ggml.c 334 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. #define GGML_MLOCK_SUPPORT 0
  71. #ifdef __has_include
  72. #if __has_include(<sys/mman.h>)
  73. #undef GGML_MLOCK_SUPPORT
  74. #define GGML_MLOCK_SUPPORT 1
  75. #include <sys/mman.h>
  76. #endif
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) (x)
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  141. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  142. #elif defined(__POWER9_VECTOR__)
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  145. /* the inline asm below is about 12% faster than the lookup method */
  146. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  147. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  148. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  149. register float f;
  150. register double d;
  151. __asm__(
  152. "mtfprd %0,%2\n"
  153. "xscvhpdp %0,%0\n"
  154. "frsp %1,%0\n" :
  155. /* temp */ "=d"(d),
  156. /* out */ "=f"(f):
  157. /* in */ "r"(h));
  158. return f;
  159. }
  160. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  161. register double d;
  162. register ggml_fp16_t r;
  163. __asm__( /* xscvdphp can work on double or single precision */
  164. "xscvdphp %0,%2\n"
  165. "mffprd %1,%0\n" :
  166. /* temp */ "=d"(d),
  167. /* out */ "=r"(r):
  168. /* in */ "f"(f));
  169. return r;
  170. }
  171. #else
  172. // FP16 <-> FP32
  173. // ref: https://github.com/Maratyszcza/FP16
  174. static inline float fp32_from_bits(uint32_t w) {
  175. union {
  176. uint32_t as_bits;
  177. float as_value;
  178. } fp32;
  179. fp32.as_bits = w;
  180. return fp32.as_value;
  181. }
  182. static inline uint32_t fp32_to_bits(float f) {
  183. union {
  184. float as_value;
  185. uint32_t as_bits;
  186. } fp32;
  187. fp32.as_value = f;
  188. return fp32.as_bits;
  189. }
  190. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  191. const uint32_t w = (uint32_t) h << 16;
  192. const uint32_t sign = w & UINT32_C(0x80000000);
  193. const uint32_t two_w = w + w;
  194. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  195. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  196. const float exp_scale = 0x1.0p-112f;
  197. #else
  198. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  199. #endif
  200. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  201. const uint32_t magic_mask = UINT32_C(126) << 23;
  202. const float magic_bias = 0.5f;
  203. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  204. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  205. const uint32_t result = sign |
  206. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  207. return fp32_from_bits(result);
  208. }
  209. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  210. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  211. const float scale_to_inf = 0x1.0p+112f;
  212. const float scale_to_zero = 0x1.0p-110f;
  213. #else
  214. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  215. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  216. #endif
  217. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  218. const uint32_t w = fp32_to_bits(f);
  219. const uint32_t shl1_w = w + w;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  222. if (bias < UINT32_C(0x71000000)) {
  223. bias = UINT32_C(0x71000000);
  224. }
  225. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  226. const uint32_t bits = fp32_to_bits(base);
  227. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  228. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  229. const uint32_t nonsign = exp_bits + mantissa_bits;
  230. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  231. }
  232. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  233. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  234. #endif // __F16C__
  235. #endif // __ARM_NEON
  236. //
  237. // global data
  238. //
  239. // precomputed gelu table for f16 (128 KB)
  240. static ggml_fp16_t table_gelu_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB)
  246. static float table_f32_f16[1 << 16];
  247. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  248. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  249. // This is also true for POWER9.
  250. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  251. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  252. uint16_t s;
  253. memcpy(&s, &f, sizeof(uint16_t));
  254. return table_f32_f16[s];
  255. }
  256. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  257. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  258. #endif
  259. // note: do not use these inside ggml.c
  260. // these are meant to be used via the ggml.h API
  261. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  262. return GGML_FP16_TO_FP32(x);
  263. }
  264. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  265. return GGML_FP32_TO_FP16(x);
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER frequency;
  274. QueryPerformanceFrequency(&frequency);
  275. timer_freq = frequency.QuadPart;
  276. }
  277. int64_t ggml_time_ms(void) {
  278. LARGE_INTEGER t;
  279. QueryPerformanceCounter(&t);
  280. return (t.QuadPart * 1000) / timer_freq;
  281. }
  282. int64_t ggml_time_us(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000000) / timer_freq;
  286. }
  287. #else
  288. void ggml_time_init(void) {}
  289. int64_t ggml_time_ms(void) {
  290. struct timespec ts;
  291. clock_gettime(CLOCK_MONOTONIC, &ts);
  292. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  293. }
  294. int64_t ggml_time_us(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  298. }
  299. #endif
  300. int64_t ggml_cycles(void) {
  301. return clock();
  302. }
  303. int64_t ggml_cycles_per_ms(void) {
  304. return CLOCKS_PER_SEC/1000;
  305. }
  306. #ifdef GGML_PERF
  307. #define ggml_perf_time_ms() ggml_time_ms()
  308. #define ggml_perf_time_us() ggml_time_us()
  309. #define ggml_perf_cycles() ggml_cycles()
  310. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  311. #else
  312. #define ggml_perf_time_ms() 0
  313. #define ggml_perf_time_us() 0
  314. #define ggml_perf_cycles() 0
  315. #define ggml_perf_cycles_per_ms() 0
  316. #endif
  317. //
  318. // cache line
  319. //
  320. #if defined(__cpp_lib_hardware_interference_size)
  321. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  322. #else
  323. #if defined(__POWER9_VECTOR__)
  324. #define CACHE_LINE_SIZE 128
  325. #else
  326. #define CACHE_LINE_SIZE 64
  327. #endif
  328. #endif
  329. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  330. //
  331. // quantization
  332. //
  333. #define QK 32
  334. // AVX routines provided by GH user Const-me
  335. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  336. #if __AVX2__ || __AVX512F__
  337. // Unpack 32 4-bit fields into 32 bytes
  338. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  339. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  340. {
  341. // Load 16 bytes from memory
  342. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  343. // Expand bytes into uint16_t values
  344. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  345. // Unpack values into individual bytes
  346. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  347. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  348. __m256i low = _mm256_and_si256( lowMask, bytes );
  349. high = _mm256_slli_epi16( high, 4 );
  350. bytes = _mm256_or_si256( low, high );
  351. return bytes;
  352. }
  353. static inline __m128i packNibbles( __m256i bytes )
  354. {
  355. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  356. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  357. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  358. __m256i low = _mm256_and_si256( lowByte, bytes );
  359. high = _mm256_srli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. // Compress uint16_t lanes into bytes
  362. __m128i r0 = _mm256_castsi256_si128( bytes );
  363. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  364. return _mm_packus_epi16( r0, r1 );
  365. }
  366. #endif
  367. // method 5
  368. // blocks of QK elements
  369. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  370. // reference implementation for deterministic creation of model files
  371. static void quantize_row_q4_0_reference(const float * restrict x, void * restrict y, int k) {
  372. assert(k % QK == 0);
  373. const int nb = k / QK;
  374. const size_t bs = sizeof(float) + QK/2;
  375. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  376. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  377. uint8_t pp[QK/2];
  378. for (int i = 0; i < nb; i++) {
  379. float amax = 0.0f; // absolute max
  380. for (int l = 0; l < QK; l++) {
  381. const float v = x[i*QK + l];
  382. amax = MAX(amax, fabsf(v));
  383. }
  384. const float d = amax / ((1 << 3) - 1);
  385. const float id = d ? 1.0f/d : 0.0f;
  386. *(float *)pd = d;
  387. pd += bs;
  388. for (int l = 0; l < QK; l += 2) {
  389. const float v0 = x[i*QK + l + 0]*id;
  390. const float v1 = x[i*QK + l + 1]*id;
  391. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  392. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  393. assert(vi0 >= 0 && vi0 < 16);
  394. assert(vi1 >= 0 && vi1 < 16);
  395. pp[l/2] = vi0 | (vi1 << 4);
  396. }
  397. memcpy(pb, pp, sizeof(pp));
  398. pb += bs;
  399. }
  400. }
  401. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  402. assert(k % QK == 0);
  403. #if __ARM_NEON || defined(__AVX2__) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  404. const int nb = k / QK;
  405. const size_t bs = sizeof(float) + QK/2;
  406. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  407. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  408. uint8_t pp[QK/2];
  409. #endif
  410. #if defined(__POWER9_VECTOR__)
  411. #if QK == 32
  412. const vector float v85 = vec_splats(8.5f);
  413. for (int i = 0; i < nb; i++) {
  414. float amax = 0.0f; // absolute max
  415. vector float srcv [8];
  416. vector float asrcv[8];
  417. vector float amaxv[8];
  418. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  419. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  420. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  421. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  422. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  423. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  424. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  425. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  426. amax = MAX(
  427. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  428. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  429. const float d = amax / ((1 << 3) - 1);
  430. const float id = d ? 1.0/d : 0.0;
  431. *(float *)pd = d;
  432. pd += bs;
  433. const vector float vid = vec_splats(id);
  434. for (int l = 0; l < 8; l++) {
  435. const vector float vf = vec_madd(srcv[l], vid, v85);
  436. const vector signed int vi = vec_signed(vf);
  437. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  438. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  439. }
  440. //memcpy(pb, pp, sizeof(pp));
  441. pb += bs;
  442. }
  443. #else
  444. #error "not implemented for QK"
  445. #endif
  446. #elif __ARM_NEON
  447. #if QK == 32
  448. for (int i = 0; i < nb; i++) {
  449. float amax = 0.0f; // absolute max
  450. float32x4_t srcv [8];
  451. float32x4_t asrcv[8];
  452. float32x4_t amaxv[8];
  453. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  454. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  455. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  456. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  457. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  458. amax = MAX(
  459. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  460. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  461. const float d = amax / ((1 << 3) - 1);
  462. const float id = d ? 1.0/d : 0.0;
  463. *(float *)pd = d;
  464. pd += bs;
  465. for (int l = 0; l < 8; l++) {
  466. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  467. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  468. const int32x4_t vi = vcvtq_s32_f32(vf);
  469. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  470. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  471. }
  472. memcpy(pb, pp, sizeof(pp));
  473. pb += bs;
  474. }
  475. #else
  476. #error "not implemented for QK"
  477. #endif
  478. #elif defined(__AVX2__)
  479. #if QK == 32
  480. for (int i = 0; i < nb; i++) {
  481. // Load elements into 4 AVX vectors
  482. __m256 v0 = _mm256_loadu_ps( x );
  483. __m256 v1 = _mm256_loadu_ps( x + 8 );
  484. __m256 v2 = _mm256_loadu_ps( x + 16 );
  485. __m256 v3 = _mm256_loadu_ps( x + 24 );
  486. x += 32;
  487. // Compute max(abs(e)) for the block
  488. const __m256 signBit = _mm256_set1_ps( -0.0f );
  489. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  490. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  491. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  492. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  493. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  494. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  495. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  496. const float maxScalar = _mm_cvtss_f32( max4 );
  497. // Quantize these floats
  498. const float d = maxScalar / 7.0f;
  499. *(float *)pd = d;
  500. pd += bs;
  501. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  502. const __m256 mul = _mm256_set1_ps( id );
  503. // Apply the multiplier
  504. v0 = _mm256_mul_ps( v0, mul );
  505. v1 = _mm256_mul_ps( v1, mul );
  506. v2 = _mm256_mul_ps( v2, mul );
  507. v3 = _mm256_mul_ps( v3, mul );
  508. // Round to nearest integer
  509. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  510. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  511. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  512. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  513. // Convert floats to integers
  514. __m256i i0 = _mm256_cvtps_epi32( v0 );
  515. __m256i i1 = _mm256_cvtps_epi32( v1 );
  516. __m256i i2 = _mm256_cvtps_epi32( v2 );
  517. __m256i i3 = _mm256_cvtps_epi32( v3 );
  518. // Convert int32 to int16
  519. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  520. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  521. // Convert int16 to int8
  522. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  523. // We got our precious signed bytes, but the order is now wrong
  524. // These AVX2 pack instructions process 16-byte pieces independently
  525. // The following instruction is fixing the order
  526. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  527. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  528. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  529. const __m256i off = _mm256_set1_epi8( 8 );
  530. i0 = _mm256_add_epi8( i0, off );
  531. // Compress the vector into 4 bit/value, and store
  532. __m128i res = packNibbles( i0 );
  533. _mm_storeu_si128( ( __m128i* )pb, res );
  534. pb += bs;
  535. }
  536. #else
  537. #error "not implemented for QK"
  538. #endif
  539. #elif defined(__wasm_simd128__)
  540. #if QK == 32
  541. for (int i = 0; i < nb; i++) {
  542. float amax = 0.0f; // absolute max
  543. v128_t srcv [8];
  544. v128_t asrcv[8];
  545. v128_t amaxv[8];
  546. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  547. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  548. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  549. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  550. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  551. amax = MAX(
  552. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  553. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  554. const float d = amax / ((1 << 3) - 1);
  555. const float id = d ? 1.0/d : 0.0;
  556. *(float *)pd = d;
  557. pd += bs;
  558. for (int l = 0; l < 8; l++) {
  559. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  560. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  561. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  562. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  563. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  564. }
  565. memcpy(pb, pp, sizeof(pp));
  566. pb += bs;
  567. }
  568. #else
  569. #error "not implemented for QK"
  570. #endif
  571. #else
  572. // scalar
  573. quantize_row_q4_0_reference(x, y, k);
  574. #endif
  575. }
  576. // method 4
  577. // blocks of QK elements
  578. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  579. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  580. assert(k % QK == 0);
  581. const int nb = k / QK;
  582. const size_t bs = 2*sizeof(float) + QK/2;
  583. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  584. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  585. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  586. uint8_t pp[QK/2];
  587. for (int i = 0; i < nb; i++) {
  588. float min = FLT_MAX;
  589. float max = -FLT_MAX;
  590. for (int l = 0; l < QK; l++) {
  591. const float v = x[i*QK + l];
  592. if (v < min) min = v;
  593. if (v > max) max = v;
  594. }
  595. const float d = (max - min) / ((1 << 4) - 1);
  596. const float id = d ? 1.0f/d : 0.0f;
  597. *(float *)pm = min;
  598. *(float *)pd = d;
  599. pm += bs;
  600. pd += bs;
  601. for (int l = 0; l < QK; l += 2) {
  602. const float v0 = (x[i*QK + l + 0] - min)*id;
  603. const float v1 = (x[i*QK + l + 1] - min)*id;
  604. const uint8_t vi0 = round(v0);
  605. const uint8_t vi1 = round(v1);
  606. assert(vi0 >= 0 && vi0 < 16);
  607. assert(vi1 >= 0 && vi1 < 16);
  608. pp[l/2] = vi0 | (vi1 << 4);
  609. }
  610. memcpy(pb, pp, sizeof(pp));
  611. pb += bs;
  612. }
  613. }
  614. // TODO: vectorize
  615. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  616. assert(k % QK == 0);
  617. const int nb = k / QK;
  618. const size_t bs = sizeof(float) + QK/2;
  619. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  620. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  621. // scalar
  622. for (int i = 0; i < nb; i++) {
  623. const float d = *(const float *) (pd + i*bs);
  624. const uint8_t * restrict pp = pb + i*bs;
  625. for (int l = 0; l < QK; l += 2) {
  626. const uint8_t vi = pp[l/2];
  627. const int8_t vi0 = vi & 0xf;
  628. const int8_t vi1 = vi >> 4;
  629. const float v0 = (vi0 - 8)*d;
  630. const float v1 = (vi1 - 8)*d;
  631. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  632. y[i*QK + l + 0] = v0;
  633. y[i*QK + l + 1] = v1;
  634. assert(!isnan(y[i*QK + l + 0]));
  635. assert(!isnan(y[i*QK + l + 1]));
  636. }
  637. }
  638. }
  639. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  640. assert(k % QK == 0);
  641. const int nb = k / QK;
  642. const size_t bs = 2*sizeof(float) + QK/2;
  643. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  644. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  645. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  646. for (int i = 0; i < nb; i++) {
  647. const float d = *(const float *) (pd + i*bs);
  648. const float m = *(const float *) (pm + i*bs);
  649. const uint8_t * restrict pp = pb + i*bs;
  650. for (int l = 0; l < QK; l += 2) {
  651. const uint8_t vi = pp[l/2];
  652. const int8_t vi0 = vi & 0xf;
  653. const int8_t vi1 = vi >> 4;
  654. const float v0 = vi0*d + m;
  655. const float v1 = vi1*d + m;
  656. y[i*QK + l + 0] = v0;
  657. y[i*QK + l + 1] = v1;
  658. assert(!isnan(y[i*QK + l + 0]));
  659. assert(!isnan(y[i*QK + l + 1]));
  660. }
  661. }
  662. }
  663. //
  664. // simd mappings
  665. //
  666. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  667. // we then implement the fundamental computation operations below using only these macros
  668. // adding support for new architectures requires to define the corresponding SIMD macros
  669. //
  670. // GGML_F32_STEP / GGML_F16_STEP
  671. // number of elements to process in a single step
  672. //
  673. // GGML_F32_EPR / GGML_F16_EPR
  674. // number of elements to fit in a single register
  675. //
  676. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  677. #define GGML_SIMD
  678. // F32 NEON
  679. #define GGML_F32_STEP 16
  680. #define GGML_F32_EPR 4
  681. #define GGML_F32x4 float32x4_t
  682. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  683. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  684. #define GGML_F32x4_LOAD vld1q_f32
  685. #define GGML_F32x4_STORE vst1q_f32
  686. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  687. #define GGML_F32x4_ADD vaddq_f32
  688. #define GGML_F32x4_MUL vmulq_f32
  689. #if defined(__ARM_FEATURE_QRDMX)
  690. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  691. #else
  692. #define GGML_F32x4_REDUCE_ONE(x) \
  693. (vgetq_lane_f32(x, 0) + \
  694. vgetq_lane_f32(x, 1) + \
  695. vgetq_lane_f32(x, 2) + \
  696. vgetq_lane_f32(x, 3))
  697. #endif
  698. #define GGML_F32x4_REDUCE(res, x) \
  699. { \
  700. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  701. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  702. } \
  703. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  704. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  705. } \
  706. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  707. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  708. } \
  709. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  710. }
  711. #define GGML_F32_VEC GGML_F32x4
  712. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  713. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  714. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  715. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  716. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  717. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  718. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  719. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  720. // F16 NEON
  721. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  722. #define GGML_F16_STEP 32
  723. #define GGML_F16_EPR 8
  724. #define GGML_F16x8 float16x8_t
  725. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  726. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  727. #define GGML_F16x8_LOAD vld1q_f16
  728. #define GGML_F16x8_STORE vst1q_f16
  729. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  730. #define GGML_F16x8_ADD vaddq_f16
  731. #define GGML_F16x8_MUL vmulq_f16
  732. #define GGML_F16x8_REDUCE(res, x) \
  733. { \
  734. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  735. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  736. } \
  737. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  738. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  739. } \
  740. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  741. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  742. } \
  743. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  744. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  745. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  746. }
  747. #define GGML_F16_VEC GGML_F16x8
  748. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  749. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  750. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  751. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  752. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  753. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  754. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  755. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  756. #else
  757. // if FP16 vector arithmetic is not supported, we use FP32 instead
  758. // and take advantage of the vcvt_ functions to convert to/from FP16
  759. #define GGML_F16_STEP 16
  760. #define GGML_F16_EPR 4
  761. #define GGML_F32Cx4 float32x4_t
  762. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  763. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  764. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  765. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  766. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  767. #define GGML_F32Cx4_ADD vaddq_f32
  768. #define GGML_F32Cx4_MUL vmulq_f32
  769. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  770. #define GGML_F16_VEC GGML_F32Cx4
  771. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  772. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  773. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  774. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  775. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  776. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  777. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  778. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  779. #endif
  780. #elif defined(__AVX__)
  781. #define GGML_SIMD
  782. // F32 AVX
  783. #define GGML_F32_STEP 32
  784. #define GGML_F32_EPR 8
  785. #define GGML_F32x8 __m256
  786. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  787. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  788. #define GGML_F32x8_LOAD _mm256_loadu_ps
  789. #define GGML_F32x8_STORE _mm256_storeu_ps
  790. #if defined(__FMA__)
  791. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  792. #else
  793. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  794. #endif
  795. #define GGML_F32x8_ADD _mm256_add_ps
  796. #define GGML_F32x8_MUL _mm256_mul_ps
  797. #define GGML_F32x8_REDUCE(res, x) \
  798. { \
  799. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  800. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  801. } \
  802. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  803. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  804. } \
  805. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  806. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  807. } \
  808. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  809. _mm256_extractf128_ps(x[0], 1)); \
  810. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  811. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  812. }
  813. // TODO: is this optimal ?
  814. #define GGML_F32_VEC GGML_F32x8
  815. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  816. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  817. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  818. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  819. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  820. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  821. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  822. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  823. // F16 AVX
  824. #define GGML_F16_STEP 32
  825. #define GGML_F16_EPR 8
  826. // F16 arithmetic is not supported by AVX, so we use F32 instead
  827. // we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32
  828. #define GGML_F32Cx8 __m256
  829. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  830. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  831. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  832. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  833. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  834. #define GGML_F32Cx8_ADD _mm256_add_ps
  835. #define GGML_F32Cx8_MUL _mm256_mul_ps
  836. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  837. #define GGML_F16_VEC GGML_F32Cx8
  838. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  839. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  840. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  841. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  842. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  843. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  844. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  845. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  846. #elif defined(__POWER9_VECTOR__)
  847. #define GGML_SIMD
  848. // F32 POWER9
  849. #define GGML_F32_STEP 32
  850. #define GGML_F32_EPR 4
  851. #define GGML_F32x4 vector float
  852. #define GGML_F32x4_ZERO 0.0f
  853. #define GGML_F32x4_SET1 vec_splats
  854. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  855. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  856. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  857. #define GGML_F32x4_ADD vec_add
  858. #define GGML_F32x4_MUL vec_mul
  859. #define GGML_F32x4_REDUCE(res, x) \
  860. { \
  861. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  862. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  863. } \
  864. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  865. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  866. } \
  867. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  868. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  869. } \
  870. res = vec_extract(x[0], 0) + \
  871. vec_extract(x[0], 1) + \
  872. vec_extract(x[0], 2) + \
  873. vec_extract(x[0], 3); \
  874. }
  875. #define GGML_F32_VEC GGML_F32x4
  876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  884. // F16 POWER9
  885. #define GGML_F16_STEP GGML_F32_STEP
  886. #define GGML_F16_EPR GGML_F32_EPR
  887. #define GGML_F16_VEC GGML_F32x4
  888. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  889. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  890. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  891. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  892. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  893. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  894. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  895. vec_extract_fp32_from_shortl(vec_xl(0, p))
  896. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  897. #define GGML_F16_VEC_STORE(p, r, i) \
  898. if (i & 0x1) \
  899. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  900. r[i - GGML_ENDIAN_BYTE(0)]), \
  901. 0, p - GGML_F16_EPR)
  902. #elif defined(__wasm_simd128__)
  903. #define GGML_SIMD
  904. // F32 WASM
  905. #define GGML_F32_STEP 16
  906. #define GGML_F32_EPR 4
  907. #define GGML_F32x4 v128_t
  908. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  909. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  910. #define GGML_F32x4_LOAD wasm_v128_load
  911. #define GGML_F32x4_STORE wasm_v128_store
  912. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  913. #define GGML_F32x4_ADD wasm_f32x4_add
  914. #define GGML_F32x4_MUL wasm_f32x4_mul
  915. #define GGML_F32x4_REDUCE(res, x) \
  916. { \
  917. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  918. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  919. } \
  920. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  921. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  922. } \
  923. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  924. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  925. } \
  926. res = wasm_f32x4_extract_lane(x[0], 0) + \
  927. wasm_f32x4_extract_lane(x[0], 1) + \
  928. wasm_f32x4_extract_lane(x[0], 2) + \
  929. wasm_f32x4_extract_lane(x[0], 3); \
  930. }
  931. #define GGML_F32_VEC GGML_F32x4
  932. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  933. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  934. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  935. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  936. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  937. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  938. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  939. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  940. // F16 WASM
  941. #define GGML_F16_STEP 16
  942. #define GGML_F16_EPR 4
  943. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  944. float tmp[4];
  945. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  946. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  947. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  948. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  949. return wasm_v128_load(tmp);
  950. }
  951. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  952. float tmp[4];
  953. wasm_v128_store(tmp, x);
  954. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  955. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  956. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  957. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  958. }
  959. #define GGML_F16x4 v128_t
  960. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  961. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  962. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  963. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  964. #define GGML_F16x4_FMA GGML_F32x4_FMA
  965. #define GGML_F16x4_ADD wasm_f32x4_add
  966. #define GGML_F16x4_MUL wasm_f32x4_mul
  967. #define GGML_F16x4_REDUCE(res, x) \
  968. { \
  969. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  970. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  971. } \
  972. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  973. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  974. } \
  975. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  976. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  977. } \
  978. res = wasm_f32x4_extract_lane(x[0], 0) + \
  979. wasm_f32x4_extract_lane(x[0], 1) + \
  980. wasm_f32x4_extract_lane(x[0], 2) + \
  981. wasm_f32x4_extract_lane(x[0], 3); \
  982. }
  983. #define GGML_F16_VEC GGML_F16x4
  984. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  985. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  986. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  987. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  988. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  989. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  990. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  991. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  992. #elif defined(__SSE3__)
  993. #define GGML_SIMD
  994. // F32 SSE
  995. #define GGML_F32_STEP 32
  996. #define GGML_F32_EPR 4
  997. #define GGML_F32x4 __m128
  998. #define GGML_F32x4_ZERO _mm_setzero_ps()
  999. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1000. #define GGML_F32x4_LOAD _mm_loadu_ps
  1001. #define GGML_F32x4_STORE _mm_storeu_ps
  1002. #if defined(__FMA__)
  1003. // TODO: Does this work?
  1004. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1005. #else
  1006. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1007. #endif
  1008. #define GGML_F32x4_ADD _mm_add_ps
  1009. #define GGML_F32x4_MUL _mm_mul_ps
  1010. #define GGML_F32x4_REDUCE(res, x) \
  1011. { \
  1012. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1013. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1014. } \
  1015. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1016. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1017. } \
  1018. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1019. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1020. } \
  1021. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1022. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1023. }
  1024. // TODO: is this optimal ?
  1025. #define GGML_F32_VEC GGML_F32x4
  1026. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1027. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1028. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1029. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1030. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1031. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1032. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1033. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1034. // F16 SSE
  1035. #define GGML_F16_STEP 32
  1036. #define GGML_F16_EPR 4
  1037. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1038. float tmp[4];
  1039. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1040. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1041. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1042. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1043. return _mm_loadu_ps(tmp);
  1044. }
  1045. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1046. float arr[4];
  1047. _mm_storeu_ps(arr, y);
  1048. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1049. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1050. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1051. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1052. }
  1053. #define GGML_F32Cx4 __m128
  1054. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1055. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1056. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1057. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1058. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1059. #define GGML_F32Cx4_ADD _mm_add_ps
  1060. #define GGML_F32Cx4_MUL _mm_mul_ps
  1061. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1062. #define GGML_F16_VEC GGML_F32Cx4
  1063. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1064. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1065. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1066. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1067. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1068. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1069. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1070. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1071. #endif
  1072. // GGML_F32_ARR / GGML_F16_ARR
  1073. // number of registers to use per step
  1074. #ifdef GGML_SIMD
  1075. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1076. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1077. #endif
  1078. //
  1079. // fundamental operations
  1080. //
  1081. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1082. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1083. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1084. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1085. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1086. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1087. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1088. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1089. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1090. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1091. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1092. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1093. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1094. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1095. ggml_float sumf = 0.0;
  1096. #ifdef GGML_SIMD
  1097. const int np = (n & ~(GGML_F32_STEP - 1));
  1098. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1099. GGML_F32_VEC ax[GGML_F32_ARR];
  1100. GGML_F32_VEC ay[GGML_F32_ARR];
  1101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1102. for (int j = 0; j < GGML_F32_ARR; j++) {
  1103. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1104. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1105. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1106. }
  1107. }
  1108. // reduce sum0..sum3 to sum0
  1109. GGML_F32_VEC_REDUCE(sumf, sum);
  1110. // leftovers
  1111. for (int i = np; i < n; ++i) {
  1112. sumf += x[i]*y[i];
  1113. }
  1114. #else
  1115. // scalar
  1116. for (int i = 0; i < n; ++i) {
  1117. sumf += x[i]*y[i];
  1118. }
  1119. #endif
  1120. *s = sumf;
  1121. }
  1122. #if __AVX512F__ && QK == 32
  1123. static inline __m512 dot_q4_0_oneblock_avx512(
  1124. __m512 acc,
  1125. const uint8_t * pd0,
  1126. const uint8_t * pd1,
  1127. const uint8_t * pb0,
  1128. const uint8_t * pb1,
  1129. size_t bs,
  1130. int i
  1131. ) {
  1132. const float * d0_0 = (const float *) (pd0 + i*bs);
  1133. const float * d1_0 = (const float *) (pd1 + i*bs);
  1134. const uint8_t * restrict p0 = pb0 + (i+0)*bs;
  1135. const uint8_t * restrict p1 = pb1 + (i+0)*bs;
  1136. // Compute combined scale for the block
  1137. float scaleScalar = d0_0[0] * d1_0[0];
  1138. __m512 scale = _mm512_set1_ps( scaleScalar );
  1139. __m256i bx = bytesFromNibbles( p0 );
  1140. __m256i by = bytesFromNibbles( p1 );
  1141. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1142. const __m256i off = _mm256_set1_epi8( 8 );
  1143. bx = _mm256_sub_epi8( bx, off );
  1144. by = _mm256_sub_epi8( by, off );
  1145. // Sign-extend 16 signed bytes into int16_t
  1146. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1147. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1148. // Compute products of int16_t integers, add pairwise
  1149. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1150. // Convert int32_t to float
  1151. __m512 p = _mm512_cvtepi32_ps( i64 );
  1152. // Apply the scale, and accumulate
  1153. return _mm512_fmadd_ps( scale, p, acc );
  1154. }
  1155. #endif
  1156. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1157. ggml_float sumf = 0.0;
  1158. #if defined(GGML_SIMD)
  1159. const int np = (n & ~(GGML_F16_STEP - 1));
  1160. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1161. GGML_F16_VEC ax[GGML_F16_ARR];
  1162. GGML_F16_VEC ay[GGML_F16_ARR];
  1163. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1164. for (int j = 0; j < GGML_F16_ARR; j++) {
  1165. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1166. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1167. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1168. }
  1169. }
  1170. // reduce sum0..sum3 to sum0
  1171. GGML_F16_VEC_REDUCE(sumf, sum);
  1172. // leftovers
  1173. for (int i = np; i < n; ++i) {
  1174. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1175. }
  1176. #else
  1177. for (int i = 0; i < n; ++i) {
  1178. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1179. }
  1180. #endif
  1181. *s = sumf;
  1182. }
  1183. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1184. const int nb = n / QK;
  1185. assert(n % QK == 0);
  1186. assert(nb % 2 == 0);
  1187. const size_t bs = sizeof(float) + QK/2;
  1188. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1189. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1190. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1191. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1192. float sumf = 0.0;
  1193. #ifdef __ARM_NEON
  1194. #if QK == 32
  1195. float sum0 = 0.0f;
  1196. float sum1 = 0.0f;
  1197. for (int i = 0; i < nb; i += 2) {
  1198. const float d0_0 = *(const float *) (pd0 + i*bs);
  1199. const float d1_0 = *(const float *) (pd1 + i*bs);
  1200. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1201. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1202. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1203. const uint8_t * restrict p0 = pb0 + i*bs;
  1204. const uint8_t * restrict p1 = pb1 + i*bs;
  1205. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1206. const int8x16_t s8b = vdupq_n_s8(0x8);
  1207. const uint8x16_t v0_0 = vld1q_u8(p0);
  1208. const uint8x16_t v1_0 = vld1q_u8(p1);
  1209. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1210. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1211. // 4-bit -> 8-bit
  1212. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1213. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1214. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1215. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1216. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1217. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1218. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1219. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1220. // sub 8
  1221. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1222. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1223. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1224. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1225. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1226. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1227. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1228. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1229. #if defined(__ARM_FEATURE_DOTPROD)
  1230. // dot product into int16x8_t
  1231. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1232. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1233. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1234. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1235. // scalar
  1236. #if defined(__ARM_FEATURE_QRDMX)
  1237. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1238. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1239. #else
  1240. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1241. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1242. #endif
  1243. #else
  1244. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1245. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1246. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1247. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1248. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1249. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1250. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1251. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1252. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1253. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1254. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1255. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1256. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1257. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1258. // scalar
  1259. #if defined(__ARM_FEATURE_QRDMX)
  1260. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1261. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1262. #else
  1263. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1264. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1265. #endif
  1266. #endif
  1267. }
  1268. sumf = sum0 + sum1;
  1269. #else
  1270. #error "not implemented for QK"
  1271. #endif
  1272. #elif defined(__AVX512F__)
  1273. #if QK == 32
  1274. // Initialize accumulator with zeros
  1275. __m512 acc0 = _mm512_setzero_ps();
  1276. __m512 acc1 = _mm512_setzero_ps();
  1277. const int superblock_size = 8;
  1278. const int superblock_count = nb / superblock_size;
  1279. const int remainder = nb % superblock_size;
  1280. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1281. int i = superblock_ix * superblock_size;
  1282. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
  1283. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
  1284. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
  1285. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
  1286. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
  1287. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
  1288. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
  1289. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
  1290. }
  1291. // Remainders
  1292. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1293. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
  1294. }
  1295. // Horizontal sum of all lanes of the accumulator
  1296. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1297. #else
  1298. #error "not implemented for QK"
  1299. #endif
  1300. #elif defined(__AVX2__)
  1301. #if QK == 32
  1302. const size_t countBlocks = nb;
  1303. // Initialize accumulator with zeros
  1304. __m256 acc = _mm256_setzero_ps();
  1305. // Main loop
  1306. for (int i = 0; i < nb; ++i) {
  1307. const float * d0_0 = (const float *) (pd0 + i*bs);
  1308. const float * d1_0 = (const float *) (pd1 + i*bs);
  1309. const uint8_t * restrict p0 = pb0 + i*bs;
  1310. const uint8_t * restrict p1 = pb1 + i*bs;
  1311. // Compute combined scale for the block
  1312. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1313. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1314. __m256i bx = bytesFromNibbles( p0 );
  1315. __m256i by = bytesFromNibbles( p1 );
  1316. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1317. const __m256i off = _mm256_set1_epi8( 8 );
  1318. bx = _mm256_sub_epi8( bx, off );
  1319. by = _mm256_sub_epi8( by, off );
  1320. // Sign-extend first 16 signed bytes into int16_t
  1321. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1322. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1323. // Compute products of int16_t integers, add pairwise
  1324. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1325. // Sign-extend last 16 signed bytes into int16_t vectors
  1326. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1327. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1328. // Accumulate products of int16_t integers
  1329. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1330. // Convert int32_t to float
  1331. __m256 p = _mm256_cvtepi32_ps( i32 );
  1332. // Apply the scale, and accumulate
  1333. acc = _mm256_fmadd_ps( scale, p, acc );
  1334. }
  1335. // Return horizontal sum of the acc vector
  1336. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1337. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1338. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1339. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1340. sumf = _mm_cvtss_f32( res );
  1341. #else
  1342. #error "not implemented for QK"
  1343. #endif
  1344. #elif defined(__wasm_simd128__)
  1345. #if QK == 32
  1346. // wasm simd
  1347. float sum0 = 0.0f;
  1348. float sum1 = 0.0f;
  1349. for (int i = 0; i < nb; i += 2) {
  1350. const float d0_0 = *(const float *) (pd0 + i*bs);
  1351. const float d1_0 = *(const float *) (pd1 + i*bs);
  1352. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1353. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1354. const uint8_t * restrict p0 = pb0 + i*bs;
  1355. const uint8_t * restrict p1 = pb1 + i*bs;
  1356. const v128_t m4b = wasm_u8x16_splat(0xf);
  1357. const v128_t s8b = wasm_i8x16_splat(0x8);
  1358. const v128_t v0_0 = wasm_v128_load(p0);
  1359. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1360. const v128_t v1_0 = wasm_v128_load(p1);
  1361. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1362. // 4-bit -> 8-bit
  1363. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1364. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1365. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1366. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1367. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1368. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1369. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1370. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1371. // sub 8
  1372. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1373. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1374. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1375. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1376. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1377. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1378. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1379. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1380. // dot product into int16x8_t
  1381. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1382. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1383. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1384. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1385. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1386. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1387. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1388. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1389. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1390. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1391. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1392. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1393. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1394. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1395. sum0 += d0_0*d1_0*(
  1396. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1397. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1398. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1399. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1400. sum1 += d0_1*d1_1*(
  1401. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1402. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1403. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1404. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1405. }
  1406. sumf = sum0 + sum1;
  1407. #else
  1408. #error "not implemented for QK"
  1409. #endif
  1410. #else
  1411. // scalar
  1412. for (int i = 0; i < nb; i++) {
  1413. const float d0 = *(const float *) (pd0 + i*bs);
  1414. const float d1 = *(const float *) (pd1 + i*bs);
  1415. const uint8_t * restrict p0 = pb0 + i*bs;
  1416. const uint8_t * restrict p1 = pb1 + i*bs;
  1417. for (int j = 0; j < QK/2; j++) {
  1418. const uint8_t v0 = p0[j];
  1419. const uint8_t v1 = p1[j];
  1420. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1421. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1422. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1423. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1424. sumf += f0*f2 + f1*f3;
  1425. }
  1426. }
  1427. #endif
  1428. *s = sumf;
  1429. }
  1430. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1431. const int nb = n / QK;
  1432. const size_t bs = 2*sizeof(float) + QK/2;
  1433. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1434. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1435. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1436. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1437. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1438. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1439. float sumf = 0.0;
  1440. #if defined(__AVX2__)
  1441. #if QK == 32
  1442. // Initialize accumulator with zeros
  1443. __m256 acc = _mm256_setzero_ps();
  1444. // Accumulator for constant offsets
  1445. float acc_offset = 0.0f;
  1446. // Main loop
  1447. for (int i = 0; i < nb; ++i) {
  1448. const float * m0 = (const float *) (pm0 + i*bs);
  1449. const float * m1 = (const float *) (pm1 + i*bs);
  1450. const float * d0 = (const float *) (pd0 + i*bs);
  1451. const float * d1 = (const float *) (pd1 + i*bs);
  1452. const uint8_t * restrict p0 = pb0 + i*bs;
  1453. const uint8_t * restrict p1 = pb1 + i*bs;
  1454. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1455. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1456. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1457. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1458. // Compute combined scale for the block
  1459. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1460. // Compute cross scales for the block
  1461. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1462. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1463. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1464. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1465. __m256i bx = bytesFromNibbles( p0 );
  1466. __m256i by = bytesFromNibbles( p1 );
  1467. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1468. // Sign-extend first 16 signed bytes into int16_t
  1469. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1470. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1471. // Compute products of int16_t integers, add pairwise
  1472. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1473. // Sign-extend last 16 signed bytes into int16_t vectors
  1474. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1475. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1476. // Accumulate products of int16_t integers
  1477. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1478. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1479. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1480. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1481. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1482. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1483. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1484. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1485. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1486. // Convert int32_t to float
  1487. __m256 p = _mm256_cvtepi32_ps( i32 );
  1488. // Apply the scale, and accumulate
  1489. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1490. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1491. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1492. // acc_offset += m0*m1 (for each entry in the block)
  1493. acc_offset += (*m0)*(*m1);
  1494. }
  1495. // Return horizontal sum of the acc vector
  1496. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1497. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1498. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1499. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1500. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1501. #else
  1502. #error "not implemented for QK"
  1503. #endif
  1504. #else
  1505. // scalar
  1506. for (int i = 0; i < nb; i++) {
  1507. const float m0 = *(const float *) (pm0 + i*bs);
  1508. const float m1 = *(const float *) (pm1 + i*bs);
  1509. const float d0 = *(const float *) (pd0 + i*bs);
  1510. const float d1 = *(const float *) (pd1 + i*bs);
  1511. const uint8_t * restrict p0 = pb0 + i*bs;
  1512. const uint8_t * restrict p1 = pb1 + i*bs;
  1513. for (int j = 0; j < QK/2; j++) {
  1514. const uint8_t v0 = p0[j];
  1515. const uint8_t v1 = p1[j];
  1516. const float f0 = d0*(v0 & 0xf) + m0;
  1517. const float f1 = d0*(v0 >> 4) + m0;
  1518. const float f2 = d1*(v1 & 0xf) + m1;
  1519. const float f3 = d1*(v1 >> 4) + m1;
  1520. sumf += f0*f2 + f1*f3;
  1521. }
  1522. }
  1523. #endif
  1524. *s = sumf;
  1525. }
  1526. // compute GGML_VEC_DOT_UNROLL dot products at once
  1527. // xs - x row stride in bytes
  1528. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1529. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1530. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1531. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1532. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1533. }
  1534. #if defined(GGML_SIMD)
  1535. const int np = (n & ~(GGML_F16_STEP - 1));
  1536. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1537. GGML_F16_VEC ax[GGML_F16_ARR];
  1538. GGML_F16_VEC ay[GGML_F16_ARR];
  1539. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1540. for (int j = 0; j < GGML_F16_ARR; j++) {
  1541. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1542. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1543. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1544. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1545. }
  1546. }
  1547. }
  1548. // reduce sum0..sum3 to sum0
  1549. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1550. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1551. }
  1552. // leftovers
  1553. for (int i = np; i < n; ++i) {
  1554. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1555. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1556. }
  1557. }
  1558. #else
  1559. for (int i = 0; i < n; ++i) {
  1560. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1561. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1562. }
  1563. }
  1564. #endif
  1565. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1566. s[i] = sumf[i];
  1567. }
  1568. }
  1569. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1570. #if defined(GGML_SIMD)
  1571. const int np = (n & ~(GGML_F32_STEP - 1));
  1572. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1573. GGML_F32_VEC ax[GGML_F32_ARR];
  1574. GGML_F32_VEC ay[GGML_F32_ARR];
  1575. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1576. for (int j = 0; j < GGML_F32_ARR; j++) {
  1577. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1578. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1579. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1580. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1581. }
  1582. }
  1583. // leftovers
  1584. for (int i = np; i < n; ++i) {
  1585. y[i] += x[i]*v;
  1586. }
  1587. #else
  1588. // scalar
  1589. for (int i = 0; i < n; ++i) {
  1590. y[i] += x[i]*v;
  1591. }
  1592. #endif
  1593. }
  1594. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) {
  1595. #if defined(GGML_SIMD)
  1596. const int np = (n & ~(GGML_F16_STEP - 1));
  1597. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1598. GGML_F16_VEC ax[GGML_F16_ARR];
  1599. GGML_F16_VEC ay[GGML_F16_ARR];
  1600. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1601. for (int j = 0; j < GGML_F16_ARR; j++) {
  1602. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1603. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1604. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1605. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1606. }
  1607. }
  1608. // leftovers
  1609. for (int i = np; i < n; ++i) {
  1610. GGML_ASSERT(false);
  1611. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1612. }
  1613. #else
  1614. for (int i = 0; i < n; ++i) {
  1615. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1616. }
  1617. #endif
  1618. }
  1619. inline static void ggml_vec_mad_q4_0(const int n, float * restrict y, void * restrict x, const float v) {
  1620. assert(n % QK == 0);
  1621. const int nb = n / QK;
  1622. const size_t bs = sizeof(float) + QK/2;
  1623. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1624. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  1625. #if __ARM_NEON
  1626. #if QK == 32
  1627. for (int i = 0; i < nb; ++i) {
  1628. const float d0 = v*(*(const float *) (pd + i*bs));
  1629. const uint8_t * restrict pp = pb + i*bs;
  1630. const uint8x8_t m4b = vdup_n_u8(0xf);
  1631. const int8x8_t s8b = vdup_n_s8(0x8);
  1632. const float32x4_t vd = vdupq_n_f32(d0);
  1633. for (int j = 0; j < 2; j++) {
  1634. const uint8x8_t vx = vld1_u8(pp + j*8);
  1635. const int8x8_t vxl = vreinterpret_s8_u8(vand_u8(vx, m4b));
  1636. const int8x8_t vxh = vreinterpret_s8_u8(vshr_n_u8(vx, 4));
  1637. // sub 8
  1638. const int8x8_t vxls = vsub_s8(vxl, s8b);
  1639. const int8x8_t vxhs = vsub_s8(vxh, s8b);
  1640. //const int8x8_t vxlt = vzip_s8(vxls, vxhs)[0];
  1641. //const int8x8_t vxht = vzip_s8(vxls, vxhs)[1];
  1642. const int8x8_t vxlt = vzip1_s8(vxls, vxhs);
  1643. const int8x8_t vxht = vzip2_s8(vxls, vxhs);
  1644. const int8x16_t vxq = vcombine_s8(vxlt, vxht);
  1645. // convert to 2x int16x8_t
  1646. const int16x8_t vxq0 = vmovl_s8(vget_low_s8 (vxq));
  1647. const int16x8_t vxq1 = vmovl_s8(vget_high_s8(vxq));
  1648. // convert to 4x float32x4_t
  1649. const float32x4_t vx0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq0)));
  1650. const float32x4_t vx1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq0)));
  1651. const float32x4_t vx2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq1)));
  1652. const float32x4_t vx3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq1)));
  1653. const float32x4_t vy0 = vld1q_f32(y + i*32 + j*16 + 0);
  1654. const float32x4_t vy1 = vld1q_f32(y + i*32 + j*16 + 4);
  1655. const float32x4_t vy2 = vld1q_f32(y + i*32 + j*16 + 8);
  1656. const float32x4_t vy3 = vld1q_f32(y + i*32 + j*16 + 12);
  1657. const float32x4_t vr0 = vfmaq_f32(vy0, vx0, vd);
  1658. const float32x4_t vr1 = vfmaq_f32(vy1, vx1, vd);
  1659. const float32x4_t vr2 = vfmaq_f32(vy2, vx2, vd);
  1660. const float32x4_t vr3 = vfmaq_f32(vy3, vx3, vd);
  1661. vst1q_f32(y + i*32 + j*16 + 0, vr0);
  1662. vst1q_f32(y + i*32 + j*16 + 4, vr1);
  1663. vst1q_f32(y + i*32 + j*16 + 8, vr2);
  1664. vst1q_f32(y + i*32 + j*16 + 12, vr3);
  1665. }
  1666. }
  1667. #endif
  1668. #else
  1669. // scalar
  1670. for (int i = 0; i < nb; i++) {
  1671. const float d = *(const float *) (pd + i*bs);
  1672. const uint8_t * restrict pp = pb + i*bs;
  1673. for (int l = 0; l < QK; l += 2) {
  1674. const uint8_t vi = pp[l/2];
  1675. const int8_t vi0 = vi & 0xf;
  1676. const int8_t vi1 = vi >> 4;
  1677. const float v0 = (vi0 - 8)*d;
  1678. const float v1 = (vi1 - 8)*d;
  1679. y[i*QK + l + 0] += v0*v;
  1680. y[i*QK + l + 1] += v1*v;
  1681. assert(!isnan(y[i*QK + l + 0]));
  1682. assert(!isnan(y[i*QK + l + 1]));
  1683. assert(!isinf(y[i*QK + l + 0]));
  1684. assert(!isinf(y[i*QK + l + 1]));
  1685. }
  1686. }
  1687. #endif
  1688. }
  1689. inline static void ggml_vec_mad_q4_1(const int n, float * restrict y, void * restrict x, const float v) {
  1690. assert(n % QK == 0);
  1691. const int nb = n / QK;
  1692. const size_t bs = 2*sizeof(float) + QK/2;
  1693. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1694. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  1695. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1696. for (int i = 0; i < nb; i++) {
  1697. const float d = *(const float *) (pd + i*bs);
  1698. const float m = *(const float *) (pm + i*bs);
  1699. const uint8_t * restrict pp = pb + i*bs;
  1700. for (int l = 0; l < QK; l += 2) {
  1701. const uint8_t vi = pp[l/2];
  1702. const uint8_t vi0 = vi & 0xf;
  1703. const uint8_t vi1 = vi >> 4;
  1704. const float v0 = d*vi0 + m;
  1705. const float v1 = d*vi1 + m;
  1706. y[i*QK + l + 0] += v0*v;
  1707. y[i*QK + l + 1] += v1*v;
  1708. assert(!isnan(y[i*QK + l + 0]));
  1709. assert(!isnan(y[i*QK + l + 1]));
  1710. assert(!isinf(y[i*QK + l + 0]));
  1711. assert(!isinf(y[i*QK + l + 1]));
  1712. //printf("mad: v0 %f v1 %f, i = %d, l = %d, d = %f, vi = %d, vi0 = %d, vi1 = %d\n", v0, v1, i, l, d, vi, vi0, vi1);
  1713. }
  1714. }
  1715. }
  1716. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1717. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1718. #if defined(GGML_SIMD)
  1719. const int np = (n & ~(GGML_F32_STEP - 1));
  1720. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1721. GGML_F32_VEC ay[GGML_F32_ARR];
  1722. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1723. for (int j = 0; j < GGML_F32_ARR; j++) {
  1724. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1725. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1726. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1727. }
  1728. }
  1729. // leftovers
  1730. for (int i = np; i < n; ++i) {
  1731. y[i] *= v;
  1732. }
  1733. #else
  1734. // scalar
  1735. for (int i = 0; i < n; ++i) {
  1736. y[i] *= v;
  1737. }
  1738. #endif
  1739. }
  1740. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1741. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1742. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1743. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1744. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1745. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1746. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1747. static const ggml_float GELU_COEF_A = 0.044715;
  1748. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1749. inline static float ggml_gelu_f32(float x) {
  1750. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1751. }
  1752. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1753. const uint16_t * i16 = (const uint16_t *) x;
  1754. for (int i = 0; i < n; ++i) {
  1755. y[i] = table_gelu_f16[i16[i]];
  1756. }
  1757. }
  1758. #ifdef GGML_GELU_FP16
  1759. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1760. uint16_t t;
  1761. for (int i = 0; i < n; ++i) {
  1762. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1763. memcpy(&t, &fp16, sizeof(uint16_t));
  1764. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1765. }
  1766. }
  1767. #else
  1768. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1769. for (int i = 0; i < n; ++i) {
  1770. y[i] = ggml_gelu_f32(x[i]);
  1771. }
  1772. }
  1773. #endif
  1774. // Sigmoid Linear Unit (SiLU) function
  1775. inline static float ggml_silu_f32(float x) {
  1776. return x/(1.0 + exp(-x));
  1777. }
  1778. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1779. const uint16_t * i16 = (const uint16_t *) x;
  1780. for (int i = 0; i < n; ++i) {
  1781. y[i] = table_silu_f16[i16[i]];
  1782. }
  1783. }
  1784. #ifdef GGML_SILU_FP16
  1785. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1786. uint16_t t;
  1787. for (int i = 0; i < n; ++i) {
  1788. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1789. memcpy(&t, &fp16, sizeof(uint16_t));
  1790. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1791. }
  1792. }
  1793. #else
  1794. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1795. for (int i = 0; i < n; ++i) {
  1796. y[i] = ggml_silu_f32(x[i]);
  1797. }
  1798. }
  1799. #endif
  1800. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1801. #ifndef GGML_USE_ACCELERATE
  1802. ggml_float sum = 0.0;
  1803. for (int i = 0; i < n; ++i) {
  1804. sum += x[i];
  1805. }
  1806. *s = sum;
  1807. #else
  1808. vDSP_sve(x, 1, s, n);
  1809. #endif
  1810. }
  1811. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1812. #ifndef GGML_USE_ACCELERATE
  1813. ggml_float max = -INFINITY;
  1814. for (int i = 0; i < n; ++i) {
  1815. max = MAX(max, x[i]);
  1816. }
  1817. *s = max;
  1818. #else
  1819. vDSP_maxv(x, 1, s, n);
  1820. #endif
  1821. }
  1822. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1823. //
  1824. // logging
  1825. //
  1826. #if (GGML_DEBUG >= 1)
  1827. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1828. #else
  1829. #define GGML_PRINT_DEBUG(...)
  1830. #endif
  1831. #if (GGML_DEBUG >= 5)
  1832. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1833. #else
  1834. #define GGML_PRINT_DEBUG_5(...)
  1835. #endif
  1836. #if (GGML_DEBUG >= 10)
  1837. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1838. #else
  1839. #define GGML_PRINT_DEBUG_10(...)
  1840. #endif
  1841. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1842. //
  1843. // data types
  1844. //
  1845. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1846. QK,
  1847. QK,
  1848. 1,
  1849. 1,
  1850. 1,
  1851. 1,
  1852. 1,
  1853. };
  1854. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1855. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1856. sizeof(float ) + QK/2,
  1857. sizeof(float )*2 + QK/2,
  1858. sizeof(int8_t ),
  1859. sizeof(int16_t),
  1860. sizeof(int32_t),
  1861. sizeof(ggml_fp16_t),
  1862. sizeof(float ),
  1863. };
  1864. // don't forget to update the array above when adding new types
  1865. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1866. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1867. "NONE",
  1868. "DUP",
  1869. "ADD",
  1870. "SUB",
  1871. "MUL",
  1872. "DIV",
  1873. "SQR",
  1874. "SQRT",
  1875. "SUM",
  1876. "MEAN",
  1877. "REPEAT",
  1878. "ABS",
  1879. "SGN",
  1880. "NEG",
  1881. "STEP",
  1882. "RELU",
  1883. "GELU",
  1884. "SILU",
  1885. "NORM",
  1886. "RMS_NORM",
  1887. "MUL_MAT",
  1888. "SCALE",
  1889. "CPY",
  1890. "RESHAPE",
  1891. "VIEW",
  1892. "PERMUTE",
  1893. "TRANSPOSE",
  1894. "GET_ROWS",
  1895. "DIAG_MASK_INF",
  1896. "SOFT_MAX",
  1897. "ROPE",
  1898. "CONV_1D_1S",
  1899. "CONV_1D_2S",
  1900. "FLASH_ATTN",
  1901. "FLASH_FF",
  1902. };
  1903. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1904. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1905. "none",
  1906. "x",
  1907. "x+y",
  1908. "x-y",
  1909. "x*y",
  1910. "x/y",
  1911. "x^2",
  1912. "√x",
  1913. "Σx",
  1914. "Σx/n",
  1915. "repeat(x)",
  1916. "abs(x)",
  1917. "sgn(x)",
  1918. "-x",
  1919. "step(x)",
  1920. "relu(x)",
  1921. "gelu(x)",
  1922. "silu(x)",
  1923. "norm(x)",
  1924. "rms_norm(x)",
  1925. "X*Y",
  1926. "x*v",
  1927. "x-\\>y",
  1928. "reshape(x)",
  1929. "view(x)",
  1930. "permute(x)",
  1931. "transpose(x)",
  1932. "get_rows(x)",
  1933. "diag_mask_inf(x)",
  1934. "soft_max(x)",
  1935. "rope(x)",
  1936. "conv_1d_1s(x)",
  1937. "conv_1d_2s(x)",
  1938. "flash_attn(x)",
  1939. "flash_ff(x)",
  1940. };
  1941. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1942. //
  1943. // ggml object
  1944. //
  1945. struct ggml_object {
  1946. size_t offs;
  1947. size_t size;
  1948. struct ggml_object * next;
  1949. char padding[8];
  1950. };
  1951. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1952. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1953. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1954. //
  1955. // ggml context
  1956. //
  1957. struct ggml_context {
  1958. size_t mem_size;
  1959. void * mem_buffer;
  1960. bool mem_buffer_owned;
  1961. bool mem_buffer_mlocked;
  1962. int n_objects;
  1963. struct ggml_object * objects_begin;
  1964. struct ggml_object * objects_end;
  1965. struct ggml_scratch scratch;
  1966. struct ggml_scratch scratch_save;
  1967. };
  1968. struct ggml_context_container {
  1969. bool used;
  1970. struct ggml_context context;
  1971. };
  1972. //
  1973. // compute types
  1974. //
  1975. enum ggml_task_type {
  1976. GGML_TASK_INIT = 0,
  1977. GGML_TASK_COMPUTE,
  1978. GGML_TASK_FINALIZE,
  1979. };
  1980. struct ggml_compute_params {
  1981. enum ggml_task_type type;
  1982. int ith, nth;
  1983. // work buffer for all threads
  1984. size_t wsize;
  1985. void * wdata;
  1986. };
  1987. //
  1988. // ggml state
  1989. //
  1990. struct ggml_state {
  1991. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1992. };
  1993. // global state
  1994. static struct ggml_state g_state;
  1995. static atomic_int g_state_barrier = 0;
  1996. // barrier via spin lock
  1997. inline static void ggml_critical_section_start(void) {
  1998. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1999. while (processing > 0) {
  2000. // wait for other threads to finish
  2001. atomic_fetch_sub(&g_state_barrier, 1);
  2002. sched_yield(); // TODO: reconsider this
  2003. processing = atomic_fetch_add(&g_state_barrier, 1);
  2004. }
  2005. }
  2006. // TODO: make this somehow automatically executed
  2007. // some sort of "sentry" mechanism
  2008. inline static void ggml_critical_section_end(void) {
  2009. atomic_fetch_sub(&g_state_barrier, 1);
  2010. }
  2011. ////////////////////////////////////////////////////////////////////////////////
  2012. void ggml_print_object(const struct ggml_object * obj) {
  2013. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2014. obj->offs, obj->size, (const void *) obj->next);
  2015. }
  2016. void ggml_print_objects(const struct ggml_context * ctx) {
  2017. struct ggml_object * obj = ctx->objects_begin;
  2018. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2019. while (obj != NULL) {
  2020. ggml_print_object(obj);
  2021. obj = obj->next;
  2022. }
  2023. GGML_PRINT("%s: --- end ---\n", __func__);
  2024. }
  2025. int ggml_nelements(const struct ggml_tensor * tensor) {
  2026. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2027. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2028. }
  2029. int ggml_nrows(const struct ggml_tensor * tensor) {
  2030. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2031. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2032. }
  2033. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2034. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2035. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2036. }
  2037. int ggml_blck_size(enum ggml_type type) {
  2038. return GGML_BLCK_SIZE[type];
  2039. }
  2040. size_t ggml_type_size(enum ggml_type type) {
  2041. return GGML_TYPE_SIZE[type];
  2042. }
  2043. float ggml_type_sizef(enum ggml_type type) {
  2044. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2045. }
  2046. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2047. return GGML_TYPE_SIZE[tensor->type];
  2048. }
  2049. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2050. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2051. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2052. }
  2053. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2054. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2055. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2056. }
  2057. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2058. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2059. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2060. }
  2061. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2062. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2063. return
  2064. (t0->ne[0] == t1->ne[0]) &&
  2065. (t0->ne[2] == t1->ne[2]) &&
  2066. (t0->ne[3] == t1->ne[3]);
  2067. }
  2068. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2069. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2070. return
  2071. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2072. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2073. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2074. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2075. }
  2076. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2077. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2078. return
  2079. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2080. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2081. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2082. }
  2083. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2084. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2085. return
  2086. (t0->ne[0] == t1->ne[0] ) &&
  2087. (t0->ne[1] == t1->ne[1] ) &&
  2088. (t0->ne[2] == t1->ne[2] ) &&
  2089. (t0->ne[3] == t1->ne[3] );
  2090. }
  2091. // check if t1 can be represented as a repeatition of t0
  2092. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2093. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2094. return
  2095. (t1->ne[0]%t0->ne[0] == 0) &&
  2096. (t1->ne[1]%t0->ne[1] == 0) &&
  2097. (t1->ne[2]%t0->ne[2] == 0) &&
  2098. (t1->ne[3]%t0->ne[3] == 0);
  2099. }
  2100. static inline int ggml_up32(int n) {
  2101. return (n + 31) & ~31;
  2102. }
  2103. static inline int ggml_up64(int n) {
  2104. return (n + 63) & ~63;
  2105. }
  2106. static inline int ggml_up(int n, int m) {
  2107. // assert m is a power of 2
  2108. GGML_ASSERT((m & (m - 1)) == 0);
  2109. return (n + m - 1) & ~(m - 1);
  2110. }
  2111. // assert that pointer is aligned to GGML_MEM_ALIGN
  2112. #define ggml_assert_aligned(ptr) \
  2113. assert(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2114. ////////////////////////////////////////////////////////////////////////////////
  2115. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2116. // make this function thread safe
  2117. ggml_critical_section_start();
  2118. static bool is_first_call = true;
  2119. if (is_first_call) {
  2120. // initialize GELU, SILU and EXP F32 tables
  2121. {
  2122. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2123. ggml_fp16_t ii;
  2124. for (int i = 0; i < (1 << 16); ++i) {
  2125. uint16_t ui = i;
  2126. memcpy(&ii, &ui, sizeof(ii));
  2127. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2128. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2129. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2130. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2131. }
  2132. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2133. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2134. }
  2135. // initialize g_state
  2136. {
  2137. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2138. g_state = (struct ggml_state) {
  2139. /*.contexts =*/ { { 0 } },
  2140. };
  2141. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2142. g_state.contexts[i].used = false;
  2143. }
  2144. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2145. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2146. }
  2147. is_first_call = false;
  2148. }
  2149. // find non-used context in g_state
  2150. struct ggml_context * ctx = NULL;
  2151. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2152. if (!g_state.contexts[i].used) {
  2153. g_state.contexts[i].used = true;
  2154. ctx = &g_state.contexts[i].context;
  2155. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2156. break;
  2157. }
  2158. }
  2159. if (ctx == NULL) {
  2160. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2161. ggml_critical_section_end();
  2162. return NULL;
  2163. }
  2164. *ctx = (struct ggml_context) {
  2165. /*.mem_size =*/ params.mem_size,
  2166. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2167. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2168. /*.mem_buffer_mlocked =*/ false,
  2169. /*.n_objects =*/ 0,
  2170. /*.objects_begin =*/ NULL,
  2171. /*.objects_end =*/ NULL,
  2172. /*.scratch =*/ { 0, 0, NULL, },
  2173. /*.scratch_save =*/ { 0, 0, NULL, },
  2174. };
  2175. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2176. ggml_assert_aligned(ctx->mem_buffer);
  2177. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2178. ggml_critical_section_end();
  2179. return ctx;
  2180. }
  2181. void ggml_free(struct ggml_context * ctx) {
  2182. // make this function thread safe
  2183. ggml_critical_section_start();
  2184. bool found = false;
  2185. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2186. if (&g_state.contexts[i].context == ctx) {
  2187. g_state.contexts[i].used = false;
  2188. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2189. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2190. #if GGML_MLOCK_SUPPORT
  2191. if (ctx->mem_buffer_mlocked) {
  2192. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2193. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2194. }
  2195. }
  2196. #endif
  2197. if (ctx->mem_buffer_owned) {
  2198. free(ctx->mem_buffer);
  2199. }
  2200. found = true;
  2201. break;
  2202. }
  2203. }
  2204. if (!found) {
  2205. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2206. }
  2207. ggml_critical_section_end();
  2208. }
  2209. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2210. return ctx->objects_end->offs + ctx->objects_end->size;
  2211. }
  2212. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2213. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2214. ctx->scratch = scratch;
  2215. return result;
  2216. }
  2217. bool ggml_mlock_supported(void) {
  2218. return GGML_MLOCK_SUPPORT;
  2219. }
  2220. #if GGML_MLOCK_SUPPORT
  2221. #ifdef __APPLE__
  2222. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2223. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2224. #else
  2225. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2226. #endif
  2227. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2228. if (ctx->mem_buffer_mlocked) {
  2229. return true;
  2230. }
  2231. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2232. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2233. ctx->mem_size, strerror(errno));
  2234. GGML_ASSERT(ret >= 0);
  2235. return false;
  2236. }
  2237. ctx->mem_buffer_mlocked = true;
  2238. return true;
  2239. }
  2240. #else // GGML_MLOCK_SUPPORT
  2241. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2242. *err_p = strdup("can't mlock because it's not supported on this system");
  2243. return false;
  2244. }
  2245. #endif // GGML_MLOCK_SUPPORT
  2246. ////////////////////////////////////////////////////////////////////////////////
  2247. struct ggml_tensor * ggml_new_tensor_impl(
  2248. struct ggml_context * ctx,
  2249. enum ggml_type type,
  2250. int n_dims,
  2251. const int* ne,
  2252. void* data) {
  2253. // always insert objects at the end of the context's memory pool
  2254. struct ggml_object * obj_cur = ctx->objects_end;
  2255. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2256. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2257. const size_t cur_end = cur_offs + cur_size;
  2258. size_t size_needed = 0;
  2259. if (data == NULL) {
  2260. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2261. for (int i = 1; i < n_dims; i++) {
  2262. size_needed *= ne[i];
  2263. }
  2264. // align to GGML_MEM_ALIGN
  2265. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2266. }
  2267. char * const mem_buffer = ctx->mem_buffer;
  2268. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2269. if (ctx->scratch.data == NULL || data != NULL) {
  2270. size_needed += sizeof(struct ggml_tensor);
  2271. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2272. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2273. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2274. assert(false);
  2275. return NULL;
  2276. }
  2277. *obj_new = (struct ggml_object) {
  2278. .offs = cur_end + GGML_OBJECT_SIZE,
  2279. .size = size_needed,
  2280. .next = NULL,
  2281. };
  2282. } else {
  2283. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2284. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2285. assert(false);
  2286. return NULL;
  2287. }
  2288. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2289. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2290. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2291. assert(false);
  2292. return NULL;
  2293. }
  2294. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2295. *obj_new = (struct ggml_object) {
  2296. .offs = cur_end + GGML_OBJECT_SIZE,
  2297. .size = sizeof(struct ggml_tensor),
  2298. .next = NULL,
  2299. };
  2300. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2301. ctx->scratch.offs += size_needed;
  2302. }
  2303. if (obj_cur != NULL) {
  2304. obj_cur->next = obj_new;
  2305. } else {
  2306. // this is the first object in this context
  2307. ctx->objects_begin = obj_new;
  2308. }
  2309. ctx->objects_end = obj_new;
  2310. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2311. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2312. ggml_assert_aligned(result);
  2313. *result = (struct ggml_tensor) {
  2314. /*.type =*/ type,
  2315. /*.n_dims =*/ n_dims,
  2316. /*.ne =*/ { 1, 1, 1, 1 },
  2317. /*.nb =*/ { 0, 0, 0, 0 },
  2318. /*.op =*/ GGML_OP_NONE,
  2319. /*.is_param =*/ false,
  2320. /*.grad =*/ NULL,
  2321. /*.src0 =*/ NULL,
  2322. /*.src1 =*/ NULL,
  2323. /*.opt =*/ { NULL },
  2324. /*.n_tasks =*/ 0,
  2325. /*.perf_runs =*/ 0,
  2326. /*.perf_cycles =*/ 0,
  2327. /*.perf_time_us =*/ 0,
  2328. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2329. /*.pad =*/ { 0 },
  2330. };
  2331. ggml_assert_aligned(result->data);
  2332. for (int i = 0; i < n_dims; i++) {
  2333. result->ne[i] = ne[i];
  2334. }
  2335. result->nb[0] = GGML_TYPE_SIZE[type];
  2336. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2337. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2338. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2339. }
  2340. ctx->n_objects++;
  2341. return result;
  2342. }
  2343. struct ggml_tensor * ggml_new_tensor(
  2344. struct ggml_context * ctx,
  2345. enum ggml_type type,
  2346. int n_dims,
  2347. const int * ne) {
  2348. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2349. }
  2350. struct ggml_tensor * ggml_new_tensor_1d(
  2351. struct ggml_context * ctx,
  2352. enum ggml_type type,
  2353. int ne0) {
  2354. return ggml_new_tensor(ctx, type, 1, &ne0);
  2355. }
  2356. struct ggml_tensor * ggml_new_tensor_2d(
  2357. struct ggml_context * ctx,
  2358. enum ggml_type type,
  2359. int ne0,
  2360. int ne1) {
  2361. const int ne[2] = { ne0, ne1 };
  2362. return ggml_new_tensor(ctx, type, 2, ne);
  2363. }
  2364. struct ggml_tensor * ggml_new_tensor_3d(
  2365. struct ggml_context * ctx,
  2366. enum ggml_type type,
  2367. int ne0,
  2368. int ne1,
  2369. int ne2) {
  2370. const int ne[3] = { ne0, ne1, ne2 };
  2371. return ggml_new_tensor(ctx, type, 3, ne);
  2372. }
  2373. struct ggml_tensor * ggml_new_tensor_4d(
  2374. struct ggml_context * ctx,
  2375. enum ggml_type type,
  2376. int ne0,
  2377. int ne1,
  2378. int ne2,
  2379. int ne3) {
  2380. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2381. return ggml_new_tensor(ctx, type, 4, ne);
  2382. }
  2383. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2384. ctx->scratch_save = ctx->scratch;
  2385. ctx->scratch.data = NULL;
  2386. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2387. ctx->scratch = ctx->scratch_save;
  2388. ggml_set_i32(result, value);
  2389. return result;
  2390. }
  2391. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2392. ctx->scratch_save = ctx->scratch;
  2393. ctx->scratch.data = NULL;
  2394. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2395. ctx->scratch = ctx->scratch_save;
  2396. ggml_set_f32(result, value);
  2397. return result;
  2398. }
  2399. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2400. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2401. }
  2402. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2403. memset(tensor->data, 0, ggml_nbytes(tensor));
  2404. return tensor;
  2405. }
  2406. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2407. const int n = ggml_nrows(tensor);
  2408. const int nc = tensor->ne[0];
  2409. const size_t n1 = tensor->nb[1];
  2410. char * const data = tensor->data;
  2411. switch (tensor->type) {
  2412. case GGML_TYPE_Q4_0:
  2413. {
  2414. GGML_ASSERT(false);
  2415. } break;
  2416. case GGML_TYPE_Q4_1:
  2417. {
  2418. GGML_ASSERT(false);
  2419. } break;
  2420. case GGML_TYPE_I8:
  2421. {
  2422. assert(tensor->nb[0] == sizeof(int8_t));
  2423. for (int i = 0; i < n; i++) {
  2424. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2425. }
  2426. } break;
  2427. case GGML_TYPE_I16:
  2428. {
  2429. assert(tensor->nb[0] == sizeof(int16_t));
  2430. for (int i = 0; i < n; i++) {
  2431. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2432. }
  2433. } break;
  2434. case GGML_TYPE_I32:
  2435. {
  2436. assert(tensor->nb[0] == sizeof(int32_t));
  2437. for (int i = 0; i < n; i++) {
  2438. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2439. }
  2440. } break;
  2441. case GGML_TYPE_F16:
  2442. {
  2443. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2444. for (int i = 0; i < n; i++) {
  2445. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2446. }
  2447. } break;
  2448. case GGML_TYPE_F32:
  2449. {
  2450. assert(tensor->nb[0] == sizeof(float));
  2451. for (int i = 0; i < n; i++) {
  2452. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2453. }
  2454. } break;
  2455. case GGML_TYPE_COUNT:
  2456. {
  2457. GGML_ASSERT(false);
  2458. } break;
  2459. }
  2460. return tensor;
  2461. }
  2462. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2463. const int n = ggml_nrows(tensor);
  2464. const int nc = tensor->ne[0];
  2465. const size_t n1 = tensor->nb[1];
  2466. char * const data = tensor->data;
  2467. switch (tensor->type) {
  2468. case GGML_TYPE_Q4_0:
  2469. {
  2470. GGML_ASSERT(false);
  2471. } break;
  2472. case GGML_TYPE_Q4_1:
  2473. {
  2474. GGML_ASSERT(false);
  2475. } break;
  2476. case GGML_TYPE_I8:
  2477. {
  2478. assert(tensor->nb[0] == sizeof(int8_t));
  2479. for (int i = 0; i < n; i++) {
  2480. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2481. }
  2482. } break;
  2483. case GGML_TYPE_I16:
  2484. {
  2485. assert(tensor->nb[0] == sizeof(int16_t));
  2486. for (int i = 0; i < n; i++) {
  2487. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2488. }
  2489. } break;
  2490. case GGML_TYPE_I32:
  2491. {
  2492. assert(tensor->nb[0] == sizeof(int32_t));
  2493. for (int i = 0; i < n; i++) {
  2494. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2495. }
  2496. } break;
  2497. case GGML_TYPE_F16:
  2498. {
  2499. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2500. for (int i = 0; i < n; i++) {
  2501. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2502. }
  2503. } break;
  2504. case GGML_TYPE_F32:
  2505. {
  2506. assert(tensor->nb[0] == sizeof(float));
  2507. for (int i = 0; i < n; i++) {
  2508. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2509. }
  2510. } break;
  2511. case GGML_TYPE_COUNT:
  2512. {
  2513. GGML_ASSERT(false);
  2514. } break;
  2515. }
  2516. return tensor;
  2517. }
  2518. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2519. switch (tensor->type) {
  2520. case GGML_TYPE_Q4_0:
  2521. {
  2522. GGML_ASSERT(false);
  2523. } break;
  2524. case GGML_TYPE_Q4_1:
  2525. {
  2526. GGML_ASSERT(false);
  2527. } break;
  2528. case GGML_TYPE_I8:
  2529. {
  2530. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2531. return ((int8_t *)(tensor->data))[i];
  2532. } break;
  2533. case GGML_TYPE_I16:
  2534. {
  2535. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2536. return ((int16_t *)(tensor->data))[i];
  2537. } break;
  2538. case GGML_TYPE_I32:
  2539. {
  2540. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2541. return ((int32_t *)(tensor->data))[i];
  2542. } break;
  2543. case GGML_TYPE_F16:
  2544. {
  2545. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2546. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2547. } break;
  2548. case GGML_TYPE_F32:
  2549. {
  2550. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2551. return ((float *)(tensor->data))[i];
  2552. } break;
  2553. case GGML_TYPE_COUNT:
  2554. {
  2555. GGML_ASSERT(false);
  2556. } break;
  2557. }
  2558. return 0.0f;
  2559. }
  2560. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2561. switch (tensor->type) {
  2562. case GGML_TYPE_Q4_0:
  2563. {
  2564. GGML_ASSERT(false);
  2565. } break;
  2566. case GGML_TYPE_Q4_1:
  2567. {
  2568. GGML_ASSERT(false);
  2569. } break;
  2570. case GGML_TYPE_I8:
  2571. {
  2572. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2573. ((int8_t *)(tensor->data))[i] = value;
  2574. } break;
  2575. case GGML_TYPE_I16:
  2576. {
  2577. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2578. ((int16_t *)(tensor->data))[i] = value;
  2579. } break;
  2580. case GGML_TYPE_I32:
  2581. {
  2582. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2583. ((int32_t *)(tensor->data))[i] = value;
  2584. } break;
  2585. case GGML_TYPE_F16:
  2586. {
  2587. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2588. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2589. } break;
  2590. case GGML_TYPE_F32:
  2591. {
  2592. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2593. ((float *)(tensor->data))[i] = value;
  2594. } break;
  2595. case GGML_TYPE_COUNT:
  2596. {
  2597. GGML_ASSERT(false);
  2598. } break;
  2599. }
  2600. }
  2601. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2602. switch (tensor->type) {
  2603. case GGML_TYPE_Q4_0:
  2604. {
  2605. GGML_ASSERT(false);
  2606. } break;
  2607. case GGML_TYPE_Q4_1:
  2608. {
  2609. GGML_ASSERT(false);
  2610. } break;
  2611. case GGML_TYPE_I8:
  2612. {
  2613. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2614. return ((int8_t *)(tensor->data))[i];
  2615. } break;
  2616. case GGML_TYPE_I16:
  2617. {
  2618. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2619. return ((int16_t *)(tensor->data))[i];
  2620. } break;
  2621. case GGML_TYPE_I32:
  2622. {
  2623. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2624. return ((int32_t *)(tensor->data))[i];
  2625. } break;
  2626. case GGML_TYPE_F16:
  2627. {
  2628. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2629. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2630. } break;
  2631. case GGML_TYPE_F32:
  2632. {
  2633. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2634. return ((float *)(tensor->data))[i];
  2635. } break;
  2636. case GGML_TYPE_COUNT:
  2637. {
  2638. GGML_ASSERT(false);
  2639. } break;
  2640. }
  2641. return 0.0f;
  2642. }
  2643. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2644. switch (tensor->type) {
  2645. case GGML_TYPE_Q4_0:
  2646. {
  2647. GGML_ASSERT(false);
  2648. } break;
  2649. case GGML_TYPE_Q4_1:
  2650. {
  2651. GGML_ASSERT(false);
  2652. } break;
  2653. case GGML_TYPE_I8:
  2654. {
  2655. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2656. ((int8_t *)(tensor->data))[i] = value;
  2657. } break;
  2658. case GGML_TYPE_I16:
  2659. {
  2660. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2661. ((int16_t *)(tensor->data))[i] = value;
  2662. } break;
  2663. case GGML_TYPE_I32:
  2664. {
  2665. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2666. ((int32_t *)(tensor->data))[i] = value;
  2667. } break;
  2668. case GGML_TYPE_F16:
  2669. {
  2670. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2671. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2672. } break;
  2673. case GGML_TYPE_F32:
  2674. {
  2675. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2676. ((float *)(tensor->data))[i] = value;
  2677. } break;
  2678. case GGML_TYPE_COUNT:
  2679. {
  2680. GGML_ASSERT(false);
  2681. } break;
  2682. }
  2683. }
  2684. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2685. return tensor->data;
  2686. }
  2687. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2688. assert(tensor->type == GGML_TYPE_F32);
  2689. return (float *)(tensor->data);
  2690. }
  2691. struct ggml_tensor * ggml_view_tensor(
  2692. struct ggml_context * ctx,
  2693. const struct ggml_tensor * src) {
  2694. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2695. }
  2696. ////////////////////////////////////////////////////////////////////////////////
  2697. // ggml_dup
  2698. struct ggml_tensor * ggml_dup_impl(
  2699. struct ggml_context * ctx,
  2700. struct ggml_tensor * a,
  2701. bool inplace) {
  2702. bool is_node = false;
  2703. if (!inplace && (a->grad)) {
  2704. is_node = true;
  2705. }
  2706. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2707. result->op = GGML_OP_DUP;
  2708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2709. result->src0 = a;
  2710. result->src1 = NULL;
  2711. return result;
  2712. }
  2713. struct ggml_tensor * ggml_dup(
  2714. struct ggml_context * ctx,
  2715. struct ggml_tensor * a) {
  2716. return ggml_dup_impl(ctx, a, false);
  2717. }
  2718. struct ggml_tensor * ggml_dup_inplace(
  2719. struct ggml_context * ctx,
  2720. struct ggml_tensor * a) {
  2721. return ggml_dup_impl(ctx, a, true);
  2722. }
  2723. // ggml_add
  2724. struct ggml_tensor * ggml_add_impl(
  2725. struct ggml_context * ctx,
  2726. struct ggml_tensor * a,
  2727. struct ggml_tensor * b,
  2728. bool inplace) {
  2729. GGML_ASSERT(ggml_are_same_shape(a, b));
  2730. bool is_node = false;
  2731. if (!inplace && (a->grad || b->grad)) {
  2732. is_node = true;
  2733. }
  2734. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2735. result->op = GGML_OP_ADD;
  2736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2737. result->src0 = a;
  2738. result->src1 = b;
  2739. return result;
  2740. }
  2741. struct ggml_tensor * ggml_add(
  2742. struct ggml_context * ctx,
  2743. struct ggml_tensor * a,
  2744. struct ggml_tensor * b) {
  2745. return ggml_add_impl(ctx, a, b, false);
  2746. }
  2747. struct ggml_tensor * ggml_add_inplace(
  2748. struct ggml_context * ctx,
  2749. struct ggml_tensor * a,
  2750. struct ggml_tensor * b) {
  2751. return ggml_add_impl(ctx, a, b, true);
  2752. }
  2753. // ggml_sub
  2754. struct ggml_tensor * ggml_sub_impl(
  2755. struct ggml_context * ctx,
  2756. struct ggml_tensor * a,
  2757. struct ggml_tensor * b,
  2758. bool inplace) {
  2759. GGML_ASSERT(ggml_are_same_shape(a, b));
  2760. bool is_node = false;
  2761. if (!inplace && (a->grad || b->grad)) {
  2762. is_node = true;
  2763. }
  2764. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2765. result->op = GGML_OP_SUB;
  2766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2767. result->src0 = a;
  2768. result->src1 = b;
  2769. return result;
  2770. }
  2771. struct ggml_tensor * ggml_sub(
  2772. struct ggml_context * ctx,
  2773. struct ggml_tensor * a,
  2774. struct ggml_tensor * b) {
  2775. return ggml_sub_impl(ctx, a, b, false);
  2776. }
  2777. struct ggml_tensor * ggml_sub_inplace(
  2778. struct ggml_context * ctx,
  2779. struct ggml_tensor * a,
  2780. struct ggml_tensor * b) {
  2781. return ggml_sub_impl(ctx, a, b, true);
  2782. }
  2783. // ggml_mul
  2784. struct ggml_tensor * ggml_mul_impl(
  2785. struct ggml_context * ctx,
  2786. struct ggml_tensor * a,
  2787. struct ggml_tensor * b,
  2788. bool inplace) {
  2789. GGML_ASSERT(ggml_are_same_shape(a, b));
  2790. bool is_node = false;
  2791. if (!inplace && (a->grad || b->grad)) {
  2792. is_node = true;
  2793. }
  2794. if (inplace) {
  2795. GGML_ASSERT(is_node == false);
  2796. }
  2797. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2798. result->op = GGML_OP_MUL;
  2799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2800. result->src0 = a;
  2801. result->src1 = b;
  2802. return result;
  2803. }
  2804. struct ggml_tensor * ggml_mul(
  2805. struct ggml_context * ctx,
  2806. struct ggml_tensor * a,
  2807. struct ggml_tensor * b) {
  2808. return ggml_mul_impl(ctx, a, b, false);
  2809. }
  2810. struct ggml_tensor * ggml_mul_inplace(
  2811. struct ggml_context * ctx,
  2812. struct ggml_tensor * a,
  2813. struct ggml_tensor * b) {
  2814. return ggml_mul_impl(ctx, a, b, true);
  2815. }
  2816. // ggml_div
  2817. struct ggml_tensor * ggml_div_impl(
  2818. struct ggml_context * ctx,
  2819. struct ggml_tensor * a,
  2820. struct ggml_tensor * b,
  2821. bool inplace) {
  2822. GGML_ASSERT(ggml_are_same_shape(a, b));
  2823. bool is_node = false;
  2824. if (!inplace && (a->grad || b->grad)) {
  2825. is_node = true;
  2826. }
  2827. if (inplace) {
  2828. GGML_ASSERT(is_node == false);
  2829. }
  2830. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2831. result->op = GGML_OP_DIV;
  2832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2833. result->src0 = a;
  2834. result->src1 = b;
  2835. return result;
  2836. }
  2837. struct ggml_tensor * ggml_div(
  2838. struct ggml_context * ctx,
  2839. struct ggml_tensor * a,
  2840. struct ggml_tensor * b) {
  2841. return ggml_div_impl(ctx, a, b, false);
  2842. }
  2843. struct ggml_tensor * ggml_div_inplace(
  2844. struct ggml_context * ctx,
  2845. struct ggml_tensor * a,
  2846. struct ggml_tensor * b) {
  2847. return ggml_div_impl(ctx, a, b, true);
  2848. }
  2849. // ggml_sqr
  2850. struct ggml_tensor * ggml_sqr_impl(
  2851. struct ggml_context * ctx,
  2852. struct ggml_tensor * a,
  2853. bool inplace) {
  2854. bool is_node = false;
  2855. if (!inplace && (a->grad)) {
  2856. is_node = true;
  2857. }
  2858. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2859. result->op = GGML_OP_SQR;
  2860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2861. result->src0 = a;
  2862. result->src1 = NULL;
  2863. return result;
  2864. }
  2865. struct ggml_tensor * ggml_sqr(
  2866. struct ggml_context * ctx,
  2867. struct ggml_tensor * a) {
  2868. return ggml_sqr_impl(ctx, a, false);
  2869. }
  2870. struct ggml_tensor * ggml_sqr_inplace(
  2871. struct ggml_context * ctx,
  2872. struct ggml_tensor * a) {
  2873. return ggml_sqr_impl(ctx, a, true);
  2874. }
  2875. // ggml_sqrt
  2876. struct ggml_tensor * ggml_sqrt_impl(
  2877. struct ggml_context * ctx,
  2878. struct ggml_tensor * a,
  2879. bool inplace) {
  2880. bool is_node = false;
  2881. if (!inplace && (a->grad)) {
  2882. is_node = true;
  2883. }
  2884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2885. result->op = GGML_OP_SQRT;
  2886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2887. result->src0 = a;
  2888. result->src1 = NULL;
  2889. return result;
  2890. }
  2891. struct ggml_tensor * ggml_sqrt(
  2892. struct ggml_context * ctx,
  2893. struct ggml_tensor * a) {
  2894. return ggml_sqrt_impl(ctx, a, false);
  2895. }
  2896. struct ggml_tensor * ggml_sqrt_inplace(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * a) {
  2899. return ggml_sqrt_impl(ctx, a, true);
  2900. }
  2901. // ggml_sum
  2902. struct ggml_tensor * ggml_sum(
  2903. struct ggml_context * ctx,
  2904. struct ggml_tensor * a) {
  2905. bool is_node = false;
  2906. if (a->grad) {
  2907. is_node = true;
  2908. }
  2909. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2910. result->op = GGML_OP_SUM;
  2911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2912. result->src0 = a;
  2913. result->src1 = NULL;
  2914. return result;
  2915. }
  2916. // ggml_mean
  2917. struct ggml_tensor * ggml_mean(
  2918. struct ggml_context * ctx,
  2919. struct ggml_tensor * a) {
  2920. bool is_node = false;
  2921. if (a->grad) {
  2922. GGML_ASSERT(false); // TODO: implement
  2923. is_node = true;
  2924. }
  2925. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2926. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2927. result->op = GGML_OP_MEAN;
  2928. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2929. result->src0 = a;
  2930. result->src1 = NULL;
  2931. return result;
  2932. }
  2933. // ggml_repeat
  2934. struct ggml_tensor * ggml_repeat(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a,
  2937. struct ggml_tensor * b) {
  2938. GGML_ASSERT(ggml_can_repeat(a, b));
  2939. bool is_node = false;
  2940. if (a->grad) {
  2941. is_node = true;
  2942. }
  2943. if (ggml_are_same_shape(a, b) && !is_node) {
  2944. return a;
  2945. }
  2946. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2947. result->op = GGML_OP_REPEAT;
  2948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2949. result->src0 = a;
  2950. result->src1 = b;
  2951. return result;
  2952. }
  2953. // ggml_abs
  2954. struct ggml_tensor * ggml_abs_impl(
  2955. struct ggml_context * ctx,
  2956. struct ggml_tensor * a,
  2957. bool inplace) {
  2958. bool is_node = false;
  2959. if (!inplace && (a->grad)) {
  2960. is_node = true;
  2961. }
  2962. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2963. result->op = GGML_OP_ABS;
  2964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2965. result->src0 = a;
  2966. result->src1 = NULL;
  2967. return result;
  2968. }
  2969. struct ggml_tensor * ggml_abs(
  2970. struct ggml_context * ctx,
  2971. struct ggml_tensor * a) {
  2972. return ggml_abs_impl(ctx, a, false);
  2973. }
  2974. struct ggml_tensor * ggml_abs_inplace(
  2975. struct ggml_context * ctx,
  2976. struct ggml_tensor * a) {
  2977. return ggml_abs_impl(ctx, a, true);
  2978. }
  2979. // ggml_sgn
  2980. struct ggml_tensor * ggml_sgn_impl(
  2981. struct ggml_context * ctx,
  2982. struct ggml_tensor * a,
  2983. bool inplace) {
  2984. bool is_node = false;
  2985. if (!inplace && (a->grad)) {
  2986. is_node = true;
  2987. }
  2988. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2989. result->op = GGML_OP_SGN;
  2990. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2991. result->src0 = a;
  2992. result->src1 = NULL;
  2993. return result;
  2994. }
  2995. struct ggml_tensor * ggml_sgn(
  2996. struct ggml_context * ctx,
  2997. struct ggml_tensor * a) {
  2998. return ggml_sgn_impl(ctx, a, false);
  2999. }
  3000. struct ggml_tensor * ggml_sgn_inplace(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a) {
  3003. return ggml_sgn_impl(ctx, a, true);
  3004. }
  3005. // ggml_neg
  3006. struct ggml_tensor * ggml_neg_impl(
  3007. struct ggml_context * ctx,
  3008. struct ggml_tensor * a,
  3009. bool inplace) {
  3010. bool is_node = false;
  3011. if (!inplace && (a->grad)) {
  3012. is_node = true;
  3013. }
  3014. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3015. result->op = GGML_OP_NEG;
  3016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3017. result->src0 = a;
  3018. result->src1 = NULL;
  3019. return result;
  3020. }
  3021. struct ggml_tensor * ggml_neg(
  3022. struct ggml_context * ctx,
  3023. struct ggml_tensor * a) {
  3024. return ggml_neg_impl(ctx, a, false);
  3025. }
  3026. struct ggml_tensor * ggml_neg_inplace(
  3027. struct ggml_context * ctx,
  3028. struct ggml_tensor * a) {
  3029. return ggml_neg_impl(ctx, a, true);
  3030. }
  3031. // ggml_step
  3032. struct ggml_tensor * ggml_step_impl(
  3033. struct ggml_context * ctx,
  3034. struct ggml_tensor * a,
  3035. bool inplace) {
  3036. bool is_node = false;
  3037. if (!inplace && (a->grad)) {
  3038. is_node = true;
  3039. }
  3040. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3041. result->op = GGML_OP_STEP;
  3042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3043. result->src0 = a;
  3044. result->src1 = NULL;
  3045. return result;
  3046. }
  3047. struct ggml_tensor * ggml_step(
  3048. struct ggml_context * ctx,
  3049. struct ggml_tensor * a) {
  3050. return ggml_step_impl(ctx, a, false);
  3051. }
  3052. struct ggml_tensor * ggml_step_inplace(
  3053. struct ggml_context * ctx,
  3054. struct ggml_tensor * a) {
  3055. return ggml_step_impl(ctx, a, true);
  3056. }
  3057. // ggml_relu
  3058. struct ggml_tensor * ggml_relu_impl(
  3059. struct ggml_context * ctx,
  3060. struct ggml_tensor * a,
  3061. bool inplace) {
  3062. bool is_node = false;
  3063. if (!inplace && (a->grad)) {
  3064. is_node = true;
  3065. }
  3066. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3067. result->op = GGML_OP_RELU;
  3068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3069. result->src0 = a;
  3070. result->src1 = NULL;
  3071. return result;
  3072. }
  3073. struct ggml_tensor * ggml_relu(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a) {
  3076. return ggml_relu_impl(ctx, a, false);
  3077. }
  3078. struct ggml_tensor * ggml_relu_inplace(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a) {
  3081. return ggml_relu_impl(ctx, a, true);
  3082. }
  3083. // ggml_gelu
  3084. struct ggml_tensor * ggml_gelu_impl(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a,
  3087. bool inplace) {
  3088. bool is_node = false;
  3089. if (!inplace && (a->grad)) {
  3090. is_node = true;
  3091. }
  3092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3093. result->op = GGML_OP_GELU;
  3094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3095. result->src0 = a;
  3096. result->src1 = NULL;
  3097. return result;
  3098. }
  3099. struct ggml_tensor * ggml_gelu(
  3100. struct ggml_context * ctx,
  3101. struct ggml_tensor * a) {
  3102. return ggml_gelu_impl(ctx, a, false);
  3103. }
  3104. struct ggml_tensor * ggml_gelu_inplace(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a) {
  3107. return ggml_gelu_impl(ctx, a, true);
  3108. }
  3109. // ggml_silu
  3110. struct ggml_tensor * ggml_silu_impl(
  3111. struct ggml_context * ctx,
  3112. struct ggml_tensor * a,
  3113. bool inplace) {
  3114. bool is_node = false;
  3115. if (!inplace && (a->grad)) {
  3116. is_node = true;
  3117. }
  3118. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3119. result->op = GGML_OP_SILU;
  3120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3121. result->src0 = a;
  3122. result->src1 = NULL;
  3123. return result;
  3124. }
  3125. struct ggml_tensor * ggml_silu(
  3126. struct ggml_context * ctx,
  3127. struct ggml_tensor * a) {
  3128. return ggml_silu_impl(ctx, a, false);
  3129. }
  3130. struct ggml_tensor * ggml_silu_inplace(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a) {
  3133. return ggml_silu_impl(ctx, a, true);
  3134. }
  3135. // ggml_norm
  3136. struct ggml_tensor * ggml_norm_impl(
  3137. struct ggml_context * ctx,
  3138. struct ggml_tensor * a,
  3139. bool inplace) {
  3140. bool is_node = false;
  3141. if (!inplace && (a->grad)) {
  3142. GGML_ASSERT(false); // TODO: implement backward
  3143. is_node = true;
  3144. }
  3145. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3146. result->op = GGML_OP_NORM;
  3147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3148. result->src0 = a;
  3149. result->src1 = NULL; // TODO: maybe store epsilon here?
  3150. return result;
  3151. }
  3152. struct ggml_tensor * ggml_norm(
  3153. struct ggml_context * ctx,
  3154. struct ggml_tensor * a) {
  3155. return ggml_norm_impl(ctx, a, false);
  3156. }
  3157. struct ggml_tensor * ggml_norm_inplace(
  3158. struct ggml_context * ctx,
  3159. struct ggml_tensor * a) {
  3160. return ggml_norm_impl(ctx, a, true);
  3161. }
  3162. struct ggml_tensor * ggml_rms_norm_impl(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a,
  3165. bool inplace) {
  3166. bool is_node = false;
  3167. if (!inplace && (a->grad)) {
  3168. GGML_ASSERT(false); // TODO: implement backward
  3169. is_node = true;
  3170. }
  3171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3172. result->op = GGML_OP_RMS_NORM;
  3173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3174. result->src0 = a;
  3175. result->src1 = NULL; // TODO: maybe store epsilon here?
  3176. return result;
  3177. }
  3178. struct ggml_tensor * ggml_rms_norm(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a) {
  3181. return ggml_rms_norm_impl(ctx, a, false);
  3182. }
  3183. struct ggml_tensor * ggml_rms_norm_inplace(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a) {
  3186. return ggml_rms_norm_impl(ctx, a, true);
  3187. }
  3188. // ggml_mul_mat
  3189. struct ggml_tensor * ggml_mul_mat(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a,
  3192. struct ggml_tensor * b) {
  3193. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3194. bool is_node = false;
  3195. if (a->grad || b->grad) {
  3196. is_node = true;
  3197. }
  3198. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3199. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3200. result->op = GGML_OP_MUL_MAT;
  3201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3202. result->src0 = a;
  3203. result->src1 = b;
  3204. return result;
  3205. }
  3206. // ggml_scale
  3207. struct ggml_tensor * ggml_scale_impl(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a,
  3210. struct ggml_tensor * b,
  3211. bool inplace) {
  3212. GGML_ASSERT(ggml_is_scalar(b));
  3213. GGML_ASSERT(ggml_is_padded_1d(a));
  3214. bool is_node = false;
  3215. if (!inplace && (a->grad || b->grad)) {
  3216. GGML_ASSERT(false); // TODO: implement backward
  3217. is_node = true;
  3218. }
  3219. // TODO: when implement backward, fix this:
  3220. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3221. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3222. result->op = GGML_OP_SCALE;
  3223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3224. result->src0 = a;
  3225. result->src1 = b;
  3226. return result;
  3227. }
  3228. struct ggml_tensor * ggml_scale(
  3229. struct ggml_context * ctx,
  3230. struct ggml_tensor * a,
  3231. struct ggml_tensor * b) {
  3232. return ggml_scale_impl(ctx, a, b, false);
  3233. }
  3234. struct ggml_tensor * ggml_scale_inplace(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a,
  3237. struct ggml_tensor * b) {
  3238. return ggml_scale_impl(ctx, a, b, true);
  3239. }
  3240. // ggml_cpy
  3241. struct ggml_tensor * ggml_cpy_impl(
  3242. struct ggml_context * ctx,
  3243. struct ggml_tensor * a,
  3244. struct ggml_tensor * b,
  3245. bool inplace) {
  3246. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3247. bool is_node = false;
  3248. if (!inplace && (a->grad || b->grad)) {
  3249. GGML_ASSERT(false); // TODO: implement backward
  3250. is_node = true;
  3251. }
  3252. // make a view of the destination
  3253. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3254. result->op = GGML_OP_CPY;
  3255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3256. result->src0 = a;
  3257. result->src1 = b;
  3258. return result;
  3259. }
  3260. struct ggml_tensor * ggml_cpy(
  3261. struct ggml_context * ctx,
  3262. struct ggml_tensor * a,
  3263. struct ggml_tensor * b) {
  3264. return ggml_cpy_impl(ctx, a, b, false);
  3265. }
  3266. struct ggml_tensor * ggml_cpy_inplace(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a,
  3269. struct ggml_tensor * b) {
  3270. return ggml_cpy_impl(ctx, a, b, true);
  3271. }
  3272. // ggml_reshape
  3273. struct ggml_tensor * ggml_reshape(
  3274. struct ggml_context * ctx,
  3275. struct ggml_tensor * a,
  3276. struct ggml_tensor * b) {
  3277. GGML_ASSERT(ggml_is_contiguous(a));
  3278. GGML_ASSERT(ggml_is_contiguous(b));
  3279. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3280. bool is_node = false;
  3281. if (a->grad || b->grad) {
  3282. GGML_ASSERT(false); // TODO: implement backward
  3283. is_node = true;
  3284. }
  3285. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3286. result->op = GGML_OP_RESHAPE;
  3287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3288. result->src0 = a;
  3289. result->src1 = NULL;
  3290. return result;
  3291. }
  3292. struct ggml_tensor * ggml_reshape_2d(
  3293. struct ggml_context * ctx,
  3294. struct ggml_tensor * a,
  3295. int ne0,
  3296. int ne1) {
  3297. GGML_ASSERT(ggml_is_contiguous(a));
  3298. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3299. bool is_node = false;
  3300. if (a->grad) {
  3301. GGML_ASSERT(false); // TODO: implement backward
  3302. is_node = true;
  3303. }
  3304. const int ne[2] = { ne0, ne1 };
  3305. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3306. result->op = GGML_OP_RESHAPE;
  3307. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3308. result->src0 = a;
  3309. result->src1 = NULL;
  3310. return result;
  3311. }
  3312. struct ggml_tensor * ggml_reshape_3d(
  3313. struct ggml_context * ctx,
  3314. struct ggml_tensor * a,
  3315. int ne0,
  3316. int ne1,
  3317. int ne2) {
  3318. GGML_ASSERT(ggml_is_contiguous(a));
  3319. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3320. bool is_node = false;
  3321. if (a->grad) {
  3322. GGML_ASSERT(false); // TODO: implement backward
  3323. is_node = true;
  3324. }
  3325. const int ne[3] = { ne0, ne1, ne2 };
  3326. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3327. result->op = GGML_OP_RESHAPE;
  3328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3329. result->src0 = a;
  3330. result->src1 = NULL;
  3331. return result;
  3332. }
  3333. // ggml_view_1d
  3334. struct ggml_tensor * ggml_view_1d(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a,
  3337. int ne0,
  3338. size_t offset) {
  3339. if (a->grad) {
  3340. GGML_ASSERT(false); // gradient propagation is not supported
  3341. }
  3342. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3343. result->op = GGML_OP_VIEW;
  3344. result->grad = NULL;
  3345. result->src0 = a;
  3346. result->src1 = NULL; // TODO: maybe store the offset here?
  3347. return result;
  3348. }
  3349. // ggml_view_2d
  3350. struct ggml_tensor * ggml_view_2d(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. int ne0,
  3354. int ne1,
  3355. size_t nb1,
  3356. size_t offset) {
  3357. if (a->grad) {
  3358. GGML_ASSERT(false); // gradient propagation is not supported
  3359. }
  3360. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3361. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3362. result->nb[1] = nb1;
  3363. result->nb[2] = result->nb[1]*ne1;
  3364. result->nb[3] = result->nb[2];
  3365. result->op = GGML_OP_VIEW;
  3366. result->grad = NULL;
  3367. result->src0 = a;
  3368. result->src1 = NULL; // TODO: maybe store the offset here?
  3369. return result;
  3370. }
  3371. // ggml_permute
  3372. struct ggml_tensor * ggml_permute(
  3373. struct ggml_context * ctx,
  3374. struct ggml_tensor * a,
  3375. int axis0,
  3376. int axis1,
  3377. int axis2,
  3378. int axis3) {
  3379. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3380. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3381. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3382. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3383. GGML_ASSERT(axis0 != axis1);
  3384. GGML_ASSERT(axis0 != axis2);
  3385. GGML_ASSERT(axis0 != axis3);
  3386. GGML_ASSERT(axis1 != axis2);
  3387. GGML_ASSERT(axis1 != axis3);
  3388. GGML_ASSERT(axis2 != axis3);
  3389. bool is_node = false;
  3390. if (a->grad) {
  3391. GGML_ASSERT(false); // TODO: implement backward
  3392. is_node = true;
  3393. }
  3394. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3395. int ne[GGML_MAX_DIMS];
  3396. int nb[GGML_MAX_DIMS];
  3397. ne[axis0] = a->ne[0];
  3398. ne[axis1] = a->ne[1];
  3399. ne[axis2] = a->ne[2];
  3400. ne[axis3] = a->ne[3];
  3401. nb[axis0] = a->nb[0];
  3402. nb[axis1] = a->nb[1];
  3403. nb[axis2] = a->nb[2];
  3404. nb[axis3] = a->nb[3];
  3405. result->ne[0] = ne[0];
  3406. result->ne[1] = ne[1];
  3407. result->ne[2] = ne[2];
  3408. result->ne[3] = ne[3];
  3409. result->nb[0] = nb[0];
  3410. result->nb[1] = nb[1];
  3411. result->nb[2] = nb[2];
  3412. result->nb[3] = nb[3];
  3413. result->op = GGML_OP_PERMUTE;
  3414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3415. result->src0 = a;
  3416. result->src1 = NULL; // TODO: maybe store the permutation here?
  3417. return result;
  3418. }
  3419. // ggml_transpose
  3420. struct ggml_tensor * ggml_transpose(
  3421. struct ggml_context * ctx,
  3422. struct ggml_tensor * a) {
  3423. bool is_node = false;
  3424. if (a->grad) {
  3425. GGML_ASSERT(false); // TODO: implement backward
  3426. is_node = true;
  3427. }
  3428. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3429. result->ne[0] = a->ne[1];
  3430. result->ne[1] = a->ne[0];
  3431. result->nb[0] = a->nb[1];
  3432. result->nb[1] = a->nb[0];
  3433. result->op = GGML_OP_TRANSPOSE;
  3434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3435. result->src0 = a;
  3436. result->src1 = NULL;
  3437. return result;
  3438. }
  3439. // ggml_get_rows
  3440. struct ggml_tensor * ggml_get_rows(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a,
  3443. struct ggml_tensor * b) {
  3444. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3445. bool is_node = false;
  3446. if (a->grad || b->grad) {
  3447. GGML_ASSERT(false); // TODO: implement backward
  3448. is_node = true;
  3449. }
  3450. // TODO: implement non F32 return
  3451. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3452. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3453. result->op = GGML_OP_GET_ROWS;
  3454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3455. result->src0 = a;
  3456. result->src1 = b;
  3457. return result;
  3458. }
  3459. // ggml_diag_mask_inf
  3460. struct ggml_tensor * ggml_diag_mask_inf(
  3461. struct ggml_context * ctx,
  3462. struct ggml_tensor * a,
  3463. int n_past) {
  3464. bool is_node = false;
  3465. if (a->grad) {
  3466. GGML_ASSERT(false); // TODO: implement backward
  3467. is_node = true;
  3468. }
  3469. // TODO: when implement backward, fix this:
  3470. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3471. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3472. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3473. result->op = GGML_OP_DIAG_MASK_INF;
  3474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3475. result->src0 = a;
  3476. result->src1 = b;
  3477. return result;
  3478. }
  3479. // ggml_soft_max
  3480. struct ggml_tensor * ggml_soft_max(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a) {
  3483. bool is_node = false;
  3484. if (a->grad) {
  3485. GGML_ASSERT(false); // TODO: implement backward
  3486. is_node = true;
  3487. }
  3488. // TODO: when implement backward, fix this:
  3489. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3490. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3491. result->op = GGML_OP_SOFT_MAX;
  3492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3493. result->src0 = a;
  3494. result->src1 = NULL;
  3495. return result;
  3496. }
  3497. // ggml_rope
  3498. struct ggml_tensor * ggml_rope(
  3499. struct ggml_context * ctx,
  3500. struct ggml_tensor * a,
  3501. int n_past,
  3502. int n_dims,
  3503. int mode) {
  3504. GGML_ASSERT(n_past >= 0);
  3505. bool is_node = false;
  3506. if (a->grad) {
  3507. GGML_ASSERT(false); // TODO: implement backward
  3508. is_node = true;
  3509. }
  3510. // TODO: when implement backward, fix this:
  3511. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3512. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3513. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3514. ((int32_t *) b->data)[0] = n_past;
  3515. ((int32_t *) b->data)[1] = n_dims;
  3516. ((int32_t *) b->data)[2] = mode;
  3517. result->op = GGML_OP_ROPE;
  3518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3519. result->src0 = a;
  3520. result->src1 = b;
  3521. return result;
  3522. }
  3523. // ggml_conv_1d_1s
  3524. struct ggml_tensor * ggml_conv_1d_1s(
  3525. struct ggml_context * ctx,
  3526. struct ggml_tensor * a,
  3527. struct ggml_tensor * b) {
  3528. GGML_ASSERT(ggml_is_matrix(b));
  3529. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3530. GGML_ASSERT(a->ne[3] == 1);
  3531. bool is_node = false;
  3532. if (a->grad || b->grad) {
  3533. GGML_ASSERT(false); // TODO: implement backward
  3534. is_node = true;
  3535. }
  3536. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3537. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3538. result->op = GGML_OP_CONV_1D_1S;
  3539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3540. result->src0 = a;
  3541. result->src1 = b;
  3542. return result;
  3543. }
  3544. // ggml_conv_1d_2s
  3545. struct ggml_tensor * ggml_conv_1d_2s(
  3546. struct ggml_context * ctx,
  3547. struct ggml_tensor * a,
  3548. struct ggml_tensor * b) {
  3549. GGML_ASSERT(ggml_is_matrix(b));
  3550. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3551. GGML_ASSERT(a->ne[3] == 1);
  3552. bool is_node = false;
  3553. if (a->grad || b->grad) {
  3554. GGML_ASSERT(false); // TODO: implement backward
  3555. is_node = true;
  3556. }
  3557. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3558. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3559. result->op = GGML_OP_CONV_1D_2S;
  3560. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3561. result->src0 = a;
  3562. result->src1 = b;
  3563. return result;
  3564. }
  3565. // ggml_flash_attn
  3566. struct ggml_tensor * ggml_flash_attn(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * q,
  3569. struct ggml_tensor * k,
  3570. struct ggml_tensor * v,
  3571. bool masked) {
  3572. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3573. // TODO: check if vT can be multiplied by (k*qT)
  3574. bool is_node = false;
  3575. if (q->grad || k->grad || v->grad) {
  3576. GGML_ASSERT(false); // TODO: implement backward
  3577. is_node = true;
  3578. }
  3579. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3580. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3581. result->op = GGML_OP_FLASH_ATTN;
  3582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3583. result->src0 = q;
  3584. result->src1 = k;
  3585. result->opt[0] = v;
  3586. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3587. return result;
  3588. }
  3589. // ggml_flash_ff
  3590. struct ggml_tensor * ggml_flash_ff(
  3591. struct ggml_context * ctx,
  3592. struct ggml_tensor * a,
  3593. struct ggml_tensor * b0,
  3594. struct ggml_tensor * b1,
  3595. struct ggml_tensor * c0,
  3596. struct ggml_tensor * c1) {
  3597. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3598. // TODO: more checks
  3599. bool is_node = false;
  3600. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3601. GGML_ASSERT(false); // TODO: implement backward
  3602. is_node = true;
  3603. }
  3604. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3605. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3606. result->op = GGML_OP_FLASH_FF;
  3607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3608. result->src0 = a;
  3609. result->src1 = b0;
  3610. result->opt[0] = b1;
  3611. result->opt[1] = c0;
  3612. result->opt[2] = c1;
  3613. return result;
  3614. }
  3615. ////////////////////////////////////////////////////////////////////////////////
  3616. void ggml_set_param(
  3617. struct ggml_context * ctx,
  3618. struct ggml_tensor * tensor) {
  3619. tensor->is_param = true;
  3620. GGML_ASSERT(tensor->grad == NULL);
  3621. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3622. }
  3623. // ggml_compute_forward_dup
  3624. static void ggml_compute_forward_dup_f16(
  3625. const struct ggml_compute_params * params,
  3626. const struct ggml_tensor * src0,
  3627. struct ggml_tensor * dst) {
  3628. GGML_ASSERT(params->ith == 0);
  3629. GGML_ASSERT(ggml_is_contiguous(dst));
  3630. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3632. return;
  3633. }
  3634. const int ne00 = src0->ne[0];
  3635. const int ne01 = src0->ne[1];
  3636. const int ne02 = src0->ne[2];
  3637. const int ne03 = src0->ne[3];
  3638. const size_t nb00 = src0->nb[0];
  3639. const size_t nb01 = src0->nb[1];
  3640. const size_t nb02 = src0->nb[2];
  3641. const size_t nb03 = src0->nb[3];
  3642. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3643. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3644. return;
  3645. }
  3646. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3647. if (dst->type == GGML_TYPE_F16) {
  3648. int id = 0;
  3649. const size_t rs = ne00*nb00;
  3650. for (int i03 = 0; i03 < ne03; i03++) {
  3651. for (int i02 = 0; i02 < ne02; i02++) {
  3652. for (int i01 = 0; i01 < ne01; i01++) {
  3653. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3654. char * dst_ptr = (char *) dst->data + id*rs;
  3655. memcpy(dst_ptr, src0_ptr, rs);
  3656. id++;
  3657. }
  3658. }
  3659. }
  3660. } else if (dst->type == GGML_TYPE_F32) {
  3661. int id = 0;
  3662. float * dst_ptr = (float *) dst->data;
  3663. for (int i03 = 0; i03 < ne03; i03++) {
  3664. for (int i02 = 0; i02 < ne02; i02++) {
  3665. for (int i01 = 0; i01 < ne01; i01++) {
  3666. for (int i00 = 0; i00 < ne00; i00++) {
  3667. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3668. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3669. id++;
  3670. }
  3671. }
  3672. }
  3673. }
  3674. } else {
  3675. GGML_ASSERT(false); // TODO: implement
  3676. }
  3677. } else {
  3678. //printf("%s: this is not optimal - fix me\n", __func__);
  3679. if (dst->type == GGML_TYPE_F32) {
  3680. int id = 0;
  3681. float * dst_ptr = (float *) dst->data;
  3682. for (int i03 = 0; i03 < ne03; i03++) {
  3683. for (int i02 = 0; i02 < ne02; i02++) {
  3684. for (int i01 = 0; i01 < ne01; i01++) {
  3685. for (int i00 = 0; i00 < ne00; i00++) {
  3686. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3687. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3688. id++;
  3689. }
  3690. }
  3691. }
  3692. }
  3693. } else if (dst->type == GGML_TYPE_F16) {
  3694. int id = 0;
  3695. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3696. for (int i03 = 0; i03 < ne03; i03++) {
  3697. for (int i02 = 0; i02 < ne02; i02++) {
  3698. for (int i01 = 0; i01 < ne01; i01++) {
  3699. for (int i00 = 0; i00 < ne00; i00++) {
  3700. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3701. dst_ptr[id] = *src0_ptr;
  3702. id++;
  3703. }
  3704. }
  3705. }
  3706. }
  3707. } else {
  3708. GGML_ASSERT(false); // TODO: implement
  3709. }
  3710. }
  3711. }
  3712. static void ggml_compute_forward_dup_f32(
  3713. const struct ggml_compute_params * params,
  3714. const struct ggml_tensor * src0,
  3715. struct ggml_tensor * dst) {
  3716. GGML_ASSERT(params->ith == 0);
  3717. GGML_ASSERT(ggml_is_contiguous(dst));
  3718. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3719. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3720. return;
  3721. }
  3722. const int ne00 = src0->ne[0];
  3723. const int ne01 = src0->ne[1];
  3724. const int ne02 = src0->ne[2];
  3725. const int ne03 = src0->ne[3];
  3726. const size_t nb00 = src0->nb[0];
  3727. const size_t nb01 = src0->nb[1];
  3728. const size_t nb02 = src0->nb[2];
  3729. const size_t nb03 = src0->nb[3];
  3730. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3731. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3732. return;
  3733. }
  3734. if (src0->nb[0] == sizeof(float)) {
  3735. if (dst->type == GGML_TYPE_F32) {
  3736. int id = 0;
  3737. const size_t rs = ne00*nb00;
  3738. for (int i03 = 0; i03 < ne03; i03++) {
  3739. for (int i02 = 0; i02 < ne02; i02++) {
  3740. for (int i01 = 0; i01 < ne01; i01++) {
  3741. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3742. char * dst_ptr = (char *) dst->data + id*rs;
  3743. memcpy(dst_ptr, src0_ptr, rs);
  3744. id++;
  3745. }
  3746. }
  3747. }
  3748. } else if (dst->type == GGML_TYPE_F16) {
  3749. int id = 0;
  3750. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3751. for (int i03 = 0; i03 < ne03; i03++) {
  3752. for (int i02 = 0; i02 < ne02; i02++) {
  3753. for (int i01 = 0; i01 < ne01; i01++) {
  3754. for (int i00 = 0; i00 < ne00; i00++) {
  3755. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3756. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3757. id++;
  3758. }
  3759. }
  3760. }
  3761. }
  3762. } else {
  3763. GGML_ASSERT(false); // TODO: implement
  3764. }
  3765. } else {
  3766. //printf("%s: this is not optimal - fix me\n", __func__);
  3767. if (dst->type == GGML_TYPE_F32) {
  3768. int id = 0;
  3769. float * dst_ptr = (float *) dst->data;
  3770. for (int i03 = 0; i03 < ne03; i03++) {
  3771. for (int i02 = 0; i02 < ne02; i02++) {
  3772. for (int i01 = 0; i01 < ne01; i01++) {
  3773. for (int i00 = 0; i00 < ne00; i00++) {
  3774. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3775. dst_ptr[id] = *src0_ptr;
  3776. id++;
  3777. }
  3778. }
  3779. }
  3780. }
  3781. } else if (dst->type == GGML_TYPE_F16) {
  3782. int id = 0;
  3783. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3784. for (int i03 = 0; i03 < ne03; i03++) {
  3785. for (int i02 = 0; i02 < ne02; i02++) {
  3786. for (int i01 = 0; i01 < ne01; i01++) {
  3787. for (int i00 = 0; i00 < ne00; i00++) {
  3788. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3789. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3790. id++;
  3791. }
  3792. }
  3793. }
  3794. }
  3795. } else {
  3796. GGML_ASSERT(false); // TODO: implement
  3797. }
  3798. }
  3799. }
  3800. static void ggml_compute_forward_dup(
  3801. const struct ggml_compute_params * params,
  3802. const struct ggml_tensor * src0,
  3803. struct ggml_tensor * dst) {
  3804. switch (src0->type) {
  3805. case GGML_TYPE_F16:
  3806. {
  3807. ggml_compute_forward_dup_f16(params, src0, dst);
  3808. } break;
  3809. case GGML_TYPE_F32:
  3810. {
  3811. ggml_compute_forward_dup_f32(params, src0, dst);
  3812. } break;
  3813. case GGML_TYPE_Q4_0:
  3814. case GGML_TYPE_Q4_1:
  3815. case GGML_TYPE_I8:
  3816. case GGML_TYPE_I16:
  3817. case GGML_TYPE_I32:
  3818. case GGML_TYPE_COUNT:
  3819. {
  3820. GGML_ASSERT(false);
  3821. } break;
  3822. }
  3823. }
  3824. // ggml_compute_forward_add
  3825. static void ggml_compute_forward_add_f32(
  3826. const struct ggml_compute_params * params,
  3827. const struct ggml_tensor * src0,
  3828. const struct ggml_tensor * src1,
  3829. struct ggml_tensor * dst) {
  3830. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3831. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3832. return;
  3833. }
  3834. const int ith = params->ith;
  3835. const int nth = params->nth;
  3836. const int n = ggml_nrows(src0);
  3837. const int nc = src0->ne[0];
  3838. const size_t nb00 = src0->nb[0];
  3839. const size_t nb01 = src0->nb[1];
  3840. const size_t nb10 = src1->nb[0];
  3841. const size_t nb11 = src1->nb[1];
  3842. const size_t nb0 = dst->nb[0];
  3843. const size_t nb1 = dst->nb[1];
  3844. GGML_ASSERT( nb0 == sizeof(float));
  3845. GGML_ASSERT(nb00 == sizeof(float));
  3846. if (nb10 == sizeof(float)) {
  3847. const int j0 = (n/nth)*ith;
  3848. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3849. for (int j = j0; j < j1; j++) {
  3850. ggml_vec_add_f32(nc,
  3851. (float *) ((char *) dst->data + j*nb1),
  3852. (float *) ((char *) src0->data + j*nb01),
  3853. (float *) ((char *) src1->data + j*nb11));
  3854. }
  3855. } else {
  3856. // src1 is not contiguous
  3857. for (int j = ith; j < n; j += nth) {
  3858. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3859. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3860. for (int i = 0; i < nc; i++) {
  3861. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3862. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3863. }
  3864. }
  3865. }
  3866. }
  3867. static void ggml_compute_forward_add(
  3868. const struct ggml_compute_params * params,
  3869. const struct ggml_tensor * src0,
  3870. const struct ggml_tensor * src1,
  3871. struct ggml_tensor * dst) {
  3872. switch (src0->type) {
  3873. case GGML_TYPE_F32:
  3874. {
  3875. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3876. } break;
  3877. case GGML_TYPE_Q4_0:
  3878. case GGML_TYPE_Q4_1:
  3879. case GGML_TYPE_I8:
  3880. case GGML_TYPE_I16:
  3881. case GGML_TYPE_I32:
  3882. case GGML_TYPE_F16:
  3883. case GGML_TYPE_COUNT:
  3884. {
  3885. GGML_ASSERT(false);
  3886. } break;
  3887. }
  3888. }
  3889. // ggml_compute_forward_sub
  3890. static void ggml_compute_forward_sub_f32(
  3891. const struct ggml_compute_params * params,
  3892. const struct ggml_tensor * src0,
  3893. const struct ggml_tensor * src1,
  3894. struct ggml_tensor * dst) {
  3895. assert(params->ith == 0);
  3896. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3897. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3898. return;
  3899. }
  3900. const int n = ggml_nrows(src0);
  3901. const int nc = src0->ne[0];
  3902. assert( dst->nb[0] == sizeof(float));
  3903. assert(src0->nb[0] == sizeof(float));
  3904. assert(src1->nb[0] == sizeof(float));
  3905. for (int i = 0; i < n; i++) {
  3906. ggml_vec_sub_f32(nc,
  3907. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3908. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3909. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3910. }
  3911. }
  3912. static void ggml_compute_forward_sub(
  3913. const struct ggml_compute_params * params,
  3914. const struct ggml_tensor * src0,
  3915. const struct ggml_tensor * src1,
  3916. struct ggml_tensor * dst) {
  3917. switch (src0->type) {
  3918. case GGML_TYPE_F32:
  3919. {
  3920. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3921. } break;
  3922. case GGML_TYPE_Q4_0:
  3923. case GGML_TYPE_Q4_1:
  3924. case GGML_TYPE_I8:
  3925. case GGML_TYPE_I16:
  3926. case GGML_TYPE_I32:
  3927. case GGML_TYPE_F16:
  3928. case GGML_TYPE_COUNT:
  3929. {
  3930. GGML_ASSERT(false);
  3931. } break;
  3932. }
  3933. }
  3934. // ggml_compute_forward_mul
  3935. static void ggml_compute_forward_mul_f32(
  3936. const struct ggml_compute_params * params,
  3937. const struct ggml_tensor * src0,
  3938. const struct ggml_tensor * src1,
  3939. struct ggml_tensor * dst) {
  3940. assert(params->ith == 0);
  3941. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3942. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3943. return;
  3944. }
  3945. const int n = ggml_nrows(src0);
  3946. const int nc = src0->ne[0];
  3947. assert( dst->nb[0] == sizeof(float));
  3948. assert(src0->nb[0] == sizeof(float));
  3949. assert(src1->nb[0] == sizeof(float));
  3950. for (int i = 0; i < n; i++) {
  3951. ggml_vec_mul_f32(nc,
  3952. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3953. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3954. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3955. }
  3956. }
  3957. static void ggml_compute_forward_mul(
  3958. const struct ggml_compute_params * params,
  3959. const struct ggml_tensor * src0,
  3960. const struct ggml_tensor * src1,
  3961. struct ggml_tensor * dst) {
  3962. switch (src0->type) {
  3963. case GGML_TYPE_F32:
  3964. {
  3965. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3966. } break;
  3967. case GGML_TYPE_Q4_0:
  3968. case GGML_TYPE_Q4_1:
  3969. case GGML_TYPE_I8:
  3970. case GGML_TYPE_I16:
  3971. case GGML_TYPE_I32:
  3972. case GGML_TYPE_F16:
  3973. case GGML_TYPE_COUNT:
  3974. {
  3975. GGML_ASSERT(false);
  3976. } break;
  3977. }
  3978. }
  3979. // ggml_compute_forward_div
  3980. static void ggml_compute_forward_div_f32(
  3981. const struct ggml_compute_params * params,
  3982. const struct ggml_tensor * src0,
  3983. const struct ggml_tensor * src1,
  3984. struct ggml_tensor * dst) {
  3985. assert(params->ith == 0);
  3986. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3987. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3988. return;
  3989. }
  3990. const int n = ggml_nrows(src0);
  3991. const int nc = src0->ne[0];
  3992. assert( dst->nb[0] == sizeof(float));
  3993. assert(src0->nb[0] == sizeof(float));
  3994. assert(src1->nb[0] == sizeof(float));
  3995. for (int i = 0; i < n; i++) {
  3996. ggml_vec_div_f32(nc,
  3997. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3998. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3999. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4000. }
  4001. }
  4002. static void ggml_compute_forward_div(
  4003. const struct ggml_compute_params * params,
  4004. const struct ggml_tensor * src0,
  4005. const struct ggml_tensor * src1,
  4006. struct ggml_tensor * dst) {
  4007. switch (src0->type) {
  4008. case GGML_TYPE_F32:
  4009. {
  4010. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4011. } break;
  4012. case GGML_TYPE_Q4_0:
  4013. case GGML_TYPE_Q4_1:
  4014. case GGML_TYPE_I8:
  4015. case GGML_TYPE_I16:
  4016. case GGML_TYPE_I32:
  4017. case GGML_TYPE_F16:
  4018. case GGML_TYPE_COUNT:
  4019. {
  4020. GGML_ASSERT(false);
  4021. } break;
  4022. }
  4023. }
  4024. // ggml_compute_forward_sqr
  4025. static void ggml_compute_forward_sqr_f32(
  4026. const struct ggml_compute_params * params,
  4027. const struct ggml_tensor * src0,
  4028. struct ggml_tensor * dst) {
  4029. assert(params->ith == 0);
  4030. assert(ggml_are_same_shape(src0, dst));
  4031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4032. return;
  4033. }
  4034. const int n = ggml_nrows(src0);
  4035. const int nc = src0->ne[0];
  4036. assert( dst->nb[0] == sizeof(float));
  4037. assert(src0->nb[0] == sizeof(float));
  4038. for (int i = 0; i < n; i++) {
  4039. ggml_vec_sqr_f32(nc,
  4040. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4041. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4042. }
  4043. }
  4044. static void ggml_compute_forward_sqr(
  4045. const struct ggml_compute_params * params,
  4046. const struct ggml_tensor * src0,
  4047. struct ggml_tensor * dst) {
  4048. switch (src0->type) {
  4049. case GGML_TYPE_F32:
  4050. {
  4051. ggml_compute_forward_sqr_f32(params, src0, dst);
  4052. } break;
  4053. case GGML_TYPE_Q4_0:
  4054. case GGML_TYPE_Q4_1:
  4055. case GGML_TYPE_I8:
  4056. case GGML_TYPE_I16:
  4057. case GGML_TYPE_I32:
  4058. case GGML_TYPE_F16:
  4059. case GGML_TYPE_COUNT:
  4060. {
  4061. GGML_ASSERT(false);
  4062. } break;
  4063. }
  4064. }
  4065. // ggml_compute_forward_sqrt
  4066. static void ggml_compute_forward_sqrt_f32(
  4067. const struct ggml_compute_params * params,
  4068. const struct ggml_tensor * src0,
  4069. struct ggml_tensor * dst) {
  4070. assert(params->ith == 0);
  4071. assert(ggml_are_same_shape(src0, dst));
  4072. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4073. return;
  4074. }
  4075. const int n = ggml_nrows(src0);
  4076. const int nc = src0->ne[0];
  4077. assert( dst->nb[0] == sizeof(float));
  4078. assert(src0->nb[0] == sizeof(float));
  4079. for (int i = 0; i < n; i++) {
  4080. ggml_vec_sqrt_f32(nc,
  4081. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4082. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4083. }
  4084. }
  4085. static void ggml_compute_forward_sqrt(
  4086. const struct ggml_compute_params * params,
  4087. const struct ggml_tensor * src0,
  4088. struct ggml_tensor * dst) {
  4089. switch (src0->type) {
  4090. case GGML_TYPE_F32:
  4091. {
  4092. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4093. } break;
  4094. case GGML_TYPE_Q4_0:
  4095. case GGML_TYPE_Q4_1:
  4096. case GGML_TYPE_I8:
  4097. case GGML_TYPE_I16:
  4098. case GGML_TYPE_I32:
  4099. case GGML_TYPE_F16:
  4100. case GGML_TYPE_COUNT:
  4101. {
  4102. GGML_ASSERT(false);
  4103. } break;
  4104. }
  4105. }
  4106. // ggml_compute_forward_sum
  4107. static void ggml_compute_forward_sum_f32(
  4108. const struct ggml_compute_params * params,
  4109. const struct ggml_tensor * src0,
  4110. struct ggml_tensor * dst) {
  4111. assert(params->ith == 0);
  4112. assert(ggml_is_scalar(dst));
  4113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4114. return;
  4115. }
  4116. assert(ggml_is_scalar(dst));
  4117. assert(src0->nb[0] == sizeof(float));
  4118. const int ne00 = src0->ne[0];
  4119. const int ne01 = src0->ne[1];
  4120. const int ne02 = src0->ne[2];
  4121. const int ne03 = src0->ne[3];
  4122. const size_t nb01 = src0->nb[1];
  4123. const size_t nb02 = src0->nb[2];
  4124. const size_t nb03 = src0->nb[3];
  4125. for (int i03 = 0; i03 < ne03; i03++) {
  4126. for (int i02 = 0; i02 < ne02; i02++) {
  4127. for (int i01 = 0; i01 < ne01; i01++) {
  4128. ggml_vec_sum_f32(ne00,
  4129. (float *) (dst->data),
  4130. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4131. }
  4132. }
  4133. }
  4134. }
  4135. static void ggml_compute_forward_sum(
  4136. const struct ggml_compute_params * params,
  4137. const struct ggml_tensor * src0,
  4138. struct ggml_tensor * dst) {
  4139. switch (src0->type) {
  4140. case GGML_TYPE_F32:
  4141. {
  4142. ggml_compute_forward_sum_f32(params, src0, dst);
  4143. } break;
  4144. case GGML_TYPE_Q4_0:
  4145. case GGML_TYPE_Q4_1:
  4146. case GGML_TYPE_I8:
  4147. case GGML_TYPE_I16:
  4148. case GGML_TYPE_I32:
  4149. case GGML_TYPE_F16:
  4150. case GGML_TYPE_COUNT:
  4151. {
  4152. GGML_ASSERT(false);
  4153. } break;
  4154. }
  4155. }
  4156. // ggml_compute_forward_mean
  4157. static void ggml_compute_forward_mean_f32(
  4158. const struct ggml_compute_params * params,
  4159. const struct ggml_tensor * src0,
  4160. struct ggml_tensor * dst) {
  4161. assert(params->ith == 0);
  4162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4163. return;
  4164. }
  4165. assert(src0->nb[0] == sizeof(float));
  4166. const int ne00 = src0->ne[0];
  4167. const int ne01 = src0->ne[1];
  4168. const int ne02 = src0->ne[2];
  4169. const int ne03 = src0->ne[3];
  4170. const size_t nb01 = src0->nb[1];
  4171. const size_t nb02 = src0->nb[2];
  4172. const size_t nb03 = src0->nb[3];
  4173. const int ne0 = dst->ne[0];
  4174. const int ne1 = dst->ne[1];
  4175. const int ne2 = dst->ne[2];
  4176. const int ne3 = dst->ne[3];
  4177. assert(ne0 == 1);
  4178. assert(ne1 == ne01);
  4179. assert(ne2 == ne02);
  4180. assert(ne3 == ne03);
  4181. UNUSED(ne0);
  4182. UNUSED(ne1);
  4183. UNUSED(ne2);
  4184. UNUSED(ne3);
  4185. const size_t nb1 = dst->nb[1];
  4186. const size_t nb2 = dst->nb[2];
  4187. const size_t nb3 = dst->nb[3];
  4188. for (int i03 = 0; i03 < ne03; i03++) {
  4189. for (int i02 = 0; i02 < ne02; i02++) {
  4190. for (int i01 = 0; i01 < ne01; i01++) {
  4191. ggml_vec_sum_f32(ne00,
  4192. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4193. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4194. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4195. }
  4196. }
  4197. }
  4198. }
  4199. static void ggml_compute_forward_mean(
  4200. const struct ggml_compute_params * params,
  4201. const struct ggml_tensor * src0,
  4202. struct ggml_tensor * dst) {
  4203. switch (src0->type) {
  4204. case GGML_TYPE_F32:
  4205. {
  4206. ggml_compute_forward_mean_f32(params, src0, dst);
  4207. } break;
  4208. case GGML_TYPE_Q4_0:
  4209. case GGML_TYPE_Q4_1:
  4210. case GGML_TYPE_I8:
  4211. case GGML_TYPE_I16:
  4212. case GGML_TYPE_I32:
  4213. case GGML_TYPE_F16:
  4214. case GGML_TYPE_COUNT:
  4215. {
  4216. GGML_ASSERT(false);
  4217. } break;
  4218. }
  4219. }
  4220. // ggml_compute_forward_repeat
  4221. static void ggml_compute_forward_repeat_f32(
  4222. const struct ggml_compute_params * params,
  4223. const struct ggml_tensor * src0,
  4224. struct ggml_tensor * dst) {
  4225. assert(params->ith == 0);
  4226. assert(ggml_can_repeat(src0, dst));
  4227. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4228. return;
  4229. }
  4230. // TODO: implement support for rank > 2 tensors
  4231. assert(src0->ne[2] == 1);
  4232. assert(src0->ne[3] == 1);
  4233. assert( dst->ne[2] == 1);
  4234. assert( dst->ne[3] == 1);
  4235. const int nc = dst->ne[0];
  4236. const int nr = dst->ne[1];
  4237. const int nc0 = src0->ne[0];
  4238. const int nr0 = src0->ne[1];
  4239. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4240. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4241. // TODO: support for transposed / permuted tensors
  4242. assert( dst->nb[0] == sizeof(float));
  4243. assert(src0->nb[0] == sizeof(float));
  4244. // TODO: maybe this is not optimal?
  4245. for (int i = 0; i < nrr; i++) {
  4246. for (int j = 0; j < ncr; j++) {
  4247. for (int k = 0; k < nr0; k++) {
  4248. ggml_vec_cpy_f32(nc0,
  4249. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4250. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4251. }
  4252. }
  4253. }
  4254. }
  4255. static void ggml_compute_forward_repeat(
  4256. const struct ggml_compute_params * params,
  4257. const struct ggml_tensor * src0,
  4258. struct ggml_tensor * dst) {
  4259. switch (src0->type) {
  4260. case GGML_TYPE_F32:
  4261. {
  4262. ggml_compute_forward_repeat_f32(params, src0, dst);
  4263. } break;
  4264. case GGML_TYPE_Q4_0:
  4265. case GGML_TYPE_Q4_1:
  4266. case GGML_TYPE_I8:
  4267. case GGML_TYPE_I16:
  4268. case GGML_TYPE_I32:
  4269. case GGML_TYPE_F16:
  4270. case GGML_TYPE_COUNT:
  4271. {
  4272. GGML_ASSERT(false);
  4273. } break;
  4274. }
  4275. }
  4276. // ggml_compute_forward_abs
  4277. static void ggml_compute_forward_abs_f32(
  4278. const struct ggml_compute_params * params,
  4279. const struct ggml_tensor * src0,
  4280. struct ggml_tensor * dst) {
  4281. assert(params->ith == 0);
  4282. assert(ggml_are_same_shape(src0, dst));
  4283. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4284. return;
  4285. }
  4286. const int n = ggml_nrows(src0);
  4287. const int nc = src0->ne[0];
  4288. assert(dst->nb[0] == sizeof(float));
  4289. assert(src0->nb[0] == sizeof(float));
  4290. for (int i = 0; i < n; i++) {
  4291. ggml_vec_abs_f32(nc,
  4292. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4293. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4294. }
  4295. }
  4296. static void ggml_compute_forward_abs(
  4297. const struct ggml_compute_params * params,
  4298. const struct ggml_tensor * src0,
  4299. struct ggml_tensor * dst) {
  4300. switch (src0->type) {
  4301. case GGML_TYPE_F32:
  4302. {
  4303. ggml_compute_forward_abs_f32(params, src0, dst);
  4304. } break;
  4305. case GGML_TYPE_Q4_0:
  4306. case GGML_TYPE_Q4_1:
  4307. case GGML_TYPE_I8:
  4308. case GGML_TYPE_I16:
  4309. case GGML_TYPE_I32:
  4310. case GGML_TYPE_F16:
  4311. case GGML_TYPE_COUNT:
  4312. {
  4313. GGML_ASSERT(false);
  4314. } break;
  4315. }
  4316. }
  4317. // ggml_compute_forward_sgn
  4318. static void ggml_compute_forward_sgn_f32(
  4319. const struct ggml_compute_params * params,
  4320. const struct ggml_tensor * src0,
  4321. struct ggml_tensor * dst) {
  4322. assert(params->ith == 0);
  4323. assert(ggml_are_same_shape(src0, dst));
  4324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4325. return;
  4326. }
  4327. const int n = ggml_nrows(src0);
  4328. const int nc = src0->ne[0];
  4329. assert(dst->nb[0] == sizeof(float));
  4330. assert(src0->nb[0] == sizeof(float));
  4331. for (int i = 0; i < n; i++) {
  4332. ggml_vec_sgn_f32(nc,
  4333. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4334. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4335. }
  4336. }
  4337. static void ggml_compute_forward_sgn(
  4338. const struct ggml_compute_params * params,
  4339. const struct ggml_tensor * src0,
  4340. struct ggml_tensor * dst) {
  4341. switch (src0->type) {
  4342. case GGML_TYPE_F32:
  4343. {
  4344. ggml_compute_forward_sgn_f32(params, src0, dst);
  4345. } break;
  4346. case GGML_TYPE_Q4_0:
  4347. case GGML_TYPE_Q4_1:
  4348. case GGML_TYPE_I8:
  4349. case GGML_TYPE_I16:
  4350. case GGML_TYPE_I32:
  4351. case GGML_TYPE_F16:
  4352. case GGML_TYPE_COUNT:
  4353. {
  4354. GGML_ASSERT(false);
  4355. } break;
  4356. }
  4357. }
  4358. // ggml_compute_forward_neg
  4359. static void ggml_compute_forward_neg_f32(
  4360. const struct ggml_compute_params * params,
  4361. const struct ggml_tensor * src0,
  4362. struct ggml_tensor * dst) {
  4363. assert(params->ith == 0);
  4364. assert(ggml_are_same_shape(src0, dst));
  4365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4366. return;
  4367. }
  4368. const int n = ggml_nrows(src0);
  4369. const int nc = src0->ne[0];
  4370. assert(dst->nb[0] == sizeof(float));
  4371. assert(src0->nb[0] == sizeof(float));
  4372. for (int i = 0; i < n; i++) {
  4373. ggml_vec_neg_f32(nc,
  4374. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4375. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4376. }
  4377. }
  4378. static void ggml_compute_forward_neg(
  4379. const struct ggml_compute_params * params,
  4380. const struct ggml_tensor * src0,
  4381. struct ggml_tensor * dst) {
  4382. switch (src0->type) {
  4383. case GGML_TYPE_F32:
  4384. {
  4385. ggml_compute_forward_neg_f32(params, src0, dst);
  4386. } break;
  4387. case GGML_TYPE_Q4_0:
  4388. case GGML_TYPE_Q4_1:
  4389. case GGML_TYPE_I8:
  4390. case GGML_TYPE_I16:
  4391. case GGML_TYPE_I32:
  4392. case GGML_TYPE_F16:
  4393. case GGML_TYPE_COUNT:
  4394. {
  4395. GGML_ASSERT(false);
  4396. } break;
  4397. }
  4398. }
  4399. // ggml_compute_forward_step
  4400. static void ggml_compute_forward_step_f32(
  4401. const struct ggml_compute_params * params,
  4402. const struct ggml_tensor * src0,
  4403. struct ggml_tensor * dst) {
  4404. assert(params->ith == 0);
  4405. assert(ggml_are_same_shape(src0, dst));
  4406. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4407. return;
  4408. }
  4409. const int n = ggml_nrows(src0);
  4410. const int nc = src0->ne[0];
  4411. assert(dst->nb[0] == sizeof(float));
  4412. assert(src0->nb[0] == sizeof(float));
  4413. for (int i = 0; i < n; i++) {
  4414. ggml_vec_step_f32(nc,
  4415. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4416. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4417. }
  4418. }
  4419. static void ggml_compute_forward_step(
  4420. const struct ggml_compute_params * params,
  4421. const struct ggml_tensor * src0,
  4422. struct ggml_tensor * dst) {
  4423. switch (src0->type) {
  4424. case GGML_TYPE_F32:
  4425. {
  4426. ggml_compute_forward_step_f32(params, src0, dst);
  4427. } break;
  4428. case GGML_TYPE_Q4_0:
  4429. case GGML_TYPE_Q4_1:
  4430. case GGML_TYPE_I8:
  4431. case GGML_TYPE_I16:
  4432. case GGML_TYPE_I32:
  4433. case GGML_TYPE_F16:
  4434. case GGML_TYPE_COUNT:
  4435. {
  4436. GGML_ASSERT(false);
  4437. } break;
  4438. }
  4439. }
  4440. // ggml_compute_forward_relu
  4441. static void ggml_compute_forward_relu_f32(
  4442. const struct ggml_compute_params * params,
  4443. const struct ggml_tensor * src0,
  4444. struct ggml_tensor * dst) {
  4445. assert(params->ith == 0);
  4446. assert(ggml_are_same_shape(src0, dst));
  4447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4448. return;
  4449. }
  4450. const int n = ggml_nrows(src0);
  4451. const int nc = src0->ne[0];
  4452. assert(dst->nb[0] == sizeof(float));
  4453. assert(src0->nb[0] == sizeof(float));
  4454. for (int i = 0; i < n; i++) {
  4455. ggml_vec_relu_f32(nc,
  4456. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4457. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4458. }
  4459. }
  4460. static void ggml_compute_forward_relu(
  4461. const struct ggml_compute_params * params,
  4462. const struct ggml_tensor * src0,
  4463. struct ggml_tensor * dst) {
  4464. switch (src0->type) {
  4465. case GGML_TYPE_F32:
  4466. {
  4467. ggml_compute_forward_relu_f32(params, src0, dst);
  4468. } break;
  4469. case GGML_TYPE_Q4_0:
  4470. case GGML_TYPE_Q4_1:
  4471. case GGML_TYPE_I8:
  4472. case GGML_TYPE_I16:
  4473. case GGML_TYPE_I32:
  4474. case GGML_TYPE_F16:
  4475. case GGML_TYPE_COUNT:
  4476. {
  4477. GGML_ASSERT(false);
  4478. } break;
  4479. }
  4480. }
  4481. // ggml_compute_forward_gelu
  4482. static void ggml_compute_forward_gelu_f32(
  4483. const struct ggml_compute_params * params,
  4484. const struct ggml_tensor * src0,
  4485. struct ggml_tensor * dst) {
  4486. GGML_ASSERT(ggml_is_contiguous(src0));
  4487. GGML_ASSERT(ggml_is_contiguous(dst));
  4488. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4489. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4490. return;
  4491. }
  4492. const int ith = params->ith;
  4493. const int nth = params->nth;
  4494. const int nc = src0->ne[0];
  4495. const int nr = ggml_nrows(src0);
  4496. // rows per thread
  4497. const int dr = (nr + nth - 1)/nth;
  4498. // row range for this thread
  4499. const int ir0 = dr*ith;
  4500. const int ir1 = MIN(ir0 + dr, nr);
  4501. for (int i1 = ir0; i1 < ir1; i1++) {
  4502. ggml_vec_gelu_f32(nc,
  4503. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4504. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4505. #ifndef NDEBUG
  4506. for (int k = 0; k < nc; k++) {
  4507. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4508. UNUSED(x);
  4509. assert(!isnan(x));
  4510. assert(!isinf(x));
  4511. }
  4512. #endif
  4513. }
  4514. }
  4515. static void ggml_compute_forward_gelu(
  4516. const struct ggml_compute_params * params,
  4517. const struct ggml_tensor * src0,
  4518. struct ggml_tensor * dst) {
  4519. switch (src0->type) {
  4520. case GGML_TYPE_F32:
  4521. {
  4522. ggml_compute_forward_gelu_f32(params, src0, dst);
  4523. } break;
  4524. case GGML_TYPE_Q4_0:
  4525. case GGML_TYPE_Q4_1:
  4526. case GGML_TYPE_I8:
  4527. case GGML_TYPE_I16:
  4528. case GGML_TYPE_I32:
  4529. case GGML_TYPE_F16:
  4530. case GGML_TYPE_COUNT:
  4531. {
  4532. GGML_ASSERT(false);
  4533. } break;
  4534. }
  4535. //printf("XXXXXXXX gelu\n");
  4536. }
  4537. // ggml_compute_forward_silu
  4538. static void ggml_compute_forward_silu_f32(
  4539. const struct ggml_compute_params * params,
  4540. const struct ggml_tensor * src0,
  4541. struct ggml_tensor * dst) {
  4542. GGML_ASSERT(ggml_is_contiguous(src0));
  4543. GGML_ASSERT(ggml_is_contiguous(dst));
  4544. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4546. return;
  4547. }
  4548. const int ith = params->ith;
  4549. const int nth = params->nth;
  4550. const int nc = src0->ne[0];
  4551. const int nr = ggml_nrows(src0);
  4552. // rows per thread
  4553. const int dr = (nr + nth - 1)/nth;
  4554. // row range for this thread
  4555. const int ir0 = dr*ith;
  4556. const int ir1 = MIN(ir0 + dr, nr);
  4557. for (int i1 = ir0; i1 < ir1; i1++) {
  4558. ggml_vec_silu_f32(nc,
  4559. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4560. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4561. #ifndef NDEBUG
  4562. for (int k = 0; k < nc; k++) {
  4563. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4564. UNUSED(x);
  4565. assert(!isnan(x));
  4566. assert(!isinf(x));
  4567. }
  4568. #endif
  4569. }
  4570. }
  4571. static void ggml_compute_forward_silu(
  4572. const struct ggml_compute_params * params,
  4573. const struct ggml_tensor * src0,
  4574. struct ggml_tensor * dst) {
  4575. switch (src0->type) {
  4576. case GGML_TYPE_F32:
  4577. {
  4578. ggml_compute_forward_silu_f32(params, src0, dst);
  4579. } break;
  4580. case GGML_TYPE_Q4_0:
  4581. case GGML_TYPE_Q4_1:
  4582. case GGML_TYPE_I8:
  4583. case GGML_TYPE_I16:
  4584. case GGML_TYPE_I32:
  4585. case GGML_TYPE_F16:
  4586. case GGML_TYPE_COUNT:
  4587. {
  4588. GGML_ASSERT(false);
  4589. } break;
  4590. }
  4591. }
  4592. // ggml_compute_forward_norm
  4593. static void ggml_compute_forward_norm_f32(
  4594. const struct ggml_compute_params * params,
  4595. const struct ggml_tensor * src0,
  4596. struct ggml_tensor * dst) {
  4597. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4599. return;
  4600. }
  4601. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4602. const int ith = params->ith;
  4603. const int nth = params->nth;
  4604. const int ne00 = src0->ne[0];
  4605. const int ne01 = src0->ne[1];
  4606. const int ne02 = src0->ne[2];
  4607. const int ne03 = src0->ne[3];
  4608. const size_t nb01 = src0->nb[1];
  4609. const size_t nb02 = src0->nb[2];
  4610. const size_t nb03 = src0->nb[3];
  4611. const size_t nb1 = dst->nb[1];
  4612. const size_t nb2 = dst->nb[2];
  4613. const size_t nb3 = dst->nb[3];
  4614. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4615. // TODO: optimize
  4616. for (int i03 = 0; i03 < ne03; i03++) {
  4617. for (int i02 = 0; i02 < ne02; i02++) {
  4618. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4619. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4620. ggml_float mean = 0.0;
  4621. for (int i00 = 0; i00 < ne00; i00++) {
  4622. mean += x[i00];
  4623. }
  4624. mean /= ne00;
  4625. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4626. ggml_float sum2 = 0.0;
  4627. for (int i00 = 0; i00 < ne00; i00++) {
  4628. ggml_float v = x[i00] - mean;
  4629. y[i00] = v;
  4630. sum2 += v*v;
  4631. }
  4632. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4633. ggml_vec_scale_f32(ne00, y, scale);
  4634. }
  4635. }
  4636. }
  4637. }
  4638. static void ggml_compute_forward_norm(
  4639. const struct ggml_compute_params * params,
  4640. const struct ggml_tensor * src0,
  4641. struct ggml_tensor * dst) {
  4642. switch (src0->type) {
  4643. case GGML_TYPE_F32:
  4644. {
  4645. ggml_compute_forward_norm_f32(params, src0, dst);
  4646. } break;
  4647. case GGML_TYPE_Q4_0:
  4648. case GGML_TYPE_Q4_1:
  4649. case GGML_TYPE_I8:
  4650. case GGML_TYPE_I16:
  4651. case GGML_TYPE_I32:
  4652. case GGML_TYPE_F16:
  4653. case GGML_TYPE_COUNT:
  4654. {
  4655. GGML_ASSERT(false);
  4656. } break;
  4657. }
  4658. }
  4659. static void ggml_compute_forward_rms_norm_f32(
  4660. const struct ggml_compute_params * params,
  4661. const struct ggml_tensor * src0,
  4662. struct ggml_tensor * dst) {
  4663. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4664. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4665. return;
  4666. }
  4667. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4668. const int ith = params->ith;
  4669. const int nth = params->nth;
  4670. const int ne00 = src0->ne[0];
  4671. const int ne01 = src0->ne[1];
  4672. const int ne02 = src0->ne[2];
  4673. const int ne03 = src0->ne[3];
  4674. const size_t nb01 = src0->nb[1];
  4675. const size_t nb02 = src0->nb[2];
  4676. const size_t nb03 = src0->nb[3];
  4677. const size_t nb1 = dst->nb[1];
  4678. const size_t nb2 = dst->nb[2];
  4679. const size_t nb3 = dst->nb[3];
  4680. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4681. // TODO: optimize
  4682. for (int i03 = 0; i03 < ne03; i03++) {
  4683. for (int i02 = 0; i02 < ne02; i02++) {
  4684. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4685. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4686. ggml_float mean = 0.0;
  4687. for (int i00 = 0; i00 < ne00; i00++) {
  4688. mean += x[i00] * x[i00];
  4689. }
  4690. mean /= ne00;
  4691. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4692. memcpy(y, x, ne00 * sizeof(float));
  4693. // for (int i00 = 0; i00 < ne00; i00++) {
  4694. // y[i00] = x[i00];
  4695. // }
  4696. const float scale = 1.0/sqrt(mean + eps);
  4697. ggml_vec_scale_f32(ne00, y, scale);
  4698. }
  4699. }
  4700. }
  4701. }
  4702. static void ggml_compute_forward_rms_norm(
  4703. const struct ggml_compute_params * params,
  4704. const struct ggml_tensor * src0,
  4705. struct ggml_tensor * dst) {
  4706. switch (src0->type) {
  4707. case GGML_TYPE_F32:
  4708. {
  4709. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4710. } break;
  4711. case GGML_TYPE_Q4_0:
  4712. case GGML_TYPE_Q4_1:
  4713. case GGML_TYPE_I8:
  4714. case GGML_TYPE_I16:
  4715. case GGML_TYPE_I32:
  4716. case GGML_TYPE_F16:
  4717. case GGML_TYPE_COUNT:
  4718. {
  4719. GGML_ASSERT(false);
  4720. } break;
  4721. }
  4722. }
  4723. // ggml_compute_forward_mul_mat
  4724. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4725. // helper function to determine if it is better to use BLAS or not
  4726. // for large matrices, BLAS is faster
  4727. static bool ggml_compute_forward_mul_mat_use_blas(
  4728. const struct ggml_tensor * src0,
  4729. const struct ggml_tensor * src1,
  4730. struct ggml_tensor * dst) {
  4731. const int ne00 = src0->ne[0];
  4732. const int ne01 = src0->ne[1];
  4733. const int ne10 = src1->ne[0];
  4734. const int ne0 = dst->ne[0];
  4735. const int ne1 = dst->ne[1];
  4736. // TMP: disable BLAS for now there is definitely a bug
  4737. return false;
  4738. // TODO: find the optimal values for these
  4739. if (ggml_is_contiguous(src0) &&
  4740. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4741. // disable BLAS for Q4_0 and Q4_1
  4742. // there is a bug that has to be fixed before enabling
  4743. if (src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1) {
  4744. return false;
  4745. }
  4746. //printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);
  4747. return true;
  4748. }
  4749. return false;
  4750. }
  4751. #endif
  4752. static void ggml_compute_forward_mul_mat_f32(
  4753. const struct ggml_compute_params * params,
  4754. const struct ggml_tensor * src0,
  4755. const struct ggml_tensor * src1,
  4756. struct ggml_tensor * dst) {
  4757. int64_t t0 = ggml_perf_time_us();
  4758. UNUSED(t0);
  4759. const int ne00 = src0->ne[0];
  4760. const int ne01 = src0->ne[1];
  4761. const int ne02 = src0->ne[2];
  4762. const int ne03 = src0->ne[3];
  4763. const int ne10 = src1->ne[0];
  4764. const int ne11 = src1->ne[1];
  4765. const int ne12 = src1->ne[2];
  4766. const int ne13 = src1->ne[3];
  4767. const int ne0 = dst->ne[0];
  4768. const int ne1 = dst->ne[1];
  4769. const int ne2 = dst->ne[2];
  4770. const int ne3 = dst->ne[3];
  4771. const int ne = ne0*ne1*ne2*ne3;
  4772. const int nb00 = src0->nb[0];
  4773. const int nb01 = src0->nb[1];
  4774. const int nb02 = src0->nb[2];
  4775. const int nb03 = src0->nb[3];
  4776. const int nb10 = src1->nb[0];
  4777. const int nb11 = src1->nb[1];
  4778. const int nb12 = src1->nb[2];
  4779. const int nb13 = src1->nb[3];
  4780. const int nb0 = dst->nb[0];
  4781. const int nb1 = dst->nb[1];
  4782. const int nb2 = dst->nb[2];
  4783. const int nb3 = dst->nb[3];
  4784. const int ith = params->ith;
  4785. const int nth = params->nth;
  4786. assert(ne02 == ne12);
  4787. assert(ne03 == ne13);
  4788. assert(ne2 == ne12);
  4789. assert(ne3 == ne13);
  4790. // TODO: we don't support permuted src0
  4791. assert(nb00 == sizeof(float) || nb01 == sizeof(float));
  4792. // dst cannot be transposed or permuted
  4793. assert(nb0 == sizeof(float));
  4794. assert(nb0 <= nb1);
  4795. assert(nb1 <= nb2);
  4796. assert(nb2 <= nb3);
  4797. assert(ne0 == ne01);
  4798. assert(ne1 == ne11);
  4799. assert(ne2 == ne02);
  4800. assert(ne3 == ne03);
  4801. // nb01 >= nb00 - src0 is not transposed
  4802. // compute by src0 rows
  4803. //
  4804. // nb00 < nb01 - src0 is transposed
  4805. // compute by src0 columns
  4806. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4807. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4808. GGML_ASSERT(nb10 == sizeof(float));
  4809. if (params->ith != 0) {
  4810. return;
  4811. }
  4812. if (params->type == GGML_TASK_INIT) {
  4813. return;
  4814. }
  4815. if (params->type == GGML_TASK_FINALIZE) {
  4816. return;
  4817. }
  4818. for (int i03 = 0; i03 < ne03; i03++) {
  4819. for (int i02 = 0; i02 < ne02; i02++) {
  4820. const float * x = (float *) (src0->data);
  4821. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4822. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4823. // zT = y * xT
  4824. {
  4825. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4826. ne11, ne01, ne10,
  4827. 1.0f, y, ne10,
  4828. x, ne10,
  4829. 0.0f, d, ne01);
  4830. }
  4831. }
  4832. }
  4833. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4834. return;
  4835. }
  4836. #endif
  4837. if (params->type == GGML_TASK_INIT) {
  4838. if (nb01 >= nb00) {
  4839. return;
  4840. }
  4841. // TODO: fix this memset (wsize is overestimated)
  4842. memset(params->wdata, 0, params->wsize);
  4843. return;
  4844. }
  4845. if (params->type == GGML_TASK_FINALIZE) {
  4846. if (nb01 >= nb00) {
  4847. return;
  4848. }
  4849. // TODO: fix this memset (wsize is overestimated)
  4850. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4851. float * const wdata = params->wdata;
  4852. // cols per thread
  4853. const int dc = (ne + nth - 1)/nth;
  4854. // col range for this thread
  4855. const int ic0 = dc*ith;
  4856. const int ic1 = MIN(ic0 + dc, ne);
  4857. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  4858. for (int k = 1; k < nth; k++) {
  4859. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  4860. }
  4861. return;
  4862. }
  4863. if (nb01 >= nb00) {
  4864. // TODO: do not support transposed src1
  4865. assert(nb10 == sizeof(float));
  4866. // parallelize by src0 rows using ggml_vec_dot_f32
  4867. // total rows in src0
  4868. const int nr = ne01*ne02*ne03;
  4869. // rows per thread
  4870. const int dr = (nr + nth - 1)/nth;
  4871. // row range for this thread
  4872. const int ir0 = dr*ith;
  4873. const int ir1 = MIN(ir0 + dr, nr);
  4874. for (int ir = ir0; ir < ir1; ++ir) {
  4875. // src0 indices
  4876. const int i03 = ir/(ne02*ne01);
  4877. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4878. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4879. for (int ic = 0; ic < ne11; ++ic) {
  4880. // src1 indices
  4881. const int i13 = i03;
  4882. const int i12 = i02;
  4883. const int i11 = ic;
  4884. // dst indices
  4885. const int i0 = i01;
  4886. const int i1 = i11;
  4887. const int i2 = i02;
  4888. const int i3 = i03;
  4889. ggml_vec_dot_f32(ne00,
  4890. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4891. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4892. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4893. }
  4894. }
  4895. } else {
  4896. // parallelize by src1 columns using ggml_vec_mad_f32
  4897. // each thread has its own work data
  4898. // during FINALIZE we accumulate all work data into dst
  4899. // total columns in src1
  4900. const int nc = ne10;
  4901. // columns per thread
  4902. const int dc = (nc + nth - 1)/nth;
  4903. // column range for this thread
  4904. const int ic0 = dc*ith;
  4905. const int ic1 = MIN(ic0 + dc, nc);
  4906. // work data for thread
  4907. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  4908. float * const wdata = params->wdata;
  4909. for (int i13 = 0; i13 < ne13; ++i13) {
  4910. for (int i12 = 0; i12 < ne12; ++i12) {
  4911. for (int i11 = 0; i11 < ne11; ++i11) {
  4912. for (int ic = ic0; ic < ic1; ++ic) {
  4913. // src1 indices
  4914. const int i10 = ic;
  4915. // src0 indices
  4916. const int i03 = i13;
  4917. const int i02 = i12;
  4918. const int i00 = ic;
  4919. // dst indices
  4920. const int i1 = i11;
  4921. const int i2 = i12;
  4922. const int i3 = i13;
  4923. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  4924. ggml_vec_mad_f32(ne01,
  4925. (float *) (wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0),
  4926. (float *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)),
  4927. *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13)));
  4928. }
  4929. }
  4930. }
  4931. }
  4932. }
  4933. //int64_t t1 = ggml_perf_time_us();
  4934. //static int64_t acc = 0;
  4935. //acc += t1 - t0;
  4936. //if (t1 - t0 > 10) {
  4937. // printf("\n");
  4938. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4939. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4940. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4941. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4942. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4943. //}
  4944. }
  4945. static void ggml_compute_forward_mul_mat_f16_f32(
  4946. const struct ggml_compute_params * params,
  4947. const struct ggml_tensor * src0,
  4948. const struct ggml_tensor * src1,
  4949. struct ggml_tensor * dst) {
  4950. int64_t t0 = ggml_perf_time_us();
  4951. UNUSED(t0);
  4952. const int ne00 = src0->ne[0];
  4953. const int ne01 = src0->ne[1];
  4954. const int ne02 = src0->ne[2];
  4955. const int ne03 = src0->ne[3];
  4956. const int ne10 = src1->ne[0];
  4957. const int ne11 = src1->ne[1];
  4958. const int ne12 = src1->ne[2];
  4959. const int ne13 = src1->ne[3];
  4960. const int ne0 = dst->ne[0];
  4961. const int ne1 = dst->ne[1];
  4962. const int ne2 = dst->ne[2];
  4963. const int ne3 = dst->ne[3];
  4964. const int ne = ne0*ne1*ne2*ne3;
  4965. const int nb00 = src0->nb[0];
  4966. const int nb01 = src0->nb[1];
  4967. const int nb02 = src0->nb[2];
  4968. const int nb03 = src0->nb[3];
  4969. const int nb10 = src1->nb[0];
  4970. const int nb11 = src1->nb[1];
  4971. const int nb12 = src1->nb[2];
  4972. const int nb13 = src1->nb[3];
  4973. const int nb0 = dst->nb[0];
  4974. const int nb1 = dst->nb[1];
  4975. const int nb2 = dst->nb[2];
  4976. const int nb3 = dst->nb[3];
  4977. const int ith = params->ith;
  4978. const int nth = params->nth;
  4979. GGML_ASSERT(ne02 == ne12);
  4980. GGML_ASSERT(ne03 == ne13);
  4981. GGML_ASSERT(ne2 == ne12);
  4982. GGML_ASSERT(ne3 == ne13);
  4983. // TODO: we don't support permuted src0
  4984. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
  4985. // dst cannot be transposed or permuted
  4986. GGML_ASSERT(nb0 == sizeof(float));
  4987. GGML_ASSERT(nb0 <= nb1);
  4988. GGML_ASSERT(nb1 <= nb2);
  4989. GGML_ASSERT(nb2 <= nb3);
  4990. GGML_ASSERT(ne0 == ne01);
  4991. GGML_ASSERT(ne1 == ne11);
  4992. GGML_ASSERT(ne2 == ne02);
  4993. GGML_ASSERT(ne3 == ne03);
  4994. // nb01 >= nb00 - src0 is not transposed
  4995. // compute by src0 rows
  4996. //
  4997. // nb00 < nb01 - src0 is transposed
  4998. // compute by src0 columns
  4999. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5000. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5001. GGML_ASSERT(nb10 == sizeof(float));
  5002. if (params->ith != 0) {
  5003. return;
  5004. }
  5005. if (params->type == GGML_TASK_INIT) {
  5006. return;
  5007. }
  5008. if (params->type == GGML_TASK_FINALIZE) {
  5009. return;
  5010. }
  5011. float * const wdata = params->wdata;
  5012. for (int i03 = 0; i03 < ne03; i03++) {
  5013. for (int i02 = 0; i02 < ne02; i02++) {
  5014. {
  5015. int id = 0;
  5016. for (int i01 = 0; i01 < ne01; ++i01) {
  5017. for (int i00 = 0; i00 < ne00; ++i00) {
  5018. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5019. }
  5020. }
  5021. }
  5022. const float * x = wdata;
  5023. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5024. // float * z = wdata + ne00*ne01;
  5025. // z = x * yT
  5026. //{
  5027. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5028. // ne01, ne11, ne00,
  5029. // 1.0f, x, ne00,
  5030. // y, ne00,
  5031. // 0.0f, z, ne11);
  5032. //}
  5033. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5034. // transpose z
  5035. //for (int j = 0; j < ne11; ++j) {
  5036. // for (int i = 0; i < ne01; ++i) {
  5037. // d[j*ne01 + i] = z[i*ne11 + j];
  5038. // }
  5039. //}
  5040. {
  5041. #if 1
  5042. // zT = y * xT
  5043. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5044. ne11, ne01, ne10,
  5045. 1.0f, y, ne00,
  5046. x, ne00,
  5047. 0.0f, d, ne01);
  5048. #else
  5049. // zT = (xT * y)T
  5050. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5051. ne01, ne11, ne10,
  5052. 1.0f, x, ne00,
  5053. y, ne00,
  5054. 0.0f, d, ne01);
  5055. #endif
  5056. }
  5057. }
  5058. }
  5059. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5060. return;
  5061. }
  5062. #endif
  5063. if (params->type == GGML_TASK_INIT) {
  5064. if (nb01 >= nb00) {
  5065. ggml_fp16_t * const wdata = params->wdata;
  5066. int id = 0;
  5067. for (int i13 = 0; i13 < ne13; ++i13) {
  5068. for (int i12 = 0; i12 < ne12; ++i12) {
  5069. for (int i11 = 0; i11 < ne11; ++i11) {
  5070. for (int i10 = 0; i10 < ne10; ++i10) {
  5071. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5072. }
  5073. }
  5074. }
  5075. }
  5076. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5077. return;
  5078. }
  5079. // TODO: fix this memset (wsize is overestimated)
  5080. memset(params->wdata, 0, params->wsize);
  5081. return;
  5082. }
  5083. if (params->type == GGML_TASK_FINALIZE) {
  5084. if (nb01 >= nb00) {
  5085. return;
  5086. }
  5087. // TODO: fix this memset (wsize is overestimated)
  5088. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  5089. ggml_fp16_t * const wdata = params->wdata;
  5090. // cols per thread
  5091. const int dc = (ne + nth - 1)/nth;
  5092. // col range for this thread
  5093. const int ic0 = dc*ith;
  5094. const int ic1 = MIN(ic0 + dc, ne);
  5095. for (int i = ic0; i < ic1; ++i) {
  5096. ((float *) dst->data)[i] = GGML_FP16_TO_FP32(wdata[i]);
  5097. }
  5098. for (int k = 1; k < nth; k++) {
  5099. for (int i = ic0; i < ic1; ++i) {
  5100. ((float *) dst->data)[i] += GGML_FP16_TO_FP32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]);
  5101. }
  5102. }
  5103. return;
  5104. }
  5105. if (nb01 >= nb00) {
  5106. // fp16 -> half the size, so divide by 2
  5107. // TODO: do not support transposed src1
  5108. assert(nb10/2 == sizeof(ggml_fp16_t));
  5109. // parallelize by src0 rows using ggml_vec_dot_f16
  5110. // total rows in src0
  5111. const int nr = ne01*ne02*ne03;
  5112. // rows per thread
  5113. const int dr = (nr + nth - 1)/nth;
  5114. // row range for this thread
  5115. const int ir0 = dr*ith;
  5116. const int ir1 = MIN(ir0 + dr, nr);
  5117. ggml_fp16_t * wdata = params->wdata;
  5118. for (int ir = ir0; ir < ir1; ++ir) {
  5119. // src0 indices
  5120. const int i03 = ir/(ne02*ne01);
  5121. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5122. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5123. const int i13 = i03;
  5124. const int i12 = i02;
  5125. const int i0 = i01;
  5126. const int i2 = i02;
  5127. const int i3 = i03;
  5128. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5129. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5130. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5131. assert(ne00 % 32 == 0);
  5132. for (int ic = 0; ic < ne11; ++ic) {
  5133. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5134. }
  5135. }
  5136. } else {
  5137. // parallelize by src1 columns using ggml_vec_mad_f16
  5138. // each thread has its own work data
  5139. // during FINALIZE we accumulate all work data into dst
  5140. // total columns in src1
  5141. const int nc = ne10;
  5142. // columns per thread
  5143. const int dc = (nc + nth - 1)/nth;
  5144. // column range for this thread
  5145. const int ic0 = dc*ith;
  5146. const int ic1 = MIN(ic0 + dc, nc);
  5147. // work data for thread
  5148. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5149. ggml_fp16_t * const wdata = params->wdata;
  5150. for (int i13 = 0; i13 < ne13; ++i13) {
  5151. for (int i12 = 0; i12 < ne12; ++i12) {
  5152. for (int i11 = 0; i11 < ne11; ++i11) {
  5153. // dst indices
  5154. const int i1 = i11;
  5155. const int i2 = i12;
  5156. const int i3 = i13;
  5157. ggml_fp16_t * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5158. for (int ic = ic0; ic < ic1; ++ic) {
  5159. // src1 indices
  5160. const int i10 = ic;
  5161. // src0 indices
  5162. const int i03 = i13;
  5163. const int i02 = i12;
  5164. const int i00 = ic;
  5165. assert(sizeof(ggml_fp16_t)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5166. ggml_fp16_t * src0_col = (ggml_fp16_t *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5167. float src1_val = * (float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5168. ggml_vec_mad_f16(ne01, dst_row, src0_col, src1_val);
  5169. }
  5170. }
  5171. }
  5172. }
  5173. }
  5174. //int64_t t1 = ggml_time_us();
  5175. //static int64_t acc = 0;
  5176. //acc += t1 - t0;
  5177. //if (t1 - t0 > 10) {
  5178. // printf("\n");
  5179. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5180. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5181. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5182. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5183. //}
  5184. }
  5185. static void ggml_compute_forward_mul_mat_q4_0_f32(
  5186. const struct ggml_compute_params * params,
  5187. const struct ggml_tensor * src0,
  5188. const struct ggml_tensor * src1,
  5189. struct ggml_tensor * dst) {
  5190. int64_t t0 = ggml_perf_time_us();
  5191. UNUSED(t0);
  5192. const int ne00 = src0->ne[0];
  5193. const int ne01 = src0->ne[1];
  5194. const int ne02 = src0->ne[2];
  5195. const int ne03 = src0->ne[3];
  5196. const int ne10 = src1->ne[0];
  5197. const int ne11 = src1->ne[1];
  5198. const int ne12 = src1->ne[2];
  5199. const int ne13 = src1->ne[3];
  5200. const int ne0 = dst->ne[0];
  5201. const int ne1 = dst->ne[1];
  5202. const int ne2 = dst->ne[2];
  5203. const int ne3 = dst->ne[3];
  5204. const int ne = ne0*ne1*ne2*ne3;
  5205. const int nb00 = src0->nb[0];
  5206. const int nb01 = src0->nb[1];
  5207. const int nb02 = src0->nb[2];
  5208. const int nb03 = src0->nb[3];
  5209. const int nb10 = src1->nb[0];
  5210. const int nb11 = src1->nb[1];
  5211. const int nb12 = src1->nb[2];
  5212. const int nb13 = src1->nb[3];
  5213. const int nb0 = dst->nb[0];
  5214. const int nb1 = dst->nb[1];
  5215. const int nb2 = dst->nb[2];
  5216. const int nb3 = dst->nb[3];
  5217. const int ith = params->ith;
  5218. const int nth = params->nth;
  5219. GGML_ASSERT(ne02 == ne12);
  5220. GGML_ASSERT(ne03 == ne13);
  5221. GGML_ASSERT(ne2 == ne12);
  5222. GGML_ASSERT(ne3 == ne13);
  5223. // TODO: we don't support permuted src0
  5224. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5225. // dst cannot be transposed or permuted
  5226. GGML_ASSERT(nb0 == sizeof(float));
  5227. GGML_ASSERT(nb0 <= nb1);
  5228. GGML_ASSERT(nb1 <= nb2);
  5229. GGML_ASSERT(nb2 <= nb3);
  5230. GGML_ASSERT(ne0 == ne01);
  5231. GGML_ASSERT(ne1 == ne11);
  5232. GGML_ASSERT(ne2 == ne02);
  5233. GGML_ASSERT(ne3 == ne03);
  5234. // nb01 >= nb00 - src0 is not transposed
  5235. // compute by src0 rows
  5236. //
  5237. // nb00 < nb01 - src0 is transposed
  5238. // compute by src0 columns
  5239. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5240. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5241. GGML_ASSERT(nb10 == sizeof(float));
  5242. if (params->ith != 0) {
  5243. return;
  5244. }
  5245. if (params->type == GGML_TASK_INIT) {
  5246. return;
  5247. }
  5248. if (params->type == GGML_TASK_FINALIZE) {
  5249. return;
  5250. }
  5251. float * const wdata = params->wdata;
  5252. for (int i03 = 0; i03 < ne03; i03++) {
  5253. for (int i02 = 0; i02 < ne02; i02++) {
  5254. {
  5255. int id = 0;
  5256. for (int i01 = 0; i01 < ne01; ++i01) {
  5257. //for (int i00 = 0; i00 < ne00; ++i00) {
  5258. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5259. //}
  5260. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5261. id += ne00;
  5262. }
  5263. }
  5264. const float * x = wdata;
  5265. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5266. // float * z = wdata + ne00*ne01;
  5267. // z = x * yT
  5268. //{
  5269. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5270. // ne01, ne11, ne00,
  5271. // 1.0f, x, ne00,
  5272. // y, ne00,
  5273. // 0.0f, z, ne11);
  5274. //}
  5275. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5276. // transpose z
  5277. //for (int j = 0; j < ne11; ++j) {
  5278. // for (int i = 0; i < ne01; ++i) {
  5279. // d[j*ne01 + i] = z[i*ne11 + j];
  5280. // }
  5281. //}
  5282. {
  5283. #if 1
  5284. // zT = y * xT
  5285. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5286. ne11, ne01, ne10,
  5287. 1.0f, y, ne00,
  5288. x, ne00,
  5289. 0.0f, d, ne01);
  5290. #else
  5291. // zT = (xT * y)T
  5292. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5293. ne01, ne11, ne10,
  5294. 1.0f, x, ne00,
  5295. y, ne00,
  5296. 0.0f, d, ne01);
  5297. #endif
  5298. }
  5299. }
  5300. }
  5301. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5302. return;
  5303. }
  5304. #endif
  5305. if (params->type == GGML_TASK_INIT) {
  5306. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5307. if (nb01 >= nb00) {
  5308. char * wdata = params->wdata;
  5309. for (int i13 = 0; i13 < ne13; ++i13) {
  5310. for (int i12 = 0; i12 < ne12; ++i12) {
  5311. for (int i11 = 0; i11 < ne11; ++i11) {
  5312. //for (int i10 = 0; i10 < ne10; ++i10) {
  5313. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5314. //}
  5315. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5316. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5317. }
  5318. }
  5319. }
  5320. return;
  5321. }
  5322. // TODO: fix this memset (wsize is overestimated)
  5323. memset(params->wdata, 0, params->wsize);
  5324. return;
  5325. }
  5326. if (params->type == GGML_TASK_FINALIZE) {
  5327. if (nb01 >= nb00) {
  5328. return;
  5329. }
  5330. float * const wdata = params->wdata;
  5331. // cols per thread
  5332. const int dc = (ne + nth - 1)/nth;
  5333. // col range for this thread
  5334. const int ic0 = dc*ith;
  5335. const int ic1 = MIN(ic0 + dc, ne);
  5336. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5337. for (int k = 1; k < nth; k++) {
  5338. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5339. }
  5340. return;
  5341. }
  5342. if (nb01 >= nb00) {
  5343. // TODO: do not support transposed src1
  5344. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5345. // total rows in src0
  5346. const int nr = ne01*ne02*ne03;
  5347. // rows per thread
  5348. const int dr = (nr + nth - 1)/nth;
  5349. // row range for this thread
  5350. const int ir0 = dr*ith;
  5351. const int ir1 = MIN(ir0 + dr, nr);
  5352. void * wdata = params->wdata;
  5353. for (int ir = ir0; ir < ir1; ++ir) {
  5354. // src0 indices
  5355. const int i03 = ir/(ne02*ne01);
  5356. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5357. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5358. const int i13 = i03;
  5359. const int i12 = i02;
  5360. const int i0 = i01;
  5361. const int i2 = i02;
  5362. const int i3 = i03;
  5363. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5364. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5365. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5366. assert(ne00 % 32 == 0);
  5367. for (int ic = 0; ic < ne11; ++ic) {
  5368. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5369. }
  5370. }
  5371. } else {
  5372. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5373. // parallelize by src1 columns using ggml_vec_mad_q4_0
  5374. // each thread has its own work data
  5375. // during FINALIZE we accumulate all work data into dst
  5376. // total columns in src1
  5377. const int nc = ne10;
  5378. // columns per thread
  5379. const int dc = (nc + nth - 1)/nth;
  5380. // column range for this thread
  5381. const int ic0 = dc*ith;
  5382. const int ic1 = MIN(ic0 + dc, nc);
  5383. // work data for thread
  5384. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5385. float * const wdata = params->wdata;
  5386. for (int i13 = 0; i13 < ne13; ++i13) {
  5387. for (int i12 = 0; i12 < ne12; ++i12) {
  5388. for (int i11 = 0; i11 < ne11; ++i11) {
  5389. // dst indices
  5390. const int i1 = i11;
  5391. const int i2 = i12;
  5392. const int i3 = i13;
  5393. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5394. for (int ic = ic0; ic < ic1; ++ic) {
  5395. // src1 indices
  5396. const int i10 = ic;
  5397. // src0 indices
  5398. const int i03 = i13;
  5399. const int i02 = i12;
  5400. const int i00 = ic;
  5401. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5402. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5403. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5404. ggml_vec_mad_q4_0(ne01, dst_row, src0_col, src1_val);
  5405. }
  5406. }
  5407. }
  5408. }
  5409. }
  5410. //int64_t t1 = ggml_time_us();
  5411. //static int64_t acc = 0;
  5412. //acc += t1 - t0;
  5413. //if (t1 - t0 > 10) {
  5414. // printf("\n");
  5415. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5416. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5417. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5418. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5419. //}
  5420. }
  5421. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5422. const struct ggml_compute_params * params,
  5423. const struct ggml_tensor * src0,
  5424. const struct ggml_tensor * src1,
  5425. struct ggml_tensor * dst) {
  5426. int64_t t0 = ggml_perf_time_us();
  5427. UNUSED(t0);
  5428. const int ne00 = src0->ne[0];
  5429. const int ne01 = src0->ne[1];
  5430. const int ne02 = src0->ne[2];
  5431. const int ne03 = src0->ne[3];
  5432. const int ne10 = src1->ne[0];
  5433. const int ne11 = src1->ne[1];
  5434. const int ne12 = src1->ne[2];
  5435. const int ne13 = src1->ne[3];
  5436. const int ne0 = dst->ne[0];
  5437. const int ne1 = dst->ne[1];
  5438. const int ne2 = dst->ne[2];
  5439. const int ne3 = dst->ne[3];
  5440. const int ne = ne0*ne1*ne2*ne3;
  5441. const int nb00 = src0->nb[0];
  5442. const int nb01 = src0->nb[1];
  5443. const int nb02 = src0->nb[2];
  5444. const int nb03 = src0->nb[3];
  5445. const int nb10 = src1->nb[0];
  5446. const int nb11 = src1->nb[1];
  5447. const int nb12 = src1->nb[2];
  5448. const int nb13 = src1->nb[3];
  5449. const int nb0 = dst->nb[0];
  5450. const int nb1 = dst->nb[1];
  5451. const int nb2 = dst->nb[2];
  5452. const int nb3 = dst->nb[3];
  5453. const int ith = params->ith;
  5454. const int nth = params->nth;
  5455. GGML_ASSERT(ne02 == ne12);
  5456. GGML_ASSERT(ne03 == ne13);
  5457. GGML_ASSERT(ne2 == ne12);
  5458. GGML_ASSERT(ne3 == ne13);
  5459. // TODO: we don't support permuted src0
  5460. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5461. // dst cannot be transposed or permuted
  5462. GGML_ASSERT(nb0 == sizeof(float));
  5463. GGML_ASSERT(nb0 <= nb1);
  5464. GGML_ASSERT(nb1 <= nb2);
  5465. GGML_ASSERT(nb2 <= nb3);
  5466. GGML_ASSERT(ne0 == ne01);
  5467. GGML_ASSERT(ne1 == ne11);
  5468. GGML_ASSERT(ne2 == ne02);
  5469. GGML_ASSERT(ne3 == ne03);
  5470. // nb01 >= nb00 - src0 is not transposed
  5471. // compute by src0 rows
  5472. //
  5473. // nb00 < nb01 - src0 is transposed
  5474. // compute by src0 columns
  5475. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5476. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5477. GGML_ASSERT(nb10 == sizeof(float));
  5478. if (params->ith != 0) {
  5479. return;
  5480. }
  5481. if (params->type == GGML_TASK_INIT) {
  5482. return;
  5483. }
  5484. if (params->type == GGML_TASK_FINALIZE) {
  5485. return;
  5486. }
  5487. float * const wdata = params->wdata;
  5488. for (int i03 = 0; i03 < ne03; i03++) {
  5489. for (int i02 = 0; i02 < ne02; i02++) {
  5490. {
  5491. int id = 0;
  5492. for (int i01 = 0; i01 < ne01; ++i01) {
  5493. //for (int i00 = 0; i00 < ne00; ++i00) {
  5494. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5495. //}
  5496. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5497. id += ne00;
  5498. }
  5499. }
  5500. const float * x = wdata;
  5501. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5502. // float * z = wdata + ne00*ne01;
  5503. // z = x * yT
  5504. //{
  5505. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5506. // ne01, ne11, ne00,
  5507. // 1.0f, x, ne00,
  5508. // y, ne00,
  5509. // 0.0f, z, ne11);
  5510. //}
  5511. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5512. // transpose z
  5513. //for (int j = 0; j < ne11; ++j) {
  5514. // for (int i = 0; i < ne01; ++i) {
  5515. // d[j*ne01 + i] = z[i*ne11 + j];
  5516. // }
  5517. //}
  5518. {
  5519. #if 1
  5520. // zT = y * xT
  5521. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5522. ne11, ne01, ne10,
  5523. 1.0f, y, ne00,
  5524. x, ne00,
  5525. 0.0f, d, ne01);
  5526. #else
  5527. // zT = (xT * y)T
  5528. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5529. ne01, ne11, ne10,
  5530. 1.0f, x, ne00,
  5531. y, ne00,
  5532. 0.0f, d, ne01);
  5533. #endif
  5534. }
  5535. }
  5536. }
  5537. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5538. return;
  5539. }
  5540. #endif
  5541. if (params->type == GGML_TASK_INIT) {
  5542. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5543. if (nb01 >= nb00) {
  5544. char * wdata = params->wdata;
  5545. for (int i13 = 0; i13 < ne13; ++i13) {
  5546. for (int i12 = 0; i12 < ne12; ++i12) {
  5547. for (int i11 = 0; i11 < ne11; ++i11) {
  5548. //for (int i10 = 0; i10 < ne10; ++i10) {
  5549. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5550. //}
  5551. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5552. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5553. }
  5554. }
  5555. }
  5556. return;
  5557. }
  5558. // TODO: fix this memset (wsize is overestimated)
  5559. memset(params->wdata, 0, params->wsize);
  5560. return;
  5561. }
  5562. if (params->type == GGML_TASK_FINALIZE) {
  5563. if (nb01 >= nb00) {
  5564. return;
  5565. }
  5566. float * const wdata = params->wdata;
  5567. // cols per thread
  5568. const int dc = (ne + nth - 1)/nth;
  5569. // col range for this thread
  5570. const int ic0 = dc*ith;
  5571. const int ic1 = MIN(ic0 + dc, ne);
  5572. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5573. for (int k = 1; k < nth; k++) {
  5574. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5575. }
  5576. return;
  5577. }
  5578. if (nb01 >= nb00) {
  5579. // TODO: do not support transposed src1
  5580. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5581. // total rows in src0
  5582. const int nr = ne01*ne02*ne03;
  5583. // rows per thread
  5584. const int dr = (nr + nth - 1)/nth;
  5585. // row range for this thread
  5586. const int ir0 = dr*ith;
  5587. const int ir1 = MIN(ir0 + dr, nr);
  5588. void * wdata = params->wdata;
  5589. for (int ir = ir0; ir < ir1; ++ir) {
  5590. // src0 indices
  5591. const int i03 = ir/(ne02*ne01);
  5592. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5593. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5594. const int i13 = i03;
  5595. const int i12 = i02;
  5596. const int i0 = i01;
  5597. const int i2 = i02;
  5598. const int i3 = i03;
  5599. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5600. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5601. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5602. assert(ne00 % 32 == 0);
  5603. for (int ic = 0; ic < ne11; ++ic) {
  5604. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5605. }
  5606. }
  5607. } else {
  5608. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5609. // parallelize by src1 columns using ggml_vec_mad_q4_1
  5610. // each thread has its own work data
  5611. // during FINALIZE we accumulate all work data into dst
  5612. // total columns in src1
  5613. const int nc = ne10;
  5614. // columns per thread
  5615. const int dc = (nc + nth - 1)/nth;
  5616. // column range for this thread
  5617. const int ic0 = dc*ith;
  5618. const int ic1 = MIN(ic0 + dc, nc);
  5619. // work data for thread
  5620. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5621. float * const wdata = params->wdata;
  5622. for (int i13 = 0; i13 < ne13; ++i13) {
  5623. for (int i12 = 0; i12 < ne12; ++i12) {
  5624. for (int i11 = 0; i11 < ne11; ++i11) {
  5625. // dst indices
  5626. const int i1 = i11;
  5627. const int i2 = i12;
  5628. const int i3 = i13;
  5629. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5630. for (int ic = ic0; ic < ic1; ++ic) {
  5631. // src1 indices
  5632. const int i10 = ic;
  5633. // src0 indices
  5634. const int i03 = i13;
  5635. const int i02 = i12;
  5636. const int i00 = ic;
  5637. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5638. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5639. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5640. ggml_vec_mad_q4_1(ne01, dst_row, src0_col, src1_val);
  5641. }
  5642. }
  5643. }
  5644. }
  5645. }
  5646. //int64_t t1 = ggml_time_us();
  5647. //static int64_t acc = 0;
  5648. //acc += t1 - t0;
  5649. //if (t1 - t0 > 10) {
  5650. // printf("\n");
  5651. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5652. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5653. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5654. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5655. //}
  5656. }
  5657. static void ggml_compute_forward_mul_mat(
  5658. const struct ggml_compute_params * params,
  5659. const struct ggml_tensor * src0,
  5660. const struct ggml_tensor * src1,
  5661. struct ggml_tensor * dst) {
  5662. switch (src0->type) {
  5663. case GGML_TYPE_Q4_0:
  5664. {
  5665. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5666. } break;
  5667. case GGML_TYPE_Q4_1:
  5668. {
  5669. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5670. } break;
  5671. case GGML_TYPE_F16:
  5672. {
  5673. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5674. } break;
  5675. case GGML_TYPE_F32:
  5676. {
  5677. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5678. } break;
  5679. case GGML_TYPE_I8:
  5680. case GGML_TYPE_I16:
  5681. case GGML_TYPE_I32:
  5682. case GGML_TYPE_COUNT:
  5683. {
  5684. GGML_ASSERT(false);
  5685. } break;
  5686. }
  5687. #if 0
  5688. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5689. static int first = 8;
  5690. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5691. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5692. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5693. if (first) {
  5694. --first;
  5695. } else {
  5696. for (int k = 0; k < dst->ne[1]; ++k) {
  5697. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5698. for (int i = 0; i < 16; ++i) {
  5699. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5700. }
  5701. printf("\n");
  5702. }
  5703. printf("\n");
  5704. }
  5705. printf("\n");
  5706. exit(0);
  5707. }
  5708. } else {
  5709. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5710. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5711. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5712. }
  5713. #endif
  5714. }
  5715. // ggml_compute_forward_scale
  5716. static void ggml_compute_forward_scale_f32(
  5717. const struct ggml_compute_params * params,
  5718. const struct ggml_tensor * src0,
  5719. const struct ggml_tensor * src1,
  5720. struct ggml_tensor * dst) {
  5721. GGML_ASSERT(ggml_is_contiguous(src0));
  5722. GGML_ASSERT(ggml_is_contiguous(dst));
  5723. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5724. GGML_ASSERT(ggml_is_scalar(src1));
  5725. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5726. return;
  5727. }
  5728. // scale factor
  5729. const float v = *(float *) src1->data;
  5730. const int ith = params->ith;
  5731. const int nth = params->nth;
  5732. const int nc = src0->ne[0];
  5733. const int nr = ggml_nrows(src0);
  5734. // rows per thread
  5735. const int dr = (nr + nth - 1)/nth;
  5736. // row range for this thread
  5737. const int ir0 = dr*ith;
  5738. const int ir1 = MIN(ir0 + dr, nr);
  5739. for (int i1 = ir0; i1 < ir1; i1++) {
  5740. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5741. }
  5742. }
  5743. static void ggml_compute_forward_scale(
  5744. const struct ggml_compute_params * params,
  5745. const struct ggml_tensor * src0,
  5746. const struct ggml_tensor * src1,
  5747. struct ggml_tensor * dst) {
  5748. switch (src0->type) {
  5749. case GGML_TYPE_F32:
  5750. {
  5751. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5752. } break;
  5753. case GGML_TYPE_Q4_0:
  5754. case GGML_TYPE_Q4_1:
  5755. case GGML_TYPE_I8:
  5756. case GGML_TYPE_I16:
  5757. case GGML_TYPE_I32:
  5758. case GGML_TYPE_F16:
  5759. case GGML_TYPE_COUNT:
  5760. {
  5761. GGML_ASSERT(false);
  5762. } break;
  5763. }
  5764. }
  5765. // ggml_compute_forward_cpy
  5766. static void ggml_compute_forward_cpy(
  5767. const struct ggml_compute_params * params,
  5768. const struct ggml_tensor * src0,
  5769. struct ggml_tensor * dst) {
  5770. ggml_compute_forward_dup(params, src0, dst);
  5771. }
  5772. // ggml_compute_forward_reshape
  5773. static void ggml_compute_forward_reshape(
  5774. const struct ggml_compute_params * params,
  5775. const struct ggml_tensor * src0,
  5776. struct ggml_tensor * dst) {
  5777. // NOP
  5778. UNUSED(params);
  5779. UNUSED(src0);
  5780. UNUSED(dst);
  5781. }
  5782. // ggml_compute_forward_view
  5783. static void ggml_compute_forward_view(
  5784. const struct ggml_compute_params * params,
  5785. const struct ggml_tensor * src0) {
  5786. // NOP
  5787. UNUSED(params);
  5788. UNUSED(src0);
  5789. }
  5790. // ggml_compute_forward_permute
  5791. static void ggml_compute_forward_permute(
  5792. const struct ggml_compute_params * params,
  5793. const struct ggml_tensor * src0) {
  5794. // NOP
  5795. UNUSED(params);
  5796. UNUSED(src0);
  5797. }
  5798. // ggml_compute_forward_transpose
  5799. static void ggml_compute_forward_transpose(
  5800. const struct ggml_compute_params * params,
  5801. const struct ggml_tensor * src0) {
  5802. // NOP
  5803. UNUSED(params);
  5804. UNUSED(src0);
  5805. }
  5806. // ggml_compute_forward_get_rows
  5807. static void ggml_compute_forward_get_rows_q4_0(
  5808. const struct ggml_compute_params * params,
  5809. const struct ggml_tensor * src0,
  5810. const struct ggml_tensor * src1,
  5811. struct ggml_tensor * dst) {
  5812. assert(params->ith == 0);
  5813. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5814. return;
  5815. }
  5816. const int nc = src0->ne[0];
  5817. const int nr = ggml_nelements(src1);
  5818. assert( dst->ne[0] == nc);
  5819. assert( dst->ne[1] == nr);
  5820. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5821. for (int i = 0; i < nr; ++i) {
  5822. const int r = ((int32_t *) src1->data)[i];
  5823. dequantize_row_q4_0(
  5824. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5825. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5826. }
  5827. }
  5828. static void ggml_compute_forward_get_rows_q4_1(
  5829. const struct ggml_compute_params * params,
  5830. const struct ggml_tensor * src0,
  5831. const struct ggml_tensor * src1,
  5832. struct ggml_tensor * dst) {
  5833. assert(params->ith == 0);
  5834. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5835. return;
  5836. }
  5837. const int nc = src0->ne[0];
  5838. const int nr = ggml_nelements(src1);
  5839. assert( dst->ne[0] == nc);
  5840. assert( dst->ne[1] == nr);
  5841. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5842. for (int i = 0; i < nr; ++i) {
  5843. const int r = ((int32_t *) src1->data)[i];
  5844. dequantize_row_q4_1(
  5845. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5846. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5847. }
  5848. }
  5849. static void ggml_compute_forward_get_rows_f16(
  5850. const struct ggml_compute_params * params,
  5851. const struct ggml_tensor * src0,
  5852. const struct ggml_tensor * src1,
  5853. struct ggml_tensor * dst) {
  5854. assert(params->ith == 0);
  5855. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5856. return;
  5857. }
  5858. const int nc = src0->ne[0];
  5859. const int nr = ggml_nelements(src1);
  5860. assert( dst->ne[0] == nc);
  5861. assert( dst->ne[1] == nr);
  5862. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5863. for (int i = 0; i < nr; ++i) {
  5864. const int r = ((int32_t *) src1->data)[i];
  5865. for (int j = 0; j < nc; ++j) {
  5866. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5867. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5868. }
  5869. }
  5870. }
  5871. static void ggml_compute_forward_get_rows_f32(
  5872. const struct ggml_compute_params * params,
  5873. const struct ggml_tensor * src0,
  5874. const struct ggml_tensor * src1,
  5875. struct ggml_tensor * dst) {
  5876. assert(params->ith == 0);
  5877. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5878. return;
  5879. }
  5880. const int nc = src0->ne[0];
  5881. const int nr = ggml_nelements(src1);
  5882. assert( dst->ne[0] == nc);
  5883. assert( dst->ne[1] == nr);
  5884. assert(src0->nb[0] == sizeof(float));
  5885. for (int i = 0; i < nr; ++i) {
  5886. const int r = ((int32_t *) src1->data)[i];
  5887. ggml_vec_cpy_f32(nc,
  5888. (float *) ((char *) dst->data + i*dst->nb[1]),
  5889. (float *) ((char *) src0->data + r*src0->nb[1]));
  5890. }
  5891. }
  5892. static void ggml_compute_forward_get_rows(
  5893. const struct ggml_compute_params * params,
  5894. const struct ggml_tensor * src0,
  5895. const struct ggml_tensor * src1,
  5896. struct ggml_tensor * dst) {
  5897. switch (src0->type) {
  5898. case GGML_TYPE_Q4_0:
  5899. {
  5900. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5901. } break;
  5902. case GGML_TYPE_Q4_1:
  5903. {
  5904. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5905. } break;
  5906. case GGML_TYPE_F16:
  5907. {
  5908. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5909. } break;
  5910. case GGML_TYPE_F32:
  5911. {
  5912. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5913. } break;
  5914. case GGML_TYPE_I8:
  5915. case GGML_TYPE_I16:
  5916. case GGML_TYPE_I32:
  5917. case GGML_TYPE_COUNT:
  5918. {
  5919. GGML_ASSERT(false);
  5920. } break;
  5921. }
  5922. //static bool first = true;
  5923. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5924. //if (first) {
  5925. // first = false;
  5926. //} else {
  5927. // for (int k = 0; k < dst->ne[1]; ++k) {
  5928. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5929. // for (int i = 0; i < 16; ++i) {
  5930. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5931. // }
  5932. // printf("\n");
  5933. // }
  5934. // printf("\n");
  5935. // }
  5936. // printf("\n");
  5937. // exit(0);
  5938. //}
  5939. }
  5940. // ggml_compute_forward_diag_mask_inf
  5941. static void ggml_compute_forward_diag_mask_inf_f32(
  5942. const struct ggml_compute_params * params,
  5943. const struct ggml_tensor * src0,
  5944. const struct ggml_tensor * src1,
  5945. struct ggml_tensor * dst) {
  5946. assert(params->ith == 0);
  5947. assert(src1->type == GGML_TYPE_I32);
  5948. assert(ggml_nelements(src1) == 1);
  5949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5950. return;
  5951. }
  5952. const int n_past = ((int32_t *) src1->data)[0];
  5953. // TODO: handle transposed/permuted matrices
  5954. const int n = ggml_nrows(src0);
  5955. const int nc = src0->ne[0];
  5956. const int nr = src0->ne[1];
  5957. const int nz = n/nr;
  5958. assert( dst->nb[0] == sizeof(float));
  5959. assert(src0->nb[0] == sizeof(float));
  5960. for (int k = 0; k < nz; k++) {
  5961. for (int j = 0; j < nr; j++) {
  5962. for (int i = n_past; i < nc; i++) {
  5963. if (i > n_past + j) {
  5964. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5965. }
  5966. }
  5967. }
  5968. }
  5969. }
  5970. static void ggml_compute_forward_diag_mask_inf(
  5971. const struct ggml_compute_params * params,
  5972. const struct ggml_tensor * src0,
  5973. const struct ggml_tensor * src1,
  5974. struct ggml_tensor * dst) {
  5975. switch (src0->type) {
  5976. case GGML_TYPE_F32:
  5977. {
  5978. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5979. } break;
  5980. case GGML_TYPE_Q4_0:
  5981. case GGML_TYPE_Q4_1:
  5982. case GGML_TYPE_I8:
  5983. case GGML_TYPE_I16:
  5984. case GGML_TYPE_I32:
  5985. case GGML_TYPE_F16:
  5986. case GGML_TYPE_COUNT:
  5987. {
  5988. GGML_ASSERT(false);
  5989. } break;
  5990. }
  5991. }
  5992. // ggml_compute_forward_soft_max
  5993. static void ggml_compute_forward_soft_max_f32(
  5994. const struct ggml_compute_params * params,
  5995. const struct ggml_tensor * src0,
  5996. struct ggml_tensor * dst) {
  5997. GGML_ASSERT(ggml_is_contiguous(src0));
  5998. GGML_ASSERT(ggml_is_contiguous(dst));
  5999. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6000. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6001. return;
  6002. }
  6003. // TODO: handle transposed/permuted matrices
  6004. const int ith = params->ith;
  6005. const int nth = params->nth;
  6006. const int nc = src0->ne[0];
  6007. const int nr = ggml_nrows(src0);
  6008. // rows per thread
  6009. const int dr = (nr + nth - 1)/nth;
  6010. // row range for this thread
  6011. const int ir0 = dr*ith;
  6012. const int ir1 = MIN(ir0 + dr, nr);
  6013. for (int i1 = ir0; i1 < ir1; i1++) {
  6014. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6015. #ifndef NDEBUG
  6016. for (int i = 0; i < nc; ++i) {
  6017. //printf("p[%d] = %f\n", i, p[i]);
  6018. assert(!isnan(p[i]));
  6019. }
  6020. #endif
  6021. float max = -INFINITY;
  6022. ggml_vec_max_f32(nc, &max, p);
  6023. ggml_float sum = 0.0;
  6024. uint16_t scvt;
  6025. for (int i = 0; i < nc; i++) {
  6026. if (p[i] == -INFINITY) {
  6027. p[i] = 0.0f;
  6028. } else {
  6029. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6030. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6031. memcpy(&scvt, &s, sizeof(scvt));
  6032. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6033. sum += val;
  6034. p[i] = val;
  6035. }
  6036. }
  6037. assert(sum > 0.0f);
  6038. sum = 1.0/sum;
  6039. ggml_vec_scale_f32(nc, p, sum);
  6040. #ifndef NDEBUG
  6041. for (int i = 0; i < nc; ++i) {
  6042. assert(!isnan(p[i]));
  6043. assert(!isinf(p[i]));
  6044. }
  6045. #endif
  6046. }
  6047. }
  6048. static void ggml_compute_forward_soft_max(
  6049. const struct ggml_compute_params * params,
  6050. const struct ggml_tensor * src0,
  6051. struct ggml_tensor * dst) {
  6052. switch (src0->type) {
  6053. case GGML_TYPE_F32:
  6054. {
  6055. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6056. } break;
  6057. case GGML_TYPE_Q4_0:
  6058. case GGML_TYPE_Q4_1:
  6059. case GGML_TYPE_I8:
  6060. case GGML_TYPE_I16:
  6061. case GGML_TYPE_I32:
  6062. case GGML_TYPE_F16:
  6063. case GGML_TYPE_COUNT:
  6064. {
  6065. GGML_ASSERT(false);
  6066. } break;
  6067. }
  6068. }
  6069. // ggml_compute_forward_rope
  6070. static void ggml_compute_forward_rope_f32(
  6071. const struct ggml_compute_params * params,
  6072. const struct ggml_tensor * src0,
  6073. const struct ggml_tensor * src1,
  6074. struct ggml_tensor * dst) {
  6075. assert(params->ith == 0);
  6076. assert(src1->type == GGML_TYPE_I32);
  6077. assert(ggml_nelements(src1) == 3);
  6078. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6079. return;
  6080. }
  6081. const int n_past = ((int32_t *) src1->data)[0];
  6082. const int n_dims = ((int32_t *) src1->data)[1];
  6083. const int mode = ((int32_t *) src1->data)[2];
  6084. //const int ne0 = src0->ne[0];
  6085. const int ne1 = src0->ne[1];
  6086. const int ne2 = src0->ne[2];
  6087. const int ne3 = src0->ne[3];
  6088. const int nb0 = src0->nb[0];
  6089. const int nb1 = src0->nb[1];
  6090. const int nb2 = src0->nb[2];
  6091. const int nb3 = src0->nb[3];
  6092. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6093. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6094. assert(nb0 == sizeof(float));
  6095. // TODO: optimize
  6096. for (int i3 = 0; i3 < ne3; i3++) {
  6097. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6098. const int p = (mode == 0 ? n_past + i2 : i2);
  6099. for (int i1 = 0; i1 < ne1; i1++) {
  6100. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6101. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  6102. const double cos_theta = cos(p*theta);
  6103. const double sin_theta = sin(p*theta);
  6104. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6105. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6106. double x0 = src[0];
  6107. double x1 = src[1];
  6108. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6109. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6110. }
  6111. }
  6112. }
  6113. }
  6114. }
  6115. static void ggml_compute_forward_rope_f16(
  6116. const struct ggml_compute_params * params,
  6117. const struct ggml_tensor * src0,
  6118. const struct ggml_tensor * src1,
  6119. struct ggml_tensor * dst) {
  6120. assert(params->ith == 0);
  6121. assert(src1->type == GGML_TYPE_I32);
  6122. assert(ggml_nelements(src1) == 3);
  6123. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6124. return;
  6125. }
  6126. const int n_past = ((int32_t *) src1->data)[0];
  6127. const int n_dims = ((int32_t *) src1->data)[1];
  6128. const int mode = ((int32_t *) src1->data)[2];
  6129. //const int ne0 = src0->ne[0];
  6130. const int ne1 = src0->ne[1];
  6131. const int ne2 = src0->ne[2];
  6132. const int ne3 = src0->ne[3];
  6133. const int nb0 = src0->nb[0];
  6134. const int nb1 = src0->nb[1];
  6135. const int nb2 = src0->nb[2];
  6136. const int nb3 = src0->nb[3];
  6137. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6138. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6139. assert(nb0 == sizeof(ggml_fp16_t));
  6140. for (int i3 = 0; i3 < ne3; i3++) {
  6141. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6142. const int p = (mode == 0 ? n_past + i2 : i2);
  6143. for (int i1 = 0; i1 < ne1; i1++) {
  6144. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6145. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  6146. const double cos_theta = cos(p*theta);
  6147. const double sin_theta = sin(p*theta);
  6148. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6149. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6150. double x0 = ggml_fp16_to_fp32(src[0]);
  6151. double x1 = ggml_fp16_to_fp32(src[1]);
  6152. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6153. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6154. }
  6155. }
  6156. }
  6157. }
  6158. }
  6159. static void ggml_compute_forward_rope(
  6160. const struct ggml_compute_params * params,
  6161. const struct ggml_tensor * src0,
  6162. const struct ggml_tensor * src1,
  6163. struct ggml_tensor * dst) {
  6164. switch (src0->type) {
  6165. case GGML_TYPE_F16:
  6166. {
  6167. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6168. } break;
  6169. case GGML_TYPE_F32:
  6170. {
  6171. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6172. } break;
  6173. case GGML_TYPE_Q4_0:
  6174. case GGML_TYPE_Q4_1:
  6175. case GGML_TYPE_I8:
  6176. case GGML_TYPE_I16:
  6177. case GGML_TYPE_I32:
  6178. case GGML_TYPE_COUNT:
  6179. {
  6180. GGML_ASSERT(false);
  6181. } break;
  6182. }
  6183. }
  6184. // ggml_compute_forward_conv_1d_1s
  6185. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6186. const struct ggml_compute_params * params,
  6187. const struct ggml_tensor * src0,
  6188. const struct ggml_tensor * src1,
  6189. struct ggml_tensor * dst) {
  6190. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6191. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6192. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6193. int64_t t0 = ggml_perf_time_us();
  6194. UNUSED(t0);
  6195. const int ne00 = src0->ne[0];
  6196. const int ne01 = src0->ne[1];
  6197. const int ne02 = src0->ne[2];
  6198. //const int ne03 = src0->ne[3];
  6199. const int ne10 = src1->ne[0];
  6200. const int ne11 = src1->ne[1];
  6201. //const int ne12 = src1->ne[2];
  6202. //const int ne13 = src1->ne[3];
  6203. //const int ne0 = dst->ne[0];
  6204. //const int ne1 = dst->ne[1];
  6205. //const int ne2 = dst->ne[2];
  6206. //const int ne3 = dst->ne[3];
  6207. //const int ne = ne0*ne1*ne2*ne3;
  6208. const int nb00 = src0->nb[0];
  6209. const int nb01 = src0->nb[1];
  6210. const int nb02 = src0->nb[2];
  6211. //const int nb03 = src0->nb[3];
  6212. const int nb10 = src1->nb[0];
  6213. const int nb11 = src1->nb[1];
  6214. //const int nb12 = src1->nb[2];
  6215. //const int nb13 = src1->nb[3];
  6216. //const int nb0 = dst->nb[0];
  6217. const int nb1 = dst->nb[1];
  6218. //const int nb2 = dst->nb[2];
  6219. //const int nb3 = dst->nb[3];
  6220. const int ith = params->ith;
  6221. const int nth = params->nth;
  6222. const int nk = ne00;
  6223. const int nh = nk/2;
  6224. const int ew0 = ggml_up32(ne01);
  6225. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6226. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6227. GGML_ASSERT(nb10 == sizeof(float));
  6228. if (params->type == GGML_TASK_INIT) {
  6229. // TODO: fix this memset (wsize is overestimated)
  6230. memset(params->wdata, 0, params->wsize);
  6231. // prepare kernel data (src0)
  6232. {
  6233. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6234. for (int i02 = 0; i02 < ne02; i02++) {
  6235. for (int i01 = 0; i01 < ne01; i01++) {
  6236. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6237. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6238. for (int i00 = 0; i00 < ne00; i00++) {
  6239. dst_data[i00*ew0 + i01] = src[i00];
  6240. }
  6241. }
  6242. }
  6243. }
  6244. // prepare source data (src1)
  6245. {
  6246. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6247. for (int i11 = 0; i11 < ne11; i11++) {
  6248. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6249. ggml_fp16_t * dst_data = wdata;
  6250. for (int i10 = 0; i10 < ne10; i10++) {
  6251. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6252. }
  6253. }
  6254. }
  6255. return;
  6256. }
  6257. if (params->type == GGML_TASK_FINALIZE) {
  6258. return;
  6259. }
  6260. // total rows in dst
  6261. const int nr = ne02;
  6262. // rows per thread
  6263. const int dr = (nr + nth - 1)/nth;
  6264. // row range for this thread
  6265. const int ir0 = dr*ith;
  6266. const int ir1 = MIN(ir0 + dr, nr);
  6267. for (int i1 = ir0; i1 < ir1; i1++) {
  6268. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6269. for (int i0 = 0; i0 < ne10; ++i0) {
  6270. dst_data[i0] = 0;
  6271. for (int k = -nh; k <= nh; k++) {
  6272. float v = 0.0f;
  6273. ggml_vec_dot_f16(ew0, &v,
  6274. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6275. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6276. dst_data[i0] += v;
  6277. }
  6278. }
  6279. }
  6280. }
  6281. static void ggml_compute_forward_conv_1d_1s_f32(
  6282. const struct ggml_compute_params * params,
  6283. const struct ggml_tensor * src0,
  6284. const struct ggml_tensor * src1,
  6285. struct ggml_tensor * dst) {
  6286. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6287. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6288. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6289. int64_t t0 = ggml_perf_time_us();
  6290. UNUSED(t0);
  6291. const int ne00 = src0->ne[0];
  6292. const int ne01 = src0->ne[1];
  6293. const int ne02 = src0->ne[2];
  6294. //const int ne03 = src0->ne[3];
  6295. const int ne10 = src1->ne[0];
  6296. const int ne11 = src1->ne[1];
  6297. //const int ne12 = src1->ne[2];
  6298. //const int ne13 = src1->ne[3];
  6299. //const int ne0 = dst->ne[0];
  6300. //const int ne1 = dst->ne[1];
  6301. //const int ne2 = dst->ne[2];
  6302. //const int ne3 = dst->ne[3];
  6303. //const int ne = ne0*ne1*ne2*ne3;
  6304. const int nb00 = src0->nb[0];
  6305. const int nb01 = src0->nb[1];
  6306. const int nb02 = src0->nb[2];
  6307. //const int nb03 = src0->nb[3];
  6308. const int nb10 = src1->nb[0];
  6309. const int nb11 = src1->nb[1];
  6310. //const int nb12 = src1->nb[2];
  6311. //const int nb13 = src1->nb[3];
  6312. //const int nb0 = dst->nb[0];
  6313. const int nb1 = dst->nb[1];
  6314. //const int nb2 = dst->nb[2];
  6315. //const int nb3 = dst->nb[3];
  6316. const int ith = params->ith;
  6317. const int nth = params->nth;
  6318. const int nk = ne00;
  6319. const int nh = nk/2;
  6320. const int ew0 = ggml_up32(ne01);
  6321. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6322. GGML_ASSERT(nb00 == sizeof(float));
  6323. GGML_ASSERT(nb10 == sizeof(float));
  6324. if (params->type == GGML_TASK_INIT) {
  6325. // TODO: fix this memset (wsize is overestimated)
  6326. memset(params->wdata, 0, params->wsize);
  6327. // prepare kernel data (src0)
  6328. {
  6329. float * const wdata = (float *) params->wdata + 0;
  6330. for (int i02 = 0; i02 < ne02; i02++) {
  6331. for (int i01 = 0; i01 < ne01; i01++) {
  6332. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6333. float * dst_data = wdata + i02*ew0*ne00;
  6334. for (int i00 = 0; i00 < ne00; i00++) {
  6335. dst_data[i00*ew0 + i01] = src[i00];
  6336. }
  6337. }
  6338. }
  6339. }
  6340. // prepare source data (src1)
  6341. {
  6342. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6343. for (int i11 = 0; i11 < ne11; i11++) {
  6344. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6345. float * dst_data = wdata;
  6346. for (int i10 = 0; i10 < ne10; i10++) {
  6347. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6348. }
  6349. }
  6350. }
  6351. return;
  6352. }
  6353. if (params->type == GGML_TASK_FINALIZE) {
  6354. return;
  6355. }
  6356. // total rows in dst
  6357. const int nr = ne02;
  6358. // rows per thread
  6359. const int dr = (nr + nth - 1)/nth;
  6360. // row range for this thread
  6361. const int ir0 = dr*ith;
  6362. const int ir1 = MIN(ir0 + dr, nr);
  6363. for (int i1 = ir0; i1 < ir1; i1++) {
  6364. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6365. for (int i0 = 0; i0 < ne10; ++i0) {
  6366. dst_data[i0] = 0;
  6367. for (int k = -nh; k <= nh; k++) {
  6368. float v = 0.0f;
  6369. ggml_vec_dot_f32(ew0, &v,
  6370. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6371. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6372. dst_data[i0] += v;
  6373. }
  6374. }
  6375. }
  6376. }
  6377. static void ggml_compute_forward_conv_1d_1s(
  6378. const struct ggml_compute_params * params,
  6379. const struct ggml_tensor * src0,
  6380. const struct ggml_tensor * src1,
  6381. struct ggml_tensor * dst) {
  6382. switch (src0->type) {
  6383. case GGML_TYPE_F16:
  6384. {
  6385. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6386. } break;
  6387. case GGML_TYPE_F32:
  6388. {
  6389. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6390. } break;
  6391. case GGML_TYPE_Q4_0:
  6392. case GGML_TYPE_Q4_1:
  6393. case GGML_TYPE_I8:
  6394. case GGML_TYPE_I16:
  6395. case GGML_TYPE_I32:
  6396. case GGML_TYPE_COUNT:
  6397. {
  6398. GGML_ASSERT(false);
  6399. } break;
  6400. }
  6401. }
  6402. // ggml_compute_forward_conv_1d_2s
  6403. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6404. const struct ggml_compute_params * params,
  6405. const struct ggml_tensor * src0,
  6406. const struct ggml_tensor * src1,
  6407. struct ggml_tensor * dst) {
  6408. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6409. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6410. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6411. int64_t t0 = ggml_perf_time_us();
  6412. UNUSED(t0);
  6413. const int ne00 = src0->ne[0];
  6414. const int ne01 = src0->ne[1];
  6415. const int ne02 = src0->ne[2];
  6416. //const int ne03 = src0->ne[3];
  6417. const int ne10 = src1->ne[0];
  6418. const int ne11 = src1->ne[1];
  6419. //const int ne12 = src1->ne[2];
  6420. //const int ne13 = src1->ne[3];
  6421. //const int ne0 = dst->ne[0];
  6422. //const int ne1 = dst->ne[1];
  6423. //const int ne2 = dst->ne[2];
  6424. //const int ne3 = dst->ne[3];
  6425. //const int ne = ne0*ne1*ne2*ne3;
  6426. const int nb00 = src0->nb[0];
  6427. const int nb01 = src0->nb[1];
  6428. const int nb02 = src0->nb[2];
  6429. //const int nb03 = src0->nb[3];
  6430. const int nb10 = src1->nb[0];
  6431. const int nb11 = src1->nb[1];
  6432. //const int nb12 = src1->nb[2];
  6433. //const int nb13 = src1->nb[3];
  6434. //const int nb0 = dst->nb[0];
  6435. const int nb1 = dst->nb[1];
  6436. //const int nb2 = dst->nb[2];
  6437. //const int nb3 = dst->nb[3];
  6438. const int ith = params->ith;
  6439. const int nth = params->nth;
  6440. const int nk = ne00;
  6441. const int nh = nk/2;
  6442. const int ew0 = ggml_up32(ne01);
  6443. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6444. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6445. GGML_ASSERT(nb10 == sizeof(float));
  6446. if (params->type == GGML_TASK_INIT) {
  6447. // TODO: fix this memset (wsize is overestimated)
  6448. memset(params->wdata, 0, params->wsize);
  6449. // prepare kernel data (src0)
  6450. {
  6451. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6452. for (int i02 = 0; i02 < ne02; i02++) {
  6453. for (int i01 = 0; i01 < ne01; i01++) {
  6454. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6455. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6456. for (int i00 = 0; i00 < ne00; i00++) {
  6457. dst_data[i00*ew0 + i01] = src[i00];
  6458. }
  6459. }
  6460. }
  6461. }
  6462. // prepare source data (src1)
  6463. {
  6464. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6465. for (int i11 = 0; i11 < ne11; i11++) {
  6466. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6467. ggml_fp16_t * dst_data = wdata;
  6468. for (int i10 = 0; i10 < ne10; i10++) {
  6469. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6470. }
  6471. }
  6472. }
  6473. return;
  6474. }
  6475. if (params->type == GGML_TASK_FINALIZE) {
  6476. return;
  6477. }
  6478. // total rows in dst
  6479. const int nr = ne02;
  6480. // rows per thread
  6481. const int dr = (nr + nth - 1)/nth;
  6482. // row range for this thread
  6483. const int ir0 = dr*ith;
  6484. const int ir1 = MIN(ir0 + dr, nr);
  6485. for (int i1 = ir0; i1 < ir1; i1++) {
  6486. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6487. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6488. dst_data[i0/2] = 0;
  6489. for (int k = -nh; k <= nh; k++) {
  6490. float v = 0.0f;
  6491. ggml_vec_dot_f16(ew0, &v,
  6492. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6493. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6494. dst_data[i0/2] += v;
  6495. }
  6496. }
  6497. }
  6498. }
  6499. static void ggml_compute_forward_conv_1d_2s_f32(
  6500. const struct ggml_compute_params * params,
  6501. const struct ggml_tensor * src0,
  6502. const struct ggml_tensor * src1,
  6503. struct ggml_tensor * dst) {
  6504. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6505. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6506. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6507. int64_t t0 = ggml_perf_time_us();
  6508. UNUSED(t0);
  6509. const int ne00 = src0->ne[0];
  6510. const int ne01 = src0->ne[1];
  6511. const int ne02 = src0->ne[2];
  6512. //const int ne03 = src0->ne[3];
  6513. const int ne10 = src1->ne[0];
  6514. const int ne11 = src1->ne[1];
  6515. //const int ne12 = src1->ne[2];
  6516. //const int ne13 = src1->ne[3];
  6517. //const int ne0 = dst->ne[0];
  6518. //const int ne1 = dst->ne[1];
  6519. //const int ne2 = dst->ne[2];
  6520. //const int ne3 = dst->ne[3];
  6521. //const int ne = ne0*ne1*ne2*ne3;
  6522. const int nb00 = src0->nb[0];
  6523. const int nb01 = src0->nb[1];
  6524. const int nb02 = src0->nb[2];
  6525. //const int nb03 = src0->nb[3];
  6526. const int nb10 = src1->nb[0];
  6527. const int nb11 = src1->nb[1];
  6528. //const int nb12 = src1->nb[2];
  6529. //const int nb13 = src1->nb[3];
  6530. //const int nb0 = dst->nb[0];
  6531. const int nb1 = dst->nb[1];
  6532. //const int nb2 = dst->nb[2];
  6533. //const int nb3 = dst->nb[3];
  6534. const int ith = params->ith;
  6535. const int nth = params->nth;
  6536. const int nk = ne00;
  6537. const int nh = nk/2;
  6538. const int ew0 = ggml_up32(ne01);
  6539. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6540. GGML_ASSERT(nb00 == sizeof(float));
  6541. GGML_ASSERT(nb10 == sizeof(float));
  6542. if (params->type == GGML_TASK_INIT) {
  6543. // TODO: fix this memset (wsize is overestimated)
  6544. memset(params->wdata, 0, params->wsize);
  6545. // prepare kernel data (src0)
  6546. {
  6547. float * const wdata = (float *) params->wdata + 0;
  6548. for (int i02 = 0; i02 < ne02; i02++) {
  6549. for (int i01 = 0; i01 < ne01; i01++) {
  6550. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6551. float * dst_data = wdata + i02*ew0*ne00;
  6552. for (int i00 = 0; i00 < ne00; i00++) {
  6553. dst_data[i00*ew0 + i01] = src[i00];
  6554. }
  6555. }
  6556. }
  6557. }
  6558. // prepare source data (src1)
  6559. {
  6560. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6561. for (int i11 = 0; i11 < ne11; i11++) {
  6562. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6563. float * dst_data = wdata;
  6564. for (int i10 = 0; i10 < ne10; i10++) {
  6565. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6566. }
  6567. }
  6568. }
  6569. return;
  6570. }
  6571. if (params->type == GGML_TASK_FINALIZE) {
  6572. return;
  6573. }
  6574. // total rows in dst
  6575. const int nr = ne02;
  6576. // rows per thread
  6577. const int dr = (nr + nth - 1)/nth;
  6578. // row range for this thread
  6579. const int ir0 = dr*ith;
  6580. const int ir1 = MIN(ir0 + dr, nr);
  6581. for (int i1 = ir0; i1 < ir1; i1++) {
  6582. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6583. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6584. dst_data[i0/2] = 0;
  6585. for (int k = -nh; k <= nh; k++) {
  6586. float v = 0.0f;
  6587. ggml_vec_dot_f32(ew0, &v,
  6588. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6589. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6590. dst_data[i0/2] += v;
  6591. }
  6592. }
  6593. }
  6594. }
  6595. static void ggml_compute_forward_conv_1d_2s(
  6596. const struct ggml_compute_params * params,
  6597. const struct ggml_tensor * src0,
  6598. const struct ggml_tensor * src1,
  6599. struct ggml_tensor * dst) {
  6600. switch (src0->type) {
  6601. case GGML_TYPE_F16:
  6602. {
  6603. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6604. } break;
  6605. case GGML_TYPE_F32:
  6606. {
  6607. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6608. } break;
  6609. case GGML_TYPE_Q4_0:
  6610. case GGML_TYPE_Q4_1:
  6611. case GGML_TYPE_I8:
  6612. case GGML_TYPE_I16:
  6613. case GGML_TYPE_I32:
  6614. case GGML_TYPE_COUNT:
  6615. {
  6616. GGML_ASSERT(false);
  6617. } break;
  6618. }
  6619. }
  6620. // ggml_compute_forward_flash_attn
  6621. static void ggml_compute_forward_flash_attn_f32(
  6622. const struct ggml_compute_params * params,
  6623. const struct ggml_tensor * q,
  6624. const struct ggml_tensor * k,
  6625. const struct ggml_tensor * v,
  6626. const bool masked,
  6627. struct ggml_tensor * dst) {
  6628. int64_t t0 = ggml_perf_time_us();
  6629. UNUSED(t0);
  6630. const int neq0 = q->ne[0];
  6631. const int neq1 = q->ne[1];
  6632. const int neq2 = q->ne[2];
  6633. const int neq3 = q->ne[3];
  6634. const int nek0 = k->ne[0];
  6635. const int nek1 = k->ne[1];
  6636. //const int nek2 = k->ne[2];
  6637. //const int nek3 = k->ne[3];
  6638. //const int nev0 = v->ne[0];
  6639. const int nev1 = v->ne[1];
  6640. //const int nev2 = v->ne[2];
  6641. //const int nev3 = v->ne[3];
  6642. const int ne0 = dst->ne[0];
  6643. const int ne1 = dst->ne[1];
  6644. //const int ne2 = dst->ne[2];
  6645. //const int ne3 = dst->ne[3];
  6646. const int nbk0 = k->nb[0];
  6647. const int nbk1 = k->nb[1];
  6648. const int nbk2 = k->nb[2];
  6649. const int nbk3 = k->nb[3];
  6650. const int nbq0 = q->nb[0];
  6651. const int nbq1 = q->nb[1];
  6652. const int nbq2 = q->nb[2];
  6653. const int nbq3 = q->nb[3];
  6654. const int nbv0 = v->nb[0];
  6655. const int nbv1 = v->nb[1];
  6656. const int nbv2 = v->nb[2];
  6657. const int nbv3 = v->nb[3];
  6658. const int nb0 = dst->nb[0];
  6659. const int nb1 = dst->nb[1];
  6660. const int nb2 = dst->nb[2];
  6661. const int nb3 = dst->nb[3];
  6662. const int ith = params->ith;
  6663. const int nth = params->nth;
  6664. const int D = neq0;
  6665. const int N = neq1;
  6666. const int P = nek1 - N;
  6667. const int M = P + N;
  6668. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6669. GGML_ASSERT(ne0 == D);
  6670. GGML_ASSERT(ne1 == N);
  6671. GGML_ASSERT(P >= 0);
  6672. GGML_ASSERT(nbq0 == sizeof(float));
  6673. GGML_ASSERT(nbk0 == sizeof(float));
  6674. GGML_ASSERT(nbv0 == sizeof(float));
  6675. GGML_ASSERT(neq0 == D);
  6676. GGML_ASSERT(nek0 == D);
  6677. GGML_ASSERT(nev1 == D);
  6678. GGML_ASSERT(neq1 == N);
  6679. GGML_ASSERT(nek1 == N + P);
  6680. GGML_ASSERT(nev1 == D);
  6681. // dst cannot be transposed or permuted
  6682. GGML_ASSERT(nb0 == sizeof(float));
  6683. GGML_ASSERT(nb0 <= nb1);
  6684. GGML_ASSERT(nb1 <= nb2);
  6685. GGML_ASSERT(nb2 <= nb3);
  6686. if (params->type == GGML_TASK_INIT) {
  6687. return;
  6688. }
  6689. if (params->type == GGML_TASK_FINALIZE) {
  6690. return;
  6691. }
  6692. // parallelize by q rows using ggml_vec_dot_f32
  6693. // total rows in q
  6694. const int nr = neq1*neq2*neq3;
  6695. // rows per thread
  6696. const int dr = (nr + nth - 1)/nth;
  6697. // row range for this thread
  6698. const int ir0 = dr*ith;
  6699. const int ir1 = MIN(ir0 + dr, nr);
  6700. const float scale = 1.0/sqrt((double) D);
  6701. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6702. for (int ir = ir0; ir < ir1; ++ir) {
  6703. // q indices
  6704. const int iq3 = ir/(neq2*neq1);
  6705. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6706. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6707. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6708. for (int i = M; i < Mup; ++i) {
  6709. S[i] = -INFINITY;
  6710. }
  6711. for (int ic = 0; ic < nek1; ++ic) {
  6712. // k indices
  6713. const int ik3 = iq3;
  6714. const int ik2 = iq2;
  6715. const int ik1 = ic;
  6716. // S indices
  6717. const int i1 = ik1;
  6718. ggml_vec_dot_f32(neq0,
  6719. S + i1,
  6720. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6721. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6722. }
  6723. // scale
  6724. ggml_vec_scale_f32(nek1, S, scale);
  6725. if (masked) {
  6726. for (int i = P; i < M; i++) {
  6727. if (i > P + iq1) {
  6728. S[i] = -INFINITY;
  6729. }
  6730. }
  6731. }
  6732. // softmax
  6733. {
  6734. float max = -INFINITY;
  6735. ggml_vec_max_f32(M, &max, S);
  6736. float sum = 0.0f;
  6737. {
  6738. #ifdef GGML_SOFT_MAX_ACCELERATE
  6739. max = -max;
  6740. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6741. vvexpf(S, S, &Mup);
  6742. ggml_vec_sum_f32(Mup, &sum, S);
  6743. #else
  6744. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6745. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6746. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6747. float * SS = S + i;
  6748. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6749. if (SS[j] == -INFINITY) {
  6750. SS[j] = 0.0f;
  6751. } else {
  6752. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6753. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6754. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6755. sump[j] += val;
  6756. SS[j] = val;
  6757. }
  6758. }
  6759. }
  6760. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6761. sum += sump[i];
  6762. }
  6763. #endif
  6764. }
  6765. assert(sum > 0.0f);
  6766. sum = 1.0/sum;
  6767. ggml_vec_scale_f32(M, S, sum);
  6768. #ifndef NDEBUG
  6769. for (int i = 0; i < M; ++i) {
  6770. assert(!isnan(S[i]));
  6771. assert(!isinf(S[i]));
  6772. }
  6773. #endif
  6774. }
  6775. for (int ic = 0; ic < nev1; ++ic) {
  6776. // dst indices
  6777. const int i1 = iq1;
  6778. const int i2 = iq2;
  6779. const int i3 = iq3;
  6780. ggml_vec_dot_f32(nek1,
  6781. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6782. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6783. S);
  6784. }
  6785. }
  6786. }
  6787. static void ggml_compute_forward_flash_attn_f16(
  6788. const struct ggml_compute_params * params,
  6789. const struct ggml_tensor * q,
  6790. const struct ggml_tensor * k,
  6791. const struct ggml_tensor * v,
  6792. const bool masked,
  6793. struct ggml_tensor * dst) {
  6794. int64_t t0 = ggml_perf_time_us();
  6795. UNUSED(t0);
  6796. const int neq0 = q->ne[0];
  6797. const int neq1 = q->ne[1];
  6798. const int neq2 = q->ne[2];
  6799. const int neq3 = q->ne[3];
  6800. const int nek0 = k->ne[0];
  6801. const int nek1 = k->ne[1];
  6802. //const int nek2 = k->ne[2];
  6803. //const int nek3 = k->ne[3];
  6804. //const int nev0 = v->ne[0];
  6805. const int nev1 = v->ne[1];
  6806. //const int nev2 = v->ne[2];
  6807. //const int nev3 = v->ne[3];
  6808. const int ne0 = dst->ne[0];
  6809. const int ne1 = dst->ne[1];
  6810. //const int ne2 = dst->ne[2];
  6811. //const int ne3 = dst->ne[3];
  6812. const int nbk0 = k->nb[0];
  6813. const int nbk1 = k->nb[1];
  6814. const int nbk2 = k->nb[2];
  6815. const int nbk3 = k->nb[3];
  6816. const int nbq0 = q->nb[0];
  6817. const int nbq1 = q->nb[1];
  6818. const int nbq2 = q->nb[2];
  6819. const int nbq3 = q->nb[3];
  6820. const int nbv0 = v->nb[0];
  6821. const int nbv1 = v->nb[1];
  6822. const int nbv2 = v->nb[2];
  6823. const int nbv3 = v->nb[3];
  6824. const int nb0 = dst->nb[0];
  6825. const int nb1 = dst->nb[1];
  6826. const int nb2 = dst->nb[2];
  6827. const int nb3 = dst->nb[3];
  6828. const int ith = params->ith;
  6829. const int nth = params->nth;
  6830. const int D = neq0;
  6831. const int N = neq1;
  6832. const int P = nek1 - N;
  6833. const int M = P + N;
  6834. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6835. GGML_ASSERT(ne0 == D);
  6836. GGML_ASSERT(ne1 == N);
  6837. GGML_ASSERT(P >= 0);
  6838. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6839. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6840. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6841. GGML_ASSERT(neq0 == D);
  6842. GGML_ASSERT(nek0 == D);
  6843. GGML_ASSERT(nev1 == D);
  6844. GGML_ASSERT(neq1 == N);
  6845. GGML_ASSERT(nek1 == N + P);
  6846. GGML_ASSERT(nev1 == D);
  6847. // dst cannot be transposed or permuted
  6848. GGML_ASSERT(nb0 == sizeof(float));
  6849. GGML_ASSERT(nb0 <= nb1);
  6850. GGML_ASSERT(nb1 <= nb2);
  6851. GGML_ASSERT(nb2 <= nb3);
  6852. if (params->type == GGML_TASK_INIT) {
  6853. return;
  6854. }
  6855. if (params->type == GGML_TASK_FINALIZE) {
  6856. return;
  6857. }
  6858. // parallelize by q rows using ggml_vec_dot_f32
  6859. // total rows in q
  6860. const int nr = neq1*neq2*neq3;
  6861. // rows per thread
  6862. const int dr = (nr + nth - 1)/nth;
  6863. // row range for this thread
  6864. const int ir0 = dr*ith;
  6865. const int ir1 = MIN(ir0 + dr, nr);
  6866. const float scale = 1.0/sqrt((double) D);
  6867. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6868. for (int ir = ir0; ir < ir1; ++ir) {
  6869. // q indices
  6870. const int iq3 = ir/(neq2*neq1);
  6871. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6872. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6873. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6874. for (int i = M; i < Mup; ++i) {
  6875. S[i] = -INFINITY;
  6876. }
  6877. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6878. for (int ic = 0; ic < nek1; ++ic) {
  6879. // k indices
  6880. const int ik3 = iq3;
  6881. const int ik2 = iq2;
  6882. const int ik1 = ic;
  6883. // S indices
  6884. const int i1 = ik1;
  6885. ggml_vec_dot_f16(neq0,
  6886. S + i1,
  6887. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6888. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6889. }
  6890. } else {
  6891. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6892. // k indices
  6893. const int ik3 = iq3;
  6894. const int ik2 = iq2;
  6895. const int ik1 = ic;
  6896. // S indices
  6897. const int i1 = ik1;
  6898. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6899. S + i1,
  6900. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6901. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6902. }
  6903. }
  6904. // scale
  6905. ggml_vec_scale_f32(nek1, S, scale);
  6906. if (masked) {
  6907. for (int i = P; i < M; i++) {
  6908. if (i > P + iq1) {
  6909. S[i] = -INFINITY;
  6910. }
  6911. }
  6912. }
  6913. // softmax
  6914. {
  6915. float max = -INFINITY;
  6916. ggml_vec_max_f32(M, &max, S);
  6917. float sum = 0.0f;
  6918. {
  6919. #ifdef GGML_SOFT_MAX_ACCELERATE
  6920. max = -max;
  6921. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6922. vvexpf(S, S, &Mup);
  6923. ggml_vec_sum_f32(Mup, &sum, S);
  6924. #else
  6925. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6926. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6927. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6928. float * SS = S + i;
  6929. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6930. if (SS[j] == -INFINITY) {
  6931. SS[j] = 0.0f;
  6932. } else {
  6933. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6934. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6935. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6936. sump[j] += val;
  6937. SS[j] = val;
  6938. }
  6939. }
  6940. }
  6941. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6942. sum += sump[i];
  6943. }
  6944. #endif
  6945. }
  6946. assert(sum > 0.0f);
  6947. sum = 1.0/sum;
  6948. ggml_vec_scale_f32(M, S, sum);
  6949. #ifndef NDEBUG
  6950. for (int i = 0; i < M; ++i) {
  6951. assert(!isnan(S[i]));
  6952. assert(!isinf(S[i]));
  6953. }
  6954. #endif
  6955. }
  6956. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6957. for (int i = 0; i < M; i++) {
  6958. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6959. }
  6960. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6961. for (int ic = 0; ic < nev1; ++ic) {
  6962. // dst indices
  6963. const int i1 = iq1;
  6964. const int i2 = iq2;
  6965. const int i3 = iq3;
  6966. ggml_vec_dot_f16(nek1,
  6967. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6968. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6969. S16);
  6970. }
  6971. } else {
  6972. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6973. // dst indices
  6974. const int i1 = iq1;
  6975. const int i2 = iq2;
  6976. const int i3 = iq3;
  6977. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6978. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6979. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6980. S16);
  6981. }
  6982. }
  6983. }
  6984. }
  6985. static void ggml_compute_forward_flash_attn(
  6986. const struct ggml_compute_params * params,
  6987. const struct ggml_tensor * q,
  6988. const struct ggml_tensor * k,
  6989. const struct ggml_tensor * v,
  6990. const bool masked,
  6991. struct ggml_tensor * dst) {
  6992. switch (q->type) {
  6993. case GGML_TYPE_F16:
  6994. {
  6995. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6996. } break;
  6997. case GGML_TYPE_F32:
  6998. {
  6999. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7000. } break;
  7001. case GGML_TYPE_Q4_0:
  7002. case GGML_TYPE_Q4_1:
  7003. case GGML_TYPE_I8:
  7004. case GGML_TYPE_I16:
  7005. case GGML_TYPE_I32:
  7006. case GGML_TYPE_COUNT:
  7007. {
  7008. GGML_ASSERT(false);
  7009. } break;
  7010. }
  7011. }
  7012. // ggml_compute_forward_flash_ff
  7013. static void ggml_compute_forward_flash_ff_f16(
  7014. const struct ggml_compute_params * params,
  7015. const struct ggml_tensor * a, // F16
  7016. const struct ggml_tensor * b0, // F16 fc_w
  7017. const struct ggml_tensor * b1, // F32 fc_b
  7018. const struct ggml_tensor * c0, // F16 proj_w
  7019. const struct ggml_tensor * c1, // F32 proj_b
  7020. struct ggml_tensor * dst) {
  7021. int64_t t0 = ggml_perf_time_us();
  7022. UNUSED(t0);
  7023. const int nea0 = a->ne[0];
  7024. const int nea1 = a->ne[1];
  7025. const int nea2 = a->ne[2];
  7026. const int nea3 = a->ne[3];
  7027. const int neb00 = b0->ne[0];
  7028. const int neb01 = b0->ne[1];
  7029. //const int neb02 = b0->ne[2];
  7030. //const int neb03 = b0->ne[3];
  7031. const int neb10 = b1->ne[0];
  7032. const int neb11 = b1->ne[1];
  7033. //const int neb12 = b1->ne[2];
  7034. //const int neb13 = b1->ne[3];
  7035. const int nec00 = c0->ne[0];
  7036. const int nec01 = c0->ne[1];
  7037. //const int nec02 = c0->ne[2];
  7038. //const int nec03 = c0->ne[3];
  7039. const int nec10 = c1->ne[0];
  7040. const int nec11 = c1->ne[1];
  7041. //const int nec12 = c1->ne[2];
  7042. //const int nec13 = c1->ne[3];
  7043. const int ne0 = dst->ne[0];
  7044. const int ne1 = dst->ne[1];
  7045. const int ne2 = dst->ne[2];
  7046. //const int ne3 = dst->ne[3];
  7047. const int nba0 = a->nb[0];
  7048. const int nba1 = a->nb[1];
  7049. const int nba2 = a->nb[2];
  7050. const int nba3 = a->nb[3];
  7051. const int nbb00 = b0->nb[0];
  7052. const int nbb01 = b0->nb[1];
  7053. const int nbb02 = b0->nb[2];
  7054. const int nbb03 = b0->nb[3];
  7055. const int nbb10 = b1->nb[0];
  7056. //const int nbb11 = b1->nb[1];
  7057. //const int nbb12 = b1->nb[2];
  7058. //const int nbb13 = b1->nb[3];
  7059. const int nbc00 = c0->nb[0];
  7060. const int nbc01 = c0->nb[1];
  7061. const int nbc02 = c0->nb[2];
  7062. const int nbc03 = c0->nb[3];
  7063. const int nbc10 = c1->nb[0];
  7064. //const int nbc11 = c1->nb[1];
  7065. //const int nbc12 = c1->nb[2];
  7066. //const int nbc13 = c1->nb[3];
  7067. const int nb0 = dst->nb[0];
  7068. const int nb1 = dst->nb[1];
  7069. const int nb2 = dst->nb[2];
  7070. const int nb3 = dst->nb[3];
  7071. const int ith = params->ith;
  7072. const int nth = params->nth;
  7073. const int D = nea0;
  7074. //const int N = nea1;
  7075. const int M = neb01;
  7076. GGML_ASSERT(ne0 == nea0);
  7077. GGML_ASSERT(ne1 == nea1);
  7078. GGML_ASSERT(ne2 == nea2);
  7079. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7080. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7081. GGML_ASSERT(nbb10 == sizeof(float));
  7082. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7083. GGML_ASSERT(nbc10 == sizeof(float));
  7084. GGML_ASSERT(neb00 == D);
  7085. GGML_ASSERT(neb01 == M);
  7086. GGML_ASSERT(neb10 == M);
  7087. GGML_ASSERT(neb11 == 1);
  7088. GGML_ASSERT(nec00 == M);
  7089. GGML_ASSERT(nec01 == D);
  7090. GGML_ASSERT(nec10 == D);
  7091. GGML_ASSERT(nec11 == 1);
  7092. // dst cannot be transposed or permuted
  7093. GGML_ASSERT(nb0 == sizeof(float));
  7094. GGML_ASSERT(nb0 <= nb1);
  7095. GGML_ASSERT(nb1 <= nb2);
  7096. GGML_ASSERT(nb2 <= nb3);
  7097. if (params->type == GGML_TASK_INIT) {
  7098. return;
  7099. }
  7100. if (params->type == GGML_TASK_FINALIZE) {
  7101. return;
  7102. }
  7103. // parallelize by a rows using ggml_vec_dot_f32
  7104. // total rows in a
  7105. const int nr = nea1*nea2*nea3;
  7106. // rows per thread
  7107. const int dr = (nr + nth - 1)/nth;
  7108. // row range for this thread
  7109. const int ir0 = dr*ith;
  7110. const int ir1 = MIN(ir0 + dr, nr);
  7111. for (int ir = ir0; ir < ir1; ++ir) {
  7112. // a indices
  7113. const int ia3 = ir/(nea2*nea1);
  7114. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7115. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7116. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7117. for (int ic = 0; ic < neb01; ++ic) {
  7118. // b0 indices
  7119. const int ib03 = ia3;
  7120. const int ib02 = ia2;
  7121. const int ib01 = ic;
  7122. // S indices
  7123. const int i1 = ib01;
  7124. ggml_vec_dot_f16(nea0,
  7125. S + i1,
  7126. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7127. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7128. }
  7129. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7130. //ggml_vec_gelu_f32(neb01, S, S);
  7131. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7132. for (int i = 0; i < M; i++) {
  7133. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7134. }
  7135. ggml_vec_gelu_f16(neb01, S16, S16);
  7136. {
  7137. // dst indices
  7138. const int i1 = ia1;
  7139. const int i2 = ia2;
  7140. const int i3 = ia3;
  7141. for (int ic = 0; ic < nec01; ++ic) {
  7142. ggml_vec_dot_f16(neb01,
  7143. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7144. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7145. S16);
  7146. }
  7147. ggml_vec_add_f32(nec01,
  7148. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7149. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7150. (float *) c1->data);
  7151. }
  7152. }
  7153. }
  7154. static void ggml_compute_forward_flash_ff(
  7155. const struct ggml_compute_params * params,
  7156. const struct ggml_tensor * a,
  7157. const struct ggml_tensor * b0,
  7158. const struct ggml_tensor * b1,
  7159. const struct ggml_tensor * c0,
  7160. const struct ggml_tensor * c1,
  7161. struct ggml_tensor * dst) {
  7162. switch (b0->type) {
  7163. case GGML_TYPE_F16:
  7164. {
  7165. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7166. } break;
  7167. case GGML_TYPE_F32:
  7168. {
  7169. GGML_ASSERT(false); // TODO
  7170. } break;
  7171. case GGML_TYPE_Q4_0:
  7172. case GGML_TYPE_Q4_1:
  7173. case GGML_TYPE_I8:
  7174. case GGML_TYPE_I16:
  7175. case GGML_TYPE_I32:
  7176. case GGML_TYPE_COUNT:
  7177. {
  7178. GGML_ASSERT(false);
  7179. } break;
  7180. }
  7181. }
  7182. /////////////////////////////////
  7183. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7184. GGML_ASSERT(params);
  7185. switch (tensor->op) {
  7186. case GGML_OP_DUP:
  7187. {
  7188. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7189. } break;
  7190. case GGML_OP_ADD:
  7191. {
  7192. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7193. } break;
  7194. case GGML_OP_SUB:
  7195. {
  7196. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7197. } break;
  7198. case GGML_OP_MUL:
  7199. {
  7200. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7201. } break;
  7202. case GGML_OP_DIV:
  7203. {
  7204. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7205. } break;
  7206. case GGML_OP_SQR:
  7207. {
  7208. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7209. } break;
  7210. case GGML_OP_SQRT:
  7211. {
  7212. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7213. } break;
  7214. case GGML_OP_SUM:
  7215. {
  7216. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7217. } break;
  7218. case GGML_OP_MEAN:
  7219. {
  7220. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7221. } break;
  7222. case GGML_OP_REPEAT:
  7223. {
  7224. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7225. } break;
  7226. case GGML_OP_ABS:
  7227. {
  7228. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7229. } break;
  7230. case GGML_OP_SGN:
  7231. {
  7232. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7233. } break;
  7234. case GGML_OP_NEG:
  7235. {
  7236. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7237. } break;
  7238. case GGML_OP_STEP:
  7239. {
  7240. ggml_compute_forward_step(params, tensor->src0, tensor);
  7241. } break;
  7242. case GGML_OP_RELU:
  7243. {
  7244. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7245. } break;
  7246. case GGML_OP_GELU:
  7247. {
  7248. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7249. } break;
  7250. case GGML_OP_SILU:
  7251. {
  7252. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7253. } break;
  7254. case GGML_OP_NORM:
  7255. {
  7256. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7257. } break;
  7258. case GGML_OP_RMS_NORM:
  7259. {
  7260. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7261. } break;
  7262. case GGML_OP_MUL_MAT:
  7263. {
  7264. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7265. } break;
  7266. case GGML_OP_SCALE:
  7267. {
  7268. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7269. } break;
  7270. case GGML_OP_CPY:
  7271. {
  7272. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7273. } break;
  7274. case GGML_OP_RESHAPE:
  7275. {
  7276. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7277. } break;
  7278. case GGML_OP_VIEW:
  7279. {
  7280. ggml_compute_forward_view(params, tensor->src0);
  7281. } break;
  7282. case GGML_OP_PERMUTE:
  7283. {
  7284. ggml_compute_forward_permute(params, tensor->src0);
  7285. } break;
  7286. case GGML_OP_TRANSPOSE:
  7287. {
  7288. ggml_compute_forward_transpose(params, tensor->src0);
  7289. } break;
  7290. case GGML_OP_GET_ROWS:
  7291. {
  7292. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7293. } break;
  7294. case GGML_OP_DIAG_MASK_INF:
  7295. {
  7296. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7297. } break;
  7298. case GGML_OP_SOFT_MAX:
  7299. {
  7300. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7301. } break;
  7302. case GGML_OP_ROPE:
  7303. {
  7304. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7305. } break;
  7306. case GGML_OP_CONV_1D_1S:
  7307. {
  7308. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7309. } break;
  7310. case GGML_OP_CONV_1D_2S:
  7311. {
  7312. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7313. } break;
  7314. case GGML_OP_FLASH_ATTN:
  7315. {
  7316. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7317. GGML_ASSERT(t == 0 || t == 1);
  7318. bool masked = t != 0;
  7319. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7320. } break;
  7321. case GGML_OP_FLASH_FF:
  7322. {
  7323. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7324. } break;
  7325. case GGML_OP_NONE:
  7326. {
  7327. // nop
  7328. } break;
  7329. case GGML_OP_COUNT:
  7330. {
  7331. GGML_ASSERT(false);
  7332. } break;
  7333. }
  7334. }
  7335. ////////////////////////////////////////////////////////////////////////////////
  7336. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7337. struct ggml_tensor * src0 = tensor->src0;
  7338. struct ggml_tensor * src1 = tensor->src1;
  7339. switch (tensor->op) {
  7340. case GGML_OP_DUP:
  7341. {
  7342. if (src0->grad) {
  7343. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7344. }
  7345. } break;
  7346. case GGML_OP_ADD:
  7347. {
  7348. if (src0->grad) {
  7349. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7350. }
  7351. if (src1->grad) {
  7352. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7353. }
  7354. } break;
  7355. case GGML_OP_SUB:
  7356. {
  7357. if (src0->grad) {
  7358. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7359. }
  7360. if (src1->grad) {
  7361. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7362. }
  7363. } break;
  7364. case GGML_OP_MUL:
  7365. {
  7366. if (src0->grad) {
  7367. src0->grad =
  7368. ggml_add_impl(ctx,
  7369. src0->grad,
  7370. ggml_mul(ctx, src1, tensor->grad),
  7371. inplace);
  7372. }
  7373. if (src1->grad) {
  7374. src1->grad =
  7375. ggml_add_impl(ctx,
  7376. src1->grad,
  7377. ggml_mul(ctx, src0, tensor->grad),
  7378. inplace);
  7379. }
  7380. } break;
  7381. case GGML_OP_DIV:
  7382. {
  7383. if (src0->grad) {
  7384. src0->grad =
  7385. ggml_add_impl(ctx,
  7386. src0->grad,
  7387. ggml_div(ctx, tensor->grad, src1),
  7388. inplace);
  7389. }
  7390. if (src1->grad) {
  7391. src1->grad =
  7392. ggml_sub_impl(ctx,
  7393. src1->grad,
  7394. ggml_mul(ctx,
  7395. tensor->grad,
  7396. ggml_div(ctx, tensor, src1)),
  7397. inplace);
  7398. }
  7399. } break;
  7400. case GGML_OP_SQR:
  7401. {
  7402. if (src0->grad) {
  7403. src0->grad =
  7404. ggml_add_impl(ctx,
  7405. src0->grad,
  7406. ggml_mul(ctx,
  7407. ggml_mul(ctx, src0, tensor->grad),
  7408. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7409. inplace);
  7410. }
  7411. } break;
  7412. case GGML_OP_SQRT:
  7413. {
  7414. if (src0->grad) {
  7415. src0->grad =
  7416. ggml_add_impl(ctx,
  7417. src0->grad,
  7418. ggml_div(ctx,
  7419. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7420. tensor),
  7421. inplace);
  7422. }
  7423. } break;
  7424. case GGML_OP_SUM:
  7425. {
  7426. if (src0->grad) {
  7427. src0->grad =
  7428. ggml_add_impl(ctx,
  7429. src0->grad,
  7430. ggml_repeat(ctx, tensor->grad, src0->grad),
  7431. inplace);
  7432. }
  7433. } break;
  7434. case GGML_OP_MEAN:
  7435. {
  7436. GGML_ASSERT(false); // TODO: implement
  7437. } break;
  7438. case GGML_OP_REPEAT:
  7439. {
  7440. if (src0->grad) {
  7441. src0->grad =
  7442. ggml_add_impl(ctx,
  7443. src0->grad,
  7444. ggml_sum(ctx, tensor->grad),
  7445. inplace);
  7446. }
  7447. } break;
  7448. case GGML_OP_ABS:
  7449. {
  7450. if (src0->grad) {
  7451. src0->grad =
  7452. ggml_add_impl(ctx,
  7453. src0->grad,
  7454. ggml_mul(ctx,
  7455. ggml_sgn(ctx, src0),
  7456. tensor->grad),
  7457. inplace);
  7458. }
  7459. } break;
  7460. case GGML_OP_SGN:
  7461. {
  7462. if (src0->grad) {
  7463. // noop
  7464. }
  7465. } break;
  7466. case GGML_OP_NEG:
  7467. {
  7468. if (src0->grad) {
  7469. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7470. }
  7471. } break;
  7472. case GGML_OP_STEP:
  7473. {
  7474. if (src0->grad) {
  7475. // noop
  7476. }
  7477. } break;
  7478. case GGML_OP_RELU:
  7479. {
  7480. if (src0->grad) {
  7481. src0->grad = ggml_sub_impl(ctx,
  7482. src0->grad,
  7483. ggml_mul(ctx,
  7484. ggml_step(ctx, src0),
  7485. tensor->grad),
  7486. inplace);
  7487. }
  7488. } break;
  7489. case GGML_OP_GELU:
  7490. {
  7491. GGML_ASSERT(false); // TODO: not implemented
  7492. } break;
  7493. case GGML_OP_SILU:
  7494. {
  7495. GGML_ASSERT(false); // TODO: not implemented
  7496. } break;
  7497. case GGML_OP_NORM:
  7498. {
  7499. GGML_ASSERT(false); // TODO: not implemented
  7500. } break;
  7501. case GGML_OP_RMS_NORM:
  7502. {
  7503. GGML_ASSERT(false); // TODO: not implemented
  7504. } break;
  7505. case GGML_OP_MUL_MAT:
  7506. {
  7507. if (src0->grad) {
  7508. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7509. GGML_ASSERT(false);
  7510. }
  7511. if (src1->grad) {
  7512. src1->grad =
  7513. ggml_add_impl(ctx,
  7514. src1->grad,
  7515. // TODO: fix transpose, the node will break the graph connections
  7516. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7517. inplace);
  7518. }
  7519. } break;
  7520. case GGML_OP_SCALE:
  7521. {
  7522. GGML_ASSERT(false); // TODO: not implemented
  7523. } break;
  7524. case GGML_OP_CPY:
  7525. {
  7526. GGML_ASSERT(false); // TODO: not implemented
  7527. } break;
  7528. case GGML_OP_RESHAPE:
  7529. {
  7530. GGML_ASSERT(false); // TODO: not implemented
  7531. } break;
  7532. case GGML_OP_VIEW:
  7533. {
  7534. GGML_ASSERT(false); // not supported
  7535. } break;
  7536. case GGML_OP_PERMUTE:
  7537. {
  7538. GGML_ASSERT(false); // TODO: not implemented
  7539. } break;
  7540. case GGML_OP_TRANSPOSE:
  7541. {
  7542. GGML_ASSERT(false); // TODO: not implemented
  7543. } break;
  7544. case GGML_OP_GET_ROWS:
  7545. {
  7546. GGML_ASSERT(false); // TODO: not implemented
  7547. } break;
  7548. case GGML_OP_DIAG_MASK_INF:
  7549. {
  7550. GGML_ASSERT(false); // TODO: not implemented
  7551. } break;
  7552. case GGML_OP_SOFT_MAX:
  7553. {
  7554. GGML_ASSERT(false); // TODO: not implemented
  7555. } break;
  7556. case GGML_OP_ROPE:
  7557. {
  7558. GGML_ASSERT(false); // TODO: not implemented
  7559. } break;
  7560. case GGML_OP_CONV_1D_1S:
  7561. {
  7562. GGML_ASSERT(false); // TODO: not implemented
  7563. } break;
  7564. case GGML_OP_CONV_1D_2S:
  7565. {
  7566. GGML_ASSERT(false); // TODO: not implemented
  7567. } break;
  7568. case GGML_OP_FLASH_ATTN:
  7569. {
  7570. GGML_ASSERT(false); // not supported
  7571. } break;
  7572. case GGML_OP_FLASH_FF:
  7573. {
  7574. GGML_ASSERT(false); // not supported
  7575. } break;
  7576. case GGML_OP_NONE:
  7577. {
  7578. // nop
  7579. } break;
  7580. case GGML_OP_COUNT:
  7581. {
  7582. GGML_ASSERT(false);
  7583. } break;
  7584. }
  7585. }
  7586. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7587. if (node->grad == NULL) {
  7588. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7589. // it can also happen during forward pass, if the user performs computations with constants
  7590. if (node->op != GGML_OP_NONE) {
  7591. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7592. }
  7593. }
  7594. // check if already visited
  7595. for (int i = 0; i < cgraph->n_nodes; i++) {
  7596. if (cgraph->nodes[i] == node) {
  7597. return;
  7598. }
  7599. }
  7600. for (int i = 0; i < cgraph->n_leafs; i++) {
  7601. if (cgraph->leafs[i] == node) {
  7602. return;
  7603. }
  7604. }
  7605. if (node->src0) {
  7606. ggml_visit_parents(cgraph, node->src0);
  7607. }
  7608. if (node->src1) {
  7609. ggml_visit_parents(cgraph, node->src1);
  7610. }
  7611. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7612. if (node->opt[i]) {
  7613. ggml_visit_parents(cgraph, node->opt[i]);
  7614. }
  7615. }
  7616. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7617. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7618. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7619. cgraph->leafs[cgraph->n_leafs] = node;
  7620. cgraph->n_leafs++;
  7621. } else {
  7622. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7623. cgraph->nodes[cgraph->n_nodes] = node;
  7624. cgraph->grads[cgraph->n_nodes] = node->grad;
  7625. cgraph->n_nodes++;
  7626. }
  7627. }
  7628. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7629. if (!expand) {
  7630. cgraph->n_nodes = 0;
  7631. cgraph->n_leafs = 0;
  7632. }
  7633. const int n0 = cgraph->n_nodes;
  7634. UNUSED(n0);
  7635. ggml_visit_parents(cgraph, tensor);
  7636. const int n_new = cgraph->n_nodes - n0;
  7637. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7638. if (n_new > 0) {
  7639. // the last added node should always be starting point
  7640. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7641. }
  7642. }
  7643. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7644. ggml_build_forward_impl(cgraph, tensor, true);
  7645. }
  7646. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7647. struct ggml_cgraph result = {
  7648. /*.n_nodes =*/ 0,
  7649. /*.n_leafs =*/ 0,
  7650. /*.n_threads =*/ 0,
  7651. /*.work_size =*/ 0,
  7652. /*.work =*/ NULL,
  7653. /*.nodes =*/ { NULL },
  7654. /*.grads =*/ { NULL },
  7655. /*.leafs =*/ { NULL },
  7656. /*.perf_runs =*/ 0,
  7657. /*.perf_cycles =*/ 0,
  7658. /*.perf_time_us =*/ 0,
  7659. };
  7660. ggml_build_forward_impl(&result, tensor, false);
  7661. return result;
  7662. }
  7663. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7664. struct ggml_cgraph result = *gf;
  7665. GGML_ASSERT(gf->n_nodes > 0);
  7666. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7667. if (keep) {
  7668. for (int i = 0; i < gf->n_nodes; i++) {
  7669. struct ggml_tensor * node = gf->nodes[i];
  7670. if (node->grad) {
  7671. node->grad = ggml_dup_tensor(ctx, node);
  7672. gf->grads[i] = node->grad;
  7673. }
  7674. }
  7675. }
  7676. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7677. struct ggml_tensor * node = gf->nodes[i];
  7678. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7679. if (node->grad) {
  7680. ggml_compute_backward(ctx, node, keep);
  7681. }
  7682. }
  7683. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7684. struct ggml_tensor * node = gf->nodes[i];
  7685. if (node->is_param) {
  7686. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7687. ggml_build_forward_impl(&result, node->grad, true);
  7688. }
  7689. }
  7690. return result;
  7691. }
  7692. //
  7693. // thread data
  7694. //
  7695. // synchronization is done via busy loops
  7696. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7697. //
  7698. #ifdef __APPLE__
  7699. //#include <os/lock.h>
  7700. //
  7701. //typedef os_unfair_lock ggml_lock_t;
  7702. //
  7703. //#define ggml_lock_init(x) UNUSED(x)
  7704. //#define ggml_lock_destroy(x) UNUSED(x)
  7705. //#define ggml_lock_lock os_unfair_lock_lock
  7706. //#define ggml_lock_unlock os_unfair_lock_unlock
  7707. //
  7708. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7709. typedef int ggml_lock_t;
  7710. #define ggml_lock_init(x) UNUSED(x)
  7711. #define ggml_lock_destroy(x) UNUSED(x)
  7712. #define ggml_lock_lock(x) UNUSED(x)
  7713. #define ggml_lock_unlock(x) UNUSED(x)
  7714. #define GGML_LOCK_INITIALIZER 0
  7715. typedef pthread_t ggml_thread_t;
  7716. #define ggml_thread_create pthread_create
  7717. #define ggml_thread_join pthread_join
  7718. #else
  7719. //typedef pthread_spinlock_t ggml_lock_t;
  7720. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7721. //#define ggml_lock_destroy pthread_spin_destroy
  7722. //#define ggml_lock_lock pthread_spin_lock
  7723. //#define ggml_lock_unlock pthread_spin_unlock
  7724. typedef int ggml_lock_t;
  7725. #define ggml_lock_init(x) UNUSED(x)
  7726. #define ggml_lock_destroy(x) UNUSED(x)
  7727. #define ggml_lock_lock(x) UNUSED(x)
  7728. #define ggml_lock_unlock(x) UNUSED(x)
  7729. #define GGML_LOCK_INITIALIZER 0
  7730. typedef pthread_t ggml_thread_t;
  7731. #define ggml_thread_create pthread_create
  7732. #define ggml_thread_join pthread_join
  7733. #endif
  7734. struct ggml_compute_state_shared {
  7735. ggml_lock_t spin;
  7736. int n_threads;
  7737. // synchronization primitives
  7738. atomic_int n_ready;
  7739. atomic_bool has_work;
  7740. atomic_bool stop; // stop all threads
  7741. };
  7742. struct ggml_compute_state {
  7743. ggml_thread_t thrd;
  7744. struct ggml_compute_params params;
  7745. struct ggml_tensor * node;
  7746. struct ggml_compute_state_shared * shared;
  7747. };
  7748. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7749. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7750. const int n_threads = state->shared->n_threads;
  7751. while (true) {
  7752. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7753. atomic_store(&state->shared->has_work, false);
  7754. } else {
  7755. while (atomic_load(&state->shared->has_work)) {
  7756. if (atomic_load(&state->shared->stop)) {
  7757. return 0;
  7758. }
  7759. ggml_lock_lock (&state->shared->spin);
  7760. ggml_lock_unlock(&state->shared->spin);
  7761. }
  7762. }
  7763. atomic_fetch_sub(&state->shared->n_ready, 1);
  7764. // wait for work
  7765. while (!atomic_load(&state->shared->has_work)) {
  7766. if (atomic_load(&state->shared->stop)) {
  7767. return 0;
  7768. }
  7769. ggml_lock_lock (&state->shared->spin);
  7770. ggml_lock_unlock(&state->shared->spin);
  7771. }
  7772. // check if we should stop
  7773. if (atomic_load(&state->shared->stop)) {
  7774. break;
  7775. }
  7776. if (state->node) {
  7777. if (state->params.ith < state->params.nth) {
  7778. ggml_compute_forward(&state->params, state->node);
  7779. }
  7780. state->node = NULL;
  7781. } else {
  7782. break;
  7783. }
  7784. }
  7785. return 0;
  7786. }
  7787. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7788. const int n_threads = cgraph->n_threads;
  7789. struct ggml_compute_state_shared state_shared = {
  7790. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7791. /*.n_threads =*/ n_threads,
  7792. /*.n_ready =*/ 0,
  7793. /*.has_work =*/ false,
  7794. /*.stop =*/ false,
  7795. };
  7796. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7797. // create thread pool
  7798. if (n_threads > 1) {
  7799. ggml_lock_init(&state_shared.spin);
  7800. atomic_store(&state_shared.has_work, true);
  7801. for (int j = 0; j < n_threads - 1; j++) {
  7802. workers[j] = (struct ggml_compute_state) {
  7803. .thrd = 0,
  7804. .params = {
  7805. .type = GGML_TASK_COMPUTE,
  7806. .ith = j + 1,
  7807. .nth = n_threads,
  7808. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7809. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7810. },
  7811. .node = NULL,
  7812. .shared = &state_shared,
  7813. };
  7814. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7815. GGML_ASSERT(rc == 0);
  7816. UNUSED(rc);
  7817. }
  7818. }
  7819. // initialize tasks + work buffer
  7820. {
  7821. size_t work_size = 0;
  7822. // thread scheduling for the different operations
  7823. for (int i = 0; i < cgraph->n_nodes; i++) {
  7824. struct ggml_tensor * node = cgraph->nodes[i];
  7825. switch (node->op) {
  7826. case GGML_OP_DUP:
  7827. {
  7828. node->n_tasks = 1;
  7829. } break;
  7830. case GGML_OP_ADD:
  7831. {
  7832. node->n_tasks = n_threads;
  7833. } break;
  7834. case GGML_OP_SUB:
  7835. case GGML_OP_MUL:
  7836. case GGML_OP_DIV:
  7837. case GGML_OP_SQR:
  7838. case GGML_OP_SQRT:
  7839. case GGML_OP_SUM:
  7840. case GGML_OP_MEAN:
  7841. case GGML_OP_REPEAT:
  7842. case GGML_OP_ABS:
  7843. case GGML_OP_SGN:
  7844. case GGML_OP_NEG:
  7845. case GGML_OP_STEP:
  7846. case GGML_OP_RELU:
  7847. {
  7848. node->n_tasks = 1;
  7849. } break;
  7850. case GGML_OP_GELU:
  7851. {
  7852. node->n_tasks = n_threads;
  7853. } break;
  7854. case GGML_OP_SILU:
  7855. {
  7856. node->n_tasks = n_threads;
  7857. } break;
  7858. case GGML_OP_NORM:
  7859. case GGML_OP_RMS_NORM:
  7860. {
  7861. node->n_tasks = n_threads;
  7862. } break;
  7863. case GGML_OP_MUL_MAT:
  7864. {
  7865. node->n_tasks = n_threads;
  7866. // TODO: use different scheduling for different matrix sizes
  7867. //const int nr0 = ggml_nrows(node->src0);
  7868. //const int nr1 = ggml_nrows(node->src1);
  7869. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7870. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7871. size_t cur = 0;
  7872. // TODO: better way to determine if the matrix is transposed
  7873. if (node->src0->nb[1] < node->src0->nb[0]) {
  7874. cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
  7875. // TODO: overestimated by factor of x2 for FP16
  7876. } else {
  7877. if (node->src0->type == GGML_TYPE_F16 &&
  7878. node->src1->type == GGML_TYPE_F32) {
  7879. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7880. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7881. node->n_tasks = 1; // TODO: this actually is doing nothing
  7882. // the threads are still spinning
  7883. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7884. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7885. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7886. //printf("cur = %zu\n", cur);
  7887. } else {
  7888. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7889. }
  7890. #else
  7891. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7892. #endif
  7893. } else if (node->src0->type == GGML_TYPE_F32 &&
  7894. node->src1->type == GGML_TYPE_F32) {
  7895. cur = 0;
  7896. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7897. node->src1->type == GGML_TYPE_F32) {
  7898. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7899. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7900. node->n_tasks = 1;
  7901. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7902. } else {
  7903. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7904. }
  7905. #else
  7906. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7907. #endif
  7908. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7909. node->src1->type == GGML_TYPE_F32) {
  7910. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7911. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7912. node->n_tasks = 1;
  7913. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7914. } else {
  7915. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7916. }
  7917. #else
  7918. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7919. #endif
  7920. } else {
  7921. GGML_ASSERT(false);
  7922. }
  7923. }
  7924. work_size = MAX(work_size, cur);
  7925. } break;
  7926. case GGML_OP_SCALE:
  7927. {
  7928. node->n_tasks = n_threads;
  7929. } break;
  7930. case GGML_OP_CPY:
  7931. case GGML_OP_RESHAPE:
  7932. case GGML_OP_VIEW:
  7933. case GGML_OP_PERMUTE:
  7934. case GGML_OP_TRANSPOSE:
  7935. case GGML_OP_GET_ROWS:
  7936. case GGML_OP_DIAG_MASK_INF:
  7937. {
  7938. node->n_tasks = 1;
  7939. } break;
  7940. case GGML_OP_SOFT_MAX:
  7941. {
  7942. node->n_tasks = n_threads;
  7943. } break;
  7944. case GGML_OP_ROPE:
  7945. {
  7946. node->n_tasks = 1;
  7947. } break;
  7948. case GGML_OP_CONV_1D_1S:
  7949. case GGML_OP_CONV_1D_2S:
  7950. {
  7951. node->n_tasks = n_threads;
  7952. GGML_ASSERT(node->src0->ne[3] == 1);
  7953. GGML_ASSERT(node->src1->ne[2] == 1);
  7954. GGML_ASSERT(node->src1->ne[3] == 1);
  7955. size_t cur = 0;
  7956. const int nk = node->src0->ne[0];
  7957. if (node->src0->type == GGML_TYPE_F16 &&
  7958. node->src1->type == GGML_TYPE_F32) {
  7959. cur = sizeof(ggml_fp16_t)*(
  7960. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7961. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7962. );
  7963. } else if (node->src0->type == GGML_TYPE_F32 &&
  7964. node->src1->type == GGML_TYPE_F32) {
  7965. cur = sizeof(float)*(
  7966. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7967. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7968. );
  7969. } else {
  7970. GGML_ASSERT(false);
  7971. }
  7972. work_size = MAX(work_size, cur);
  7973. } break;
  7974. case GGML_OP_FLASH_ATTN:
  7975. {
  7976. node->n_tasks = n_threads;
  7977. size_t cur = 0;
  7978. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7979. if (node->src1->type == GGML_TYPE_F32) {
  7980. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7981. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7982. }
  7983. if (node->src1->type == GGML_TYPE_F16) {
  7984. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7985. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7986. }
  7987. work_size = MAX(work_size, cur);
  7988. } break;
  7989. case GGML_OP_FLASH_FF:
  7990. {
  7991. node->n_tasks = n_threads;
  7992. size_t cur = 0;
  7993. if (node->src1->type == GGML_TYPE_F32) {
  7994. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7995. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7996. }
  7997. if (node->src1->type == GGML_TYPE_F16) {
  7998. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7999. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8000. }
  8001. work_size = MAX(work_size, cur);
  8002. } break;
  8003. case GGML_OP_NONE:
  8004. {
  8005. node->n_tasks = 1;
  8006. } break;
  8007. case GGML_OP_COUNT:
  8008. {
  8009. GGML_ASSERT(false);
  8010. } break;
  8011. }
  8012. }
  8013. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8014. GGML_ASSERT(false); // TODO: better handling
  8015. }
  8016. if (work_size > 0 && cgraph->work == NULL) {
  8017. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8018. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8019. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8020. }
  8021. }
  8022. const int64_t perf_start_cycles = ggml_perf_cycles();
  8023. const int64_t perf_start_time_us = ggml_perf_time_us();
  8024. for (int i = 0; i < cgraph->n_nodes; i++) {
  8025. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8026. struct ggml_tensor * node = cgraph->nodes[i];
  8027. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8028. //if (node->grad == NULL && node->perf_runs > 0) {
  8029. // continue;
  8030. //}
  8031. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8032. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8033. // INIT
  8034. struct ggml_compute_params params = {
  8035. /*.type =*/ GGML_TASK_INIT,
  8036. /*.ith =*/ 0,
  8037. /*.nth =*/ node->n_tasks,
  8038. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8039. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8040. };
  8041. ggml_compute_forward(&params, node);
  8042. // COMPUTE
  8043. if (node->n_tasks > 1) {
  8044. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8045. atomic_store(&state_shared.has_work, false);
  8046. }
  8047. while (atomic_load(&state_shared.has_work)) {
  8048. ggml_lock_lock (&state_shared.spin);
  8049. ggml_lock_unlock(&state_shared.spin);
  8050. }
  8051. // launch thread pool
  8052. for (int j = 0; j < n_threads - 1; j++) {
  8053. workers[j].params = (struct ggml_compute_params) {
  8054. .type = GGML_TASK_COMPUTE,
  8055. .ith = j + 1,
  8056. .nth = node->n_tasks,
  8057. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8058. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8059. };
  8060. workers[j].node = node;
  8061. }
  8062. atomic_fetch_sub(&state_shared.n_ready, 1);
  8063. while (atomic_load(&state_shared.n_ready) > 0) {
  8064. ggml_lock_lock (&state_shared.spin);
  8065. ggml_lock_unlock(&state_shared.spin);
  8066. }
  8067. atomic_store(&state_shared.has_work, true);
  8068. }
  8069. params.type = GGML_TASK_COMPUTE;
  8070. ggml_compute_forward(&params, node);
  8071. // wait for thread pool
  8072. if (node->n_tasks > 1) {
  8073. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8074. atomic_store(&state_shared.has_work, false);
  8075. }
  8076. while (atomic_load(&state_shared.has_work)) {
  8077. ggml_lock_lock (&state_shared.spin);
  8078. ggml_lock_unlock(&state_shared.spin);
  8079. }
  8080. atomic_fetch_sub(&state_shared.n_ready, 1);
  8081. while (atomic_load(&state_shared.n_ready) != 0) {
  8082. ggml_lock_lock (&state_shared.spin);
  8083. ggml_lock_unlock(&state_shared.spin);
  8084. }
  8085. }
  8086. // FINALIZE
  8087. if (node->n_tasks > 1) {
  8088. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8089. atomic_store(&state_shared.has_work, false);
  8090. }
  8091. while (atomic_load(&state_shared.has_work)) {
  8092. ggml_lock_lock (&state_shared.spin);
  8093. ggml_lock_unlock(&state_shared.spin);
  8094. }
  8095. // launch thread pool
  8096. for (int j = 0; j < n_threads - 1; j++) {
  8097. workers[j].params = (struct ggml_compute_params) {
  8098. .type = GGML_TASK_FINALIZE,
  8099. .ith = j + 1,
  8100. .nth = node->n_tasks,
  8101. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8102. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8103. };
  8104. workers[j].node = node;
  8105. }
  8106. atomic_fetch_sub(&state_shared.n_ready, 1);
  8107. while (atomic_load(&state_shared.n_ready) > 0) {
  8108. ggml_lock_lock (&state_shared.spin);
  8109. ggml_lock_unlock(&state_shared.spin);
  8110. }
  8111. atomic_store(&state_shared.has_work, true);
  8112. }
  8113. params.type = GGML_TASK_FINALIZE;
  8114. ggml_compute_forward(&params, node);
  8115. // wait for thread pool
  8116. if (node->n_tasks > 1) {
  8117. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8118. atomic_store(&state_shared.has_work, false);
  8119. }
  8120. while (atomic_load(&state_shared.has_work)) {
  8121. ggml_lock_lock (&state_shared.spin);
  8122. ggml_lock_unlock(&state_shared.spin);
  8123. }
  8124. atomic_fetch_sub(&state_shared.n_ready, 1);
  8125. while (atomic_load(&state_shared.n_ready) != 0) {
  8126. ggml_lock_lock (&state_shared.spin);
  8127. ggml_lock_unlock(&state_shared.spin);
  8128. }
  8129. }
  8130. // performance stats (node)
  8131. {
  8132. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8133. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8134. node->perf_runs++;
  8135. node->perf_cycles += perf_cycles_cur;
  8136. node->perf_time_us += perf_time_us_cur;
  8137. }
  8138. }
  8139. // join thread pool
  8140. if (n_threads > 1) {
  8141. atomic_store(&state_shared.stop, true);
  8142. atomic_store(&state_shared.has_work, true);
  8143. for (int j = 0; j < n_threads - 1; j++) {
  8144. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8145. GGML_ASSERT(rc == 0);
  8146. UNUSED(rc);
  8147. }
  8148. ggml_lock_destroy(&state_shared.spin);
  8149. }
  8150. // performance stats (graph)
  8151. {
  8152. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8153. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8154. cgraph->perf_runs++;
  8155. cgraph->perf_cycles += perf_cycles_cur;
  8156. cgraph->perf_time_us += perf_time_us_cur;
  8157. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8158. __func__, cgraph->perf_runs,
  8159. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8160. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8161. (double) perf_time_us_cur / 1000.0,
  8162. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8163. }
  8164. }
  8165. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8166. for (int i = 0; i < cgraph->n_nodes; i++) {
  8167. struct ggml_tensor * grad = cgraph->grads[i];
  8168. if (grad) {
  8169. ggml_set_zero(grad);
  8170. }
  8171. }
  8172. }
  8173. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8174. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8175. GGML_PRINT("=== GRAPH ===\n");
  8176. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8177. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  8178. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8179. for (int i = 0; i < cgraph->n_nodes; i++) {
  8180. struct ggml_tensor * node = cgraph->nodes[i];
  8181. perf_total_per_op_us[node->op] += node->perf_time_us;
  8182. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8183. i,
  8184. node->ne[0], node->ne[1], node->ne[2],
  8185. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8186. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8187. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8188. (double) node->perf_time_us / 1000.0,
  8189. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8190. }
  8191. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8192. for (int i = 0; i < cgraph->n_leafs; i++) {
  8193. struct ggml_tensor * node = cgraph->leafs[i];
  8194. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  8195. i,
  8196. node->ne[0], node->ne[1],
  8197. GGML_OP_LABEL[node->op]);
  8198. }
  8199. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8200. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8201. }
  8202. GGML_PRINT("========================================\n");
  8203. }
  8204. // check if node is part of the graph
  8205. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8206. if (cgraph == NULL) {
  8207. return true;
  8208. }
  8209. for (int i = 0; i < cgraph->n_nodes; i++) {
  8210. if (cgraph->nodes[i] == node) {
  8211. return true;
  8212. }
  8213. }
  8214. return false;
  8215. }
  8216. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8217. for (int i = 0; i < cgraph->n_nodes; i++) {
  8218. struct ggml_tensor * parent = cgraph->nodes[i];
  8219. if (parent->grad == node) {
  8220. return parent;
  8221. }
  8222. }
  8223. return NULL;
  8224. }
  8225. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8226. char color[16];
  8227. FILE * fp = fopen(filename, "w");
  8228. GGML_ASSERT(fp);
  8229. fprintf(fp, "digraph G {\n");
  8230. fprintf(fp, " newrank = true;\n");
  8231. fprintf(fp, " rankdir = LR;\n");
  8232. for (int i = 0; i < gb->n_nodes; i++) {
  8233. struct ggml_tensor * node = gb->nodes[i];
  8234. if (ggml_graph_get_parent(gb, node) != NULL) {
  8235. continue;
  8236. }
  8237. if (node->is_param) {
  8238. snprintf(color, sizeof(color), "yellow");
  8239. } else if (node->grad) {
  8240. if (ggml_graph_find(gf, node)) {
  8241. snprintf(color, sizeof(color), "green");
  8242. } else {
  8243. snprintf(color, sizeof(color), "lightblue");
  8244. }
  8245. } else {
  8246. snprintf(color, sizeof(color), "white");
  8247. }
  8248. fprintf(fp, " \"%p\" [ \
  8249. style = filled; fillcolor = %s; shape = record; \
  8250. label=\"%d [%d, %d] | <x>%s",
  8251. (void *) node, color,
  8252. i, node->ne[0], node->ne[1],
  8253. GGML_OP_SYMBOL[node->op]);
  8254. if (node->grad) {
  8255. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8256. } else {
  8257. fprintf(fp, "\"; ]\n");
  8258. }
  8259. }
  8260. for (int i = 0; i < gb->n_leafs; i++) {
  8261. struct ggml_tensor * node = gb->leafs[i];
  8262. snprintf(color, sizeof(color), "pink");
  8263. if (ggml_nelements(node) == 1) {
  8264. fprintf(fp, " \"%p\" [ \
  8265. style = filled; fillcolor = %s; shape = record; \
  8266. label=\"<x>%.1e\"; ]\n",
  8267. (void *) node, color, ggml_get_f32_1d(node, 0));
  8268. } else {
  8269. fprintf(fp, " \"%p\" [ \
  8270. style = filled; fillcolor = %s; shape = record; \
  8271. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  8272. (void *) node, color,
  8273. i, node->ne[0], node->ne[1]);
  8274. }
  8275. }
  8276. for (int i = 0; i < gb->n_nodes; i++) {
  8277. struct ggml_tensor * node = gb->nodes[i];
  8278. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8279. if (node->src0) {
  8280. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8281. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8282. parent0 ? (void *) parent0 : (void *) node->src0,
  8283. parent0 ? "g" : "x",
  8284. parent ? (void *) parent : (void *) node,
  8285. parent ? "g" : "x",
  8286. parent ? "empty" : "vee",
  8287. parent ? "dashed" : "solid");
  8288. }
  8289. if (node->src1) {
  8290. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8291. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8292. parent1 ? (void *) parent1 : (void *) node->src1,
  8293. parent1 ? "g" : "x",
  8294. parent ? (void *) parent : (void *) node,
  8295. parent ? "g" : "x",
  8296. parent ? "empty" : "vee",
  8297. parent ? "dashed" : "solid");
  8298. }
  8299. }
  8300. for (int i = 0; i < gb->n_leafs; i++) {
  8301. struct ggml_tensor * node = gb->leafs[i];
  8302. if (node->src0) {
  8303. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8304. (void *) node->src0, "x",
  8305. (void *) node, "x");
  8306. }
  8307. if (node->src1) {
  8308. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8309. (void *) node->src1, "x",
  8310. (void *) node, "x");
  8311. }
  8312. }
  8313. fprintf(fp, "}\n");
  8314. fclose(fp);
  8315. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8316. }
  8317. ////////////////////////////////////////////////////////////////////////////////
  8318. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8319. int i = 0;
  8320. for (int p = 0; p < np; ++p) {
  8321. const int ne = ggml_nelements(ps[p]) ;
  8322. // TODO: add function to set tensor from array
  8323. for (int j = 0; j < ne; ++j) {
  8324. ggml_set_f32_1d(ps[p], j, x[i++]);
  8325. }
  8326. }
  8327. }
  8328. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8329. int i = 0;
  8330. for (int p = 0; p < np; ++p) {
  8331. const int ne = ggml_nelements(ps[p]) ;
  8332. // TODO: add function to get all elements at once
  8333. for (int j = 0; j < ne; ++j) {
  8334. x[i++] = ggml_get_f32_1d(ps[p], j);
  8335. }
  8336. }
  8337. }
  8338. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8339. int i = 0;
  8340. for (int p = 0; p < np; ++p) {
  8341. const int ne = ggml_nelements(ps[p]) ;
  8342. // TODO: add function to get all elements at once
  8343. for (int j = 0; j < ne; ++j) {
  8344. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8345. }
  8346. }
  8347. }
  8348. //
  8349. // ADAM
  8350. //
  8351. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8352. //
  8353. static enum ggml_opt_result ggml_opt_adam(
  8354. struct ggml_context * ctx,
  8355. struct ggml_opt_params params,
  8356. struct ggml_tensor * f,
  8357. struct ggml_cgraph * gf,
  8358. struct ggml_cgraph * gb) {
  8359. GGML_ASSERT(ggml_is_scalar(f));
  8360. gf->n_threads = params.n_threads;
  8361. gb->n_threads = params.n_threads;
  8362. // these will store the parameters we want to optimize
  8363. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8364. int np = 0;
  8365. int nx = 0;
  8366. for (int i = 0; i < gf->n_nodes; ++i) {
  8367. if (gf->nodes[i]->is_param) {
  8368. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8369. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8370. ps[np++] = gf->nodes[i];
  8371. nx += ggml_nelements(gf->nodes[i]);
  8372. }
  8373. }
  8374. // constants
  8375. const float alpha = params.adam.alpha;
  8376. const float beta1 = params.adam.beta1;
  8377. const float beta2 = params.adam.beta2;
  8378. const float eps = params.adam.eps;
  8379. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8380. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8381. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8382. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8383. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8384. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8385. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8386. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8387. // initialize
  8388. ggml_vec_set_f32(nx, m, 0.0f);
  8389. ggml_vec_set_f32(nx, v, 0.0f);
  8390. // update view
  8391. ggml_opt_get_params(np, ps, x);
  8392. // compute the function value
  8393. ggml_graph_reset (gf);
  8394. ggml_set_f32 (f->grad, 1.0f);
  8395. ggml_graph_compute(ctx, gb);
  8396. float fx_prev = ggml_get_f32_1d(f, 0);
  8397. if (pf) {
  8398. pf[0] = fx_prev;
  8399. }
  8400. int n_no_improvement = 0;
  8401. float fx_best = fx_prev;
  8402. // run the optimizer
  8403. for (int t = 0; t < params.adam.n_iter; ++t) {
  8404. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8405. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8406. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8407. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8408. for (int i = 0; i < np; ++i) {
  8409. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8410. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8411. }
  8412. const int64_t t_start_wall = ggml_time_us();
  8413. const int64_t t_start_cpu = ggml_cycles();
  8414. UNUSED(t_start_wall);
  8415. UNUSED(t_start_cpu);
  8416. {
  8417. // update the gradient
  8418. ggml_opt_get_grad(np, ps, g1);
  8419. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8420. ggml_vec_scale_f32(nx, m, beta1);
  8421. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8422. // g2 = g1^2
  8423. ggml_vec_sqr_f32 (nx, g2, g1);
  8424. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8425. ggml_vec_scale_f32(nx, v, beta2);
  8426. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8427. // m^hat = m_t / (1 - beta1^t)
  8428. // v^hat = v_t / (1 - beta2^t)
  8429. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8430. ggml_vec_cpy_f32 (nx, mh, m);
  8431. ggml_vec_cpy_f32 (nx, vh, v);
  8432. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8433. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8434. ggml_vec_sqrt_f32 (nx, vh, vh);
  8435. ggml_vec_acc1_f32 (nx, vh, eps);
  8436. ggml_vec_div_f32 (nx, mh, mh, vh);
  8437. ggml_vec_sub_f32 (nx, x, x, mh);
  8438. // update the parameters
  8439. ggml_opt_set_params(np, ps, x);
  8440. }
  8441. ggml_graph_reset (gf);
  8442. ggml_set_f32 (f->grad, 1.0f);
  8443. ggml_graph_compute(ctx, gb);
  8444. const float fx = ggml_get_f32_1d(f, 0);
  8445. // check convergence
  8446. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8447. GGML_PRINT_DEBUG("converged\n");
  8448. return GGML_OPT_OK;
  8449. }
  8450. // delta-based convergence test
  8451. if (pf != NULL) {
  8452. // need at least params.past iterations to start checking for convergence
  8453. if (params.past <= t) {
  8454. const float rate = (pf[t%params.past] - fx)/fx;
  8455. if (fabs(rate) < params.delta) {
  8456. return GGML_OPT_OK;
  8457. }
  8458. }
  8459. pf[t%params.past] = fx;
  8460. }
  8461. // check for improvement
  8462. if (params.max_no_improvement > 0) {
  8463. if (fx_best > fx) {
  8464. fx_best = fx;
  8465. n_no_improvement = 0;
  8466. } else {
  8467. ++n_no_improvement;
  8468. if (n_no_improvement >= params.max_no_improvement) {
  8469. return GGML_OPT_OK;
  8470. }
  8471. }
  8472. }
  8473. fx_prev = fx;
  8474. {
  8475. const int64_t t_end_cpu = ggml_cycles();
  8476. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8477. UNUSED(t_end_cpu);
  8478. const int64_t t_end_wall = ggml_time_us();
  8479. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8480. UNUSED(t_end_wall);
  8481. }
  8482. }
  8483. return GGML_OPT_DID_NOT_CONVERGE;
  8484. }
  8485. //
  8486. // L-BFGS
  8487. //
  8488. // the L-BFGS implementation below is based on the following implementation:
  8489. //
  8490. // https://github.com/chokkan/liblbfgs
  8491. //
  8492. struct ggml_lbfgs_iteration_data {
  8493. float alpha;
  8494. float ys;
  8495. float * s;
  8496. float * y;
  8497. };
  8498. static enum ggml_opt_result linesearch_backtracking(
  8499. struct ggml_context * ctx,
  8500. const struct ggml_opt_params * params,
  8501. int nx,
  8502. float * x,
  8503. float * fx,
  8504. float * g,
  8505. float * d,
  8506. float * step,
  8507. const float * xp,
  8508. struct ggml_tensor * f,
  8509. struct ggml_cgraph * gf,
  8510. struct ggml_cgraph * gb,
  8511. const int np,
  8512. struct ggml_tensor * ps[]) {
  8513. int count = 0;
  8514. float width = 0.0f;
  8515. float dg = 0.0f;
  8516. float finit = 0.0f;
  8517. float dginit = 0.0f;
  8518. float dgtest = 0.0f;
  8519. const float dec = 0.5f;
  8520. const float inc = 2.1f;
  8521. if (*step <= 0.) {
  8522. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8523. }
  8524. // compute the initial gradient in the search direction
  8525. ggml_vec_dot_f32(nx, &dginit, g, d);
  8526. // make sure that d points to a descent direction
  8527. if (0 < dginit) {
  8528. return GGML_LINESEARCH_FAIL;
  8529. }
  8530. // initialize local variables
  8531. finit = *fx;
  8532. dgtest = params->lbfgs.ftol*dginit;
  8533. while (true) {
  8534. ggml_vec_cpy_f32(nx, x, xp);
  8535. ggml_vec_mad_f32(nx, x, d, *step);
  8536. // evaluate the function and gradient values
  8537. {
  8538. ggml_opt_set_params(np, ps, x);
  8539. ggml_graph_reset (gf);
  8540. ggml_set_f32 (f->grad, 1.0f);
  8541. ggml_graph_compute(ctx, gb);
  8542. ggml_opt_get_grad(np, ps, g);
  8543. *fx = ggml_get_f32_1d(f, 0);
  8544. }
  8545. ++count;
  8546. if (*fx > finit + (*step)*dgtest) {
  8547. width = dec;
  8548. } else {
  8549. // Armijo condition is satisfied
  8550. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8551. return count;
  8552. }
  8553. ggml_vec_dot_f32(nx, &dg, g, d);
  8554. // check the Wolfe condition
  8555. if (dg < params->lbfgs.wolfe * dginit) {
  8556. width = inc;
  8557. } else {
  8558. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8559. // regular Wolfe conditions
  8560. return count;
  8561. }
  8562. if(dg > -params->lbfgs.wolfe*dginit) {
  8563. width = dec;
  8564. } else {
  8565. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8566. return count;
  8567. }
  8568. return count;
  8569. }
  8570. }
  8571. if (*step < params->lbfgs.min_step) {
  8572. return GGML_LINESEARCH_MINIMUM_STEP;
  8573. }
  8574. if (*step > params->lbfgs.max_step) {
  8575. return GGML_LINESEARCH_MAXIMUM_STEP;
  8576. }
  8577. if (params->lbfgs.max_linesearch <= count) {
  8578. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8579. }
  8580. (*step) *= width;
  8581. }
  8582. return GGML_LINESEARCH_FAIL;
  8583. }
  8584. static enum ggml_opt_result ggml_opt_lbfgs(
  8585. struct ggml_context * ctx,
  8586. struct ggml_opt_params params,
  8587. struct ggml_tensor * f,
  8588. struct ggml_cgraph * gf,
  8589. struct ggml_cgraph * gb) {
  8590. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8591. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8592. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8593. return GGML_OPT_INVALID_WOLFE;
  8594. }
  8595. }
  8596. gf->n_threads = params.n_threads;
  8597. gb->n_threads = params.n_threads;
  8598. const int m = params.lbfgs.m;
  8599. // these will store the parameters we want to optimize
  8600. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8601. int np = 0;
  8602. int nx = 0;
  8603. for (int i = 0; i < gf->n_nodes; ++i) {
  8604. if (gf->nodes[i]->is_param) {
  8605. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8606. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8607. ps[np++] = gf->nodes[i];
  8608. nx += ggml_nelements(gf->nodes[i]);
  8609. }
  8610. }
  8611. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8612. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8613. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8614. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8615. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8616. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8617. float fx = 0.0f; // cost function value
  8618. float xnorm = 0.0f; // ||x||
  8619. float gnorm = 0.0f; // ||g||
  8620. float step = 0.0f;
  8621. // initialize x from the graph nodes
  8622. ggml_opt_get_params(np, ps, x);
  8623. // the L-BFGS memory
  8624. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8625. for (int i = 0; i < m; ++i) {
  8626. lm[i].alpha = 0.0f;
  8627. lm[i].ys = 0.0f;
  8628. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8629. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8630. }
  8631. // evaluate the function value and its gradient
  8632. {
  8633. ggml_opt_set_params(np, ps, x);
  8634. ggml_graph_reset (gf);
  8635. ggml_set_f32 (f->grad, 1.0f);
  8636. ggml_graph_compute(ctx, gb);
  8637. ggml_opt_get_grad(np, ps, g);
  8638. fx = ggml_get_f32_1d(f, 0);
  8639. }
  8640. if (pf) {
  8641. pf[0] = fx;
  8642. }
  8643. float fx_best = fx;
  8644. // search direction = -gradient
  8645. ggml_vec_neg_f32(nx, d, g);
  8646. // ||x||, ||g||
  8647. ggml_vec_norm_f32(nx, &xnorm, x);
  8648. ggml_vec_norm_f32(nx, &gnorm, g);
  8649. if (xnorm < 1.0f) {
  8650. xnorm = 1.0f;
  8651. }
  8652. // already optimized
  8653. if (gnorm/xnorm <= params.lbfgs.eps) {
  8654. return GGML_OPT_OK;
  8655. }
  8656. // initial step
  8657. ggml_vec_norm_inv_f32(nx, &step, d);
  8658. int j = 0;
  8659. int k = 1;
  8660. int ls = 0;
  8661. int end = 0;
  8662. int bound = 0;
  8663. int n_no_improvement = 0;
  8664. float ys = 0.0f;
  8665. float yy = 0.0f;
  8666. float beta = 0.0f;
  8667. while (true) {
  8668. // store the current position and gradient vectors
  8669. ggml_vec_cpy_f32(nx, xp, x);
  8670. ggml_vec_cpy_f32(nx, gp, g);
  8671. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8672. if (ls < 0) {
  8673. // linesearch failed - go back to the previous point and return
  8674. ggml_vec_cpy_f32(nx, x, xp);
  8675. ggml_vec_cpy_f32(nx, g, gp);
  8676. return ls;
  8677. }
  8678. ggml_vec_norm_f32(nx, &xnorm, x);
  8679. ggml_vec_norm_f32(nx, &gnorm, g);
  8680. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8681. if (xnorm < 1.0) {
  8682. xnorm = 1.0;
  8683. }
  8684. if (gnorm/xnorm <= params.lbfgs.eps) {
  8685. // converged
  8686. return GGML_OPT_OK;
  8687. }
  8688. // delta-based convergence test
  8689. if (pf != NULL) {
  8690. // need at least params.past iterations to start checking for convergence
  8691. if (params.past <= k) {
  8692. const float rate = (pf[k%params.past] - fx)/fx;
  8693. if (fabs(rate) < params.delta) {
  8694. return GGML_OPT_OK;
  8695. }
  8696. }
  8697. pf[k%params.past] = fx;
  8698. }
  8699. // check for improvement
  8700. if (params.max_no_improvement > 0) {
  8701. if (fx < fx_best) {
  8702. fx_best = fx;
  8703. n_no_improvement = 0;
  8704. } else {
  8705. n_no_improvement++;
  8706. if (n_no_improvement >= params.max_no_improvement) {
  8707. return GGML_OPT_OK;
  8708. }
  8709. }
  8710. }
  8711. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8712. // reached the maximum number of iterations
  8713. return GGML_OPT_DID_NOT_CONVERGE;
  8714. }
  8715. // update vectors s and y:
  8716. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8717. // y_{k+1} = g_{k+1} - g_{k}.
  8718. //
  8719. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8720. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8721. // compute scalars ys and yy:
  8722. // ys = y^t \cdot s -> 1 / \rho.
  8723. // yy = y^t \cdot y.
  8724. //
  8725. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8726. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8727. lm[end].ys = ys;
  8728. // find new search direction
  8729. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8730. bound = (m <= k) ? m : k;
  8731. k++;
  8732. end = (end + 1)%m;
  8733. // initialize search direction with -g
  8734. ggml_vec_neg_f32(nx, d, g);
  8735. j = end;
  8736. for (int i = 0; i < bound; ++i) {
  8737. j = (j + m - 1) % m;
  8738. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8739. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8740. lm[j].alpha /= lm[j].ys;
  8741. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8742. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8743. }
  8744. ggml_vec_scale_f32(nx, d, ys/yy);
  8745. for (int i = 0; i < bound; ++i) {
  8746. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8747. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8748. beta /= lm[j].ys;
  8749. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8750. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8751. j = (j + 1)%m;
  8752. }
  8753. step = 1.0;
  8754. }
  8755. return GGML_OPT_DID_NOT_CONVERGE;
  8756. }
  8757. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8758. struct ggml_opt_params result;
  8759. switch (type) {
  8760. case GGML_OPT_ADAM:
  8761. {
  8762. result = (struct ggml_opt_params) {
  8763. .type = GGML_OPT_ADAM,
  8764. .n_threads = 1,
  8765. .past = 0,
  8766. .delta = 1e-5f,
  8767. .max_no_improvement = 100,
  8768. .print_forward_graph = true,
  8769. .print_backward_graph = true,
  8770. .adam = {
  8771. .n_iter = 10000,
  8772. .alpha = 0.001f,
  8773. .beta1 = 0.9f,
  8774. .beta2 = 0.999f,
  8775. .eps = 1e-8f,
  8776. .eps_f = 1e-5f,
  8777. .eps_g = 1e-3f,
  8778. },
  8779. };
  8780. } break;
  8781. case GGML_OPT_LBFGS:
  8782. {
  8783. result = (struct ggml_opt_params) {
  8784. .type = GGML_OPT_LBFGS,
  8785. .n_threads = 1,
  8786. .past = 0,
  8787. .delta = 1e-5f,
  8788. .max_no_improvement = 0,
  8789. .print_forward_graph = true,
  8790. .print_backward_graph = true,
  8791. .lbfgs = {
  8792. .m = 6,
  8793. .n_iter = 100,
  8794. .max_linesearch = 20,
  8795. .eps = 1e-5f,
  8796. .ftol = 1e-4f,
  8797. .wolfe = 0.9f,
  8798. .min_step = 1e-20f,
  8799. .max_step = 1e+20f,
  8800. .linesearch = GGML_LINESEARCH_DEFAULT,
  8801. },
  8802. };
  8803. } break;
  8804. }
  8805. return result;
  8806. }
  8807. enum ggml_opt_result ggml_opt(
  8808. struct ggml_context * ctx,
  8809. struct ggml_opt_params params,
  8810. struct ggml_tensor * f) {
  8811. bool free_ctx = false;
  8812. if (ctx == NULL) {
  8813. struct ggml_init_params params_ctx = {
  8814. .mem_size = 16*1024*1024,
  8815. .mem_buffer = NULL,
  8816. };
  8817. ctx = ggml_init(params_ctx);
  8818. if (ctx == NULL) {
  8819. return GGML_OPT_NO_CONTEXT;
  8820. }
  8821. free_ctx = true;
  8822. }
  8823. enum ggml_opt_result result = GGML_OPT_OK;
  8824. // build forward + backward compute graphs
  8825. struct ggml_cgraph gf = ggml_build_forward (f);
  8826. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8827. switch (params.type) {
  8828. case GGML_OPT_ADAM:
  8829. {
  8830. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8831. } break;
  8832. case GGML_OPT_LBFGS:
  8833. {
  8834. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8835. } break;
  8836. }
  8837. if (params.print_forward_graph) {
  8838. ggml_graph_print (&gf);
  8839. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8840. }
  8841. if (params.print_backward_graph) {
  8842. ggml_graph_print (&gb);
  8843. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8844. }
  8845. if (free_ctx) {
  8846. ggml_free(ctx);
  8847. }
  8848. return result;
  8849. }
  8850. ////////////////////////////////////////////////////////////////////////////////
  8851. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8852. const int nb = k / qk;
  8853. const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
  8854. const size_t row_size = nb*bs;
  8855. assert(k % qk == 0);
  8856. char * pdst = (char *) dst;
  8857. for (int j = 0; j < n; j += k) {
  8858. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8859. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8860. quantize_row_q4_0_reference(src + j, pd, k);
  8861. for (int i = 0; i < nb; i++) {
  8862. for (int l = 0; l < qk; l += 2) {
  8863. const uint8_t vi0 = pb[l/2] & 0xF;
  8864. const uint8_t vi1 = pb[l/2] >> 4;
  8865. hist[vi0]++;
  8866. hist[vi1]++;
  8867. }
  8868. pb += bs;
  8869. }
  8870. }
  8871. return (n/k)*row_size;
  8872. }
  8873. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8874. const int nb = k / qk;
  8875. const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
  8876. const size_t row_size = nb*bs;
  8877. assert(k % qk == 0);
  8878. char * pdst = (char *) dst;
  8879. for (int j = 0; j < n; j += k) {
  8880. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8881. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
  8882. quantize_row_q4_1(src + j, pd, k);
  8883. for (int i = 0; i < nb; i++) {
  8884. for (int l = 0; l < qk; l += 2) {
  8885. const uint8_t vi0 = pb[l/2] & 0xF;
  8886. const uint8_t vi1 = pb[l/2] >> 4;
  8887. hist[vi0]++;
  8888. hist[vi1]++;
  8889. }
  8890. pb += bs;
  8891. }
  8892. }
  8893. return (n/k)*row_size;
  8894. }
  8895. ////////////////////////////////////////////////////////////////////////////////
  8896. int ggml_cpu_has_avx(void) {
  8897. #if defined(__AVX__)
  8898. return 1;
  8899. #else
  8900. return 0;
  8901. #endif
  8902. }
  8903. int ggml_cpu_has_avx2(void) {
  8904. #if defined(__AVX2__)
  8905. return 1;
  8906. #else
  8907. return 0;
  8908. #endif
  8909. }
  8910. int ggml_cpu_has_avx512(void) {
  8911. #if defined(__AVX512F__)
  8912. return 1;
  8913. #else
  8914. return 0;
  8915. #endif
  8916. }
  8917. int ggml_cpu_has_fma(void) {
  8918. #if defined(__FMA__)
  8919. return 1;
  8920. #else
  8921. return 0;
  8922. #endif
  8923. }
  8924. int ggml_cpu_has_neon(void) {
  8925. #if defined(__ARM_NEON)
  8926. return 1;
  8927. #else
  8928. return 0;
  8929. #endif
  8930. }
  8931. int ggml_cpu_has_arm_fma(void) {
  8932. #if defined(__ARM_FEATURE_FMA)
  8933. return 1;
  8934. #else
  8935. return 0;
  8936. #endif
  8937. }
  8938. int ggml_cpu_has_f16c(void) {
  8939. #if defined(__F16C__)
  8940. return 1;
  8941. #else
  8942. return 0;
  8943. #endif
  8944. }
  8945. int ggml_cpu_has_fp16_va(void) {
  8946. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8947. return 1;
  8948. #else
  8949. return 0;
  8950. #endif
  8951. }
  8952. int ggml_cpu_has_wasm_simd(void) {
  8953. #if defined(__wasm_simd128__)
  8954. return 1;
  8955. #else
  8956. return 0;
  8957. #endif
  8958. }
  8959. int ggml_cpu_has_blas(void) {
  8960. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8961. return 1;
  8962. #else
  8963. return 0;
  8964. #endif
  8965. }
  8966. int ggml_cpu_has_sse3(void) {
  8967. #if defined(__SSE3__)
  8968. return 1;
  8969. #else
  8970. return 0;
  8971. #endif
  8972. }
  8973. int ggml_cpu_has_vsx(void) {
  8974. #if defined(__POWER9_VECTOR__)
  8975. return 1;
  8976. #else
  8977. return 0;
  8978. #endif
  8979. }
  8980. ////////////////////////////////////////////////////////////////////////////////