9521. } else {
  9522. // keep last output only
  9523. if (cur_token + n_tokens >= n_tokens_all) {
  9524. n_outputs_new = 1;
  9525. }
  9526. }
  9527. // needs to happen before the graph is built
  9528. lctx.n_outputs = n_outputs_new;
  9529. }
  9530. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9531. GGML_ASSERT(n_threads > 0);
  9532. // helpers for smoother batch API transition
  9533. // after deprecating the llama_eval calls, these will be removed
  9534. if (u_batch.pos == nullptr) {
  9535. pos.resize(n_tokens);
  9536. for (uint32_t i = 0; i < n_tokens; i++) {
  9537. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9538. }
  9539. u_batch.pos = pos.data();
  9540. }
  9541. if (u_batch.seq_id == nullptr) {
  9542. n_seq_id.resize(n_tokens);
  9543. seq_id.resize(n_tokens);
  9544. seq_id_arr.resize(n_tokens);
  9545. for (uint32_t i = 0; i < n_tokens; i++) {
  9546. n_seq_id[i] = 1;
  9547. seq_id[i].resize(1);
  9548. seq_id[i][0] = u_batch.all_seq_id;
  9549. seq_id_arr[i] = seq_id[i].data();
  9550. }
  9551. u_batch.n_seq_id = n_seq_id.data();
  9552. u_batch.seq_id = seq_id_arr.data();
  9553. }
  9554. // non-causal masks do not use the KV cache
  9555. if (hparams.causal_attn) {
  9556. llama_kv_cache_update(&lctx);
  9557. // if we have enough unused cells before the current head ->
  9558. // better to start searching from the beginning of the cache, hoping to fill it
  9559. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9560. kv_self.head = 0;
  9561. }
  9562. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9563. return 1;
  9564. }
  9565. if (!kv_self.recurrent) {
  9566. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9567. // after enough generations, the benefit from this heuristic disappears
  9568. // if we start defragmenting the cache, the benefit from this will be more important
  9569. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  9570. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  9571. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9572. }
  9573. }
  9574. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9575. ggml_backend_sched_reset(lctx.sched);
  9576. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9577. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9578. // the output is always the last tensor in the graph
  9579. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9580. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9581. if (lctx.n_outputs == 0) {
  9582. // no output
  9583. res = nullptr;
  9584. embd = nullptr;
  9585. } else if (!hparams.causal_attn) {
  9586. res = nullptr; // do not extract logits for embedding models such as BERT
  9587. // token or sequence embeddings
  9588. embd = gf->nodes[gf->n_nodes - 1];
  9589. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9590. } else if (cparams.embeddings) {
  9591. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9592. int i_embd = gf->n_nodes - 2;
  9593. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9594. i_embd = gf->n_nodes - i;
  9595. if (i_embd < 0) { break; }
  9596. embd = gf->nodes[i_embd];
  9597. }
  9598. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9599. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9600. if (!cparams.causal_attn) {
  9601. res = nullptr; // do not extract logits when not needed
  9602. // skip computing logits
  9603. // TODO: is this safe?
  9604. gf->n_nodes = i_embd + 1;
  9605. }
  9606. } else {
  9607. embd = nullptr; // do not extract embeddings when not needed
  9608. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9609. }
  9610. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9611. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9612. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9613. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9614. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9615. // with the BLAS calls. need a better solution
  9616. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9617. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9618. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9619. n_threads = std::min(4, n_threads);
  9620. }
  9621. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9622. llama_set_inputs(lctx, u_batch);
  9623. llama_graph_compute(lctx, gf, n_threads);
  9624. // update the kv ring buffer
  9625. {
  9626. kv_self.head += n_tokens;
  9627. // Ensure kv cache head points to a valid index.
  9628. if (kv_self.head >= kv_self.size) {
  9629. kv_self.head = 0;
  9630. }
  9631. }
  9632. #ifdef GGML_PERF
  9633. // print timing information per ggml operation (for debugging purposes)
  9634. // requires GGML_PERF to be defined
  9635. ggml_graph_print(gf);
  9636. #endif
  9637. // plot the computation graph in dot format (for debugging purposes)
  9638. //if (n_past%100 == 0) {
  9639. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9640. //}
  9641. // extract logits
  9642. if (res) {
  9643. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9644. GGML_ASSERT(backend_res != nullptr);
  9645. GGML_ASSERT(lctx.logits != nullptr);
  9646. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9647. const int32_t n_outputs_new = lctx.n_outputs;
  9648. if (n_outputs_new) {
  9649. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9650. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9651. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9652. }
  9653. }
  9654. // extract embeddings
  9655. if (embd) {
  9656. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9657. GGML_ASSERT(backend_embd != nullptr);
  9658. switch (cparams.pooling_type) {
  9659. case LLAMA_POOLING_TYPE_NONE:
  9660. {
  9661. // extract token embeddings
  9662. GGML_ASSERT(lctx.embd != nullptr);
  9663. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9664. const int32_t n_outputs_new = lctx.n_outputs;
  9665. if (n_outputs_new) {
  9666. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9667. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9668. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9669. }
  9670. } break;
  9671. case LLAMA_POOLING_TYPE_CLS:
  9672. case LLAMA_POOLING_TYPE_MEAN:
  9673. {
  9674. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9675. // extract sequence embeddings
  9676. auto & embd_seq_out = lctx.embd_seq;
  9677. embd_seq_out.clear();
  9678. for (uint32_t i = 0; i < n_tokens; i++) {
  9679. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9680. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9681. continue;
  9682. }
  9683. embd_seq_out[seq_id].resize(n_embd);
  9684. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9685. }
  9686. } break;
  9687. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9688. {
  9689. GGML_ASSERT(false && "unknown pooling type");
  9690. } break;
  9691. }
  9692. }
  9693. n_outputs_prev += lctx.n_outputs;
  9694. }
  9695. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9696. lctx.n_outputs = n_outputs;
  9697. // wait for the computation to finish (automatically done when obtaining the model output)
  9698. //llama_synchronize(&lctx);
  9699. // decide if we need to defrag the kv cache
  9700. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9701. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9702. // queue defragmentation for next llama_kv_cache_update
  9703. if (fragmentation > cparams.defrag_thold) {
  9704. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9705. llama_kv_cache_defrag(kv_self);
  9706. }
  9707. }
  9708. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  9709. // overlap with device computation.
  9710. ggml_backend_sched_reset(lctx.sched);
  9711. return 0;
  9712. }
  9713. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9714. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9715. auto & kv_self = lctx.kv_self;
  9716. const auto & hparams = lctx.model.hparams;
  9717. const uint32_t n_layer = hparams.n_layer;
  9718. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9719. const uint32_t n_used = kv_self.used;
  9720. assert(n_used <= n_kv);
  9721. //const int64_t t_start = ggml_time_us();
  9722. // number of cells moved
  9723. uint32_t n_moves = 0;
  9724. // each move requires 6*n_layer tensors (see build_defrag)
  9725. // - source view, destination view, copy operation
  9726. // - x2 for keys and values
  9727. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9728. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  9729. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  9730. // determine which KV cells to move where
  9731. //
  9732. // cell i moves to ids[i]
  9733. //
  9734. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9735. //
  9736. std::vector<uint32_t> ids(n_kv, n_kv);
  9737. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9738. const auto & cell0 = kv_self.cells[i0];
  9739. if (!cell0.is_empty()) {
  9740. ids[i0] = i0;
  9741. continue;
  9742. }
  9743. // found a hole - fill it with data from the end of the cache
  9744. uint32_t nh = 1;
  9745. // determine the size of the hole
  9746. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9747. nh++;
  9748. }
  9749. uint32_t nf = 0;
  9750. uint32_t is = n_kv - 1;
  9751. // starting from the end, find nh non-empty cells
  9752. for (; is > i0; --is) {
  9753. const auto & cell1 = kv_self.cells[is];
  9754. if (cell1.is_empty() || ids[is] != n_kv) {
  9755. continue;
  9756. }
  9757. // non-empty cell which is not yet moved
  9758. nf++;
  9759. if (nf == nh) {
  9760. break;
  9761. }
  9762. }
  9763. // this can only happen if `n_used` is not accurate, which would be a bug
  9764. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9765. nf = 0;
  9766. uint32_t i1 = is;
  9767. // are we moving a continuous block of memory?
  9768. bool cont = false;
  9769. // should we stop searching for the next move?
  9770. bool stop = false;
  9771. // go back and move the nf cells to the hole
  9772. for (; i1 < n_kv; ++i1) {
  9773. auto & cell1 = kv_self.cells[i1];
  9774. if (cell1.is_empty() || ids[i1] != n_kv) {
  9775. if (n_moves == max_moves) {
  9776. stop = true;
  9777. break;
  9778. }
  9779. cont = false;
  9780. continue;
  9781. }
  9782. // this cell goes to (i0 + nf)
  9783. ids[i1] = i0 + nf;
  9784. // move the cell meta data
  9785. kv_self.cells[i0 + nf] = cell1;
  9786. // clear the old cell and move the head there
  9787. cell1 = llama_kv_cell();
  9788. kv_self.head = n_used;
  9789. if (!cont) {
  9790. n_moves++;
  9791. cont = true;
  9792. }
  9793. nf++;
  9794. if (nf == nh) {
  9795. break;
  9796. }
  9797. }
  9798. if (stop || n_moves == max_moves) {
  9799. break;
  9800. }
  9801. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9802. i0 += nh - 1;
  9803. }
  9804. if (n_moves == 0) {
  9805. return;
  9806. }
  9807. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9808. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9809. #if 0
  9810. // CPU defrag
  9811. //
  9812. // TODO: optimizations are possible:
  9813. // - multiple threads
  9814. // - avoid copying to the host memory when already there
  9815. //
  9816. // likely not worth the effort, as we have ggml_graph based defrag
  9817. //
  9818. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9819. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9820. const uint32_t kv_size = kv_self.size;
  9821. std::vector<uint8_t> buf_k;
  9822. std::vector<uint8_t> buf_v;
  9823. for (uint32_t il = 0; il < n_layer; ++il) {
  9824. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9825. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9826. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9827. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9828. buf_k.resize(k_size);
  9829. buf_v.resize(v_size);
  9830. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9831. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9832. // batch move [i, i+nm) to [id, id+nm)
  9833. // note: cells can move only to a lower index
  9834. for (uint32_t i = 0; i < n_kv; ++i) {
  9835. const uint32_t id = ids[i];
  9836. if (i == id || id == n_kv) {
  9837. continue;
  9838. }
  9839. uint32_t nm = 1;
  9840. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9841. nm++;
  9842. }
  9843. // move keys
  9844. {
  9845. const int64_t os = i*k_size_row;
  9846. const int64_t od = id*k_size_row;
  9847. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9848. }
  9849. // move values (note: they are transposed)
  9850. {
  9851. const int64_t os = i;
  9852. const int64_t od = id;
  9853. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9854. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9855. }
  9856. }
  9857. i += nm - 1;
  9858. }
  9859. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9860. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9861. }
  9862. #else
  9863. // ggml_graph defrag
  9864. ggml_backend_sched_reset(lctx.sched);
  9865. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9866. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9867. #endif
  9868. //const int64_t t_end = ggml_time_us();
  9869. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9870. }
  9871. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9872. bool need_reserve = false;
  9873. // apply K-shift if needed
  9874. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9875. {
  9876. ggml_backend_sched_reset(lctx.sched);
  9877. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9878. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9879. llama_set_k_shift(lctx);
  9880. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9881. need_reserve = true;
  9882. }
  9883. {
  9884. auto & kv_self = lctx.kv_self;
  9885. kv_self.has_shift = false;
  9886. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9887. kv_self.cells[i].delta = 0;
  9888. }
  9889. }
  9890. }
  9891. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9892. {
  9893. ggml_backend_sched_reset(lctx.sched);
  9894. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9895. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9896. llama_set_s_copy(lctx);
  9897. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9898. need_reserve = true;
  9899. }
  9900. {
  9901. auto & kv_self = lctx.kv_self;
  9902. kv_self.do_copy = false;
  9903. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9904. kv_self.cells[i].src = i;
  9905. }
  9906. }
  9907. }
  9908. // defragment the KV cache if needed
  9909. if (lctx.kv_self.do_defrag) {
  9910. llama_kv_cache_defrag_internal(lctx);
  9911. need_reserve = true;
  9912. lctx.kv_self.do_defrag = false;
  9913. }
  9914. // reserve a worst case graph again
  9915. if (need_reserve) {
  9916. // TODO: extract to a function
  9917. // build worst-case graph
  9918. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9919. int n_past = lctx.cparams.n_ctx - n_tokens;
  9920. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9921. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9922. // initialize scheduler with the worst-case graph
  9923. ggml_backend_sched_reset(lctx.sched);
  9924. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9925. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9926. }
  9927. }
  9928. }
  9929. //
  9930. // tokenizer
  9931. //
  9932. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9933. return vocab.type;
  9934. }
  9935. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9936. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9937. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9938. }
  9939. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9940. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9941. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9942. }
  9943. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9944. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9945. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9946. }
  9947. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9948. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9949. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9950. }
  9951. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9952. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9953. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9954. }
  9955. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9956. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9957. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9958. const auto & token_data = vocab.id_to_token.at(id);
  9959. switch (llama_vocab_get_type(vocab)) {
  9960. case LLAMA_VOCAB_TYPE_SPM: {
  9961. auto buf = token_data.text.substr(3, 2);
  9962. return strtol(buf.c_str(), NULL, 16);
  9963. }
  9964. case LLAMA_VOCAB_TYPE_BPE: {
  9965. GGML_ASSERT(false);
  9966. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  9967. }
  9968. case LLAMA_VOCAB_TYPE_WPM: {
  9969. GGML_ASSERT(false);
  9970. }
  9971. default:
  9972. GGML_ASSERT(false);
  9973. }
  9974. }
  9975. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9976. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9977. static const char * hex = "0123456789ABCDEF";
  9978. switch (llama_vocab_get_type(vocab)) {
  9979. case LLAMA_VOCAB_TYPE_SPM: {
  9980. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9981. auto token = vocab.token_to_id.find(buf);
  9982. if (token != vocab.token_to_id.end()) {
  9983. return (*token).second;
  9984. }
  9985. // Try to fall back to just the byte as a string
  9986. const char buf2[2] = { (char)ch, 0 };
  9987. return vocab.token_to_id.at(buf2);
  9988. }
  9989. case LLAMA_VOCAB_TYPE_WPM:
  9990. case LLAMA_VOCAB_TYPE_BPE: {
  9991. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9992. }
  9993. default:
  9994. GGML_ASSERT(false);
  9995. }
  9996. }
  9997. static void llama_escape_whitespace(std::string & text) {
  9998. replace_all(text, " ", "\xe2\x96\x81");
  9999. }
  10000. static void llama_unescape_whitespace(std::string & word) {
  10001. replace_all(word, "\xe2\x96\x81", " ");
  10002. }
  10003. struct llm_symbol {
  10004. using index = int;
  10005. index prev;
  10006. index next;
  10007. const char * text;
  10008. size_t n;
  10009. };
  10010. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10011. // SPM tokenizer
  10012. // original implementation:
  10013. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10014. struct llm_bigram_spm {
  10015. struct comparator {
  10016. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10017. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10018. }
  10019. };
  10020. using queue_storage = std::vector<llm_bigram_spm>;
  10021. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10022. llm_symbol::index left;
  10023. llm_symbol::index right;
  10024. float score;
  10025. size_t size;
  10026. };
  10027. struct llm_tokenizer_spm {
  10028. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10029. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10030. // split string into utf8 chars
  10031. int index = 0;
  10032. size_t offs = 0;
  10033. while (offs < text.size()) {
  10034. llm_symbol sym;
  10035. size_t len = utf8_len(text[offs]);
  10036. sym.text = text.c_str() + offs;
  10037. sym.n = std::min(len, text.size() - offs);
  10038. offs += sym.n;
  10039. sym.prev = index - 1;
  10040. sym.next = offs == text.size() ? -1 : index + 1;
  10041. index++;
  10042. symbols.emplace_back(sym);
  10043. }
  10044. // seed the work queue with all possible 2-character tokens.
  10045. for (size_t i = 1; i < symbols.size(); ++i) {
  10046. try_add_bigram(i - 1, i);
  10047. }
  10048. // keep substituting the highest frequency pairs for as long as we can.
  10049. while (!work_queue.empty()) {
  10050. auto bigram = work_queue.top();
  10051. work_queue.pop();
  10052. auto & left_sym = symbols[bigram.left];
  10053. auto & right_sym = symbols[bigram.right];
  10054. // if one of the symbols already got merged, skip it.
  10055. if (left_sym.n == 0 || right_sym.n == 0 ||
  10056. left_sym.n + right_sym.n != bigram.size) {
  10057. continue;
  10058. }
  10059. // merge the right sym into the left one
  10060. left_sym.n += right_sym.n;
  10061. right_sym.n = 0;
  10062. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10063. // remove the right sym from the chain
  10064. left_sym.next = right_sym.next;
  10065. if (right_sym.next >= 0) {
  10066. symbols[right_sym.next].prev = bigram.left;
  10067. }
  10068. // find more substitutions
  10069. try_add_bigram(left_sym.prev, bigram.left);
  10070. try_add_bigram(bigram.left, left_sym.next);
  10071. }
  10072. for (int i = 0; i != -1; i = symbols[i].next) {
  10073. auto & symbol = symbols[i];
  10074. resegment(symbol, output);
  10075. }
  10076. }
  10077. private:
  10078. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10079. auto text = std::string(symbol.text, symbol.n);
  10080. auto token = vocab.token_to_id.find(text);
  10081. // Do we need to support is_unused?
  10082. if (token != vocab.token_to_id.end()) {
  10083. output.push_back((*token).second);
  10084. return;
  10085. }
  10086. const auto p = rev_merge.find(text);
  10087. if (p == rev_merge.end()) {
  10088. // output any symbols that did not form tokens as bytes.
  10089. output.reserve(output.size() + symbol.n);
  10090. for (int j = 0; j < (int)symbol.n; ++j) {
  10091. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10092. output.push_back(token_id);
  10093. }
  10094. return;
  10095. }
  10096. resegment(symbols[p->second.first], output);
  10097. resegment(symbols[p->second.second], output);
  10098. }
  10099. void try_add_bigram(int left, int right) {
  10100. if (left == -1 || right == -1) {
  10101. return;
  10102. }
  10103. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10104. auto token = vocab.token_to_id.find(text);
  10105. if (token == vocab.token_to_id.end()) {
  10106. return;
  10107. }
  10108. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10109. return;
  10110. }
  10111. const auto & tok_data = vocab.id_to_token[(*token).second];
  10112. llm_bigram_spm bigram;
  10113. bigram.left = left;
  10114. bigram.right = right;
  10115. bigram.score = tok_data.score;
  10116. bigram.size = text.size();
  10117. work_queue.push(bigram);
  10118. // Do we need to support is_unused?
  10119. rev_merge[text] = std::make_pair(left, right);
  10120. }
  10121. const llama_vocab & vocab;
  10122. std::vector<llm_symbol> symbols;
  10123. llm_bigram_spm::queue work_queue;
  10124. std::map<std::string, std::pair<int, int>> rev_merge;
  10125. };
  10126. // BPE tokenizer
  10127. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10128. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10129. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10130. struct llm_bigram_bpe {
  10131. struct comparator {
  10132. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10133. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10134. }
  10135. };
  10136. using queue_storage = std::vector<llm_bigram_bpe>;
  10137. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10138. llm_symbol::index left;
  10139. llm_symbol::index right;
  10140. std::string text;
  10141. int rank;
  10142. size_t size;
  10143. };
  10144. struct llm_tokenizer_bpe {
  10145. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  10146. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10147. int final_prev_index = -1;
  10148. bool ignore_merges = false;
  10149. std::vector<std::string> word_collection;
  10150. switch (vocab.type) {
  10151. case LLAMA_VOCAB_TYPE_BPE:
  10152. switch (vocab.type_pre) {
  10153. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10154. ignore_merges = true;
  10155. word_collection = unicode_regex_split(text, {
  10156. // original regex from tokenizer.json
  10157. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10158. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10159. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10160. });
  10161. break;
  10162. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10163. word_collection = unicode_regex_split(text, {
  10164. // same as llama3
  10165. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10166. });
  10167. break;
  10168. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10169. word_collection = unicode_regex_split(text, {
  10170. "[\r\n]",
  10171. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10172. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10173. "\\s+$",
  10174. "[一-龥ࠀ-一가-퟿]+",
  10175. "\\p{N}+",
  10176. });
  10177. break;
  10178. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10179. word_collection = unicode_regex_split(text, {
  10180. "[\r\n]",
  10181. "\\s?\\p{L}+",
  10182. "\\s?\\p{P}+",
  10183. "[一-龥ࠀ-一가-퟿]+",
  10184. "\\p{N}",
  10185. });
  10186. break;
  10187. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10188. word_collection = unicode_regex_split(text, {
  10189. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10190. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10191. "[0-9][0-9][0-9]",
  10192. });
  10193. break;
  10194. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10195. // TODO: MPT pre-tokenization regexes are unknown
  10196. // the following are close, but not exact. run the following:
  10197. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10198. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10199. word_collection = unicode_regex_split(text, {
  10200. "\\s?\\p{L}+",
  10201. "\\s?\\p{P}+",
  10202. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10203. });
  10204. break;
  10205. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10206. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10207. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10208. word_collection = unicode_regex_split(text, {
  10209. "\\p{N}",
  10210. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10211. });
  10212. break;
  10213. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10214. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10215. word_collection = unicode_regex_split(text, {
  10216. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10217. });
  10218. break;
  10219. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10220. word_collection = unicode_regex_split(text, {
  10221. // original regex from tokenizer.json
  10222. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10223. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10224. });
  10225. break;
  10226. default:
  10227. // default regex for BPE tokenization pre-processing
  10228. word_collection = unicode_regex_split(text, {
  10229. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10230. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10231. "\\p{N}+",
  10232. "[0-9][0-9][0-9]",
  10233. });
  10234. break;
  10235. }
  10236. break;
  10237. default:
  10238. GGML_ASSERT(false);
  10239. break;
  10240. }
  10241. symbols_final.clear();
  10242. for (auto & word : word_collection) {
  10243. work_queue = llm_bigram_bpe::queue();
  10244. symbols.clear();
  10245. int index = 0;
  10246. size_t offset = 0;
  10247. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  10248. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  10249. offset = word.size();
  10250. }
  10251. while (offset < word.size()) {
  10252. llm_symbol sym;
  10253. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10254. sym.text = word.c_str() + offset;
  10255. sym.n = char_len;
  10256. offset += sym.n;
  10257. sym.prev = index - 1;
  10258. sym.next = offset == word.size() ? -1 : index + 1;
  10259. index++;
  10260. symbols.emplace_back(sym);
  10261. }
  10262. for (size_t i = 1; i < symbols.size(); ++i) {
  10263. add_new_bigram(i - 1, i);
  10264. }
  10265. // build token(s)
  10266. while (!work_queue.empty()) {
  10267. auto bigram = work_queue.top();
  10268. work_queue.pop();
  10269. auto & left_symbol = symbols[bigram.left];
  10270. auto & right_symbol = symbols[bigram.right];
  10271. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10272. continue;
  10273. }
  10274. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10275. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10276. if (left_token + right_token != bigram.text) {
  10277. continue; // Skip this bigram if it's outdated
  10278. }
  10279. // merge the right sym into the left one
  10280. left_symbol.n += right_symbol.n;
  10281. right_symbol.n = 0;
  10282. // remove the right sym from the chain
  10283. left_symbol.next = right_symbol.next;
  10284. if (right_symbol.next >= 0) {
  10285. symbols[right_symbol.next].prev = bigram.left;
  10286. }
  10287. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10288. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10289. }
  10290. // add the finished tokens to the final list keeping correct order for next and prev
  10291. for (auto & sym : symbols) {
  10292. if (sym.n > 0) {
  10293. sym.prev = final_prev_index;
  10294. sym.next = -1;
  10295. if (final_prev_index != -1) {
  10296. symbols_final[final_prev_index].next = symbols_final.size();
  10297. }
  10298. symbols_final.emplace_back(sym);
  10299. final_prev_index = symbols_final.size() - 1;
  10300. }
  10301. }
  10302. }
  10303. symbols = symbols_final;
  10304. if (!symbols.empty()) {
  10305. for (int i = 0; i != -1; i = symbols[i].next) {
  10306. auto & symbol = symbols[i];
  10307. if (symbol.n == 0) {
  10308. continue;
  10309. }
  10310. const std::string str = std::string(symbol.text, symbol.n);
  10311. const auto token = vocab.token_to_id.find(str);
  10312. if (token == vocab.token_to_id.end()) {
  10313. for (auto j = str.begin(); j != str.end(); ++j) {
  10314. std::string byte_str(1, *j);
  10315. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10316. if (token_multibyte == vocab.token_to_id.end()) {
  10317. throw std::runtime_error("ERROR: byte not found in vocab");
  10318. }
  10319. output.push_back((*token_multibyte).second);
  10320. }
  10321. } else {
  10322. output.push_back((*token).second);
  10323. }
  10324. }
  10325. }
  10326. }
  10327. private:
  10328. void add_new_bigram(int left, int right) {
  10329. if (left == -1 || right == -1) {
  10330. return;
  10331. }
  10332. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10333. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10334. int rank_found = -1;
  10335. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10336. if (rank_found < 0) {
  10337. return;
  10338. }
  10339. llm_bigram_bpe bigram;
  10340. bigram.left = left;
  10341. bigram.right = right;
  10342. bigram.text = left_token + right_token;
  10343. bigram.size = left_token.size() + right_token.size();
  10344. bigram.rank = rank_found;
  10345. work_queue.push(bigram);
  10346. }
  10347. const llama_vocab & vocab;
  10348. std::vector<llm_symbol> symbols;
  10349. std::vector<llm_symbol> symbols_final;
  10350. llm_bigram_bpe::queue work_queue;
  10351. };
  10352. struct llm_tokenizer_wpm {
  10353. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10354. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10355. auto * token_map = &vocab.token_to_id;
  10356. // normalize and split by whitespace
  10357. std::vector<std::string> words = preprocess(text);
  10358. // bos token prepended already
  10359. // find the longest tokens that form the words
  10360. for (const std::string &word : words) {
  10361. // skip empty words
  10362. if (word.size() == 0) {
  10363. continue;
  10364. }
  10365. // prepend phantom space
  10366. std::string word1 = "\xe2\x96\x81" + word;
  10367. int n = word1.size();
  10368. // we're at the start of a new word
  10369. int i = 0;
  10370. bool match_any = false;
  10371. // move through character position in word
  10372. while (i < n) {
  10373. // loop through possible match length
  10374. bool match = false;
  10375. for (int j = n; j > i; j--) {
  10376. auto it = token_map->find(word1.substr(i, j - i));
  10377. if (it != token_map->end()) {
  10378. output.push_back(it->second);
  10379. match = true;
  10380. match_any = true;
  10381. i = j;
  10382. break;
  10383. }
  10384. }
  10385. // must be an unknown character
  10386. if (!match) {
  10387. i++;
  10388. }
  10389. }
  10390. // we didn't find any matches for this word
  10391. if (!match_any) {
  10392. output.push_back(vocab.special_unk_id);
  10393. }
  10394. }
  10395. }
  10396. std::vector<std::string> preprocess(const std::string & text) {
  10397. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10398. // strip accents, strip control, uniformize whitespace,
  10399. // to lowercase, pad chinese characters, pad punctuation
  10400. std::string new_str = "";
  10401. for (uint32_t code : cpts_nfd) {
  10402. int type = unicode_cpt_type(code);
  10403. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  10404. continue;
  10405. }
  10406. code = unicode_tolower(code);
  10407. if (type == CODEPOINT_TYPE_SEPARATOR) {
  10408. code = ' ';
  10409. }
  10410. std::string s = unicode_cpt_to_utf8(code);
  10411. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  10412. new_str += " ";
  10413. new_str += s;
  10414. new_str += " ";
  10415. } else {
  10416. new_str += s;
  10417. }
  10418. }
  10419. // split by whitespace
  10420. uint64_t l = 0;
  10421. uint64_t r = 0;
  10422. std::vector<std::string> words;
  10423. while (r < new_str.size()) {
  10424. // if is whitespace
  10425. if (isspace(new_str[r], std::locale::classic())) {
  10426. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10427. l = r + 1;
  10428. r = l;
  10429. } else {
  10430. r += 1;
  10431. }
  10432. }
  10433. if (r > l) {
  10434. words.push_back(new_str.substr(l, (r - l)));
  10435. }
  10436. return words;
  10437. }
  10438. bool is_ascii_punct(uint32_t code) {
  10439. if (code > 0xFF) {
  10440. return false;
  10441. }
  10442. auto c = char(static_cast<unsigned char>(code));
  10443. return ispunct(c, std::locale::classic());
  10444. }
  10445. bool is_chinese_char(uint32_t cpt) {
  10446. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10447. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10448. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10449. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10450. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10451. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10452. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10453. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10454. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10455. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10456. return true; // NOLINT
  10457. }
  10458. return false;
  10459. }
  10460. const llama_vocab & vocab;
  10461. };
  10462. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10463. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10464. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10465. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10466. struct fragment_buffer_variant {
  10467. fragment_buffer_variant(llama_vocab::id _token)
  10468. :
  10469. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10470. token(_token),
  10471. raw_text(_dummy),
  10472. offset(0),
  10473. length(0) {}
  10474. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10475. :
  10476. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10477. token((llama_vocab::id) - 1),
  10478. raw_text(_raw_text),
  10479. offset(_offset),
  10480. length(_length){
  10481. GGML_ASSERT(_offset >= 0);
  10482. GGML_ASSERT(_length >= 1);
  10483. GGML_ASSERT(offset + length <= raw_text.length());
  10484. }
  10485. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10486. const llama_vocab::id token;
  10487. const std::string _dummy;
  10488. const std::string & raw_text;
  10489. const uint64_t offset;
  10490. const uint64_t length;
  10491. };
  10492. // #define PRETOKENIZERDEBUG
  10493. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10494. // for each special token
  10495. for (const auto & st: vocab.special_tokens_cache) {
  10496. const auto & special_token = st.first;
  10497. const auto & special_id = st.second;
  10498. // for each text fragment
  10499. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10500. while (it != buffer.end()) {
  10501. auto & fragment = (*it);
  10502. // if a fragment is text ( not yet processed )
  10503. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10504. auto * raw_text = &(fragment.raw_text);
  10505. auto raw_text_base_offset = fragment.offset;
  10506. auto raw_text_base_length = fragment.length;
  10507. // loop over the text
  10508. while (true) {
  10509. // find the first occurrence of a given special token in this fragment
  10510. // passing offset argument only limit the "search area" but match coordinates
  10511. // are still relative to the source full raw_text
  10512. auto match = raw_text->find(special_token, raw_text_base_offset);
  10513. // no occurrences found, stop processing this fragment for a given special token
  10514. if (match == std::string::npos) break;
  10515. // check if match is within bounds of offset <-> length
  10516. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10517. #ifdef PRETOKENIZERDEBUG
  10518. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10519. #endif
  10520. auto source = std::distance(buffer.begin(), it);
  10521. // if match is further than base offset
  10522. // then we have some text to the left of it
  10523. if (match > raw_text_base_offset) {
  10524. // left
  10525. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10526. const int64_t left_reminder_length = match - raw_text_base_offset;
  10527. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10528. #ifdef PRETOKENIZERDEBUG
  10529. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10530. #endif
  10531. it++;
  10532. }
  10533. // special token
  10534. buffer.emplace_after(it, special_id);
  10535. it++;
  10536. // right
  10537. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10538. const int64_t right_reminder_offset = match + special_token.length();
  10539. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10540. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10541. #ifdef PRETOKENIZERDEBUG
  10542. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10543. #endif
  10544. it++;
  10545. if (source == 0) {
  10546. buffer.erase_after(buffer.before_begin());
  10547. } else {
  10548. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10549. }
  10550. // repeat for the right side
  10551. raw_text_base_offset = right_reminder_offset;
  10552. raw_text_base_length = right_reminder_length;
  10553. #ifdef PRETOKENIZERDEBUG
  10554. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10555. #endif
  10556. } else {
  10557. if (source == 0) {
  10558. buffer.erase_after(buffer.before_begin());
  10559. } else {
  10560. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10561. }
  10562. break;
  10563. }
  10564. }
  10565. }
  10566. it++;
  10567. }
  10568. }
  10569. }
  10570. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10571. std::vector<llama_vocab::id> output;
  10572. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10573. if (!raw_text.empty()) {
  10574. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10575. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10576. }
  10577. switch (vocab.type) {
  10578. case LLAMA_VOCAB_TYPE_SPM:
  10579. {
  10580. // OG tokenizer behavior:
  10581. //
  10582. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10583. // tokenizer.encode('', add_special_tokens=False) returns []
  10584. if (add_special && vocab.special_add_bos != 0) {
  10585. GGML_ASSERT(vocab.special_bos_id != -1);
  10586. output.push_back(vocab.special_bos_id);
  10587. }
  10588. for (const auto & fragment : fragment_buffer) {
  10589. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10590. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10591. // TODO: It's likely possible to get rid of this string copy entirely
  10592. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10593. // and passing 'add space prefix' as bool argument
  10594. //
  10595. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10596. if (&fragment == &fragment_buffer.front()) {
  10597. if (vocab.add_space_prefix) {
  10598. raw_text = " " + raw_text; // prefix with space if the first token is not special
  10599. }
  10600. }
  10601. #ifdef PRETOKENIZERDEBUG
  10602. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10603. #endif
  10604. llm_tokenizer_spm tokenizer(vocab);
  10605. llama_escape_whitespace(raw_text);
  10606. tokenizer.tokenize(raw_text, output);
  10607. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10608. output.push_back(fragment.token);
  10609. }
  10610. }
  10611. if (add_special && vocab.special_add_eos == 1) {
  10612. GGML_ASSERT(vocab.special_eos_id != -1);
  10613. output.push_back(vocab.special_eos_id);
  10614. }
  10615. } break;
  10616. case LLAMA_VOCAB_TYPE_BPE:
  10617. {
  10618. if (add_special && vocab.special_add_bos != 0) {
  10619. GGML_ASSERT(vocab.special_bos_id != -1);
  10620. output.push_back(vocab.special_bos_id);
  10621. }
  10622. for (const auto & fragment : fragment_buffer) {
  10623. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10624. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10625. #ifdef PRETOKENIZERDEBUG
  10626. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10627. #endif
  10628. llm_tokenizer_bpe tokenizer(vocab);
  10629. tokenizer.tokenize(raw_text, output);
  10630. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10631. output.push_back(fragment.token);
  10632. }
  10633. }
  10634. if (add_special && vocab.special_add_eos == 1) {
  10635. GGML_ASSERT(vocab.special_add_eos != -1);
  10636. output.push_back(vocab.special_eos_id);
  10637. }
  10638. } break;
  10639. case LLAMA_VOCAB_TYPE_WPM:
  10640. {
  10641. if (add_special) {
  10642. GGML_ASSERT(vocab.special_cls_id != -1);
  10643. output.push_back(vocab.special_cls_id);
  10644. }
  10645. for (const auto & fragment : fragment_buffer) {
  10646. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10647. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10648. #ifdef PRETOKENIZERDEBUG
  10649. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10650. #endif
  10651. llm_tokenizer_wpm tokenizer(vocab);
  10652. tokenizer.tokenize(raw_text, output);
  10653. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10654. output.push_back(fragment.token);
  10655. }
  10656. }
  10657. if (add_special) {
  10658. GGML_ASSERT(vocab.special_sep_id != -1);
  10659. output.push_back(vocab.special_sep_id);
  10660. }
  10661. } break;
  10662. case LLAMA_VOCAB_TYPE_NONE:
  10663. GGML_ASSERT(false);
  10664. }
  10665. return output;
  10666. }
  10667. //
  10668. // grammar - internal
  10669. //
  10670. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10671. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10672. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10673. const std::string & src,
  10674. llama_partial_utf8 partial_start) {
  10675. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10676. const char * pos = src.c_str();
  10677. std::vector<uint32_t> code_points;
  10678. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10679. code_points.reserve(src.size() + 1);
  10680. uint32_t value = partial_start.value;
  10681. int n_remain = partial_start.n_remain;
  10682. // continue previous decode, if applicable
  10683. while (*pos != 0 && n_remain > 0) {
  10684. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10685. if ((next_byte >> 6) != 2) {
  10686. // invalid sequence, abort
  10687. code_points.push_back(0);
  10688. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10689. }
  10690. value = (value << 6) + (next_byte & 0x3F);
  10691. ++pos;
  10692. --n_remain;
  10693. }
  10694. if (partial_start.n_remain > 0 && n_remain == 0) {
  10695. code_points.push_back(value);
  10696. }
  10697. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10698. while (*pos != 0) {
  10699. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10700. uint8_t highbits = first_byte >> 4;
  10701. n_remain = lookup[highbits] - 1;
  10702. if (n_remain < 0) {
  10703. // invalid sequence, abort
  10704. code_points.clear();
  10705. code_points.push_back(0);
  10706. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10707. }
  10708. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10709. value = first_byte & mask;
  10710. ++pos;
  10711. while (*pos != 0 && n_remain > 0) {
  10712. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10713. ++pos;
  10714. --n_remain;
  10715. }
  10716. if (n_remain == 0) {
  10717. code_points.push_back(value);
  10718. }
  10719. }
  10720. code_points.push_back(0);
  10721. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10722. }
  10723. // returns true iff pos points to the end of one of the definitions of a rule
  10724. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10725. switch (pos->type) {
  10726. case LLAMA_GRETYPE_END: return true; // NOLINT
  10727. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10728. default: return false;
  10729. }
  10730. }
  10731. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10732. // asserts that pos is pointing to a char range element
  10733. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10734. const llama_grammar_element * pos,
  10735. const uint32_t chr) {
  10736. bool found = false;
  10737. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10738. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10739. do {
  10740. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10741. // inclusive range, e.g. [a-z]
  10742. found = found || (pos->value <= chr && chr <= pos[1].value);
  10743. pos += 2;
  10744. } else {
  10745. // exact char match, e.g. [a] or "a"
  10746. found = found || pos->value == chr;
  10747. pos += 1;
  10748. }
  10749. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10750. return std::make_pair(found == is_positive_char, pos);
  10751. }
  10752. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10753. // range at pos (regular or inverse range)
  10754. // asserts that pos is pointing to a char range element
  10755. static bool llama_grammar_match_partial_char(
  10756. const llama_grammar_element * pos,
  10757. const llama_partial_utf8 partial_utf8) {
  10758. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10759. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10760. uint32_t partial_value = partial_utf8.value;
  10761. int n_remain = partial_utf8.n_remain;
  10762. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10763. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10764. return false;
  10765. }
  10766. // range of possible code points this partial UTF-8 sequence could complete to
  10767. uint32_t low = partial_value << (n_remain * 6);
  10768. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10769. if (low == 0) {
  10770. if (n_remain == 2) {
  10771. low = 1 << 11;
  10772. } else if (n_remain == 3) {
  10773. low = 1 << 16;
  10774. }
  10775. }
  10776. do {
  10777. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10778. // inclusive range, e.g. [a-z]
  10779. if (pos->value <= high && low <= pos[1].value) {
  10780. return is_positive_char;
  10781. }
  10782. pos += 2;
  10783. } else {
  10784. // exact char match, e.g. [a] or "a"
  10785. if (low <= pos->value && pos->value <= high) {
  10786. return is_positive_char;
  10787. }
  10788. pos += 1;
  10789. }
  10790. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10791. return !is_positive_char;
  10792. }
  10793. // transforms a grammar pushdown stack into N possible stacks, all ending
  10794. // at a character range (terminal element)
  10795. static void llama_grammar_advance_stack(
  10796. const std::vector<std::vector<llama_grammar_element>> & rules,
  10797. const std::vector<const llama_grammar_element *> & stack,
  10798. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10799. if (stack.empty()) {
  10800. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10801. new_stacks.emplace_back(stack);
  10802. }
  10803. return;
  10804. }
  10805. const llama_grammar_element * pos = stack.back();
  10806. switch (pos->type) {
  10807. case LLAMA_GRETYPE_RULE_REF: {
  10808. const size_t rule_id = static_cast<size_t>(pos->value);
  10809. const llama_grammar_element * subpos = rules[rule_id].data();
  10810. do {
  10811. // init new stack without the top (pos)
  10812. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10813. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10814. // if this rule ref is followed by another element, add that to stack
  10815. new_stack.push_back(pos + 1);
  10816. }
  10817. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10818. // if alternate is nonempty, add to stack
  10819. new_stack.push_back(subpos);
  10820. }
  10821. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10822. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10823. // scan to end of alternate def
  10824. subpos++;
  10825. }
  10826. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10827. // there's another alternate def of this rule to process
  10828. subpos++;
  10829. } else {
  10830. break;
  10831. }
  10832. } while (true);
  10833. break;
  10834. }
  10835. case LLAMA_GRETYPE_CHAR:
  10836. case LLAMA_GRETYPE_CHAR_NOT:
  10837. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10838. // only add the stack if it's not a duplicate of one we already have
  10839. new_stacks.emplace_back(stack);
  10840. }
  10841. break;
  10842. default:
  10843. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10844. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10845. // those
  10846. GGML_ASSERT(false);
  10847. }
  10848. }
  10849. // takes a set of possible pushdown stacks on a grammar, which are required to
  10850. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10851. // produces the N possible stacks if the given char is accepted at those
  10852. // positions
  10853. void llama_grammar_accept(
  10854. const std::vector<std::vector<llama_grammar_element>> & rules,
  10855. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10856. const uint32_t chr,
  10857. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10858. new_stacks.clear();
  10859. for (const auto & stack : stacks) {
  10860. if (stack.empty()) {
  10861. continue;
  10862. }
  10863. auto match = llama_grammar_match_char(stack.back(), chr);
  10864. if (match.first) {
  10865. const llama_grammar_element * pos = match.second;
  10866. // update top of stack to next element, if any
  10867. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10868. if (!llama_grammar_is_end_of_sequence(pos)) {
  10869. new_stack.push_back(pos);
  10870. }
  10871. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10872. }
  10873. }
  10874. }
  10875. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10876. const std::vector<std::vector<llama_grammar_element>> & rules,
  10877. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10878. const std::vector<llama_grammar_candidate> & candidates);
  10879. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10880. const std::vector<std::vector<llama_grammar_element>> & rules,
  10881. const std::vector<const llama_grammar_element *> & stack,
  10882. const std::vector<llama_grammar_candidate> & candidates) {
  10883. std::vector<llama_grammar_candidate> rejects;
  10884. rejects.reserve(candidates.size());
  10885. if (stack.empty()) {
  10886. for (const auto & tok : candidates) {
  10887. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10888. rejects.push_back(tok);
  10889. }
  10890. }
  10891. return rejects;
  10892. }
  10893. const llama_grammar_element * stack_pos = stack.back();
  10894. std::vector<llama_grammar_candidate> next_candidates;
  10895. next_candidates.reserve(candidates.size());
  10896. for (const auto & tok : candidates) {
  10897. if (*tok.code_points == 0) {
  10898. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10899. // that cannot satisfy this position in grammar
  10900. if (tok.partial_utf8.n_remain != 0 &&
  10901. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10902. rejects.push_back(tok);
  10903. }
  10904. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10905. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10906. } else {
  10907. rejects.push_back(tok);
  10908. }
  10909. }
  10910. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10911. // update top of stack to next element, if any
  10912. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10913. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10914. stack_after.push_back(stack_pos_after);
  10915. }
  10916. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10917. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10918. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10919. for (const auto & tok : next_rejects) {
  10920. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10921. }
  10922. return rejects;
  10923. }
  10924. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10925. const std::vector<std::vector<llama_grammar_element>> & rules,
  10926. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10927. const std::vector<llama_grammar_candidate> & candidates) {
  10928. GGML_ASSERT(!stacks.empty()); // REVIEW
  10929. if (candidates.empty()) {
  10930. return std::vector<llama_grammar_candidate>();
  10931. }
  10932. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10933. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10934. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10935. }
  10936. return rejects;
  10937. }
  10938. static bool llama_grammar_detect_left_recursion(
  10939. const std::vector<std::vector<llama_grammar_element>> & rules,
  10940. size_t rule_index,
  10941. std::vector<bool> * rules_visited,
  10942. std::vector<bool> * rules_in_progress,
  10943. std::vector<bool> * rules_may_be_empty) {
  10944. if ((*rules_in_progress)[rule_index]) {
  10945. return true;
  10946. }
  10947. (*rules_in_progress)[rule_index] = true;
  10948. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  10949. // First check if the rule might produce the empty string. This could be done combined with the second
  10950. // step but it's more readable as two steps.
  10951. bool at_rule_start = true;
  10952. for (size_t i = 0; i < rule.size(); i++) {
  10953. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  10954. if (at_rule_start) {
  10955. (*rules_may_be_empty)[rule_index] = true;
  10956. break;
  10957. }
  10958. at_rule_start = true;
  10959. } else {
  10960. at_rule_start = false;
  10961. }
  10962. }
  10963. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  10964. // be empty)
  10965. bool recurse_into_nonterminal = true;
  10966. for (size_t i = 0; i < rule.size(); i++) {
  10967. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  10968. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  10969. return true;
  10970. }
  10971. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  10972. recurse_into_nonterminal = false;
  10973. }
  10974. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  10975. recurse_into_nonterminal = true;
  10976. } else {
  10977. recurse_into_nonterminal = false;
  10978. }
  10979. }
  10980. (*rules_in_progress)[rule_index] = false;
  10981. (*rules_visited)[rule_index] = true;
  10982. return false;
  10983. }
  10984. //
  10985. // grammar - external
  10986. //
  10987. struct llama_grammar * llama_grammar_init(
  10988. const llama_grammar_element ** rules,
  10989. size_t n_rules,
  10990. size_t start_rule_index) {
  10991. const llama_grammar_element * pos;
  10992. // copy rule definitions into vectors
  10993. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  10994. for (size_t i = 0; i < n_rules; i++) {
  10995. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  10996. vec_rules[i].push_back(*pos);
  10997. }
  10998. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  10999. }
  11000. // Check for left recursion
  11001. std::vector<bool> rules_visited(n_rules);
  11002. std::vector<bool> rules_in_progress(n_rules);
  11003. std::vector<bool> rules_may_be_empty(n_rules);
  11004. for (size_t i = 0; i < n_rules; i++) {
  11005. if (rules_visited[i]) {
  11006. continue;
  11007. }
  11008. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11009. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11010. }
  11011. }
  11012. // loop over alternates of start rule to build initial stacks
  11013. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11014. pos = vec_rules[start_rule_index].data();
  11015. do {
  11016. std::vector<const llama_grammar_element *> stack;
  11017. if (!llama_grammar_is_end_of_sequence(pos)) {
  11018. // if alternate is nonempty, add to stack
  11019. stack.push_back(pos);
  11020. }
  11021. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11022. while (!llama_grammar_is_end_of_sequence(pos)) {
  11023. // scan to end of alternate def
  11024. pos++;
  11025. }
  11026. if (pos->type == LLAMA_GRETYPE_ALT) {
  11027. // there's another alternate def of this rule to process
  11028. pos++;
  11029. } else {
  11030. break;
  11031. }
  11032. } while (true);
  11033. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11034. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11035. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11036. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11037. }
  11038. void llama_grammar_free(struct llama_grammar * grammar) {
  11039. delete grammar;
  11040. }
  11041. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11042. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11043. // redirect elements in stacks to point to new rules
  11044. for (size_t is = 0; is < result->stacks.size(); is++) {
  11045. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11046. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11047. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11048. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11049. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11050. }
  11051. }
  11052. }
  11053. }
  11054. }
  11055. return result;
  11056. }
  11057. //
  11058. // sampling
  11059. //
  11060. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11061. if (seed == LLAMA_DEFAULT_SEED) {
  11062. seed = time(NULL);
  11063. }
  11064. ctx->rng.seed(seed);
  11065. }
  11066. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11067. GGML_ASSERT(candidates->size > 0);
  11068. const int64_t t_start_sample_us = ggml_time_us();
  11069. // Sort the logits in descending order
  11070. if (!candidates->sorted) {
  11071. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11072. return a.logit > b.logit;
  11073. });
  11074. candidates->sorted = true;
  11075. }
  11076. float max_l = candidates->data[0].logit;
  11077. float cum_sum = 0.0f;
  11078. for (size_t i = 0; i < candidates->size; ++i) {
  11079. float p = expf(candidates->data[i].logit - max_l);
  11080. candidates->data[i].p = p;
  11081. cum_sum += p;
  11082. }
  11083. for (size_t i = 0; i < candidates->size; ++i) {
  11084. candidates->data[i].p /= cum_sum;
  11085. }
  11086. if (ctx) {
  11087. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11088. }
  11089. }
  11090. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11091. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11092. // if (k >= (int32_t)candidates->size) {
  11093. // return;
  11094. // }
  11095. const int64_t t_start_sample_us = ggml_time_us();
  11096. if (k <= 0) {
  11097. k = candidates->size;
  11098. }
  11099. k = std::max(k, (int) min_keep);
  11100. k = std::min(k, (int) candidates->size);
  11101. // Sort scores in descending order
  11102. if (!candidates->sorted) {
  11103. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11104. return a.logit > b.logit;
  11105. };
  11106. if (k <= 128) {
  11107. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11108. } else {
  11109. constexpr int nbuckets = 128;
  11110. constexpr float bucket_low = -10.0f;
  11111. constexpr float bucket_high = 10.0f;
  11112. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11113. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11114. std::vector<int> bucket_idx(candidates->size);
  11115. std::vector<int> histo(nbuckets, 0);
  11116. for (int i = 0; i < (int)candidates->size; ++i) {
  11117. const float val = candidates->data[i].logit;
  11118. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11119. ib = std::max(0, std::min(nbuckets-1, ib));
  11120. bucket_idx[i] = ib;
  11121. ++histo[ib];
  11122. }
  11123. int nhave = 0;
  11124. int ib = nbuckets - 1;
  11125. for ( ; ib >= 0; --ib) {
  11126. nhave += histo[ib];
  11127. if (nhave >= k) break;
  11128. }
  11129. std::vector<llama_token_data> tmp_tokens(nhave);
  11130. auto ptr = tmp_tokens.data();
  11131. std::vector<llama_token_data*> bucket_ptrs;
  11132. bucket_ptrs.reserve(nbuckets - ib);
  11133. for (int j = nbuckets - 1; j >= ib; --j) {
  11134. bucket_ptrs.push_back(ptr);
  11135. ptr += histo[j];
  11136. }
  11137. for (int i = 0; i < (int)candidates->size; ++i) {
  11138. int j = bucket_idx[i];
  11139. if (j >= ib) {
  11140. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11141. }
  11142. }
  11143. ptr = tmp_tokens.data();
  11144. int ndone = 0;
  11145. for (int j = nbuckets-1; j > ib; --j) {
  11146. std::sort(ptr, ptr + histo[j], comp);
  11147. ptr += histo[j];
  11148. ndone += histo[j];
  11149. }
  11150. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11151. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11152. }
  11153. candidates->sorted = true;
  11154. }
  11155. candidates->size = k;
  11156. if (ctx) {
  11157. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11158. }
  11159. }
  11160. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11161. if (p >= 1.0f) {
  11162. return;
  11163. }
  11164. llama_sample_softmax(ctx, candidates);
  11165. const int64_t t_start_sample_us = ggml_time_us();
  11166. // Compute the cumulative probabilities
  11167. float cum_sum = 0.0f;
  11168. size_t last_idx = candidates->size;
  11169. for (size_t i = 0; i < candidates->size; ++i) {
  11170. cum_sum += candidates->data[i].p;
  11171. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11172. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11173. if (cum_sum >= p && i + 1 >= min_keep) {
  11174. last_idx = i + 1;
  11175. break;
  11176. }
  11177. }
  11178. // Resize the output vector to keep only the top-p tokens
  11179. candidates->size = last_idx;
  11180. if (ctx) {
  11181. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11182. }
  11183. }
  11184. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11185. if (p <= 0.0f || !candidates->size) {
  11186. return;
  11187. }
  11188. const int64_t t_start_sample_us = ggml_time_us();
  11189. bool min_p_applied = false;
  11190. // if the candidates aren't sorted, try the unsorted implementation first
  11191. if (!candidates->sorted) {
  11192. std::vector<llama_token_data> filtered_tokens;
  11193. float max_logit = -FLT_MAX;
  11194. for (size_t i = 0; i < candidates->size; ++i) {
  11195. max_logit = std::max(max_logit, candidates->data[i].logit);
  11196. }
  11197. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11198. for (size_t i = 0; i < candidates->size; ++i) {
  11199. if (candidates->data[i].logit >= min_logit) {
  11200. filtered_tokens.push_back(candidates->data[i]);
  11201. }
  11202. }
  11203. // if we have enough values the operation was a success
  11204. if (filtered_tokens.size() >= min_keep) {
  11205. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11206. candidates->size = filtered_tokens.size();
  11207. min_p_applied = true;
  11208. }
  11209. }
  11210. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11211. if (!min_p_applied) {
  11212. // Sort the logits in descending order
  11213. if (!candidates->sorted) {
  11214. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11215. return a.logit > b.logit;
  11216. });
  11217. candidates->sorted = true;
  11218. }
  11219. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11220. size_t i = 1; // first token always matches
  11221. for (; i < candidates->size; ++i) {
  11222. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11223. break; // prob too small
  11224. }
  11225. }
  11226. // Resize the output vector to keep only the matching tokens
  11227. candidates->size = i;
  11228. }
  11229. if (ctx) {
  11230. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11231. }
  11232. }
  11233. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11234. if (z >= 1.0f || candidates->size <= 2) {
  11235. return;
  11236. }
  11237. llama_sample_softmax(nullptr, candidates);
  11238. const int64_t t_start_sample_us = ggml_time_us();
  11239. // Compute the first and second derivatives
  11240. std::vector<float> first_derivatives(candidates->size - 1);
  11241. std::vector<float> second_derivatives(candidates->size - 2);
  11242. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11243. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11244. }
  11245. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11246. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11247. }
  11248. // Calculate absolute value of second derivatives
  11249. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11250. second_derivatives[i] = std::abs(second_derivatives[i]);
  11251. }
  11252. // Normalize the second derivatives
  11253. {
  11254. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11255. if (second_derivatives_sum > 1e-6f) {
  11256. for (float & value : second_derivatives) {
  11257. value /= second_derivatives_sum;
  11258. }
  11259. } else {
  11260. for (float & value : second_derivatives) {
  11261. value = 1.0f / second_derivatives.size();
  11262. }
  11263. }
  11264. }
  11265. float cum_sum = 0.0f;
  11266. size_t last_idx = candidates->size;
  11267. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11268. cum_sum += second_derivatives[i];
  11269. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11270. if (cum_sum > z && i >= min_keep) {
  11271. last_idx = i;
  11272. break;
  11273. }
  11274. }
  11275. // Resize the output vector to keep only the tokens above the tail location
  11276. candidates->size = last_idx;
  11277. if (ctx) {
  11278. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11279. }
  11280. }
  11281. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11282. // Reference implementation:
  11283. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11284. if (p >= 1.0f) {
  11285. return;
  11286. }
  11287. // Compute the softmax of logits and calculate entropy
  11288. llama_sample_softmax(nullptr, candidates);
  11289. const int64_t t_start_sample_us = ggml_time_us();
  11290. float entropy = 0.0f;
  11291. for (size_t i = 0; i < candidates->size; ++i) {
  11292. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11293. }
  11294. // Compute the absolute difference between negative log probability and entropy for each candidate
  11295. std::vector<float> shifted_scores;
  11296. for (size_t i = 0; i < candidates->size; ++i) {
  11297. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11298. shifted_scores.push_back(shifted_score);
  11299. }
  11300. // Sort tokens based on the shifted_scores and their corresponding indices
  11301. std::vector<size_t> indices(candidates->size);
  11302. std::iota(indices.begin(), indices.end(), 0);
  11303. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11304. return shifted_scores[a] < shifted_scores[b];
  11305. });
  11306. // Compute the cumulative probabilities
  11307. float cum_sum = 0.0f;
  11308. size_t last_idx = indices.size();
  11309. for (size_t i = 0; i < indices.size(); ++i) {
  11310. size_t idx = indices[i];
  11311. cum_sum += candidates->data[idx].p;
  11312. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11313. if (cum_sum > p && i >= min_keep - 1) {
  11314. last_idx = i + 1;
  11315. break;
  11316. }
  11317. }
  11318. // Resize the output vector to keep only the locally typical tokens
  11319. std::vector<llama_token_data> new_candidates;
  11320. for (size_t i = 0; i < last_idx; ++i) {
  11321. size_t idx = indices[i];
  11322. new_candidates.push_back(candidates->data[idx]);
  11323. }
  11324. // Replace the data in candidates with the new_candidates data
  11325. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11326. candidates->size = new_candidates.size();
  11327. candidates->sorted = false;
  11328. if (ctx) {
  11329. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11330. }
  11331. }
  11332. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11333. const int64_t t_start_sample_us = ggml_time_us();
  11334. // no need to do anything if there is only one (or zero) candidates
  11335. if(candidates_p->size <= 1) {
  11336. return;
  11337. }
  11338. // Calculate maximum possible entropy
  11339. float max_entropy = -logf(1.0f / candidates_p->size);
  11340. llama_sample_softmax(nullptr, candidates_p);
  11341. // Calculate entropy of the softmax probabilities
  11342. float entropy = 0.0f;
  11343. for (size_t i = 0; i < candidates_p->size; ++i) {
  11344. float prob = candidates_p->data[i].p;
  11345. if (prob > 0.0f) { // Ensure no log(0)
  11346. entropy -= prob * logf(prob);
  11347. }
  11348. }
  11349. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11350. float normalized_entropy = entropy / max_entropy;
  11351. // Map the normalized entropy to the desired temperature range using the power function
  11352. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11353. #ifdef DEBUG
  11354. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11355. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11356. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11357. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11358. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11359. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11360. #endif
  11361. // Apply the dynamically calculated temperature scaling
  11362. for (size_t i = 0; i < candidates_p->size; ++i) {
  11363. candidates_p->data[i].logit /= dyn_temp;
  11364. }
  11365. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11366. double max_l_double = candidates_p->data[0].logit;
  11367. double cum_sum_double = 0.0;
  11368. for (size_t i = 0; i < candidates_p->size; ++i) {
  11369. double p = exp(candidates_p->data[i].logit - max_l_double);
  11370. candidates_p->data[i].p = p; // Store the scaled probability
  11371. cum_sum_double += p;
  11372. }
  11373. for (size_t i = 0; i < candidates_p->size; ++i) {
  11374. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11375. }
  11376. #ifdef DEBUG
  11377. // Print the updated top 25 probabilities after temperature scaling
  11378. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11379. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11380. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11381. }
  11382. #endif
  11383. if (ctx) {
  11384. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11385. }
  11386. }
  11387. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11388. const int64_t t_start_sample_us = ggml_time_us();
  11389. for (size_t i = 0; i < candidates_p->size; ++i) {
  11390. candidates_p->data[i].logit /= temp;
  11391. }
  11392. if (ctx) {
  11393. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11394. }
  11395. }
  11396. void llama_sample_repetition_penalties(
  11397. struct llama_context * ctx,
  11398. llama_token_data_array * candidates,
  11399. const llama_token * last_tokens,
  11400. size_t penalty_last_n,
  11401. float penalty_repeat,
  11402. float penalty_freq,
  11403. float penalty_present) {
  11404. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11405. return;
  11406. }
  11407. const int64_t t_start_sample_us = ggml_time_us();
  11408. // Create a frequency map to count occurrences of each token in last_tokens
  11409. std::unordered_map<llama_token, int> token_count;
  11410. for (size_t i = 0; i < penalty_last_n; ++i) {
  11411. token_count[last_tokens[i]]++;
  11412. }
  11413. // Apply frequency and presence penalties to the candidates
  11414. for (size_t i = 0; i < candidates->size; ++i) {
  11415. const auto token_iter = token_count.find(candidates->data[i].id);
  11416. if (token_iter == token_count.end()) {
  11417. continue;
  11418. }
  11419. const int count = token_iter->second;
  11420. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11421. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11422. if (candidates->data[i].logit <= 0) {
  11423. candidates->data[i].logit *= penalty_repeat;
  11424. } else {
  11425. candidates->data[i].logit /= penalty_repeat;
  11426. }
  11427. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11428. }
  11429. candidates->sorted = false;
  11430. if (ctx) {
  11431. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11432. }
  11433. }
  11434. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11435. GGML_ASSERT(ctx);
  11436. const int64_t t_start_sample_us = ggml_time_us();
  11437. bool allow_eog = false;
  11438. for (const auto & stack : grammar->stacks) {
  11439. if (stack.empty()) {
  11440. allow_eog = true;
  11441. break;
  11442. }
  11443. }
  11444. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11445. candidates_decoded.reserve(candidates->size);
  11446. std::vector<llama_grammar_candidate> candidates_grammar;
  11447. candidates_grammar.reserve(candidates->size);
  11448. for (size_t i = 0; i < candidates->size; ++i) {
  11449. const llama_token id = candidates->data[i].id;
  11450. const std::string piece = llama_token_to_piece(ctx, id, false);
  11451. if (llama_token_is_eog(&ctx->model, id)) {
  11452. if (!allow_eog) {
  11453. candidates->data[i].logit = -INFINITY;
  11454. }
  11455. } else if (piece.empty() || piece[0] == 0) {
  11456. candidates->data[i].logit = -INFINITY;
  11457. } else {
  11458. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11459. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11460. }
  11461. }
  11462. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11463. for (const auto & reject : rejects) {
  11464. candidates->data[reject.index].logit = -INFINITY;
  11465. }
  11466. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11467. }
  11468. static void llama_log_softmax(float * array, size_t size) {
  11469. float max_l = *std::max_element(array, array + size);
  11470. float sum = 0.f;
  11471. for (size_t i = 0; i < size; ++i) {
  11472. float p = expf(array[i] - max_l);
  11473. sum += p;
  11474. array[i] = p;
  11475. }
  11476. for (size_t i = 0; i < size; ++i) {
  11477. array[i] = logf(array[i] / sum);
  11478. }
  11479. }
  11480. void llama_sample_apply_guidance(
  11481. struct llama_context * ctx,
  11482. float * logits,
  11483. float * logits_guidance,
  11484. float scale) {
  11485. GGML_ASSERT(ctx);
  11486. const auto t_start_sample_us = ggml_time_us();
  11487. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11488. llama_log_softmax(logits, n_vocab);
  11489. llama_log_softmax(logits_guidance, n_vocab);
  11490. for (int i = 0; i < n_vocab; ++i) {
  11491. auto & l = logits[i];
  11492. const auto & g = logits_guidance[i];
  11493. l = scale * (l - g) + g;
  11494. }
  11495. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11496. }
  11497. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11498. GGML_ASSERT(ctx);
  11499. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11500. int64_t t_start_sample_us;
  11501. t_start_sample_us = ggml_time_us();
  11502. llama_sample_softmax(nullptr, candidates);
  11503. // Estimate s_hat using the most probable m tokens
  11504. float s_hat = 0.0;
  11505. float sum_ti_bi = 0.0;
  11506. float sum_ti_sq = 0.0;
  11507. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11508. float t_i = logf(float(i + 2) / float(i + 1));
  11509. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11510. sum_ti_bi += t_i * b_i;
  11511. sum_ti_sq += t_i * t_i;
  11512. }
  11513. s_hat = sum_ti_bi / sum_ti_sq;
  11514. // Compute k from the estimated s_hat and target surprise value
  11515. float epsilon_hat = s_hat - 1;
  11516. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11517. // Sample the next word X using top-k sampling
  11518. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11519. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11520. llama_token X = llama_sample_token(ctx, candidates);
  11521. t_start_sample_us = ggml_time_us();
  11522. // Compute error as the difference between observed surprise and target surprise value
  11523. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11524. return candidate.id == X;
  11525. }));
  11526. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11527. float e = observed_surprise - tau;
  11528. // Update mu using the learning rate and error
  11529. *mu = *mu - eta * e;
  11530. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11531. return X;
  11532. }
  11533. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11534. int64_t t_start_sample_us;
  11535. t_start_sample_us = ggml_time_us();
  11536. llama_sample_softmax(ctx, candidates);
  11537. // Truncate the words with surprise values greater than mu
  11538. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11539. return -log2f(candidate.p) > *mu;
  11540. }));
  11541. if (candidates->size == 0) {
  11542. candidates->size = 1;
  11543. }
  11544. if (ctx) {
  11545. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11546. }
  11547. // Normalize the probabilities of the remaining words
  11548. llama_sample_softmax(ctx, candidates);
  11549. // Sample the next word X from the remaining words
  11550. llama_token X = llama_sample_token(ctx, candidates);
  11551. t_start_sample_us = ggml_time_us();
  11552. // Compute error as the difference between observed surprise and target surprise value
  11553. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11554. return candidate.id == X;
  11555. }));
  11556. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11557. float e = observed_surprise - tau;
  11558. // Update mu using the learning rate and error
  11559. *mu = *mu - eta * e;
  11560. if (ctx) {
  11561. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11562. }
  11563. return X;
  11564. }
  11565. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11566. const int64_t t_start_sample_us = ggml_time_us();
  11567. // Find max element
  11568. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11569. return a.logit < b.logit;
  11570. });
  11571. llama_token result = max_iter->id;
  11572. if (ctx) {
  11573. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11574. ctx->n_sample++;
  11575. }
  11576. return result;
  11577. }
  11578. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11579. GGML_ASSERT(ctx);
  11580. const int64_t t_start_sample_us = ggml_time_us();
  11581. llama_sample_softmax(nullptr, candidates);
  11582. std::vector<float> probs;
  11583. probs.reserve(candidates->size);
  11584. for (size_t i = 0; i < candidates->size; ++i) {
  11585. probs.push_back(candidates->data[i].p);
  11586. }
  11587. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11588. int idx = dist(rng);
  11589. llama_token result = candidates->data[idx].id;
  11590. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11591. ctx->n_sample++;
  11592. return result;
  11593. }
  11594. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11595. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11596. }
  11597. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11598. const int64_t t_start_sample_us = ggml_time_us();
  11599. if (llama_token_is_eog(&ctx->model, token)) {
  11600. for (const auto & stack : grammar->stacks) {
  11601. if (stack.empty()) {
  11602. return;
  11603. }
  11604. }
  11605. GGML_ASSERT(false);
  11606. }
  11607. const std::string piece = llama_token_to_piece(ctx, token, false);
  11608. // Note terminating 0 in decoded string
  11609. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11610. const auto & code_points = decoded.first;
  11611. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11612. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11613. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11614. grammar->stacks = tmp_new_stacks;
  11615. }
  11616. grammar->partial_utf8 = decoded.second;
  11617. GGML_ASSERT(!grammar->stacks.empty());
  11618. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11619. }
  11620. //
  11621. // Beam search
  11622. //
  11623. struct llama_beam {
  11624. std::vector<llama_token> tokens;
  11625. float p; // Cumulative beam probability (renormalized relative to all beams)
  11626. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11627. // Sort beams by probability. In case of ties, prefer beams at eob.
  11628. bool operator<(const llama_beam & rhs) const {
  11629. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11630. }
  11631. // Shift off first n tokens and discard them.
  11632. void shift_tokens(const size_t n) {
  11633. if (n) {
  11634. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11635. tokens.resize(tokens.size() - n);
  11636. }
  11637. }
  11638. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11639. };
  11640. // A struct for calculating logit-related info.
  11641. struct llama_logit_info {
  11642. const float * const logits;
  11643. const int n_vocab;
  11644. const float max_l;
  11645. const float normalizer;
  11646. struct sum_exp {
  11647. float max_l;
  11648. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11649. };
  11650. llama_logit_info(llama_context * ctx)
  11651. : logits(llama_get_logits(ctx))
  11652. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11653. , max_l(*std::max_element(logits, logits + n_vocab))
  11654. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11655. { }
  11656. llama_token_data get_token_data(const llama_token token_id) const {
  11657. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11658. return {token_id, logits[token_id], p};
  11659. }
  11660. // Return top k token_data by logit.
  11661. std::vector<llama_token_data> top_k(size_t k) {
  11662. std::vector<llama_token_data> min_heap; // min-heap by logit
  11663. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11664. min_heap.reserve(k_min);
  11665. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11666. min_heap.push_back(get_token_data(token_id));
  11667. }
  11668. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11669. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11670. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11671. if (min_heap.front().logit < logits[token_id]) {
  11672. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11673. min_heap.back().id = token_id;
  11674. min_heap.back().logit = logits[token_id];
  11675. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11676. }
  11677. }
  11678. return min_heap;
  11679. }
  11680. float probability_from_logit(float logit) const {
  11681. return normalizer * std::exp(logit - max_l);
  11682. }
  11683. };
  11684. struct llama_beam_search_data {
  11685. llama_context * ctx;
  11686. size_t n_beams;
  11687. int n_past;
  11688. int n_predict;
  11689. std::vector<llama_beam> beams;
  11690. std::vector<llama_beam> next_beams;
  11691. // Re-calculated on each loop iteration
  11692. size_t common_prefix_length;
  11693. // Used to communicate to/from callback on beams state.
  11694. std::vector<llama_beam_view> beam_views;
  11695. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11696. : ctx(ctx)
  11697. , n_beams(n_beams)
  11698. , n_past(n_past)
  11699. , n_predict(n_predict)
  11700. , beam_views(n_beams) {
  11701. beams.reserve(n_beams);
  11702. next_beams.reserve(n_beams);
  11703. }
  11704. // Collapse beams to a single beam given by index.
  11705. void collapse_beams(const size_t beam_idx) {
  11706. if (0u < beam_idx) {
  11707. std::swap(beams[0], beams[beam_idx]);
  11708. }
  11709. beams.resize(1);
  11710. }
  11711. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11712. // The repetitive patterns below reflect the 2 stages of heaps:
  11713. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11714. // * If the heap is full and a new element is found that should be included, pop the
  11715. // least element to the back(), replace it with the new, then push it into the heap.
  11716. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11717. // Min-heaps use a greater-than comparator.
  11718. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11719. if (beam.eob) {
  11720. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11721. if (next_beams.size() < n_beams) {
  11722. next_beams.push_back(std::move(beam));
  11723. if (next_beams.size() == n_beams) {
  11724. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11725. }
  11726. } else if (next_beams.front().p < beam.p) {
  11727. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11728. next_beams.back() = std::move(beam);
  11729. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11730. }
  11731. } else {
  11732. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11733. if (!beam.tokens.empty()) {
  11734. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11735. }
  11736. llama_logit_info logit_info(ctx);
  11737. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11738. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11739. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11740. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11741. size_t i=0;
  11742. if (next_beams.size() < n_beams) {
  11743. for (; next_beams.size() < n_beams ; ++i) {
  11744. llama_beam next_beam = beam;
  11745. next_beam.tokens.push_back(next_tokens[i].id);
  11746. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11747. next_beams.push_back(std::move(next_beam));
  11748. }
  11749. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11750. } else {
  11751. for (; next_beams.front().p == 0.0f ; ++i) {
  11752. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11753. next_beams.back() = beam;
  11754. next_beams.back().tokens.push_back(next_tokens[i].id);
  11755. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11756. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11757. }
  11758. }
  11759. for (; i < n_beams ; ++i) {
  11760. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11761. if (next_beams.front().p < next_p) {
  11762. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11763. next_beams.back() = beam;
  11764. next_beams.back().tokens.push_back(next_tokens[i].id);
  11765. next_beams.back().p = next_p;
  11766. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11767. }
  11768. }
  11769. }
  11770. }
  11771. // Find common_prefix_length based on beams.
  11772. // Requires beams is not empty.
  11773. size_t find_common_prefix_length() {
  11774. size_t common_prefix_length = beams[0].tokens.size();
  11775. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11776. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11777. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11778. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11779. common_prefix_length = j;
  11780. break;
  11781. }
  11782. }
  11783. }
  11784. return common_prefix_length;
  11785. }
  11786. // Construct beams_state to send back to caller via the callback function.
  11787. // Side effect: set common_prefix_length = find_common_prefix_length();
  11788. llama_beams_state get_beams_state(const bool last_call) {
  11789. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11790. beam_views[i] = beams[i].view();
  11791. }
  11792. common_prefix_length = find_common_prefix_length();
  11793. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11794. }
  11795. // Loop:
  11796. // * while i < n_predict, AND
  11797. // * any of the beams have not yet reached end-of-beam (eob), AND
  11798. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11799. // (since all other beam probabilities can only decrease)
  11800. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11801. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11802. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11803. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11804. !beams[top_beam_index()].eob ; ++i) {
  11805. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11806. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11807. if (common_prefix_length) {
  11808. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11809. n_past += common_prefix_length;
  11810. }
  11811. // Zero-out next_beam probabilities to place them last in following min-heap.
  11812. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11813. for (llama_beam & beam : beams) {
  11814. beam.shift_tokens(common_prefix_length);
  11815. fill_next_beams_by_top_probabilities(beam);
  11816. }
  11817. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11818. beams.swap(next_beams);
  11819. renormalize_beam_probabilities(beams);
  11820. }
  11821. collapse_beams(top_beam_index());
  11822. callback(callback_data, get_beams_state(true));
  11823. }
  11824. // As beams grow, the cumulative probabilities decrease.
  11825. // Renormalize them to avoid floating point underflow.
  11826. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11827. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11828. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11829. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11830. }
  11831. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11832. size_t top_beam_index() {
  11833. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11834. }
  11835. // Copy (p,eob) for each beam which may have been changed by the callback.
  11836. void update_beams_from_beam_views() {
  11837. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11838. beams[i].p = beam_views[i].p;
  11839. beams[i].eob = beam_views[i].eob;
  11840. }
  11841. }
  11842. };
  11843. void llama_beam_search(llama_context * ctx,
  11844. llama_beam_search_callback_fn_t callback, void * callback_data,
  11845. size_t n_beams, int n_past, int n_predict) {
  11846. assert(ctx);
  11847. const int64_t t_start_sample_us = ggml_time_us();
  11848. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11849. beam_search_data.loop(callback, callback_data);
  11850. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11851. ctx->n_sample++;
  11852. }
  11853. //
  11854. // quantization
  11855. //
  11856. struct quantize_state_internal {
  11857. const llama_model & model;
  11858. const llama_model_quantize_params * params;
  11859. int n_attention_wv = 0;
  11860. int n_ffn_down = 0;
  11861. int n_ffn_gate = 0;
  11862. int n_ffn_up = 0;
  11863. int i_attention_wv = 0;
  11864. int i_ffn_down = 0;
  11865. int i_ffn_gate = 0;
  11866. int i_ffn_up = 0;
  11867. int n_k_quantized = 0;
  11868. int n_fallback = 0;
  11869. bool has_imatrix = false;
  11870. // used to figure out if a model shares tok_embd with the output weight
  11871. bool has_output = false;
  11872. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11873. : model(model)
  11874. , params(params)
  11875. {}
  11876. };
  11877. static void llama_tensor_dequantize_internal(
  11878. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11879. const size_t nelements, const int nthread
  11880. ) {
  11881. if (output.size() < nelements) {
  11882. output.resize(nelements);
  11883. }
  11884. float * f32_output = (float *) output.data();
  11885. ggml_type_traits_t qtype;
  11886. if (ggml_is_quantized(tensor->type)) {
  11887. qtype = ggml_internal_get_type_traits(tensor->type);
  11888. if (qtype.to_float == NULL) {
  11889. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11890. }
  11891. } else if (tensor->type != GGML_TYPE_F16 &&
  11892. tensor->type != GGML_TYPE_BF16) {
  11893. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11894. }
  11895. if (nthread < 2) {
  11896. if (tensor->type == GGML_TYPE_F16) {
  11897. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11898. } else if (tensor->type == GGML_TYPE_BF16) {
  11899. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  11900. } else if (ggml_is_quantized(tensor->type)) {
  11901. qtype.to_float(tensor->data, f32_output, nelements);
  11902. } else {
  11903. GGML_ASSERT(false); // unreachable
  11904. }
  11905. return;
  11906. }
  11907. size_t block_size;
  11908. if (tensor->type == GGML_TYPE_F16 ||
  11909. tensor->type == GGML_TYPE_BF16) {
  11910. block_size = 1;
  11911. } else {
  11912. block_size = (size_t)ggml_blck_size(tensor->type);
  11913. }
  11914. size_t block_size_bytes = ggml_type_size(tensor->type);
  11915. GGML_ASSERT(nelements % block_size == 0);
  11916. size_t nblocks = nelements / block_size;
  11917. size_t blocks_per_thread = nblocks / nthread;
  11918. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11919. size_t in_buff_offs = 0;
  11920. size_t out_buff_offs = 0;
  11921. for (int tnum = 0; tnum < nthread; tnum++) {
  11922. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11923. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11924. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11925. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11926. if (typ == GGML_TYPE_F16) {
  11927. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11928. } else if (typ == GGML_TYPE_BF16) {
  11929. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  11930. } else {
  11931. qtype.to_float(inbuf, outbuf, nels);
  11932. }
  11933. };
  11934. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11935. in_buff_offs += thr_block_bytes;
  11936. out_buff_offs += thr_elems;
  11937. }
  11938. for (auto & w : workers) { w.join(); }
  11939. workers.clear();
  11940. }
  11941. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11942. const std::string name = ggml_get_name(tensor);
  11943. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11944. const llm_arch arch = qs.model.arch;
  11945. const auto tn = LLM_TN(arch);
  11946. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11947. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11948. };
  11949. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11950. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11951. if (n_expert > 1) {
  11952. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11953. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11954. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11955. // tensor name.
  11956. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11957. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11958. }
  11959. if (i_layer < 0 || i_layer >= n_layer) {
  11960. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11961. }
  11962. }
  11963. return std::make_pair(i_layer, n_layer);
  11964. };
  11965. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11966. // with the quantization of the output tensor
  11967. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11968. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11969. new_type = qs.params->output_tensor_type;
  11970. } else {
  11971. int nx = tensor->ne[0];
  11972. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11973. new_type = GGML_TYPE_Q8_0;
  11974. }
  11975. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11976. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  11977. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11978. new_type = GGML_TYPE_Q5_K;
  11979. }
  11980. else if (new_type != GGML_TYPE_Q8_0) {
  11981. new_type = GGML_TYPE_Q6_K;
  11982. }
  11983. }
  11984. } else if (name == "token_embd.weight") {
  11985. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  11986. new_type = qs.params->token_embedding_type;
  11987. } else {
  11988. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  11989. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11990. new_type = GGML_TYPE_Q2_K;
  11991. }
  11992. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  11993. new_type = GGML_TYPE_IQ3_S;
  11994. }
  11995. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11996. new_type = GGML_TYPE_IQ3_S;
  11997. }
  11998. }
  11999. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12000. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12001. if (name.find("attn_v.weight") != std::string::npos) {
  12002. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12003. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12004. ++qs.i_attention_wv;
  12005. }
  12006. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12007. new_type = GGML_TYPE_Q4_K;
  12008. }
  12009. else if (name.find("ffn_down") != std::string::npos) {
  12010. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12011. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12012. }
  12013. ++qs.i_ffn_down;
  12014. }
  12015. else if (name.find("attn_output.weight") != std::string::npos) {
  12016. if (qs.model.hparams.n_expert == 8) {
  12017. new_type = GGML_TYPE_Q5_K;
  12018. } else {
  12019. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12020. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12021. }
  12022. }
  12023. } else if (name.find("attn_v.weight") != std::string::npos) {
  12024. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12025. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12026. }
  12027. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12028. new_type = GGML_TYPE_Q4_K;
  12029. }
  12030. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12031. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12032. }
  12033. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12034. new_type = GGML_TYPE_Q4_K;
  12035. }
  12036. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12037. new_type = GGML_TYPE_Q4_K;
  12038. }
  12039. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12040. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12041. }
  12042. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12043. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12044. new_type = GGML_TYPE_Q5_K;
  12045. }
  12046. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12047. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12048. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12049. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  12050. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  12051. if (qs.model.type == MODEL_70B) {
  12052. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12053. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12054. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12055. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12056. }
  12057. if (qs.model.hparams.n_expert == 8) {
  12058. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12059. // TODO: explore better strategies
  12060. new_type = GGML_TYPE_Q8_0;
  12061. }
  12062. ++qs.i_attention_wv;
  12063. } else if (name.find("attn_k.weight") != std::string::npos) {
  12064. if (qs.model.hparams.n_expert == 8) {
  12065. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12066. // TODO: explore better strategies
  12067. new_type = GGML_TYPE_Q8_0;
  12068. }
  12069. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12070. new_type = GGML_TYPE_IQ3_XXS;
  12071. }
  12072. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12073. new_type = GGML_TYPE_IQ2_S;
  12074. }
  12075. } else if (name.find("attn_q.weight") != std::string::npos) {
  12076. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12077. new_type = GGML_TYPE_IQ3_XXS;
  12078. }
  12079. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12080. new_type = GGML_TYPE_IQ2_S;
  12081. }
  12082. } else if (name.find("ffn_down") != std::string::npos) {
  12083. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12084. int i_layer = info.first, n_layer = info.second;
  12085. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12086. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12087. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12088. }
  12089. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12090. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12091. }
  12092. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12093. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12094. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12095. : GGML_TYPE_Q3_K;
  12096. }
  12097. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12098. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12099. new_type = GGML_TYPE_Q4_K;
  12100. }
  12101. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12102. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12103. }
  12104. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12105. if (arch == LLM_ARCH_FALCON) {
  12106. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12107. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12108. } else {
  12109. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12110. }
  12111. }
  12112. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12113. new_type = GGML_TYPE_Q5_K;
  12114. }
  12115. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12116. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12117. new_type = GGML_TYPE_Q5_K;
  12118. }
  12119. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12120. && qs.has_imatrix && i_layer < n_layer/8) {
  12121. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12122. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12123. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12124. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12125. }
  12126. ++qs.i_ffn_down;
  12127. } else if (name.find("attn_output.weight") != std::string::npos) {
  12128. if (arch != LLM_ARCH_FALCON) {
  12129. if (qs.model.hparams.n_expert == 8) {
  12130. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12131. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12132. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12133. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12134. new_type = GGML_TYPE_Q5_K;
  12135. }
  12136. } else {
  12137. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12138. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12139. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12140. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12141. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12142. }
  12143. } else {
  12144. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12145. }
  12146. }
  12147. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12148. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12149. new_type = GGML_TYPE_Q4_K;
  12150. }
  12151. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12152. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12153. }
  12154. else if (name.find("ffn_gate") != std::string::npos) {
  12155. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12156. int i_layer = info.first, n_layer = info.second;
  12157. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12158. new_type = GGML_TYPE_IQ3_XXS;
  12159. }
  12160. ++qs.i_ffn_gate;
  12161. }
  12162. else if (name.find("ffn_up") != std::string::npos) {
  12163. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12164. int i_layer = info.first, n_layer = info.second;
  12165. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12166. new_type = GGML_TYPE_IQ3_XXS;
  12167. }
  12168. ++qs.i_ffn_up;
  12169. }
  12170. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12171. //}
  12172. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12173. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12174. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12175. //}
  12176. // This can be used to reduce the size of the Q5_K_S model.
  12177. // The associated PPL increase is fully in line with the size reduction
  12178. //else {
  12179. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12180. //}
  12181. bool convert_incompatible_tensor = false;
  12182. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12183. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12184. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12185. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12186. new_type == GGML_TYPE_IQ1_M) {
  12187. int nx = tensor->ne[0];
  12188. int ny = tensor->ne[1];
  12189. if (nx % QK_K != 0) {
  12190. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12191. convert_incompatible_tensor = true;
  12192. } else {
  12193. ++qs.n_k_quantized;
  12194. }
  12195. }
  12196. if (convert_incompatible_tensor) {
  12197. switch (new_type) {
  12198. case GGML_TYPE_IQ2_XXS:
  12199. case GGML_TYPE_IQ2_XS:
  12200. case GGML_TYPE_IQ2_S:
  12201. case GGML_TYPE_IQ3_XXS:
  12202. case GGML_TYPE_IQ3_S:
  12203. case GGML_TYPE_IQ1_S:
  12204. case GGML_TYPE_IQ1_M:
  12205. case GGML_TYPE_Q2_K:
  12206. case GGML_TYPE_Q3_K:
  12207. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12208. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12209. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12210. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12211. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12212. }
  12213. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12214. ++qs.n_fallback;
  12215. }
  12216. return new_type;
  12217. }
  12218. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12219. if (nthread < 2) {
  12220. // single-thread
  12221. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12222. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12223. throw std::runtime_error("quantized data validation failed");
  12224. }
  12225. return new_size;
  12226. }
  12227. std::mutex mutex;
  12228. int64_t counter = 0;
  12229. size_t new_size = 0;
  12230. bool valid = true;
  12231. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12232. nrows, n_per_row, imatrix]() {
  12233. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12234. size_t local_size = 0;
  12235. while (true) {
  12236. std::unique_lock<std::mutex> lock(mutex);
  12237. int64_t first_row = counter; counter += nrows_per_chunk;
  12238. if (first_row >= nrows) {
  12239. if (local_size > 0) {
  12240. new_size += local_size;
  12241. }
  12242. break;
  12243. }
  12244. lock.unlock();
  12245. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12246. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12247. local_size += this_size;
  12248. // validate the quantized data
  12249. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12250. void * this_data = (char *) new_data + first_row * row_size;
  12251. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12252. std::unique_lock<std::mutex> lock(mutex);
  12253. valid = false;
  12254. break;
  12255. }
  12256. }
  12257. };
  12258. for (int it = 0; it < nthread - 1; ++it) {
  12259. workers.emplace_back(compute);
  12260. }
  12261. compute();
  12262. for (auto & w : workers) { w.join(); }
  12263. workers.clear();
  12264. if (!valid) {
  12265. throw std::runtime_error("quantized data validation failed");
  12266. }
  12267. return new_size;
  12268. }
  12269. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12270. ggml_type default_type;
  12271. llama_ftype ftype = params->ftype;
  12272. switch (params->ftype) {
  12273. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12274. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12275. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12276. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12277. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12278. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12279. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12280. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12281. // K-quants
  12282. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12283. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12284. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12285. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12286. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12287. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12288. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12289. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12290. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12291. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12292. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12293. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12294. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12295. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12296. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12297. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12298. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12299. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12300. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12301. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12302. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12303. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12304. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12305. }
  12306. int nthread = params->nthread;
  12307. if (nthread <= 0) {
  12308. nthread = std::thread::hardware_concurrency();
  12309. }
  12310. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12311. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12312. #if defined(__linux__) || defined(_WIN32)
  12313. constexpr bool use_mmap = true;
  12314. #else
  12315. constexpr bool use_mmap = false;
  12316. #endif
  12317. llama_model_kv_override * kv_overrides = nullptr;
  12318. if (params->kv_overrides) {
  12319. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12320. kv_overrides = v->data();
  12321. }
  12322. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12323. ml.init_mappings(false); // no prefetching
  12324. llama_model model;
  12325. llm_load_arch(ml, model);
  12326. llm_load_hparams(ml, model);
  12327. struct quantize_state_internal qs(model, params);
  12328. if (params->only_copy) {
  12329. ftype = model.ftype;
  12330. }
  12331. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12332. if (params->imatrix) {
  12333. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12334. if (imatrix_data) {
  12335. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12336. qs.has_imatrix = true;
  12337. }
  12338. }
  12339. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12340. struct gguf_context * ctx_out = gguf_init_empty();
  12341. // copy the KV pairs from the input file
  12342. gguf_set_kv (ctx_out, ml.meta);
  12343. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12344. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12345. // Remove split metadata
  12346. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12347. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12348. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12349. if (params->kv_overrides) {
  12350. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12351. for (auto & o : overrides) {
  12352. if (o.key[0] == 0) break;
  12353. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12354. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12355. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12356. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12357. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12358. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12359. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12360. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12361. } else {
  12362. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12363. }
  12364. }
  12365. }
  12366. for (int i = 0; i < ml.n_tensors; ++i) {
  12367. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12368. const std::string name = ggml_get_name(meta);
  12369. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12370. if (name.find("attn_v.weight") != std::string::npos ||
  12371. name.find("attn_qkv.weight") != std::string::npos) {
  12372. ++qs.n_attention_wv;
  12373. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12374. qs.has_output = true;
  12375. }
  12376. }
  12377. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12378. // sanity checks
  12379. //
  12380. // - qs.n_attention_wv == 0 for Mamba models
  12381. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12382. //
  12383. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12384. size_t total_size_org = 0;
  12385. size_t total_size_new = 0;
  12386. std::vector<std::thread> workers;
  12387. workers.reserve(nthread);
  12388. int idx = 0;
  12389. std::vector<no_init<uint8_t>> read_data;
  12390. std::vector<no_init<uint8_t>> work;
  12391. std::vector<no_init<float>> f32_conv_buf;
  12392. uint16_t n_split = 1;
  12393. // Assume split index is continuous
  12394. if (params->keep_split) {
  12395. for (int i = 0; i < ml.n_tensors; ++i) {
  12396. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12397. }
  12398. }
  12399. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12400. ctx_outs[0] = ctx_out;
  12401. // populate the original tensors so we get an initial meta data
  12402. for (int i = 0; i < ml.n_tensors; ++i) {
  12403. auto weight = ml.get_weight(i);
  12404. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12405. struct ggml_tensor * tensor = weight->tensor;
  12406. if (ctx_outs[i_split] == NULL) {
  12407. ctx_outs[i_split] = gguf_init_empty();
  12408. }
  12409. gguf_add_tensor(ctx_outs[i_split], tensor);
  12410. }
  12411. // Set split info if needed
  12412. if (n_split > 1) {
  12413. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12414. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12415. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12416. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12417. }
  12418. }
  12419. int cur_split = -1;
  12420. std::ofstream fout;
  12421. auto close_ofstream = [&]() {
  12422. // Write metadata and close file handler
  12423. if (fout.is_open()) {
  12424. fout.seekp(0);
  12425. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12426. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12427. fout.write((const char *) data.data(), data.size());
  12428. fout.close();
  12429. }
  12430. };
  12431. auto new_ofstream = [&](int index) {
  12432. cur_split = index;
  12433. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12434. std::string fname = fname_out;
  12435. if (params->keep_split) {
  12436. char split_path[PATH_MAX] = {0};
  12437. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12438. fname = std::string(split_path);
  12439. }
  12440. fout = std::ofstream(fname, std::ios::binary);
  12441. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12442. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12443. // placeholder for the meta data
  12444. ::zeros(fout, meta_size);
  12445. };
  12446. const auto tn = LLM_TN(model.arch);
  12447. new_ofstream(0);
  12448. for (int i = 0; i < ml.n_tensors; ++i) {
  12449. auto weight = ml.get_weight(i);
  12450. struct ggml_tensor * tensor = weight->tensor;
  12451. if (weight->idx != cur_split && params->keep_split) {
  12452. close_ofstream();
  12453. new_ofstream(weight->idx);
  12454. }
  12455. const std::string name = ggml_get_name(tensor);
  12456. if (!ml.use_mmap) {
  12457. if (read_data.size() < ggml_nbytes(tensor)) {
  12458. read_data.resize(ggml_nbytes(tensor));
  12459. }
  12460. tensor->data = read_data.data();
  12461. }
  12462. ml.load_data_for(tensor);
  12463. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12464. ++idx, ml.n_tensors,
  12465. ggml_get_name(tensor),
  12466. llama_format_tensor_shape(tensor).c_str(),
  12467. ggml_type_name(tensor->type));
  12468. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12469. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12470. // quantize only 2D and 3D tensors (experts)
  12471. quantize &= (ggml_n_dims(tensor) >= 2);
  12472. // do not quantize norm tensors
  12473. quantize &= name.find("_norm.weight") == std::string::npos;
  12474. quantize &= params->quantize_output_tensor || name != "output.weight";
  12475. quantize &= !params->only_copy;
  12476. // do not quantize expert gating tensors
  12477. // NOTE: can't use LLM_TN here because the layer number is not known
  12478. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12479. // do not quantize positional embeddings and token types (BERT)
  12480. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12481. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12482. // do not quantize Mamba's small yet 2D weights
  12483. // NOTE: can't use LLM_TN here because the layer number is not known
  12484. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12485. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12486. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12487. enum ggml_type new_type;
  12488. void * new_data;
  12489. size_t new_size;
  12490. if (quantize) {
  12491. new_type = default_type;
  12492. // get more optimal quantization type based on the tensor shape, layer, etc.
  12493. if (!params->pure && ggml_is_quantized(default_type)) {
  12494. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12495. }
  12496. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12497. new_type = params->token_embedding_type;
  12498. }
  12499. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12500. new_type = params->output_tensor_type;
  12501. }
  12502. // If we've decided to quantize to the same type the tensor is already
  12503. // in then there's nothing to do.
  12504. quantize = tensor->type != new_type;
  12505. }
  12506. if (!quantize) {
  12507. new_type = tensor->type;
  12508. new_data = tensor->data;
  12509. new_size = ggml_nbytes(tensor);
  12510. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12511. } else {
  12512. const int64_t nelements = ggml_nelements(tensor);
  12513. const float * imatrix = nullptr;
  12514. if (imatrix_data) {
  12515. auto it = imatrix_data->find(tensor->name);
  12516. if (it == imatrix_data->end()) {
  12517. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12518. } else {
  12519. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12520. imatrix = it->second.data();
  12521. } else {
  12522. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12523. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12524. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12525. // this is a significant error and it may be good idea to abort the process if this happens,
  12526. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12527. // tok_embd should be ignored in this case, since it always causes this warning
  12528. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12529. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12530. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12531. }
  12532. }
  12533. }
  12534. }
  12535. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12536. new_type == GGML_TYPE_IQ2_XS ||
  12537. new_type == GGML_TYPE_IQ2_S ||
  12538. new_type == GGML_TYPE_IQ1_S ||
  12539. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12540. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12541. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12542. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12543. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12544. LLAMA_LOG_ERROR("============================================================\n\n");
  12545. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12546. }
  12547. float * f32_data;
  12548. if (tensor->type == GGML_TYPE_F32) {
  12549. f32_data = (float *) tensor->data;
  12550. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12551. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12552. } else {
  12553. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12554. f32_data = (float *) f32_conv_buf.data();
  12555. }
  12556. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12557. fflush(stdout);
  12558. if (work.size() < (size_t)nelements * 4) {
  12559. work.resize(nelements * 4); // upper bound on size
  12560. }
  12561. new_data = work.data();
  12562. const int64_t n_per_row = tensor->ne[0];
  12563. const int64_t nrows = tensor->ne[1];
  12564. static const int64_t min_chunk_size = 32 * 512;
  12565. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12566. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12567. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12568. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12569. // quantize each expert separately since they have different importance matrices
  12570. new_size = 0;
  12571. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12572. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12573. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12574. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12575. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12576. }
  12577. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12578. }
  12579. total_size_org += ggml_nbytes(tensor);
  12580. total_size_new += new_size;
  12581. // update the gguf meta data as we go
  12582. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12583. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12584. // write tensor data + padding
  12585. fout.write((const char *) new_data, new_size);
  12586. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12587. }
  12588. close_ofstream();
  12589. for (auto & c:ctx_outs) {
  12590. gguf_free(c);
  12591. }
  12592. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12593. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12594. if (qs.n_fallback > 0) {
  12595. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12596. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12597. }
  12598. }
  12599. static int llama_apply_lora_from_file_internal(
  12600. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12601. ) {
  12602. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12603. const int64_t t_start_lora_us = ggml_time_us();
  12604. llama_file fin(path_lora, "rb");
  12605. // verify magic and version
  12606. {
  12607. uint32_t magic = fin.read_u32();
  12608. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12609. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12610. return 1;
  12611. }
  12612. uint32_t format_version = fin.read_u32();
  12613. if (format_version != 1) {
  12614. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12615. return 1;
  12616. }
  12617. }
  12618. int32_t lora_r = fin.read_u32();
  12619. int32_t lora_alpha = fin.read_u32();
  12620. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12621. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12622. // load base model
  12623. std::unique_ptr<llama_model_loader> ml;
  12624. if (path_base_model) {
  12625. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12626. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12627. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12628. }
  12629. struct tensor_meta {
  12630. std::string name;
  12631. ggml_type type;
  12632. int32_t ne[2];
  12633. size_t offset;
  12634. };
  12635. std::map<std::string, tensor_meta> tensor_meta_map;
  12636. // load all tensor meta
  12637. while (true) {
  12638. if (fin.tell() == fin.size) {
  12639. // eof
  12640. break;
  12641. }
  12642. int32_t n_dims;
  12643. int32_t name_len;
  12644. int32_t ftype;
  12645. fin.read_raw(&n_dims, sizeof(n_dims));
  12646. fin.read_raw(&name_len, sizeof(name_len));
  12647. fin.read_raw(&ftype, sizeof(ftype));
  12648. if (n_dims != 1 && n_dims != 2) {
  12649. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12650. return 1;
  12651. }
  12652. int32_t ne[2] = { 1, 1 };
  12653. for (int i = 0; i < n_dims; ++i) {
  12654. fin.read_raw(&ne[i], sizeof(ne[i]));
  12655. }
  12656. std::string name;
  12657. {
  12658. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12659. char buf[GGML_MAX_NAME];
  12660. fin.read_raw(buf, name_len);
  12661. name = std::string(buf, name_len);
  12662. }
  12663. // check for lora suffix
  12664. std::string lora_suffix;
  12665. if (name.length() > 6) {
  12666. lora_suffix = name.substr(name.length() - 6);
  12667. }
  12668. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12669. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12670. return 1;
  12671. }
  12672. // tensor type
  12673. ggml_type wtype;
  12674. switch (ftype) {
  12675. case 0: wtype = GGML_TYPE_F32; break;
  12676. case 1: wtype = GGML_TYPE_F16; break;
  12677. default:
  12678. {
  12679. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12680. __func__, ftype);
  12681. return 1;
  12682. }
  12683. }
  12684. // data offset
  12685. size_t offset = fin.tell();
  12686. offset = (offset + 31) & -32;
  12687. // skip tensor data
  12688. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12689. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12690. }
  12691. bool warned = false;
  12692. int n_tensors = 0;
  12693. // apply
  12694. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12695. if (backend_cpu == nullptr) {
  12696. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12697. return 1;
  12698. }
  12699. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12700. std::vector<no_init<uint8_t>> read_buf;
  12701. for (const auto & it : model.tensors_by_name) {
  12702. const std::string & base_name = it.first;
  12703. ggml_tensor * model_t = it.second;
  12704. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12705. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12706. continue;
  12707. }
  12708. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12709. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12710. ggml_init_params lora_init_params = {
  12711. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12712. /* .mem_buffer */ nullptr,
  12713. /* .no_alloc */ true,
  12714. };
  12715. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12716. if (lora_ctx == nullptr) {
  12717. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12718. ggml_backend_free(backend_cpu);
  12719. return 1;
  12720. }
  12721. // create tensors
  12722. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12723. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12724. ggml_set_name(loraA, metaA.name.c_str());
  12725. ggml_set_name(loraB, metaB.name.c_str());
  12726. ggml_tensor * base_t;
  12727. if (ml) {
  12728. if (!ml->get_tensor_meta(base_name.c_str())) {
  12729. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12730. return 1;
  12731. }
  12732. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12733. } else {
  12734. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12735. }
  12736. ggml_set_name(base_t, base_name.c_str());
  12737. // allocate in backend buffer
  12738. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12739. if (lora_buf == nullptr) {
  12740. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12741. return 1;
  12742. }
  12743. // load tensor data
  12744. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12745. read_buf.resize(ggml_nbytes(tensor));
  12746. fin.seek(tensor_meta.offset, SEEK_SET);
  12747. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12748. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12749. };
  12750. load_tensor(metaA, loraA);
  12751. load_tensor(metaB, loraB);
  12752. // load base model tensor data
  12753. if (ml) {
  12754. ml->load_data_for(base_t);
  12755. } else {
  12756. ggml_backend_tensor_copy(model_t, base_t);
  12757. }
  12758. if (ggml_is_quantized(base_t->type) && !warned) {
  12759. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12760. "use a f16 or f32 base model with --lora-base\n", __func__);
  12761. warned = true;
  12762. }
  12763. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12764. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12765. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12766. ggml_free(lora_ctx);
  12767. ggml_backend_buffer_free(lora_buf);
  12768. ggml_backend_free(backend_cpu);
  12769. return 1;
  12770. }
  12771. auto build_lora_graph = [&]() {
  12772. // w = w + BA*s
  12773. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12774. ggml_set_name(BA, "BA");
  12775. if (scaling != 1.0f) {
  12776. BA = ggml_scale(lora_ctx, BA, scaling);
  12777. ggml_set_name(BA, "BA_scaled");
  12778. }
  12779. ggml_tensor * r;
  12780. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12781. ggml_set_name(r, "r_add");
  12782. if (base_t->type != model_t->type) {
  12783. // convert the result to the model type
  12784. r = ggml_cast(lora_ctx, r, model_t->type);
  12785. ggml_set_name(r, "r_cast");
  12786. }
  12787. return r;
  12788. };
  12789. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12790. ggml_tensor * r = build_lora_graph();
  12791. ggml_build_forward_expand(gf, r);
  12792. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12793. if (graph_buf == nullptr) {
  12794. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12795. ggml_free(lora_ctx);
  12796. ggml_backend_buffer_free(lora_buf);
  12797. ggml_backend_free(backend_cpu);
  12798. return 1;
  12799. }
  12800. ggml_backend_graph_compute(backend_cpu, gf);
  12801. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12802. #if 0
  12803. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12804. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12805. // sched compute
  12806. ggml_build_forward_expand(gf, build_graph());
  12807. ggml_backend_sched_init_measure(sched, gf);
  12808. // create the graph again, since the previous one was destroyed by the measure
  12809. ggml_graph_clear(gf);
  12810. ggml_build_forward_expand(gf, build_graph());
  12811. ggml_backend_sched_graph_compute(sched, gf);
  12812. ggml_backend_sched_free(sched);
  12813. #endif
  12814. ggml_backend_buffer_free(lora_buf);
  12815. ggml_backend_buffer_free(graph_buf);
  12816. ggml_free(lora_ctx);
  12817. n_tensors++;
  12818. if (n_tensors % 4 == 0) {
  12819. LLAMA_LOG_INFO(".");
  12820. }
  12821. }
  12822. ggml_backend_free(backend_cpu);
  12823. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12824. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12825. return 0;
  12826. }
  12827. //
  12828. // interface implementation
  12829. //
  12830. struct llama_model_params llama_model_default_params() {
  12831. struct llama_model_params result = {
  12832. /*.n_gpu_layers =*/ 0,
  12833. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12834. /*.main_gpu =*/ 0,
  12835. /*.tensor_split =*/ nullptr,
  12836. /*.rpc_servers =*/ nullptr,
  12837. /*.progress_callback =*/ nullptr,
  12838. /*.progress_callback_user_data =*/ nullptr,
  12839. /*.kv_overrides =*/ nullptr,
  12840. /*.vocab_only =*/ false,
  12841. /*.use_mmap =*/ true,
  12842. /*.use_mlock =*/ false,
  12843. /*.check_tensors =*/ false,
  12844. };
  12845. #ifdef GGML_USE_METAL
  12846. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12847. result.n_gpu_layers = 999;
  12848. #endif
  12849. return result;
  12850. }
  12851. struct llama_context_params llama_context_default_params() {
  12852. struct llama_context_params result = {
  12853. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12854. /*.n_ctx =*/ 512,
  12855. /*.n_batch =*/ 2048,
  12856. /*.n_ubatch =*/ 512,
  12857. /*.n_seq_max =*/ 1,
  12858. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12859. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12860. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12861. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12862. /*.rope_freq_base =*/ 0.0f,
  12863. /*.rope_freq_scale =*/ 0.0f,
  12864. /*.yarn_ext_factor =*/ -1.0f,
  12865. /*.yarn_attn_factor =*/ 1.0f,
  12866. /*.yarn_beta_fast =*/ 32.0f,
  12867. /*.yarn_beta_slow =*/ 1.0f,
  12868. /*.yarn_orig_ctx =*/ 0,
  12869. /*.defrag_thold =*/ -1.0f,
  12870. /*.cb_eval =*/ nullptr,
  12871. /*.cb_eval_user_data =*/ nullptr,
  12872. /*.type_k =*/ GGML_TYPE_F16,
  12873. /*.type_v =*/ GGML_TYPE_F16,
  12874. /*.logits_all =*/ false,
  12875. /*.embeddings =*/ false,
  12876. /*.offload_kqv =*/ true,
  12877. /*.flash_attn =*/ false,
  12878. /*.abort_callback =*/ nullptr,
  12879. /*.abort_callback_data =*/ nullptr,
  12880. };
  12881. return result;
  12882. }
  12883. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12884. struct llama_model_quantize_params result = {
  12885. /*.nthread =*/ 0,
  12886. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12887. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12888. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12889. /*.allow_requantize =*/ false,
  12890. /*.quantize_output_tensor =*/ true,
  12891. /*.only_copy =*/ false,
  12892. /*.pure =*/ false,
  12893. /*.keep_split =*/ false,
  12894. /*.imatrix =*/ nullptr,
  12895. /*.kv_overrides =*/ nullptr,
  12896. };
  12897. return result;
  12898. }
  12899. size_t llama_max_devices(void) {
  12900. #if defined(GGML_USE_RPC)
  12901. return GGML_RPC_MAX_SERVERS;
  12902. #elif defined(GGML_USE_METAL)
  12903. return 1;
  12904. #elif defined(GGML_USE_CUDA)
  12905. return GGML_CUDA_MAX_DEVICES;
  12906. #elif defined(GGML_USE_SYCL)
  12907. return GGML_SYCL_MAX_DEVICES;
  12908. #elif defined(GGML_USE_VULKAN)
  12909. return GGML_VK_MAX_DEVICES;
  12910. #else
  12911. return 1;
  12912. #endif
  12913. }
  12914. bool llama_supports_mmap(void) {
  12915. return llama_mmap::SUPPORTED;
  12916. }
  12917. bool llama_supports_mlock(void) {
  12918. return llama_mlock::SUPPORTED;
  12919. }
  12920. bool llama_supports_gpu_offload(void) {
  12921. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12922. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  12923. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12924. return true;
  12925. #else
  12926. return false;
  12927. #endif
  12928. }
  12929. void llama_backend_init(void) {
  12930. ggml_time_init();
  12931. // needed to initialize f16 tables
  12932. {
  12933. struct ggml_init_params params = { 0, NULL, false };
  12934. struct ggml_context * ctx = ggml_init(params);
  12935. ggml_free(ctx);
  12936. }
  12937. #ifdef GGML_USE_MPI
  12938. ggml_mpi_backend_init();
  12939. #endif
  12940. }
  12941. void llama_numa_init(enum ggml_numa_strategy numa) {
  12942. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12943. ggml_numa_init(numa);
  12944. }
  12945. }
  12946. void llama_backend_free(void) {
  12947. #ifdef GGML_USE_MPI
  12948. ggml_mpi_backend_free();
  12949. #endif
  12950. ggml_quantize_free();
  12951. }
  12952. int64_t llama_time_us(void) {
  12953. return ggml_time_us();
  12954. }
  12955. struct llama_model * llama_load_model_from_file(
  12956. const char * path_model,
  12957. struct llama_model_params params) {
  12958. ggml_time_init();
  12959. llama_model * model = new llama_model;
  12960. unsigned cur_percentage = 0;
  12961. if (params.progress_callback == NULL) {
  12962. params.progress_callback_user_data = &cur_percentage;
  12963. params.progress_callback = [](float progress, void * ctx) {
  12964. unsigned * cur_percentage_p = (unsigned *) ctx;
  12965. unsigned percentage = (unsigned) (100 * progress);
  12966. while (percentage > *cur_percentage_p) {
  12967. *cur_percentage_p = percentage;
  12968. LLAMA_LOG_INFO(".");
  12969. if (percentage >= 100) {
  12970. LLAMA_LOG_INFO("\n");
  12971. }
  12972. }
  12973. return true;
  12974. };
  12975. }
  12976. if (params.rpc_servers != nullptr) {
  12977. // split the servers set them into model->rpc_servers
  12978. std::string servers(params.rpc_servers);
  12979. size_t pos = 0;
  12980. while ((pos = servers.find(",")) != std::string::npos) {
  12981. std::string server = servers.substr(0, pos);
  12982. model->rpc_servers.push_back(server);
  12983. servers.erase(0, pos + 1);
  12984. }
  12985. model->rpc_servers.push_back(servers);
  12986. }
  12987. int status = llama_model_load(path_model, *model, params);
  12988. GGML_ASSERT(status <= 0);
  12989. if (status < 0) {
  12990. if (status == -1) {
  12991. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  12992. } else if (status == -2) {
  12993. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  12994. }
  12995. delete model;
  12996. return nullptr;
  12997. }
  12998. return model;
  12999. }
  13000. void llama_free_model(struct llama_model * model) {
  13001. delete model;
  13002. }
  13003. struct llama_context * llama_new_context_with_model(
  13004. struct llama_model * model,
  13005. struct llama_context_params params) {
  13006. if (!model) {
  13007. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13008. return nullptr;
  13009. }
  13010. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13011. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13012. return nullptr;
  13013. }
  13014. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13015. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13016. return nullptr;
  13017. }
  13018. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13019. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13020. params.flash_attn = false;
  13021. }
  13022. llama_context * ctx = new llama_context(*model);
  13023. const auto & hparams = model->hparams;
  13024. auto & cparams = ctx->cparams;
  13025. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13026. cparams.n_threads = params.n_threads;
  13027. cparams.n_threads_batch = params.n_threads_batch;
  13028. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13029. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13030. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13031. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13032. cparams.defrag_thold = params.defrag_thold;
  13033. cparams.embeddings = params.embeddings;
  13034. cparams.offload_kqv = params.offload_kqv;
  13035. cparams.flash_attn = params.flash_attn;
  13036. cparams.pooling_type = params.pooling_type;
  13037. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13038. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13039. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13040. // this is necessary due to kv_self.n being padded later during inference
  13041. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13042. // with causal attention, the batch size is limited by the context size
  13043. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13044. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13045. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13046. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13047. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13048. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13049. cparams.n_batch = GGML_KQ_MASK_PAD;
  13050. }
  13051. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13052. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13053. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  13054. hparams.n_ctx_train;
  13055. cparams.cb_eval = params.cb_eval;
  13056. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13057. auto rope_scaling_type = params.rope_scaling_type;
  13058. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13059. rope_scaling_type = hparams.rope_scaling_type_train;
  13060. }
  13061. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13062. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13063. }
  13064. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13065. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13066. }
  13067. cparams.causal_attn = hparams.causal_attn;
  13068. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13069. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13070. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13071. } else {
  13072. cparams.pooling_type = hparams.pooling_type;
  13073. }
  13074. }
  13075. if (params.seed == LLAMA_DEFAULT_SEED) {
  13076. params.seed = time(NULL);
  13077. }
  13078. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13079. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13080. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13081. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13082. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13083. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13084. ctx->abort_callback = params.abort_callback;
  13085. ctx->abort_callback_data = params.abort_callback_data;
  13086. ctx->rng = std::mt19937(params.seed);
  13087. ctx->logits_all = params.logits_all;
  13088. uint32_t kv_size = cparams.n_ctx;
  13089. ggml_type type_k = params.type_k;
  13090. ggml_type type_v = params.type_v;
  13091. // Mamba only needs a constant number of KV cache cells per sequence
  13092. if (model->arch == LLM_ARCH_MAMBA) {
  13093. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13094. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13095. // it's probably best to keep as much precision as possible for the states
  13096. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13097. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13098. }
  13099. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13100. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13101. if (!hparams.vocab_only) {
  13102. // initialize backends
  13103. #if defined(GGML_USE_RPC)
  13104. for (auto & server : model->rpc_servers) {
  13105. ggml_backend_t backend = ggml_backend_rpc_init(server.c_str());
  13106. if (backend == nullptr) {
  13107. LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str());
  13108. llama_free(ctx);
  13109. return nullptr;
  13110. }
  13111. ctx->backends.push_back(backend);
  13112. }
  13113. #elif defined(GGML_USE_METAL)
  13114. if (model->n_gpu_layers > 0) {
  13115. ctx->backend_metal = ggml_backend_metal_init();
  13116. if (ctx->backend_metal == nullptr) {
  13117. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13118. llama_free(ctx);
  13119. return nullptr;
  13120. }
  13121. ctx->backends.push_back(ctx->backend_metal);
  13122. }
  13123. #elif defined(GGML_USE_CUDA)
  13124. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13125. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13126. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13127. if (backend == nullptr) {
  13128. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13129. llama_free(ctx);
  13130. return nullptr;
  13131. }
  13132. ctx->backends.push_back(backend);
  13133. } else {
  13134. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13135. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13136. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13137. if (backend == nullptr) {
  13138. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13139. llama_free(ctx);
  13140. return nullptr;
  13141. }
  13142. ctx->backends.push_back(backend);
  13143. }
  13144. }
  13145. #elif defined(GGML_USE_VULKAN)
  13146. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13147. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13148. llama_free(ctx);
  13149. return nullptr;
  13150. }
  13151. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13152. ggml_backend_t backend = ggml_backend_vk_init(0);
  13153. if (backend == nullptr) {
  13154. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13155. llama_free(ctx);
  13156. return nullptr;
  13157. }
  13158. ctx->backends.push_back(backend);
  13159. } else {
  13160. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13161. ggml_backend_t backend = ggml_backend_vk_init(device);
  13162. if (backend == nullptr) {
  13163. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13164. llama_free(ctx);
  13165. return nullptr;
  13166. }
  13167. ctx->backends.push_back(backend);
  13168. }
  13169. }
  13170. #elif defined(GGML_USE_SYCL)
  13171. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13172. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13173. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13174. if (backend == nullptr) {
  13175. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  13176. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  13177. llama_free(ctx);
  13178. return nullptr;
  13179. }
  13180. ctx->backends.push_back(backend);
  13181. } else {
  13182. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13183. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13184. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13185. if (backend == nullptr) {
  13186. int id_list[GGML_SYCL_MAX_DEVICES];
  13187. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13188. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13189. llama_free(ctx);
  13190. return nullptr;
  13191. }
  13192. ctx->backends.push_back(backend);
  13193. }
  13194. }
  13195. #elif defined(GGML_USE_KOMPUTE)
  13196. if (model->n_gpu_layers > 0) {
  13197. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13198. if (backend == nullptr) {
  13199. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13200. llama_free(ctx);
  13201. return nullptr;
  13202. }
  13203. ctx->backends.push_back(backend);
  13204. }
  13205. #endif
  13206. ctx->backend_cpu = ggml_backend_cpu_init();
  13207. if (ctx->backend_cpu == nullptr) {
  13208. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13209. llama_free(ctx);
  13210. return nullptr;
  13211. }
  13212. ctx->backends.push_back(ctx->backend_cpu);
  13213. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13214. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13215. llama_free(ctx);
  13216. return nullptr;
  13217. }
  13218. {
  13219. size_t memory_size_k = 0;
  13220. size_t memory_size_v = 0;
  13221. for (auto & k : ctx->kv_self.k_l) {
  13222. memory_size_k += ggml_nbytes(k);
  13223. }
  13224. for (auto & v : ctx->kv_self.v_l) {
  13225. memory_size_v += ggml_nbytes(v);
  13226. }
  13227. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13228. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13229. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13230. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13231. }
  13232. // graph outputs buffer
  13233. {
  13234. // resized during inference when a batch uses more outputs
  13235. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13236. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13237. llama_free(ctx);
  13238. return nullptr;
  13239. }
  13240. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13241. ggml_backend_buffer_name(ctx->buf_output),
  13242. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13243. }
  13244. // scheduler and compute buffers
  13245. {
  13246. // buffer types used for the compute buffer of each backend
  13247. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13248. for (auto * backend : ctx->backends) {
  13249. if (ggml_backend_is_cpu(backend)) {
  13250. // use host buffers for the CPU backend compute buffer
  13251. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13252. } else {
  13253. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13254. }
  13255. }
  13256. // buffer used to store the computation graph and the tensor meta data
  13257. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13258. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13259. bool pipeline_parallel =
  13260. llama_get_device_count(*model) > 1 &&
  13261. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13262. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13263. params.offload_kqv;
  13264. #ifndef GGML_USE_CUDA
  13265. // pipeline parallelism requires support for async compute and events
  13266. // currently this is only implemented in the CUDA backend
  13267. pipeline_parallel = false;
  13268. #endif
  13269. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13270. if (pipeline_parallel) {
  13271. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13272. }
  13273. // build worst-case graph
  13274. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13275. int n_past = cparams.n_ctx - n_tokens;
  13276. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13277. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13278. // initialize scheduler with the worst-case graph
  13279. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13280. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13281. llama_free(ctx);
  13282. return nullptr;
  13283. }
  13284. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13285. ggml_backend_t backend = ctx->backends[i];
  13286. ggml_backend_buffer_type_t buft = backend_buft[i];
  13287. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13288. if (size > 1) {
  13289. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13290. ggml_backend_buft_name(buft),
  13291. size / 1024.0 / 1024.0);
  13292. }
  13293. }
  13294. // note: the number of splits during measure is higher than during inference due to the kv shift
  13295. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13296. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13297. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13298. }
  13299. }
  13300. #ifdef GGML_USE_MPI
  13301. ctx->ctx_mpi = ggml_mpi_init();
  13302. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  13303. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  13304. // TODO: needs fix after #3228
  13305. GGML_ASSERT(false && "not implemented");
  13306. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  13307. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  13308. llama_backend_free();
  13309. exit(1);
  13310. }
  13311. #endif
  13312. return ctx;
  13313. }
  13314. void llama_free(struct llama_context * ctx) {
  13315. delete ctx;
  13316. }
  13317. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13318. return &ctx->model;
  13319. }
  13320. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13321. return ctx->cparams.n_ctx;
  13322. }
  13323. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13324. return ctx->cparams.n_batch;
  13325. }
  13326. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13327. return ctx->cparams.n_ubatch;
  13328. }
  13329. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13330. return ctx->kv_self.size;
  13331. }
  13332. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13333. return model->vocab.type;
  13334. }
  13335. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13336. switch (model->arch) {
  13337. // these models do not use RoPE
  13338. case LLM_ARCH_GPT2:
  13339. case LLM_ARCH_GPTJ:
  13340. case LLM_ARCH_GPTNEOX:
  13341. case LLM_ARCH_MPT:
  13342. case LLM_ARCH_REFACT:
  13343. case LLM_ARCH_BLOOM:
  13344. case LLM_ARCH_MAMBA:
  13345. case LLM_ARCH_JINA_BERT_V2:
  13346. return LLAMA_ROPE_TYPE_NONE;
  13347. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13348. case LLM_ARCH_LLAMA:
  13349. case LLM_ARCH_BAICHUAN:
  13350. case LLM_ARCH_STARCODER:
  13351. case LLM_ARCH_PLAMO:
  13352. case LLM_ARCH_CODESHELL:
  13353. case LLM_ARCH_ORION:
  13354. case LLM_ARCH_INTERNLM2:
  13355. case LLM_ARCH_MINICPM:
  13356. case LLM_ARCH_XVERSE:
  13357. case LLM_ARCH_COMMAND_R:
  13358. case LLM_ARCH_OLMO:
  13359. return LLAMA_ROPE_TYPE_NORM;
  13360. // the pairs of head values are offset by n_rot/2
  13361. case LLM_ARCH_FALCON:
  13362. case LLM_ARCH_GROK:
  13363. case LLM_ARCH_DBRX:
  13364. case LLM_ARCH_PERSIMMON:
  13365. case LLM_ARCH_BERT:
  13366. case LLM_ARCH_NOMIC_BERT:
  13367. case LLM_ARCH_STABLELM:
  13368. case LLM_ARCH_QWEN:
  13369. case LLM_ARCH_QWEN2:
  13370. case LLM_ARCH_QWEN2MOE:
  13371. case LLM_ARCH_PHI2:
  13372. case LLM_ARCH_PHI3:
  13373. case LLM_ARCH_GEMMA:
  13374. case LLM_ARCH_STARCODER2:
  13375. return LLAMA_ROPE_TYPE_NEOX;
  13376. // all model arches should be listed explicitly here
  13377. case LLM_ARCH_UNKNOWN:
  13378. GGML_ASSERT(false && "unknown architecture");
  13379. break;
  13380. }
  13381. return LLAMA_ROPE_TYPE_NONE;
  13382. }
  13383. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13384. return ctx->cparams.pooling_type;
  13385. }
  13386. int32_t llama_n_vocab(const struct llama_model * model) {
  13387. return model->hparams.n_vocab;
  13388. }
  13389. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13390. return model->hparams.n_ctx_train;
  13391. }
  13392. int32_t llama_n_embd(const struct llama_model * model) {
  13393. return model->hparams.n_embd;
  13394. }
  13395. int32_t llama_n_layer(const struct llama_model * model) {
  13396. return model->hparams.n_layer;
  13397. }
  13398. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13399. return model->hparams.rope_freq_scale_train;
  13400. }
  13401. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13402. const auto & it = model->gguf_kv.find(key);
  13403. if (it == model->gguf_kv.end()) {
  13404. if (buf_size > 0) {
  13405. buf[0] = '\0';
  13406. }
  13407. return -1;
  13408. }
  13409. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13410. }
  13411. int32_t llama_model_meta_count(const struct llama_model * model) {
  13412. return (int)model->gguf_kv.size();
  13413. }
  13414. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13415. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13416. if (buf_size > 0) {
  13417. buf[0] = '\0';
  13418. }
  13419. return -1;
  13420. }
  13421. auto it = model->gguf_kv.begin();
  13422. std::advance(it, i);
  13423. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13424. }
  13425. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13426. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13427. if (buf_size > 0) {
  13428. buf[0] = '\0';
  13429. }
  13430. return -1;
  13431. }
  13432. auto it = model->gguf_kv.begin();
  13433. std::advance(it, i);
  13434. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13435. }
  13436. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13437. return snprintf(buf, buf_size, "%s %s %s",
  13438. llama_model_arch_name(model->arch),
  13439. llama_model_type_name(model->type),
  13440. llama_model_ftype_name(model->ftype).c_str());
  13441. }
  13442. uint64_t llama_model_size(const struct llama_model * model) {
  13443. uint64_t size = 0;
  13444. for (const auto & it : model->tensors_by_name) {
  13445. size += ggml_nbytes(it.second);
  13446. }
  13447. return size;
  13448. }
  13449. uint64_t llama_model_n_params(const struct llama_model * model) {
  13450. uint64_t nparams = 0;
  13451. for (const auto & it : model->tensors_by_name) {
  13452. nparams += ggml_nelements(it.second);
  13453. }
  13454. return nparams;
  13455. }
  13456. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13457. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13458. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13459. return it.first == name;
  13460. });
  13461. if (it == model->tensors_by_name.end()) {
  13462. return nullptr;
  13463. }
  13464. return it->second;
  13465. }
  13466. uint32_t llama_model_quantize(
  13467. const char * fname_inp,
  13468. const char * fname_out,
  13469. const llama_model_quantize_params * params) {
  13470. try {
  13471. llama_model_quantize_internal(fname_inp, fname_out, params);
  13472. return 0;
  13473. } catch (const std::exception & err) {
  13474. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13475. return 1;
  13476. }
  13477. }
  13478. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13479. try {
  13480. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13481. } catch (const std::exception & err) {
  13482. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13483. return 1;
  13484. }
  13485. }
  13486. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13487. GGML_ASSERT(cvec.tensors.empty());
  13488. GGML_ASSERT(cvec.ctxs.empty());
  13489. GGML_ASSERT(cvec.bufs.empty());
  13490. // count layer buffer types
  13491. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13492. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13493. buft_layer_count[model.buft_layer[i].buft]++;
  13494. }
  13495. // allocate contexts
  13496. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13497. for (auto & it : buft_layer_count) {
  13498. int n_layers = it.second;
  13499. struct ggml_init_params params = {
  13500. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13501. /*.mem_buffer =*/ NULL,
  13502. /*.no_alloc =*/ true,
  13503. };
  13504. ggml_context * ctx = ggml_init(params);
  13505. if (!ctx) {
  13506. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13507. return 1;
  13508. }
  13509. ctx_map[it.first] = ctx;
  13510. }
  13511. // make tensors
  13512. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13513. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13514. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13515. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13516. cvec.tensors.push_back(tensor);
  13517. }
  13518. // allocate tensors / buffers and zero
  13519. for (auto it : ctx_map) {
  13520. ggml_backend_buffer_type_t buft = it.first;
  13521. ggml_context * ctx = it.second;
  13522. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13523. if (!buf) {
  13524. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13525. return false;
  13526. }
  13527. ggml_backend_buffer_clear(buf, 0);
  13528. cvec.ctxs.push_back(ctx);
  13529. cvec.bufs.push_back(buf);
  13530. }
  13531. return true;
  13532. }
  13533. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13534. const llama_model & model = lctx->model;
  13535. llama_control_vector & cvec = lctx->cvec;
  13536. if (data == nullptr) {
  13537. // disable the current control vector (but leave allocated for later)
  13538. cvec.layer_start = -1;
  13539. cvec.layer_end = -1;
  13540. return 0;
  13541. }
  13542. if (n_embd != (int) model.hparams.n_embd) {
  13543. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13544. return 1;
  13545. }
  13546. if (cvec.tensors.empty()) {
  13547. if (!llama_control_vector_init(cvec, model)) {
  13548. return 1;
  13549. }
  13550. }
  13551. cvec.layer_start = il_start;
  13552. cvec.layer_end = il_end;
  13553. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13554. assert(cvec.tensors[il] != nullptr);
  13555. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13556. if (off + n_embd <= len) {
  13557. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13558. }
  13559. }
  13560. return 0;
  13561. }
  13562. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13563. struct llama_kv_cache_view result = {
  13564. /*.n_cells = */ 0,
  13565. /*.n_seq_max = */ n_seq_max,
  13566. /*.token_count = */ 0,
  13567. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13568. /*.max_contiguous = */ 0,
  13569. /*.max_contiguous_idx = */ -1,
  13570. /*.cells = */ nullptr,
  13571. /*.cells_sequences = */ nullptr,
  13572. };
  13573. return result;
  13574. }
  13575. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13576. if (view->cells != nullptr) {
  13577. free(view->cells);
  13578. view->cells = nullptr;
  13579. }
  13580. if (view->cells_sequences != nullptr) {
  13581. free(view->cells_sequences);
  13582. view->cells_sequences = nullptr;
  13583. }
  13584. }
  13585. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13586. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13587. view->n_cells = int32_t(ctx->kv_self.size);
  13588. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13589. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13590. view->cells = (struct llama_kv_cache_view_cell *)p;
  13591. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13592. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13593. view->cells_sequences = (llama_seq_id *)p;
  13594. }
  13595. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13596. llama_kv_cache_view_cell * c_curr = view->cells;
  13597. llama_seq_id * cs_curr = view->cells_sequences;
  13598. int32_t used_cells = 0;
  13599. int32_t token_count = 0;
  13600. int32_t curr_contig_idx = -1;
  13601. uint32_t max_contig = 0;
  13602. int32_t max_contig_idx = -1;
  13603. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13604. const size_t curr_size = kv_cells[i].seq_id.size();
  13605. token_count += curr_size;
  13606. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13607. if (curr_size > 0) {
  13608. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13609. max_contig = i - curr_contig_idx;
  13610. max_contig_idx = curr_contig_idx;
  13611. }
  13612. curr_contig_idx = -1;
  13613. } else if (curr_contig_idx < 0) {
  13614. curr_contig_idx = i;
  13615. }
  13616. int seq_idx = 0;
  13617. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13618. if (seq_idx >= view->n_seq_max) {
  13619. break;
  13620. }
  13621. cs_curr[seq_idx] = it;
  13622. seq_idx++;
  13623. }
  13624. if (seq_idx != 0) {
  13625. used_cells++;
  13626. }
  13627. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13628. cs_curr[seq_idx] = -1;
  13629. }
  13630. }
  13631. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13632. max_contig_idx = curr_contig_idx;
  13633. max_contig = kv_cells.size() - curr_contig_idx;
  13634. }
  13635. view->max_contiguous = max_contig;
  13636. view->max_contiguous_idx = max_contig_idx;
  13637. view->token_count = token_count;
  13638. view->used_cells = used_cells;
  13639. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13640. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13641. __func__, ctx->kv_self.used, used_cells);
  13642. }
  13643. }
  13644. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13645. int result = 0;
  13646. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13647. result += ctx->kv_self.cells[i].seq_id.size();
  13648. }
  13649. return result;
  13650. }
  13651. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13652. return ctx->kv_self.used;
  13653. }
  13654. void llama_kv_cache_clear(struct llama_context * ctx) {
  13655. llama_kv_cache_clear(ctx->kv_self);
  13656. }
  13657. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13658. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13659. }
  13660. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13661. if (seq_id_src == seq_id_dst) {
  13662. return;
  13663. }
  13664. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13665. }
  13666. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13667. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13668. }
  13669. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13670. if (delta == 0) {
  13671. return;
  13672. }
  13673. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13674. }
  13675. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13676. if (d == 1) {
  13677. return;
  13678. }
  13679. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13680. }
  13681. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13682. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13683. }
  13684. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13685. llama_kv_cache_defrag(ctx->kv_self);
  13686. }
  13687. void llama_kv_cache_update(struct llama_context * ctx) {
  13688. llama_kv_cache_update_internal(*ctx);
  13689. }
  13690. // deprecated
  13691. size_t llama_get_state_size(const struct llama_context * ctx) {
  13692. return llama_state_get_size(ctx);
  13693. }
  13694. // deprecated
  13695. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13696. return llama_state_get_data(ctx, dst);
  13697. }
  13698. // deprecated
  13699. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13700. return llama_state_set_data(ctx, src);
  13701. }
  13702. // deprecated
  13703. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13704. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13705. }
  13706. // deprecated
  13707. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13708. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13709. }
  13710. // Returns the *maximum* size of the state
  13711. size_t llama_state_get_size(const struct llama_context * ctx) {
  13712. const auto & cparams = ctx->cparams;
  13713. const auto & hparams = ctx->model.hparams;
  13714. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13715. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13716. const size_t s_rng_size = sizeof(size_t);
  13717. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13718. const size_t s_n_outputs = sizeof(size_t);
  13719. // assume worst case for outputs although only currently set ones are serialized
  13720. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13721. const size_t s_logits_size = sizeof(size_t);
  13722. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13723. const size_t s_embedding_size = sizeof(size_t);
  13724. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13725. const size_t s_kv_buf_size = sizeof(size_t);
  13726. const size_t s_kv_head = sizeof(uint32_t);
  13727. const size_t s_kv_size = sizeof(uint32_t);
  13728. const size_t s_kv_used = sizeof(uint32_t);
  13729. const size_t s_v_trans = sizeof(uint32_t);
  13730. const size_t s_kv = ctx->kv_self.total_size();
  13731. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13732. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13733. const size_t s_total = (
  13734. + s_rng_size
  13735. + s_rng
  13736. + s_n_outputs
  13737. + s_output_pos
  13738. + s_logits_size
  13739. + s_logits
  13740. + s_embedding_size
  13741. + s_embedding
  13742. + s_kv_buf_size
  13743. + s_kv_head
  13744. + s_kv_size
  13745. + s_kv_used
  13746. + s_v_trans
  13747. + s_kv
  13748. + s_kv_cells
  13749. );
  13750. // on session change it is very likely that the state size has changed - so we need to update this function
  13751. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  13752. return s_total;
  13753. }
  13754. // llama_context_data
  13755. struct llama_data_context {
  13756. virtual void write(const void * src, size_t size) = 0;
  13757. virtual size_t get_size_written() = 0;
  13758. virtual ~llama_data_context() = default;
  13759. };
  13760. struct llama_data_buffer_context : llama_data_context {
  13761. uint8_t * ptr;
  13762. size_t size_written = 0;
  13763. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13764. void write(const void * src, size_t size) override {
  13765. memcpy(ptr, src, size);
  13766. ptr += size;
  13767. size_written += size;
  13768. }
  13769. size_t get_size_written() override {
  13770. return size_written;
  13771. }
  13772. };
  13773. struct llama_data_file_context : llama_data_context {
  13774. llama_file * file;
  13775. size_t size_written = 0;
  13776. llama_data_file_context(llama_file * f) : file(f) {}
  13777. void write(const void * src, size_t size) override {
  13778. file->write_raw(src, size);
  13779. size_written += size;
  13780. }
  13781. size_t get_size_written() override {
  13782. return size_written;
  13783. }
  13784. };
  13785. /** copy state data into either a buffer or file depending on the passed in context
  13786. *
  13787. * file context:
  13788. * llama_file file("/path", "wb");
  13789. * llama_data_file_context data_ctx(&file);
  13790. * llama_state_get_data(ctx, &data_ctx);
  13791. *
  13792. * buffer context:
  13793. * std::vector<uint8_t> buf(max_size, 0);
  13794. * llama_data_buffer_context data_ctx(&buf.data());
  13795. * llama_state_get_data(ctx, &data_ctx);
  13796. *
  13797. */
  13798. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13799. llama_synchronize(ctx);
  13800. // copy rng
  13801. {
  13802. std::ostringstream rng_ss;
  13803. rng_ss << ctx->rng;
  13804. const std::string & rng_str = rng_ss.str();
  13805. const size_t rng_size = rng_str.size();
  13806. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13807. data_ctx->write(&rng_size, sizeof(rng_size));
  13808. data_ctx->write(rng_str.data(), rng_size);
  13809. }
  13810. // copy outputs
  13811. {
  13812. // Can't use ctx->n_outputs because it's not for the
  13813. // entire last batch when n_ubatch is smaller than n_batch
  13814. size_t n_outputs = 0;
  13815. // copy output ids
  13816. {
  13817. std::vector<int32_t> output_pos;
  13818. const size_t n_batch = ctx->cparams.n_batch;
  13819. const auto & output_ids = ctx->output_ids;
  13820. output_pos.resize(ctx->output_size);
  13821. // build a more compact representation of the output ids
  13822. for (size_t i = 0; i < n_batch; ++i) {
  13823. // map an output id to a position in the batch
  13824. int32_t pos = output_ids[i];
  13825. if (pos >= 0) {
  13826. if ((size_t) pos >= n_outputs) {
  13827. n_outputs = pos + 1;
  13828. }
  13829. GGML_ASSERT((size_t) pos < ctx->output_size);
  13830. output_pos[pos] = i;
  13831. }
  13832. }
  13833. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13834. if (n_outputs) {
  13835. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13836. }
  13837. }
  13838. // copy logits
  13839. {
  13840. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13841. data_ctx->write(&logits_size, sizeof(logits_size));
  13842. if (logits_size) {
  13843. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13844. }
  13845. }
  13846. // copy embeddings
  13847. {
  13848. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13849. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13850. if (embeddings_size) {
  13851. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13852. }
  13853. }
  13854. }
  13855. // copy kv cache
  13856. {
  13857. const auto & kv_self = ctx->kv_self;
  13858. const auto & hparams = ctx->model.hparams;
  13859. const uint32_t n_layer = hparams.n_layer;
  13860. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13861. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13862. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13863. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13864. const uint32_t kv_size = kv_self.size;
  13865. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13866. const uint32_t kv_used = kv_self.used;
  13867. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  13868. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13869. data_ctx->write(&kv_head, sizeof(kv_head));
  13870. data_ctx->write(&kv_size, sizeof(kv_size));
  13871. data_ctx->write(&kv_used, sizeof(kv_used));
  13872. data_ctx->write(&v_trans, sizeof(v_trans));
  13873. if (kv_buf_size) {
  13874. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13875. std::vector<uint8_t> tmp_buf;
  13876. for (int il = 0; il < (int) n_layer; ++il) {
  13877. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13878. tmp_buf.resize(k_size);
  13879. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13880. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13881. if (kv_self.recurrent || !kv_self.v_trans) {
  13882. // v is contiguous for recurrent models
  13883. // TODO: use other tensors for state models than k and v
  13884. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13885. tmp_buf.resize(v_size);
  13886. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13887. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13888. continue;
  13889. }
  13890. // v is not contiguous, copy row by row
  13891. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13892. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13893. tmp_buf.resize(v_row_size);
  13894. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13895. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13896. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13897. }
  13898. }
  13899. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13900. }
  13901. for (uint32_t i = 0; i < kv_head; ++i) {
  13902. const auto & cell = kv_self.cells[i];
  13903. const llama_pos pos = cell.pos;
  13904. const size_t seq_id_size = cell.seq_id.size();
  13905. data_ctx->write(&pos, sizeof(pos));
  13906. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13907. for (auto seq_id : cell.seq_id) {
  13908. data_ctx->write(&seq_id, sizeof(seq_id));
  13909. }
  13910. }
  13911. }
  13912. }
  13913. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13914. llama_data_buffer_context data_ctx(dst);
  13915. llama_state_get_data_internal(ctx, &data_ctx);
  13916. return data_ctx.get_size_written();
  13917. }
  13918. // Sets the state reading from the specified source address
  13919. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13920. llama_synchronize(ctx);
  13921. const uint8_t * inp = src;
  13922. // set rng
  13923. {
  13924. size_t rng_size;
  13925. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13926. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13927. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13928. std::istringstream rng_ss(rng_str);
  13929. rng_ss >> ctx->rng;
  13930. GGML_ASSERT(!rng_ss.fail());
  13931. }
  13932. // set output ids
  13933. {
  13934. size_t n_outputs;
  13935. std::vector<int32_t> output_pos;
  13936. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13937. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13938. if (n_outputs) {
  13939. output_pos.resize(n_outputs);
  13940. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13941. inp += n_outputs * sizeof(int32_t);
  13942. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13943. int32_t id = output_pos[i];
  13944. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13945. ctx->output_ids[id] = i;
  13946. }
  13947. ctx->n_outputs = n_outputs;
  13948. }
  13949. }
  13950. // set logits
  13951. {
  13952. size_t logits_size;
  13953. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13954. GGML_ASSERT(ctx->logits_size >= logits_size);
  13955. if (logits_size) {
  13956. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13957. inp += logits_size * sizeof(float);
  13958. }
  13959. }
  13960. // set embeddings
  13961. {
  13962. size_t embeddings_size;
  13963. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13964. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13965. if (embeddings_size) {
  13966. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13967. inp += embeddings_size * sizeof(float);
  13968. }
  13969. }
  13970. // set kv cache
  13971. {
  13972. const auto & kv_self = ctx->kv_self;
  13973. const auto & hparams = ctx->model.hparams;
  13974. const uint32_t n_layer = hparams.n_layer;
  13975. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13976. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13977. size_t kv_buf_size;
  13978. uint32_t kv_head;
  13979. uint32_t kv_size;
  13980. uint32_t kv_used;
  13981. uint32_t v_trans;
  13982. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13983. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13984. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13985. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  13986. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  13987. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  13988. if (kv_self.size != kv_size) {
  13989. // the KV cache needs to be big enough to load all the KV cells from the saved state
  13990. GGML_ASSERT(kv_self.size >= kv_head);
  13991. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  13992. __func__, kv_head, kv_size, kv_self.size);
  13993. }
  13994. llama_kv_cache_clear(ctx);
  13995. if (kv_buf_size) {
  13996. const size_t pre_kv_buf_size = inp - src;
  13997. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  13998. for (int il = 0; il < (int) n_layer; ++il) {
  13999. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14000. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14001. inp += k_size;
  14002. if (kv_self.recurrent || !kv_self.v_trans) {
  14003. // v is contiguous for recurrent models
  14004. // TODO: use other tensors for state models than k and v
  14005. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14006. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14007. inp += v_size;
  14008. continue;
  14009. }
  14010. // v is not contiguous, copy row by row
  14011. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14012. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14013. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14014. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14015. inp += v_row_size;
  14016. }
  14017. }
  14018. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14019. }
  14020. ctx->kv_self.head = kv_head;
  14021. ctx->kv_self.used = kv_used;
  14022. for (uint32_t i = 0; i < kv_head; ++i) {
  14023. llama_pos pos;
  14024. size_t seq_id_size;
  14025. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14026. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14027. ctx->kv_self.cells[i].pos = pos;
  14028. llama_seq_id seq_id;
  14029. for (size_t j = 0; j < seq_id_size; ++j) {
  14030. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14031. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14032. }
  14033. }
  14034. }
  14035. const size_t nread = inp - src;
  14036. const size_t max_size = llama_state_get_size(ctx);
  14037. GGML_ASSERT(nread <= max_size);
  14038. return nread;
  14039. }
  14040. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14041. llama_file file(path_session, "rb");
  14042. // sanity checks
  14043. {
  14044. const uint32_t magic = file.read_u32();
  14045. const uint32_t version = file.read_u32();
  14046. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14047. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14048. return false;
  14049. }
  14050. llama_hparams session_hparams;
  14051. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14052. if (session_hparams != ctx->model.hparams) {
  14053. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14054. return false;
  14055. }
  14056. }
  14057. // load the prompt
  14058. {
  14059. const uint32_t n_token_count = file.read_u32();
  14060. if (n_token_count > n_token_capacity) {
  14061. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14062. return false;
  14063. }
  14064. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14065. *n_token_count_out = n_token_count;
  14066. }
  14067. // restore the context state
  14068. {
  14069. const size_t n_state_size_cur = file.size - file.tell();
  14070. const size_t n_state_size_max = llama_state_get_size(ctx);
  14071. if (n_state_size_cur > n_state_size_max) {
  14072. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14073. return false;
  14074. }
  14075. std::vector<uint8_t> state_data(n_state_size_max);
  14076. file.read_raw(state_data.data(), n_state_size_cur);
  14077. llama_state_set_data(ctx, state_data.data());
  14078. }
  14079. return true;
  14080. }
  14081. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14082. try {
  14083. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14084. } catch (const std::exception & err) {
  14085. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14086. return false;
  14087. }
  14088. }
  14089. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14090. llama_file file(path_session, "wb");
  14091. file.write_u32(LLAMA_SESSION_MAGIC);
  14092. file.write_u32(LLAMA_SESSION_VERSION);
  14093. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14094. // save the prompt
  14095. file.write_u32((uint32_t) n_token_count);
  14096. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14097. // save the context state using stream saving
  14098. llama_data_file_context data_ctx(&file);
  14099. llama_state_get_data_internal(ctx, &data_ctx);
  14100. return true;
  14101. }
  14102. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14103. try {
  14104. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14105. } catch (const std::exception & err) {
  14106. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14107. return false;
  14108. }
  14109. }
  14110. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14111. // save the size of size_t as a uint32_t for safety check
  14112. const size_t size_t_size_size = sizeof(uint32_t);
  14113. // other values
  14114. const size_t s_cell_count_size = sizeof(uint32_t);
  14115. const size_t s_layer_count_size = sizeof(uint32_t);
  14116. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14117. size_t s_cell_count = 0;
  14118. size_t s_cell_data_size = 0;
  14119. const auto & kv_self = ctx->kv_self;
  14120. const auto & hparams = ctx->model.hparams;
  14121. const uint32_t n_layer = hparams.n_layer;
  14122. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14123. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14124. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14125. const auto & cell = kv_self.cells[i];
  14126. if (cell.seq_id.count(seq_id) > 0) {
  14127. ++s_cell_count;
  14128. s_cell_data_size += sizeof(llama_pos);
  14129. }
  14130. }
  14131. for (int il = 0; il < (int)n_layer; ++il) {
  14132. // types of keys and values
  14133. s_cell_data_size += sizeof(int32_t) * 2;
  14134. // k_size_row and v_size_el values of layer
  14135. s_cell_data_size += sizeof(size_t) * 2;
  14136. // keys
  14137. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14138. s_cell_data_size += k_size_row * s_cell_count;
  14139. // values (transposed)
  14140. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14141. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14142. }
  14143. const size_t s_total = (
  14144. size_t_size_size +
  14145. s_cell_count_size +
  14146. s_layer_count_size +
  14147. n_embd_v_gqa_size +
  14148. s_cell_data_size
  14149. );
  14150. return s_total;
  14151. }
  14152. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14153. llama_synchronize(ctx);
  14154. const auto & kv_self = ctx->kv_self;
  14155. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14156. // Save the size of size_t as a uint32_t for safety check
  14157. const uint32_t size_t_size = sizeof(size_t);
  14158. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14159. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14160. uint32_t cell_count = 0;
  14161. // Count the number of cells with the specified seq_id
  14162. // Find all the ranges of cells with this seq id
  14163. {
  14164. uint32_t cell_range_begin = kv_self.size;
  14165. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14166. const auto & cell = kv_self.cells[i];
  14167. if (cell.has_seq_id(seq_id)) {
  14168. ++cell_count;
  14169. if (cell_range_begin == kv_self.size) {
  14170. cell_range_begin = i;
  14171. }
  14172. }
  14173. else {
  14174. if (cell_range_begin != kv_self.size) {
  14175. cell_ranges.emplace_back(cell_range_begin, i);
  14176. cell_range_begin = kv_self.size;
  14177. }
  14178. }
  14179. }
  14180. if (cell_range_begin != kv_self.size) {
  14181. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14182. }
  14183. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14184. uint32_t cell_count_check = 0;
  14185. for (const auto & range : cell_ranges) {
  14186. cell_count_check += range.second - range.first;
  14187. }
  14188. GGML_ASSERT(cell_count == cell_count_check);
  14189. }
  14190. // Write the cell count
  14191. data_ctx.write(&cell_count, sizeof(cell_count));
  14192. const auto & hparams = ctx->model.hparams;
  14193. const uint32_t n_layer = hparams.n_layer;
  14194. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14195. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14196. // Write the layer count
  14197. data_ctx.write(&n_layer, sizeof(n_layer));
  14198. // Write n_embd_v_gqa
  14199. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14200. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14201. for (const auto & range : cell_ranges) {
  14202. for (uint32_t i = range.first; i < range.second; ++i) {
  14203. const auto & cell = kv_self.cells[i];
  14204. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14205. }
  14206. }
  14207. // Iterate and write all the keys first, each row is a cell
  14208. // Get whole range at a time
  14209. std::vector<uint8_t> tmp_buf;
  14210. for (int il = 0; il < (int)n_layer; ++il) {
  14211. // Write key type
  14212. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14213. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14214. // Write row size of key
  14215. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14216. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14217. // Read each range of cells of k_size length each into tmp_buf and write out
  14218. for (const auto & range : cell_ranges) {
  14219. const size_t range_size = range.second - range.first;
  14220. tmp_buf.resize(range_size * k_size_row);
  14221. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14222. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14223. }
  14224. }
  14225. // TODO: simplify, reduce copy-paste
  14226. if (!kv_self.v_trans) {
  14227. for (int il = 0; il < (int)n_layer; ++il) {
  14228. // Write value type
  14229. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14230. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14231. // Write row size of value
  14232. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14233. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14234. // Read each range of cells of v_size length each into tmp_buf and write out
  14235. for (const auto & range : cell_ranges) {
  14236. const size_t range_size = range.second - range.first;
  14237. tmp_buf.resize(range_size * v_size_row);
  14238. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14239. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14240. }
  14241. }
  14242. } else {
  14243. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14244. const uint32_t kv_size = kv_self.size;
  14245. for (int il = 0; il < (int)n_layer; ++il) {
  14246. // Write value type
  14247. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14248. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14249. // Write element size
  14250. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14251. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14252. // For each row, we get the element values of each cell
  14253. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14254. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14255. for (const auto & range : cell_ranges) {
  14256. const size_t range_size = range.second - range.first;
  14257. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14258. tmp_buf.resize(range_size * v_size_el);
  14259. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14260. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14261. }
  14262. }
  14263. }
  14264. }
  14265. return data_ctx.get_size_written();
  14266. }
  14267. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14268. llama_data_buffer_context data_ctx(dst);
  14269. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14270. }
  14271. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14272. llama_synchronize(ctx);
  14273. auto & kv_self = ctx->kv_self;
  14274. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14275. // Wipe the slot
  14276. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14277. const uint8_t * inp = src;
  14278. // Read size of size_t
  14279. uint32_t size_t_size;
  14280. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14281. inp += sizeof(size_t_size);
  14282. if (size_t_size != sizeof(size_t)) {
  14283. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14284. return 0;
  14285. }
  14286. // Read the cell count
  14287. uint32_t cell_count;
  14288. memcpy(&cell_count, inp, sizeof(cell_count));
  14289. inp += sizeof(cell_count);
  14290. // Read the layer count
  14291. uint32_t n_layer_ref;
  14292. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14293. inp += sizeof(n_layer_ref);
  14294. // Read n_embd_v_gqa
  14295. uint32_t n_embd_v_gqa_ref;
  14296. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14297. inp += sizeof(n_embd_v_gqa_ref);
  14298. // Sanity check model compatibility
  14299. const auto & hparams = ctx->model.hparams;
  14300. const uint32_t n_layer = hparams.n_layer;
  14301. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14302. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14303. if (n_layer != n_layer_ref) {
  14304. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14305. return 0;
  14306. }
  14307. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14308. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14309. return 0;
  14310. }
  14311. // Allocate the new cells for the slot
  14312. if (cell_count) {
  14313. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14314. batch.n_tokens = cell_count;
  14315. for (uint32_t i = 0; i < cell_count; ++i) {
  14316. llama_pos pos;
  14317. memcpy(&pos, inp, sizeof(pos));
  14318. inp += sizeof(pos);
  14319. batch.pos[i] = pos;
  14320. batch.n_seq_id[i] = 1;
  14321. batch.seq_id[i][0] = dest_seq_id;
  14322. }
  14323. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14324. llama_batch_free(batch);
  14325. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14326. return 0;
  14327. }
  14328. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14329. // Assume that this is one contiguous block of cells
  14330. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14331. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14332. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14333. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14334. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14335. // Cleanup
  14336. llama_batch_free(batch);
  14337. }
  14338. const uint32_t kv_size = kv_self.size;
  14339. const uint32_t kv_head = kv_self.head;
  14340. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14341. for (int il = 0; il < (int)n_layer; ++il) {
  14342. // Read type of key
  14343. int32_t k_type_i_ref;
  14344. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14345. inp += sizeof(k_type_i_ref);
  14346. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14347. if (k_type_i != k_type_i_ref) {
  14348. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14349. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14350. return 0;
  14351. }
  14352. // Read row size of key
  14353. size_t k_size_row_ref;
  14354. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14355. inp += sizeof(k_size_row_ref);
  14356. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14357. if (k_size_row != k_size_row_ref) {
  14358. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14359. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14360. return 0;
  14361. }
  14362. if (cell_count) {
  14363. // Read and set the keys for the whole cell range
  14364. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14365. inp += cell_count * k_size_row;
  14366. }
  14367. }
  14368. // TODO: simplify, reduce copy-paste
  14369. if (!kv_self.v_trans) {
  14370. for (int il = 0; il < (int)n_layer; ++il) {
  14371. // Read type of value
  14372. int32_t v_type_i_ref;
  14373. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14374. inp += sizeof(v_type_i_ref);
  14375. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14376. if (v_type_i != v_type_i_ref) {
  14377. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14378. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14379. return 0;
  14380. }
  14381. // Read row size of value
  14382. size_t v_size_row_ref;
  14383. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14384. inp += sizeof(v_size_row_ref);
  14385. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14386. if (v_size_row != v_size_row_ref) {
  14387. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14388. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14389. return 0;
  14390. }
  14391. if (cell_count) {
  14392. // Read and set the values for the whole cell range
  14393. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14394. inp += cell_count * v_size_row;
  14395. }
  14396. }
  14397. } else {
  14398. // For each layer, read the values for each cell (transposed)
  14399. for (int il = 0; il < (int)n_layer; ++il) {
  14400. // Read type of value
  14401. int32_t v_type_i_ref;
  14402. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14403. inp += sizeof(v_type_i_ref);
  14404. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14405. if (v_type_i != v_type_i_ref) {
  14406. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14407. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14408. return 0;
  14409. }
  14410. // Read element size of value
  14411. size_t v_size_el_ref;
  14412. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14413. inp += sizeof(v_size_el_ref);
  14414. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14415. if (v_size_el != v_size_el_ref) {
  14416. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14417. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14418. return 0;
  14419. }
  14420. if (cell_count) {
  14421. // For each row in the transposed matrix, read the values for the whole cell range
  14422. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14423. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14424. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14425. inp += cell_count * v_size_el;
  14426. }
  14427. }
  14428. }
  14429. }
  14430. const size_t nread = inp - src;
  14431. return nread;
  14432. }
  14433. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14434. llama_file file(filepath, "wb");
  14435. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14436. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14437. // save the prompt
  14438. file.write_u32((uint32_t)n_token_count);
  14439. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14440. // save the context state using stream saving
  14441. llama_data_file_context data_ctx(&file);
  14442. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14443. const size_t res = file.tell();
  14444. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14445. return res;
  14446. }
  14447. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14448. llama_file file(filepath, "rb");
  14449. // version checks
  14450. {
  14451. const uint32_t magic = file.read_u32();
  14452. const uint32_t version = file.read_u32();
  14453. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14454. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14455. return 0;
  14456. }
  14457. }
  14458. // load the prompt
  14459. {
  14460. const uint32_t n_token_count = file.read_u32();
  14461. if (n_token_count > n_token_capacity) {
  14462. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14463. return 0;
  14464. }
  14465. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14466. *n_token_count_out = n_token_count;
  14467. }
  14468. // restore the context state
  14469. {
  14470. const size_t state_size = file.size - file.tell();
  14471. std::vector<uint8_t> state_data(state_size);
  14472. file.read_raw(state_data.data(), state_size);
  14473. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14474. if (!nread) {
  14475. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14476. return 0;
  14477. }
  14478. GGML_ASSERT(nread <= state_size);
  14479. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14480. }
  14481. return file.tell();
  14482. }
  14483. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14484. try {
  14485. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14486. } catch (const std::exception & err) {
  14487. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14488. return 0;
  14489. }
  14490. }
  14491. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14492. try {
  14493. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14494. } catch (const std::exception & err) {
  14495. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14496. return 0;
  14497. }
  14498. }
  14499. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14500. ctx->cparams.n_threads = n_threads;
  14501. ctx->cparams.n_threads_batch = n_threads_batch;
  14502. }
  14503. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14504. ctx->abort_callback = abort_callback;
  14505. ctx->abort_callback_data = abort_callback_data;
  14506. }
  14507. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14508. ctx->cparams.causal_attn = causal_attn;
  14509. }
  14510. struct llama_batch llama_batch_get_one(
  14511. llama_token * tokens,
  14512. int32_t n_tokens,
  14513. llama_pos pos_0,
  14514. llama_seq_id seq_id) {
  14515. return {
  14516. /*n_tokens =*/ n_tokens,
  14517. /*tokens =*/ tokens,
  14518. /*embd =*/ nullptr,
  14519. /*pos =*/ nullptr,
  14520. /*n_seq_id =*/ nullptr,
  14521. /*seq_id =*/ nullptr,
  14522. /*logits =*/ nullptr,
  14523. /*all_pos_0 =*/ pos_0,
  14524. /*all_pos_1 =*/ 1,
  14525. /*all_seq_id =*/ seq_id,
  14526. };
  14527. }
  14528. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14529. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14530. if (embd) {
  14531. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14532. } else {
  14533. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14534. }
  14535. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14536. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14537. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14538. for (int i = 0; i < n_tokens_alloc; ++i) {
  14539. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14540. }
  14541. batch.seq_id[n_tokens_alloc] = nullptr;
  14542. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14543. return batch;
  14544. }
  14545. void llama_batch_free(struct llama_batch batch) {
  14546. if (batch.token) free(batch.token);
  14547. if (batch.embd) free(batch.embd);
  14548. if (batch.pos) free(batch.pos);
  14549. if (batch.n_seq_id) free(batch.n_seq_id);
  14550. if (batch.seq_id) {
  14551. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14552. free(batch.seq_id[i]);
  14553. }
  14554. free(batch.seq_id);
  14555. }
  14556. if (batch.logits) free(batch.logits);
  14557. }
  14558. int32_t llama_decode(
  14559. struct llama_context * ctx,
  14560. struct llama_batch batch) {
  14561. const int ret = llama_decode_internal(*ctx, batch);
  14562. if (ret < 0) {
  14563. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14564. }
  14565. return ret;
  14566. }
  14567. void llama_synchronize(struct llama_context * ctx) {
  14568. ggml_backend_sched_synchronize(ctx->sched);
  14569. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14570. // the stats will be added to the prompt evaluation stats
  14571. // this should only happen when using batch size 1 to evaluate a batch
  14572. // add the evaluation to the stats
  14573. if (ctx->n_queued_tokens == 1) {
  14574. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14575. ctx->n_eval++;
  14576. } else if (ctx->n_queued_tokens > 1) {
  14577. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14578. ctx->n_p_eval += ctx->n_queued_tokens;
  14579. }
  14580. // get a more accurate load time, upon first eval
  14581. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14582. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14583. ctx->has_evaluated_once = true;
  14584. }
  14585. ctx->n_queued_tokens = 0;
  14586. ctx->t_compute_start_us = 0;
  14587. }
  14588. float * llama_get_logits(struct llama_context * ctx) {
  14589. llama_synchronize(ctx);
  14590. return ctx->logits;
  14591. }
  14592. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14593. int32_t j = -1;
  14594. llama_synchronize(ctx);
  14595. try {
  14596. if (ctx->logits == nullptr) {
  14597. throw std::runtime_error("no logits");
  14598. }
  14599. if (i < 0) {
  14600. j = ctx->n_outputs + i;
  14601. if (j < 0) {
  14602. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14603. }
  14604. } else if ((size_t) i >= ctx->output_ids.size()) {
  14605. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14606. } else {
  14607. j = ctx->output_ids[i];
  14608. }
  14609. if (j < 0) {
  14610. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14611. }
  14612. if (j >= ctx->n_outputs) {
  14613. // This should not happen
  14614. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14615. }
  14616. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14617. } catch (const std::exception & err) {
  14618. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14619. #ifndef NDEBUG
  14620. GGML_ASSERT(false);
  14621. #endif
  14622. return nullptr;
  14623. }
  14624. }
  14625. float * llama_get_embeddings(struct llama_context * ctx) {
  14626. llama_synchronize(ctx);
  14627. return ctx->embd;
  14628. }
  14629. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14630. int32_t j = -1;
  14631. llama_synchronize(ctx);
  14632. try {
  14633. if (ctx->embd == nullptr) {
  14634. throw std::runtime_error("no embeddings");
  14635. }
  14636. if (i < 0) {
  14637. j = ctx->n_outputs + i;
  14638. if (j < 0) {
  14639. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14640. }
  14641. } else if ((size_t) i >= ctx->output_ids.size()) {
  14642. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14643. } else {
  14644. j = ctx->output_ids[i];
  14645. }
  14646. if (j < 0) {
  14647. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14648. }
  14649. if (j >= ctx->n_outputs) {
  14650. // This should not happen
  14651. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14652. }
  14653. return ctx->embd + j*ctx->model.hparams.n_embd;
  14654. } catch (const std::exception & err) {
  14655. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14656. #ifndef NDEBUG
  14657. GGML_ASSERT(false);
  14658. #endif
  14659. return nullptr;
  14660. }
  14661. }
  14662. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14663. llama_synchronize(ctx);
  14664. auto it = ctx->embd_seq.find(seq_id);
  14665. if (it == ctx->embd_seq.end()) {
  14666. return nullptr;
  14667. }
  14668. return it->second.data();
  14669. }
  14670. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14671. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14672. return model->vocab.id_to_token[token].text.c_str();
  14673. }
  14674. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14675. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14676. return model->vocab.id_to_token[token].score;
  14677. }
  14678. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14679. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14680. return model->vocab.id_to_token[token].type;
  14681. }
  14682. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14683. return token != -1 && (
  14684. token == llama_token_eos(model) ||
  14685. token == llama_token_eot(model)
  14686. );
  14687. }
  14688. llama_token llama_token_bos(const struct llama_model * model) {
  14689. return model->vocab.special_bos_id;
  14690. }
  14691. llama_token llama_token_eos(const struct llama_model * model) {
  14692. return model->vocab.special_eos_id;
  14693. }
  14694. llama_token llama_token_cls(const struct llama_model * model) {
  14695. return model->vocab.special_cls_id;
  14696. }
  14697. llama_token llama_token_sep(const struct llama_model * model) {
  14698. return model->vocab.special_sep_id;
  14699. }
  14700. llama_token llama_token_nl(const struct llama_model * model) {
  14701. return model->vocab.linefeed_id;
  14702. }
  14703. int32_t llama_add_bos_token(const struct llama_model * model) {
  14704. return model->vocab.special_add_bos;
  14705. }
  14706. int32_t llama_add_eos_token(const struct llama_model * model) {
  14707. return model->vocab.special_add_eos;
  14708. }
  14709. llama_token llama_token_prefix(const struct llama_model * model) {
  14710. return model->vocab.special_prefix_id;
  14711. }
  14712. llama_token llama_token_middle(const struct llama_model * model) {
  14713. return model->vocab.special_middle_id;
  14714. }
  14715. llama_token llama_token_suffix(const struct llama_model * model) {
  14716. return model->vocab.special_suffix_id;
  14717. }
  14718. llama_token llama_token_eot(const struct llama_model * model) {
  14719. return model->vocab.special_eot_id;
  14720. }
  14721. int32_t llama_tokenize(
  14722. const struct llama_model * model,
  14723. const char * text,
  14724. int32_t text_len,
  14725. llama_token * tokens,
  14726. int32_t n_tokens_max,
  14727. bool add_special,
  14728. bool parse_special) {
  14729. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14730. if (n_tokens_max < (int) res.size()) {
  14731. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14732. return -((int) res.size());
  14733. }
  14734. for (size_t i = 0; i < res.size(); i++) {
  14735. tokens[i] = res[i];
  14736. }
  14737. return res.size();
  14738. }
  14739. static std::string llama_decode_text(const std::string & text) {
  14740. std::string decoded_text;
  14741. const auto cpts = unicode_cpts_from_utf8(text);
  14742. for (const auto cpt : cpts) {
  14743. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt));
  14744. }
  14745. return decoded_text;
  14746. }
  14747. // does not write null-terminator to buf
  14748. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14749. if (0 <= token && token < llama_n_vocab(model)) {
  14750. switch (llama_vocab_get_type(model->vocab)) {
  14751. case LLAMA_VOCAB_TYPE_WPM:
  14752. case LLAMA_VOCAB_TYPE_SPM: {
  14753. // NOTE: we accept all unsupported token types,
  14754. // suppressing them like CONTROL tokens.
  14755. if (llama_is_normal_token(model->vocab, token)) {
  14756. std::string result = model->vocab.id_to_token[token].text;
  14757. llama_unescape_whitespace(result);
  14758. if (length < (int) result.length()) {
  14759. return -(int) result.length();
  14760. }
  14761. memcpy(buf, result.c_str(), result.length());
  14762. return result.length();
  14763. } else if (
  14764. (llama_is_user_defined_token(model->vocab, token)) ||
  14765. (llama_is_control_token (model->vocab, token) && special)) {
  14766. std::string result = model->vocab.id_to_token[token].text;
  14767. if (length < (int) result.length()) {
  14768. return -(int) result.length();
  14769. }
  14770. memcpy(buf, result.c_str(), result.length());
  14771. return result.length();
  14772. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14773. if (length < 3) {
  14774. return -3;
  14775. }
  14776. memcpy(buf, "\xe2\x96\x85", 3);
  14777. return 3;
  14778. } else if (llama_is_byte_token(model->vocab, token)) {
  14779. if (length < 1) {
  14780. return -1;
  14781. }
  14782. buf[0] = llama_token_to_byte(model->vocab, token);
  14783. return 1;
  14784. }
  14785. break;
  14786. }
  14787. case LLAMA_VOCAB_TYPE_BPE: {
  14788. // NOTE: we accept all unsupported token types,
  14789. // suppressing them like CONTROL tokens.
  14790. if (llama_is_normal_token(model->vocab, token)) {
  14791. std::string result = model->vocab.id_to_token[token].text;
  14792. result = llama_decode_text(result);
  14793. if (length < (int) result.length()) {
  14794. return -(int) result.length();
  14795. }
  14796. memcpy(buf, result.c_str(), result.length());
  14797. return result.length();
  14798. } else if (
  14799. (llama_is_user_defined_token(model->vocab, token)) ||
  14800. (llama_is_control_token (model->vocab, token) && special)) {
  14801. std::string result = model->vocab.id_to_token[token].text;
  14802. if (length < (int) result.length()) {
  14803. return -(int) result.length();
  14804. }
  14805. memcpy(buf, result.c_str(), result.length());
  14806. return result.length();
  14807. }
  14808. break;
  14809. }
  14810. default:
  14811. GGML_ASSERT(false);
  14812. }
  14813. }
  14814. return 0;
  14815. }
  14816. // trim whitespace from the beginning and end of a string
  14817. static std::string trim(const std::string & str) {
  14818. size_t start = 0;
  14819. size_t end = str.size();
  14820. while (start < end && isspace(str[start])) {
  14821. start += 1;
  14822. }
  14823. while (end > start && isspace(str[end - 1])) {
  14824. end -= 1;
  14825. }
  14826. return str.substr(start, end - start);
  14827. }
  14828. // Simple version of "llama_apply_chat_template" that only works with strings
  14829. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14830. static int32_t llama_chat_apply_template_internal(
  14831. const std::string & tmpl,
  14832. const std::vector<const llama_chat_message *> & chat,
  14833. std::string & dest, bool add_ass) {
  14834. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14835. std::stringstream ss;
  14836. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14837. // chatml template
  14838. for (auto message : chat) {
  14839. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14840. }
  14841. if (add_ass) {
  14842. ss << "<|im_start|>assistant\n";
  14843. }
  14844. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14845. // llama2 template and its variants
  14846. // [variant] support system message
  14847. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14848. // [variant] space before + after response
  14849. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14850. // [variant] add BOS inside history
  14851. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14852. // [variant] trim spaces from the input message
  14853. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14854. // construct the prompt
  14855. bool is_inside_turn = true; // skip BOS at the beginning
  14856. ss << "[INST] ";
  14857. for (auto message : chat) {
  14858. std::string content = strip_message ? trim(message->content) : message->content;
  14859. std::string role(message->role);
  14860. if (!is_inside_turn) {
  14861. is_inside_turn = true;
  14862. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14863. }
  14864. if (role == "system") {
  14865. if (support_system_message) {
  14866. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14867. } else {
  14868. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14869. ss << content << "\n";
  14870. }
  14871. } else if (role == "user") {
  14872. ss << content << " [/INST]";
  14873. } else {
  14874. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14875. is_inside_turn = false;
  14876. }
  14877. }
  14878. // llama2 templates seem to not care about "add_generation_prompt"
  14879. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14880. // zephyr template
  14881. for (auto message : chat) {
  14882. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14883. }
  14884. if (add_ass) {
  14885. ss << "<|assistant|>\n";
  14886. }
  14887. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14888. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14889. for (auto message : chat) {
  14890. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14891. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14892. }
  14893. if (add_ass) {
  14894. ss << "<s>assistant\n";
  14895. }
  14896. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14897. // google/gemma-7b-it
  14898. std::string system_prompt = "";
  14899. for (auto message : chat) {
  14900. std::string role(message->role);
  14901. if (role == "system") {
  14902. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14903. system_prompt = trim(message->content);
  14904. continue;
  14905. }
  14906. // in gemma, "assistant" is "model"
  14907. role = role == "assistant" ? "model" : message->role;
  14908. ss << "<start_of_turn>" << role << "\n";
  14909. if (!system_prompt.empty() && role != "model") {
  14910. ss << system_prompt << "\n\n";
  14911. system_prompt = "";
  14912. }
  14913. ss << trim(message->content) << "<end_of_turn>\n";
  14914. }
  14915. if (add_ass) {
  14916. ss << "<start_of_turn>model\n";
  14917. }
  14918. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14919. // OrionStarAI/Orion-14B-Chat
  14920. std::string system_prompt = "";
  14921. for (auto message : chat) {
  14922. std::string role(message->role);
  14923. if (role == "system") {
  14924. // there is no system message support, we will merge it with user prompt
  14925. system_prompt = message->content;
  14926. continue;
  14927. } else if (role == "user") {
  14928. ss << "Human: ";
  14929. if (!system_prompt.empty()) {
  14930. ss << system_prompt << "\n\n";
  14931. system_prompt = "";
  14932. }
  14933. ss << message->content << "\n\nAssistant: </s>";
  14934. } else {
  14935. ss << message->content << "</s>";
  14936. }
  14937. }
  14938. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14939. // openchat/openchat-3.5-0106,
  14940. for (auto message : chat) {
  14941. std::string role(message->role);
  14942. if (role == "system") {
  14943. ss << message->content << "<|end_of_turn|>";
  14944. } else {
  14945. role[0] = toupper(role[0]);
  14946. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14947. }
  14948. }
  14949. if (add_ass) {
  14950. ss << "GPT4 Correct Assistant:";
  14951. }
  14952. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14953. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14954. for (auto message : chat) {
  14955. std::string role(message->role);
  14956. if (role == "system") {
  14957. // Orca-Vicuna variant uses a system prefix
  14958. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14959. ss << "SYSTEM: " << message->content << "\n";
  14960. } else {
  14961. ss << message->content << "\n\n";
  14962. }
  14963. } else if (role == "user") {
  14964. ss << "USER: " << message->content << "\n";
  14965. } else if (role == "assistant") {
  14966. ss << "ASSISTANT: " << message->content << "</s>\n";
  14967. }
  14968. }
  14969. if (add_ass) {
  14970. ss << "ASSISTANT:";
  14971. }
  14972. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14973. // deepseek-ai/deepseek-coder-33b-instruct
  14974. for (auto message : chat) {
  14975. std::string role(message->role);
  14976. if (role == "system") {
  14977. ss << message->content;
  14978. } else if (role == "user") {
  14979. ss << "### Instruction:\n" << message->content << "\n";
  14980. } else if (role == "assistant") {
  14981. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  14982. }
  14983. }
  14984. if (add_ass) {
  14985. ss << "### Response:\n";
  14986. }
  14987. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  14988. // CohereForAI/c4ai-command-r-plus
  14989. for (auto message : chat) {
  14990. std::string role(message->role);
  14991. if (role == "system") {
  14992. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14993. } else if (role == "user") {
  14994. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14995. } else if (role == "assistant") {
  14996. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14997. }
  14998. }
  14999. if (add_ass) {
  15000. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15001. }
  15002. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15003. // Llama 3
  15004. for (auto message : chat) {
  15005. std::string role(message->role);
  15006. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15007. }
  15008. if (add_ass) {
  15009. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15010. }
  15011. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
  15012. // Phi 3
  15013. for (auto message : chat) {
  15014. std::string role(message->role);
  15015. ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
  15016. }
  15017. if (add_ass) {
  15018. ss << "<|assistant|>\n";
  15019. }
  15020. } else {
  15021. // template not supported
  15022. return -1;
  15023. }
  15024. dest = ss.str();
  15025. return dest.size();
  15026. }
  15027. LLAMA_API int32_t llama_chat_apply_template(
  15028. const struct llama_model * model,
  15029. const char * tmpl,
  15030. const struct llama_chat_message * chat,
  15031. size_t n_msg,
  15032. bool add_ass,
  15033. char * buf,
  15034. int32_t length) {
  15035. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15036. if (tmpl == nullptr) {
  15037. GGML_ASSERT(model != nullptr);
  15038. // load template from model
  15039. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15040. std::string template_key = "tokenizer.chat_template";
  15041. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15042. if (res < 0) {
  15043. // worst case: there is no information about template, we will use chatml by default
  15044. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15045. } else {
  15046. curr_tmpl = std::string(model_template.data(), model_template.size());
  15047. }
  15048. }
  15049. // format the chat to string
  15050. std::vector<const llama_chat_message *> chat_vec;
  15051. chat_vec.resize(n_msg);
  15052. for (size_t i = 0; i < n_msg; i++) {
  15053. chat_vec[i] = &chat[i];
  15054. }
  15055. std::string formatted_chat;
  15056. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15057. if (res < 0) {
  15058. return res;
  15059. }
  15060. if (buf && length > 0) {
  15061. strncpy(buf, formatted_chat.c_str(), length);
  15062. }
  15063. return res;
  15064. }
  15065. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15066. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15067. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15068. return strlen(split_path);
  15069. }
  15070. return 0;
  15071. }
  15072. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15073. std::string str_split_path(split_path);
  15074. char postfix[32];
  15075. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15076. std::string str_postfix(postfix);
  15077. // check if dest ends with postfix
  15078. int size_prefix = str_split_path.size() - str_postfix.size();
  15079. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15080. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15081. return size_prefix;
  15082. }
  15083. return 0;
  15084. }
  15085. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15086. struct llama_timings result = {
  15087. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15088. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15089. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15090. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15091. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15092. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15093. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15094. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15095. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15096. };
  15097. return result;
  15098. }
  15099. void llama_print_timings(struct llama_context * ctx) {
  15100. const llama_timings timings = llama_get_timings(ctx);
  15101. LLAMA_LOG_INFO("\n");
  15102. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15103. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15104. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15105. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15106. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15107. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15108. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15109. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15110. }
  15111. void llama_reset_timings(struct llama_context * ctx) {
  15112. ctx->t_start_us = ggml_time_us();
  15113. ctx->t_sample_us = ctx->n_sample = 0;
  15114. ctx->t_eval_us = ctx->n_eval = 0;
  15115. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15116. }
  15117. const char * llama_print_system_info(void) {
  15118. static std::string s;
  15119. s = "";
  15120. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15121. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15122. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15123. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15124. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15125. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15126. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15127. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15128. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15129. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15130. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15131. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15132. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15133. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15134. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15135. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15136. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15137. #ifdef GGML_USE_LLAMAFILE
  15138. s += "LLAMAFILE = 1 | ";
  15139. #else
  15140. s += "LLAMAFILE = 0 | ";
  15141. #endif
  15142. return s.c_str();
  15143. }
  15144. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15145. fprintf(stream, "\n");
  15146. fprintf(stream, "###########\n");
  15147. fprintf(stream, "# Timings #\n");
  15148. fprintf(stream, "###########\n");
  15149. fprintf(stream, "\n");
  15150. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15151. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15152. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15153. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15154. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15155. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15156. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15157. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15158. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15159. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15160. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15161. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15162. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15163. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15164. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15165. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15166. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15167. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15168. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15169. }
  15170. // For internal test use
  15171. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15172. struct llama_context * ctx
  15173. ) {
  15174. return ctx->model.tensors_by_name;
  15175. }
  15176. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15177. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15178. g_state.log_callback_user_data = user_data;
  15179. #ifdef GGML_USE_METAL
  15180. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15181. #endif
  15182. }
  15183. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15184. va_list args_copy;
  15185. va_copy(args_copy, args);
  15186. char buffer[128];
  15187. int len = vsnprintf(buffer, 128, format, args);
  15188. if (len < 128) {
  15189. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15190. } else {
  15191. char* buffer2 = new char[len+1];
  15192. vsnprintf(buffer2, len+1, format, args_copy);
  15193. buffer2[len] = 0;
  15194. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15195. delete[] buffer2;
  15196. }
  15197. va_end(args_copy);
  15198. }
  15199. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15200. va_list args;
  15201. va_start(args, format);
  15202. llama_log_internal_v(level, format, args);
  15203. va_end(args);
  15204. }
  15205. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15206. (void) level;
  15207. (void) user_data;
  15208. fputs(text, stderr);
  15209. fflush(stderr);
  15210. }