ggml.c 409 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #elif defined(GGML_USE_CLBLAST)
  129. #include "ggml-opencl.h"
  130. #endif
  131. #undef MIN
  132. #undef MAX
  133. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  134. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  135. // floating point type used to accumulate sums
  136. typedef double ggml_float;
  137. // 16-bit float
  138. // on Arm, we use __fp16
  139. // on x86, we use uint16_t
  140. #ifdef __ARM_NEON
  141. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  142. //
  143. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  144. //
  145. #include <arm_neon.h>
  146. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  148. #define GGML_FP16_TO_FP32(x) ((float) (x))
  149. #define GGML_FP32_TO_FP16(x) (x)
  150. #else
  151. #ifdef __wasm_simd128__
  152. #include <wasm_simd128.h>
  153. #else
  154. #ifdef __POWER9_VECTOR__
  155. #include <altivec.h>
  156. #undef bool
  157. #define bool _Bool
  158. #else
  159. #include <immintrin.h>
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  285. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  286. #endif
  287. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  288. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  289. // This is also true for POWER9.
  290. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  291. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  292. uint16_t s;
  293. memcpy(&s, &f, sizeof(uint16_t));
  294. return table_f32_f16[s];
  295. }
  296. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  297. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  298. #endif
  299. // note: do not use these inside ggml.c
  300. // these are meant to be used via the ggml.h API
  301. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  302. return (float) GGML_FP16_TO_FP32(x);
  303. }
  304. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  305. return GGML_FP32_TO_FP16(x);
  306. }
  307. //
  308. // timing
  309. //
  310. #if defined(_MSC_VER) || defined(__MINGW32__)
  311. static int64_t timer_freq;
  312. void ggml_time_init(void) {
  313. LARGE_INTEGER frequency;
  314. QueryPerformanceFrequency(&frequency);
  315. timer_freq = frequency.QuadPart;
  316. }
  317. int64_t ggml_time_ms(void) {
  318. LARGE_INTEGER t;
  319. QueryPerformanceCounter(&t);
  320. return (t.QuadPart * 1000) / timer_freq;
  321. }
  322. int64_t ggml_time_us(void) {
  323. LARGE_INTEGER t;
  324. QueryPerformanceCounter(&t);
  325. return (t.QuadPart * 1000000) / timer_freq;
  326. }
  327. #else
  328. void ggml_time_init(void) {}
  329. int64_t ggml_time_ms(void) {
  330. struct timespec ts;
  331. clock_gettime(CLOCK_MONOTONIC, &ts);
  332. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  333. }
  334. int64_t ggml_time_us(void) {
  335. struct timespec ts;
  336. clock_gettime(CLOCK_MONOTONIC, &ts);
  337. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  338. }
  339. #endif
  340. int64_t ggml_cycles(void) {
  341. return clock();
  342. }
  343. int64_t ggml_cycles_per_ms(void) {
  344. return CLOCKS_PER_SEC/1000;
  345. }
  346. #ifdef GGML_PERF
  347. #define ggml_perf_time_ms() ggml_time_ms()
  348. #define ggml_perf_time_us() ggml_time_us()
  349. #define ggml_perf_cycles() ggml_cycles()
  350. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  351. #else
  352. #define ggml_perf_time_ms() 0
  353. #define ggml_perf_time_us() 0
  354. #define ggml_perf_cycles() 0
  355. #define ggml_perf_cycles_per_ms() 0
  356. #endif
  357. //
  358. // cache line
  359. //
  360. #if defined(__cpp_lib_hardware_interference_size)
  361. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  362. #else
  363. #if defined(__POWER9_VECTOR__)
  364. #define CACHE_LINE_SIZE 128
  365. #else
  366. #define CACHE_LINE_SIZE 64
  367. #endif
  368. #endif
  369. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  370. //
  371. // quantization
  372. //
  373. #if __AVX__ || __AVX2__ || __AVX512F__
  374. // Unpack 16 4-bit fields into 16 bytes
  375. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  376. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  377. {
  378. // Load 8 bytes from memory
  379. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  380. // Expand bytes into uint16_t values
  381. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  382. // Unpack values into individual bytes
  383. const __m128i lowMask = _mm_set1_epi8( 0xF );
  384. __m128i high = _mm_andnot_si128( lowMask, bytes );
  385. __m128i low = _mm_and_si128( lowMask, bytes );
  386. high = _mm_slli_epi16( high, 4 );
  387. bytes = _mm_or_si128( low, high );
  388. return bytes;
  389. }
  390. // horizontally add 8 floats
  391. static inline float hsum_float_8(const __m256 x) {
  392. __m128 res = _mm256_extractf128_ps(x, 1);
  393. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  394. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  395. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  396. return _mm_cvtss_f32(res);
  397. }
  398. // horizontally add 8 int32_t
  399. static inline int hsum_i32_8(const __m256i a) {
  400. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  401. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  402. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  403. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  404. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  405. }
  406. // horizontally add 4 int32_t
  407. static inline int hsum_i32_4(const __m128i a) {
  408. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  409. const __m128i sum64 = _mm_add_epi32(hi64, a);
  410. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  411. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  412. }
  413. #if __AVX2__ || __AVX512F__
  414. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  415. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  416. uint32_t x32;
  417. memcpy(&x32, x, sizeof(uint32_t));
  418. const __m256i shuf_mask = _mm256_set_epi64x(
  419. 0x0303030303030303, 0x0202020202020202,
  420. 0x0101010101010101, 0x0000000000000000);
  421. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  422. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  423. bytes = _mm256_or_si256(bytes, bit_mask);
  424. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  425. }
  426. // Unpack 32 4-bit fields into 32 bytes
  427. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  428. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  429. {
  430. // Load 16 bytes from memory
  431. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  432. // Expand bytes into uint16_t values
  433. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  434. // Unpack values into individual bytes
  435. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  436. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  437. __m256i low = _mm256_and_si256( lowMask, bytes );
  438. high = _mm256_slli_epi16( high, 4 );
  439. bytes = _mm256_or_si256( low, high );
  440. return bytes;
  441. }
  442. // add int16_t pairwise and return as float vector
  443. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  444. const __m256i ones = _mm256_set1_epi16(1);
  445. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  446. return _mm256_cvtepi32_ps(summed_pairs);
  447. }
  448. // multiply int8_t, add results pairwise twice and return as float vector
  449. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  450. // Get absolute values of x vectors
  451. const __m256i ax = _mm256_sign_epi8(x, x);
  452. // Sign the values of the y vectors
  453. const __m256i sy = _mm256_sign_epi8(y, x);
  454. #if __AVXVNNI__
  455. const __m256i zero = _mm256_setzero_si256();
  456. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  457. return _mm256_cvtepi32_ps(summed_pairs);
  458. #else
  459. // Perform multiplication and create 16-bit values
  460. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  461. return sum_i16_pairs_float(dot);
  462. #endif
  463. }
  464. static inline __m128i packNibbles( __m256i bytes )
  465. {
  466. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  467. #if __AVX512F__
  468. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  469. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  470. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  471. #else
  472. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  473. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  474. __m256i low = _mm256_and_si256( lowByte, bytes );
  475. high = _mm256_srli_epi16( high, 4 );
  476. bytes = _mm256_or_si256( low, high );
  477. // Compress uint16_t lanes into bytes
  478. __m128i r0 = _mm256_castsi256_si128( bytes );
  479. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  480. return _mm_packus_epi16( r0, r1 );
  481. #endif
  482. }
  483. #else
  484. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  485. {
  486. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  487. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  488. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  489. __m128i low = _mm_and_si128( lowByte, bytes1 );
  490. high = _mm_srli_epi16( high, 4 );
  491. bytes1 = _mm_or_si128( low, high );
  492. high = _mm_andnot_si128( lowByte, bytes2 );
  493. low = _mm_and_si128( lowByte, bytes2 );
  494. high = _mm_srli_epi16( high, 4 );
  495. bytes2 = _mm_or_si128( low, high );
  496. return _mm_packus_epi16( bytes1, bytes2);
  497. }
  498. #endif
  499. #endif // __AVX__ || __AVX2__ || __AVX512F__
  500. #if __ARM_NEON
  501. #if !defined(__aarch64__)
  502. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  503. return
  504. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  505. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  506. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  507. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  508. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  509. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  510. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  511. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  512. }
  513. inline static int16_t vaddvq_s8(int8x16_t v) {
  514. return
  515. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  516. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  517. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  518. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  519. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  520. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  521. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  522. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  523. }
  524. inline static int32_t vaddvq_s16(int16x8_t v) {
  525. return
  526. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  527. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  528. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  529. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  530. }
  531. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  532. return
  533. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  534. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  535. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  536. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  537. }
  538. inline static int32_t vaddvq_s32(int32x4_t v) {
  539. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  540. }
  541. inline static float vaddvq_f32(float32x4_t v) {
  542. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  543. }
  544. float vminvq_f32(float32x4_t v) {
  545. return
  546. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  547. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  548. }
  549. float vmaxvq_f32(float32x4_t v) {
  550. return
  551. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  552. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  553. }
  554. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  555. return vget_low_s8(vcombine_s8(a, b));
  556. }
  557. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  558. return vget_high_s8(vcombine_s8(a, b));
  559. }
  560. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  561. return vget_low_u8(vcombine_u8(a, b));
  562. }
  563. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  564. return vget_high_u8(vcombine_u8(a, b));
  565. }
  566. #endif
  567. #endif
  568. #define QK4_0 32
  569. typedef struct {
  570. float d; // delta
  571. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  572. } block_q4_0;
  573. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  574. #define QK4_1 32
  575. typedef struct {
  576. float d; // delta
  577. float m; // min
  578. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  579. } block_q4_1;
  580. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  581. #define QK4_2 16
  582. typedef struct {
  583. ggml_fp16_t d; // delta
  584. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  585. } block_q4_2;
  586. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  587. #define QK5_0 32
  588. typedef struct {
  589. ggml_fp16_t d; // delta
  590. uint8_t qh[4]; // 5-th bit of quants
  591. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  592. } block_q5_0;
  593. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  594. #define QK5_1 32
  595. typedef struct {
  596. ggml_fp16_t d; // delta
  597. ggml_fp16_t m; // min
  598. uint8_t qh[4]; // 5-th bit of quants
  599. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  600. } block_q5_1;
  601. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  602. #define QK8_0 32
  603. typedef struct {
  604. float d; // delta
  605. int8_t qs[QK8_0]; // quants
  606. } block_q8_0;
  607. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  608. #define QK8_1 32
  609. typedef struct {
  610. float d; // delta
  611. float s0; // d * sum(qs[i]) low
  612. float s1; // d * sum(qs[i]) high
  613. int8_t qs[QK8_1]; // quants
  614. } block_q8_1;
  615. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  616. // reference implementation for deterministic creation of model files
  617. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  618. assert(k % QK4_0 == 0);
  619. const int nb = k / QK4_0;
  620. uint8_t pp[QK4_0/2];
  621. for (int i = 0; i < nb; i++) {
  622. float amax = 0.0f; // absolute max
  623. float max = 0.0f;
  624. for (int l = 0; l < QK4_0; l++) {
  625. const float v = x[i*QK4_0 + l];
  626. if (amax < fabsf(v)) {
  627. amax = fabsf(v);
  628. max = v;
  629. }
  630. }
  631. const float d = max / -8;
  632. const float id = d ? 1.0f/d : 0.0f;
  633. y[i].d = d;
  634. for (int l = 0; l < QK4_0; l += 2) {
  635. const float v0 = x[i*QK4_0 + l + 0]*id;
  636. const float v1 = x[i*QK4_0 + l + 1]*id;
  637. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  638. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  639. assert(vi0 < 16);
  640. assert(vi1 < 16);
  641. pp[l/2] = vi0 | (vi1 << 4);
  642. }
  643. memcpy(y[i].qs, pp, sizeof(pp));
  644. }
  645. }
  646. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  647. assert(k % QK4_0 == 0);
  648. const int nb = k / QK4_0;
  649. block_q4_0 * restrict y = vy;
  650. #if defined(__POWER9_VECTOR__)
  651. const vector float v85 = vec_splats(8.5f);
  652. const vector signed int v15 = vec_splats(15);
  653. for (int i = 0; i < nb; i++) {
  654. float max = 0.0f;
  655. float min = 0.0f;
  656. vector float srcv [8];
  657. vector float maxv[8];
  658. vector float minv[8];
  659. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  660. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  661. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  662. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  663. maxv[0] = vec_max(maxv[0], maxv[2]);
  664. maxv[4] = vec_max(maxv[4], maxv[6]);
  665. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  666. maxv[0] = vec_max(maxv[0], maxv[4]);
  667. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  668. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  669. minv[0] = vec_min(minv[0], minv[2]);
  670. minv[4] = vec_min(minv[4], minv[6]);
  671. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  672. minv[0] = vec_min(minv[0], minv[4]);
  673. max = MAX(
  674. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  675. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  676. min = MIN(
  677. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  678. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  679. const float magnitude = max >= fabsf(min) ? max : min;
  680. const float d = magnitude / -8;
  681. const float id = d ? 1.0/d : 0.0;
  682. y[i].d = d;
  683. const vector float vid = vec_splats(id);
  684. uint8_t * restrict pb = y[i].qs;
  685. for (int l = 0; l < 8; l++) {
  686. const vector float vf = vec_madd(srcv[l], vid, v85);
  687. const vector signed int vi = vec_signed(vf);
  688. const vector signed int vc = vec_min(vi, v15);
  689. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  690. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  691. }
  692. }
  693. #elif __ARM_NEON
  694. for (int i = 0; i < nb; i++) {
  695. float32x4_t srcv [8];
  696. float32x4_t maxv[8];
  697. float32x4_t minv[8];
  698. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  699. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  700. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  701. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  702. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  703. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  704. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  705. const float max = vmaxvq_f32(maxv[0]);
  706. const float min = vminvq_f32(minv[0]);
  707. const float magnitude = max >= fabsf(min) ? max : min;
  708. const float d = magnitude / -8;
  709. const float id = d ? 1.0f/d : 0.0f;
  710. y[i].d = d;
  711. for (int l = 0; l < 8; l++) {
  712. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  713. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  714. const int32x4_t vi = vcvtq_s32_f32(vf);
  715. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  716. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  717. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  718. }
  719. }
  720. #elif defined(__AVX2__)
  721. for (int i = 0; i < nb; i++) {
  722. // Load elements into 4 AVX vectors
  723. __m256 v0 = _mm256_loadu_ps( x );
  724. __m256 v1 = _mm256_loadu_ps( x + 8 );
  725. __m256 v2 = _mm256_loadu_ps( x + 16 );
  726. __m256 v3 = _mm256_loadu_ps( x + 24 );
  727. x += 32;
  728. // Compute max for the block
  729. __m256 max = _mm256_max_ps( v0, v1 );
  730. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  731. max = _mm256_max_ps( max, maxTmp );
  732. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  733. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  734. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  735. const float maxScalar = _mm_cvtss_f32( max4 );
  736. // Compute min for the block
  737. __m256 min = _mm256_min_ps( v0, v1 );
  738. __m256 minTmp = _mm256_min_ps( v2, v3 );
  739. min = _mm256_min_ps( min, minTmp );
  740. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  741. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  742. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  743. const float minScalar = _mm_cvtss_f32( min4 );
  744. // Quantize these floats
  745. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  746. const float d = magnitude / -8.0f;
  747. y[i].d = d;
  748. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  749. const __m256 mul = _mm256_set1_ps( id );
  750. // Apply the multiplier
  751. v0 = _mm256_mul_ps( v0, mul );
  752. v1 = _mm256_mul_ps( v1, mul );
  753. v2 = _mm256_mul_ps( v2, mul );
  754. v3 = _mm256_mul_ps( v3, mul );
  755. // Round to nearest integer
  756. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  757. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  758. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  759. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  760. // Convert floats to integers
  761. __m256i i0 = _mm256_cvtps_epi32( v0 );
  762. __m256i i1 = _mm256_cvtps_epi32( v1 );
  763. __m256i i2 = _mm256_cvtps_epi32( v2 );
  764. __m256i i3 = _mm256_cvtps_epi32( v3 );
  765. // Convert int32 to int16
  766. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  767. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  768. // Convert int16 to int8
  769. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  770. // We got our precious signed bytes, but the order is now wrong
  771. // These AVX2 pack instructions process 16-byte pieces independently
  772. // The following instruction is fixing the order
  773. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  774. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  775. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  776. const __m256i off = _mm256_set1_epi8( 8 );
  777. i0 = _mm256_add_epi8( i0, off );
  778. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  779. i0 = _mm256_min_epi8( i0, maxNibble );
  780. // Compress the vector into 4 bit/value, and store
  781. __m128i res = packNibbles( i0 );
  782. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  783. }
  784. #elif defined(__AVX__)
  785. for (int i = 0; i < nb; i++) {
  786. // Load elements into 4 AVX vectors
  787. __m256 v0 = _mm256_loadu_ps( x );
  788. __m256 v1 = _mm256_loadu_ps( x + 8 );
  789. __m256 v2 = _mm256_loadu_ps( x + 16 );
  790. __m256 v3 = _mm256_loadu_ps( x + 24 );
  791. x += 32;
  792. // Compute max for the block
  793. __m256 max = _mm256_max_ps( v0, v1 );
  794. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  795. max = _mm256_max_ps( max, maxTmp );
  796. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  797. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  798. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  799. const float maxScalar = _mm_cvtss_f32( max4 );
  800. // Compute min for the block
  801. __m256 min = _mm256_min_ps( v0, v1 );
  802. __m256 minTmp = _mm256_min_ps( v2, v3 );
  803. min = _mm256_min_ps( min, minTmp );
  804. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  805. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  806. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  807. const float minScalar = _mm_cvtss_f32( min4 );
  808. // Quantize these floats
  809. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  810. const float d = magnitude / -8.0f;
  811. y[i].d = d;
  812. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  813. const __m256 mul = _mm256_set1_ps( id );
  814. // Apply the multiplier
  815. v0 = _mm256_mul_ps( v0, mul );
  816. v1 = _mm256_mul_ps( v1, mul );
  817. v2 = _mm256_mul_ps( v2, mul );
  818. v3 = _mm256_mul_ps( v3, mul );
  819. // Round to nearest integer
  820. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  821. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  822. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  823. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  824. // Convert floats to integers
  825. __m256i i0 = _mm256_cvtps_epi32( v0 );
  826. __m256i i1 = _mm256_cvtps_epi32( v1 );
  827. __m256i i2 = _mm256_cvtps_epi32( v2 );
  828. __m256i i3 = _mm256_cvtps_epi32( v3 );
  829. // Since we don't have in AVX some necessary functions,
  830. // we split the registers in half and call AVX2 analogs from SSE
  831. __m128i ni0 = _mm256_castsi256_si128( i0 );
  832. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  833. __m128i ni2 = _mm256_castsi256_si128( i1 );
  834. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  835. __m128i ni4 = _mm256_castsi256_si128( i2 );
  836. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  837. __m128i ni6 = _mm256_castsi256_si128( i3 );
  838. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  839. // Convert int32 to int16
  840. ni0 = _mm_packs_epi32( ni0, ni1 );
  841. ni2 = _mm_packs_epi32( ni2, ni3 );
  842. ni4 = _mm_packs_epi32( ni4, ni5 );
  843. ni6 = _mm_packs_epi32( ni6, ni7 );
  844. // Convert int16 to int8
  845. ni0 = _mm_packs_epi16( ni0, ni2 );
  846. ni4 = _mm_packs_epi16( ni4, ni6 );
  847. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  848. const __m128i off = _mm_set1_epi8( 8 );
  849. ni0 = _mm_add_epi8( ni0, off );
  850. ni4 = _mm_add_epi8( ni4, off );
  851. const __m128i maxNibble = _mm_set1_epi8( 15 );
  852. ni0 = _mm_min_epi8( ni0, maxNibble );
  853. ni4 = _mm_min_epi8( ni4, maxNibble );
  854. // Compress the vector into 4 bit/value, and store
  855. __m128i res = packNibbles( ni0, ni4 );
  856. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  857. }
  858. #elif defined(__wasm_simd128__)
  859. for (int i = 0; i < nb; i++) {
  860. float max = 0.0f;
  861. float min = 0.0f;
  862. v128_t srcv [8];
  863. v128_t maxv[8];
  864. v128_t minv[8];
  865. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  866. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  867. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  868. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  869. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  870. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  871. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  872. max = MAX(
  873. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  874. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  875. min = MIN(
  876. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  877. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  878. const float magnitude = max >= fabsf(min) ? max : min;
  879. const float d = magnitude / -8;
  880. const float id = d ? 1.0/d : 0.0;
  881. y[i].d = d;
  882. for (int l = 0; l < 8; l++) {
  883. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  884. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  885. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  886. const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
  887. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  888. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  889. }
  890. }
  891. #else
  892. // scalar
  893. quantize_row_q4_0_reference(x, y, k);
  894. #endif
  895. }
  896. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  897. assert(k % QK4_1 == 0);
  898. const int nb = k / QK4_1;
  899. block_q4_1 * restrict y = vy;
  900. uint8_t pp[QK4_1/2];
  901. for (int i = 0; i < nb; i++) {
  902. float min = FLT_MAX;
  903. float max = -FLT_MAX;
  904. for (int l = 0; l < QK4_1; l++) {
  905. const float v = x[i*QK4_1 + l];
  906. if (v < min) min = v;
  907. if (v > max) max = v;
  908. }
  909. const float d = (max - min) / ((1 << 4) - 1);
  910. const float id = d ? 1.0f/d : 0.0f;
  911. y[i].d = d;
  912. y[i].m = min;
  913. for (int l = 0; l < QK4_1; l += 2) {
  914. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  915. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  916. const uint8_t vi0 = roundf(v0);
  917. const uint8_t vi1 = roundf(v1);
  918. assert(vi0 < 16);
  919. assert(vi1 < 16);
  920. pp[l/2] = vi0 | (vi1 << 4);
  921. }
  922. memcpy(y[i].qs, pp, sizeof(pp));
  923. }
  924. }
  925. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  926. assert(k % QK4_1 == 0);
  927. const int nb = k / QK4_1;
  928. block_q4_1 * restrict y = vy;
  929. #if defined(__AVX2__)
  930. for (int i = 0; i < nb; i++) {
  931. // Load elements into 4 AVX vectors
  932. __m256 v0 = _mm256_loadu_ps( x );
  933. __m256 v1 = _mm256_loadu_ps( x + 8 );
  934. __m256 v2 = _mm256_loadu_ps( x + 16 );
  935. __m256 v3 = _mm256_loadu_ps( x + 24 );
  936. x += 32;
  937. // Compute max for the block
  938. __m256 vmax;
  939. vmax = _mm256_max_ps( v0, v1 );
  940. vmax = _mm256_max_ps( vmax, v2 );
  941. vmax = _mm256_max_ps( vmax, v3 );
  942. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  943. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  944. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  945. const float maxScalar = _mm_cvtss_f32( max4 );
  946. // Compute min for the block
  947. __m256 vmin;
  948. vmin = _mm256_min_ps( v0, v1 );
  949. vmin = _mm256_min_ps( vmin, v2 );
  950. vmin = _mm256_min_ps( vmin, v3 );
  951. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  952. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  953. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  954. const float minScalar = _mm_cvtss_f32( min4 );
  955. // Quantize these floats
  956. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  957. const float id = d ? 1.0f/d : 0.0f;
  958. y[i].m = minScalar;
  959. y[i].d = d;
  960. // x = (x-min)*id
  961. const __m256 mul = _mm256_set1_ps( id );
  962. const __m256 off = _mm256_set1_ps( minScalar );
  963. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  964. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  965. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  966. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  967. // Round to nearest integer
  968. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  969. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  970. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  971. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  972. // Convert floats to integers
  973. __m256i i0 = _mm256_cvtps_epi32( v0 );
  974. __m256i i1 = _mm256_cvtps_epi32( v1 );
  975. __m256i i2 = _mm256_cvtps_epi32( v2 );
  976. __m256i i3 = _mm256_cvtps_epi32( v3 );
  977. // Convert int32 to int16
  978. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  979. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  980. // Convert int16 to int8
  981. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  982. // We got our precious signed bytes, but the order is now wrong
  983. // These AVX2 pack instructions process 16-byte pieces independently
  984. // The following instruction is fixing the order
  985. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  986. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  987. // Compress the vector into 4 bit/value, and store
  988. __m128i res = packNibbles( i0 );
  989. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  990. }
  991. #elif __ARM_NEON
  992. for (int i = 0; i < nb; i++) {
  993. float32x4_t srcv[8];
  994. float32x4_t minv[8];
  995. float32x4_t maxv[8];
  996. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  997. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  998. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  999. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1000. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1001. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1002. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1003. const float min = vminvq_f32(minv[0]);
  1004. const float max = vmaxvq_f32(maxv[0]);
  1005. const float d = (max - min) / ((1 << 4) - 1);
  1006. const float id = d ? 1.0f/d : 0.0f;
  1007. y[i].d = d;
  1008. y[i].m = min;
  1009. const float32x4_t minv0 = vdupq_n_f32(min);
  1010. for (int l = 0; l < 8; l++) {
  1011. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1012. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1013. const int32x4_t vi = vcvtq_s32_f32(vf);
  1014. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1015. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1016. }
  1017. }
  1018. #else
  1019. // scalar
  1020. quantize_row_q4_1_reference(x, vy, k);
  1021. #endif
  1022. }
  1023. // reference implementation for deterministic creation of model files
  1024. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1025. assert(k % QK4_2 == 0);
  1026. const int nb = k / QK4_2;
  1027. for (int i = 0; i < nb; i++) {
  1028. float amax = 0.0f; // absolute max
  1029. float max = 0.0f;
  1030. for (int l = 0; l < QK4_2; l++) {
  1031. const float v = x[i*QK4_2 + l];
  1032. if (amax < fabsf(v)) {
  1033. amax = fabsf(v);
  1034. max = v;
  1035. }
  1036. }
  1037. const float d = max / -8;
  1038. const float id = d ? 1.0f/d : 0.0f;
  1039. y[i].d = GGML_FP32_TO_FP16(d);
  1040. for (int l = 0; l < QK4_2; l += 2) {
  1041. const float v0 = x[i*QK4_2 + l + 0]*id;
  1042. const float v1 = x[i*QK4_2 + l + 1]*id;
  1043. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1044. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1045. assert(vi0 < 16);
  1046. assert(vi1 < 16);
  1047. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1048. }
  1049. }
  1050. }
  1051. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1052. assert(k % QK4_2 == 0);
  1053. block_q4_2 * restrict y = vy;
  1054. quantize_row_q4_2_reference(x, y, k);
  1055. }
  1056. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1057. assert(k % QK5_0 == 0);
  1058. const int nb = k / QK5_0;
  1059. for (int i = 0; i < nb; i++) {
  1060. float amax = 0.0f; // absolute max
  1061. float max = 0.0f;
  1062. for (int l = 0; l < QK5_0; l++) {
  1063. const float v = x[i*QK5_0 + l];
  1064. if (amax < fabsf(v)) {
  1065. amax = fabsf(v);
  1066. max = v;
  1067. }
  1068. }
  1069. const float d = max / -16;
  1070. const float id = d ? 1.0f/d : 0.0f;
  1071. y[i].d = GGML_FP32_TO_FP16(d);
  1072. uint32_t qh = 0;
  1073. for (int l = 0; l < QK5_0; l += 2) {
  1074. const float v0 = x[i*QK5_0 + l + 0]*id;
  1075. const float v1 = x[i*QK5_0 + l + 1]*id;
  1076. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1077. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1078. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1079. // get the 5-th bit and store it in qh at the right position
  1080. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1081. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1082. }
  1083. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1084. }
  1085. }
  1086. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1087. assert(k % QK5_0 == 0);
  1088. block_q5_0 * restrict y = vy;
  1089. quantize_row_q5_0_reference(x, y, k);
  1090. }
  1091. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1092. assert(k % QK5_1 == 0);
  1093. const int nb = k / QK5_1;
  1094. for (int i = 0; i < nb; i++) {
  1095. float min = FLT_MAX;
  1096. float max = -FLT_MAX;
  1097. for (int l = 0; l < QK5_1; l++) {
  1098. const float v = x[i*QK5_1 + l];
  1099. if (v < min) min = v;
  1100. if (v > max) max = v;
  1101. }
  1102. const float d = (max - min) / ((1 << 5) - 1);
  1103. const float id = d ? 1.0f/d : 0.0f;
  1104. y[i].d = GGML_FP32_TO_FP16(d);
  1105. y[i].m = GGML_FP32_TO_FP16(min);
  1106. uint32_t qh = 0;
  1107. for (int l = 0; l < QK5_1; l += 2) {
  1108. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1109. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1110. const uint32_t vi0 = (int) (v0 + 0.5f);
  1111. const uint32_t vi1 = (int) (v1 + 0.5f);
  1112. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1113. // get the 5-th bit and store it in qh at the right position
  1114. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1115. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1116. }
  1117. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1118. }
  1119. }
  1120. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1121. assert(k % QK5_1 == 0);
  1122. block_q5_1 * restrict y = vy;
  1123. quantize_row_q5_1_reference(x, y, k);
  1124. }
  1125. // reference implementation for deterministic creation of model files
  1126. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1127. assert(k % QK8_0 == 0);
  1128. const int nb = k / QK8_0;
  1129. for (int i = 0; i < nb; i++) {
  1130. float amax = 0.0f; // absolute max
  1131. for (int l = 0; l < QK8_0; l++) {
  1132. const float v = x[i*QK8_0 + l];
  1133. amax = MAX(amax, fabsf(v));
  1134. }
  1135. const float d = amax / ((1 << 7) - 1);
  1136. const float id = d ? 1.0f/d : 0.0f;
  1137. y[i].d = d;
  1138. for (int l = 0; l < QK8_0; ++l) {
  1139. const float v0 = x[i*QK8_0 + l]*id;
  1140. y[i].qs[l] = roundf(v0);
  1141. }
  1142. }
  1143. }
  1144. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1145. assert(k % QK8_0 == 0);
  1146. block_q8_0 * restrict y = vy;
  1147. quantize_row_q8_0_reference(x, y, k);
  1148. }
  1149. // reference implementation for deterministic creation of model files
  1150. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1151. assert(k % QK8_1 == 0);
  1152. const int nb = k / QK8_1;
  1153. for (int i = 0; i < nb; i++) {
  1154. float amax = 0.0f; // absolute max
  1155. for (int l = 0; l < QK8_1; l++) {
  1156. const float v = x[i*QK8_1 + l];
  1157. amax = MAX(amax, fabsf(v));
  1158. }
  1159. const float d = amax / ((1 << 7) - 1);
  1160. const float id = d ? 1.0f/d : 0.0f;
  1161. y[i].d = d;
  1162. int sum0 = 0;
  1163. int sum1 = 0;
  1164. for (int l = 0; l < QK8_1/2; ++l) {
  1165. const float v0 = x[i*QK8_1 + l]*id;
  1166. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1167. y[i].qs[ l] = roundf(v0);
  1168. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1169. sum0 += y[i].qs[ l];
  1170. sum1 += y[i].qs[QK8_1/2 + l];
  1171. }
  1172. y[i].s0 = d * sum0;
  1173. y[i].s1 = d * sum1;
  1174. }
  1175. }
  1176. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1177. assert(k % QK8_1 == 0);
  1178. const int nb = k / QK8_1;
  1179. block_q8_1 * restrict y = vy;
  1180. #if defined(__ARM_NEON)
  1181. for (int i = 0; i < nb; i++) {
  1182. float32x4_t srcv [8];
  1183. float32x4_t asrcv[8];
  1184. float32x4_t amaxv[8];
  1185. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1186. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1187. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1188. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1189. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1190. const float amax = vmaxvq_f32(amaxv[0]);
  1191. const float d = amax / ((1 << 7) - 1);
  1192. const float id = d ? 1.0f/d : 0.0f;
  1193. y[i].d = d;
  1194. int32x4_t accv0 = vdupq_n_s32(0);
  1195. int32x4_t accv1 = vdupq_n_s32(0);
  1196. // low half
  1197. for (int l = 0; l < 4; l++) {
  1198. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1199. const int32x4_t vi = vcvtnq_s32_f32(v);
  1200. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1201. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1202. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1203. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1204. accv0 = vaddq_s32(accv0, vi);
  1205. }
  1206. // high half
  1207. for (int l = 4; l < 8; l++) {
  1208. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1209. const int32x4_t vi = vcvtnq_s32_f32(v);
  1210. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1211. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1212. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1213. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1214. accv1 = vaddq_s32(accv1, vi);
  1215. }
  1216. const int32_t sum0 = vaddvq_s32(accv0);
  1217. const int32_t sum1 = vaddvq_s32(accv1);
  1218. y[i].s0 = d * sum0;
  1219. y[i].s1 = d * sum1;
  1220. }
  1221. #elif defined(__AVX2__) || defined(__AVX__)
  1222. for (int i = 0; i < nb; i++) {
  1223. // Load elements into 4 AVX vectors
  1224. __m256 v0 = _mm256_loadu_ps( x );
  1225. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1226. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1227. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1228. x += 32;
  1229. // Compute max(abs(e)) for the block
  1230. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1231. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1232. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1233. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1234. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1235. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1236. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1237. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1238. const float maxScalar = _mm_cvtss_f32( max4 );
  1239. // Quantize these floats
  1240. const float d = maxScalar / 127.f;
  1241. y[i].d = d;
  1242. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1243. const __m256 mul = _mm256_set1_ps( id );
  1244. // Apply the multiplier
  1245. v0 = _mm256_mul_ps( v0, mul );
  1246. v1 = _mm256_mul_ps( v1, mul );
  1247. v2 = _mm256_mul_ps( v2, mul );
  1248. v3 = _mm256_mul_ps( v3, mul );
  1249. // Round to nearest integer
  1250. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1251. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1252. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1253. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1254. // Convert floats to integers
  1255. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1256. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1257. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1258. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1259. #if defined(__AVX2__)
  1260. // Compute the sum of the quants and set y[i].s
  1261. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1262. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1263. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1264. // Convert int32 to int16
  1265. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1266. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1267. // Convert int16 to int8
  1268. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1269. // We got our precious signed bytes, but the order is now wrong
  1270. // These AVX2 pack instructions process 16-byte pieces independently
  1271. // The following instruction is fixing the order
  1272. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1273. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1274. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1275. #else
  1276. // Since we don't have in AVX some necessary functions,
  1277. // we split the registers in half and call AVX2 analogs from SSE
  1278. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1279. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1280. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1281. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1282. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1283. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1284. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1285. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1286. // Compute the sum of the quants and set y[i].s
  1287. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1288. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1289. y[i].s0 = d * hsum_i32_4(s0);
  1290. y[i].s1 = d * hsum_i32_4(s1);
  1291. // Convert int32 to int16
  1292. ni0 = _mm_packs_epi32( ni0, ni1 );
  1293. ni2 = _mm_packs_epi32( ni2, ni3 );
  1294. ni4 = _mm_packs_epi32( ni4, ni5 );
  1295. ni6 = _mm_packs_epi32( ni6, ni7 );
  1296. // Convert int16 to int8
  1297. ni0 = _mm_packs_epi16( ni0, ni2 );
  1298. ni4 = _mm_packs_epi16( ni4, ni6 );
  1299. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1300. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1301. #endif
  1302. }
  1303. #else
  1304. // scalar
  1305. quantize_row_q8_1_reference(x, y, k);
  1306. #endif
  1307. }
  1308. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1309. assert(k % QK4_0 == 0);
  1310. const int nb = k / QK4_0;
  1311. const block_q4_0 * restrict x = vx;
  1312. #if defined(__AVX2__)
  1313. for (int i = 0; i < nb; i++) {
  1314. // scale factor
  1315. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1316. const uint8_t * restrict pp = x[i].qs;
  1317. for (int l = 0; l < QK4_0; l += 32) {
  1318. // Load 32x4-bit integers into 32x8-bit integers
  1319. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1320. // Subtract 8 from the integers
  1321. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1322. // Convert to 16-bit int
  1323. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1324. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1325. // Convert to 32-bit int -> float 32
  1326. const __m256 vf[4] = {
  1327. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1328. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1329. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1330. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1331. };
  1332. // Scale and store
  1333. for (int j = 0; j < 4; j++) {
  1334. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1335. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1336. }
  1337. }
  1338. }
  1339. #elif defined(__ARM_NEON)
  1340. for (int i = 0; i < nb; i++) {
  1341. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1342. const uint8_t * restrict pp = x[i].qs;
  1343. for (int l = 0; l < QK4_0; l += 16) {
  1344. // Load 16x4-bit integers into 8x8-bit integers
  1345. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1346. // Expand 4-bit qs to 8-bit bytes
  1347. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1348. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1349. // Convert to signed 8-bit integers
  1350. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1351. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1352. // Subtract 8 from each byte
  1353. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1354. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1355. // Interleave and combine
  1356. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1357. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1358. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1359. // convert to 2x int16x8_t
  1360. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1361. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1362. // convert to 4x float32x4_t
  1363. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1364. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1365. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1366. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1367. // Multiply by d
  1368. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1369. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1370. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1371. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1372. // Store
  1373. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1374. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1375. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1376. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1377. }
  1378. }
  1379. #else
  1380. // scalar
  1381. for (int i = 0; i < nb; i++) {
  1382. const float d = x[i].d;
  1383. const uint8_t * restrict pp = x[i].qs;
  1384. for (int l = 0; l < QK4_0; l += 2) {
  1385. const uint8_t vi = pp[l/2];
  1386. const int8_t vi0 = vi & 0x0F;
  1387. const int8_t vi1 = vi >> 4;
  1388. const float v0 = (vi0 - 8)*d;
  1389. const float v1 = (vi1 - 8)*d;
  1390. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1391. y[i*QK4_0 + l + 0] = v0;
  1392. y[i*QK4_0 + l + 1] = v1;
  1393. assert(!isnan(y[i*QK4_0 + l + 0]));
  1394. assert(!isnan(y[i*QK4_0 + l + 1]));
  1395. }
  1396. }
  1397. #endif
  1398. }
  1399. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1400. assert(k % QK4_1 == 0);
  1401. const int nb = k / QK4_1;
  1402. const block_q4_1 * restrict x = vx;
  1403. #if defined(__AVX2__)
  1404. for (int i = 0; i < nb; i++) {
  1405. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1406. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1407. const uint8_t * restrict pp = x[i].qs;
  1408. for (int l = 0; l < QK4_1; l += 32) {
  1409. // Load 32x4-bit integers into 32x8-bit integers
  1410. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1411. // Convert to 16-bit int
  1412. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1413. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1414. // Convert to 32-bit int -> float 32
  1415. const __m256 vf[4] = {
  1416. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1417. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1418. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1419. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1420. };
  1421. // Scale, add m and store
  1422. for (int j = 0; j < 4; j++) {
  1423. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1424. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1425. }
  1426. }
  1427. }
  1428. #elif defined(__ARM_NEON)
  1429. for (int i = 0; i < nb; i++) {
  1430. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1431. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1432. const uint8_t * restrict pp = x[i].qs;
  1433. for (int l = 0; l < QK4_1; l += 16) {
  1434. // Load 16x4-bit integers into 8x8-bit integers
  1435. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1436. // Expand 4-bit qs to 8-bit bytes
  1437. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1438. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1439. // Interleave and combine
  1440. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1441. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1442. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1443. // convert to 2x uint16x8_t
  1444. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1445. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1446. // convert to 4x float32x4_t
  1447. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1448. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1449. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1450. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1451. // multiply by d and add m
  1452. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1453. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1454. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1455. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1456. // Store
  1457. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1458. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1459. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1460. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1461. }
  1462. }
  1463. #else
  1464. for (int i = 0; i < nb; i++) {
  1465. const float d = x[i].d;
  1466. const float m = x[i].m;
  1467. const uint8_t * restrict pp = x[i].qs;
  1468. for (int l = 0; l < QK4_1; l += 2) {
  1469. const uint8_t vi = pp[l/2];
  1470. const int8_t vi0 = vi & 0x0F;
  1471. const int8_t vi1 = vi >> 4;
  1472. const float v0 = vi0*d + m;
  1473. const float v1 = vi1*d + m;
  1474. y[i*QK4_1 + l + 0] = v0;
  1475. y[i*QK4_1 + l + 1] = v1;
  1476. assert(!isnan(y[i*QK4_1 + l + 0]));
  1477. assert(!isnan(y[i*QK4_1 + l + 1]));
  1478. }
  1479. }
  1480. #endif
  1481. }
  1482. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1483. assert(k % QK4_2 == 0);
  1484. const int nb = k / QK4_2;
  1485. const block_q4_2 * restrict x = vx;
  1486. for (int i = 0; i < nb; i++) {
  1487. const float d = GGML_FP16_TO_FP32(x[i].d);
  1488. const uint8_t * restrict pp = x[i].qs;
  1489. for (int l = 0; l < QK4_2; l += 2) {
  1490. const uint8_t vi = pp[l/2];
  1491. const int8_t vi0 = vi & 0x0F;
  1492. const int8_t vi1 = vi >> 4;
  1493. const float v0 = (vi0 - 8)*d;
  1494. const float v1 = (vi1 - 8)*d;
  1495. y[i*QK4_2 + l + 0] = v0;
  1496. y[i*QK4_2 + l + 1] = v1;
  1497. assert(!isnan(y[i*QK4_2 + l + 0]));
  1498. assert(!isnan(y[i*QK4_2 + l + 1]));
  1499. }
  1500. }
  1501. }
  1502. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1503. assert(k % QK5_0 == 0);
  1504. const int nb = k / QK5_0;
  1505. const block_q5_0 * restrict x = vx;
  1506. for (int i = 0; i < nb; i++) {
  1507. const float d = GGML_FP16_TO_FP32(x[i].d);
  1508. const uint8_t * restrict pp = x[i].qs;
  1509. uint32_t qh;
  1510. memcpy(&qh, x[i].qh, sizeof(qh));
  1511. for (int l = 0; l < QK5_0; l += 2) {
  1512. const uint8_t vi = pp[l/2];
  1513. // extract the 5-th bit from qh
  1514. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1515. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1516. const int8_t vi0 = (vi & 0x0F) | vh0;
  1517. const int8_t vi1 = (vi >> 4) | vh1;
  1518. const float v0 = (vi0 - 16)*d;
  1519. const float v1 = (vi1 - 16)*d;
  1520. y[i*QK5_0 + l + 0] = v0;
  1521. y[i*QK5_0 + l + 1] = v1;
  1522. assert(!isnan(y[i*QK5_0 + l + 0]));
  1523. assert(!isnan(y[i*QK5_0 + l + 1]));
  1524. }
  1525. }
  1526. }
  1527. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1528. assert(k % QK5_1 == 0);
  1529. const int nb = k / QK5_1;
  1530. const block_q5_1 * restrict x = vx;
  1531. for (int i = 0; i < nb; i++) {
  1532. const float d = GGML_FP16_TO_FP32(x[i].d);
  1533. const float m = GGML_FP16_TO_FP32(x[i].m);
  1534. const uint8_t * restrict pp = x[i].qs;
  1535. uint32_t qh;
  1536. memcpy(&qh, x[i].qh, sizeof(qh));
  1537. for (int l = 0; l < QK5_1; l += 2) {
  1538. const uint8_t vi = pp[l/2];
  1539. // extract the 5-th bit from qh
  1540. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1541. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1542. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1543. const uint8_t vi1 = (vi >> 4) | vh1;
  1544. const float v0 = vi0*d + m;
  1545. const float v1 = vi1*d + m;
  1546. y[i*QK5_1 + l + 0] = v0;
  1547. y[i*QK5_1 + l + 1] = v1;
  1548. assert(!isnan(y[i*QK5_1 + l + 0]));
  1549. assert(!isnan(y[i*QK5_1 + l + 1]));
  1550. }
  1551. }
  1552. }
  1553. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1554. assert(k % QK8_0 == 0);
  1555. const int nb = k / QK8_0;
  1556. const block_q8_0 * restrict x = vx;
  1557. for (int i = 0; i < nb; i++) {
  1558. const float d = x[i].d;
  1559. const int8_t * restrict pp = x[i].qs;
  1560. for (int l = 0; l < QK8_0; ++l) {
  1561. y[i*QK8_0 + l] = pp[l]*d;
  1562. }
  1563. }
  1564. }
  1565. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1566. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1567. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1568. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1569. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1570. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1571. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1572. [GGML_TYPE_Q4_0] = {
  1573. .dequantize_row_q = dequantize_row_q4_0,
  1574. .quantize_row_q = quantize_row_q4_0,
  1575. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1576. .quantize_row_q_dot = quantize_row_q8_0,
  1577. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1578. .vec_dot_type = GGML_TYPE_Q8_0,
  1579. },
  1580. [GGML_TYPE_Q4_1] = {
  1581. .dequantize_row_q = dequantize_row_q4_1,
  1582. .quantize_row_q = quantize_row_q4_1,
  1583. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1584. .quantize_row_q_dot = quantize_row_q8_1,
  1585. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1586. .vec_dot_type = GGML_TYPE_Q8_1,
  1587. },
  1588. [GGML_TYPE_Q4_2] = {
  1589. .dequantize_row_q = dequantize_row_q4_2,
  1590. .quantize_row_q = quantize_row_q4_2,
  1591. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1592. .quantize_row_q_dot = quantize_row_q8_0,
  1593. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1594. .vec_dot_type = GGML_TYPE_Q8_0,
  1595. },
  1596. [GGML_TYPE_Q5_0] = {
  1597. .dequantize_row_q = dequantize_row_q5_0,
  1598. .quantize_row_q = quantize_row_q5_0,
  1599. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1600. .quantize_row_q_dot = quantize_row_q8_0,
  1601. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1602. .vec_dot_type = GGML_TYPE_Q8_0,
  1603. },
  1604. [GGML_TYPE_Q5_1] = {
  1605. .dequantize_row_q = dequantize_row_q5_1,
  1606. .quantize_row_q = quantize_row_q5_1,
  1607. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1608. .quantize_row_q_dot = quantize_row_q8_1,
  1609. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1610. .vec_dot_type = GGML_TYPE_Q8_1,
  1611. },
  1612. [GGML_TYPE_Q8_0] = {
  1613. .dequantize_row_q = dequantize_row_q8_0,
  1614. .quantize_row_q = quantize_row_q8_0,
  1615. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1616. .quantize_row_q_dot = quantize_row_q8_0,
  1617. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1618. .vec_dot_type = GGML_TYPE_Q8_0,
  1619. },
  1620. [GGML_TYPE_Q8_1] = {
  1621. .dequantize_row_q = NULL, // TODO
  1622. .quantize_row_q = quantize_row_q8_1,
  1623. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1624. .quantize_row_q_dot = quantize_row_q8_1,
  1625. .vec_dot_q = NULL, // TODO
  1626. .vec_dot_type = GGML_TYPE_Q8_1,
  1627. },
  1628. };
  1629. // For internal test use
  1630. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1631. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1632. return quantize_fns[i];
  1633. }
  1634. //
  1635. // simd mappings
  1636. //
  1637. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1638. // we then implement the fundamental computation operations below using only these macros
  1639. // adding support for new architectures requires to define the corresponding SIMD macros
  1640. //
  1641. // GGML_F32_STEP / GGML_F16_STEP
  1642. // number of elements to process in a single step
  1643. //
  1644. // GGML_F32_EPR / GGML_F16_EPR
  1645. // number of elements to fit in a single register
  1646. //
  1647. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1648. #define GGML_SIMD
  1649. // F32 NEON
  1650. #define GGML_F32_STEP 16
  1651. #define GGML_F32_EPR 4
  1652. #define GGML_F32x4 float32x4_t
  1653. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1654. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1655. #define GGML_F32x4_LOAD vld1q_f32
  1656. #define GGML_F32x4_STORE vst1q_f32
  1657. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1658. #define GGML_F32x4_ADD vaddq_f32
  1659. #define GGML_F32x4_MUL vmulq_f32
  1660. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1661. #define GGML_F32x4_REDUCE(res, x) \
  1662. { \
  1663. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1664. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1665. } \
  1666. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1667. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1668. } \
  1669. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1670. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1671. } \
  1672. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1673. }
  1674. #define GGML_F32_VEC GGML_F32x4
  1675. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1676. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1677. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1678. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1679. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1680. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1681. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1682. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1683. // F16 NEON
  1684. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1685. #define GGML_F16_STEP 32
  1686. #define GGML_F16_EPR 8
  1687. #define GGML_F16x8 float16x8_t
  1688. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1689. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1690. #define GGML_F16x8_LOAD vld1q_f16
  1691. #define GGML_F16x8_STORE vst1q_f16
  1692. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1693. #define GGML_F16x8_ADD vaddq_f16
  1694. #define GGML_F16x8_MUL vmulq_f16
  1695. #define GGML_F16x8_REDUCE(res, x) \
  1696. { \
  1697. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1698. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1699. } \
  1700. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1701. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1702. } \
  1703. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1704. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1705. } \
  1706. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1707. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1708. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1709. }
  1710. #define GGML_F16_VEC GGML_F16x8
  1711. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1712. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1713. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1714. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1715. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1716. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1717. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1718. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1719. #else
  1720. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1721. // and take advantage of the vcvt_ functions to convert to/from FP16
  1722. #define GGML_F16_STEP 16
  1723. #define GGML_F16_EPR 4
  1724. #define GGML_F32Cx4 float32x4_t
  1725. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1726. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1727. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1728. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1729. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1730. #define GGML_F32Cx4_ADD vaddq_f32
  1731. #define GGML_F32Cx4_MUL vmulq_f32
  1732. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1733. #define GGML_F16_VEC GGML_F32Cx4
  1734. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1735. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1736. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1737. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1738. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1739. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1740. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1741. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1742. #endif
  1743. #elif defined(__AVX__)
  1744. #define GGML_SIMD
  1745. // F32 AVX
  1746. #define GGML_F32_STEP 32
  1747. #define GGML_F32_EPR 8
  1748. #define GGML_F32x8 __m256
  1749. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1750. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1751. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1752. #define GGML_F32x8_STORE _mm256_storeu_ps
  1753. #if defined(__FMA__)
  1754. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1755. #else
  1756. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1757. #endif
  1758. #define GGML_F32x8_ADD _mm256_add_ps
  1759. #define GGML_F32x8_MUL _mm256_mul_ps
  1760. #define GGML_F32x8_REDUCE(res, x) \
  1761. { \
  1762. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1763. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1764. } \
  1765. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1766. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1767. } \
  1768. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1769. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1770. } \
  1771. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1772. _mm256_extractf128_ps(x[0], 1)); \
  1773. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1774. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1775. }
  1776. // TODO: is this optimal ?
  1777. #define GGML_F32_VEC GGML_F32x8
  1778. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1779. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1780. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1781. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1782. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1783. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1784. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1785. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1786. // F16 AVX
  1787. #define GGML_F16_STEP 32
  1788. #define GGML_F16_EPR 8
  1789. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1790. #define GGML_F32Cx8 __m256
  1791. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1792. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1793. #if defined(__F16C__)
  1794. // the _mm256_cvt intrinsics require F16C
  1795. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1796. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1797. #else
  1798. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1799. float tmp[8];
  1800. for (int i = 0; i < 8; i++)
  1801. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1802. return _mm256_loadu_ps(tmp);
  1803. }
  1804. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1805. float arr[8];
  1806. _mm256_storeu_ps(arr, y);
  1807. for (int i = 0; i < 8; i++)
  1808. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1809. }
  1810. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1811. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1812. #endif
  1813. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1814. #define GGML_F32Cx8_ADD _mm256_add_ps
  1815. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1816. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1817. #define GGML_F16_VEC GGML_F32Cx8
  1818. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1819. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1820. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1821. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1822. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1823. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1824. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1825. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1826. #elif defined(__POWER9_VECTOR__)
  1827. #define GGML_SIMD
  1828. // F32 POWER9
  1829. #define GGML_F32_STEP 32
  1830. #define GGML_F32_EPR 4
  1831. #define GGML_F32x4 vector float
  1832. #define GGML_F32x4_ZERO 0.0f
  1833. #define GGML_F32x4_SET1 vec_splats
  1834. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1835. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1836. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1837. #define GGML_F32x4_ADD vec_add
  1838. #define GGML_F32x4_MUL vec_mul
  1839. #define GGML_F32x4_REDUCE(res, x) \
  1840. { \
  1841. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1842. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1843. } \
  1844. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1845. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1846. } \
  1847. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1848. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1849. } \
  1850. res = vec_extract(x[0], 0) + \
  1851. vec_extract(x[0], 1) + \
  1852. vec_extract(x[0], 2) + \
  1853. vec_extract(x[0], 3); \
  1854. }
  1855. #define GGML_F32_VEC GGML_F32x4
  1856. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1857. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1858. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1859. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1860. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1861. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1862. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1863. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1864. // F16 POWER9
  1865. #define GGML_F16_STEP GGML_F32_STEP
  1866. #define GGML_F16_EPR GGML_F32_EPR
  1867. #define GGML_F16_VEC GGML_F32x4
  1868. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1869. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1870. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1871. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1872. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1873. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1874. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1875. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1876. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1877. #define GGML_F16_VEC_STORE(p, r, i) \
  1878. if (i & 0x1) \
  1879. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1880. r[i - GGML_ENDIAN_BYTE(0)]), \
  1881. 0, p - GGML_F16_EPR)
  1882. #elif defined(__wasm_simd128__)
  1883. #define GGML_SIMD
  1884. // F32 WASM
  1885. #define GGML_F32_STEP 16
  1886. #define GGML_F32_EPR 4
  1887. #define GGML_F32x4 v128_t
  1888. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1889. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1890. #define GGML_F32x4_LOAD wasm_v128_load
  1891. #define GGML_F32x4_STORE wasm_v128_store
  1892. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1893. #define GGML_F32x4_ADD wasm_f32x4_add
  1894. #define GGML_F32x4_MUL wasm_f32x4_mul
  1895. #define GGML_F32x4_REDUCE(res, x) \
  1896. { \
  1897. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1898. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1899. } \
  1900. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1901. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1902. } \
  1903. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1904. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1905. } \
  1906. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1907. wasm_f32x4_extract_lane(x[0], 1) + \
  1908. wasm_f32x4_extract_lane(x[0], 2) + \
  1909. wasm_f32x4_extract_lane(x[0], 3); \
  1910. }
  1911. #define GGML_F32_VEC GGML_F32x4
  1912. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1913. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1914. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1915. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1916. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1917. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1918. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1919. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1920. // F16 WASM
  1921. #define GGML_F16_STEP 16
  1922. #define GGML_F16_EPR 4
  1923. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1924. float tmp[4];
  1925. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1926. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1927. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1928. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1929. return wasm_v128_load(tmp);
  1930. }
  1931. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1932. float tmp[4];
  1933. wasm_v128_store(tmp, x);
  1934. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1935. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1936. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1937. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1938. }
  1939. #define GGML_F16x4 v128_t
  1940. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1941. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1942. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1943. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1944. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1945. #define GGML_F16x4_ADD wasm_f32x4_add
  1946. #define GGML_F16x4_MUL wasm_f32x4_mul
  1947. #define GGML_F16x4_REDUCE(res, x) \
  1948. { \
  1949. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1950. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1951. } \
  1952. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1953. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1954. } \
  1955. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1956. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1957. } \
  1958. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1959. wasm_f32x4_extract_lane(x[0], 1) + \
  1960. wasm_f32x4_extract_lane(x[0], 2) + \
  1961. wasm_f32x4_extract_lane(x[0], 3); \
  1962. }
  1963. #define GGML_F16_VEC GGML_F16x4
  1964. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1965. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1966. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1967. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1968. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1969. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1970. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1971. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1972. #elif defined(__SSE3__)
  1973. #define GGML_SIMD
  1974. // F32 SSE
  1975. #define GGML_F32_STEP 32
  1976. #define GGML_F32_EPR 4
  1977. #define GGML_F32x4 __m128
  1978. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1979. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1980. #define GGML_F32x4_LOAD _mm_loadu_ps
  1981. #define GGML_F32x4_STORE _mm_storeu_ps
  1982. #if defined(__FMA__)
  1983. // TODO: Does this work?
  1984. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1985. #else
  1986. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1987. #endif
  1988. #define GGML_F32x4_ADD _mm_add_ps
  1989. #define GGML_F32x4_MUL _mm_mul_ps
  1990. #define GGML_F32x4_REDUCE(res, x) \
  1991. { \
  1992. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1993. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1994. } \
  1995. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1996. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1997. } \
  1998. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1999. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2000. } \
  2001. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2002. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2003. }
  2004. // TODO: is this optimal ?
  2005. #define GGML_F32_VEC GGML_F32x4
  2006. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2007. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2008. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2009. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2010. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2011. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2012. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2013. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2014. // F16 SSE
  2015. #define GGML_F16_STEP 32
  2016. #define GGML_F16_EPR 4
  2017. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2018. float tmp[4];
  2019. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2020. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2021. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2022. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2023. return _mm_loadu_ps(tmp);
  2024. }
  2025. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2026. float arr[4];
  2027. _mm_storeu_ps(arr, y);
  2028. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2029. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2030. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2031. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2032. }
  2033. #define GGML_F32Cx4 __m128
  2034. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2035. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2036. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2037. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2038. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2039. #define GGML_F32Cx4_ADD _mm_add_ps
  2040. #define GGML_F32Cx4_MUL _mm_mul_ps
  2041. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2042. #define GGML_F16_VEC GGML_F32Cx4
  2043. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2044. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2045. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2046. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2047. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2048. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2049. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2050. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2051. #endif
  2052. // GGML_F32_ARR / GGML_F16_ARR
  2053. // number of registers to use per step
  2054. #ifdef GGML_SIMD
  2055. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2056. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2057. #endif
  2058. //
  2059. // fundamental operations
  2060. //
  2061. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2062. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2063. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2064. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2065. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2066. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2067. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2068. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2069. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2070. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2071. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2072. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2073. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2074. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2075. #ifdef GGML_SIMD
  2076. float sumf = 0.0f;
  2077. const int np = (n & ~(GGML_F32_STEP - 1));
  2078. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2079. GGML_F32_VEC ax[GGML_F32_ARR];
  2080. GGML_F32_VEC ay[GGML_F32_ARR];
  2081. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2082. for (int j = 0; j < GGML_F32_ARR; j++) {
  2083. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2084. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2085. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2086. }
  2087. }
  2088. // reduce sum0..sum3 to sum0
  2089. GGML_F32_VEC_REDUCE(sumf, sum);
  2090. // leftovers
  2091. for (int i = np; i < n; ++i) {
  2092. sumf += x[i]*y[i];
  2093. }
  2094. #else
  2095. // scalar
  2096. ggml_float sumf = 0.0;
  2097. for (int i = 0; i < n; ++i) {
  2098. sumf += (ggml_float)(x[i]*y[i]);
  2099. }
  2100. #endif
  2101. *s = sumf;
  2102. }
  2103. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2104. ggml_float sumf = 0.0;
  2105. #if defined(GGML_SIMD)
  2106. const int np = (n & ~(GGML_F16_STEP - 1));
  2107. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2108. GGML_F16_VEC ax[GGML_F16_ARR];
  2109. GGML_F16_VEC ay[GGML_F16_ARR];
  2110. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2111. for (int j = 0; j < GGML_F16_ARR; j++) {
  2112. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2113. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2114. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2115. }
  2116. }
  2117. // reduce sum0..sum3 to sum0
  2118. GGML_F16_VEC_REDUCE(sumf, sum);
  2119. // leftovers
  2120. for (int i = np; i < n; ++i) {
  2121. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2122. }
  2123. #else
  2124. for (int i = 0; i < n; ++i) {
  2125. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2126. }
  2127. #endif
  2128. *s = sumf;
  2129. }
  2130. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2131. const int nb = n / QK8_0;
  2132. assert(n % QK8_0 == 0);
  2133. assert(nb % 2 == 0);
  2134. const block_q4_0 * restrict x = vx;
  2135. const block_q8_0 * restrict y = vy;
  2136. #if defined(__ARM_NEON)
  2137. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2138. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2139. for (int i = 0; i < nb; i += 2) {
  2140. const block_q4_0 * restrict x0 = &x[i + 0];
  2141. const block_q4_0 * restrict x1 = &x[i + 1];
  2142. const block_q8_0 * restrict y0 = &y[i + 0];
  2143. const block_q8_0 * restrict y1 = &y[i + 1];
  2144. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2145. const int8x16_t s8b = vdupq_n_s8(0x8);
  2146. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2147. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2148. // 4-bit -> 8-bit
  2149. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2150. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2151. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2152. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2153. // sub 8
  2154. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2155. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2156. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2157. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2158. // load y
  2159. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2160. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2161. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2162. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2163. // interleave
  2164. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2165. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2166. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2167. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2168. #if defined(__ARM_FEATURE_DOTPROD)
  2169. // dot product into int32x4_t
  2170. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  2171. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  2172. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2173. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2174. #else
  2175. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2176. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2177. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2178. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2179. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2180. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2181. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2182. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2183. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2184. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2185. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2186. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2187. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2188. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2189. #endif
  2190. }
  2191. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2192. #elif defined(__AVX2__)
  2193. // Initialize accumulator with zeros
  2194. __m256 acc = _mm256_setzero_ps();
  2195. // Main loop
  2196. for (int i = 0; i < nb; ++i) {
  2197. /* Compute combined scale for the block */
  2198. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2199. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2200. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2201. const __m256i off = _mm256_set1_epi8( 8 );
  2202. bx = _mm256_sub_epi8( bx, off );
  2203. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2204. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2205. /* Multiply q with scale and accumulate */
  2206. acc = _mm256_fmadd_ps( d, q, acc );
  2207. }
  2208. *s = hsum_float_8(acc);
  2209. #elif defined(__AVX__)
  2210. // Initialize accumulator with zeros
  2211. __m256 acc = _mm256_setzero_ps();
  2212. // Main loop
  2213. for (int i = 0; i < nb; ++i) {
  2214. // Compute combined scale for the block
  2215. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2216. __m128i i32[2];
  2217. for (int j = 0; j < 2; ++j) {
  2218. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2219. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2220. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2221. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2222. const __m128i off = _mm_set1_epi8( 8 );
  2223. bx = _mm_sub_epi8( bx, off );
  2224. // Get absolute values of x vectors
  2225. const __m128i ax = _mm_sign_epi8(bx, bx);
  2226. // Sign the values of the y vectors
  2227. const __m128i sy = _mm_sign_epi8(by, bx);
  2228. // Perform multiplication and create 16-bit values
  2229. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2230. const __m128i ones = _mm_set1_epi16(1);
  2231. i32[j] = _mm_madd_epi16(ones, dot);
  2232. }
  2233. // Convert int32_t to float
  2234. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2235. // Apply the scale, and accumulate
  2236. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2237. }
  2238. *s = hsum_float_8(acc);
  2239. #else
  2240. // scalar
  2241. float sumf = 0.0;
  2242. for (int i = 0; i < nb; i++) {
  2243. const float d0 = x[i].d;
  2244. const float d1 = y[i].d;
  2245. const uint8_t * restrict p0 = x[i].qs;
  2246. const int8_t * restrict p1 = y[i].qs;
  2247. int sumi = 0;
  2248. for (int j = 0; j < QK8_0/2; j++) {
  2249. const uint8_t v0 = p0[j];
  2250. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2251. const int i1 = (int8_t) (v0 >> 4) - 8;
  2252. const int i2 = p1[2*j + 0];
  2253. const int i3 = p1[2*j + 1];
  2254. sumi += i0*i2 + i1*i3;
  2255. }
  2256. sumf += d0*d1*sumi;
  2257. }
  2258. *s = sumf;
  2259. #endif
  2260. }
  2261. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2262. const int nb = n / QK8_1;
  2263. assert(n % QK8_1 == 0);
  2264. assert(nb % 2 == 0);
  2265. const block_q4_1 * restrict x = vx;
  2266. const block_q8_1 * restrict y = vy;
  2267. // TODO: add AVX / WASM SIMD / etc
  2268. #if defined(__ARM_NEON)
  2269. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2270. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2271. float summs = 0;
  2272. for (int i = 0; i < nb; i += 2) {
  2273. const block_q4_1 * restrict x0 = &x[i + 0];
  2274. const block_q4_1 * restrict x1 = &x[i + 1];
  2275. const block_q8_1 * restrict y0 = &y[i + 0];
  2276. const block_q8_1 * restrict y1 = &y[i + 1];
  2277. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2278. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2279. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2280. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2281. // 4-bit -> 8-bit
  2282. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2283. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2284. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2285. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2286. // interleave
  2287. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2288. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2289. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2290. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2291. // load y
  2292. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2293. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2294. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2295. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2296. #if defined(__ARM_FEATURE_DOTPROD)
  2297. // dot product into int32x4_t
  2298. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2299. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2300. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2301. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2302. #else
  2303. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2304. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2305. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2306. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2307. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2308. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2309. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2310. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2311. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2312. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2313. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2314. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2315. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2316. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2317. #endif
  2318. }
  2319. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2320. #elif defined(__AVX2__)
  2321. // Initialize accumulator with zeros
  2322. __m256 acc = _mm256_setzero_ps();
  2323. float summs = 0;
  2324. // Main loop
  2325. for (int i = 0; i < nb; ++i) {
  2326. const float * d0 = &x[i].d;
  2327. const float * d1 = &y[i].d;
  2328. summs += x[i].m * (y[i].s0 + y[i].s1);
  2329. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2330. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2331. // Compute combined scales
  2332. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2333. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2334. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2335. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2336. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2337. // Accumulate d0*d1*x*y
  2338. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2339. }
  2340. *s = hsum_float_8(acc) + summs;
  2341. #else
  2342. // scalar
  2343. float sumf = 0.0;
  2344. for (int i = 0; i < nb; i++) {
  2345. const float d0 = x[i].d;
  2346. const float m0 = x[i].m;
  2347. const float d1 = y[i].d;
  2348. const uint8_t * restrict p0 = x[i].qs;
  2349. const int8_t * restrict p1 = y[i].qs;
  2350. // TODO: this is very slow ..
  2351. for (int j = 0; j < QK8_1/2; j++) {
  2352. const uint8_t v0 = p0[j];
  2353. const float f0 = d0*(v0 & 0x0F) + m0;
  2354. const float f1 = d0*(v0 >> 4) + m0;
  2355. const float f2 = d1*p1[2*j + 0];
  2356. const float f3 = d1*p1[2*j + 1];
  2357. sumf += f0*f2 + f1*f3;
  2358. }
  2359. }
  2360. *s = sumf;
  2361. #endif
  2362. }
  2363. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2364. const int nb = n / QK8_0;
  2365. assert(n % QK8_0 == 0);
  2366. assert(nb % 2 == 0);
  2367. assert(QK8_0 == 2*QK4_2);
  2368. const block_q4_2 * restrict x = vx;
  2369. const block_q8_0 * restrict y = vy;
  2370. #if defined(__ARM_NEON)
  2371. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2372. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2373. for (int i = 0; i < nb; i += 2) {
  2374. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2375. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2376. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2377. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2378. const block_q8_0 * restrict y0 = &y[i + 0];
  2379. const block_q8_0 * restrict y1 = &y[i + 1];
  2380. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2381. const int8x16_t s8b = vdupq_n_s8(0x8);
  2382. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2383. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2384. // 4-bit -> 8-bit
  2385. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2386. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2387. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2388. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2389. // sub 8
  2390. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2391. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2392. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2393. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2394. // interleave
  2395. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2396. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2397. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2398. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2399. // load y
  2400. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2401. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2402. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2403. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2404. #if defined(__ARM_FEATURE_DOTPROD)
  2405. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2406. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2407. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2408. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2409. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2410. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2411. #else
  2412. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2413. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2414. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2415. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2416. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2417. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2418. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2419. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2420. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2421. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2422. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2423. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2424. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2425. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2426. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2427. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2428. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2429. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2430. #endif
  2431. }
  2432. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2433. #elif defined(__AVX2__)
  2434. // Initialize accumulator with zeros
  2435. __m256 acc = _mm256_setzero_ps();
  2436. // Main loop
  2437. for (int i = 0; i < nb; i++) {
  2438. /* Compute combined scale for the block */
  2439. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2440. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2441. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2442. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2443. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2444. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2445. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2446. const __m256i off = _mm256_set1_epi8(8);
  2447. bx = _mm256_sub_epi8(bx, off);
  2448. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2449. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2450. /* Multiply q with scale and accumulate */
  2451. acc = _mm256_fmadd_ps(d, q, acc);
  2452. }
  2453. *s = hsum_float_8(acc);
  2454. #else
  2455. // scalar
  2456. float sumf = 0.0;
  2457. for (int i = 0; i < nb; i++) {
  2458. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2459. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2460. const int8_t * restrict y0 = y[i].qs;
  2461. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2462. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2463. int sumi_0 = 0;
  2464. int sumi_1 = 0;
  2465. for (int j = 0; j < QK8_0/4; j++) {
  2466. const uint8_t v0 = x0[j];
  2467. const uint8_t v1 = x1[j];
  2468. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2469. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2470. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2471. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2472. const int i2_0 = y0[2*j + 0];
  2473. const int i3_0 = y0[2*j + 1];
  2474. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2475. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2476. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2477. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2478. }
  2479. sumf += (d0 * y[i].d) * sumi_0;
  2480. sumf += (d1 * y[i].d) * sumi_1;
  2481. }
  2482. *s = sumf;
  2483. #endif
  2484. }
  2485. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2486. const int nb = n / QK8_0;
  2487. assert(n % QK8_0 == 0);
  2488. assert(nb % 2 == 0);
  2489. assert(QK8_0 == QK5_0);
  2490. const block_q5_0 * restrict x = vx;
  2491. const block_q8_0 * restrict y = vy;
  2492. #if defined(__ARM_NEON)
  2493. float32x4_t sumv = vdupq_n_f32(0.0f);
  2494. uint64_t tmp[4];
  2495. for (int i = 0; i < nb; ++i) {
  2496. const block_q5_0 * restrict x0 = &x[i];
  2497. const block_q8_0 * restrict y0 = &y[i];
  2498. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2499. const int8x16_t s16b = vdupq_n_s8(0x10);
  2500. // extract the 5th bit
  2501. uint32_t qh;
  2502. memcpy(&qh, x0->qh, sizeof(qh));
  2503. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2504. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2505. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2506. tmp[3] = table_b2b_u[(qh >> 24) ];
  2507. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2508. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2509. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2510. // 4-bit -> 8-bit
  2511. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2512. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2513. // interleave
  2514. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2515. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2516. // add high bit and sub 16
  2517. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2518. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2519. // load y
  2520. const int8x16_t v1l = vld1q_s8(y0->qs);
  2521. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2522. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2523. #if defined(__ARM_FEATURE_DOTPROD)
  2524. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2525. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2526. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2527. #else
  2528. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2529. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2530. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2531. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2532. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2533. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2534. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2535. #endif
  2536. }
  2537. *s = vaddvq_f32(sumv);
  2538. #elif defined(__AVX2__)
  2539. // Initialize accumulator with zeros
  2540. __m256 acc = _mm256_setzero_ps();
  2541. // Main loop
  2542. for (int i = 0; i < nb; i++) {
  2543. /* Compute combined scale for the block */
  2544. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2545. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2546. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2547. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2548. bx = _mm256_or_si256(bx, bxhi);
  2549. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2550. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2551. /* Multiply q with scale and accumulate */
  2552. acc = _mm256_fmadd_ps(d, q, acc);
  2553. }
  2554. *s = hsum_float_8(acc);
  2555. #else
  2556. // scalar
  2557. float sumf = 0.0;
  2558. for (int i = 0; i < nb; i++) {
  2559. const uint8_t * restrict x0 = x[i].qs;
  2560. const int8_t * restrict y0 = y[i].qs;
  2561. uint32_t qh;
  2562. memcpy(&qh, x[i].qh, sizeof(qh));
  2563. const float d = GGML_FP16_TO_FP32(x[i].d);
  2564. int sxy = 0;
  2565. for (int j = 0; j < QK8_0/2; j++) {
  2566. const uint8_t v0 = x0[j];
  2567. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2568. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2569. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2570. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2571. const int y0_0 = y0[2*j + 0];
  2572. const int y1_0 = y0[2*j + 1];
  2573. sxy += x0_0*y0_0 + x1_0*y1_0;
  2574. }
  2575. sumf += (d*sxy)*y[i].d;
  2576. }
  2577. *s = sumf;
  2578. #endif
  2579. }
  2580. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2581. const int nb = n / QK8_1;
  2582. assert(n % QK8_1 == 0);
  2583. assert(nb % 2 == 0);
  2584. assert(QK8_1 == QK5_1);
  2585. const block_q5_1 * restrict x = vx;
  2586. const block_q8_1 * restrict y = vy;
  2587. #if defined(__ARM_NEON)
  2588. float32x4_t sumv = vdupq_n_f32(0.0f);
  2589. float summs = 0.0f;
  2590. uint64_t tmp[4];
  2591. for (int i = 0; i < nb; ++i) {
  2592. const block_q5_1 * restrict x0 = &x[i];
  2593. const block_q8_1 * restrict y0 = &y[i];
  2594. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2595. // extract the 5th bit
  2596. uint32_t qh;
  2597. memcpy(&qh, x0->qh, sizeof(qh));
  2598. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2599. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2600. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2601. tmp[3] = table_b2b_u[(qh >> 24) ];
  2602. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2603. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2604. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2605. // 4-bit -> 8-bit
  2606. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2607. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2608. // interleave
  2609. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2610. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2611. // add
  2612. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2613. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2614. // load y
  2615. const int8x16_t v1l = vld1q_s8(y0->qs);
  2616. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2617. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2618. #if defined(__ARM_FEATURE_DOTPROD)
  2619. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2620. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2621. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2622. #else
  2623. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2624. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2625. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2626. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2627. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2628. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2629. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2630. #endif
  2631. }
  2632. *s = vaddvq_f32(sumv) + summs;
  2633. #elif defined(__AVX2__)
  2634. // Initialize accumulator with zeros
  2635. __m256 acc = _mm256_setzero_ps();
  2636. float summs = 0.0f;
  2637. // Main loop
  2638. for (int i = 0; i < nb; i++) {
  2639. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2640. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2641. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2642. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2643. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2644. bx = _mm256_or_si256(bx, bxhi);
  2645. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2646. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2647. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2648. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2649. }
  2650. *s = hsum_float_8(acc) + summs;
  2651. #else
  2652. float sumf = 0.0;
  2653. for (int i = 0; i < nb; i++) {
  2654. const uint8_t * restrict x0 = x[i].qs;
  2655. const int8_t * restrict y0 = y[i].qs;
  2656. uint32_t qh;
  2657. memcpy(&qh, x[i].qh, sizeof(qh));
  2658. const float d = GGML_FP16_TO_FP32(x[i].d);
  2659. const float m = GGML_FP16_TO_FP32(x[i].m);
  2660. int sxy = 0;
  2661. for (int j = 0; j < QK8_1/2; j++) {
  2662. const uint8_t v0 = x0[j];
  2663. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2664. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2665. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2666. const int x1_0 = (v0 >> 4) | x1_0h;
  2667. const int y0_0 = y0[2*j + 0];
  2668. const int y1_0 = y0[2*j + 1];
  2669. sxy += x0_0*y0_0 + x1_0*y1_0;
  2670. }
  2671. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2672. }
  2673. *s = sumf;
  2674. #endif
  2675. }
  2676. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2677. const int nb = n / QK8_0;
  2678. assert(n % QK8_0 == 0);
  2679. assert(nb % 2 == 0);
  2680. assert(QK8_0 == QK8_0);
  2681. const block_q8_0 * restrict x = vx;
  2682. const block_q8_0 * restrict y = vy;
  2683. #if defined(__ARM_NEON)
  2684. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2685. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2686. for (int i = 0; i < nb; i += 2) {
  2687. const block_q8_0 * restrict x0 = &x[i + 0];
  2688. const block_q8_0 * restrict x1 = &x[i + 1];
  2689. const block_q8_0 * restrict y0 = &y[i + 0];
  2690. const block_q8_0 * restrict y1 = &y[i + 1];
  2691. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2692. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2693. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2694. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2695. // load y
  2696. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2697. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2698. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2699. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2700. #if defined(__ARM_FEATURE_DOTPROD)
  2701. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2702. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2703. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2704. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2705. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2706. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2707. #else
  2708. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2709. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2710. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2711. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2712. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2713. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2714. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2715. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2716. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2717. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2718. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2719. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2720. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2721. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2722. #endif
  2723. }
  2724. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2725. #elif defined(__AVX2__)
  2726. // Initialize accumulator with zeros
  2727. __m256 acc = _mm256_setzero_ps();
  2728. // Main loop
  2729. for (int i = 0; i < nb; ++i) {
  2730. // Compute combined scale for the block
  2731. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2732. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2733. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2734. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2735. // Multiply q with scale and accumulate
  2736. acc = _mm256_fmadd_ps( d, q, acc );
  2737. }
  2738. *s = hsum_float_8(acc);
  2739. #else
  2740. // scalar
  2741. float sumf = 0.0;
  2742. for (int i = 0; i < nb; i++) {
  2743. const int8_t * restrict x0 = x[i].qs;
  2744. const int8_t * restrict y0 = y[i].qs;
  2745. int sumi = 0;
  2746. for (int j = 0; j < QK8_0; j++) {
  2747. const int v0 = x0[j];
  2748. const int v1 = y0[j];
  2749. sumi += v0*v1;
  2750. }
  2751. sumf += (x[i].d*y[i].d)*sumi;
  2752. }
  2753. *s = sumf;
  2754. #endif
  2755. }
  2756. // compute GGML_VEC_DOT_UNROLL dot products at once
  2757. // xs - x row stride in bytes
  2758. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2759. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2760. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2761. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2762. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2763. }
  2764. #if defined(GGML_SIMD)
  2765. const int np = (n & ~(GGML_F16_STEP - 1));
  2766. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2767. GGML_F16_VEC ax[GGML_F16_ARR];
  2768. GGML_F16_VEC ay[GGML_F16_ARR];
  2769. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2770. for (int j = 0; j < GGML_F16_ARR; j++) {
  2771. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2772. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2773. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2774. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2775. }
  2776. }
  2777. }
  2778. // reduce sum0..sum3 to sum0
  2779. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2780. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2781. }
  2782. // leftovers
  2783. for (int i = np; i < n; ++i) {
  2784. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2785. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2786. }
  2787. }
  2788. #else
  2789. for (int i = 0; i < n; ++i) {
  2790. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2791. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2792. }
  2793. }
  2794. #endif
  2795. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2796. s[i] = sumf[i];
  2797. }
  2798. }
  2799. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2800. #if defined(GGML_SIMD)
  2801. const int np = (n & ~(GGML_F32_STEP - 1));
  2802. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2803. GGML_F32_VEC ax[GGML_F32_ARR];
  2804. GGML_F32_VEC ay[GGML_F32_ARR];
  2805. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2806. for (int j = 0; j < GGML_F32_ARR; j++) {
  2807. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2808. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2809. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2810. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2811. }
  2812. }
  2813. // leftovers
  2814. for (int i = np; i < n; ++i) {
  2815. y[i] += x[i]*v;
  2816. }
  2817. #else
  2818. // scalar
  2819. for (int i = 0; i < n; ++i) {
  2820. y[i] += x[i]*v;
  2821. }
  2822. #endif
  2823. }
  2824. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2825. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2826. #if defined(GGML_SIMD)
  2827. const int np = (n & ~(GGML_F32_STEP - 1));
  2828. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2829. GGML_F32_VEC ay[GGML_F32_ARR];
  2830. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2831. for (int j = 0; j < GGML_F32_ARR; j++) {
  2832. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2833. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2834. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2835. }
  2836. }
  2837. // leftovers
  2838. for (int i = np; i < n; ++i) {
  2839. y[i] *= v;
  2840. }
  2841. #else
  2842. // scalar
  2843. for (int i = 0; i < n; ++i) {
  2844. y[i] *= v;
  2845. }
  2846. #endif
  2847. }
  2848. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2849. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2850. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2851. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2852. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2853. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2854. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2855. static const float GELU_COEF_A = 0.044715f;
  2856. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2857. inline static float ggml_gelu_f32(float x) {
  2858. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2859. }
  2860. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2861. const uint16_t * i16 = (const uint16_t *) x;
  2862. for (int i = 0; i < n; ++i) {
  2863. y[i] = table_gelu_f16[i16[i]];
  2864. }
  2865. }
  2866. #ifdef GGML_GELU_FP16
  2867. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2868. uint16_t t;
  2869. for (int i = 0; i < n; ++i) {
  2870. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2871. memcpy(&t, &fp16, sizeof(uint16_t));
  2872. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2873. }
  2874. }
  2875. #else
  2876. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2877. for (int i = 0; i < n; ++i) {
  2878. y[i] = ggml_gelu_f32(x[i]);
  2879. }
  2880. }
  2881. #endif
  2882. // Sigmoid Linear Unit (SiLU) function
  2883. inline static float ggml_silu_f32(float x) {
  2884. return x/(1.0f + expf(-x));
  2885. }
  2886. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2887. const uint16_t * i16 = (const uint16_t *) x;
  2888. for (int i = 0; i < n; ++i) {
  2889. y[i] = table_silu_f16[i16[i]];
  2890. }
  2891. }
  2892. #ifdef GGML_SILU_FP16
  2893. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2894. uint16_t t;
  2895. for (int i = 0; i < n; ++i) {
  2896. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2897. memcpy(&t, &fp16, sizeof(uint16_t));
  2898. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2899. }
  2900. }
  2901. #else
  2902. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2903. for (int i = 0; i < n; ++i) {
  2904. y[i] = ggml_silu_f32(x[i]);
  2905. }
  2906. }
  2907. #endif
  2908. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2909. #ifndef GGML_USE_ACCELERATE
  2910. ggml_float sum = 0.0;
  2911. for (int i = 0; i < n; ++i) {
  2912. sum += (ggml_float)x[i];
  2913. }
  2914. *s = sum;
  2915. #else
  2916. vDSP_sve(x, 1, s, n);
  2917. #endif
  2918. }
  2919. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2920. ggml_float sum = 0.0;
  2921. for (int i = 0; i < n; ++i) {
  2922. sum += (ggml_float)x[i];
  2923. }
  2924. *s = sum;
  2925. }
  2926. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2927. #ifndef GGML_USE_ACCELERATE
  2928. float max = -INFINITY;
  2929. for (int i = 0; i < n; ++i) {
  2930. max = MAX(max, x[i]);
  2931. }
  2932. *s = max;
  2933. #else
  2934. vDSP_maxv(x, 1, s, n);
  2935. #endif
  2936. }
  2937. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2938. ggml_vec_norm_f32(n, s, x);
  2939. *s = 1.f/(*s);
  2940. }
  2941. //
  2942. // logging
  2943. //
  2944. #if (GGML_DEBUG >= 1)
  2945. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2946. #else
  2947. #define GGML_PRINT_DEBUG(...)
  2948. #endif
  2949. #if (GGML_DEBUG >= 5)
  2950. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2951. #else
  2952. #define GGML_PRINT_DEBUG_5(...)
  2953. #endif
  2954. #if (GGML_DEBUG >= 10)
  2955. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2956. #else
  2957. #define GGML_PRINT_DEBUG_10(...)
  2958. #endif
  2959. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2960. //
  2961. // data types
  2962. //
  2963. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2964. [GGML_TYPE_F32] = 1,
  2965. [GGML_TYPE_F16] = 1,
  2966. [GGML_TYPE_Q4_0] = QK4_0,
  2967. [GGML_TYPE_Q4_1] = QK4_1,
  2968. [GGML_TYPE_Q4_2] = QK4_2,
  2969. [GGML_TYPE_Q5_0] = QK5_0,
  2970. [GGML_TYPE_Q5_1] = QK5_1,
  2971. [GGML_TYPE_Q8_0] = QK8_0,
  2972. [GGML_TYPE_Q8_1] = QK8_1,
  2973. [GGML_TYPE_I8] = 1,
  2974. [GGML_TYPE_I16] = 1,
  2975. [GGML_TYPE_I32] = 1,
  2976. };
  2977. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2978. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2979. [GGML_TYPE_F32] = sizeof(float),
  2980. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2981. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2982. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2983. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2984. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2985. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2986. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2987. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2988. [GGML_TYPE_I8] = sizeof(int8_t),
  2989. [GGML_TYPE_I16] = sizeof(int16_t),
  2990. [GGML_TYPE_I32] = sizeof(int32_t),
  2991. };
  2992. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2993. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2994. [GGML_TYPE_F32] = "f32",
  2995. [GGML_TYPE_F16] = "f16",
  2996. [GGML_TYPE_Q4_0] = "q4_0",
  2997. [GGML_TYPE_Q4_1] = "q4_1",
  2998. [GGML_TYPE_Q4_2] = "q4_2",
  2999. [GGML_TYPE_Q5_0] = "q5_0",
  3000. [GGML_TYPE_Q5_1] = "q5_1",
  3001. [GGML_TYPE_Q8_0] = "q8_0",
  3002. [GGML_TYPE_Q8_1] = "q8_1",
  3003. [GGML_TYPE_I8] = "i8",
  3004. [GGML_TYPE_I16] = "i16",
  3005. [GGML_TYPE_I32] = "i32",
  3006. };
  3007. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3008. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3009. [GGML_TYPE_F32] = false,
  3010. [GGML_TYPE_F16] = false,
  3011. [GGML_TYPE_Q4_0] = true,
  3012. [GGML_TYPE_Q4_1] = true,
  3013. [GGML_TYPE_Q4_2] = true,
  3014. [GGML_TYPE_Q5_0] = true,
  3015. [GGML_TYPE_Q5_1] = true,
  3016. [GGML_TYPE_Q8_0] = true,
  3017. [GGML_TYPE_Q8_1] = true,
  3018. [GGML_TYPE_I8] = false,
  3019. [GGML_TYPE_I16] = false,
  3020. [GGML_TYPE_I32] = false,
  3021. };
  3022. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3023. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3024. "NONE",
  3025. "DUP",
  3026. "ADD",
  3027. "SUB",
  3028. "MUL",
  3029. "DIV",
  3030. "SQR",
  3031. "SQRT",
  3032. "SUM",
  3033. "MEAN",
  3034. "REPEAT",
  3035. "ABS",
  3036. "SGN",
  3037. "NEG",
  3038. "STEP",
  3039. "RELU",
  3040. "GELU",
  3041. "SILU",
  3042. "NORM",
  3043. "RMS_NORM",
  3044. "MUL_MAT",
  3045. "SCALE",
  3046. "CPY",
  3047. "CONT",
  3048. "RESHAPE",
  3049. "VIEW",
  3050. "PERMUTE",
  3051. "TRANSPOSE",
  3052. "GET_ROWS",
  3053. "DIAG_MASK_INF",
  3054. "SOFT_MAX",
  3055. "ROPE",
  3056. "CONV_1D_1S",
  3057. "CONV_1D_2S",
  3058. "FLASH_ATTN",
  3059. "FLASH_FF",
  3060. "MAP_UNARY",
  3061. "MAP_BINARY",
  3062. };
  3063. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3064. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3065. "none",
  3066. "x",
  3067. "x+y",
  3068. "x-y",
  3069. "x*y",
  3070. "x/y",
  3071. "x^2",
  3072. "√x",
  3073. "Σx",
  3074. "Σx/n",
  3075. "repeat(x)",
  3076. "abs(x)",
  3077. "sgn(x)",
  3078. "-x",
  3079. "step(x)",
  3080. "relu(x)",
  3081. "gelu(x)",
  3082. "silu(x)",
  3083. "norm(x)",
  3084. "rms_norm(x)",
  3085. "X*Y",
  3086. "x*v",
  3087. "x-\\>y",
  3088. "cont(x)",
  3089. "reshape(x)",
  3090. "view(x)",
  3091. "permute(x)",
  3092. "transpose(x)",
  3093. "get_rows(x)",
  3094. "diag_mask_inf(x)",
  3095. "soft_max(x)",
  3096. "rope(x)",
  3097. "conv_1d_1s(x)",
  3098. "conv_1d_2s(x)",
  3099. "flash_attn(x)",
  3100. "flash_ff(x)",
  3101. "f(x)",
  3102. "f(x,y)",
  3103. };
  3104. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3105. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3106. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3107. //
  3108. // ggml context
  3109. //
  3110. struct ggml_context {
  3111. size_t mem_size;
  3112. void * mem_buffer;
  3113. bool mem_buffer_owned;
  3114. bool no_alloc;
  3115. int n_objects;
  3116. struct ggml_object * objects_begin;
  3117. struct ggml_object * objects_end;
  3118. struct ggml_scratch scratch;
  3119. struct ggml_scratch scratch_save;
  3120. };
  3121. struct ggml_context_container {
  3122. bool used;
  3123. struct ggml_context context;
  3124. };
  3125. //
  3126. // compute types
  3127. //
  3128. enum ggml_task_type {
  3129. GGML_TASK_INIT = 0,
  3130. GGML_TASK_COMPUTE,
  3131. GGML_TASK_FINALIZE,
  3132. };
  3133. struct ggml_compute_params {
  3134. enum ggml_task_type type;
  3135. int ith, nth;
  3136. // work buffer for all threads
  3137. size_t wsize;
  3138. void * wdata;
  3139. };
  3140. //
  3141. // ggml state
  3142. //
  3143. struct ggml_state {
  3144. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3145. };
  3146. // global state
  3147. static struct ggml_state g_state;
  3148. static atomic_int g_state_barrier = 0;
  3149. // barrier via spin lock
  3150. inline static void ggml_critical_section_start(void) {
  3151. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3152. while (processing > 0) {
  3153. // wait for other threads to finish
  3154. atomic_fetch_sub(&g_state_barrier, 1);
  3155. sched_yield(); // TODO: reconsider this
  3156. processing = atomic_fetch_add(&g_state_barrier, 1);
  3157. }
  3158. }
  3159. // TODO: make this somehow automatically executed
  3160. // some sort of "sentry" mechanism
  3161. inline static void ggml_critical_section_end(void) {
  3162. atomic_fetch_sub(&g_state_barrier, 1);
  3163. }
  3164. ////////////////////////////////////////////////////////////////////////////////
  3165. void ggml_print_object(const struct ggml_object * obj) {
  3166. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3167. obj->offs, obj->size, (const void *) obj->next);
  3168. }
  3169. void ggml_print_objects(const struct ggml_context * ctx) {
  3170. struct ggml_object * obj = ctx->objects_begin;
  3171. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3172. while (obj != NULL) {
  3173. ggml_print_object(obj);
  3174. obj = obj->next;
  3175. }
  3176. GGML_PRINT("%s: --- end ---\n", __func__);
  3177. }
  3178. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3179. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3180. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3181. }
  3182. int ggml_nrows(const struct ggml_tensor * tensor) {
  3183. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3184. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3185. }
  3186. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3187. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3188. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3189. }
  3190. int ggml_blck_size(enum ggml_type type) {
  3191. return GGML_BLCK_SIZE[type];
  3192. }
  3193. size_t ggml_type_size(enum ggml_type type) {
  3194. return GGML_TYPE_SIZE[type];
  3195. }
  3196. float ggml_type_sizef(enum ggml_type type) {
  3197. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3198. }
  3199. const char * ggml_type_name(enum ggml_type type) {
  3200. return GGML_TYPE_NAME[type];
  3201. }
  3202. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3203. return GGML_TYPE_SIZE[tensor->type];
  3204. }
  3205. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3206. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3207. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3208. }
  3209. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3210. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3211. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3212. }
  3213. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3214. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3215. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3216. }
  3217. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3218. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3219. return
  3220. (t0->ne[0] == t1->ne[0]) &&
  3221. (t0->ne[2] == t1->ne[2]) &&
  3222. (t0->ne[3] == t1->ne[3]);
  3223. }
  3224. bool ggml_is_quantized(enum ggml_type type) {
  3225. return GGML_IS_QUANTIZED[type];
  3226. }
  3227. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3228. return tensor->nb[0] > tensor->nb[1];
  3229. }
  3230. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3231. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3232. return
  3233. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3234. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3235. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3236. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3237. }
  3238. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3239. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3240. return
  3241. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3242. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3243. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3244. }
  3245. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3246. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3247. return
  3248. (t0->ne[0] == t1->ne[0] ) &&
  3249. (t0->ne[1] == t1->ne[1] ) &&
  3250. (t0->ne[2] == t1->ne[2] ) &&
  3251. (t0->ne[3] == t1->ne[3] );
  3252. }
  3253. // check if t1 can be represented as a repeatition of t0
  3254. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3255. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3256. return
  3257. (t1->ne[0]%t0->ne[0] == 0) &&
  3258. (t1->ne[1]%t0->ne[1] == 0) &&
  3259. (t1->ne[2]%t0->ne[2] == 0) &&
  3260. (t1->ne[3]%t0->ne[3] == 0);
  3261. }
  3262. static inline int ggml_up32(int n) {
  3263. return (n + 31) & ~31;
  3264. }
  3265. static inline int ggml_up64(int n) {
  3266. return (n + 63) & ~63;
  3267. }
  3268. static inline int ggml_up(int n, int m) {
  3269. // assert m is a power of 2
  3270. GGML_ASSERT((m & (m - 1)) == 0);
  3271. return (n + m - 1) & ~(m - 1);
  3272. }
  3273. // assert that pointer is aligned to GGML_MEM_ALIGN
  3274. #define ggml_assert_aligned(ptr) \
  3275. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3276. ////////////////////////////////////////////////////////////////////////////////
  3277. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3278. // make this function thread safe
  3279. ggml_critical_section_start();
  3280. static bool is_first_call = true;
  3281. if (is_first_call) {
  3282. // initialize time system (required on Windows)
  3283. ggml_time_init();
  3284. // initialize GELU, SILU and EXP F32 tables
  3285. {
  3286. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3287. ggml_fp16_t ii;
  3288. for (int i = 0; i < (1 << 16); ++i) {
  3289. uint16_t ui = i;
  3290. memcpy(&ii, &ui, sizeof(ii));
  3291. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3292. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3293. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3294. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3295. }
  3296. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3297. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3298. }
  3299. // initialize g_state
  3300. {
  3301. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3302. g_state = (struct ggml_state) {
  3303. /*.contexts =*/ { { 0 } },
  3304. };
  3305. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3306. g_state.contexts[i].used = false;
  3307. }
  3308. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3309. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3310. }
  3311. // initialize cuBLAS
  3312. #if defined(GGML_USE_CUBLAS)
  3313. ggml_init_cublas();
  3314. #elif defined(GGML_USE_CLBLAST)
  3315. ggml_cl_init();
  3316. #endif
  3317. is_first_call = false;
  3318. }
  3319. // find non-used context in g_state
  3320. struct ggml_context * ctx = NULL;
  3321. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3322. if (!g_state.contexts[i].used) {
  3323. g_state.contexts[i].used = true;
  3324. ctx = &g_state.contexts[i].context;
  3325. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3326. break;
  3327. }
  3328. }
  3329. if (ctx == NULL) {
  3330. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3331. ggml_critical_section_end();
  3332. return NULL;
  3333. }
  3334. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3335. *ctx = (struct ggml_context) {
  3336. /*.mem_size =*/ mem_size,
  3337. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3338. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3339. /*.no_alloc =*/ params.no_alloc,
  3340. /*.n_objects =*/ 0,
  3341. /*.objects_begin =*/ NULL,
  3342. /*.objects_end =*/ NULL,
  3343. /*.scratch =*/ { 0, 0, NULL, },
  3344. /*.scratch_save =*/ { 0, 0, NULL, },
  3345. };
  3346. GGML_ASSERT(ctx->mem_buffer != NULL);
  3347. ggml_assert_aligned(ctx->mem_buffer);
  3348. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3349. ggml_critical_section_end();
  3350. return ctx;
  3351. }
  3352. void ggml_free(struct ggml_context * ctx) {
  3353. // make this function thread safe
  3354. ggml_critical_section_start();
  3355. bool found = false;
  3356. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3357. if (&g_state.contexts[i].context == ctx) {
  3358. g_state.contexts[i].used = false;
  3359. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3360. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3361. if (ctx->mem_buffer_owned) {
  3362. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3363. }
  3364. found = true;
  3365. break;
  3366. }
  3367. }
  3368. if (!found) {
  3369. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3370. }
  3371. ggml_critical_section_end();
  3372. }
  3373. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3374. return ctx->objects_end->offs + ctx->objects_end->size;
  3375. }
  3376. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3377. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3378. ctx->scratch = scratch;
  3379. return result;
  3380. }
  3381. ////////////////////////////////////////////////////////////////////////////////
  3382. struct ggml_tensor * ggml_new_tensor_impl(
  3383. struct ggml_context * ctx,
  3384. enum ggml_type type,
  3385. int n_dims,
  3386. const int64_t* ne,
  3387. void* data) {
  3388. // always insert objects at the end of the context's memory pool
  3389. struct ggml_object * obj_cur = ctx->objects_end;
  3390. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3391. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3392. const size_t cur_end = cur_offs + cur_size;
  3393. size_t size_needed = 0;
  3394. if (data == NULL && !ctx->no_alloc) {
  3395. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3396. for (int i = 1; i < n_dims; i++) {
  3397. size_needed *= ne[i];
  3398. }
  3399. // align to GGML_MEM_ALIGN
  3400. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3401. }
  3402. char * const mem_buffer = ctx->mem_buffer;
  3403. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3404. if (ctx->scratch.data == NULL || data != NULL) {
  3405. size_needed += sizeof(struct ggml_tensor);
  3406. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3407. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3408. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3409. assert(false);
  3410. return NULL;
  3411. }
  3412. *obj_new = (struct ggml_object) {
  3413. .offs = cur_end + GGML_OBJECT_SIZE,
  3414. .size = size_needed,
  3415. .next = NULL,
  3416. };
  3417. } else {
  3418. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3419. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3420. assert(false);
  3421. return NULL;
  3422. }
  3423. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3424. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3425. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3426. assert(false);
  3427. return NULL;
  3428. }
  3429. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3430. *obj_new = (struct ggml_object) {
  3431. .offs = cur_end + GGML_OBJECT_SIZE,
  3432. .size = sizeof(struct ggml_tensor),
  3433. .next = NULL,
  3434. };
  3435. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3436. ctx->scratch.offs += size_needed;
  3437. }
  3438. if (obj_cur != NULL) {
  3439. obj_cur->next = obj_new;
  3440. } else {
  3441. // this is the first object in this context
  3442. ctx->objects_begin = obj_new;
  3443. }
  3444. ctx->objects_end = obj_new;
  3445. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3446. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3447. ggml_assert_aligned(result);
  3448. *result = (struct ggml_tensor) {
  3449. /*.type =*/ type,
  3450. /*.n_dims =*/ n_dims,
  3451. /*.ne =*/ { 1, 1, 1, 1 },
  3452. /*.nb =*/ { 0, 0, 0, 0 },
  3453. /*.op =*/ GGML_OP_NONE,
  3454. /*.is_param =*/ false,
  3455. /*.grad =*/ NULL,
  3456. /*.src0 =*/ NULL,
  3457. /*.src1 =*/ NULL,
  3458. /*.opt =*/ { NULL },
  3459. /*.n_tasks =*/ 0,
  3460. /*.perf_runs =*/ 0,
  3461. /*.perf_cycles =*/ 0,
  3462. /*.perf_time_us =*/ 0,
  3463. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3464. /*.pad =*/ { 0 },
  3465. };
  3466. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3467. //ggml_assert_aligned(result->data);
  3468. for (int i = 0; i < n_dims; i++) {
  3469. result->ne[i] = ne[i];
  3470. }
  3471. result->nb[0] = GGML_TYPE_SIZE[type];
  3472. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3473. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3474. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3475. }
  3476. ctx->n_objects++;
  3477. return result;
  3478. }
  3479. struct ggml_tensor * ggml_new_tensor(
  3480. struct ggml_context * ctx,
  3481. enum ggml_type type,
  3482. int n_dims,
  3483. const int64_t * ne) {
  3484. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3485. }
  3486. struct ggml_tensor * ggml_new_tensor_1d(
  3487. struct ggml_context * ctx,
  3488. enum ggml_type type,
  3489. int64_t ne0) {
  3490. return ggml_new_tensor(ctx, type, 1, &ne0);
  3491. }
  3492. struct ggml_tensor * ggml_new_tensor_2d(
  3493. struct ggml_context * ctx,
  3494. enum ggml_type type,
  3495. int64_t ne0,
  3496. int64_t ne1) {
  3497. const int64_t ne[2] = { ne0, ne1 };
  3498. return ggml_new_tensor(ctx, type, 2, ne);
  3499. }
  3500. struct ggml_tensor * ggml_new_tensor_3d(
  3501. struct ggml_context * ctx,
  3502. enum ggml_type type,
  3503. int64_t ne0,
  3504. int64_t ne1,
  3505. int64_t ne2) {
  3506. const int64_t ne[3] = { ne0, ne1, ne2 };
  3507. return ggml_new_tensor(ctx, type, 3, ne);
  3508. }
  3509. struct ggml_tensor * ggml_new_tensor_4d(
  3510. struct ggml_context * ctx,
  3511. enum ggml_type type,
  3512. int64_t ne0,
  3513. int64_t ne1,
  3514. int64_t ne2,
  3515. int64_t ne3) {
  3516. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3517. return ggml_new_tensor(ctx, type, 4, ne);
  3518. }
  3519. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3520. ctx->scratch_save = ctx->scratch;
  3521. ctx->scratch.data = NULL;
  3522. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3523. ctx->scratch = ctx->scratch_save;
  3524. ggml_set_i32(result, value);
  3525. return result;
  3526. }
  3527. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3528. ctx->scratch_save = ctx->scratch;
  3529. ctx->scratch.data = NULL;
  3530. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3531. ctx->scratch = ctx->scratch_save;
  3532. ggml_set_f32(result, value);
  3533. return result;
  3534. }
  3535. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3536. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3537. }
  3538. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3539. memset(tensor->data, 0, ggml_nbytes(tensor));
  3540. return tensor;
  3541. }
  3542. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3543. const int n = ggml_nrows(tensor);
  3544. const int nc = tensor->ne[0];
  3545. const size_t n1 = tensor->nb[1];
  3546. char * const data = tensor->data;
  3547. switch (tensor->type) {
  3548. case GGML_TYPE_I8:
  3549. {
  3550. assert(tensor->nb[0] == sizeof(int8_t));
  3551. for (int i = 0; i < n; i++) {
  3552. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3553. }
  3554. } break;
  3555. case GGML_TYPE_I16:
  3556. {
  3557. assert(tensor->nb[0] == sizeof(int16_t));
  3558. for (int i = 0; i < n; i++) {
  3559. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3560. }
  3561. } break;
  3562. case GGML_TYPE_I32:
  3563. {
  3564. assert(tensor->nb[0] == sizeof(int32_t));
  3565. for (int i = 0; i < n; i++) {
  3566. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3567. }
  3568. } break;
  3569. case GGML_TYPE_F16:
  3570. {
  3571. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3572. for (int i = 0; i < n; i++) {
  3573. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3574. }
  3575. } break;
  3576. case GGML_TYPE_F32:
  3577. {
  3578. assert(tensor->nb[0] == sizeof(float));
  3579. for (int i = 0; i < n; i++) {
  3580. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3581. }
  3582. } break;
  3583. default:
  3584. {
  3585. GGML_ASSERT(false);
  3586. } break;
  3587. }
  3588. return tensor;
  3589. }
  3590. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3591. const int n = ggml_nrows(tensor);
  3592. const int nc = tensor->ne[0];
  3593. const size_t n1 = tensor->nb[1];
  3594. char * const data = tensor->data;
  3595. switch (tensor->type) {
  3596. case GGML_TYPE_I8:
  3597. {
  3598. assert(tensor->nb[0] == sizeof(int8_t));
  3599. for (int i = 0; i < n; i++) {
  3600. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3601. }
  3602. } break;
  3603. case GGML_TYPE_I16:
  3604. {
  3605. assert(tensor->nb[0] == sizeof(int16_t));
  3606. for (int i = 0; i < n; i++) {
  3607. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3608. }
  3609. } break;
  3610. case GGML_TYPE_I32:
  3611. {
  3612. assert(tensor->nb[0] == sizeof(int32_t));
  3613. for (int i = 0; i < n; i++) {
  3614. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3615. }
  3616. } break;
  3617. case GGML_TYPE_F16:
  3618. {
  3619. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3620. for (int i = 0; i < n; i++) {
  3621. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3622. }
  3623. } break;
  3624. case GGML_TYPE_F32:
  3625. {
  3626. assert(tensor->nb[0] == sizeof(float));
  3627. for (int i = 0; i < n; i++) {
  3628. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3629. }
  3630. } break;
  3631. default:
  3632. {
  3633. GGML_ASSERT(false);
  3634. } break;
  3635. }
  3636. return tensor;
  3637. }
  3638. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3639. switch (tensor->type) {
  3640. case GGML_TYPE_I8:
  3641. {
  3642. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3643. return ((int8_t *)(tensor->data))[i];
  3644. } break;
  3645. case GGML_TYPE_I16:
  3646. {
  3647. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3648. return ((int16_t *)(tensor->data))[i];
  3649. } break;
  3650. case GGML_TYPE_I32:
  3651. {
  3652. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3653. return ((int32_t *)(tensor->data))[i];
  3654. } break;
  3655. case GGML_TYPE_F16:
  3656. {
  3657. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3658. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3659. } break;
  3660. case GGML_TYPE_F32:
  3661. {
  3662. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3663. return ((float *)(tensor->data))[i];
  3664. } break;
  3665. default:
  3666. {
  3667. GGML_ASSERT(false);
  3668. } break;
  3669. }
  3670. return 0.0f;
  3671. }
  3672. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3673. switch (tensor->type) {
  3674. case GGML_TYPE_I8:
  3675. {
  3676. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3677. ((int8_t *)(tensor->data))[i] = value;
  3678. } break;
  3679. case GGML_TYPE_I16:
  3680. {
  3681. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3682. ((int16_t *)(tensor->data))[i] = value;
  3683. } break;
  3684. case GGML_TYPE_I32:
  3685. {
  3686. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3687. ((int32_t *)(tensor->data))[i] = value;
  3688. } break;
  3689. case GGML_TYPE_F16:
  3690. {
  3691. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3692. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3693. } break;
  3694. case GGML_TYPE_F32:
  3695. {
  3696. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3697. ((float *)(tensor->data))[i] = value;
  3698. } break;
  3699. default:
  3700. {
  3701. GGML_ASSERT(false);
  3702. } break;
  3703. }
  3704. }
  3705. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3706. switch (tensor->type) {
  3707. case GGML_TYPE_I8:
  3708. {
  3709. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3710. return ((int8_t *)(tensor->data))[i];
  3711. } break;
  3712. case GGML_TYPE_I16:
  3713. {
  3714. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3715. return ((int16_t *)(tensor->data))[i];
  3716. } break;
  3717. case GGML_TYPE_I32:
  3718. {
  3719. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3720. return ((int32_t *)(tensor->data))[i];
  3721. } break;
  3722. case GGML_TYPE_F16:
  3723. {
  3724. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3725. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3726. } break;
  3727. case GGML_TYPE_F32:
  3728. {
  3729. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3730. return ((float *)(tensor->data))[i];
  3731. } break;
  3732. default:
  3733. {
  3734. GGML_ASSERT(false);
  3735. } break;
  3736. }
  3737. return 0.0f;
  3738. }
  3739. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3740. switch (tensor->type) {
  3741. case GGML_TYPE_I8:
  3742. {
  3743. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3744. ((int8_t *)(tensor->data))[i] = value;
  3745. } break;
  3746. case GGML_TYPE_I16:
  3747. {
  3748. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3749. ((int16_t *)(tensor->data))[i] = value;
  3750. } break;
  3751. case GGML_TYPE_I32:
  3752. {
  3753. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3754. ((int32_t *)(tensor->data))[i] = value;
  3755. } break;
  3756. case GGML_TYPE_F16:
  3757. {
  3758. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3759. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3760. } break;
  3761. case GGML_TYPE_F32:
  3762. {
  3763. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3764. ((float *)(tensor->data))[i] = value;
  3765. } break;
  3766. default:
  3767. {
  3768. GGML_ASSERT(false);
  3769. } break;
  3770. }
  3771. }
  3772. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3773. return tensor->data;
  3774. }
  3775. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3776. assert(tensor->type == GGML_TYPE_F32);
  3777. return (float *)(tensor->data);
  3778. }
  3779. struct ggml_tensor * ggml_view_tensor(
  3780. struct ggml_context * ctx,
  3781. const struct ggml_tensor * src) {
  3782. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3783. result->nb[0] = src->nb[0];
  3784. result->nb[1] = src->nb[1];
  3785. result->nb[2] = src->nb[2];
  3786. result->nb[3] = src->nb[3];
  3787. return result;
  3788. }
  3789. ////////////////////////////////////////////////////////////////////////////////
  3790. // ggml_dup
  3791. struct ggml_tensor * ggml_dup_impl(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a,
  3794. bool inplace) {
  3795. bool is_node = false;
  3796. if (!inplace && (a->grad)) {
  3797. is_node = true;
  3798. }
  3799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3800. result->op = GGML_OP_DUP;
  3801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3802. result->src0 = a;
  3803. result->src1 = NULL;
  3804. return result;
  3805. }
  3806. struct ggml_tensor * ggml_dup(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a) {
  3809. return ggml_dup_impl(ctx, a, false);
  3810. }
  3811. struct ggml_tensor * ggml_dup_inplace(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a) {
  3814. return ggml_dup_impl(ctx, a, true);
  3815. }
  3816. // ggml_add
  3817. struct ggml_tensor * ggml_add_impl(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a,
  3820. struct ggml_tensor * b,
  3821. bool inplace) {
  3822. GGML_ASSERT(ggml_are_same_shape(a, b));
  3823. bool is_node = false;
  3824. if (!inplace && (a->grad || b->grad)) {
  3825. is_node = true;
  3826. }
  3827. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3828. result->op = GGML_OP_ADD;
  3829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3830. result->src0 = a;
  3831. result->src1 = b;
  3832. return result;
  3833. }
  3834. struct ggml_tensor * ggml_add(
  3835. struct ggml_context * ctx,
  3836. struct ggml_tensor * a,
  3837. struct ggml_tensor * b) {
  3838. return ggml_add_impl(ctx, a, b, false);
  3839. }
  3840. struct ggml_tensor * ggml_add_inplace(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * a,
  3843. struct ggml_tensor * b) {
  3844. return ggml_add_impl(ctx, a, b, true);
  3845. }
  3846. // ggml_sub
  3847. struct ggml_tensor * ggml_sub_impl(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a,
  3850. struct ggml_tensor * b,
  3851. bool inplace) {
  3852. GGML_ASSERT(ggml_are_same_shape(a, b));
  3853. bool is_node = false;
  3854. if (!inplace && (a->grad || b->grad)) {
  3855. is_node = true;
  3856. }
  3857. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3858. result->op = GGML_OP_SUB;
  3859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3860. result->src0 = a;
  3861. result->src1 = b;
  3862. return result;
  3863. }
  3864. struct ggml_tensor * ggml_sub(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a,
  3867. struct ggml_tensor * b) {
  3868. return ggml_sub_impl(ctx, a, b, false);
  3869. }
  3870. struct ggml_tensor * ggml_sub_inplace(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a,
  3873. struct ggml_tensor * b) {
  3874. return ggml_sub_impl(ctx, a, b, true);
  3875. }
  3876. // ggml_mul
  3877. struct ggml_tensor * ggml_mul_impl(
  3878. struct ggml_context * ctx,
  3879. struct ggml_tensor * a,
  3880. struct ggml_tensor * b,
  3881. bool inplace) {
  3882. GGML_ASSERT(ggml_are_same_shape(a, b));
  3883. bool is_node = false;
  3884. if (!inplace && (a->grad || b->grad)) {
  3885. is_node = true;
  3886. }
  3887. if (inplace) {
  3888. GGML_ASSERT(is_node == false);
  3889. }
  3890. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3891. result->op = GGML_OP_MUL;
  3892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3893. result->src0 = a;
  3894. result->src1 = b;
  3895. return result;
  3896. }
  3897. struct ggml_tensor * ggml_mul(
  3898. struct ggml_context * ctx,
  3899. struct ggml_tensor * a,
  3900. struct ggml_tensor * b) {
  3901. return ggml_mul_impl(ctx, a, b, false);
  3902. }
  3903. struct ggml_tensor * ggml_mul_inplace(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a,
  3906. struct ggml_tensor * b) {
  3907. return ggml_mul_impl(ctx, a, b, true);
  3908. }
  3909. // ggml_div
  3910. struct ggml_tensor * ggml_div_impl(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a,
  3913. struct ggml_tensor * b,
  3914. bool inplace) {
  3915. GGML_ASSERT(ggml_are_same_shape(a, b));
  3916. bool is_node = false;
  3917. if (!inplace && (a->grad || b->grad)) {
  3918. is_node = true;
  3919. }
  3920. if (inplace) {
  3921. GGML_ASSERT(is_node == false);
  3922. }
  3923. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3924. result->op = GGML_OP_DIV;
  3925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3926. result->src0 = a;
  3927. result->src1 = b;
  3928. return result;
  3929. }
  3930. struct ggml_tensor * ggml_div(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a,
  3933. struct ggml_tensor * b) {
  3934. return ggml_div_impl(ctx, a, b, false);
  3935. }
  3936. struct ggml_tensor * ggml_div_inplace(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a,
  3939. struct ggml_tensor * b) {
  3940. return ggml_div_impl(ctx, a, b, true);
  3941. }
  3942. // ggml_sqr
  3943. struct ggml_tensor * ggml_sqr_impl(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. bool inplace) {
  3947. bool is_node = false;
  3948. if (!inplace && (a->grad)) {
  3949. is_node = true;
  3950. }
  3951. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3952. result->op = GGML_OP_SQR;
  3953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3954. result->src0 = a;
  3955. result->src1 = NULL;
  3956. return result;
  3957. }
  3958. struct ggml_tensor * ggml_sqr(
  3959. struct ggml_context * ctx,
  3960. struct ggml_tensor * a) {
  3961. return ggml_sqr_impl(ctx, a, false);
  3962. }
  3963. struct ggml_tensor * ggml_sqr_inplace(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a) {
  3966. return ggml_sqr_impl(ctx, a, true);
  3967. }
  3968. // ggml_sqrt
  3969. struct ggml_tensor * ggml_sqrt_impl(
  3970. struct ggml_context * ctx,
  3971. struct ggml_tensor * a,
  3972. bool inplace) {
  3973. bool is_node = false;
  3974. if (!inplace && (a->grad)) {
  3975. is_node = true;
  3976. }
  3977. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3978. result->op = GGML_OP_SQRT;
  3979. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3980. result->src0 = a;
  3981. result->src1 = NULL;
  3982. return result;
  3983. }
  3984. struct ggml_tensor * ggml_sqrt(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a) {
  3987. return ggml_sqrt_impl(ctx, a, false);
  3988. }
  3989. struct ggml_tensor * ggml_sqrt_inplace(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a) {
  3992. return ggml_sqrt_impl(ctx, a, true);
  3993. }
  3994. // ggml_sum
  3995. struct ggml_tensor * ggml_sum(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a) {
  3998. bool is_node = false;
  3999. if (a->grad) {
  4000. is_node = true;
  4001. }
  4002. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4003. result->op = GGML_OP_SUM;
  4004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4005. result->src0 = a;
  4006. result->src1 = NULL;
  4007. return result;
  4008. }
  4009. // ggml_mean
  4010. struct ggml_tensor * ggml_mean(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a) {
  4013. bool is_node = false;
  4014. if (a->grad) {
  4015. GGML_ASSERT(false); // TODO: implement
  4016. is_node = true;
  4017. }
  4018. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4019. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4020. result->op = GGML_OP_MEAN;
  4021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4022. result->src0 = a;
  4023. result->src1 = NULL;
  4024. return result;
  4025. }
  4026. // ggml_repeat
  4027. struct ggml_tensor * ggml_repeat(
  4028. struct ggml_context * ctx,
  4029. struct ggml_tensor * a,
  4030. struct ggml_tensor * b) {
  4031. GGML_ASSERT(ggml_can_repeat(a, b));
  4032. bool is_node = false;
  4033. if (a->grad) {
  4034. is_node = true;
  4035. }
  4036. if (ggml_are_same_shape(a, b) && !is_node) {
  4037. return a;
  4038. }
  4039. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4040. result->op = GGML_OP_REPEAT;
  4041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4042. result->src0 = a;
  4043. result->src1 = b;
  4044. return result;
  4045. }
  4046. // ggml_abs
  4047. struct ggml_tensor * ggml_abs_impl(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. bool inplace) {
  4051. bool is_node = false;
  4052. if (!inplace && (a->grad)) {
  4053. is_node = true;
  4054. }
  4055. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4056. result->op = GGML_OP_ABS;
  4057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4058. result->src0 = a;
  4059. result->src1 = NULL;
  4060. return result;
  4061. }
  4062. struct ggml_tensor * ggml_abs(
  4063. struct ggml_context * ctx,
  4064. struct ggml_tensor * a) {
  4065. return ggml_abs_impl(ctx, a, false);
  4066. }
  4067. struct ggml_tensor * ggml_abs_inplace(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a) {
  4070. return ggml_abs_impl(ctx, a, true);
  4071. }
  4072. // ggml_sgn
  4073. struct ggml_tensor * ggml_sgn_impl(
  4074. struct ggml_context * ctx,
  4075. struct ggml_tensor * a,
  4076. bool inplace) {
  4077. bool is_node = false;
  4078. if (!inplace && (a->grad)) {
  4079. is_node = true;
  4080. }
  4081. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4082. result->op = GGML_OP_SGN;
  4083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4084. result->src0 = a;
  4085. result->src1 = NULL;
  4086. return result;
  4087. }
  4088. struct ggml_tensor * ggml_sgn(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a) {
  4091. return ggml_sgn_impl(ctx, a, false);
  4092. }
  4093. struct ggml_tensor * ggml_sgn_inplace(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a) {
  4096. return ggml_sgn_impl(ctx, a, true);
  4097. }
  4098. // ggml_neg
  4099. struct ggml_tensor * ggml_neg_impl(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a,
  4102. bool inplace) {
  4103. bool is_node = false;
  4104. if (!inplace && (a->grad)) {
  4105. is_node = true;
  4106. }
  4107. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4108. result->op = GGML_OP_NEG;
  4109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4110. result->src0 = a;
  4111. result->src1 = NULL;
  4112. return result;
  4113. }
  4114. struct ggml_tensor * ggml_neg(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a) {
  4117. return ggml_neg_impl(ctx, a, false);
  4118. }
  4119. struct ggml_tensor * ggml_neg_inplace(
  4120. struct ggml_context * ctx,
  4121. struct ggml_tensor * a) {
  4122. return ggml_neg_impl(ctx, a, true);
  4123. }
  4124. // ggml_step
  4125. struct ggml_tensor * ggml_step_impl(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. bool inplace) {
  4129. bool is_node = false;
  4130. if (!inplace && (a->grad)) {
  4131. is_node = true;
  4132. }
  4133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4134. result->op = GGML_OP_STEP;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src0 = a;
  4137. result->src1 = NULL;
  4138. return result;
  4139. }
  4140. struct ggml_tensor * ggml_step(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a) {
  4143. return ggml_step_impl(ctx, a, false);
  4144. }
  4145. struct ggml_tensor * ggml_step_inplace(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a) {
  4148. return ggml_step_impl(ctx, a, true);
  4149. }
  4150. // ggml_relu
  4151. struct ggml_tensor * ggml_relu_impl(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. bool inplace) {
  4155. bool is_node = false;
  4156. if (!inplace && (a->grad)) {
  4157. is_node = true;
  4158. }
  4159. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4160. result->op = GGML_OP_RELU;
  4161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4162. result->src0 = a;
  4163. result->src1 = NULL;
  4164. return result;
  4165. }
  4166. struct ggml_tensor * ggml_relu(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a) {
  4169. return ggml_relu_impl(ctx, a, false);
  4170. }
  4171. struct ggml_tensor * ggml_relu_inplace(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a) {
  4174. return ggml_relu_impl(ctx, a, true);
  4175. }
  4176. // ggml_gelu
  4177. struct ggml_tensor * ggml_gelu_impl(
  4178. struct ggml_context * ctx,
  4179. struct ggml_tensor * a,
  4180. bool inplace) {
  4181. bool is_node = false;
  4182. if (!inplace && (a->grad)) {
  4183. is_node = true;
  4184. }
  4185. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4186. result->op = GGML_OP_GELU;
  4187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4188. result->src0 = a;
  4189. result->src1 = NULL;
  4190. return result;
  4191. }
  4192. struct ggml_tensor * ggml_gelu(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a) {
  4195. return ggml_gelu_impl(ctx, a, false);
  4196. }
  4197. struct ggml_tensor * ggml_gelu_inplace(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a) {
  4200. return ggml_gelu_impl(ctx, a, true);
  4201. }
  4202. // ggml_silu
  4203. struct ggml_tensor * ggml_silu_impl(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a,
  4206. bool inplace) {
  4207. bool is_node = false;
  4208. if (!inplace && (a->grad)) {
  4209. is_node = true;
  4210. }
  4211. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4212. result->op = GGML_OP_SILU;
  4213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4214. result->src0 = a;
  4215. result->src1 = NULL;
  4216. return result;
  4217. }
  4218. struct ggml_tensor * ggml_silu(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. return ggml_silu_impl(ctx, a, false);
  4222. }
  4223. struct ggml_tensor * ggml_silu_inplace(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a) {
  4226. return ggml_silu_impl(ctx, a, true);
  4227. }
  4228. // ggml_norm
  4229. struct ggml_tensor * ggml_norm_impl(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a,
  4232. bool inplace) {
  4233. bool is_node = false;
  4234. if (!inplace && (a->grad)) {
  4235. GGML_ASSERT(false); // TODO: implement backward
  4236. is_node = true;
  4237. }
  4238. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4239. result->op = GGML_OP_NORM;
  4240. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4241. result->src0 = a;
  4242. result->src1 = NULL; // TODO: maybe store epsilon here?
  4243. return result;
  4244. }
  4245. struct ggml_tensor * ggml_norm(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a) {
  4248. return ggml_norm_impl(ctx, a, false);
  4249. }
  4250. struct ggml_tensor * ggml_norm_inplace(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a) {
  4253. return ggml_norm_impl(ctx, a, true);
  4254. }
  4255. struct ggml_tensor * ggml_rms_norm_impl(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a,
  4258. bool inplace) {
  4259. bool is_node = false;
  4260. if (!inplace && (a->grad)) {
  4261. GGML_ASSERT(false); // TODO: implement backward
  4262. is_node = true;
  4263. }
  4264. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4265. result->op = GGML_OP_RMS_NORM;
  4266. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4267. result->src0 = a;
  4268. result->src1 = NULL; // TODO: maybe store epsilon here?
  4269. return result;
  4270. }
  4271. struct ggml_tensor * ggml_rms_norm(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a) {
  4274. return ggml_rms_norm_impl(ctx, a, false);
  4275. }
  4276. struct ggml_tensor * ggml_rms_norm_inplace(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a) {
  4279. return ggml_rms_norm_impl(ctx, a, true);
  4280. }
  4281. // ggml_mul_mat
  4282. struct ggml_tensor * ggml_mul_mat(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a,
  4285. struct ggml_tensor * b) {
  4286. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4287. GGML_ASSERT(!ggml_is_transposed(a));
  4288. bool is_node = false;
  4289. if (a->grad || b->grad) {
  4290. is_node = true;
  4291. }
  4292. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4293. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4294. result->op = GGML_OP_MUL_MAT;
  4295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4296. result->src0 = a;
  4297. result->src1 = b;
  4298. return result;
  4299. }
  4300. // ggml_scale
  4301. struct ggml_tensor * ggml_scale_impl(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a,
  4304. struct ggml_tensor * b,
  4305. bool inplace) {
  4306. GGML_ASSERT(ggml_is_scalar(b));
  4307. GGML_ASSERT(ggml_is_padded_1d(a));
  4308. bool is_node = false;
  4309. if (!inplace && (a->grad || b->grad)) {
  4310. GGML_ASSERT(false); // TODO: implement backward
  4311. is_node = true;
  4312. }
  4313. // TODO: when implement backward, fix this:
  4314. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4315. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4316. result->op = GGML_OP_SCALE;
  4317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4318. result->src0 = a;
  4319. result->src1 = b;
  4320. return result;
  4321. }
  4322. struct ggml_tensor * ggml_scale(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. struct ggml_tensor * b) {
  4326. return ggml_scale_impl(ctx, a, b, false);
  4327. }
  4328. struct ggml_tensor * ggml_scale_inplace(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a,
  4331. struct ggml_tensor * b) {
  4332. return ggml_scale_impl(ctx, a, b, true);
  4333. }
  4334. // ggml_cpy
  4335. struct ggml_tensor * ggml_cpy_impl(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. struct ggml_tensor * b,
  4339. bool inplace) {
  4340. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4341. bool is_node = false;
  4342. if (!inplace && (a->grad || b->grad)) {
  4343. GGML_ASSERT(false); // TODO: implement backward
  4344. is_node = true;
  4345. }
  4346. // make a view of the destination
  4347. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4348. result->op = GGML_OP_CPY;
  4349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4350. result->src0 = a;
  4351. result->src1 = b;
  4352. return result;
  4353. }
  4354. struct ggml_tensor * ggml_cpy(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. struct ggml_tensor * b) {
  4358. return ggml_cpy_impl(ctx, a, b, false);
  4359. }
  4360. struct ggml_tensor * ggml_cpy_inplace(
  4361. struct ggml_context * ctx,
  4362. struct ggml_tensor * a,
  4363. struct ggml_tensor * b) {
  4364. return ggml_cpy_impl(ctx, a, b, true);
  4365. }
  4366. // ggml_cont
  4367. struct ggml_tensor * ggml_cont_impl(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. bool inplace) {
  4371. bool is_node = false;
  4372. if (!inplace && a->grad) {
  4373. GGML_ASSERT(false); // TODO: implement backward
  4374. is_node = true;
  4375. }
  4376. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4377. result->op = GGML_OP_CONT;
  4378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4379. result->src0 = a;
  4380. result->src1 = NULL;
  4381. return result;
  4382. }
  4383. struct ggml_tensor * ggml_cont(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a) {
  4386. return ggml_cont_impl(ctx, a, false);
  4387. }
  4388. struct ggml_tensor * ggml_cont_inplace(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a) {
  4391. return ggml_cont_impl(ctx, a, true);
  4392. }
  4393. // ggml_reshape
  4394. struct ggml_tensor * ggml_reshape(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a,
  4397. struct ggml_tensor * b) {
  4398. GGML_ASSERT(ggml_is_contiguous(a));
  4399. GGML_ASSERT(ggml_is_contiguous(b));
  4400. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4401. bool is_node = false;
  4402. if (a->grad || b->grad) {
  4403. GGML_ASSERT(false); // TODO: implement backward
  4404. is_node = true;
  4405. }
  4406. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4407. result->op = GGML_OP_RESHAPE;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src0 = a;
  4410. result->src1 = NULL;
  4411. return result;
  4412. }
  4413. struct ggml_tensor * ggml_reshape_2d(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. int64_t ne0,
  4417. int64_t ne1) {
  4418. GGML_ASSERT(ggml_is_contiguous(a));
  4419. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4420. bool is_node = false;
  4421. if (a->grad) {
  4422. GGML_ASSERT(false); // TODO: implement backward
  4423. is_node = true;
  4424. }
  4425. const int64_t ne[2] = { ne0, ne1 };
  4426. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4427. result->op = GGML_OP_RESHAPE;
  4428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4429. result->src0 = a;
  4430. result->src1 = NULL;
  4431. return result;
  4432. }
  4433. struct ggml_tensor * ggml_reshape_3d(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. int64_t ne0,
  4437. int64_t ne1,
  4438. int64_t ne2) {
  4439. GGML_ASSERT(ggml_is_contiguous(a));
  4440. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4441. bool is_node = false;
  4442. if (a->grad) {
  4443. GGML_ASSERT(false); // TODO: implement backward
  4444. is_node = true;
  4445. }
  4446. const int64_t ne[3] = { ne0, ne1, ne2 };
  4447. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4448. result->op = GGML_OP_RESHAPE;
  4449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4450. result->src0 = a;
  4451. result->src1 = NULL;
  4452. return result;
  4453. }
  4454. // ggml_view_1d
  4455. struct ggml_tensor * ggml_view_1d(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. int64_t ne0,
  4459. size_t offset) {
  4460. if (a->grad) {
  4461. GGML_ASSERT(false); // gradient propagation is not supported
  4462. }
  4463. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4464. result->op = GGML_OP_VIEW;
  4465. result->grad = NULL;
  4466. result->src0 = a;
  4467. result->src1 = NULL; // TODO: maybe store the offset here?
  4468. return result;
  4469. }
  4470. // ggml_view_2d
  4471. struct ggml_tensor * ggml_view_2d(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a,
  4474. int64_t ne0,
  4475. int64_t ne1,
  4476. size_t nb1,
  4477. size_t offset) {
  4478. if (a->grad) {
  4479. GGML_ASSERT(false); // gradient propagation is not supported
  4480. }
  4481. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4482. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4483. result->nb[1] = nb1;
  4484. result->nb[2] = result->nb[1]*ne1;
  4485. result->nb[3] = result->nb[2];
  4486. result->op = GGML_OP_VIEW;
  4487. result->grad = NULL;
  4488. result->src0 = a;
  4489. result->src1 = NULL; // TODO: maybe store the offset here?
  4490. return result;
  4491. }
  4492. // ggml_view_3d
  4493. struct ggml_tensor * ggml_view_3d(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. int64_t ne0,
  4497. int64_t ne1,
  4498. int64_t ne2,
  4499. size_t nb1,
  4500. size_t nb2,
  4501. size_t offset) {
  4502. if (a->grad) {
  4503. GGML_ASSERT(false); // gradient propagation is not supported
  4504. }
  4505. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4506. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4507. result->nb[1] = nb1;
  4508. result->nb[2] = nb2;
  4509. result->nb[3] = result->nb[2]*ne2;
  4510. result->op = GGML_OP_VIEW;
  4511. result->grad = NULL;
  4512. result->src0 = a;
  4513. result->src1 = NULL; // TODO: maybe store the offset here?
  4514. return result;
  4515. }
  4516. // ggml_permute
  4517. struct ggml_tensor * ggml_permute(
  4518. struct ggml_context * ctx,
  4519. struct ggml_tensor * a,
  4520. int axis0,
  4521. int axis1,
  4522. int axis2,
  4523. int axis3) {
  4524. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4525. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4526. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4527. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4528. GGML_ASSERT(axis0 != axis1);
  4529. GGML_ASSERT(axis0 != axis2);
  4530. GGML_ASSERT(axis0 != axis3);
  4531. GGML_ASSERT(axis1 != axis2);
  4532. GGML_ASSERT(axis1 != axis3);
  4533. GGML_ASSERT(axis2 != axis3);
  4534. bool is_node = false;
  4535. if (a->grad) {
  4536. GGML_ASSERT(false); // TODO: implement backward
  4537. is_node = true;
  4538. }
  4539. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4540. int ne[GGML_MAX_DIMS];
  4541. int nb[GGML_MAX_DIMS];
  4542. ne[axis0] = a->ne[0];
  4543. ne[axis1] = a->ne[1];
  4544. ne[axis2] = a->ne[2];
  4545. ne[axis3] = a->ne[3];
  4546. nb[axis0] = a->nb[0];
  4547. nb[axis1] = a->nb[1];
  4548. nb[axis2] = a->nb[2];
  4549. nb[axis3] = a->nb[3];
  4550. result->ne[0] = ne[0];
  4551. result->ne[1] = ne[1];
  4552. result->ne[2] = ne[2];
  4553. result->ne[3] = ne[3];
  4554. result->nb[0] = nb[0];
  4555. result->nb[1] = nb[1];
  4556. result->nb[2] = nb[2];
  4557. result->nb[3] = nb[3];
  4558. result->op = GGML_OP_PERMUTE;
  4559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4560. result->src0 = a;
  4561. result->src1 = NULL; // TODO: maybe store the permutation here?
  4562. return result;
  4563. }
  4564. // ggml_transpose
  4565. struct ggml_tensor * ggml_transpose(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a) {
  4568. bool is_node = false;
  4569. if (a->grad) {
  4570. GGML_ASSERT(false); // TODO: implement backward
  4571. is_node = true;
  4572. }
  4573. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4574. result->ne[0] = a->ne[1];
  4575. result->ne[1] = a->ne[0];
  4576. result->nb[0] = a->nb[1];
  4577. result->nb[1] = a->nb[0];
  4578. result->op = GGML_OP_TRANSPOSE;
  4579. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4580. result->src0 = a;
  4581. result->src1 = NULL;
  4582. return result;
  4583. }
  4584. // ggml_get_rows
  4585. struct ggml_tensor * ggml_get_rows(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a,
  4588. struct ggml_tensor * b) {
  4589. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4590. bool is_node = false;
  4591. if (a->grad || b->grad) {
  4592. GGML_ASSERT(false); // TODO: implement backward
  4593. is_node = true;
  4594. }
  4595. // TODO: implement non F32 return
  4596. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4597. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4598. result->op = GGML_OP_GET_ROWS;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src0 = a;
  4601. result->src1 = b;
  4602. return result;
  4603. }
  4604. // ggml_diag_mask_inf
  4605. struct ggml_tensor * ggml_diag_mask_inf(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a,
  4608. int n_past) {
  4609. bool is_node = false;
  4610. if (a->grad) {
  4611. GGML_ASSERT(false); // TODO: implement backward
  4612. is_node = true;
  4613. }
  4614. // TODO: when implement backward, fix this:
  4615. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4616. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4617. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4618. result->op = GGML_OP_DIAG_MASK_INF;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src0 = a;
  4621. result->src1 = b;
  4622. return result;
  4623. }
  4624. // ggml_soft_max
  4625. struct ggml_tensor * ggml_soft_max(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a) {
  4628. bool is_node = false;
  4629. if (a->grad) {
  4630. GGML_ASSERT(false); // TODO: implement backward
  4631. is_node = true;
  4632. }
  4633. // TODO: when implement backward, fix this:
  4634. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4635. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4636. result->op = GGML_OP_SOFT_MAX;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src0 = a;
  4639. result->src1 = NULL;
  4640. return result;
  4641. }
  4642. // ggml_rope
  4643. struct ggml_tensor * ggml_rope(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. int n_past,
  4647. int n_dims,
  4648. int mode) {
  4649. GGML_ASSERT(n_past >= 0);
  4650. bool is_node = false;
  4651. if (a->grad) {
  4652. GGML_ASSERT(false); // TODO: implement backward
  4653. is_node = true;
  4654. }
  4655. // TODO: when implement backward, fix this:
  4656. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4657. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4658. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4659. ((int32_t *) b->data)[0] = n_past;
  4660. ((int32_t *) b->data)[1] = n_dims;
  4661. ((int32_t *) b->data)[2] = mode;
  4662. result->op = GGML_OP_ROPE;
  4663. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4664. result->src0 = a;
  4665. result->src1 = b;
  4666. return result;
  4667. }
  4668. // ggml_alibi
  4669. struct ggml_tensor * ggml_alibi(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. int n_past,
  4673. int n_head) {
  4674. GGML_ASSERT(n_past >= 0);
  4675. bool is_node = false;
  4676. if (a->grad) {
  4677. GGML_ASSERT(false); // TODO: implement backward
  4678. is_node = true;
  4679. }
  4680. // TODO: when implement backward, fix this:
  4681. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4682. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4683. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4684. ((int32_t *) b->data)[0] = n_past;
  4685. ((int32_t *) b->data)[1] = n_head;
  4686. result->op = GGML_OP_ALIBI;
  4687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4688. result->src0 = a;
  4689. result->src1 = b;
  4690. return result;
  4691. }
  4692. // ggml_conv_1d_1s
  4693. struct ggml_tensor * ggml_conv_1d_1s(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. struct ggml_tensor * b) {
  4697. GGML_ASSERT(ggml_is_matrix(b));
  4698. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4699. GGML_ASSERT(a->ne[3] == 1);
  4700. bool is_node = false;
  4701. if (a->grad || b->grad) {
  4702. GGML_ASSERT(false); // TODO: implement backward
  4703. is_node = true;
  4704. }
  4705. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4706. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4707. result->op = GGML_OP_CONV_1D_1S;
  4708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4709. result->src0 = a;
  4710. result->src1 = b;
  4711. return result;
  4712. }
  4713. // ggml_conv_1d_2s
  4714. struct ggml_tensor * ggml_conv_1d_2s(
  4715. struct ggml_context * ctx,
  4716. struct ggml_tensor * a,
  4717. struct ggml_tensor * b) {
  4718. GGML_ASSERT(ggml_is_matrix(b));
  4719. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4720. GGML_ASSERT(a->ne[3] == 1);
  4721. bool is_node = false;
  4722. if (a->grad || b->grad) {
  4723. GGML_ASSERT(false); // TODO: implement backward
  4724. is_node = true;
  4725. }
  4726. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4727. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4728. result->op = GGML_OP_CONV_1D_2S;
  4729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4730. result->src0 = a;
  4731. result->src1 = b;
  4732. return result;
  4733. }
  4734. // ggml_flash_attn
  4735. struct ggml_tensor * ggml_flash_attn(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * q,
  4738. struct ggml_tensor * k,
  4739. struct ggml_tensor * v,
  4740. bool masked) {
  4741. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4742. // TODO: check if vT can be multiplied by (k*qT)
  4743. bool is_node = false;
  4744. if (q->grad || k->grad || v->grad) {
  4745. GGML_ASSERT(false); // TODO: implement backward
  4746. is_node = true;
  4747. }
  4748. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4749. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4750. result->op = GGML_OP_FLASH_ATTN;
  4751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4752. result->src0 = q;
  4753. result->src1 = k;
  4754. result->opt[0] = v;
  4755. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4756. return result;
  4757. }
  4758. // ggml_flash_ff
  4759. struct ggml_tensor * ggml_flash_ff(
  4760. struct ggml_context * ctx,
  4761. struct ggml_tensor * a,
  4762. struct ggml_tensor * b0,
  4763. struct ggml_tensor * b1,
  4764. struct ggml_tensor * c0,
  4765. struct ggml_tensor * c1) {
  4766. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4767. // TODO: more checks
  4768. bool is_node = false;
  4769. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4770. GGML_ASSERT(false); // TODO: implement backward
  4771. is_node = true;
  4772. }
  4773. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4774. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4775. result->op = GGML_OP_FLASH_FF;
  4776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4777. result->src0 = a;
  4778. result->src1 = b0;
  4779. result->opt[0] = b1;
  4780. result->opt[1] = c0;
  4781. result->opt[2] = c1;
  4782. return result;
  4783. }
  4784. // ggml_map_unary
  4785. struct ggml_tensor * ggml_map_unary_impl_f32(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. const ggml_unary_op_f32_t fun,
  4789. bool inplace) {
  4790. bool is_node = false;
  4791. if (!inplace && a->grad) {
  4792. is_node = true;
  4793. }
  4794. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4795. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4796. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4797. result->op = GGML_OP_MAP_UNARY;
  4798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4799. result->src0 = a;
  4800. result->opt[0] = addr_tensor;
  4801. return result;
  4802. }
  4803. struct ggml_tensor * ggml_map_unary_f32(
  4804. struct ggml_context * ctx,
  4805. struct ggml_tensor * a,
  4806. const ggml_unary_op_f32_t fun) {
  4807. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4808. }
  4809. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. const ggml_unary_op_f32_t fun) {
  4813. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4814. }
  4815. // ggml_map_binary
  4816. struct ggml_tensor * ggml_map_binary_impl_f32(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. struct ggml_tensor * b,
  4820. const ggml_binary_op_f32_t fun,
  4821. bool inplace) {
  4822. GGML_ASSERT(ggml_are_same_shape(a, b));
  4823. bool is_node = false;
  4824. if (!inplace && (a->grad || b->grad)) {
  4825. is_node = true;
  4826. }
  4827. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4828. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4829. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4830. result->op = GGML_OP_MAP_BINARY;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src0 = a;
  4833. result->src1 = b;
  4834. result->opt[0] = addr_tensor;
  4835. return result;
  4836. }
  4837. struct ggml_tensor * ggml_map_binary_f32(
  4838. struct ggml_context * ctx,
  4839. struct ggml_tensor * a,
  4840. struct ggml_tensor * b,
  4841. const ggml_binary_op_f32_t fun) {
  4842. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4843. }
  4844. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. struct ggml_tensor * b,
  4848. const ggml_binary_op_f32_t fun) {
  4849. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4850. }
  4851. ////////////////////////////////////////////////////////////////////////////////
  4852. void ggml_set_param(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * tensor) {
  4855. tensor->is_param = true;
  4856. GGML_ASSERT(tensor->grad == NULL);
  4857. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4858. }
  4859. // ggml_compute_forward_dup
  4860. static void ggml_compute_forward_dup_f16(
  4861. const struct ggml_compute_params * params,
  4862. const struct ggml_tensor * src0,
  4863. struct ggml_tensor * dst) {
  4864. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4865. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4866. return;
  4867. }
  4868. const int64_t ne00 = src0->ne[0];
  4869. const int64_t ne01 = src0->ne[1];
  4870. const int64_t ne02 = src0->ne[2];
  4871. const int64_t ne03 = src0->ne[3];
  4872. const int64_t ne0 = dst->ne[0];
  4873. const int64_t ne1 = dst->ne[1];
  4874. const int64_t ne2 = dst->ne[2];
  4875. const int64_t ne3 = dst->ne[3];
  4876. const size_t nb00 = src0->nb[0];
  4877. const size_t nb01 = src0->nb[1];
  4878. const size_t nb02 = src0->nb[2];
  4879. const size_t nb03 = src0->nb[3];
  4880. const size_t nb0 = dst->nb[0];
  4881. const size_t nb1 = dst->nb[1];
  4882. const size_t nb2 = dst->nb[2];
  4883. const size_t nb3 = dst->nb[3];
  4884. const int ith = params->ith; // thread index
  4885. const int nth = params->nth; // number of threads
  4886. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4887. // parallelize by elements
  4888. const int ne = ggml_nelements(dst);
  4889. const int dr = (ne + nth - 1) / nth;
  4890. const int ie0 = dr * ith;
  4891. const int ie1 = MIN(ie0 + dr, ne);
  4892. memcpy(
  4893. ((char *) dst->data + ie0*nb0),
  4894. ((char *) src0->data + ie0*nb00),
  4895. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4896. return;
  4897. }
  4898. // parallelize by rows
  4899. const int nr = ne01;
  4900. // number of rows per thread
  4901. const int dr = (nr + nth - 1) / nth;
  4902. // row range for this thread
  4903. const int ir0 = dr * ith;
  4904. const int ir1 = MIN(ir0 + dr, nr);
  4905. if (src0->type == dst->type &&
  4906. ne00 == ne0 &&
  4907. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4908. // copy by rows
  4909. const size_t rs = ne00*nb00;
  4910. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4911. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4912. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4913. memcpy(
  4914. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4915. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4916. rs);
  4917. }
  4918. }
  4919. }
  4920. return;
  4921. }
  4922. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4923. if (ggml_is_contiguous(dst)) {
  4924. if (nb00 == sizeof(ggml_fp16_t)) {
  4925. if (dst->type == GGML_TYPE_F16) {
  4926. size_t id = 0;
  4927. const size_t rs = ne00 * nb00;
  4928. char * dst_ptr = (char *) dst->data;
  4929. for (int i03 = 0; i03 < ne03; i03++) {
  4930. for (int i02 = 0; i02 < ne02; i02++) {
  4931. id += rs * ir0;
  4932. for (int i01 = ir0; i01 < ir1; i01++) {
  4933. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4934. memcpy(dst_ptr + id, src0_ptr, rs);
  4935. id += rs;
  4936. }
  4937. id += rs * (ne01 - ir1);
  4938. }
  4939. }
  4940. } else if (dst->type == GGML_TYPE_F32) {
  4941. size_t id = 0;
  4942. float * dst_ptr = (float *) dst->data;
  4943. for (int i03 = 0; i03 < ne03; i03++) {
  4944. for (int i02 = 0; i02 < ne02; i02++) {
  4945. id += ne00 * ir0;
  4946. for (int i01 = ir0; i01 < ir1; i01++) {
  4947. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4948. for (int i00 = 0; i00 < ne00; i00++) {
  4949. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4950. id++;
  4951. }
  4952. }
  4953. id += ne00 * (ne01 - ir1);
  4954. }
  4955. }
  4956. } else if (ggml_is_quantized(dst->type)) {
  4957. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4958. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4959. size_t id = 0;
  4960. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4961. char * dst_ptr = (char *) dst->data;
  4962. for (int i03 = 0; i03 < ne03; i03++) {
  4963. for (int i02 = 0; i02 < ne02; i02++) {
  4964. id += rs * ir0;
  4965. for (int i01 = ir0; i01 < ir1; i01++) {
  4966. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4967. for (int i00 = 0; i00 < ne00; i00++) {
  4968. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4969. }
  4970. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4971. id += rs;
  4972. }
  4973. id += rs * (ne01 - ir1);
  4974. }
  4975. }
  4976. } else {
  4977. GGML_ASSERT(false); // TODO: implement
  4978. }
  4979. } else {
  4980. //printf("%s: this is not optimal - fix me\n", __func__);
  4981. if (dst->type == GGML_TYPE_F32) {
  4982. size_t id = 0;
  4983. float * dst_ptr = (float *) dst->data;
  4984. for (int i03 = 0; i03 < ne03; i03++) {
  4985. for (int i02 = 0; i02 < ne02; i02++) {
  4986. id += ne00 * ir0;
  4987. for (int i01 = ir0; i01 < ir1; i01++) {
  4988. for (int i00 = 0; i00 < ne00; i00++) {
  4989. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4990. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4991. id++;
  4992. }
  4993. }
  4994. id += ne00 * (ne01 - ir1);
  4995. }
  4996. }
  4997. } else if (dst->type == GGML_TYPE_F16) {
  4998. size_t id = 0;
  4999. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5000. for (int i03 = 0; i03 < ne03; i03++) {
  5001. for (int i02 = 0; i02 < ne02; i02++) {
  5002. id += ne00 * ir0;
  5003. for (int i01 = ir0; i01 < ir1; i01++) {
  5004. for (int i00 = 0; i00 < ne00; i00++) {
  5005. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5006. dst_ptr[id] = *src0_ptr;
  5007. id++;
  5008. }
  5009. }
  5010. id += ne00 * (ne01 - ir1);
  5011. }
  5012. }
  5013. } else {
  5014. GGML_ASSERT(false); // TODO: implement
  5015. }
  5016. }
  5017. return;
  5018. }
  5019. // dst counters
  5020. int64_t i10 = 0;
  5021. int64_t i11 = 0;
  5022. int64_t i12 = 0;
  5023. int64_t i13 = 0;
  5024. if (dst->type == GGML_TYPE_F16) {
  5025. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5026. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5027. i10 += ne00 * ir0;
  5028. while (i10 >= ne0) {
  5029. i10 -= ne0;
  5030. if (++i11 == ne1) {
  5031. i11 = 0;
  5032. if (++i12 == ne2) {
  5033. i12 = 0;
  5034. if (++i13 == ne3) {
  5035. i13 = 0;
  5036. }
  5037. }
  5038. }
  5039. }
  5040. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5041. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5042. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5043. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5044. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5045. if (++i10 == ne00) {
  5046. i10 = 0;
  5047. if (++i11 == ne01) {
  5048. i11 = 0;
  5049. if (++i12 == ne02) {
  5050. i12 = 0;
  5051. if (++i13 == ne03) {
  5052. i13 = 0;
  5053. }
  5054. }
  5055. }
  5056. }
  5057. }
  5058. }
  5059. i10 += ne00 * (ne01 - ir1);
  5060. while (i10 >= ne0) {
  5061. i10 -= ne0;
  5062. if (++i11 == ne1) {
  5063. i11 = 0;
  5064. if (++i12 == ne2) {
  5065. i12 = 0;
  5066. if (++i13 == ne3) {
  5067. i13 = 0;
  5068. }
  5069. }
  5070. }
  5071. }
  5072. }
  5073. }
  5074. } else if (dst->type == GGML_TYPE_F32) {
  5075. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5076. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5077. i10 += ne00 * ir0;
  5078. while (i10 >= ne0) {
  5079. i10 -= ne0;
  5080. if (++i11 == ne1) {
  5081. i11 = 0;
  5082. if (++i12 == ne2) {
  5083. i12 = 0;
  5084. if (++i13 == ne3) {
  5085. i13 = 0;
  5086. }
  5087. }
  5088. }
  5089. }
  5090. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5091. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5092. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5093. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5094. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5095. if (++i10 == ne0) {
  5096. i10 = 0;
  5097. if (++i11 == ne1) {
  5098. i11 = 0;
  5099. if (++i12 == ne2) {
  5100. i12 = 0;
  5101. if (++i13 == ne3) {
  5102. i13 = 0;
  5103. }
  5104. }
  5105. }
  5106. }
  5107. }
  5108. }
  5109. i10 += ne00 * (ne01 - ir1);
  5110. while (i10 >= ne0) {
  5111. i10 -= ne0;
  5112. if (++i11 == ne1) {
  5113. i11 = 0;
  5114. if (++i12 == ne2) {
  5115. i12 = 0;
  5116. if (++i13 == ne3) {
  5117. i13 = 0;
  5118. }
  5119. }
  5120. }
  5121. }
  5122. }
  5123. }
  5124. } else {
  5125. GGML_ASSERT(false); // TODO: implement
  5126. }
  5127. }
  5128. static void ggml_compute_forward_dup_f32(
  5129. const struct ggml_compute_params * params,
  5130. const struct ggml_tensor * src0,
  5131. struct ggml_tensor * dst) {
  5132. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5133. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5134. return;
  5135. }
  5136. const int64_t ne00 = src0->ne[0];
  5137. const int64_t ne01 = src0->ne[1];
  5138. const int64_t ne02 = src0->ne[2];
  5139. const int64_t ne03 = src0->ne[3];
  5140. const int64_t ne0 = dst->ne[0];
  5141. const int64_t ne1 = dst->ne[1];
  5142. const int64_t ne2 = dst->ne[2];
  5143. const int64_t ne3 = dst->ne[3];
  5144. const size_t nb00 = src0->nb[0];
  5145. const size_t nb01 = src0->nb[1];
  5146. const size_t nb02 = src0->nb[2];
  5147. const size_t nb03 = src0->nb[3];
  5148. const size_t nb0 = dst->nb[0];
  5149. const size_t nb1 = dst->nb[1];
  5150. const size_t nb2 = dst->nb[2];
  5151. const size_t nb3 = dst->nb[3];
  5152. const int ith = params->ith; // thread index
  5153. const int nth = params->nth; // number of threads
  5154. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5155. // parallelize by elements
  5156. const int ne = ggml_nelements(dst);
  5157. const int dr = (ne + nth - 1) / nth;
  5158. const int ie0 = dr * ith;
  5159. const int ie1 = MIN(ie0 + dr, ne);
  5160. memcpy(
  5161. ((char *) dst->data + ie0*nb0),
  5162. ((char *) src0->data + ie0*nb00),
  5163. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5164. return;
  5165. }
  5166. // parallelize by rows
  5167. const int nr = ne01;
  5168. // number of rows per thread
  5169. const int dr = (nr + nth - 1) / nth;
  5170. // row range for this thread
  5171. const int ir0 = dr * ith;
  5172. const int ir1 = MIN(ir0 + dr, nr);
  5173. if (src0->type == dst->type &&
  5174. ne00 == ne0 &&
  5175. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5176. // copy by rows
  5177. const size_t rs = ne00*nb00;
  5178. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5179. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5180. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5181. memcpy(
  5182. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5183. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5184. rs);
  5185. }
  5186. }
  5187. }
  5188. return;
  5189. }
  5190. if (ggml_is_contiguous(dst)) {
  5191. // TODO: simplify
  5192. if (nb00 == sizeof(float)) {
  5193. if (dst->type == GGML_TYPE_F32) {
  5194. size_t id = 0;
  5195. const size_t rs = ne00 * nb00;
  5196. char * dst_ptr = (char *) dst->data;
  5197. for (int i03 = 0; i03 < ne03; i03++) {
  5198. for (int i02 = 0; i02 < ne02; i02++) {
  5199. id += rs * ir0;
  5200. for (int i01 = ir0; i01 < ir1; i01++) {
  5201. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5202. memcpy(dst_ptr + id, src0_ptr, rs);
  5203. id += rs;
  5204. }
  5205. id += rs * (ne01 - ir1);
  5206. }
  5207. }
  5208. } else if (dst->type == GGML_TYPE_F16) {
  5209. size_t id = 0;
  5210. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5211. for (int i03 = 0; i03 < ne03; i03++) {
  5212. for (int i02 = 0; i02 < ne02; i02++) {
  5213. id += ne00 * ir0;
  5214. for (int i01 = ir0; i01 < ir1; i01++) {
  5215. for (int i00 = 0; i00 < ne00; i00++) {
  5216. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5217. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5218. id++;
  5219. }
  5220. }
  5221. id += ne00 * (ne01 - ir1);
  5222. }
  5223. }
  5224. } else if (ggml_is_quantized(dst->type)) {
  5225. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5226. size_t id = 0;
  5227. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5228. char * dst_ptr = (char *) dst->data;
  5229. for (int i03 = 0; i03 < ne03; i03++) {
  5230. for (int i02 = 0; i02 < ne02; i02++) {
  5231. id += rs * ir0;
  5232. for (int i01 = ir0; i01 < ir1; i01++) {
  5233. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5234. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5235. id += rs;
  5236. }
  5237. id += rs * (ne01 - ir1);
  5238. }
  5239. }
  5240. } else {
  5241. GGML_ASSERT(false); // TODO: implement
  5242. }
  5243. } else {
  5244. //printf("%s: this is not optimal - fix me\n", __func__);
  5245. if (dst->type == GGML_TYPE_F32) {
  5246. size_t id = 0;
  5247. float * dst_ptr = (float *) dst->data;
  5248. for (int i03 = 0; i03 < ne03; i03++) {
  5249. for (int i02 = 0; i02 < ne02; i02++) {
  5250. id += ne00 * ir0;
  5251. for (int i01 = ir0; i01 < ir1; i01++) {
  5252. for (int i00 = 0; i00 < ne00; i00++) {
  5253. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5254. dst_ptr[id] = *src0_ptr;
  5255. id++;
  5256. }
  5257. }
  5258. id += ne00 * (ne01 - ir1);
  5259. }
  5260. }
  5261. } else if (dst->type == GGML_TYPE_F16) {
  5262. size_t id = 0;
  5263. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5264. for (int i03 = 0; i03 < ne03; i03++) {
  5265. for (int i02 = 0; i02 < ne02; i02++) {
  5266. id += ne00 * ir0;
  5267. for (int i01 = ir0; i01 < ir1; i01++) {
  5268. for (int i00 = 0; i00 < ne00; i00++) {
  5269. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5270. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5271. id++;
  5272. }
  5273. }
  5274. id += ne00 * (ne01 - ir1);
  5275. }
  5276. }
  5277. } else {
  5278. GGML_ASSERT(false); // TODO: implement
  5279. }
  5280. }
  5281. return;
  5282. }
  5283. // dst counters
  5284. int64_t i10 = 0;
  5285. int64_t i11 = 0;
  5286. int64_t i12 = 0;
  5287. int64_t i13 = 0;
  5288. if (dst->type == GGML_TYPE_F32) {
  5289. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5290. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5291. i10 += ne00 * ir0;
  5292. while (i10 >= ne0) {
  5293. i10 -= ne0;
  5294. if (++i11 == ne1) {
  5295. i11 = 0;
  5296. if (++i12 == ne2) {
  5297. i12 = 0;
  5298. if (++i13 == ne3) {
  5299. i13 = 0;
  5300. }
  5301. }
  5302. }
  5303. }
  5304. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5305. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5306. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5307. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5308. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5309. if (++i10 == ne0) {
  5310. i10 = 0;
  5311. if (++i11 == ne1) {
  5312. i11 = 0;
  5313. if (++i12 == ne2) {
  5314. i12 = 0;
  5315. if (++i13 == ne3) {
  5316. i13 = 0;
  5317. }
  5318. }
  5319. }
  5320. }
  5321. }
  5322. }
  5323. i10 += ne00 * (ne01 - ir1);
  5324. while (i10 >= ne0) {
  5325. i10 -= ne0;
  5326. if (++i11 == ne1) {
  5327. i11 = 0;
  5328. if (++i12 == ne2) {
  5329. i12 = 0;
  5330. if (++i13 == ne3) {
  5331. i13 = 0;
  5332. }
  5333. }
  5334. }
  5335. }
  5336. }
  5337. }
  5338. } else if (dst->type == GGML_TYPE_F16) {
  5339. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5340. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5341. i10 += ne00 * ir0;
  5342. while (i10 >= ne0) {
  5343. i10 -= ne0;
  5344. if (++i11 == ne1) {
  5345. i11 = 0;
  5346. if (++i12 == ne2) {
  5347. i12 = 0;
  5348. if (++i13 == ne3) {
  5349. i13 = 0;
  5350. }
  5351. }
  5352. }
  5353. }
  5354. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5355. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5356. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5357. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5358. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5359. if (++i10 == ne0) {
  5360. i10 = 0;
  5361. if (++i11 == ne1) {
  5362. i11 = 0;
  5363. if (++i12 == ne2) {
  5364. i12 = 0;
  5365. if (++i13 == ne3) {
  5366. i13 = 0;
  5367. }
  5368. }
  5369. }
  5370. }
  5371. }
  5372. }
  5373. i10 += ne00 * (ne01 - ir1);
  5374. while (i10 >= ne0) {
  5375. i10 -= ne0;
  5376. if (++i11 == ne1) {
  5377. i11 = 0;
  5378. if (++i12 == ne2) {
  5379. i12 = 0;
  5380. if (++i13 == ne3) {
  5381. i13 = 0;
  5382. }
  5383. }
  5384. }
  5385. }
  5386. }
  5387. }
  5388. } else {
  5389. GGML_ASSERT(false); // TODO: implement
  5390. }
  5391. }
  5392. static void ggml_compute_forward_dup(
  5393. const struct ggml_compute_params * params,
  5394. const struct ggml_tensor * src0,
  5395. struct ggml_tensor * dst) {
  5396. switch (src0->type) {
  5397. case GGML_TYPE_F16:
  5398. {
  5399. ggml_compute_forward_dup_f16(params, src0, dst);
  5400. } break;
  5401. case GGML_TYPE_F32:
  5402. {
  5403. ggml_compute_forward_dup_f32(params, src0, dst);
  5404. } break;
  5405. default:
  5406. {
  5407. GGML_ASSERT(false);
  5408. } break;
  5409. }
  5410. }
  5411. // ggml_compute_forward_add
  5412. static void ggml_compute_forward_add_f32(
  5413. const struct ggml_compute_params * params,
  5414. const struct ggml_tensor * src0,
  5415. const struct ggml_tensor * src1,
  5416. struct ggml_tensor * dst) {
  5417. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5418. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5419. return;
  5420. }
  5421. const int ith = params->ith;
  5422. const int nth = params->nth;
  5423. const int n = ggml_nrows(src0);
  5424. const int nc = src0->ne[0];
  5425. const size_t nb00 = src0->nb[0];
  5426. const size_t nb01 = src0->nb[1];
  5427. const size_t nb10 = src1->nb[0];
  5428. const size_t nb11 = src1->nb[1];
  5429. const size_t nb0 = dst->nb[0];
  5430. const size_t nb1 = dst->nb[1];
  5431. GGML_ASSERT( nb0 == sizeof(float));
  5432. GGML_ASSERT(nb00 == sizeof(float));
  5433. if (nb10 == sizeof(float)) {
  5434. for (int j = ith; j < n; j += nth) {
  5435. #ifdef GGML_USE_ACCELERATE
  5436. vDSP_vadd(
  5437. (float *) ((char *) src0->data + j*nb01), 1,
  5438. (float *) ((char *) src1->data + j*nb11), 1,
  5439. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5440. #else
  5441. ggml_vec_add_f32(nc,
  5442. (float *) ((char *) dst->data + j*nb1),
  5443. (float *) ((char *) src0->data + j*nb01),
  5444. (float *) ((char *) src1->data + j*nb11));
  5445. #endif
  5446. }
  5447. } else {
  5448. // src1 is not contiguous
  5449. for (int j = ith; j < n; j += nth) {
  5450. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5451. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5452. for (int i = 0; i < nc; i++) {
  5453. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5454. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5455. }
  5456. }
  5457. }
  5458. }
  5459. static void ggml_compute_forward_add_f16_f32(
  5460. const struct ggml_compute_params * params,
  5461. const struct ggml_tensor * src0,
  5462. const struct ggml_tensor * src1,
  5463. struct ggml_tensor * dst) {
  5464. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5465. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5466. return;
  5467. }
  5468. const int ith = params->ith;
  5469. const int nth = params->nth;
  5470. const int n = ggml_nrows(src0);
  5471. const int nc = src0->ne[0];
  5472. const size_t nb00 = src0->nb[0];
  5473. const size_t nb01 = src0->nb[1];
  5474. const size_t nb10 = src1->nb[0];
  5475. const size_t nb11 = src1->nb[1];
  5476. const size_t nb0 = dst->nb[0];
  5477. const size_t nb1 = dst->nb[1];
  5478. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5479. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5480. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5481. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5482. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5483. if (nb10 == sizeof(float)) {
  5484. for (int j = ith; j < n; j += nth) {
  5485. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5486. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5487. for (int i = 0; i < nc; i++) {
  5488. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5489. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5490. }
  5491. }
  5492. }
  5493. else {
  5494. // src1 is not contiguous
  5495. GGML_ASSERT(false);
  5496. }
  5497. }
  5498. static void ggml_compute_forward_add_f16_f16(
  5499. const struct ggml_compute_params * params,
  5500. const struct ggml_tensor * src0,
  5501. const struct ggml_tensor * src1,
  5502. struct ggml_tensor * dst) {
  5503. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5505. return;
  5506. }
  5507. const int ith = params->ith;
  5508. const int nth = params->nth;
  5509. const int n = ggml_nrows(src0);
  5510. const int nc = src0->ne[0];
  5511. const size_t nb00 = src0->nb[0];
  5512. const size_t nb01 = src0->nb[1];
  5513. const size_t nb10 = src1->nb[0];
  5514. const size_t nb11 = src1->nb[1];
  5515. const size_t nb0 = dst->nb[0];
  5516. const size_t nb1 = dst->nb[1];
  5517. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5518. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5519. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5520. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5521. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5522. if (nb10 == sizeof(ggml_fp16_t)) {
  5523. for (int j = ith; j < n; j += nth) {
  5524. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5525. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5526. for (int i = 0; i < nc; i++) {
  5527. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5528. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5529. }
  5530. }
  5531. }
  5532. else {
  5533. // src1 is not contiguous
  5534. GGML_ASSERT(false);
  5535. }
  5536. }
  5537. static void ggml_compute_forward_add_q_f32(
  5538. const struct ggml_compute_params * params,
  5539. const struct ggml_tensor * src0,
  5540. const struct ggml_tensor * src1,
  5541. struct ggml_tensor * dst) {
  5542. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5544. return;
  5545. }
  5546. const int64_t ne00 = src0->ne[0];
  5547. const int64_t ne01 = src0->ne[1];
  5548. const int64_t ne02 = src0->ne[2];
  5549. const int64_t ne03 = src0->ne[3];
  5550. //const int64_t ne10 = src1->ne[0];
  5551. //const int64_t ne11 = src1->ne[1];
  5552. const int64_t ne12 = src1->ne[2];
  5553. const int64_t ne13 = src1->ne[3];
  5554. //const int64_t ne0 = dst->ne[0];
  5555. //const int64_t ne1 = dst->ne[1];
  5556. const int64_t ne2 = dst->ne[2];
  5557. const int64_t ne3 = dst->ne[3];
  5558. const int nb00 = src0->nb[0];
  5559. const int nb01 = src0->nb[1];
  5560. const int nb02 = src0->nb[2];
  5561. const int nb03 = src0->nb[3];
  5562. const int nb10 = src1->nb[0];
  5563. const int nb11 = src1->nb[1];
  5564. const int nb12 = src1->nb[2];
  5565. const int nb13 = src1->nb[3];
  5566. const int nb0 = dst->nb[0];
  5567. const int nb1 = dst->nb[1];
  5568. const int nb2 = dst->nb[2];
  5569. const int nb3 = dst->nb[3];
  5570. const int ith = params->ith;
  5571. const int nth = params->nth;
  5572. GGML_ASSERT(ne02 == ne12);
  5573. GGML_ASSERT(ne03 == ne13);
  5574. GGML_ASSERT(ne2 == ne12);
  5575. GGML_ASSERT(ne3 == ne13);
  5576. const enum ggml_type type = src0->type;
  5577. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5578. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5579. // we don't support permuted src0 or src1
  5580. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5581. GGML_ASSERT(nb10 == sizeof(float));
  5582. // dst cannot be transposed or permuted
  5583. GGML_ASSERT(nb0 <= nb1);
  5584. GGML_ASSERT(nb1 <= nb2);
  5585. GGML_ASSERT(nb2 <= nb3);
  5586. GGML_ASSERT(ggml_is_quantized(src0->type));
  5587. GGML_ASSERT(dst->type == src0->type);
  5588. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5589. // total rows in src0
  5590. const int nr = ne01*ne02*ne03;
  5591. // rows per thread
  5592. const int dr = (nr + nth - 1)/nth;
  5593. // row range for this thread
  5594. const int ir0 = dr*ith;
  5595. const int ir1 = MIN(ir0 + dr, nr);
  5596. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5597. for (int ir = ir0; ir < ir1; ++ir) {
  5598. // src0 indices
  5599. const int i03 = ir/(ne02*ne01);
  5600. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5601. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5602. // src1 and dst are same shape as src0 => same indices
  5603. const int i13 = i03;
  5604. const int i12 = i02;
  5605. const int i11 = i01;
  5606. const int i3 = i03;
  5607. const int i2 = i02;
  5608. const int i1 = i01;
  5609. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5610. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5611. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5612. assert(ne00 % 32 == 0);
  5613. // unquantize row from src0 to temp buffer
  5614. dequantize_row_q(src0_row, wdata, ne00);
  5615. // add src1
  5616. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5617. // quantize row to dst
  5618. quantize_row_q(wdata, dst_row, ne00);
  5619. }
  5620. }
  5621. static void ggml_compute_forward_add(
  5622. const struct ggml_compute_params * params,
  5623. const struct ggml_tensor * src0,
  5624. const struct ggml_tensor * src1,
  5625. struct ggml_tensor * dst) {
  5626. switch (src0->type) {
  5627. case GGML_TYPE_F32:
  5628. {
  5629. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5630. } break;
  5631. case GGML_TYPE_F16:
  5632. {
  5633. if (src1->type == GGML_TYPE_F16) {
  5634. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5635. }
  5636. else if (src1->type == GGML_TYPE_F32) {
  5637. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5638. }
  5639. else {
  5640. GGML_ASSERT(false);
  5641. }
  5642. } break;
  5643. case GGML_TYPE_Q4_0:
  5644. case GGML_TYPE_Q4_1:
  5645. case GGML_TYPE_Q4_2:
  5646. case GGML_TYPE_Q5_0:
  5647. case GGML_TYPE_Q5_1:
  5648. case GGML_TYPE_Q8_0:
  5649. {
  5650. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5651. } break;
  5652. default:
  5653. {
  5654. GGML_ASSERT(false);
  5655. } break;
  5656. }
  5657. }
  5658. // ggml_compute_forward_sub
  5659. static void ggml_compute_forward_sub_f32(
  5660. const struct ggml_compute_params * params,
  5661. const struct ggml_tensor * src0,
  5662. const struct ggml_tensor * src1,
  5663. struct ggml_tensor * dst) {
  5664. assert(params->ith == 0);
  5665. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5667. return;
  5668. }
  5669. const int n = ggml_nrows(src0);
  5670. const int nc = src0->ne[0];
  5671. assert( dst->nb[0] == sizeof(float));
  5672. assert(src0->nb[0] == sizeof(float));
  5673. assert(src1->nb[0] == sizeof(float));
  5674. for (int i = 0; i < n; i++) {
  5675. ggml_vec_sub_f32(nc,
  5676. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5677. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5678. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5679. }
  5680. }
  5681. static void ggml_compute_forward_sub(
  5682. const struct ggml_compute_params * params,
  5683. const struct ggml_tensor * src0,
  5684. const struct ggml_tensor * src1,
  5685. struct ggml_tensor * dst) {
  5686. switch (src0->type) {
  5687. case GGML_TYPE_F32:
  5688. {
  5689. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5690. } break;
  5691. default:
  5692. {
  5693. GGML_ASSERT(false);
  5694. } break;
  5695. }
  5696. }
  5697. // ggml_compute_forward_mul
  5698. static void ggml_compute_forward_mul_f32(
  5699. const struct ggml_compute_params * params,
  5700. const struct ggml_tensor * src0,
  5701. const struct ggml_tensor * src1,
  5702. struct ggml_tensor * dst) {
  5703. assert(params->ith == 0);
  5704. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5705. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5706. return;
  5707. }
  5708. const int n = ggml_nrows(src0);
  5709. const int nc = src0->ne[0];
  5710. assert( dst->nb[0] == sizeof(float));
  5711. assert(src0->nb[0] == sizeof(float));
  5712. assert(src1->nb[0] == sizeof(float));
  5713. for (int i = 0; i < n; i++) {
  5714. ggml_vec_mul_f32(nc,
  5715. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5716. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5717. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5718. }
  5719. }
  5720. static void ggml_compute_forward_mul(
  5721. const struct ggml_compute_params * params,
  5722. const struct ggml_tensor * src0,
  5723. const struct ggml_tensor * src1,
  5724. struct ggml_tensor * dst) {
  5725. switch (src0->type) {
  5726. case GGML_TYPE_F32:
  5727. {
  5728. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5729. } break;
  5730. default:
  5731. {
  5732. GGML_ASSERT(false);
  5733. } break;
  5734. }
  5735. }
  5736. // ggml_compute_forward_div
  5737. static void ggml_compute_forward_div_f32(
  5738. const struct ggml_compute_params * params,
  5739. const struct ggml_tensor * src0,
  5740. const struct ggml_tensor * src1,
  5741. struct ggml_tensor * dst) {
  5742. assert(params->ith == 0);
  5743. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5744. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5745. return;
  5746. }
  5747. const int n = ggml_nrows(src0);
  5748. const int nc = src0->ne[0];
  5749. assert( dst->nb[0] == sizeof(float));
  5750. assert(src0->nb[0] == sizeof(float));
  5751. assert(src1->nb[0] == sizeof(float));
  5752. for (int i = 0; i < n; i++) {
  5753. ggml_vec_div_f32(nc,
  5754. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5755. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5756. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5757. }
  5758. }
  5759. static void ggml_compute_forward_div(
  5760. const struct ggml_compute_params * params,
  5761. const struct ggml_tensor * src0,
  5762. const struct ggml_tensor * src1,
  5763. struct ggml_tensor * dst) {
  5764. switch (src0->type) {
  5765. case GGML_TYPE_F32:
  5766. {
  5767. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5768. } break;
  5769. default:
  5770. {
  5771. GGML_ASSERT(false);
  5772. } break;
  5773. }
  5774. }
  5775. // ggml_compute_forward_sqr
  5776. static void ggml_compute_forward_sqr_f32(
  5777. const struct ggml_compute_params * params,
  5778. const struct ggml_tensor * src0,
  5779. struct ggml_tensor * dst) {
  5780. assert(params->ith == 0);
  5781. assert(ggml_are_same_shape(src0, dst));
  5782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5783. return;
  5784. }
  5785. const int n = ggml_nrows(src0);
  5786. const int nc = src0->ne[0];
  5787. assert( dst->nb[0] == sizeof(float));
  5788. assert(src0->nb[0] == sizeof(float));
  5789. for (int i = 0; i < n; i++) {
  5790. ggml_vec_sqr_f32(nc,
  5791. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5792. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5793. }
  5794. }
  5795. static void ggml_compute_forward_sqr(
  5796. const struct ggml_compute_params * params,
  5797. const struct ggml_tensor * src0,
  5798. struct ggml_tensor * dst) {
  5799. switch (src0->type) {
  5800. case GGML_TYPE_F32:
  5801. {
  5802. ggml_compute_forward_sqr_f32(params, src0, dst);
  5803. } break;
  5804. default:
  5805. {
  5806. GGML_ASSERT(false);
  5807. } break;
  5808. }
  5809. }
  5810. // ggml_compute_forward_sqrt
  5811. static void ggml_compute_forward_sqrt_f32(
  5812. const struct ggml_compute_params * params,
  5813. const struct ggml_tensor * src0,
  5814. struct ggml_tensor * dst) {
  5815. assert(params->ith == 0);
  5816. assert(ggml_are_same_shape(src0, dst));
  5817. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5818. return;
  5819. }
  5820. const int n = ggml_nrows(src0);
  5821. const int nc = src0->ne[0];
  5822. assert( dst->nb[0] == sizeof(float));
  5823. assert(src0->nb[0] == sizeof(float));
  5824. for (int i = 0; i < n; i++) {
  5825. ggml_vec_sqrt_f32(nc,
  5826. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5827. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5828. }
  5829. }
  5830. static void ggml_compute_forward_sqrt(
  5831. const struct ggml_compute_params * params,
  5832. const struct ggml_tensor * src0,
  5833. struct ggml_tensor * dst) {
  5834. switch (src0->type) {
  5835. case GGML_TYPE_F32:
  5836. {
  5837. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5838. } break;
  5839. default:
  5840. {
  5841. GGML_ASSERT(false);
  5842. } break;
  5843. }
  5844. }
  5845. // ggml_compute_forward_sum
  5846. static void ggml_compute_forward_sum_f32(
  5847. const struct ggml_compute_params * params,
  5848. const struct ggml_tensor * src0,
  5849. struct ggml_tensor * dst) {
  5850. assert(params->ith == 0);
  5851. assert(ggml_is_scalar(dst));
  5852. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5853. return;
  5854. }
  5855. assert(ggml_is_scalar(dst));
  5856. assert(src0->nb[0] == sizeof(float));
  5857. const int64_t ne00 = src0->ne[0];
  5858. const int64_t ne01 = src0->ne[1];
  5859. const int64_t ne02 = src0->ne[2];
  5860. const int64_t ne03 = src0->ne[3];
  5861. const size_t nb01 = src0->nb[1];
  5862. const size_t nb02 = src0->nb[2];
  5863. const size_t nb03 = src0->nb[3];
  5864. ggml_float sum = 0;
  5865. ggml_float row_sum = 0;
  5866. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5867. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5868. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5869. ggml_vec_sum_ggf(ne00,
  5870. &row_sum,
  5871. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5872. sum += row_sum;
  5873. }
  5874. }
  5875. }
  5876. ((float *) dst->data)[0] = sum;
  5877. }
  5878. static void ggml_compute_forward_sum(
  5879. const struct ggml_compute_params * params,
  5880. const struct ggml_tensor * src0,
  5881. struct ggml_tensor * dst) {
  5882. switch (src0->type) {
  5883. case GGML_TYPE_F32:
  5884. {
  5885. ggml_compute_forward_sum_f32(params, src0, dst);
  5886. } break;
  5887. default:
  5888. {
  5889. GGML_ASSERT(false);
  5890. } break;
  5891. }
  5892. }
  5893. // ggml_compute_forward_mean
  5894. static void ggml_compute_forward_mean_f32(
  5895. const struct ggml_compute_params * params,
  5896. const struct ggml_tensor * src0,
  5897. struct ggml_tensor * dst) {
  5898. assert(params->ith == 0);
  5899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5900. return;
  5901. }
  5902. assert(src0->nb[0] == sizeof(float));
  5903. const int64_t ne00 = src0->ne[0];
  5904. const int64_t ne01 = src0->ne[1];
  5905. const int64_t ne02 = src0->ne[2];
  5906. const int64_t ne03 = src0->ne[3];
  5907. const size_t nb01 = src0->nb[1];
  5908. const size_t nb02 = src0->nb[2];
  5909. const size_t nb03 = src0->nb[3];
  5910. const int64_t ne0 = dst->ne[0];
  5911. const int64_t ne1 = dst->ne[1];
  5912. const int64_t ne2 = dst->ne[2];
  5913. const int64_t ne3 = dst->ne[3];
  5914. assert(ne0 == 1);
  5915. assert(ne1 == ne01);
  5916. assert(ne2 == ne02);
  5917. assert(ne3 == ne03);
  5918. UNUSED(ne0);
  5919. UNUSED(ne1);
  5920. UNUSED(ne2);
  5921. UNUSED(ne3);
  5922. const size_t nb1 = dst->nb[1];
  5923. const size_t nb2 = dst->nb[2];
  5924. const size_t nb3 = dst->nb[3];
  5925. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5926. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5927. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5928. ggml_vec_sum_f32(ne00,
  5929. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5930. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5931. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5932. }
  5933. }
  5934. }
  5935. }
  5936. static void ggml_compute_forward_mean(
  5937. const struct ggml_compute_params * params,
  5938. const struct ggml_tensor * src0,
  5939. struct ggml_tensor * dst) {
  5940. switch (src0->type) {
  5941. case GGML_TYPE_F32:
  5942. {
  5943. ggml_compute_forward_mean_f32(params, src0, dst);
  5944. } break;
  5945. default:
  5946. {
  5947. GGML_ASSERT(false);
  5948. } break;
  5949. }
  5950. }
  5951. // ggml_compute_forward_repeat
  5952. static void ggml_compute_forward_repeat_f32(
  5953. const struct ggml_compute_params * params,
  5954. const struct ggml_tensor * src0,
  5955. struct ggml_tensor * dst) {
  5956. assert(params->ith == 0);
  5957. assert(ggml_can_repeat(src0, dst));
  5958. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5959. return;
  5960. }
  5961. // TODO: implement support for rank > 2 tensors
  5962. assert(src0->ne[2] == 1);
  5963. assert(src0->ne[3] == 1);
  5964. assert( dst->ne[2] == 1);
  5965. assert( dst->ne[3] == 1);
  5966. const int nc = dst->ne[0];
  5967. const int nr = dst->ne[1];
  5968. const int nc0 = src0->ne[0];
  5969. const int nr0 = src0->ne[1];
  5970. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5971. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5972. // TODO: support for transposed / permuted tensors
  5973. assert( dst->nb[0] == sizeof(float));
  5974. assert(src0->nb[0] == sizeof(float));
  5975. // TODO: maybe this is not optimal?
  5976. for (int i = 0; i < nrr; i++) {
  5977. for (int j = 0; j < ncr; j++) {
  5978. for (int k = 0; k < nr0; k++) {
  5979. ggml_vec_cpy_f32(nc0,
  5980. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5981. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5982. }
  5983. }
  5984. }
  5985. }
  5986. static void ggml_compute_forward_repeat(
  5987. const struct ggml_compute_params * params,
  5988. const struct ggml_tensor * src0,
  5989. struct ggml_tensor * dst) {
  5990. switch (src0->type) {
  5991. case GGML_TYPE_F32:
  5992. {
  5993. ggml_compute_forward_repeat_f32(params, src0, dst);
  5994. } break;
  5995. default:
  5996. {
  5997. GGML_ASSERT(false);
  5998. } break;
  5999. }
  6000. }
  6001. // ggml_compute_forward_abs
  6002. static void ggml_compute_forward_abs_f32(
  6003. const struct ggml_compute_params * params,
  6004. const struct ggml_tensor * src0,
  6005. struct ggml_tensor * dst) {
  6006. assert(params->ith == 0);
  6007. assert(ggml_are_same_shape(src0, dst));
  6008. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6009. return;
  6010. }
  6011. const int n = ggml_nrows(src0);
  6012. const int nc = src0->ne[0];
  6013. assert(dst->nb[0] == sizeof(float));
  6014. assert(src0->nb[0] == sizeof(float));
  6015. for (int i = 0; i < n; i++) {
  6016. ggml_vec_abs_f32(nc,
  6017. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6018. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6019. }
  6020. }
  6021. static void ggml_compute_forward_abs(
  6022. const struct ggml_compute_params * params,
  6023. const struct ggml_tensor * src0,
  6024. struct ggml_tensor * dst) {
  6025. switch (src0->type) {
  6026. case GGML_TYPE_F32:
  6027. {
  6028. ggml_compute_forward_abs_f32(params, src0, dst);
  6029. } break;
  6030. default:
  6031. {
  6032. GGML_ASSERT(false);
  6033. } break;
  6034. }
  6035. }
  6036. // ggml_compute_forward_sgn
  6037. static void ggml_compute_forward_sgn_f32(
  6038. const struct ggml_compute_params * params,
  6039. const struct ggml_tensor * src0,
  6040. struct ggml_tensor * dst) {
  6041. assert(params->ith == 0);
  6042. assert(ggml_are_same_shape(src0, dst));
  6043. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6044. return;
  6045. }
  6046. const int n = ggml_nrows(src0);
  6047. const int nc = src0->ne[0];
  6048. assert(dst->nb[0] == sizeof(float));
  6049. assert(src0->nb[0] == sizeof(float));
  6050. for (int i = 0; i < n; i++) {
  6051. ggml_vec_sgn_f32(nc,
  6052. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6053. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6054. }
  6055. }
  6056. static void ggml_compute_forward_sgn(
  6057. const struct ggml_compute_params * params,
  6058. const struct ggml_tensor * src0,
  6059. struct ggml_tensor * dst) {
  6060. switch (src0->type) {
  6061. case GGML_TYPE_F32:
  6062. {
  6063. ggml_compute_forward_sgn_f32(params, src0, dst);
  6064. } break;
  6065. default:
  6066. {
  6067. GGML_ASSERT(false);
  6068. } break;
  6069. }
  6070. }
  6071. // ggml_compute_forward_neg
  6072. static void ggml_compute_forward_neg_f32(
  6073. const struct ggml_compute_params * params,
  6074. const struct ggml_tensor * src0,
  6075. struct ggml_tensor * dst) {
  6076. assert(params->ith == 0);
  6077. assert(ggml_are_same_shape(src0, dst));
  6078. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6079. return;
  6080. }
  6081. const int n = ggml_nrows(src0);
  6082. const int nc = src0->ne[0];
  6083. assert(dst->nb[0] == sizeof(float));
  6084. assert(src0->nb[0] == sizeof(float));
  6085. for (int i = 0; i < n; i++) {
  6086. ggml_vec_neg_f32(nc,
  6087. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6088. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6089. }
  6090. }
  6091. static void ggml_compute_forward_neg(
  6092. const struct ggml_compute_params * params,
  6093. const struct ggml_tensor * src0,
  6094. struct ggml_tensor * dst) {
  6095. switch (src0->type) {
  6096. case GGML_TYPE_F32:
  6097. {
  6098. ggml_compute_forward_neg_f32(params, src0, dst);
  6099. } break;
  6100. default:
  6101. {
  6102. GGML_ASSERT(false);
  6103. } break;
  6104. }
  6105. }
  6106. // ggml_compute_forward_step
  6107. static void ggml_compute_forward_step_f32(
  6108. const struct ggml_compute_params * params,
  6109. const struct ggml_tensor * src0,
  6110. struct ggml_tensor * dst) {
  6111. assert(params->ith == 0);
  6112. assert(ggml_are_same_shape(src0, dst));
  6113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6114. return;
  6115. }
  6116. const int n = ggml_nrows(src0);
  6117. const int nc = src0->ne[0];
  6118. assert(dst->nb[0] == sizeof(float));
  6119. assert(src0->nb[0] == sizeof(float));
  6120. for (int i = 0; i < n; i++) {
  6121. ggml_vec_step_f32(nc,
  6122. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6123. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6124. }
  6125. }
  6126. static void ggml_compute_forward_step(
  6127. const struct ggml_compute_params * params,
  6128. const struct ggml_tensor * src0,
  6129. struct ggml_tensor * dst) {
  6130. switch (src0->type) {
  6131. case GGML_TYPE_F32:
  6132. {
  6133. ggml_compute_forward_step_f32(params, src0, dst);
  6134. } break;
  6135. default:
  6136. {
  6137. GGML_ASSERT(false);
  6138. } break;
  6139. }
  6140. }
  6141. // ggml_compute_forward_relu
  6142. static void ggml_compute_forward_relu_f32(
  6143. const struct ggml_compute_params * params,
  6144. const struct ggml_tensor * src0,
  6145. struct ggml_tensor * dst) {
  6146. assert(params->ith == 0);
  6147. assert(ggml_are_same_shape(src0, dst));
  6148. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6149. return;
  6150. }
  6151. const int n = ggml_nrows(src0);
  6152. const int nc = src0->ne[0];
  6153. assert(dst->nb[0] == sizeof(float));
  6154. assert(src0->nb[0] == sizeof(float));
  6155. for (int i = 0; i < n; i++) {
  6156. ggml_vec_relu_f32(nc,
  6157. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6158. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6159. }
  6160. }
  6161. static void ggml_compute_forward_relu(
  6162. const struct ggml_compute_params * params,
  6163. const struct ggml_tensor * src0,
  6164. struct ggml_tensor * dst) {
  6165. switch (src0->type) {
  6166. case GGML_TYPE_F32:
  6167. {
  6168. ggml_compute_forward_relu_f32(params, src0, dst);
  6169. } break;
  6170. default:
  6171. {
  6172. GGML_ASSERT(false);
  6173. } break;
  6174. }
  6175. }
  6176. // ggml_compute_forward_gelu
  6177. static void ggml_compute_forward_gelu_f32(
  6178. const struct ggml_compute_params * params,
  6179. const struct ggml_tensor * src0,
  6180. struct ggml_tensor * dst) {
  6181. GGML_ASSERT(ggml_is_contiguous(src0));
  6182. GGML_ASSERT(ggml_is_contiguous(dst));
  6183. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6184. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6185. return;
  6186. }
  6187. const int ith = params->ith;
  6188. const int nth = params->nth;
  6189. const int nc = src0->ne[0];
  6190. const int nr = ggml_nrows(src0);
  6191. // rows per thread
  6192. const int dr = (nr + nth - 1)/nth;
  6193. // row range for this thread
  6194. const int ir0 = dr*ith;
  6195. const int ir1 = MIN(ir0 + dr, nr);
  6196. for (int i1 = ir0; i1 < ir1; i1++) {
  6197. ggml_vec_gelu_f32(nc,
  6198. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6199. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6200. #ifndef NDEBUG
  6201. for (int k = 0; k < nc; k++) {
  6202. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6203. UNUSED(x);
  6204. assert(!isnan(x));
  6205. assert(!isinf(x));
  6206. }
  6207. #endif
  6208. }
  6209. }
  6210. static void ggml_compute_forward_gelu(
  6211. const struct ggml_compute_params * params,
  6212. const struct ggml_tensor * src0,
  6213. struct ggml_tensor * dst) {
  6214. switch (src0->type) {
  6215. case GGML_TYPE_F32:
  6216. {
  6217. ggml_compute_forward_gelu_f32(params, src0, dst);
  6218. } break;
  6219. default:
  6220. {
  6221. GGML_ASSERT(false);
  6222. } break;
  6223. }
  6224. //printf("XXXXXXXX gelu\n");
  6225. }
  6226. // ggml_compute_forward_silu
  6227. static void ggml_compute_forward_silu_f32(
  6228. const struct ggml_compute_params * params,
  6229. const struct ggml_tensor * src0,
  6230. struct ggml_tensor * dst) {
  6231. GGML_ASSERT(ggml_is_contiguous(src0));
  6232. GGML_ASSERT(ggml_is_contiguous(dst));
  6233. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6234. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6235. return;
  6236. }
  6237. const int ith = params->ith;
  6238. const int nth = params->nth;
  6239. const int nc = src0->ne[0];
  6240. const int nr = ggml_nrows(src0);
  6241. // rows per thread
  6242. const int dr = (nr + nth - 1)/nth;
  6243. // row range for this thread
  6244. const int ir0 = dr*ith;
  6245. const int ir1 = MIN(ir0 + dr, nr);
  6246. for (int i1 = ir0; i1 < ir1; i1++) {
  6247. ggml_vec_silu_f32(nc,
  6248. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6249. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6250. #ifndef NDEBUG
  6251. for (int k = 0; k < nc; k++) {
  6252. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6253. UNUSED(x);
  6254. assert(!isnan(x));
  6255. assert(!isinf(x));
  6256. }
  6257. #endif
  6258. }
  6259. }
  6260. static void ggml_compute_forward_silu(
  6261. const struct ggml_compute_params * params,
  6262. const struct ggml_tensor * src0,
  6263. struct ggml_tensor * dst) {
  6264. switch (src0->type) {
  6265. case GGML_TYPE_F32:
  6266. {
  6267. ggml_compute_forward_silu_f32(params, src0, dst);
  6268. } break;
  6269. default:
  6270. {
  6271. GGML_ASSERT(false);
  6272. } break;
  6273. }
  6274. }
  6275. // ggml_compute_forward_norm
  6276. static void ggml_compute_forward_norm_f32(
  6277. const struct ggml_compute_params * params,
  6278. const struct ggml_tensor * src0,
  6279. struct ggml_tensor * dst) {
  6280. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6281. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6282. return;
  6283. }
  6284. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6285. const int ith = params->ith;
  6286. const int nth = params->nth;
  6287. const int64_t ne00 = src0->ne[0];
  6288. const int64_t ne01 = src0->ne[1];
  6289. const int64_t ne02 = src0->ne[2];
  6290. const int64_t ne03 = src0->ne[3];
  6291. const size_t nb01 = src0->nb[1];
  6292. const size_t nb02 = src0->nb[2];
  6293. const size_t nb03 = src0->nb[3];
  6294. const size_t nb1 = dst->nb[1];
  6295. const size_t nb2 = dst->nb[2];
  6296. const size_t nb3 = dst->nb[3];
  6297. const float eps = 1e-5f; // TODO: make this a parameter
  6298. // TODO: optimize
  6299. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6300. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6301. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6302. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6303. ggml_float sum = 0.0;
  6304. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6305. sum += (ggml_float)x[i00];
  6306. }
  6307. float mean = sum/ne00;
  6308. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6309. ggml_float sum2 = 0.0;
  6310. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6311. float v = x[i00] - mean;
  6312. y[i00] = v;
  6313. sum2 += (ggml_float)(v*v);
  6314. }
  6315. float variance = sum2/ne00;
  6316. const float scale = 1.0f/sqrtf(variance + eps);
  6317. ggml_vec_scale_f32(ne00, y, scale);
  6318. }
  6319. }
  6320. }
  6321. }
  6322. static void ggml_compute_forward_norm(
  6323. const struct ggml_compute_params * params,
  6324. const struct ggml_tensor * src0,
  6325. struct ggml_tensor * dst) {
  6326. switch (src0->type) {
  6327. case GGML_TYPE_F32:
  6328. {
  6329. ggml_compute_forward_norm_f32(params, src0, dst);
  6330. } break;
  6331. default:
  6332. {
  6333. GGML_ASSERT(false);
  6334. } break;
  6335. }
  6336. }
  6337. static void ggml_compute_forward_rms_norm_f32(
  6338. const struct ggml_compute_params * params,
  6339. const struct ggml_tensor * src0,
  6340. struct ggml_tensor * dst) {
  6341. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6343. return;
  6344. }
  6345. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6346. const int ith = params->ith;
  6347. const int nth = params->nth;
  6348. const int64_t ne00 = src0->ne[0];
  6349. const int64_t ne01 = src0->ne[1];
  6350. const int64_t ne02 = src0->ne[2];
  6351. const int64_t ne03 = src0->ne[3];
  6352. const size_t nb01 = src0->nb[1];
  6353. const size_t nb02 = src0->nb[2];
  6354. const size_t nb03 = src0->nb[3];
  6355. const size_t nb1 = dst->nb[1];
  6356. const size_t nb2 = dst->nb[2];
  6357. const size_t nb3 = dst->nb[3];
  6358. const float eps = 1e-6f; // TODO: make this a parameter
  6359. // TODO: optimize
  6360. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6361. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6362. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6363. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6364. ggml_float sum = 0.0;
  6365. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6366. sum += (ggml_float)(x[i00] * x[i00]);
  6367. }
  6368. float mean = sum/ne00;
  6369. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6370. memcpy(y, x, ne00 * sizeof(float));
  6371. // for (int i00 = 0; i00 < ne00; i00++) {
  6372. // y[i00] = x[i00];
  6373. // }
  6374. const float scale = 1.0f/sqrtf(mean + eps);
  6375. ggml_vec_scale_f32(ne00, y, scale);
  6376. }
  6377. }
  6378. }
  6379. }
  6380. static void ggml_compute_forward_rms_norm(
  6381. const struct ggml_compute_params * params,
  6382. const struct ggml_tensor * src0,
  6383. struct ggml_tensor * dst) {
  6384. switch (src0->type) {
  6385. case GGML_TYPE_F32:
  6386. {
  6387. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6388. } break;
  6389. default:
  6390. {
  6391. GGML_ASSERT(false);
  6392. } break;
  6393. }
  6394. }
  6395. // ggml_compute_forward_mul_mat
  6396. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6397. // helper function to determine if it is better to use BLAS or not
  6398. // for large matrices, BLAS is faster
  6399. static bool ggml_compute_forward_mul_mat_use_blas(
  6400. const struct ggml_tensor * src0,
  6401. const struct ggml_tensor * src1,
  6402. struct ggml_tensor * dst) {
  6403. //const int64_t ne00 = src0->ne[0];
  6404. //const int64_t ne01 = src0->ne[1];
  6405. const int64_t ne10 = src1->ne[0];
  6406. const int64_t ne0 = dst->ne[0];
  6407. const int64_t ne1 = dst->ne[1];
  6408. // TODO: find the optimal values for these
  6409. if (ggml_is_contiguous(src0) &&
  6410. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6411. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6412. return true;
  6413. }
  6414. return false;
  6415. }
  6416. #endif
  6417. static void ggml_compute_forward_mul_mat_f32(
  6418. const struct ggml_compute_params * params,
  6419. const struct ggml_tensor * src0,
  6420. const struct ggml_tensor * src1,
  6421. struct ggml_tensor * dst) {
  6422. int64_t t0 = ggml_perf_time_us();
  6423. UNUSED(t0);
  6424. const int64_t ne00 = src0->ne[0];
  6425. const int64_t ne01 = src0->ne[1];
  6426. const int64_t ne02 = src0->ne[2];
  6427. const int64_t ne03 = src0->ne[3];
  6428. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6429. const int64_t ne10 = src1->ne[0];
  6430. #endif
  6431. const int64_t ne11 = src1->ne[1];
  6432. #ifndef NDEBUG
  6433. const int64_t ne12 = src1->ne[2];
  6434. const int64_t ne13 = src1->ne[3];
  6435. const int64_t ne0 = dst->ne[0];
  6436. const int64_t ne1 = dst->ne[1];
  6437. const int64_t ne2 = dst->ne[2];
  6438. const int64_t ne3 = dst->ne[3];
  6439. const int nb00 = src0->nb[0];
  6440. #endif
  6441. const int nb01 = src0->nb[1];
  6442. const int nb02 = src0->nb[2];
  6443. const int nb03 = src0->nb[3];
  6444. #ifndef NDEBUG
  6445. const int nb10 = src1->nb[0];
  6446. #endif
  6447. const int nb11 = src1->nb[1];
  6448. const int nb12 = src1->nb[2];
  6449. const int nb13 = src1->nb[3];
  6450. const int nb0 = dst->nb[0];
  6451. const int nb1 = dst->nb[1];
  6452. const int nb2 = dst->nb[2];
  6453. const int nb3 = dst->nb[3];
  6454. const int ith = params->ith;
  6455. const int nth = params->nth;
  6456. assert(ne02 == ne12);
  6457. assert(ne03 == ne13);
  6458. assert(ne2 == ne12);
  6459. assert(ne3 == ne13);
  6460. // we don't support permuted src0 or src1
  6461. assert(nb00 == sizeof(float));
  6462. assert(nb10 == sizeof(float));
  6463. // dst cannot be transposed or permuted
  6464. assert(nb0 == sizeof(float));
  6465. assert(nb0 <= nb1);
  6466. assert(nb1 <= nb2);
  6467. assert(nb2 <= nb3);
  6468. assert(ne0 == ne01);
  6469. assert(ne1 == ne11);
  6470. assert(ne2 == ne02);
  6471. assert(ne3 == ne03);
  6472. // nb01 >= nb00 - src0 is not transposed
  6473. // compute by src0 rows
  6474. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6475. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6476. if (params->ith != 0) {
  6477. return;
  6478. }
  6479. if (params->type == GGML_TASK_INIT) {
  6480. return;
  6481. }
  6482. if (params->type == GGML_TASK_FINALIZE) {
  6483. return;
  6484. }
  6485. #if defined(GGML_USE_CUBLAS)
  6486. const float alpha = 1.0f;
  6487. const float beta = 0.0f;
  6488. const int x_ne = ne01 * ne10;
  6489. const int y_ne = ne11 * ne10;
  6490. const int d_ne = ne11 * ne01;
  6491. size_t x_size, y_size, d_size;
  6492. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6493. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6494. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6495. #endif
  6496. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6497. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6498. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6499. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6500. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6501. #if defined(GGML_USE_CUBLAS)
  6502. // copy data to device
  6503. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6504. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6505. // compute
  6506. CUBLAS_CHECK(
  6507. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6508. ne01, ne11, ne10,
  6509. &alpha, d_X, ne00,
  6510. d_Y, ne10,
  6511. &beta, d_D, ne01));
  6512. // copy data to host
  6513. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6514. #elif defined(GGML_USE_CLBLAST)
  6515. // zT = y * xT
  6516. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6517. ne11, ne01, ne10,
  6518. 1.0f, y, ne10,
  6519. x, ne10,
  6520. 0.0f, d, ne01,
  6521. GGML_TYPE_F32);
  6522. #else
  6523. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6524. ne11, ne01, ne10,
  6525. 1.0f, y, ne10,
  6526. x, ne00,
  6527. 0.0f, d, ne01);
  6528. #endif
  6529. }
  6530. }
  6531. #if defined(GGML_USE_CUBLAS)
  6532. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6533. ggml_cuda_pool_free(d_X, x_size);
  6534. ggml_cuda_pool_free(d_Y, y_size);
  6535. ggml_cuda_pool_free(d_D, d_size);
  6536. #endif
  6537. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6538. return;
  6539. }
  6540. #endif
  6541. if (params->type == GGML_TASK_INIT) {
  6542. return;
  6543. }
  6544. if (params->type == GGML_TASK_FINALIZE) {
  6545. return;
  6546. }
  6547. // parallelize by src0 rows using ggml_vec_dot_f32
  6548. // total rows in src0
  6549. const int nr = ne01*ne02*ne03;
  6550. // rows per thread
  6551. const int dr = (nr + nth - 1)/nth;
  6552. // row range for this thread
  6553. const int ir0 = dr*ith;
  6554. const int ir1 = MIN(ir0 + dr, nr);
  6555. for (int ir = ir0; ir < ir1; ++ir) {
  6556. // src0 indices
  6557. const int i03 = ir/(ne02*ne01);
  6558. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6559. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6560. for (int64_t ic = 0; ic < ne11; ++ic) {
  6561. // src1 indices
  6562. const int i13 = i03;
  6563. const int i12 = i02;
  6564. const int i11 = ic;
  6565. // dst indices
  6566. const int i0 = i01;
  6567. const int i1 = i11;
  6568. const int i2 = i02;
  6569. const int i3 = i03;
  6570. ggml_vec_dot_f32(ne00,
  6571. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6572. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6573. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6574. }
  6575. }
  6576. //int64_t t1 = ggml_perf_time_us();
  6577. //static int64_t acc = 0;
  6578. //acc += t1 - t0;
  6579. //if (t1 - t0 > 10) {
  6580. // printf("\n");
  6581. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6582. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6583. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6584. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6585. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6586. //}
  6587. }
  6588. static void ggml_compute_forward_mul_mat_f16_f32(
  6589. const struct ggml_compute_params * params,
  6590. const struct ggml_tensor * src0,
  6591. const struct ggml_tensor * src1,
  6592. struct ggml_tensor * dst) {
  6593. int64_t t0 = ggml_perf_time_us();
  6594. UNUSED(t0);
  6595. const int64_t ne00 = src0->ne[0];
  6596. const int64_t ne01 = src0->ne[1];
  6597. const int64_t ne02 = src0->ne[2];
  6598. const int64_t ne03 = src0->ne[3];
  6599. const int64_t ne10 = src1->ne[0];
  6600. const int64_t ne11 = src1->ne[1];
  6601. const int64_t ne12 = src1->ne[2];
  6602. const int64_t ne13 = src1->ne[3];
  6603. const int64_t ne0 = dst->ne[0];
  6604. const int64_t ne1 = dst->ne[1];
  6605. const int64_t ne2 = dst->ne[2];
  6606. const int64_t ne3 = dst->ne[3];
  6607. //const int64_t ne = ne0*ne1*ne2*ne3;
  6608. const int nb00 = src0->nb[0];
  6609. const int nb01 = src0->nb[1];
  6610. const int nb02 = src0->nb[2];
  6611. const int nb03 = src0->nb[3];
  6612. const int nb10 = src1->nb[0];
  6613. const int nb11 = src1->nb[1];
  6614. const int nb12 = src1->nb[2];
  6615. const int nb13 = src1->nb[3];
  6616. const int nb0 = dst->nb[0];
  6617. const int nb1 = dst->nb[1];
  6618. const int nb2 = dst->nb[2];
  6619. const int nb3 = dst->nb[3];
  6620. const int ith = params->ith;
  6621. const int nth = params->nth;
  6622. GGML_ASSERT(ne02 == ne12);
  6623. GGML_ASSERT(ne03 == ne13);
  6624. GGML_ASSERT(ne2 == ne12);
  6625. GGML_ASSERT(ne3 == ne13);
  6626. // TODO: we don't support permuted src0
  6627. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6628. // dst cannot be transposed or permuted
  6629. GGML_ASSERT(nb0 == sizeof(float));
  6630. GGML_ASSERT(nb0 <= nb1);
  6631. GGML_ASSERT(nb1 <= nb2);
  6632. GGML_ASSERT(nb2 <= nb3);
  6633. GGML_ASSERT(ne0 == ne01);
  6634. GGML_ASSERT(ne1 == ne11);
  6635. GGML_ASSERT(ne2 == ne02);
  6636. GGML_ASSERT(ne3 == ne03);
  6637. // nb01 >= nb00 - src0 is not transposed
  6638. // compute by src0 rows
  6639. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6640. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6641. GGML_ASSERT(nb10 == sizeof(float));
  6642. if (params->ith != 0) {
  6643. return;
  6644. }
  6645. if (params->type == GGML_TASK_INIT) {
  6646. return;
  6647. }
  6648. if (params->type == GGML_TASK_FINALIZE) {
  6649. return;
  6650. }
  6651. #if defined(GGML_USE_CUBLAS)
  6652. ggml_fp16_t * const wdata = params->wdata;
  6653. const float alpha = 1.0f;
  6654. const float beta = 0.0f;
  6655. const int x_ne = ne01 * ne10;
  6656. const int y_ne = ne11 * ne10;
  6657. const int d_ne = ne11 * ne01;
  6658. size_t x_size, y_size, d_size;
  6659. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6660. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6661. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6662. #else
  6663. float * const wdata = params->wdata;
  6664. #endif
  6665. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6666. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6667. #if defined(GGML_USE_CUBLAS)
  6668. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6669. {
  6670. size_t id = 0;
  6671. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6672. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6673. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6674. }
  6675. }
  6676. }
  6677. #else
  6678. {
  6679. size_t id = 0;
  6680. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6681. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6682. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6683. }
  6684. }
  6685. }
  6686. #endif
  6687. #if defined(GGML_USE_CUBLAS)
  6688. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6689. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6690. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6691. // copy data to device
  6692. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6693. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6694. // compute
  6695. CUBLAS_CHECK(
  6696. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6697. ne01, ne11, ne10,
  6698. &alpha, d_X, CUDA_R_16F, ne00,
  6699. d_Y, CUDA_R_16F, ne10,
  6700. &beta, d_D, CUDA_R_32F, ne01,
  6701. CUBLAS_COMPUTE_32F,
  6702. CUBLAS_GEMM_DEFAULT));
  6703. // copy data to host
  6704. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6705. #elif defined(GGML_USE_CLBLAST)
  6706. const float * x = wdata;
  6707. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6708. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6709. // zT = y * xT
  6710. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6711. ne11, ne01, ne10,
  6712. 1.0f, y, ne10,
  6713. x, ne10,
  6714. 0.0f, d, ne01,
  6715. GGML_TYPE_F32);
  6716. #else
  6717. const float * x = wdata;
  6718. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6719. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6720. // zT = y * xT
  6721. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6722. ne11, ne01, ne10,
  6723. 1.0f, y, ne10,
  6724. x, ne00,
  6725. 0.0f, d, ne01);
  6726. #endif
  6727. }
  6728. }
  6729. #if defined(GGML_USE_CUBLAS)
  6730. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6731. ggml_cuda_pool_free(d_X, x_size);
  6732. ggml_cuda_pool_free(d_Y, y_size);
  6733. ggml_cuda_pool_free(d_D, d_size);
  6734. #endif
  6735. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6736. return;
  6737. }
  6738. #endif
  6739. if (params->type == GGML_TASK_INIT) {
  6740. ggml_fp16_t * const wdata = params->wdata;
  6741. size_t id = 0;
  6742. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6743. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6744. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6745. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6746. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6747. }
  6748. }
  6749. }
  6750. }
  6751. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6752. return;
  6753. }
  6754. if (params->type == GGML_TASK_FINALIZE) {
  6755. return;
  6756. }
  6757. // fp16 -> half the size, so divide by 2
  6758. // TODO: do not support transposed src1
  6759. assert(nb10/2 == sizeof(ggml_fp16_t));
  6760. // parallelize by src0 rows using ggml_vec_dot_f16
  6761. // total rows in src0
  6762. const int nr = ne01*ne02*ne03;
  6763. // rows per thread
  6764. const int dr = (nr + nth - 1)/nth;
  6765. // row range for this thread
  6766. const int ir0 = dr*ith;
  6767. const int ir1 = MIN(ir0 + dr, nr);
  6768. ggml_fp16_t * wdata = params->wdata;
  6769. for (int ir = ir0; ir < ir1; ++ir) {
  6770. // src0 indices
  6771. const int i03 = ir/(ne02*ne01);
  6772. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6773. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6774. const int i13 = i03;
  6775. const int i12 = i02;
  6776. const int i0 = i01;
  6777. const int i2 = i02;
  6778. const int i3 = i03;
  6779. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6780. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6781. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6782. for (int64_t ic = 0; ic < ne11; ++ic) {
  6783. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6784. }
  6785. }
  6786. //int64_t t1 = ggml_time_us();
  6787. //static int64_t acc = 0;
  6788. //acc += t1 - t0;
  6789. //if (t1 - t0 > 10) {
  6790. // printf("\n");
  6791. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6792. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6793. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6794. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6795. //}
  6796. }
  6797. static void ggml_compute_forward_mul_mat_q_f32(
  6798. const struct ggml_compute_params * params,
  6799. const struct ggml_tensor * src0,
  6800. const struct ggml_tensor * src1,
  6801. struct ggml_tensor * dst) {
  6802. int64_t t0 = ggml_perf_time_us();
  6803. UNUSED(t0);
  6804. const int64_t ne00 = src0->ne[0];
  6805. const int64_t ne01 = src0->ne[1];
  6806. const int64_t ne02 = src0->ne[2];
  6807. const int64_t ne03 = src0->ne[3];
  6808. const int64_t ne10 = src1->ne[0];
  6809. const int64_t ne11 = src1->ne[1];
  6810. const int64_t ne12 = src1->ne[2];
  6811. const int64_t ne13 = src1->ne[3];
  6812. const int64_t ne0 = dst->ne[0];
  6813. const int64_t ne1 = dst->ne[1];
  6814. const int64_t ne2 = dst->ne[2];
  6815. const int64_t ne3 = dst->ne[3];
  6816. const int nb00 = src0->nb[0];
  6817. const int nb01 = src0->nb[1];
  6818. const int nb02 = src0->nb[2];
  6819. const int nb03 = src0->nb[3];
  6820. const int nb10 = src1->nb[0];
  6821. const int nb11 = src1->nb[1];
  6822. const int nb12 = src1->nb[2];
  6823. const int nb13 = src1->nb[3];
  6824. const int nb0 = dst->nb[0];
  6825. const int nb1 = dst->nb[1];
  6826. const int nb2 = dst->nb[2];
  6827. const int nb3 = dst->nb[3];
  6828. const int ith = params->ith;
  6829. const int nth = params->nth;
  6830. GGML_ASSERT(ne02 == ne12);
  6831. GGML_ASSERT(ne03 == ne13);
  6832. GGML_ASSERT(ne2 == ne12);
  6833. GGML_ASSERT(ne3 == ne13);
  6834. const enum ggml_type type = src0->type;
  6835. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6836. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6837. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6838. // we don't support permuted src0 or src1
  6839. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6840. GGML_ASSERT(nb10 == sizeof(float));
  6841. // dst cannot be transposed or permuted
  6842. GGML_ASSERT(nb0 == sizeof(float));
  6843. GGML_ASSERT(nb0 <= nb1);
  6844. GGML_ASSERT(nb1 <= nb2);
  6845. GGML_ASSERT(nb2 <= nb3);
  6846. GGML_ASSERT(ne0 == ne01);
  6847. GGML_ASSERT(ne1 == ne11);
  6848. GGML_ASSERT(ne2 == ne02);
  6849. GGML_ASSERT(ne3 == ne03);
  6850. // nb01 >= nb00 - src0 is not transposed
  6851. // compute by src0 rows
  6852. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6853. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6854. if (params->ith != 0) {
  6855. return;
  6856. }
  6857. if (params->type == GGML_TASK_INIT) {
  6858. return;
  6859. }
  6860. if (params->type == GGML_TASK_FINALIZE) {
  6861. return;
  6862. }
  6863. #if defined(GGML_USE_CUBLAS)
  6864. const float alpha = 1.0f;
  6865. const float beta = 0.0f;
  6866. const int x_ne = ne01 * ne10;
  6867. const int y_ne = ne11 * ne10;
  6868. const int d_ne = ne11 * ne01;
  6869. size_t x_size, y_size, d_size, q_size;
  6870. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6871. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6872. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6873. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6874. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6875. if (type == GGML_TYPE_Q4_0) {
  6876. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6877. }
  6878. else if (type == GGML_TYPE_Q4_1) {
  6879. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6880. }
  6881. else if (type == GGML_TYPE_Q4_2) {
  6882. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6883. }
  6884. else if (type == GGML_TYPE_Q5_0) {
  6885. dequantize_row_q_cuda = dequantize_row_q5_0_cuda;
  6886. }
  6887. else if (type == GGML_TYPE_Q5_1) {
  6888. dequantize_row_q_cuda = dequantize_row_q5_1_cuda;
  6889. }
  6890. else if (type == GGML_TYPE_Q8_0) {
  6891. dequantize_row_q_cuda = dequantize_row_q8_0_cuda;
  6892. }
  6893. else {
  6894. GGML_ASSERT(false);
  6895. }
  6896. #elif !defined(GGML_USE_CLBLAST)
  6897. float * const wdata = params->wdata;
  6898. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6899. #endif
  6900. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6901. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6902. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6903. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6904. #if defined(GGML_USE_CUBLAS)
  6905. // copy and dequantize on device
  6906. CUDA_CHECK(
  6907. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6908. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  6909. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  6910. CUDA_CHECK(cudaGetLastError());
  6911. #elif defined(GGML_USE_CLBLAST)
  6912. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  6913. #else
  6914. {
  6915. size_t id = 0;
  6916. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6917. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6918. id += ne00;
  6919. }
  6920. }
  6921. const float * x = wdata;
  6922. #endif
  6923. #if defined(GGML_USE_CUBLAS)
  6924. // copy data to device
  6925. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6926. // compute
  6927. CUBLAS_CHECK(
  6928. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6929. ne01, ne11, ne10,
  6930. &alpha, d_X, ne00,
  6931. d_Y, ne10,
  6932. &beta, d_D, ne01));
  6933. // copy data to host
  6934. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6935. #elif defined(GGML_USE_CLBLAST)
  6936. // zT = y * xT
  6937. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6938. ne11, ne01, ne10,
  6939. 1.0f, y, ne10,
  6940. x, ne10,
  6941. 0.0f, d, ne01,
  6942. type);
  6943. #else
  6944. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6945. ne11, ne01, ne10,
  6946. 1.0f, y, ne10,
  6947. x, ne00,
  6948. 0.0f, d, ne01);
  6949. #endif
  6950. }
  6951. }
  6952. #if defined(GGML_USE_CUBLAS)
  6953. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6954. ggml_cuda_pool_free(d_X, x_size);
  6955. ggml_cuda_pool_free(d_Y, y_size);
  6956. ggml_cuda_pool_free(d_D, d_size);
  6957. ggml_cuda_pool_free(d_Q, q_size);
  6958. #endif
  6959. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6960. return;
  6961. }
  6962. #endif
  6963. if (params->type == GGML_TASK_INIT) {
  6964. char * wdata = params->wdata;
  6965. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6966. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6967. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6968. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6969. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6970. wdata += row_size;
  6971. }
  6972. }
  6973. }
  6974. return;
  6975. }
  6976. if (params->type == GGML_TASK_FINALIZE) {
  6977. return;
  6978. }
  6979. // parallelize by src0 rows using ggml_vec_dot_q
  6980. // total rows in src0
  6981. const int nr = ne01*ne02*ne03;
  6982. // rows per thread
  6983. const int dr = (nr + nth - 1)/nth;
  6984. // row range for this thread
  6985. const int ir0 = dr*ith;
  6986. const int ir1 = MIN(ir0 + dr, nr);
  6987. void * wdata = params->wdata;
  6988. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6989. for (int ir = ir0; ir < ir1; ++ir) {
  6990. // src0 indices
  6991. const int i03 = ir/(ne02*ne01);
  6992. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6993. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6994. const int i13 = i03;
  6995. const int i12 = i02;
  6996. const int i0 = i01;
  6997. const int i2 = i02;
  6998. const int i3 = i03;
  6999. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7000. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7001. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7002. assert(ne00 % 32 == 0);
  7003. for (int64_t ic = 0; ic < ne11; ++ic) {
  7004. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7005. }
  7006. }
  7007. //int64_t t1 = ggml_time_us();
  7008. //static int64_t acc = 0;
  7009. //acc += t1 - t0;
  7010. //if (t1 - t0 > 10) {
  7011. // printf("\n");
  7012. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7013. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7014. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7015. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7016. //}
  7017. }
  7018. static void ggml_compute_forward_mul_mat(
  7019. const struct ggml_compute_params * params,
  7020. const struct ggml_tensor * src0,
  7021. const struct ggml_tensor * src1,
  7022. struct ggml_tensor * dst) {
  7023. switch (src0->type) {
  7024. case GGML_TYPE_Q4_0:
  7025. case GGML_TYPE_Q4_1:
  7026. case GGML_TYPE_Q4_2:
  7027. case GGML_TYPE_Q5_0:
  7028. case GGML_TYPE_Q5_1:
  7029. case GGML_TYPE_Q8_0:
  7030. case GGML_TYPE_Q8_1:
  7031. {
  7032. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7033. } break;
  7034. case GGML_TYPE_F16:
  7035. {
  7036. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7037. } break;
  7038. case GGML_TYPE_F32:
  7039. {
  7040. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7041. } break;
  7042. default:
  7043. {
  7044. GGML_ASSERT(false);
  7045. } break;
  7046. }
  7047. }
  7048. // ggml_compute_forward_scale
  7049. static void ggml_compute_forward_scale_f32(
  7050. const struct ggml_compute_params * params,
  7051. const struct ggml_tensor * src0,
  7052. const struct ggml_tensor * src1,
  7053. struct ggml_tensor * dst) {
  7054. GGML_ASSERT(ggml_is_contiguous(src0));
  7055. GGML_ASSERT(ggml_is_contiguous(dst));
  7056. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7057. GGML_ASSERT(ggml_is_scalar(src1));
  7058. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7059. return;
  7060. }
  7061. // scale factor
  7062. const float v = *(float *) src1->data;
  7063. const int ith = params->ith;
  7064. const int nth = params->nth;
  7065. const int nc = src0->ne[0];
  7066. const int nr = ggml_nrows(src0);
  7067. // rows per thread
  7068. const int dr = (nr + nth - 1)/nth;
  7069. // row range for this thread
  7070. const int ir0 = dr*ith;
  7071. const int ir1 = MIN(ir0 + dr, nr);
  7072. for (int i1 = ir0; i1 < ir1; i1++) {
  7073. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7074. }
  7075. }
  7076. static void ggml_compute_forward_scale(
  7077. const struct ggml_compute_params * params,
  7078. const struct ggml_tensor * src0,
  7079. const struct ggml_tensor * src1,
  7080. struct ggml_tensor * dst) {
  7081. switch (src0->type) {
  7082. case GGML_TYPE_F32:
  7083. {
  7084. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7085. } break;
  7086. default:
  7087. {
  7088. GGML_ASSERT(false);
  7089. } break;
  7090. }
  7091. }
  7092. // ggml_compute_forward_cpy
  7093. static void ggml_compute_forward_cpy(
  7094. const struct ggml_compute_params * params,
  7095. const struct ggml_tensor * src0,
  7096. struct ggml_tensor * dst) {
  7097. ggml_compute_forward_dup(params, src0, dst);
  7098. }
  7099. // ggml_compute_forward_cont
  7100. static void ggml_compute_forward_cont(
  7101. const struct ggml_compute_params * params,
  7102. const struct ggml_tensor * src0,
  7103. struct ggml_tensor * dst) {
  7104. ggml_compute_forward_dup(params, src0, dst);
  7105. }
  7106. // ggml_compute_forward_reshape
  7107. static void ggml_compute_forward_reshape(
  7108. const struct ggml_compute_params * params,
  7109. const struct ggml_tensor * src0,
  7110. struct ggml_tensor * dst) {
  7111. // NOP
  7112. UNUSED(params);
  7113. UNUSED(src0);
  7114. UNUSED(dst);
  7115. }
  7116. // ggml_compute_forward_view
  7117. static void ggml_compute_forward_view(
  7118. const struct ggml_compute_params * params,
  7119. const struct ggml_tensor * src0) {
  7120. // NOP
  7121. UNUSED(params);
  7122. UNUSED(src0);
  7123. }
  7124. // ggml_compute_forward_permute
  7125. static void ggml_compute_forward_permute(
  7126. const struct ggml_compute_params * params,
  7127. const struct ggml_tensor * src0) {
  7128. // NOP
  7129. UNUSED(params);
  7130. UNUSED(src0);
  7131. }
  7132. // ggml_compute_forward_transpose
  7133. static void ggml_compute_forward_transpose(
  7134. const struct ggml_compute_params * params,
  7135. const struct ggml_tensor * src0) {
  7136. // NOP
  7137. UNUSED(params);
  7138. UNUSED(src0);
  7139. }
  7140. // ggml_compute_forward_get_rows
  7141. static void ggml_compute_forward_get_rows_q(
  7142. const struct ggml_compute_params * params,
  7143. const struct ggml_tensor * src0,
  7144. const struct ggml_tensor * src1,
  7145. struct ggml_tensor * dst) {
  7146. assert(params->ith == 0);
  7147. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7148. return;
  7149. }
  7150. const int nc = src0->ne[0];
  7151. const int nr = ggml_nelements(src1);
  7152. const enum ggml_type type = src0->type;
  7153. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7154. assert( dst->ne[0] == nc);
  7155. assert( dst->ne[1] == nr);
  7156. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7157. for (int i = 0; i < nr; ++i) {
  7158. const int r = ((int32_t *) src1->data)[i];
  7159. dequantize_row_q(
  7160. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7161. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7162. }
  7163. }
  7164. static void ggml_compute_forward_get_rows_f16(
  7165. const struct ggml_compute_params * params,
  7166. const struct ggml_tensor * src0,
  7167. const struct ggml_tensor * src1,
  7168. struct ggml_tensor * dst) {
  7169. assert(params->ith == 0);
  7170. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7171. return;
  7172. }
  7173. const int nc = src0->ne[0];
  7174. const int nr = ggml_nelements(src1);
  7175. assert( dst->ne[0] == nc);
  7176. assert( dst->ne[1] == nr);
  7177. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7178. for (int i = 0; i < nr; ++i) {
  7179. const int r = ((int32_t *) src1->data)[i];
  7180. for (int j = 0; j < nc; ++j) {
  7181. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7182. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7183. }
  7184. }
  7185. }
  7186. static void ggml_compute_forward_get_rows_f32(
  7187. const struct ggml_compute_params * params,
  7188. const struct ggml_tensor * src0,
  7189. const struct ggml_tensor * src1,
  7190. struct ggml_tensor * dst) {
  7191. assert(params->ith == 0);
  7192. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7193. return;
  7194. }
  7195. const int nc = src0->ne[0];
  7196. const int nr = ggml_nelements(src1);
  7197. assert( dst->ne[0] == nc);
  7198. assert( dst->ne[1] == nr);
  7199. assert(src0->nb[0] == sizeof(float));
  7200. for (int i = 0; i < nr; ++i) {
  7201. const int r = ((int32_t *) src1->data)[i];
  7202. ggml_vec_cpy_f32(nc,
  7203. (float *) ((char *) dst->data + i*dst->nb[1]),
  7204. (float *) ((char *) src0->data + r*src0->nb[1]));
  7205. }
  7206. }
  7207. static void ggml_compute_forward_get_rows(
  7208. const struct ggml_compute_params * params,
  7209. const struct ggml_tensor * src0,
  7210. const struct ggml_tensor * src1,
  7211. struct ggml_tensor * dst) {
  7212. switch (src0->type) {
  7213. case GGML_TYPE_Q4_0:
  7214. case GGML_TYPE_Q4_1:
  7215. case GGML_TYPE_Q4_2:
  7216. case GGML_TYPE_Q5_0:
  7217. case GGML_TYPE_Q5_1:
  7218. case GGML_TYPE_Q8_0:
  7219. case GGML_TYPE_Q8_1:
  7220. {
  7221. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7222. } break;
  7223. case GGML_TYPE_F16:
  7224. {
  7225. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7226. } break;
  7227. case GGML_TYPE_F32:
  7228. {
  7229. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7230. } break;
  7231. default:
  7232. {
  7233. GGML_ASSERT(false);
  7234. } break;
  7235. }
  7236. //static bool first = true;
  7237. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7238. //if (first) {
  7239. // first = false;
  7240. //} else {
  7241. // for (int k = 0; k < dst->ne[1]; ++k) {
  7242. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7243. // for (int i = 0; i < 16; ++i) {
  7244. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7245. // }
  7246. // printf("\n");
  7247. // }
  7248. // printf("\n");
  7249. // }
  7250. // printf("\n");
  7251. // exit(0);
  7252. //}
  7253. }
  7254. // ggml_compute_forward_diag_mask_inf
  7255. static void ggml_compute_forward_diag_mask_inf_f32(
  7256. const struct ggml_compute_params * params,
  7257. const struct ggml_tensor * src0,
  7258. const struct ggml_tensor * src1,
  7259. struct ggml_tensor * dst) {
  7260. assert(params->ith == 0);
  7261. assert(src1->type == GGML_TYPE_I32);
  7262. assert(ggml_nelements(src1) == 1);
  7263. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7264. return;
  7265. }
  7266. const int n_past = ((int32_t *) src1->data)[0];
  7267. // TODO: handle transposed/permuted matrices
  7268. const int n = ggml_nrows(src0);
  7269. const int nc = src0->ne[0];
  7270. const int nr = src0->ne[1];
  7271. const int nz = n/nr;
  7272. assert( dst->nb[0] == sizeof(float));
  7273. assert(src0->nb[0] == sizeof(float));
  7274. for (int k = 0; k < nz; k++) {
  7275. for (int j = 0; j < nr; j++) {
  7276. for (int i = n_past; i < nc; i++) {
  7277. if (i > n_past + j) {
  7278. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7279. }
  7280. }
  7281. }
  7282. }
  7283. }
  7284. static void ggml_compute_forward_diag_mask_inf(
  7285. const struct ggml_compute_params * params,
  7286. const struct ggml_tensor * src0,
  7287. const struct ggml_tensor * src1,
  7288. struct ggml_tensor * dst) {
  7289. switch (src0->type) {
  7290. case GGML_TYPE_F32:
  7291. {
  7292. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7293. } break;
  7294. default:
  7295. {
  7296. GGML_ASSERT(false);
  7297. } break;
  7298. }
  7299. }
  7300. // ggml_compute_forward_soft_max
  7301. static void ggml_compute_forward_soft_max_f32(
  7302. const struct ggml_compute_params * params,
  7303. const struct ggml_tensor * src0,
  7304. struct ggml_tensor * dst) {
  7305. GGML_ASSERT(ggml_is_contiguous(src0));
  7306. GGML_ASSERT(ggml_is_contiguous(dst));
  7307. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7308. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7309. return;
  7310. }
  7311. // TODO: handle transposed/permuted matrices
  7312. const int ith = params->ith;
  7313. const int nth = params->nth;
  7314. const int nc = src0->ne[0];
  7315. const int nr = ggml_nrows(src0);
  7316. // rows per thread
  7317. const int dr = (nr + nth - 1)/nth;
  7318. // row range for this thread
  7319. const int ir0 = dr*ith;
  7320. const int ir1 = MIN(ir0 + dr, nr);
  7321. for (int i1 = ir0; i1 < ir1; i1++) {
  7322. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7323. #ifndef NDEBUG
  7324. for (int i = 0; i < nc; ++i) {
  7325. //printf("p[%d] = %f\n", i, p[i]);
  7326. assert(!isnan(p[i]));
  7327. }
  7328. #endif
  7329. float max = -INFINITY;
  7330. ggml_vec_max_f32(nc, &max, p);
  7331. ggml_float sum = 0.0;
  7332. uint16_t scvt;
  7333. for (int i = 0; i < nc; i++) {
  7334. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7335. if (p[i] == -INFINITY) {
  7336. p[i] = 0.0f;
  7337. } else {
  7338. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7339. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7340. memcpy(&scvt, &s, sizeof(scvt));
  7341. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7342. sum += (ggml_float)val;
  7343. p[i] = val;
  7344. }
  7345. }
  7346. assert(sum > 0.0);
  7347. sum = 1.0/sum;
  7348. ggml_vec_scale_f32(nc, p, sum);
  7349. #ifndef NDEBUG
  7350. for (int i = 0; i < nc; ++i) {
  7351. assert(!isnan(p[i]));
  7352. assert(!isinf(p[i]));
  7353. }
  7354. #endif
  7355. }
  7356. }
  7357. static void ggml_compute_forward_soft_max(
  7358. const struct ggml_compute_params * params,
  7359. const struct ggml_tensor * src0,
  7360. struct ggml_tensor * dst) {
  7361. switch (src0->type) {
  7362. case GGML_TYPE_F32:
  7363. {
  7364. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7365. } break;
  7366. default:
  7367. {
  7368. GGML_ASSERT(false);
  7369. } break;
  7370. }
  7371. }
  7372. // ggml_compute_forward_alibi
  7373. static void ggml_compute_forward_alibi_f32(
  7374. const struct ggml_compute_params * params,
  7375. const struct ggml_tensor * src0,
  7376. const struct ggml_tensor * src1,
  7377. struct ggml_tensor * dst) {
  7378. assert(params->ith == 0);
  7379. assert(src1->type == GGML_TYPE_I32);
  7380. assert(ggml_nelements(src1) == 2);
  7381. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7382. return;
  7383. }
  7384. const int n_past = ((int32_t *) src1->data)[0];
  7385. const int n_head = ((int32_t *) src1->data)[1];
  7386. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7387. const int ne1 = src0->ne[1]; // seq_len_without_past
  7388. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7389. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7390. const int n = ggml_nrows(src0);
  7391. const int ne2_ne3 = n/ne1; // ne2*ne3
  7392. const int nb0 = src0->nb[0];
  7393. const int nb1 = src0->nb[1];
  7394. const int nb2 = src0->nb[2];
  7395. //const int nb3 = src0->nb[3];
  7396. assert(nb0 == sizeof(float));
  7397. assert(ne1+n_past == ne0);
  7398. // add alibi to src0 (KQ_scaled)
  7399. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7400. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7401. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7402. for (int i = 0; i < ne0; i++) {
  7403. for (int j = 0; j < ne1; j++) {
  7404. for (int k = 0; k < ne2_ne3; k++) {
  7405. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7406. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7407. // TODO: k*nb2 or k*nb3
  7408. float m_k;
  7409. if (k < n_heads_log2_floor) {
  7410. m_k = powf(m0, k + 1);
  7411. } else {
  7412. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7413. }
  7414. pdst[0] = (j+1) * m_k + src[0];
  7415. }
  7416. }
  7417. }
  7418. }
  7419. static void ggml_compute_forward_alibi_f16(
  7420. const struct ggml_compute_params * params,
  7421. const struct ggml_tensor * src0,
  7422. const struct ggml_tensor * src1,
  7423. struct ggml_tensor * dst) {
  7424. assert(params->ith == 0);
  7425. assert(src1->type == GGML_TYPE_I32);
  7426. assert(ggml_nelements(src1) == 2);
  7427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7428. return;
  7429. }
  7430. const int n_past = ((int32_t *) src1->data)[0];
  7431. const int n_head = ((int32_t *) src1->data)[1];
  7432. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7433. const int ne1 = src0->ne[1]; // seq_len_without_past
  7434. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7435. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7436. const int n = ggml_nrows(src0);
  7437. const int ne2_ne3 = n/ne1; // ne2*ne3
  7438. const int nb0 = src0->nb[0];
  7439. const int nb1 = src0->nb[1];
  7440. const int nb2 = src0->nb[2];
  7441. //const int nb3 = src0->nb[3];
  7442. assert(nb0 == sizeof(ggml_fp16_t));
  7443. assert(ne1+n_past == ne0);
  7444. // add alibi to src0 (KQ_scaled)
  7445. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7446. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7447. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7448. for (int i = 0; i < ne0; i++) {
  7449. for (int j = 0; j < ne1; j++) {
  7450. for (int k = 0; k < ne2_ne3; k++) {
  7451. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7452. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7453. // TODO: k*nb2 or k*nb3
  7454. float m_k;
  7455. if (k < n_heads_log2_floor) {
  7456. m_k = powf(m0, k + 1);
  7457. } else {
  7458. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7459. }
  7460. // we return F32
  7461. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7462. }
  7463. }
  7464. }
  7465. }
  7466. static void ggml_compute_forward_alibi(
  7467. const struct ggml_compute_params * params,
  7468. const struct ggml_tensor * src0,
  7469. const struct ggml_tensor * src1,
  7470. struct ggml_tensor * dst) {
  7471. switch (src0->type) {
  7472. case GGML_TYPE_F16:
  7473. {
  7474. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7475. } break;
  7476. case GGML_TYPE_F32:
  7477. {
  7478. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7479. } break;
  7480. case GGML_TYPE_Q4_0:
  7481. case GGML_TYPE_Q4_1:
  7482. case GGML_TYPE_Q4_2:
  7483. case GGML_TYPE_Q5_0:
  7484. case GGML_TYPE_Q5_1:
  7485. case GGML_TYPE_Q8_0:
  7486. case GGML_TYPE_Q8_1:
  7487. case GGML_TYPE_I8:
  7488. case GGML_TYPE_I16:
  7489. case GGML_TYPE_I32:
  7490. case GGML_TYPE_COUNT:
  7491. {
  7492. GGML_ASSERT(false);
  7493. } break;
  7494. }
  7495. }
  7496. // ggml_compute_forward_rope
  7497. static void ggml_compute_forward_rope_f32(
  7498. const struct ggml_compute_params * params,
  7499. const struct ggml_tensor * src0,
  7500. const struct ggml_tensor * src1,
  7501. struct ggml_tensor * dst) {
  7502. assert(src1->type == GGML_TYPE_I32);
  7503. assert(ggml_nelements(src1) == 3);
  7504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7505. return;
  7506. }
  7507. const int n_past = ((int32_t *) src1->data)[0];
  7508. const int n_dims = ((int32_t *) src1->data)[1];
  7509. const int mode = ((int32_t *) src1->data)[2];
  7510. //const int64_t ne0 = src0->ne[0];
  7511. const int64_t ne1 = src0->ne[1];
  7512. const int64_t ne2 = src0->ne[2];
  7513. const int64_t ne3 = src0->ne[3];
  7514. const int nb0 = src0->nb[0];
  7515. const int nb1 = src0->nb[1];
  7516. const int nb2 = src0->nb[2];
  7517. const int nb3 = src0->nb[3];
  7518. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7519. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7520. assert(nb0 == sizeof(float));
  7521. const int ith = params->ith;
  7522. const int nth = params->nth;
  7523. const int nr = ggml_nrows(src0);
  7524. // rows per thread
  7525. const int dr = (nr + nth - 1)/nth;
  7526. // row range for this thread
  7527. const int ir0 = dr*ith;
  7528. const int ir1 = MIN(ir0 + dr, nr);
  7529. // row index used to determine which thread to use
  7530. int ir = 0;
  7531. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7532. const bool is_neox = mode & 2;
  7533. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7534. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7535. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7536. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7537. if (ir++ < ir0) continue;
  7538. if (ir > ir1) break;
  7539. float theta = (float)p;
  7540. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7541. const float cos_theta = cosf(theta);
  7542. const float sin_theta = sinf(theta);
  7543. theta *= theta_scale;
  7544. if (!is_neox) {
  7545. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7546. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7547. const float x0 = src[0];
  7548. const float x1 = src[1];
  7549. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7550. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7551. } else {
  7552. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7553. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7554. const float x0 = src[0];
  7555. const float x1 = src[n_dims/2];
  7556. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7557. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7558. }
  7559. }
  7560. }
  7561. }
  7562. }
  7563. }
  7564. static void ggml_compute_forward_rope_f16(
  7565. const struct ggml_compute_params * params,
  7566. const struct ggml_tensor * src0,
  7567. const struct ggml_tensor * src1,
  7568. struct ggml_tensor * dst) {
  7569. assert(src1->type == GGML_TYPE_I32);
  7570. assert(ggml_nelements(src1) == 3);
  7571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7572. return;
  7573. }
  7574. const int n_past = ((int32_t *) src1->data)[0];
  7575. const int n_dims = ((int32_t *) src1->data)[1];
  7576. const int mode = ((int32_t *) src1->data)[2];
  7577. //const int64_t ne0 = src0->ne[0];
  7578. const int64_t ne1 = src0->ne[1];
  7579. const int64_t ne2 = src0->ne[2];
  7580. const int64_t ne3 = src0->ne[3];
  7581. const int nb0 = src0->nb[0];
  7582. const int nb1 = src0->nb[1];
  7583. const int nb2 = src0->nb[2];
  7584. const int nb3 = src0->nb[3];
  7585. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7586. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7587. assert(nb0 == sizeof(ggml_fp16_t));
  7588. const int ith = params->ith;
  7589. const int nth = params->nth;
  7590. const int nr = ggml_nrows(src0);
  7591. // rows per thread
  7592. const int dr = (nr + nth - 1)/nth;
  7593. // row range for this thread
  7594. const int ir0 = dr*ith;
  7595. const int ir1 = MIN(ir0 + dr, nr);
  7596. // row index used to determine which thread to use
  7597. int ir = 0;
  7598. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7599. const bool is_neox = mode & 2;
  7600. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7601. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7602. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7603. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7604. if (ir++ < ir0) continue;
  7605. if (ir > ir1) break;
  7606. float theta = (float)p;
  7607. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7608. const float cos_theta = cosf(theta);
  7609. const float sin_theta = sinf(theta);
  7610. theta *= theta_scale;
  7611. if (!is_neox) {
  7612. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7613. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7614. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7615. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7616. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7617. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7618. } else {
  7619. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7620. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7621. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7622. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7623. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7624. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7625. }
  7626. }
  7627. }
  7628. }
  7629. }
  7630. }
  7631. static void ggml_compute_forward_rope(
  7632. const struct ggml_compute_params * params,
  7633. const struct ggml_tensor * src0,
  7634. const struct ggml_tensor * src1,
  7635. struct ggml_tensor * dst) {
  7636. switch (src0->type) {
  7637. case GGML_TYPE_F16:
  7638. {
  7639. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7640. } break;
  7641. case GGML_TYPE_F32:
  7642. {
  7643. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7644. } break;
  7645. default:
  7646. {
  7647. GGML_ASSERT(false);
  7648. } break;
  7649. }
  7650. }
  7651. // ggml_compute_forward_conv_1d_1s
  7652. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7653. const struct ggml_compute_params * params,
  7654. const struct ggml_tensor * src0,
  7655. const struct ggml_tensor * src1,
  7656. struct ggml_tensor * dst) {
  7657. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7658. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7659. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7660. int64_t t0 = ggml_perf_time_us();
  7661. UNUSED(t0);
  7662. const int64_t ne00 = src0->ne[0];
  7663. const int64_t ne01 = src0->ne[1];
  7664. const int64_t ne02 = src0->ne[2];
  7665. //const int64_t ne03 = src0->ne[3];
  7666. const int64_t ne10 = src1->ne[0];
  7667. const int64_t ne11 = src1->ne[1];
  7668. //const int64_t ne12 = src1->ne[2];
  7669. //const int64_t ne13 = src1->ne[3];
  7670. //const int64_t ne0 = dst->ne[0];
  7671. //const int64_t ne1 = dst->ne[1];
  7672. //const int64_t ne2 = dst->ne[2];
  7673. //const int64_t ne3 = dst->ne[3];
  7674. //const int64_t ne = ne0*ne1*ne2*ne3;
  7675. const int nb00 = src0->nb[0];
  7676. const int nb01 = src0->nb[1];
  7677. const int nb02 = src0->nb[2];
  7678. //const int nb03 = src0->nb[3];
  7679. const int nb10 = src1->nb[0];
  7680. const int nb11 = src1->nb[1];
  7681. //const int nb12 = src1->nb[2];
  7682. //const int nb13 = src1->nb[3];
  7683. //const int nb0 = dst->nb[0];
  7684. const int nb1 = dst->nb[1];
  7685. //const int nb2 = dst->nb[2];
  7686. //const int nb3 = dst->nb[3];
  7687. const int ith = params->ith;
  7688. const int nth = params->nth;
  7689. const int nk = ne00;
  7690. const int nh = nk/2;
  7691. const int ew0 = ggml_up32(ne01);
  7692. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7693. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7694. GGML_ASSERT(nb10 == sizeof(float));
  7695. if (params->type == GGML_TASK_INIT) {
  7696. // TODO: fix this memset (wsize is overestimated)
  7697. memset(params->wdata, 0, params->wsize);
  7698. // prepare kernel data (src0)
  7699. {
  7700. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7701. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7702. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7703. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7704. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7705. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7706. dst_data[i00*ew0 + i01] = src[i00];
  7707. }
  7708. }
  7709. }
  7710. }
  7711. // prepare source data (src1)
  7712. {
  7713. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7714. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7715. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7716. ggml_fp16_t * dst_data = wdata;
  7717. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7718. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7719. }
  7720. }
  7721. }
  7722. return;
  7723. }
  7724. if (params->type == GGML_TASK_FINALIZE) {
  7725. return;
  7726. }
  7727. // total rows in dst
  7728. const int nr = ne02;
  7729. // rows per thread
  7730. const int dr = (nr + nth - 1)/nth;
  7731. // row range for this thread
  7732. const int ir0 = dr*ith;
  7733. const int ir1 = MIN(ir0 + dr, nr);
  7734. for (int i1 = ir0; i1 < ir1; i1++) {
  7735. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7736. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7737. dst_data[i0] = 0;
  7738. for (int k = -nh; k <= nh; k++) {
  7739. float v = 0.0f;
  7740. ggml_vec_dot_f16(ew0, &v,
  7741. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7742. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7743. dst_data[i0] += v;
  7744. }
  7745. }
  7746. }
  7747. }
  7748. static void ggml_compute_forward_conv_1d_1s_f32(
  7749. const struct ggml_compute_params * params,
  7750. const struct ggml_tensor * src0,
  7751. const struct ggml_tensor * src1,
  7752. struct ggml_tensor * dst) {
  7753. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7754. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7755. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7756. int64_t t0 = ggml_perf_time_us();
  7757. UNUSED(t0);
  7758. const int64_t ne00 = src0->ne[0];
  7759. const int64_t ne01 = src0->ne[1];
  7760. const int64_t ne02 = src0->ne[2];
  7761. //const int64_t ne03 = src0->ne[3];
  7762. const int64_t ne10 = src1->ne[0];
  7763. const int64_t ne11 = src1->ne[1];
  7764. //const int64_t ne12 = src1->ne[2];
  7765. //const int64_t ne13 = src1->ne[3];
  7766. //const int64_t ne0 = dst->ne[0];
  7767. //const int64_t ne1 = dst->ne[1];
  7768. //const int64_t ne2 = dst->ne[2];
  7769. //const int64_t ne3 = dst->ne[3];
  7770. //const int64_t ne = ne0*ne1*ne2*ne3;
  7771. const int nb00 = src0->nb[0];
  7772. const int nb01 = src0->nb[1];
  7773. const int nb02 = src0->nb[2];
  7774. //const int nb03 = src0->nb[3];
  7775. const int nb10 = src1->nb[0];
  7776. const int nb11 = src1->nb[1];
  7777. //const int nb12 = src1->nb[2];
  7778. //const int nb13 = src1->nb[3];
  7779. //const int nb0 = dst->nb[0];
  7780. const int nb1 = dst->nb[1];
  7781. //const int nb2 = dst->nb[2];
  7782. //const int nb3 = dst->nb[3];
  7783. const int ith = params->ith;
  7784. const int nth = params->nth;
  7785. const int nk = ne00;
  7786. const int nh = nk/2;
  7787. const int ew0 = ggml_up32(ne01);
  7788. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7789. GGML_ASSERT(nb00 == sizeof(float));
  7790. GGML_ASSERT(nb10 == sizeof(float));
  7791. if (params->type == GGML_TASK_INIT) {
  7792. // TODO: fix this memset (wsize is overestimated)
  7793. memset(params->wdata, 0, params->wsize);
  7794. // prepare kernel data (src0)
  7795. {
  7796. float * const wdata = (float *) params->wdata + 0;
  7797. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7798. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7799. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7800. float * dst_data = wdata + i02*ew0*ne00;
  7801. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7802. dst_data[i00*ew0 + i01] = src[i00];
  7803. }
  7804. }
  7805. }
  7806. }
  7807. // prepare source data (src1)
  7808. {
  7809. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7810. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7811. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7812. float * dst_data = wdata;
  7813. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7814. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7815. }
  7816. }
  7817. }
  7818. return;
  7819. }
  7820. if (params->type == GGML_TASK_FINALIZE) {
  7821. return;
  7822. }
  7823. // total rows in dst
  7824. const int nr = ne02;
  7825. // rows per thread
  7826. const int dr = (nr + nth - 1)/nth;
  7827. // row range for this thread
  7828. const int ir0 = dr*ith;
  7829. const int ir1 = MIN(ir0 + dr, nr);
  7830. for (int i1 = ir0; i1 < ir1; i1++) {
  7831. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7832. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7833. dst_data[i0] = 0;
  7834. for (int k = -nh; k <= nh; k++) {
  7835. float v = 0.0f;
  7836. ggml_vec_dot_f32(ew0, &v,
  7837. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7838. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7839. dst_data[i0] += v;
  7840. }
  7841. }
  7842. }
  7843. }
  7844. static void ggml_compute_forward_conv_1d_1s(
  7845. const struct ggml_compute_params * params,
  7846. const struct ggml_tensor * src0,
  7847. const struct ggml_tensor * src1,
  7848. struct ggml_tensor * dst) {
  7849. switch (src0->type) {
  7850. case GGML_TYPE_F16:
  7851. {
  7852. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7853. } break;
  7854. case GGML_TYPE_F32:
  7855. {
  7856. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7857. } break;
  7858. default:
  7859. {
  7860. GGML_ASSERT(false);
  7861. } break;
  7862. }
  7863. }
  7864. // ggml_compute_forward_conv_1d_2s
  7865. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7866. const struct ggml_compute_params * params,
  7867. const struct ggml_tensor * src0,
  7868. const struct ggml_tensor * src1,
  7869. struct ggml_tensor * dst) {
  7870. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7871. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7872. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7873. int64_t t0 = ggml_perf_time_us();
  7874. UNUSED(t0);
  7875. const int64_t ne00 = src0->ne[0];
  7876. const int64_t ne01 = src0->ne[1];
  7877. const int64_t ne02 = src0->ne[2];
  7878. //const int64_t ne03 = src0->ne[3];
  7879. const int64_t ne10 = src1->ne[0];
  7880. const int64_t ne11 = src1->ne[1];
  7881. //const int64_t ne12 = src1->ne[2];
  7882. //const int64_t ne13 = src1->ne[3];
  7883. //const int64_t ne0 = dst->ne[0];
  7884. //const int64_t ne1 = dst->ne[1];
  7885. //const int64_t ne2 = dst->ne[2];
  7886. //const int64_t ne3 = dst->ne[3];
  7887. //const int64_t ne = ne0*ne1*ne2*ne3;
  7888. const int nb00 = src0->nb[0];
  7889. const int nb01 = src0->nb[1];
  7890. const int nb02 = src0->nb[2];
  7891. //const int nb03 = src0->nb[3];
  7892. const int nb10 = src1->nb[0];
  7893. const int nb11 = src1->nb[1];
  7894. //const int nb12 = src1->nb[2];
  7895. //const int nb13 = src1->nb[3];
  7896. //const int nb0 = dst->nb[0];
  7897. const int nb1 = dst->nb[1];
  7898. //const int nb2 = dst->nb[2];
  7899. //const int nb3 = dst->nb[3];
  7900. const int ith = params->ith;
  7901. const int nth = params->nth;
  7902. const int nk = ne00;
  7903. const int nh = nk/2;
  7904. const int ew0 = ggml_up32(ne01);
  7905. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7906. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7907. GGML_ASSERT(nb10 == sizeof(float));
  7908. if (params->type == GGML_TASK_INIT) {
  7909. // TODO: fix this memset (wsize is overestimated)
  7910. memset(params->wdata, 0, params->wsize);
  7911. // prepare kernel data (src0)
  7912. {
  7913. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7914. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7915. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7916. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7917. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7918. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7919. dst_data[i00*ew0 + i01] = src[i00];
  7920. }
  7921. }
  7922. }
  7923. }
  7924. // prepare source data (src1)
  7925. {
  7926. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7927. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7928. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7929. ggml_fp16_t * dst_data = wdata;
  7930. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7931. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7932. }
  7933. }
  7934. }
  7935. return;
  7936. }
  7937. if (params->type == GGML_TASK_FINALIZE) {
  7938. return;
  7939. }
  7940. // total rows in dst
  7941. const int nr = ne02;
  7942. // rows per thread
  7943. const int dr = (nr + nth - 1)/nth;
  7944. // row range for this thread
  7945. const int ir0 = dr*ith;
  7946. const int ir1 = MIN(ir0 + dr, nr);
  7947. for (int i1 = ir0; i1 < ir1; i1++) {
  7948. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7949. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7950. dst_data[i0/2] = 0;
  7951. for (int k = -nh; k <= nh; k++) {
  7952. float v = 0.0f;
  7953. ggml_vec_dot_f16(ew0, &v,
  7954. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7955. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7956. dst_data[i0/2] += v;
  7957. }
  7958. }
  7959. }
  7960. }
  7961. static void ggml_compute_forward_conv_1d_2s_f32(
  7962. const struct ggml_compute_params * params,
  7963. const struct ggml_tensor * src0,
  7964. const struct ggml_tensor * src1,
  7965. struct ggml_tensor * dst) {
  7966. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7967. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7968. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7969. int64_t t0 = ggml_perf_time_us();
  7970. UNUSED(t0);
  7971. const int64_t ne00 = src0->ne[0];
  7972. const int64_t ne01 = src0->ne[1];
  7973. const int64_t ne02 = src0->ne[2];
  7974. //const int64_t ne03 = src0->ne[3];
  7975. const int64_t ne10 = src1->ne[0];
  7976. const int64_t ne11 = src1->ne[1];
  7977. //const int64_t ne12 = src1->ne[2];
  7978. //const int64_t ne13 = src1->ne[3];
  7979. //const int64_t ne0 = dst->ne[0];
  7980. //const int64_t ne1 = dst->ne[1];
  7981. //const int64_t ne2 = dst->ne[2];
  7982. //const int64_t ne3 = dst->ne[3];
  7983. //const int64_t ne = ne0*ne1*ne2*ne3;
  7984. const int nb00 = src0->nb[0];
  7985. const int nb01 = src0->nb[1];
  7986. const int nb02 = src0->nb[2];
  7987. //const int nb03 = src0->nb[3];
  7988. const int nb10 = src1->nb[0];
  7989. const int nb11 = src1->nb[1];
  7990. //const int nb12 = src1->nb[2];
  7991. //const int nb13 = src1->nb[3];
  7992. //const int nb0 = dst->nb[0];
  7993. const int nb1 = dst->nb[1];
  7994. //const int nb2 = dst->nb[2];
  7995. //const int nb3 = dst->nb[3];
  7996. const int ith = params->ith;
  7997. const int nth = params->nth;
  7998. const int nk = ne00;
  7999. const int nh = nk/2;
  8000. const int ew0 = ggml_up32(ne01);
  8001. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8002. GGML_ASSERT(nb00 == sizeof(float));
  8003. GGML_ASSERT(nb10 == sizeof(float));
  8004. if (params->type == GGML_TASK_INIT) {
  8005. // TODO: fix this memset (wsize is overestimated)
  8006. memset(params->wdata, 0, params->wsize);
  8007. // prepare kernel data (src0)
  8008. {
  8009. float * const wdata = (float *) params->wdata + 0;
  8010. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8011. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8012. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8013. float * dst_data = wdata + i02*ew0*ne00;
  8014. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8015. dst_data[i00*ew0 + i01] = src[i00];
  8016. }
  8017. }
  8018. }
  8019. }
  8020. // prepare source data (src1)
  8021. {
  8022. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8023. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8024. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8025. float * dst_data = wdata;
  8026. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8027. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8028. }
  8029. }
  8030. }
  8031. return;
  8032. }
  8033. if (params->type == GGML_TASK_FINALIZE) {
  8034. return;
  8035. }
  8036. // total rows in dst
  8037. const int nr = ne02;
  8038. // rows per thread
  8039. const int dr = (nr + nth - 1)/nth;
  8040. // row range for this thread
  8041. const int ir0 = dr*ith;
  8042. const int ir1 = MIN(ir0 + dr, nr);
  8043. for (int i1 = ir0; i1 < ir1; i1++) {
  8044. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8045. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8046. dst_data[i0/2] = 0;
  8047. for (int k = -nh; k <= nh; k++) {
  8048. float v = 0.0f;
  8049. ggml_vec_dot_f32(ew0, &v,
  8050. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8051. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8052. dst_data[i0/2] += v;
  8053. }
  8054. }
  8055. }
  8056. }
  8057. static void ggml_compute_forward_conv_1d_2s(
  8058. const struct ggml_compute_params * params,
  8059. const struct ggml_tensor * src0,
  8060. const struct ggml_tensor * src1,
  8061. struct ggml_tensor * dst) {
  8062. switch (src0->type) {
  8063. case GGML_TYPE_F16:
  8064. {
  8065. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8066. } break;
  8067. case GGML_TYPE_F32:
  8068. {
  8069. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8070. } break;
  8071. default:
  8072. {
  8073. GGML_ASSERT(false);
  8074. } break;
  8075. }
  8076. }
  8077. // ggml_compute_forward_flash_attn
  8078. static void ggml_compute_forward_flash_attn_f32(
  8079. const struct ggml_compute_params * params,
  8080. const struct ggml_tensor * q,
  8081. const struct ggml_tensor * k,
  8082. const struct ggml_tensor * v,
  8083. const bool masked,
  8084. struct ggml_tensor * dst) {
  8085. int64_t t0 = ggml_perf_time_us();
  8086. UNUSED(t0);
  8087. const int64_t neq0 = q->ne[0];
  8088. const int64_t neq1 = q->ne[1];
  8089. const int64_t neq2 = q->ne[2];
  8090. const int64_t neq3 = q->ne[3];
  8091. const int64_t nek0 = k->ne[0];
  8092. const int64_t nek1 = k->ne[1];
  8093. //const int64_t nek2 = k->ne[2];
  8094. //const int64_t nek3 = k->ne[3];
  8095. //const int64_t nev0 = v->ne[0];
  8096. const int64_t nev1 = v->ne[1];
  8097. //const int64_t nev2 = v->ne[2];
  8098. //const int64_t nev3 = v->ne[3];
  8099. const int64_t ne0 = dst->ne[0];
  8100. const int64_t ne1 = dst->ne[1];
  8101. //const int64_t ne2 = dst->ne[2];
  8102. //const int64_t ne3 = dst->ne[3];
  8103. const int nbk0 = k->nb[0];
  8104. const int nbk1 = k->nb[1];
  8105. const int nbk2 = k->nb[2];
  8106. const int nbk3 = k->nb[3];
  8107. const int nbq0 = q->nb[0];
  8108. const int nbq1 = q->nb[1];
  8109. const int nbq2 = q->nb[2];
  8110. const int nbq3 = q->nb[3];
  8111. const int nbv0 = v->nb[0];
  8112. const int nbv1 = v->nb[1];
  8113. const int nbv2 = v->nb[2];
  8114. const int nbv3 = v->nb[3];
  8115. const int nb0 = dst->nb[0];
  8116. const int nb1 = dst->nb[1];
  8117. const int nb2 = dst->nb[2];
  8118. const int nb3 = dst->nb[3];
  8119. const int ith = params->ith;
  8120. const int nth = params->nth;
  8121. const int64_t D = neq0;
  8122. const int64_t N = neq1;
  8123. const int64_t P = nek1 - N;
  8124. const int64_t M = P + N;
  8125. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8126. GGML_ASSERT(ne0 == D);
  8127. GGML_ASSERT(ne1 == N);
  8128. GGML_ASSERT(P >= 0);
  8129. GGML_ASSERT(nbq0 == sizeof(float));
  8130. GGML_ASSERT(nbk0 == sizeof(float));
  8131. GGML_ASSERT(nbv0 == sizeof(float));
  8132. GGML_ASSERT(neq0 == D);
  8133. GGML_ASSERT(nek0 == D);
  8134. GGML_ASSERT(nev1 == D);
  8135. GGML_ASSERT(neq1 == N);
  8136. GGML_ASSERT(nek1 == N + P);
  8137. GGML_ASSERT(nev1 == D);
  8138. // dst cannot be transposed or permuted
  8139. GGML_ASSERT(nb0 == sizeof(float));
  8140. GGML_ASSERT(nb0 <= nb1);
  8141. GGML_ASSERT(nb1 <= nb2);
  8142. GGML_ASSERT(nb2 <= nb3);
  8143. if (params->type == GGML_TASK_INIT) {
  8144. return;
  8145. }
  8146. if (params->type == GGML_TASK_FINALIZE) {
  8147. return;
  8148. }
  8149. // parallelize by q rows using ggml_vec_dot_f32
  8150. // total rows in q
  8151. const int nr = neq1*neq2*neq3;
  8152. // rows per thread
  8153. const int dr = (nr + nth - 1)/nth;
  8154. // row range for this thread
  8155. const int ir0 = dr*ith;
  8156. const int ir1 = MIN(ir0 + dr, nr);
  8157. const float scale = 1.0f/sqrtf(D);
  8158. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8159. for (int ir = ir0; ir < ir1; ++ir) {
  8160. // q indices
  8161. const int iq3 = ir/(neq2*neq1);
  8162. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8163. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8164. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8165. for (int i = M; i < Mup; ++i) {
  8166. S[i] = -INFINITY;
  8167. }
  8168. for (int64_t ic = 0; ic < nek1; ++ic) {
  8169. // k indices
  8170. const int ik3 = iq3;
  8171. const int ik2 = iq2;
  8172. const int ik1 = ic;
  8173. // S indices
  8174. const int i1 = ik1;
  8175. ggml_vec_dot_f32(neq0,
  8176. S + i1,
  8177. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8178. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8179. }
  8180. // scale
  8181. ggml_vec_scale_f32(nek1, S, scale);
  8182. if (masked) {
  8183. for (int64_t i = P; i < M; i++) {
  8184. if (i > P + iq1) {
  8185. S[i] = -INFINITY;
  8186. }
  8187. }
  8188. }
  8189. // softmax
  8190. {
  8191. float max = -INFINITY;
  8192. ggml_vec_max_f32(M, &max, S);
  8193. ggml_float sum = 0.0;
  8194. {
  8195. #ifdef GGML_SOFT_MAX_ACCELERATE
  8196. max = -max;
  8197. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8198. vvexpf(S, S, &Mup);
  8199. ggml_vec_sum_f32(Mup, &sum, S);
  8200. #else
  8201. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8202. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8203. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8204. float * SS = S + i;
  8205. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8206. if (SS[j] == -INFINITY) {
  8207. SS[j] = 0.0f;
  8208. } else {
  8209. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8210. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8211. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8212. sump[j] += (ggml_float)val;
  8213. SS[j] = val;
  8214. }
  8215. }
  8216. }
  8217. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8218. sum += sump[i];
  8219. }
  8220. #endif
  8221. }
  8222. assert(sum > 0.0);
  8223. sum = 1.0/sum;
  8224. ggml_vec_scale_f32(M, S, sum);
  8225. #ifndef NDEBUG
  8226. for (int i = 0; i < M; ++i) {
  8227. assert(!isnan(S[i]));
  8228. assert(!isinf(S[i]));
  8229. }
  8230. #endif
  8231. }
  8232. for (int64_t ic = 0; ic < nev1; ++ic) {
  8233. // dst indices
  8234. const int i1 = iq1;
  8235. const int i2 = iq2;
  8236. const int i3 = iq3;
  8237. ggml_vec_dot_f32(nek1,
  8238. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8239. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8240. S);
  8241. }
  8242. }
  8243. }
  8244. static void ggml_compute_forward_flash_attn_f16(
  8245. const struct ggml_compute_params * params,
  8246. const struct ggml_tensor * q,
  8247. const struct ggml_tensor * k,
  8248. const struct ggml_tensor * v,
  8249. const bool masked,
  8250. struct ggml_tensor * dst) {
  8251. int64_t t0 = ggml_perf_time_us();
  8252. UNUSED(t0);
  8253. const int64_t neq0 = q->ne[0];
  8254. const int64_t neq1 = q->ne[1];
  8255. const int64_t neq2 = q->ne[2];
  8256. const int64_t neq3 = q->ne[3];
  8257. const int64_t nek0 = k->ne[0];
  8258. const int64_t nek1 = k->ne[1];
  8259. //const int64_t nek2 = k->ne[2];
  8260. //const int64_t nek3 = k->ne[3];
  8261. //const int64_t nev0 = v->ne[0];
  8262. const int64_t nev1 = v->ne[1];
  8263. //const int64_t nev2 = v->ne[2];
  8264. //const int64_t nev3 = v->ne[3];
  8265. const int64_t ne0 = dst->ne[0];
  8266. const int64_t ne1 = dst->ne[1];
  8267. //const int64_t ne2 = dst->ne[2];
  8268. //const int64_t ne3 = dst->ne[3];
  8269. const int nbk0 = k->nb[0];
  8270. const int nbk1 = k->nb[1];
  8271. const int nbk2 = k->nb[2];
  8272. const int nbk3 = k->nb[3];
  8273. const int nbq0 = q->nb[0];
  8274. const int nbq1 = q->nb[1];
  8275. const int nbq2 = q->nb[2];
  8276. const int nbq3 = q->nb[3];
  8277. const int nbv0 = v->nb[0];
  8278. const int nbv1 = v->nb[1];
  8279. const int nbv2 = v->nb[2];
  8280. const int nbv3 = v->nb[3];
  8281. const int nb0 = dst->nb[0];
  8282. const int nb1 = dst->nb[1];
  8283. const int nb2 = dst->nb[2];
  8284. const int nb3 = dst->nb[3];
  8285. const int ith = params->ith;
  8286. const int nth = params->nth;
  8287. const int64_t D = neq0;
  8288. const int64_t N = neq1;
  8289. const int64_t P = nek1 - N;
  8290. const int64_t M = P + N;
  8291. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8292. GGML_ASSERT(ne0 == D);
  8293. GGML_ASSERT(ne1 == N);
  8294. GGML_ASSERT(P >= 0);
  8295. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8296. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8297. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8298. GGML_ASSERT(neq0 == D);
  8299. GGML_ASSERT(nek0 == D);
  8300. GGML_ASSERT(nev1 == D);
  8301. GGML_ASSERT(neq1 == N);
  8302. GGML_ASSERT(nek1 == N + P);
  8303. GGML_ASSERT(nev1 == D);
  8304. // dst cannot be transposed or permuted
  8305. GGML_ASSERT(nb0 == sizeof(float));
  8306. GGML_ASSERT(nb0 <= nb1);
  8307. GGML_ASSERT(nb1 <= nb2);
  8308. GGML_ASSERT(nb2 <= nb3);
  8309. if (params->type == GGML_TASK_INIT) {
  8310. return;
  8311. }
  8312. if (params->type == GGML_TASK_FINALIZE) {
  8313. return;
  8314. }
  8315. // parallelize by q rows using ggml_vec_dot_f32
  8316. // total rows in q
  8317. const int nr = neq1*neq2*neq3;
  8318. // rows per thread
  8319. const int dr = (nr + nth - 1)/nth;
  8320. // row range for this thread
  8321. const int ir0 = dr*ith;
  8322. const int ir1 = MIN(ir0 + dr, nr);
  8323. const float scale = 1.0f/sqrtf(D);
  8324. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8325. for (int ir = ir0; ir < ir1; ++ir) {
  8326. // q indices
  8327. const int iq3 = ir/(neq2*neq1);
  8328. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8329. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8330. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8331. for (int i = M; i < Mup; ++i) {
  8332. S[i] = -INFINITY;
  8333. }
  8334. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8335. for (int64_t ic = 0; ic < nek1; ++ic) {
  8336. // k indices
  8337. const int ik3 = iq3;
  8338. const int ik2 = iq2;
  8339. const int ik1 = ic;
  8340. // S indices
  8341. const int i1 = ik1;
  8342. ggml_vec_dot_f16(neq0,
  8343. S + i1,
  8344. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8345. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8346. }
  8347. } else {
  8348. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8349. // k indices
  8350. const int ik3 = iq3;
  8351. const int ik2 = iq2;
  8352. const int ik1 = ic;
  8353. // S indices
  8354. const int i1 = ik1;
  8355. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8356. S + i1,
  8357. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8358. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8359. }
  8360. }
  8361. // scale
  8362. ggml_vec_scale_f32(nek1, S, scale);
  8363. if (masked) {
  8364. for (int64_t i = P; i < M; i++) {
  8365. if (i > P + iq1) {
  8366. S[i] = -INFINITY;
  8367. }
  8368. }
  8369. }
  8370. // softmax
  8371. {
  8372. float max = -INFINITY;
  8373. ggml_vec_max_f32(M, &max, S);
  8374. ggml_float sum = 0.0;
  8375. {
  8376. #ifdef GGML_SOFT_MAX_ACCELERATE
  8377. max = -max;
  8378. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8379. vvexpf(S, S, &Mup);
  8380. ggml_vec_sum_f32(Mup, &sum, S);
  8381. #else
  8382. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8383. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8384. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8385. float * SS = S + i;
  8386. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8387. if (SS[j] == -INFINITY) {
  8388. SS[j] = 0.0f;
  8389. } else {
  8390. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8391. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8392. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8393. sump[j] += (ggml_float)val;
  8394. SS[j] = val;
  8395. }
  8396. }
  8397. }
  8398. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8399. sum += sump[i];
  8400. }
  8401. #endif
  8402. }
  8403. assert(sum > 0.0);
  8404. sum = 1.0/sum;
  8405. ggml_vec_scale_f32(M, S, sum);
  8406. #ifndef NDEBUG
  8407. for (int i = 0; i < M; ++i) {
  8408. assert(!isnan(S[i]));
  8409. assert(!isinf(S[i]));
  8410. }
  8411. #endif
  8412. }
  8413. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8414. for (int64_t i = 0; i < M; i++) {
  8415. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8416. }
  8417. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8418. for (int64_t ic = 0; ic < nev1; ++ic) {
  8419. // dst indices
  8420. const int i1 = iq1;
  8421. const int i2 = iq2;
  8422. const int i3 = iq3;
  8423. ggml_vec_dot_f16(nek1,
  8424. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8425. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8426. S16);
  8427. }
  8428. } else {
  8429. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8430. // dst indices
  8431. const int i1 = iq1;
  8432. const int i2 = iq2;
  8433. const int i3 = iq3;
  8434. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8435. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8436. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8437. S16);
  8438. }
  8439. }
  8440. }
  8441. }
  8442. static void ggml_compute_forward_flash_attn(
  8443. const struct ggml_compute_params * params,
  8444. const struct ggml_tensor * q,
  8445. const struct ggml_tensor * k,
  8446. const struct ggml_tensor * v,
  8447. const bool masked,
  8448. struct ggml_tensor * dst) {
  8449. switch (q->type) {
  8450. case GGML_TYPE_F16:
  8451. {
  8452. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8453. } break;
  8454. case GGML_TYPE_F32:
  8455. {
  8456. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8457. } break;
  8458. default:
  8459. {
  8460. GGML_ASSERT(false);
  8461. } break;
  8462. }
  8463. }
  8464. // ggml_compute_forward_flash_ff
  8465. static void ggml_compute_forward_flash_ff_f16(
  8466. const struct ggml_compute_params * params,
  8467. const struct ggml_tensor * a, // F16
  8468. const struct ggml_tensor * b0, // F16 fc_w
  8469. const struct ggml_tensor * b1, // F32 fc_b
  8470. const struct ggml_tensor * c0, // F16 proj_w
  8471. const struct ggml_tensor * c1, // F32 proj_b
  8472. struct ggml_tensor * dst) {
  8473. int64_t t0 = ggml_perf_time_us();
  8474. UNUSED(t0);
  8475. const int64_t nea0 = a->ne[0];
  8476. const int64_t nea1 = a->ne[1];
  8477. const int64_t nea2 = a->ne[2];
  8478. const int64_t nea3 = a->ne[3];
  8479. const int64_t neb00 = b0->ne[0];
  8480. const int64_t neb01 = b0->ne[1];
  8481. //const int64_t neb02 = b0->ne[2];
  8482. //const int64_t neb03 = b0->ne[3];
  8483. const int64_t neb10 = b1->ne[0];
  8484. const int64_t neb11 = b1->ne[1];
  8485. //const int64_t neb12 = b1->ne[2];
  8486. //const int64_t neb13 = b1->ne[3];
  8487. const int64_t nec00 = c0->ne[0];
  8488. const int64_t nec01 = c0->ne[1];
  8489. //const int64_t nec02 = c0->ne[2];
  8490. //const int64_t nec03 = c0->ne[3];
  8491. const int64_t nec10 = c1->ne[0];
  8492. const int64_t nec11 = c1->ne[1];
  8493. //const int64_t nec12 = c1->ne[2];
  8494. //const int64_t nec13 = c1->ne[3];
  8495. const int64_t ne0 = dst->ne[0];
  8496. const int64_t ne1 = dst->ne[1];
  8497. const int64_t ne2 = dst->ne[2];
  8498. //const int64_t ne3 = dst->ne[3];
  8499. const int nba0 = a->nb[0];
  8500. const int nba1 = a->nb[1];
  8501. const int nba2 = a->nb[2];
  8502. const int nba3 = a->nb[3];
  8503. const int nbb00 = b0->nb[0];
  8504. const int nbb01 = b0->nb[1];
  8505. const int nbb02 = b0->nb[2];
  8506. const int nbb03 = b0->nb[3];
  8507. const int nbb10 = b1->nb[0];
  8508. //const int nbb11 = b1->nb[1];
  8509. //const int nbb12 = b1->nb[2];
  8510. //const int nbb13 = b1->nb[3];
  8511. const int nbc00 = c0->nb[0];
  8512. const int nbc01 = c0->nb[1];
  8513. const int nbc02 = c0->nb[2];
  8514. const int nbc03 = c0->nb[3];
  8515. const int nbc10 = c1->nb[0];
  8516. //const int nbc11 = c1->nb[1];
  8517. //const int nbc12 = c1->nb[2];
  8518. //const int nbc13 = c1->nb[3];
  8519. const int nb0 = dst->nb[0];
  8520. const int nb1 = dst->nb[1];
  8521. const int nb2 = dst->nb[2];
  8522. const int nb3 = dst->nb[3];
  8523. const int ith = params->ith;
  8524. const int nth = params->nth;
  8525. const int64_t D = nea0;
  8526. //const int64_t N = nea1;
  8527. const int64_t M = neb01;
  8528. GGML_ASSERT(ne0 == nea0);
  8529. GGML_ASSERT(ne1 == nea1);
  8530. GGML_ASSERT(ne2 == nea2);
  8531. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8532. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8533. GGML_ASSERT(nbb10 == sizeof(float));
  8534. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8535. GGML_ASSERT(nbc10 == sizeof(float));
  8536. GGML_ASSERT(neb00 == D);
  8537. GGML_ASSERT(neb01 == M);
  8538. GGML_ASSERT(neb10 == M);
  8539. GGML_ASSERT(neb11 == 1);
  8540. GGML_ASSERT(nec00 == M);
  8541. GGML_ASSERT(nec01 == D);
  8542. GGML_ASSERT(nec10 == D);
  8543. GGML_ASSERT(nec11 == 1);
  8544. // dst cannot be transposed or permuted
  8545. GGML_ASSERT(nb0 == sizeof(float));
  8546. GGML_ASSERT(nb0 <= nb1);
  8547. GGML_ASSERT(nb1 <= nb2);
  8548. GGML_ASSERT(nb2 <= nb3);
  8549. if (params->type == GGML_TASK_INIT) {
  8550. return;
  8551. }
  8552. if (params->type == GGML_TASK_FINALIZE) {
  8553. return;
  8554. }
  8555. // parallelize by a rows using ggml_vec_dot_f32
  8556. // total rows in a
  8557. const int nr = nea1*nea2*nea3;
  8558. // rows per thread
  8559. const int dr = (nr + nth - 1)/nth;
  8560. // row range for this thread
  8561. const int ir0 = dr*ith;
  8562. const int ir1 = MIN(ir0 + dr, nr);
  8563. for (int ir = ir0; ir < ir1; ++ir) {
  8564. // a indices
  8565. const int ia3 = ir/(nea2*nea1);
  8566. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8567. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8568. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8569. for (int64_t ic = 0; ic < neb01; ++ic) {
  8570. // b0 indices
  8571. const int ib03 = ia3;
  8572. const int ib02 = ia2;
  8573. const int ib01 = ic;
  8574. // S indices
  8575. const int i1 = ib01;
  8576. ggml_vec_dot_f16(nea0,
  8577. S + i1,
  8578. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8579. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8580. }
  8581. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8582. //ggml_vec_gelu_f32(neb01, S, S);
  8583. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8584. for (int64_t i = 0; i < M; i++) {
  8585. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8586. }
  8587. ggml_vec_gelu_f16(neb01, S16, S16);
  8588. {
  8589. // dst indices
  8590. const int i1 = ia1;
  8591. const int i2 = ia2;
  8592. const int i3 = ia3;
  8593. for (int64_t ic = 0; ic < nec01; ++ic) {
  8594. ggml_vec_dot_f16(neb01,
  8595. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8596. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8597. S16);
  8598. }
  8599. ggml_vec_add_f32(nec01,
  8600. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8601. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8602. (float *) c1->data);
  8603. }
  8604. }
  8605. }
  8606. static void ggml_compute_forward_flash_ff(
  8607. const struct ggml_compute_params * params,
  8608. const struct ggml_tensor * a,
  8609. const struct ggml_tensor * b0,
  8610. const struct ggml_tensor * b1,
  8611. const struct ggml_tensor * c0,
  8612. const struct ggml_tensor * c1,
  8613. struct ggml_tensor * dst) {
  8614. switch (b0->type) {
  8615. case GGML_TYPE_F16:
  8616. {
  8617. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8618. } break;
  8619. case GGML_TYPE_F32:
  8620. {
  8621. GGML_ASSERT(false); // TODO
  8622. } break;
  8623. default:
  8624. {
  8625. GGML_ASSERT(false);
  8626. } break;
  8627. }
  8628. }
  8629. // ggml_compute_forward_map_unary
  8630. static void ggml_compute_forward_map_unary_f32(
  8631. const struct ggml_compute_params * params,
  8632. const struct ggml_tensor * src0,
  8633. struct ggml_tensor * dst,
  8634. const ggml_unary_op_f32_t fun) {
  8635. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8636. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8637. return;
  8638. }
  8639. const int n = ggml_nrows(src0);
  8640. const int nc = src0->ne[0];
  8641. assert( dst->nb[0] == sizeof(float));
  8642. assert(src0->nb[0] == sizeof(float));
  8643. for (int i = 0; i < n; i++) {
  8644. fun(nc,
  8645. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8646. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8647. }
  8648. }
  8649. static void ggml_compute_forward_map_unary(
  8650. const struct ggml_compute_params * params,
  8651. const struct ggml_tensor * src0,
  8652. struct ggml_tensor * dst,
  8653. const ggml_unary_op_f32_t fun) {
  8654. switch (src0->type) {
  8655. case GGML_TYPE_F32:
  8656. {
  8657. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8658. } break;
  8659. default:
  8660. {
  8661. GGML_ASSERT(false);
  8662. } break;
  8663. }
  8664. }
  8665. // ggml_compute_forward_map_binary
  8666. static void ggml_compute_forward_map_binary_f32(
  8667. const struct ggml_compute_params * params,
  8668. const struct ggml_tensor * src0,
  8669. const struct ggml_tensor * src1,
  8670. struct ggml_tensor * dst,
  8671. const ggml_binary_op_f32_t fun) {
  8672. assert(params->ith == 0);
  8673. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8674. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8675. return;
  8676. }
  8677. const int n = ggml_nrows(src0);
  8678. const int nc = src0->ne[0];
  8679. assert( dst->nb[0] == sizeof(float));
  8680. assert(src0->nb[0] == sizeof(float));
  8681. assert(src1->nb[0] == sizeof(float));
  8682. for (int i = 0; i < n; i++) {
  8683. fun(nc,
  8684. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8685. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8686. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8687. }
  8688. }
  8689. static void ggml_compute_forward_map_binary(
  8690. const struct ggml_compute_params * params,
  8691. const struct ggml_tensor * src0,
  8692. const struct ggml_tensor * src1,
  8693. struct ggml_tensor * dst,
  8694. const ggml_binary_op_f32_t fun) {
  8695. switch (src0->type) {
  8696. case GGML_TYPE_F32:
  8697. {
  8698. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8699. } break;
  8700. default:
  8701. {
  8702. GGML_ASSERT(false);
  8703. } break;
  8704. }
  8705. }
  8706. /////////////////////////////////
  8707. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8708. GGML_ASSERT(params);
  8709. switch (tensor->op) {
  8710. case GGML_OP_DUP:
  8711. {
  8712. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8713. } break;
  8714. case GGML_OP_ADD:
  8715. {
  8716. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8717. } break;
  8718. case GGML_OP_SUB:
  8719. {
  8720. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8721. } break;
  8722. case GGML_OP_MUL:
  8723. {
  8724. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8725. } break;
  8726. case GGML_OP_DIV:
  8727. {
  8728. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8729. } break;
  8730. case GGML_OP_SQR:
  8731. {
  8732. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8733. } break;
  8734. case GGML_OP_SQRT:
  8735. {
  8736. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8737. } break;
  8738. case GGML_OP_SUM:
  8739. {
  8740. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8741. } break;
  8742. case GGML_OP_MEAN:
  8743. {
  8744. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8745. } break;
  8746. case GGML_OP_REPEAT:
  8747. {
  8748. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8749. } break;
  8750. case GGML_OP_ABS:
  8751. {
  8752. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8753. } break;
  8754. case GGML_OP_SGN:
  8755. {
  8756. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8757. } break;
  8758. case GGML_OP_NEG:
  8759. {
  8760. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8761. } break;
  8762. case GGML_OP_STEP:
  8763. {
  8764. ggml_compute_forward_step(params, tensor->src0, tensor);
  8765. } break;
  8766. case GGML_OP_RELU:
  8767. {
  8768. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8769. } break;
  8770. case GGML_OP_GELU:
  8771. {
  8772. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8773. } break;
  8774. case GGML_OP_SILU:
  8775. {
  8776. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8777. } break;
  8778. case GGML_OP_NORM:
  8779. {
  8780. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8781. } break;
  8782. case GGML_OP_RMS_NORM:
  8783. {
  8784. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8785. } break;
  8786. case GGML_OP_MUL_MAT:
  8787. {
  8788. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8789. } break;
  8790. case GGML_OP_SCALE:
  8791. {
  8792. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8793. } break;
  8794. case GGML_OP_CPY:
  8795. {
  8796. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8797. } break;
  8798. case GGML_OP_CONT:
  8799. {
  8800. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8801. } break;
  8802. case GGML_OP_RESHAPE:
  8803. {
  8804. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8805. } break;
  8806. case GGML_OP_VIEW:
  8807. {
  8808. ggml_compute_forward_view(params, tensor->src0);
  8809. } break;
  8810. case GGML_OP_PERMUTE:
  8811. {
  8812. ggml_compute_forward_permute(params, tensor->src0);
  8813. } break;
  8814. case GGML_OP_TRANSPOSE:
  8815. {
  8816. ggml_compute_forward_transpose(params, tensor->src0);
  8817. } break;
  8818. case GGML_OP_GET_ROWS:
  8819. {
  8820. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8821. } break;
  8822. case GGML_OP_DIAG_MASK_INF:
  8823. {
  8824. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8825. } break;
  8826. case GGML_OP_SOFT_MAX:
  8827. {
  8828. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8829. } break;
  8830. case GGML_OP_ROPE:
  8831. {
  8832. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8833. } break;
  8834. case GGML_OP_ALIBI:
  8835. {
  8836. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  8837. } break;
  8838. case GGML_OP_CONV_1D_1S:
  8839. {
  8840. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8841. } break;
  8842. case GGML_OP_CONV_1D_2S:
  8843. {
  8844. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8845. } break;
  8846. case GGML_OP_FLASH_ATTN:
  8847. {
  8848. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8849. GGML_ASSERT(t == 0 || t == 1);
  8850. bool masked = t != 0;
  8851. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8852. } break;
  8853. case GGML_OP_FLASH_FF:
  8854. {
  8855. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8856. } break;
  8857. case GGML_OP_MAP_UNARY:
  8858. {
  8859. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8860. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8861. }
  8862. break;
  8863. case GGML_OP_MAP_BINARY:
  8864. {
  8865. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8866. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8867. }
  8868. break;
  8869. case GGML_OP_NONE:
  8870. {
  8871. // nop
  8872. } break;
  8873. case GGML_OP_COUNT:
  8874. {
  8875. GGML_ASSERT(false);
  8876. } break;
  8877. }
  8878. }
  8879. ////////////////////////////////////////////////////////////////////////////////
  8880. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8881. struct ggml_tensor * src0 = tensor->src0;
  8882. struct ggml_tensor * src1 = tensor->src1;
  8883. switch (tensor->op) {
  8884. case GGML_OP_DUP:
  8885. {
  8886. if (src0->grad) {
  8887. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8888. }
  8889. } break;
  8890. case GGML_OP_ADD:
  8891. {
  8892. if (src0->grad) {
  8893. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8894. }
  8895. if (src1->grad) {
  8896. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8897. }
  8898. } break;
  8899. case GGML_OP_SUB:
  8900. {
  8901. if (src0->grad) {
  8902. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8903. }
  8904. if (src1->grad) {
  8905. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8906. }
  8907. } break;
  8908. case GGML_OP_MUL:
  8909. {
  8910. if (src0->grad) {
  8911. src0->grad =
  8912. ggml_add_impl(ctx,
  8913. src0->grad,
  8914. ggml_mul(ctx, src1, tensor->grad),
  8915. inplace);
  8916. }
  8917. if (src1->grad) {
  8918. src1->grad =
  8919. ggml_add_impl(ctx,
  8920. src1->grad,
  8921. ggml_mul(ctx, src0, tensor->grad),
  8922. inplace);
  8923. }
  8924. } break;
  8925. case GGML_OP_DIV:
  8926. {
  8927. if (src0->grad) {
  8928. src0->grad =
  8929. ggml_add_impl(ctx,
  8930. src0->grad,
  8931. ggml_div(ctx, tensor->grad, src1),
  8932. inplace);
  8933. }
  8934. if (src1->grad) {
  8935. src1->grad =
  8936. ggml_sub_impl(ctx,
  8937. src1->grad,
  8938. ggml_mul(ctx,
  8939. tensor->grad,
  8940. ggml_div(ctx, tensor, src1)),
  8941. inplace);
  8942. }
  8943. } break;
  8944. case GGML_OP_SQR:
  8945. {
  8946. if (src0->grad) {
  8947. src0->grad =
  8948. ggml_add_impl(ctx,
  8949. src0->grad,
  8950. ggml_mul(ctx,
  8951. ggml_mul(ctx, src0, tensor->grad),
  8952. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8953. inplace);
  8954. }
  8955. } break;
  8956. case GGML_OP_SQRT:
  8957. {
  8958. if (src0->grad) {
  8959. src0->grad =
  8960. ggml_add_impl(ctx,
  8961. src0->grad,
  8962. ggml_div(ctx,
  8963. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8964. tensor),
  8965. inplace);
  8966. }
  8967. } break;
  8968. case GGML_OP_SUM:
  8969. {
  8970. if (src0->grad) {
  8971. src0->grad =
  8972. ggml_add_impl(ctx,
  8973. src0->grad,
  8974. ggml_repeat(ctx, tensor->grad, src0->grad),
  8975. inplace);
  8976. }
  8977. } break;
  8978. case GGML_OP_MEAN:
  8979. {
  8980. GGML_ASSERT(false); // TODO: implement
  8981. } break;
  8982. case GGML_OP_REPEAT:
  8983. {
  8984. if (src0->grad) {
  8985. src0->grad =
  8986. ggml_add_impl(ctx,
  8987. src0->grad,
  8988. ggml_sum(ctx, tensor->grad),
  8989. inplace);
  8990. }
  8991. } break;
  8992. case GGML_OP_ABS:
  8993. {
  8994. if (src0->grad) {
  8995. src0->grad =
  8996. ggml_add_impl(ctx,
  8997. src0->grad,
  8998. ggml_mul(ctx,
  8999. ggml_sgn(ctx, src0),
  9000. tensor->grad),
  9001. inplace);
  9002. }
  9003. } break;
  9004. case GGML_OP_SGN:
  9005. {
  9006. if (src0->grad) {
  9007. // noop
  9008. }
  9009. } break;
  9010. case GGML_OP_NEG:
  9011. {
  9012. if (src0->grad) {
  9013. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9014. }
  9015. } break;
  9016. case GGML_OP_STEP:
  9017. {
  9018. if (src0->grad) {
  9019. // noop
  9020. }
  9021. } break;
  9022. case GGML_OP_RELU:
  9023. {
  9024. if (src0->grad) {
  9025. src0->grad = ggml_sub_impl(ctx,
  9026. src0->grad,
  9027. ggml_mul(ctx,
  9028. ggml_step(ctx, src0),
  9029. tensor->grad),
  9030. inplace);
  9031. }
  9032. } break;
  9033. case GGML_OP_GELU:
  9034. {
  9035. GGML_ASSERT(false); // TODO: not implemented
  9036. } break;
  9037. case GGML_OP_ALIBI:
  9038. {
  9039. GGML_ASSERT(false); // TODO: not implemented
  9040. } break;
  9041. case GGML_OP_SILU:
  9042. {
  9043. GGML_ASSERT(false); // TODO: not implemented
  9044. } break;
  9045. case GGML_OP_NORM:
  9046. {
  9047. GGML_ASSERT(false); // TODO: not implemented
  9048. } break;
  9049. case GGML_OP_RMS_NORM:
  9050. {
  9051. GGML_ASSERT(false); // TODO: not implemented
  9052. } break;
  9053. case GGML_OP_MUL_MAT:
  9054. {
  9055. if (src0->grad) {
  9056. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9057. GGML_ASSERT(false);
  9058. }
  9059. if (src1->grad) {
  9060. src1->grad =
  9061. ggml_add_impl(ctx,
  9062. src1->grad,
  9063. ggml_mul_mat(ctx,
  9064. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9065. tensor->grad),
  9066. inplace);
  9067. }
  9068. } break;
  9069. case GGML_OP_SCALE:
  9070. {
  9071. GGML_ASSERT(false); // TODO: not implemented
  9072. } break;
  9073. case GGML_OP_CPY:
  9074. {
  9075. GGML_ASSERT(false); // TODO: not implemented
  9076. } break;
  9077. case GGML_OP_CONT:
  9078. {
  9079. GGML_ASSERT(false); // TODO: not implemented
  9080. } break;
  9081. case GGML_OP_RESHAPE:
  9082. {
  9083. GGML_ASSERT(false); // TODO: not implemented
  9084. } break;
  9085. case GGML_OP_VIEW:
  9086. {
  9087. GGML_ASSERT(false); // not supported
  9088. } break;
  9089. case GGML_OP_PERMUTE:
  9090. {
  9091. GGML_ASSERT(false); // TODO: not implemented
  9092. } break;
  9093. case GGML_OP_TRANSPOSE:
  9094. {
  9095. GGML_ASSERT(false); // TODO: not implemented
  9096. } break;
  9097. case GGML_OP_GET_ROWS:
  9098. {
  9099. GGML_ASSERT(false); // TODO: not implemented
  9100. } break;
  9101. case GGML_OP_DIAG_MASK_INF:
  9102. {
  9103. GGML_ASSERT(false); // TODO: not implemented
  9104. } break;
  9105. case GGML_OP_SOFT_MAX:
  9106. {
  9107. GGML_ASSERT(false); // TODO: not implemented
  9108. } break;
  9109. case GGML_OP_ROPE:
  9110. {
  9111. GGML_ASSERT(false); // TODO: not implemented
  9112. } break;
  9113. case GGML_OP_CONV_1D_1S:
  9114. {
  9115. GGML_ASSERT(false); // TODO: not implemented
  9116. } break;
  9117. case GGML_OP_CONV_1D_2S:
  9118. {
  9119. GGML_ASSERT(false); // TODO: not implemented
  9120. } break;
  9121. case GGML_OP_FLASH_ATTN:
  9122. {
  9123. GGML_ASSERT(false); // not supported
  9124. } break;
  9125. case GGML_OP_FLASH_FF:
  9126. {
  9127. GGML_ASSERT(false); // not supported
  9128. } break;
  9129. case GGML_OP_MAP_UNARY:
  9130. case GGML_OP_MAP_BINARY:
  9131. {
  9132. GGML_ASSERT(false); // not supported
  9133. } break;
  9134. case GGML_OP_NONE:
  9135. {
  9136. // nop
  9137. } break;
  9138. case GGML_OP_COUNT:
  9139. {
  9140. GGML_ASSERT(false);
  9141. } break;
  9142. }
  9143. }
  9144. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9145. if (node->grad == NULL) {
  9146. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9147. // it can also happen during forward pass, if the user performs computations with constants
  9148. if (node->op != GGML_OP_NONE) {
  9149. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9150. }
  9151. }
  9152. // check if already visited
  9153. for (int i = 0; i < cgraph->n_nodes; i++) {
  9154. if (cgraph->nodes[i] == node) {
  9155. return;
  9156. }
  9157. }
  9158. for (int i = 0; i < cgraph->n_leafs; i++) {
  9159. if (cgraph->leafs[i] == node) {
  9160. return;
  9161. }
  9162. }
  9163. if (node->src0) {
  9164. ggml_visit_parents(cgraph, node->src0);
  9165. }
  9166. if (node->src1) {
  9167. ggml_visit_parents(cgraph, node->src1);
  9168. }
  9169. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9170. if (node->opt[i]) {
  9171. ggml_visit_parents(cgraph, node->opt[i]);
  9172. }
  9173. }
  9174. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9175. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9176. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9177. cgraph->leafs[cgraph->n_leafs] = node;
  9178. cgraph->n_leafs++;
  9179. } else {
  9180. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9181. cgraph->nodes[cgraph->n_nodes] = node;
  9182. cgraph->grads[cgraph->n_nodes] = node->grad;
  9183. cgraph->n_nodes++;
  9184. }
  9185. }
  9186. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9187. if (!expand) {
  9188. cgraph->n_nodes = 0;
  9189. cgraph->n_leafs = 0;
  9190. }
  9191. const int n0 = cgraph->n_nodes;
  9192. UNUSED(n0);
  9193. ggml_visit_parents(cgraph, tensor);
  9194. const int n_new = cgraph->n_nodes - n0;
  9195. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9196. if (n_new > 0) {
  9197. // the last added node should always be starting point
  9198. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9199. }
  9200. }
  9201. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9202. ggml_build_forward_impl(cgraph, tensor, true);
  9203. }
  9204. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9205. struct ggml_cgraph result = {
  9206. /*.n_nodes =*/ 0,
  9207. /*.n_leafs =*/ 0,
  9208. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9209. /*.work_size =*/ 0,
  9210. /*.work =*/ NULL,
  9211. /*.nodes =*/ { NULL },
  9212. /*.grads =*/ { NULL },
  9213. /*.leafs =*/ { NULL },
  9214. /*.perf_runs =*/ 0,
  9215. /*.perf_cycles =*/ 0,
  9216. /*.perf_time_us =*/ 0,
  9217. };
  9218. ggml_build_forward_impl(&result, tensor, false);
  9219. return result;
  9220. }
  9221. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9222. struct ggml_cgraph result = *gf;
  9223. GGML_ASSERT(gf->n_nodes > 0);
  9224. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9225. if (keep) {
  9226. for (int i = 0; i < gf->n_nodes; i++) {
  9227. struct ggml_tensor * node = gf->nodes[i];
  9228. if (node->grad) {
  9229. node->grad = ggml_dup_tensor(ctx, node);
  9230. gf->grads[i] = node->grad;
  9231. }
  9232. }
  9233. }
  9234. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9235. struct ggml_tensor * node = gf->nodes[i];
  9236. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9237. if (node->grad) {
  9238. ggml_compute_backward(ctx, node, keep);
  9239. }
  9240. }
  9241. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9242. struct ggml_tensor * node = gf->nodes[i];
  9243. if (node->is_param) {
  9244. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9245. ggml_build_forward_impl(&result, node->grad, true);
  9246. }
  9247. }
  9248. return result;
  9249. }
  9250. //
  9251. // thread data
  9252. //
  9253. // synchronization is done via busy loops
  9254. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9255. //
  9256. #ifdef __APPLE__
  9257. //#include <os/lock.h>
  9258. //
  9259. //typedef os_unfair_lock ggml_lock_t;
  9260. //
  9261. //#define ggml_lock_init(x) UNUSED(x)
  9262. //#define ggml_lock_destroy(x) UNUSED(x)
  9263. //#define ggml_lock_lock os_unfair_lock_lock
  9264. //#define ggml_lock_unlock os_unfair_lock_unlock
  9265. //
  9266. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9267. typedef int ggml_lock_t;
  9268. #define ggml_lock_init(x) UNUSED(x)
  9269. #define ggml_lock_destroy(x) UNUSED(x)
  9270. #define ggml_lock_lock(x) UNUSED(x)
  9271. #define ggml_lock_unlock(x) UNUSED(x)
  9272. #define GGML_LOCK_INITIALIZER 0
  9273. typedef pthread_t ggml_thread_t;
  9274. #define ggml_thread_create pthread_create
  9275. #define ggml_thread_join pthread_join
  9276. #else
  9277. //typedef pthread_spinlock_t ggml_lock_t;
  9278. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9279. //#define ggml_lock_destroy pthread_spin_destroy
  9280. //#define ggml_lock_lock pthread_spin_lock
  9281. //#define ggml_lock_unlock pthread_spin_unlock
  9282. typedef int ggml_lock_t;
  9283. #define ggml_lock_init(x) UNUSED(x)
  9284. #define ggml_lock_destroy(x) UNUSED(x)
  9285. #define ggml_lock_lock(x) UNUSED(x)
  9286. #define ggml_lock_unlock(x) UNUSED(x)
  9287. #define GGML_LOCK_INITIALIZER 0
  9288. typedef pthread_t ggml_thread_t;
  9289. #define ggml_thread_create pthread_create
  9290. #define ggml_thread_join pthread_join
  9291. #endif
  9292. struct ggml_compute_state_shared {
  9293. ggml_lock_t spin;
  9294. int n_threads;
  9295. // synchronization primitives
  9296. atomic_int n_ready;
  9297. atomic_bool has_work;
  9298. atomic_bool stop; // stop all threads
  9299. };
  9300. struct ggml_compute_state {
  9301. ggml_thread_t thrd;
  9302. struct ggml_compute_params params;
  9303. struct ggml_tensor * node;
  9304. struct ggml_compute_state_shared * shared;
  9305. };
  9306. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9307. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9308. const int n_threads = state->shared->n_threads;
  9309. while (true) {
  9310. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9311. atomic_store(&state->shared->has_work, false);
  9312. } else {
  9313. while (atomic_load(&state->shared->has_work)) {
  9314. if (atomic_load(&state->shared->stop)) {
  9315. return 0;
  9316. }
  9317. ggml_lock_lock (&state->shared->spin);
  9318. ggml_lock_unlock(&state->shared->spin);
  9319. }
  9320. }
  9321. atomic_fetch_sub(&state->shared->n_ready, 1);
  9322. // wait for work
  9323. while (!atomic_load(&state->shared->has_work)) {
  9324. if (atomic_load(&state->shared->stop)) {
  9325. return 0;
  9326. }
  9327. ggml_lock_lock (&state->shared->spin);
  9328. ggml_lock_unlock(&state->shared->spin);
  9329. }
  9330. // check if we should stop
  9331. if (atomic_load(&state->shared->stop)) {
  9332. break;
  9333. }
  9334. if (state->node) {
  9335. if (state->params.ith < state->params.nth) {
  9336. ggml_compute_forward(&state->params, state->node);
  9337. }
  9338. state->node = NULL;
  9339. } else {
  9340. break;
  9341. }
  9342. }
  9343. return 0;
  9344. }
  9345. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9346. const int n_threads = cgraph->n_threads;
  9347. struct ggml_compute_state_shared state_shared = {
  9348. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9349. /*.n_threads =*/ n_threads,
  9350. /*.n_ready =*/ 0,
  9351. /*.has_work =*/ false,
  9352. /*.stop =*/ false,
  9353. };
  9354. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9355. // create thread pool
  9356. if (n_threads > 1) {
  9357. ggml_lock_init(&state_shared.spin);
  9358. atomic_store(&state_shared.has_work, true);
  9359. for (int j = 0; j < n_threads - 1; j++) {
  9360. workers[j] = (struct ggml_compute_state) {
  9361. .thrd = 0,
  9362. .params = {
  9363. .type = GGML_TASK_COMPUTE,
  9364. .ith = j + 1,
  9365. .nth = n_threads,
  9366. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9367. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9368. },
  9369. .node = NULL,
  9370. .shared = &state_shared,
  9371. };
  9372. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9373. GGML_ASSERT(rc == 0);
  9374. UNUSED(rc);
  9375. }
  9376. }
  9377. // initialize tasks + work buffer
  9378. {
  9379. size_t work_size = 0;
  9380. // thread scheduling for the different operations
  9381. for (int i = 0; i < cgraph->n_nodes; i++) {
  9382. struct ggml_tensor * node = cgraph->nodes[i];
  9383. switch (node->op) {
  9384. case GGML_OP_CPY:
  9385. case GGML_OP_DUP:
  9386. {
  9387. node->n_tasks = n_threads;
  9388. size_t cur = 0;
  9389. if (ggml_is_quantized(node->type)) {
  9390. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9391. }
  9392. work_size = MAX(work_size, cur);
  9393. } break;
  9394. case GGML_OP_ADD:
  9395. {
  9396. node->n_tasks = n_threads;
  9397. size_t cur = 0;
  9398. if (ggml_is_quantized(node->src0->type)) {
  9399. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9400. }
  9401. work_size = MAX(work_size, cur);
  9402. } break;
  9403. case GGML_OP_SUB:
  9404. case GGML_OP_MUL:
  9405. case GGML_OP_DIV:
  9406. case GGML_OP_SQR:
  9407. case GGML_OP_SQRT:
  9408. case GGML_OP_SUM:
  9409. case GGML_OP_MEAN:
  9410. case GGML_OP_REPEAT:
  9411. case GGML_OP_ABS:
  9412. case GGML_OP_SGN:
  9413. case GGML_OP_NEG:
  9414. case GGML_OP_STEP:
  9415. case GGML_OP_RELU:
  9416. {
  9417. node->n_tasks = 1;
  9418. } break;
  9419. case GGML_OP_GELU:
  9420. {
  9421. node->n_tasks = n_threads;
  9422. } break;
  9423. case GGML_OP_SILU:
  9424. {
  9425. node->n_tasks = n_threads;
  9426. } break;
  9427. case GGML_OP_NORM:
  9428. case GGML_OP_RMS_NORM:
  9429. {
  9430. node->n_tasks = n_threads;
  9431. } break;
  9432. case GGML_OP_MUL_MAT:
  9433. {
  9434. node->n_tasks = n_threads;
  9435. // TODO: use different scheduling for different matrix sizes
  9436. //const int nr0 = ggml_nrows(node->src0);
  9437. //const int nr1 = ggml_nrows(node->src1);
  9438. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9439. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9440. size_t cur = 0;
  9441. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9442. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9443. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9444. node->n_tasks = 1; // TODO: this actually is doing nothing
  9445. // the threads are still spinning
  9446. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9447. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  9448. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  9449. //printf("cur = %zu\n", cur);
  9450. } else {
  9451. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9452. }
  9453. #else
  9454. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9455. #endif
  9456. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9457. cur = 0;
  9458. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9459. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9460. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9461. node->n_tasks = 1;
  9462. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9463. } else
  9464. #endif
  9465. {
  9466. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9467. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9468. }
  9469. } else {
  9470. GGML_ASSERT(false);
  9471. }
  9472. work_size = MAX(work_size, cur);
  9473. } break;
  9474. case GGML_OP_SCALE:
  9475. {
  9476. node->n_tasks = n_threads;
  9477. } break;
  9478. case GGML_OP_CONT:
  9479. case GGML_OP_RESHAPE:
  9480. case GGML_OP_VIEW:
  9481. case GGML_OP_PERMUTE:
  9482. case GGML_OP_TRANSPOSE:
  9483. case GGML_OP_GET_ROWS:
  9484. case GGML_OP_DIAG_MASK_INF:
  9485. {
  9486. node->n_tasks = 1;
  9487. } break;
  9488. case GGML_OP_SOFT_MAX:
  9489. {
  9490. node->n_tasks = n_threads;
  9491. } break;
  9492. case GGML_OP_ROPE:
  9493. {
  9494. node->n_tasks = n_threads;
  9495. } break;
  9496. case GGML_OP_ALIBI:
  9497. {
  9498. node->n_tasks = 1; //TODO
  9499. } break;
  9500. case GGML_OP_CONV_1D_1S:
  9501. case GGML_OP_CONV_1D_2S:
  9502. {
  9503. node->n_tasks = n_threads;
  9504. GGML_ASSERT(node->src0->ne[3] == 1);
  9505. GGML_ASSERT(node->src1->ne[2] == 1);
  9506. GGML_ASSERT(node->src1->ne[3] == 1);
  9507. size_t cur = 0;
  9508. const int nk = node->src0->ne[0];
  9509. if (node->src0->type == GGML_TYPE_F16 &&
  9510. node->src1->type == GGML_TYPE_F32) {
  9511. cur = sizeof(ggml_fp16_t)*(
  9512. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9513. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9514. );
  9515. } else if (node->src0->type == GGML_TYPE_F32 &&
  9516. node->src1->type == GGML_TYPE_F32) {
  9517. cur = sizeof(float)*(
  9518. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9519. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9520. );
  9521. } else {
  9522. GGML_ASSERT(false);
  9523. }
  9524. work_size = MAX(work_size, cur);
  9525. } break;
  9526. case GGML_OP_FLASH_ATTN:
  9527. {
  9528. node->n_tasks = n_threads;
  9529. size_t cur = 0;
  9530. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9531. if (node->src1->type == GGML_TYPE_F32) {
  9532. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9533. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9534. }
  9535. if (node->src1->type == GGML_TYPE_F16) {
  9536. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9537. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9538. }
  9539. work_size = MAX(work_size, cur);
  9540. } break;
  9541. case GGML_OP_FLASH_FF:
  9542. {
  9543. node->n_tasks = n_threads;
  9544. size_t cur = 0;
  9545. if (node->src1->type == GGML_TYPE_F32) {
  9546. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9547. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9548. }
  9549. if (node->src1->type == GGML_TYPE_F16) {
  9550. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9551. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9552. }
  9553. work_size = MAX(work_size, cur);
  9554. } break;
  9555. case GGML_OP_MAP_UNARY:
  9556. case GGML_OP_MAP_BINARY:
  9557. {
  9558. node->n_tasks = 1;
  9559. } break;
  9560. case GGML_OP_NONE:
  9561. {
  9562. node->n_tasks = 1;
  9563. } break;
  9564. case GGML_OP_COUNT:
  9565. {
  9566. GGML_ASSERT(false);
  9567. } break;
  9568. }
  9569. }
  9570. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9571. GGML_ASSERT(false); // TODO: better handling
  9572. }
  9573. if (work_size > 0 && cgraph->work == NULL) {
  9574. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9575. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9576. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9577. }
  9578. }
  9579. const int64_t perf_start_cycles = ggml_perf_cycles();
  9580. const int64_t perf_start_time_us = ggml_perf_time_us();
  9581. for (int i = 0; i < cgraph->n_nodes; i++) {
  9582. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9583. struct ggml_tensor * node = cgraph->nodes[i];
  9584. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9585. //if (node->grad == NULL && node->perf_runs > 0) {
  9586. // continue;
  9587. //}
  9588. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9589. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9590. // INIT
  9591. struct ggml_compute_params params = {
  9592. /*.type =*/ GGML_TASK_INIT,
  9593. /*.ith =*/ 0,
  9594. /*.nth =*/ node->n_tasks,
  9595. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9596. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9597. };
  9598. ggml_compute_forward(&params, node);
  9599. // COMPUTE
  9600. if (node->n_tasks > 1) {
  9601. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9602. atomic_store(&state_shared.has_work, false);
  9603. }
  9604. while (atomic_load(&state_shared.has_work)) {
  9605. ggml_lock_lock (&state_shared.spin);
  9606. ggml_lock_unlock(&state_shared.spin);
  9607. }
  9608. // launch thread pool
  9609. for (int j = 0; j < n_threads - 1; j++) {
  9610. workers[j].params = (struct ggml_compute_params) {
  9611. .type = GGML_TASK_COMPUTE,
  9612. .ith = j + 1,
  9613. .nth = node->n_tasks,
  9614. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9615. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9616. };
  9617. workers[j].node = node;
  9618. }
  9619. atomic_fetch_sub(&state_shared.n_ready, 1);
  9620. while (atomic_load(&state_shared.n_ready) > 0) {
  9621. ggml_lock_lock (&state_shared.spin);
  9622. ggml_lock_unlock(&state_shared.spin);
  9623. }
  9624. atomic_store(&state_shared.has_work, true);
  9625. }
  9626. params.type = GGML_TASK_COMPUTE;
  9627. ggml_compute_forward(&params, node);
  9628. // wait for thread pool
  9629. if (node->n_tasks > 1) {
  9630. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9631. atomic_store(&state_shared.has_work, false);
  9632. }
  9633. while (atomic_load(&state_shared.has_work)) {
  9634. ggml_lock_lock (&state_shared.spin);
  9635. ggml_lock_unlock(&state_shared.spin);
  9636. }
  9637. atomic_fetch_sub(&state_shared.n_ready, 1);
  9638. while (atomic_load(&state_shared.n_ready) != 0) {
  9639. ggml_lock_lock (&state_shared.spin);
  9640. ggml_lock_unlock(&state_shared.spin);
  9641. }
  9642. }
  9643. // FINALIZE
  9644. if (node->n_tasks > 1) {
  9645. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9646. atomic_store(&state_shared.has_work, false);
  9647. }
  9648. while (atomic_load(&state_shared.has_work)) {
  9649. ggml_lock_lock (&state_shared.spin);
  9650. ggml_lock_unlock(&state_shared.spin);
  9651. }
  9652. // launch thread pool
  9653. for (int j = 0; j < n_threads - 1; j++) {
  9654. workers[j].params = (struct ggml_compute_params) {
  9655. .type = GGML_TASK_FINALIZE,
  9656. .ith = j + 1,
  9657. .nth = node->n_tasks,
  9658. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9659. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9660. };
  9661. workers[j].node = node;
  9662. }
  9663. atomic_fetch_sub(&state_shared.n_ready, 1);
  9664. while (atomic_load(&state_shared.n_ready) > 0) {
  9665. ggml_lock_lock (&state_shared.spin);
  9666. ggml_lock_unlock(&state_shared.spin);
  9667. }
  9668. atomic_store(&state_shared.has_work, true);
  9669. }
  9670. params.type = GGML_TASK_FINALIZE;
  9671. ggml_compute_forward(&params, node);
  9672. // wait for thread pool
  9673. if (node->n_tasks > 1) {
  9674. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9675. atomic_store(&state_shared.has_work, false);
  9676. }
  9677. while (atomic_load(&state_shared.has_work)) {
  9678. ggml_lock_lock (&state_shared.spin);
  9679. ggml_lock_unlock(&state_shared.spin);
  9680. }
  9681. atomic_fetch_sub(&state_shared.n_ready, 1);
  9682. while (atomic_load(&state_shared.n_ready) != 0) {
  9683. ggml_lock_lock (&state_shared.spin);
  9684. ggml_lock_unlock(&state_shared.spin);
  9685. }
  9686. }
  9687. // performance stats (node)
  9688. {
  9689. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9690. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9691. node->perf_runs++;
  9692. node->perf_cycles += perf_cycles_cur;
  9693. node->perf_time_us += perf_time_us_cur;
  9694. }
  9695. }
  9696. // join thread pool
  9697. if (n_threads > 1) {
  9698. atomic_store(&state_shared.stop, true);
  9699. atomic_store(&state_shared.has_work, true);
  9700. for (int j = 0; j < n_threads - 1; j++) {
  9701. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9702. GGML_ASSERT(rc == 0);
  9703. UNUSED(rc);
  9704. }
  9705. ggml_lock_destroy(&state_shared.spin);
  9706. }
  9707. // performance stats (graph)
  9708. {
  9709. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9710. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9711. cgraph->perf_runs++;
  9712. cgraph->perf_cycles += perf_cycles_cur;
  9713. cgraph->perf_time_us += perf_time_us_cur;
  9714. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9715. __func__, cgraph->perf_runs,
  9716. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9717. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9718. (double) perf_time_us_cur / 1000.0,
  9719. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9720. }
  9721. }
  9722. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9723. for (int i = 0; i < cgraph->n_nodes; i++) {
  9724. struct ggml_tensor * grad = cgraph->grads[i];
  9725. if (grad) {
  9726. ggml_set_zero(grad);
  9727. }
  9728. }
  9729. }
  9730. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9731. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9732. GGML_PRINT("=== GRAPH ===\n");
  9733. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9734. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9735. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9736. for (int i = 0; i < cgraph->n_nodes; i++) {
  9737. struct ggml_tensor * node = cgraph->nodes[i];
  9738. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9739. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9740. i,
  9741. node->ne[0], node->ne[1], node->ne[2],
  9742. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9743. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9744. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9745. (double) node->perf_time_us / 1000.0,
  9746. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9747. }
  9748. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9749. for (int i = 0; i < cgraph->n_leafs; i++) {
  9750. struct ggml_tensor * node = cgraph->leafs[i];
  9751. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9752. i,
  9753. node->ne[0], node->ne[1],
  9754. GGML_OP_LABEL[node->op]);
  9755. }
  9756. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9757. if (perf_total_per_op_us[i] == 0) {
  9758. continue;
  9759. }
  9760. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9761. }
  9762. GGML_PRINT("========================================\n");
  9763. }
  9764. // check if node is part of the graph
  9765. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9766. if (cgraph == NULL) {
  9767. return true;
  9768. }
  9769. for (int i = 0; i < cgraph->n_nodes; i++) {
  9770. if (cgraph->nodes[i] == node) {
  9771. return true;
  9772. }
  9773. }
  9774. return false;
  9775. }
  9776. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9777. for (int i = 0; i < cgraph->n_nodes; i++) {
  9778. struct ggml_tensor * parent = cgraph->nodes[i];
  9779. if (parent->grad == node) {
  9780. return parent;
  9781. }
  9782. }
  9783. return NULL;
  9784. }
  9785. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9786. char color[16];
  9787. FILE * fp = fopen(filename, "w");
  9788. GGML_ASSERT(fp);
  9789. fprintf(fp, "digraph G {\n");
  9790. fprintf(fp, " newrank = true;\n");
  9791. fprintf(fp, " rankdir = LR;\n");
  9792. for (int i = 0; i < gb->n_nodes; i++) {
  9793. struct ggml_tensor * node = gb->nodes[i];
  9794. if (ggml_graph_get_parent(gb, node) != NULL) {
  9795. continue;
  9796. }
  9797. if (node->is_param) {
  9798. snprintf(color, sizeof(color), "yellow");
  9799. } else if (node->grad) {
  9800. if (ggml_graph_find(gf, node)) {
  9801. snprintf(color, sizeof(color), "green");
  9802. } else {
  9803. snprintf(color, sizeof(color), "lightblue");
  9804. }
  9805. } else {
  9806. snprintf(color, sizeof(color), "white");
  9807. }
  9808. fprintf(fp, " \"%p\" [ \
  9809. style = filled; fillcolor = %s; shape = record; \
  9810. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9811. (void *) node, color,
  9812. i, node->ne[0], node->ne[1],
  9813. GGML_OP_SYMBOL[node->op]);
  9814. if (node->grad) {
  9815. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9816. } else {
  9817. fprintf(fp, "\"; ]\n");
  9818. }
  9819. }
  9820. for (int i = 0; i < gb->n_leafs; i++) {
  9821. struct ggml_tensor * node = gb->leafs[i];
  9822. snprintf(color, sizeof(color), "pink");
  9823. if (ggml_nelements(node) == 1) {
  9824. fprintf(fp, " \"%p\" [ \
  9825. style = filled; fillcolor = %s; shape = record; \
  9826. label=\"<x>%.1e\"; ]\n",
  9827. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9828. } else {
  9829. fprintf(fp, " \"%p\" [ \
  9830. style = filled; fillcolor = %s; shape = record; \
  9831. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9832. (void *) node, color,
  9833. i, node->ne[0], node->ne[1]);
  9834. }
  9835. }
  9836. for (int i = 0; i < gb->n_nodes; i++) {
  9837. struct ggml_tensor * node = gb->nodes[i];
  9838. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9839. if (node->src0) {
  9840. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9841. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9842. parent0 ? (void *) parent0 : (void *) node->src0,
  9843. parent0 ? "g" : "x",
  9844. parent ? (void *) parent : (void *) node,
  9845. parent ? "g" : "x",
  9846. parent ? "empty" : "vee",
  9847. parent ? "dashed" : "solid");
  9848. }
  9849. if (node->src1) {
  9850. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9851. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9852. parent1 ? (void *) parent1 : (void *) node->src1,
  9853. parent1 ? "g" : "x",
  9854. parent ? (void *) parent : (void *) node,
  9855. parent ? "g" : "x",
  9856. parent ? "empty" : "vee",
  9857. parent ? "dashed" : "solid");
  9858. }
  9859. }
  9860. for (int i = 0; i < gb->n_leafs; i++) {
  9861. struct ggml_tensor * node = gb->leafs[i];
  9862. if (node->src0) {
  9863. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9864. (void *) node->src0, "x",
  9865. (void *) node, "x");
  9866. }
  9867. if (node->src1) {
  9868. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9869. (void *) node->src1, "x",
  9870. (void *) node, "x");
  9871. }
  9872. }
  9873. fprintf(fp, "}\n");
  9874. fclose(fp);
  9875. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9876. }
  9877. ////////////////////////////////////////////////////////////////////////////////
  9878. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9879. int i = 0;
  9880. for (int p = 0; p < np; ++p) {
  9881. const int64_t ne = ggml_nelements(ps[p]) ;
  9882. // TODO: add function to set tensor from array
  9883. for (int64_t j = 0; j < ne; ++j) {
  9884. ggml_set_f32_1d(ps[p], j, x[i++]);
  9885. }
  9886. }
  9887. }
  9888. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9889. int i = 0;
  9890. for (int p = 0; p < np; ++p) {
  9891. const int64_t ne = ggml_nelements(ps[p]) ;
  9892. // TODO: add function to get all elements at once
  9893. for (int64_t j = 0; j < ne; ++j) {
  9894. x[i++] = ggml_get_f32_1d(ps[p], j);
  9895. }
  9896. }
  9897. }
  9898. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9899. int i = 0;
  9900. for (int p = 0; p < np; ++p) {
  9901. const int64_t ne = ggml_nelements(ps[p]) ;
  9902. // TODO: add function to get all elements at once
  9903. for (int64_t j = 0; j < ne; ++j) {
  9904. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9905. }
  9906. }
  9907. }
  9908. //
  9909. // ADAM
  9910. //
  9911. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9912. //
  9913. static enum ggml_opt_result ggml_opt_adam(
  9914. struct ggml_context * ctx,
  9915. struct ggml_opt_params params,
  9916. struct ggml_tensor * f,
  9917. struct ggml_cgraph * gf,
  9918. struct ggml_cgraph * gb) {
  9919. GGML_ASSERT(ggml_is_scalar(f));
  9920. gf->n_threads = params.n_threads;
  9921. gb->n_threads = params.n_threads;
  9922. // these will store the parameters we want to optimize
  9923. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9924. int np = 0;
  9925. int nx = 0;
  9926. for (int i = 0; i < gf->n_nodes; ++i) {
  9927. if (gf->nodes[i]->is_param) {
  9928. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9929. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9930. ps[np++] = gf->nodes[i];
  9931. nx += ggml_nelements(gf->nodes[i]);
  9932. }
  9933. }
  9934. // constants
  9935. const float alpha = params.adam.alpha;
  9936. const float beta1 = params.adam.beta1;
  9937. const float beta2 = params.adam.beta2;
  9938. const float eps = params.adam.eps;
  9939. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9940. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9941. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9942. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9943. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9944. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9945. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9946. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9947. // initialize
  9948. ggml_vec_set_f32(nx, m, 0.0f);
  9949. ggml_vec_set_f32(nx, v, 0.0f);
  9950. // update view
  9951. ggml_opt_get_params(np, ps, x);
  9952. // compute the function value
  9953. ggml_graph_reset (gf);
  9954. ggml_set_f32 (f->grad, 1.0f);
  9955. ggml_graph_compute(ctx, gb);
  9956. float fx_prev = ggml_get_f32_1d(f, 0);
  9957. if (pf) {
  9958. pf[0] = fx_prev;
  9959. }
  9960. int n_no_improvement = 0;
  9961. float fx_best = fx_prev;
  9962. // run the optimizer
  9963. for (int t = 0; t < params.adam.n_iter; ++t) {
  9964. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9965. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9966. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9967. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9968. for (int i = 0; i < np; ++i) {
  9969. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9970. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9971. }
  9972. const int64_t t_start_wall = ggml_time_us();
  9973. const int64_t t_start_cpu = ggml_cycles();
  9974. UNUSED(t_start_wall);
  9975. UNUSED(t_start_cpu);
  9976. {
  9977. // update the gradient
  9978. ggml_opt_get_grad(np, ps, g1);
  9979. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9980. ggml_vec_scale_f32(nx, m, beta1);
  9981. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9982. // g2 = g1^2
  9983. ggml_vec_sqr_f32 (nx, g2, g1);
  9984. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9985. ggml_vec_scale_f32(nx, v, beta2);
  9986. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9987. // m^hat = m_t / (1 - beta1^t)
  9988. // v^hat = v_t / (1 - beta2^t)
  9989. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9990. ggml_vec_cpy_f32 (nx, mh, m);
  9991. ggml_vec_cpy_f32 (nx, vh, v);
  9992. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9993. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9994. ggml_vec_sqrt_f32 (nx, vh, vh);
  9995. ggml_vec_acc1_f32 (nx, vh, eps);
  9996. ggml_vec_div_f32 (nx, mh, mh, vh);
  9997. ggml_vec_sub_f32 (nx, x, x, mh);
  9998. // update the parameters
  9999. ggml_opt_set_params(np, ps, x);
  10000. }
  10001. ggml_graph_reset (gf);
  10002. ggml_set_f32 (f->grad, 1.0f);
  10003. ggml_graph_compute(ctx, gb);
  10004. const float fx = ggml_get_f32_1d(f, 0);
  10005. // check convergence
  10006. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10007. GGML_PRINT_DEBUG("converged\n");
  10008. return GGML_OPT_OK;
  10009. }
  10010. // delta-based convergence test
  10011. if (pf != NULL) {
  10012. // need at least params.past iterations to start checking for convergence
  10013. if (params.past <= t) {
  10014. const float rate = (pf[t%params.past] - fx)/fx;
  10015. if (fabsf(rate) < params.delta) {
  10016. return GGML_OPT_OK;
  10017. }
  10018. }
  10019. pf[t%params.past] = fx;
  10020. }
  10021. // check for improvement
  10022. if (params.max_no_improvement > 0) {
  10023. if (fx_best > fx) {
  10024. fx_best = fx;
  10025. n_no_improvement = 0;
  10026. } else {
  10027. ++n_no_improvement;
  10028. if (n_no_improvement >= params.max_no_improvement) {
  10029. return GGML_OPT_OK;
  10030. }
  10031. }
  10032. }
  10033. fx_prev = fx;
  10034. {
  10035. const int64_t t_end_cpu = ggml_cycles();
  10036. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10037. UNUSED(t_end_cpu);
  10038. const int64_t t_end_wall = ggml_time_us();
  10039. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10040. UNUSED(t_end_wall);
  10041. }
  10042. }
  10043. return GGML_OPT_DID_NOT_CONVERGE;
  10044. }
  10045. //
  10046. // L-BFGS
  10047. //
  10048. // the L-BFGS implementation below is based on the following implementation:
  10049. //
  10050. // https://github.com/chokkan/liblbfgs
  10051. //
  10052. struct ggml_lbfgs_iteration_data {
  10053. float alpha;
  10054. float ys;
  10055. float * s;
  10056. float * y;
  10057. };
  10058. static enum ggml_opt_result linesearch_backtracking(
  10059. struct ggml_context * ctx,
  10060. const struct ggml_opt_params * params,
  10061. int nx,
  10062. float * x,
  10063. float * fx,
  10064. float * g,
  10065. float * d,
  10066. float * step,
  10067. const float * xp,
  10068. struct ggml_tensor * f,
  10069. struct ggml_cgraph * gf,
  10070. struct ggml_cgraph * gb,
  10071. const int np,
  10072. struct ggml_tensor * ps[]) {
  10073. int count = 0;
  10074. float width = 0.0f;
  10075. float dg = 0.0f;
  10076. float finit = 0.0f;
  10077. float dginit = 0.0f;
  10078. float dgtest = 0.0f;
  10079. const float dec = 0.5f;
  10080. const float inc = 2.1f;
  10081. if (*step <= 0.f) {
  10082. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10083. }
  10084. // compute the initial gradient in the search direction
  10085. ggml_vec_dot_f32(nx, &dginit, g, d);
  10086. // make sure that d points to a descent direction
  10087. if (0 < dginit) {
  10088. return GGML_LINESEARCH_FAIL;
  10089. }
  10090. // initialize local variables
  10091. finit = *fx;
  10092. dgtest = params->lbfgs.ftol*dginit;
  10093. while (true) {
  10094. ggml_vec_cpy_f32(nx, x, xp);
  10095. ggml_vec_mad_f32(nx, x, d, *step);
  10096. // evaluate the function and gradient values
  10097. {
  10098. ggml_opt_set_params(np, ps, x);
  10099. ggml_graph_reset (gf);
  10100. ggml_set_f32 (f->grad, 1.0f);
  10101. ggml_graph_compute(ctx, gb);
  10102. ggml_opt_get_grad(np, ps, g);
  10103. *fx = ggml_get_f32_1d(f, 0);
  10104. }
  10105. ++count;
  10106. if (*fx > finit + (*step)*dgtest) {
  10107. width = dec;
  10108. } else {
  10109. // Armijo condition is satisfied
  10110. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10111. return count;
  10112. }
  10113. ggml_vec_dot_f32(nx, &dg, g, d);
  10114. // check the Wolfe condition
  10115. if (dg < params->lbfgs.wolfe * dginit) {
  10116. width = inc;
  10117. } else {
  10118. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10119. // regular Wolfe conditions
  10120. return count;
  10121. }
  10122. if(dg > -params->lbfgs.wolfe*dginit) {
  10123. width = dec;
  10124. } else {
  10125. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10126. return count;
  10127. }
  10128. return count;
  10129. }
  10130. }
  10131. if (*step < params->lbfgs.min_step) {
  10132. return GGML_LINESEARCH_MINIMUM_STEP;
  10133. }
  10134. if (*step > params->lbfgs.max_step) {
  10135. return GGML_LINESEARCH_MAXIMUM_STEP;
  10136. }
  10137. if (params->lbfgs.max_linesearch <= count) {
  10138. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10139. }
  10140. (*step) *= width;
  10141. }
  10142. return GGML_LINESEARCH_FAIL;
  10143. }
  10144. static enum ggml_opt_result ggml_opt_lbfgs(
  10145. struct ggml_context * ctx,
  10146. struct ggml_opt_params params,
  10147. struct ggml_tensor * f,
  10148. struct ggml_cgraph * gf,
  10149. struct ggml_cgraph * gb) {
  10150. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10151. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10152. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10153. return GGML_OPT_INVALID_WOLFE;
  10154. }
  10155. }
  10156. gf->n_threads = params.n_threads;
  10157. gb->n_threads = params.n_threads;
  10158. const int m = params.lbfgs.m;
  10159. // these will store the parameters we want to optimize
  10160. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10161. int np = 0;
  10162. int nx = 0;
  10163. for (int i = 0; i < gf->n_nodes; ++i) {
  10164. if (gf->nodes[i]->is_param) {
  10165. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10166. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10167. ps[np++] = gf->nodes[i];
  10168. nx += ggml_nelements(gf->nodes[i]);
  10169. }
  10170. }
  10171. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10172. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10173. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10174. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10175. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10176. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10177. float fx = 0.0f; // cost function value
  10178. float xnorm = 0.0f; // ||x||
  10179. float gnorm = 0.0f; // ||g||
  10180. float step = 0.0f;
  10181. // initialize x from the graph nodes
  10182. ggml_opt_get_params(np, ps, x);
  10183. // the L-BFGS memory
  10184. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10185. for (int i = 0; i < m; ++i) {
  10186. lm[i].alpha = 0.0f;
  10187. lm[i].ys = 0.0f;
  10188. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10189. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10190. }
  10191. // evaluate the function value and its gradient
  10192. {
  10193. ggml_opt_set_params(np, ps, x);
  10194. ggml_graph_reset (gf);
  10195. ggml_set_f32 (f->grad, 1.0f);
  10196. ggml_graph_compute(ctx, gb);
  10197. ggml_opt_get_grad(np, ps, g);
  10198. fx = ggml_get_f32_1d(f, 0);
  10199. }
  10200. if (pf) {
  10201. pf[0] = fx;
  10202. }
  10203. float fx_best = fx;
  10204. // search direction = -gradient
  10205. ggml_vec_neg_f32(nx, d, g);
  10206. // ||x||, ||g||
  10207. ggml_vec_norm_f32(nx, &xnorm, x);
  10208. ggml_vec_norm_f32(nx, &gnorm, g);
  10209. if (xnorm < 1.0f) {
  10210. xnorm = 1.0f;
  10211. }
  10212. // already optimized
  10213. if (gnorm/xnorm <= params.lbfgs.eps) {
  10214. return GGML_OPT_OK;
  10215. }
  10216. // initial step
  10217. ggml_vec_norm_inv_f32(nx, &step, d);
  10218. int j = 0;
  10219. int k = 1;
  10220. int ls = 0;
  10221. int end = 0;
  10222. int bound = 0;
  10223. int n_no_improvement = 0;
  10224. float ys = 0.0f;
  10225. float yy = 0.0f;
  10226. float beta = 0.0f;
  10227. while (true) {
  10228. // store the current position and gradient vectors
  10229. ggml_vec_cpy_f32(nx, xp, x);
  10230. ggml_vec_cpy_f32(nx, gp, g);
  10231. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10232. if (ls < 0) {
  10233. // linesearch failed - go back to the previous point and return
  10234. ggml_vec_cpy_f32(nx, x, xp);
  10235. ggml_vec_cpy_f32(nx, g, gp);
  10236. return ls;
  10237. }
  10238. ggml_vec_norm_f32(nx, &xnorm, x);
  10239. ggml_vec_norm_f32(nx, &gnorm, g);
  10240. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10241. if (xnorm < 1.0f) {
  10242. xnorm = 1.0f;
  10243. }
  10244. if (gnorm/xnorm <= params.lbfgs.eps) {
  10245. // converged
  10246. return GGML_OPT_OK;
  10247. }
  10248. // delta-based convergence test
  10249. if (pf != NULL) {
  10250. // need at least params.past iterations to start checking for convergence
  10251. if (params.past <= k) {
  10252. const float rate = (pf[k%params.past] - fx)/fx;
  10253. if (fabsf(rate) < params.delta) {
  10254. return GGML_OPT_OK;
  10255. }
  10256. }
  10257. pf[k%params.past] = fx;
  10258. }
  10259. // check for improvement
  10260. if (params.max_no_improvement > 0) {
  10261. if (fx < fx_best) {
  10262. fx_best = fx;
  10263. n_no_improvement = 0;
  10264. } else {
  10265. n_no_improvement++;
  10266. if (n_no_improvement >= params.max_no_improvement) {
  10267. return GGML_OPT_OK;
  10268. }
  10269. }
  10270. }
  10271. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10272. // reached the maximum number of iterations
  10273. return GGML_OPT_DID_NOT_CONVERGE;
  10274. }
  10275. // update vectors s and y:
  10276. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10277. // y_{k+1} = g_{k+1} - g_{k}.
  10278. //
  10279. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10280. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10281. // compute scalars ys and yy:
  10282. // ys = y^t \cdot s -> 1 / \rho.
  10283. // yy = y^t \cdot y.
  10284. //
  10285. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10286. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10287. lm[end].ys = ys;
  10288. // find new search direction
  10289. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10290. bound = (m <= k) ? m : k;
  10291. k++;
  10292. end = (end + 1)%m;
  10293. // initialize search direction with -g
  10294. ggml_vec_neg_f32(nx, d, g);
  10295. j = end;
  10296. for (int i = 0; i < bound; ++i) {
  10297. j = (j + m - 1) % m;
  10298. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10299. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10300. lm[j].alpha /= lm[j].ys;
  10301. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10302. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10303. }
  10304. ggml_vec_scale_f32(nx, d, ys/yy);
  10305. for (int i = 0; i < bound; ++i) {
  10306. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10307. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10308. beta /= lm[j].ys;
  10309. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10310. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10311. j = (j + 1)%m;
  10312. }
  10313. step = 1.0;
  10314. }
  10315. return GGML_OPT_DID_NOT_CONVERGE;
  10316. }
  10317. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10318. struct ggml_opt_params result;
  10319. switch (type) {
  10320. case GGML_OPT_ADAM:
  10321. {
  10322. result = (struct ggml_opt_params) {
  10323. .type = GGML_OPT_ADAM,
  10324. .n_threads = 1,
  10325. .past = 0,
  10326. .delta = 1e-5f,
  10327. .max_no_improvement = 100,
  10328. .print_forward_graph = true,
  10329. .print_backward_graph = true,
  10330. .adam = {
  10331. .n_iter = 10000,
  10332. .alpha = 0.001f,
  10333. .beta1 = 0.9f,
  10334. .beta2 = 0.999f,
  10335. .eps = 1e-8f,
  10336. .eps_f = 1e-5f,
  10337. .eps_g = 1e-3f,
  10338. },
  10339. };
  10340. } break;
  10341. case GGML_OPT_LBFGS:
  10342. {
  10343. result = (struct ggml_opt_params) {
  10344. .type = GGML_OPT_LBFGS,
  10345. .n_threads = 1,
  10346. .past = 0,
  10347. .delta = 1e-5f,
  10348. .max_no_improvement = 0,
  10349. .print_forward_graph = true,
  10350. .print_backward_graph = true,
  10351. .lbfgs = {
  10352. .m = 6,
  10353. .n_iter = 100,
  10354. .max_linesearch = 20,
  10355. .eps = 1e-5f,
  10356. .ftol = 1e-4f,
  10357. .wolfe = 0.9f,
  10358. .min_step = 1e-20f,
  10359. .max_step = 1e+20f,
  10360. .linesearch = GGML_LINESEARCH_DEFAULT,
  10361. },
  10362. };
  10363. } break;
  10364. }
  10365. return result;
  10366. }
  10367. enum ggml_opt_result ggml_opt(
  10368. struct ggml_context * ctx,
  10369. struct ggml_opt_params params,
  10370. struct ggml_tensor * f) {
  10371. bool free_ctx = false;
  10372. if (ctx == NULL) {
  10373. struct ggml_init_params params_ctx = {
  10374. .mem_size = 16*1024*1024,
  10375. .mem_buffer = NULL,
  10376. .no_alloc = false,
  10377. };
  10378. ctx = ggml_init(params_ctx);
  10379. if (ctx == NULL) {
  10380. return GGML_OPT_NO_CONTEXT;
  10381. }
  10382. free_ctx = true;
  10383. }
  10384. enum ggml_opt_result result = GGML_OPT_OK;
  10385. // build forward + backward compute graphs
  10386. struct ggml_cgraph gf = ggml_build_forward (f);
  10387. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10388. switch (params.type) {
  10389. case GGML_OPT_ADAM:
  10390. {
  10391. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10392. } break;
  10393. case GGML_OPT_LBFGS:
  10394. {
  10395. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10396. } break;
  10397. }
  10398. if (params.print_forward_graph) {
  10399. ggml_graph_print (&gf);
  10400. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10401. }
  10402. if (params.print_backward_graph) {
  10403. ggml_graph_print (&gb);
  10404. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10405. }
  10406. if (free_ctx) {
  10407. ggml_free(ctx);
  10408. }
  10409. return result;
  10410. }
  10411. ////////////////////////////////////////////////////////////////////////////////
  10412. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10413. assert(k % QK4_0 == 0);
  10414. const int nb = k / QK4_0;
  10415. for (int j = 0; j < n; j += k) {
  10416. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10417. quantize_row_q4_0_reference(src + j, y, k);
  10418. for (int i = 0; i < nb; i++) {
  10419. for (int l = 0; l < QK4_0; l += 2) {
  10420. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10421. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10422. hist[vi0]++;
  10423. hist[vi1]++;
  10424. }
  10425. }
  10426. }
  10427. return (n/QK4_0*sizeof(block_q4_0));
  10428. }
  10429. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10430. assert(k % QK4_1 == 0);
  10431. const int nb = k / QK4_1;
  10432. for (int j = 0; j < n; j += k) {
  10433. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10434. quantize_row_q4_1_reference(src + j, y, k);
  10435. for (int i = 0; i < nb; i++) {
  10436. for (int l = 0; l < QK4_1; l += 2) {
  10437. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10438. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10439. hist[vi0]++;
  10440. hist[vi1]++;
  10441. }
  10442. }
  10443. }
  10444. return (n/QK4_1*sizeof(block_q4_1));
  10445. }
  10446. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10447. assert(k % QK4_2 == 0);
  10448. const int nb = k / QK4_2;
  10449. for (int j = 0; j < n; j += k) {
  10450. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10451. quantize_row_q4_2_reference(src + j, y, k);
  10452. for (int i = 0; i < nb; i++) {
  10453. for (int l = 0; l < QK4_2; l += 2) {
  10454. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10455. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10456. hist[vi0]++;
  10457. hist[vi1]++;
  10458. }
  10459. }
  10460. }
  10461. return (n/QK4_2*sizeof(block_q4_2));
  10462. }
  10463. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10464. assert(k % QK5_0 == 0);
  10465. const int nb = k / QK5_0;
  10466. for (int j = 0; j < n; j += k) {
  10467. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10468. quantize_row_q5_0_reference(src + j, y, k);
  10469. for (int i = 0; i < nb; i++) {
  10470. uint32_t qh;
  10471. memcpy(&qh, &y[i].qh, sizeof(qh));
  10472. for (int l = 0; l < QK5_0; l += 2) {
  10473. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10474. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10475. // cast to 16 bins
  10476. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10477. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10478. hist[vi0]++;
  10479. hist[vi1]++;
  10480. }
  10481. }
  10482. }
  10483. return (n/QK5_0*sizeof(block_q5_0));
  10484. }
  10485. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10486. assert(k % QK5_1 == 0);
  10487. const int nb = k / QK5_1;
  10488. for (int j = 0; j < n; j += k) {
  10489. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10490. quantize_row_q5_1_reference(src + j, y, k);
  10491. for (int i = 0; i < nb; i++) {
  10492. uint32_t qh;
  10493. memcpy(&qh, &y[i].qh, sizeof(qh));
  10494. for (int l = 0; l < QK5_1; l += 2) {
  10495. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10496. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10497. // cast to 16 bins
  10498. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10499. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10500. hist[vi0]++;
  10501. hist[vi1]++;
  10502. }
  10503. }
  10504. }
  10505. return (n/QK5_1*sizeof(block_q5_1));
  10506. }
  10507. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10508. assert(k % QK8_0 == 0);
  10509. const int nb = k / QK8_0;
  10510. for (int j = 0; j < n; j += k) {
  10511. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10512. quantize_row_q8_0_reference(src + j, y, k);
  10513. for (int i = 0; i < nb; i++) {
  10514. for (int l = 0; l < QK8_0; ++l) {
  10515. const int8_t vi = y[i].qs[l];
  10516. hist[vi/16 + 8]++;
  10517. }
  10518. }
  10519. }
  10520. return (n/QK8_0*sizeof(block_q8_0));
  10521. }
  10522. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10523. size_t result = 0;
  10524. switch (type) {
  10525. case GGML_TYPE_Q4_0:
  10526. {
  10527. GGML_ASSERT(start % QK4_0 == 0);
  10528. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10529. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10530. } break;
  10531. case GGML_TYPE_Q4_1:
  10532. {
  10533. GGML_ASSERT(start % QK4_1 == 0);
  10534. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10535. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10536. } break;
  10537. case GGML_TYPE_Q4_2:
  10538. {
  10539. GGML_ASSERT(start % QK4_2 == 0);
  10540. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10541. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10542. } break;
  10543. case GGML_TYPE_Q5_0:
  10544. {
  10545. GGML_ASSERT(start % QK5_0 == 0);
  10546. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10547. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10548. } break;
  10549. case GGML_TYPE_Q5_1:
  10550. {
  10551. GGML_ASSERT(start % QK5_1 == 0);
  10552. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10553. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10554. } break;
  10555. case GGML_TYPE_Q8_0:
  10556. {
  10557. GGML_ASSERT(start % QK8_0 == 0);
  10558. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10559. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10560. } break;
  10561. default:
  10562. assert(false);
  10563. }
  10564. return result;
  10565. }
  10566. ////////////////////////////////////////////////////////////////////////////////
  10567. int ggml_cpu_has_avx(void) {
  10568. #if defined(__AVX__)
  10569. return 1;
  10570. #else
  10571. return 0;
  10572. #endif
  10573. }
  10574. int ggml_cpu_has_avx2(void) {
  10575. #if defined(__AVX2__)
  10576. return 1;
  10577. #else
  10578. return 0;
  10579. #endif
  10580. }
  10581. int ggml_cpu_has_avx512(void) {
  10582. #if defined(__AVX512F__)
  10583. return 1;
  10584. #else
  10585. return 0;
  10586. #endif
  10587. }
  10588. int ggml_cpu_has_avx512_vbmi(void) {
  10589. #if defined(__AVX512VBMI__)
  10590. return 1;
  10591. #else
  10592. return 0;
  10593. #endif
  10594. }
  10595. int ggml_cpu_has_avx512_vnni(void) {
  10596. #if defined(__AVX512VNNI__)
  10597. return 1;
  10598. #else
  10599. return 0;
  10600. #endif
  10601. }
  10602. int ggml_cpu_has_fma(void) {
  10603. #if defined(__FMA__)
  10604. return 1;
  10605. #else
  10606. return 0;
  10607. #endif
  10608. }
  10609. int ggml_cpu_has_neon(void) {
  10610. #if defined(__ARM_NEON)
  10611. return 1;
  10612. #else
  10613. return 0;
  10614. #endif
  10615. }
  10616. int ggml_cpu_has_arm_fma(void) {
  10617. #if defined(__ARM_FEATURE_FMA)
  10618. return 1;
  10619. #else
  10620. return 0;
  10621. #endif
  10622. }
  10623. int ggml_cpu_has_f16c(void) {
  10624. #if defined(__F16C__)
  10625. return 1;
  10626. #else
  10627. return 0;
  10628. #endif
  10629. }
  10630. int ggml_cpu_has_fp16_va(void) {
  10631. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10632. return 1;
  10633. #else
  10634. return 0;
  10635. #endif
  10636. }
  10637. int ggml_cpu_has_wasm_simd(void) {
  10638. #if defined(__wasm_simd128__)
  10639. return 1;
  10640. #else
  10641. return 0;
  10642. #endif
  10643. }
  10644. int ggml_cpu_has_blas(void) {
  10645. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10646. return 1;
  10647. #else
  10648. return 0;
  10649. #endif
  10650. }
  10651. int ggml_cpu_has_cublas(void) {
  10652. #if defined(GGML_USE_CUBLAS)
  10653. return 1;
  10654. #else
  10655. return 0;
  10656. #endif
  10657. }
  10658. int ggml_cpu_has_clblast(void) {
  10659. #if defined(GGML_USE_CLBLAST)
  10660. return 1;
  10661. #else
  10662. return 0;
  10663. #endif
  10664. }
  10665. int ggml_cpu_has_gpublas(void) {
  10666. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10667. }
  10668. int ggml_cpu_has_sse3(void) {
  10669. #if defined(__SSE3__)
  10670. return 1;
  10671. #else
  10672. return 0;
  10673. #endif
  10674. }
  10675. int ggml_cpu_has_vsx(void) {
  10676. #if defined(__POWER9_VECTOR__)
  10677. return 1;
  10678. #else
  10679. return 0;
  10680. #endif
  10681. }
  10682. ////////////////////////////////////////////////////////////////////////////////