tensor_mapping.py 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. "model.word_embeddings", # bailingmoe
  29. "language_model.model.embed_tokens", # llama4
  30. "encoder", # neobert
  31. "model.transformer.wte", # llada
  32. ),
  33. # Token type embeddings
  34. MODEL_TENSOR.TOKEN_TYPES: (
  35. "embeddings.token_type_embeddings", # bert nomic-bert
  36. ),
  37. # Normalization of token embeddings
  38. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  39. "word_embeddings_layernorm", # bloom
  40. "embeddings.LayerNorm", # bert
  41. "emb_ln", # nomic-bert
  42. "transformer.norm", # openelm
  43. "rwkv.blocks.0.pre_ln", # rwkv
  44. "rwkv.blocks.0.pre_ln", # rwkv6
  45. "model.pre_ln", # rwkv7
  46. "model.layers.0.pre_norm", # rwkv7
  47. "backbone.norm", # wavtokenizer
  48. "model.embedding_norm", # lfm2
  49. ),
  50. # Position embeddings
  51. MODEL_TENSOR.POS_EMBD: (
  52. "transformer.wpe", # gpt2
  53. "embeddings.position_embeddings", # bert
  54. "wpe", # gpt2
  55. ),
  56. # Output
  57. MODEL_TENSOR.OUTPUT: (
  58. "embed_out", # gptneox
  59. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  60. "output", # llama-pth bloom internlm2
  61. "word_embeddings_for_head", # persimmon
  62. "lm_head.linear", # phi2
  63. "output_layer", # chatglm
  64. "head", # rwkv
  65. "head.out", # wavtokenizer
  66. "lm_head", # llama4
  67. "model.transformer.ff_out", # llada
  68. ),
  69. # Output norm
  70. MODEL_TENSOR.OUTPUT_NORM: (
  71. "gpt_neox.final_layer_norm", # gptneox
  72. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  73. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  74. "norm", # llama-pth
  75. "transformer.norm_f", # mpt dbrx
  76. "ln_f", # refact bloom qwen gpt2
  77. "language_model.encoder.final_layernorm", # persimmon
  78. "model.final_layernorm", # persimmon
  79. "lm_head.ln", # phi2
  80. "model.norm_f", # mamba-qbert
  81. "backbone.norm_f", # mamba
  82. "transformer.rms_norm", # Grok
  83. "encoder.final_layernorm", # chatglm
  84. "transformer.norm", # openelm
  85. "model.norm", # nemotron
  86. "rwkv.ln_out", # rwkv6
  87. "model.ln_out", # rwkv7
  88. "backbone.final_layer_norm", # wavtokenizer
  89. "model.norm", # llama4
  90. "model.transformer.ln_f", # llada
  91. ),
  92. # Rope frequencies
  93. MODEL_TENSOR.ROPE_FREQS: (
  94. "rope.freqs", # llama-pth
  95. "rotary_pos_emb.inv_freq", # chatglm
  96. ),
  97. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  98. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  99. MODEL_TENSOR.CONV1D: (
  100. "backbone.embed", # roberta
  101. ),
  102. }
  103. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  104. # Attention norm
  105. MODEL_TENSOR.ATTN_NORM: (
  106. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  107. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  108. "transformer.blocks.{bid}.norm_1", # mpt
  109. "transformer.h.{bid}.input_layernorm", # falcon7b
  110. "h.{bid}.input_layernorm", # bloom
  111. "transformer.h.{bid}.ln_mlp", # falcon40b
  112. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  113. "layers.{bid}.attention_norm", # llama-pth
  114. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  115. "model.layers.{bid}.ln1", # yi
  116. "h.{bid}.ln_1", # gpt2
  117. "transformer.h.{bid}.ln", # phi2
  118. "model.layers.layers.{bid}.norm", # plamo
  119. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  120. "model.layers.{bid}.attention_norm", # internlm2
  121. "model.layers.{bid}.norm", # mamba-qbert
  122. "backbone.layers.{bid}.norm", # mamba
  123. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  124. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  125. "encoder.layers.{bid}.input_layernorm", # chatglm
  126. "transformer.layers.{bid}.attn_norm", # openelm
  127. "rwkv.blocks.{bid}.ln1", # rwkv6
  128. "model.layers.{bid}.ln1", # rwkv7
  129. "model.layers.{bid}.input_layernorm", # llama4
  130. "transformer_encoder.{bid}.attention_norm", # neobert
  131. "model.layers.{bid}.operator_norm", # lfm2
  132. "model.transformer.blocks.{bid}.attn_norm", # llada
  133. ),
  134. # Attention norm 2
  135. MODEL_TENSOR.ATTN_NORM_2: (
  136. "transformer.h.{bid}.ln_attn", # falcon40b
  137. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  138. "rwkv.blocks.{bid}.ln2", # rwkv6
  139. "model.layers.{bid}.ln2", # rwkv7
  140. ),
  141. # Attention query-key-value
  142. MODEL_TENSOR.ATTN_QKV: (
  143. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  144. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  145. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  146. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  147. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  148. "h.{bid}.self_attention.query_key_value", # bloom
  149. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  150. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  151. "h.{bid}.attn.c_attn", # gpt2
  152. "transformer.h.{bid}.mixer.Wqkv", # phi2
  153. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  154. "encoder.layers.{bid}.mixer.Wqkv", # jina
  155. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  156. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  157. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  158. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  159. "transformer_encoder.{bid}.qkv", # neobert
  160. ),
  161. # Attention query
  162. MODEL_TENSOR.ATTN_Q: (
  163. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  164. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  165. "layers.{bid}.attention.wq", # llama-pth
  166. "encoder.layer.{bid}.attention.self.query", # bert
  167. "transformer.layer.{bid}.attention.q_lin", # distillbert
  168. "transformer.h.{bid}.attn.q_proj", # gpt-j
  169. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  170. "model.layers.{bid}.attention.wq", # internlm2
  171. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  172. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  173. "model.layers.{bid}.self_attn.q_proj", # llama4
  174. "model.transformer.blocks.{bid}.q_proj", # llada
  175. ),
  176. # Attention key
  177. MODEL_TENSOR.ATTN_K: (
  178. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  179. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  180. "layers.{bid}.attention.wk", # llama-pth
  181. "encoder.layer.{bid}.attention.self.key", # bert
  182. "transformer.layer.{bid}.attention.k_lin", # distillbert
  183. "transformer.h.{bid}.attn.k_proj", # gpt-j
  184. "transformer.h.{bid}.attn.k", # refact
  185. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  186. "model.layers.{bid}.attention.wk", # internlm2
  187. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  188. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  189. "model.layers.{bid}.self_attn.k_proj", # llama4
  190. "model.transformer.blocks.{bid}.k_proj", # llada
  191. ),
  192. # Attention value
  193. MODEL_TENSOR.ATTN_V: (
  194. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  195. "layers.{bid}.attention.wv", # llama-pth
  196. "encoder.layer.{bid}.attention.self.value", # bert
  197. "transformer.layer.{bid}.attention.v_lin", # distillbert
  198. "transformer.h.{bid}.attn.v_proj", # gpt-j
  199. "transformer.h.{bid}.attn.v", # refact
  200. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  201. "model.layers.{bid}.attention.wv", # internlm2
  202. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  203. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  204. "model.layers.{bid}.self_attn.v_proj", # llama4
  205. "model.transformer.blocks.{bid}.v_proj", # llada
  206. ),
  207. # Attention output
  208. MODEL_TENSOR.ATTN_OUT: (
  209. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  210. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  211. "transformer.blocks.{bid}.attn.out_proj", # mpt
  212. "transformer.h.{bid}.self_attention.dense", # falcon
  213. "h.{bid}.self_attention.dense", # bloom
  214. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  215. "model.layers.{bid}.self_attn.out_proj", # lfm2
  216. "model.layers.{bid}.self_attn.linear_attn", # deci
  217. "layers.{bid}.attention.wo", # llama-pth
  218. "encoder.layer.{bid}.attention.output.dense", # bert
  219. "transformer.layer.{bid}.attention.out_lin", # distillbert
  220. "transformer.h.{bid}.attn.out_proj", # gpt-j
  221. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  222. "model.layers.{bid}.self_attn.dense", # persimmon
  223. "h.{bid}.attn.c_proj", # gpt2
  224. "transformer.h.{bid}.mixer.out_proj", # phi2
  225. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  226. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  227. "model.layers.{bid}.attention.wo", # internlm2
  228. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  229. "encoder.layers.{bid}.mixer.out_proj", # jina
  230. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  231. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  232. "encoder.layers.{bid}.self_attention.dense", # chatglm
  233. "transformer.layers.{bid}.attn.out_proj", # openelm
  234. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  235. "model.layers.{bid}.self_attn.o_proj", # llama4
  236. "transformer_encoder.{bid}.wo", # neobert
  237. "model.transformer.blocks.{bid}.attn_out", # llada
  238. ),
  239. # Attention output norm
  240. MODEL_TENSOR.ATTN_OUT_NORM: (
  241. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  242. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  243. "encoder.layers.{bid}.norm1", # nomic-bert
  244. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  245. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  246. ),
  247. MODEL_TENSOR.ATTN_POST_NORM: (
  248. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  249. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  250. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  251. ),
  252. # Rotary embeddings
  253. MODEL_TENSOR.ATTN_ROT_EMBD: (
  254. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  255. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  256. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  257. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  258. ),
  259. # Feed-forward norm
  260. MODEL_TENSOR.FFN_NORM: (
  261. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  262. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  263. "h.{bid}.post_attention_layernorm", # bloom
  264. "transformer.blocks.{bid}.norm_2", # mpt
  265. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  266. "layers.{bid}.ffn_norm", # llama-pth
  267. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  268. "model.layers.{bid}.ln2", # yi
  269. "h.{bid}.ln_2", # gpt2
  270. "model.layers.{bid}.ffn_norm", # internlm2
  271. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  272. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  273. "transformer.layers.{bid}.ffn_norm", # openelm
  274. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  275. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  276. "model.layers.{bid}.post_attention_layernorm", # llama4
  277. "transformer_encoder.{bid}.ffn_norm", # neobert
  278. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  279. "model.transformer.blocks.{bid}.ff_norm", # llada
  280. ),
  281. # Post feed-forward norm
  282. MODEL_TENSOR.FFN_PRE_NORM: (
  283. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  284. "model.layers.{bid}.pre_ff_layernorm.weight",
  285. ),
  286. # Post feed-forward norm
  287. MODEL_TENSOR.FFN_POST_NORM: (
  288. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  289. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  290. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  291. "model.layers.{bid}.feed_forward.up_proj",
  292. ),
  293. MODEL_TENSOR.FFN_GATE_INP: (
  294. "layers.{bid}.feed_forward.gate", # mixtral
  295. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  296. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  297. "transformer.decoder_layer.{bid}.router", # Grok
  298. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  299. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  300. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  301. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  302. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  303. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  304. ),
  305. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  306. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  307. ),
  308. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  309. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  310. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  311. ),
  312. # Feed-forward up
  313. MODEL_TENSOR.FFN_UP: (
  314. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  315. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  316. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  317. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  318. "h.{bid}.mlp.dense_h_to_4h", # bloom
  319. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  320. "layers.{bid}.feed_forward.w3", # llama-pth
  321. "encoder.layer.{bid}.intermediate.dense", # bert
  322. "transformer.layer.{bid}.ffn.lin1", # distillbert
  323. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  324. "transformer.h.{bid}.mlp.linear_3", # refact
  325. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  326. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  327. "transformer.h.{bid}.mlp.w1", # qwen
  328. "h.{bid}.mlp.c_fc", # gpt2
  329. "transformer.h.{bid}.mlp.fc1", # phi2
  330. "model.layers.{bid}.mlp.fc1", # phi2
  331. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  332. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  333. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  334. "model.layers.{bid}.feed_forward.w3", # internlm2
  335. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  336. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  337. "model.layers.{bid}.mlp.c_fc", # starcoder2
  338. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  339. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  340. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  341. "model.layers.{bid}.residual_mlp.w3", # arctic
  342. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  343. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  344. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  345. "transformer_encoder.{bid}.ffn.w12", # neobert
  346. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  347. "model.transformer.blocks.{bid}.up_proj", # llada
  348. ),
  349. MODEL_TENSOR.FFN_UP_EXP: (
  350. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  351. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  352. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  353. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  354. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  355. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  356. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  357. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  358. ),
  359. MODEL_TENSOR.FFN_UP_SHEXP: (
  360. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  361. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  362. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  363. "model.layers.{bid}.feed_forward.down_proj",
  364. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  365. ),
  366. # AWQ-activation gate
  367. MODEL_TENSOR.FFN_ACT: (
  368. "transformer.blocks.{bid}.ffn.act", # mpt
  369. ),
  370. # Feed-forward gate
  371. MODEL_TENSOR.FFN_GATE: (
  372. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  373. "layers.{bid}.feed_forward.w1", # llama-pth
  374. "transformer.h.{bid}.mlp.w2", # qwen
  375. "transformer.h.{bid}.mlp.c_fc2", # jais
  376. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  377. "model.layers.{bid}.feed_forward.w1", # internlm2
  378. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  379. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  380. "transformer.h.{bid}.mlp.linear_1", # refact
  381. "model.layers.{bid}.residual_mlp.w1", # arctic
  382. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  383. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  384. "model.layers.{bid}.block_sparse_moe.gate", # smallthinker
  385. "model.transformer.blocks.{bid}.ff_proj", # llada
  386. ),
  387. MODEL_TENSOR.FFN_GATE_EXP: (
  388. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  389. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  390. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  391. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  392. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  393. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  394. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  395. ),
  396. MODEL_TENSOR.FFN_GATE_SHEXP: (
  397. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  398. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  399. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  400. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  401. ),
  402. # Feed-forward down
  403. MODEL_TENSOR.FFN_DOWN: (
  404. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  405. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  406. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  407. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  408. "h.{bid}.mlp.dense_4h_to_h", # bloom
  409. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  410. "layers.{bid}.feed_forward.w2", # llama-pth
  411. "encoder.layer.{bid}.output.dense", # bert
  412. "transformer.layer.{bid}.ffn.lin2", # distillbert
  413. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  414. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  415. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  416. "h.{bid}.mlp.c_proj", # gpt2
  417. "transformer.h.{bid}.mlp.fc2", # phi2
  418. "model.layers.{bid}.mlp.fc2", # phi2
  419. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  420. "model.layers.{bid}.feed_forward.w2", # internlm2
  421. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  422. "model.layers.{bid}.mlp.c_proj", # starcoder2
  423. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  424. "transformer.layers.{bid}.ffn.proj_2", # openelm
  425. "model.layers.{bid}.residual_mlp.w2", # arctic
  426. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  427. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  428. "model.layers.h.{bid}.mlp.c_proj", # exaone
  429. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  430. "transformer_encoder.{bid}.ffn.w3", # neobert
  431. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  432. "model.transformer.blocks.{bid}.ff_out", # llada
  433. ),
  434. MODEL_TENSOR.FFN_DOWN_EXP: (
  435. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  436. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  437. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  438. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  439. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  440. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  441. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  442. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  443. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  444. ),
  445. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  446. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  447. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  448. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  449. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  450. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  451. ),
  452. MODEL_TENSOR.ATTN_Q_NORM: (
  453. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  454. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  455. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  456. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  457. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  458. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  459. "transformer.layers.{bid}.attn.q_norm", # openelm
  460. "model.layers.layers.{bid}.mixer.q", # plamo2
  461. ),
  462. MODEL_TENSOR.ATTN_K_NORM: (
  463. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  464. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  465. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  466. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  467. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  468. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  469. "transformer.layers.{bid}.attn.k_norm", # openelm
  470. "model.layers.layers.{bid}.mixer.k", # plamo2
  471. ),
  472. MODEL_TENSOR.ROPE_FREQS: (
  473. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  474. ),
  475. MODEL_TENSOR.LAYER_OUT_NORM: (
  476. "encoder.layer.{bid}.output.LayerNorm", # bert
  477. "transformer.layer.{bid}.output_layer_norm", # distillbert
  478. "encoder.layers.{bid}.norm2", # nomic-bert
  479. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  480. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  481. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  482. ),
  483. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  484. "model.embed_tokens_per_layer", # gemma3n
  485. ),
  486. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  487. "model.per_layer_model_projection", # gemma3n
  488. ),
  489. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  490. "model.per_layer_projection_norm", # gemma3n
  491. ),
  492. MODEL_TENSOR.ALTUP_PROJ: (
  493. "model.altup_projections", # gemma3n
  494. ),
  495. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  496. "model.altup_unembed_projections", # gemma3n
  497. ),
  498. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  499. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  500. ),
  501. MODEL_TENSOR.PER_LAYER_PROJ: (
  502. "model.layers.{bid}.per_layer_projection", # gemma3n
  503. ),
  504. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  505. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  506. ),
  507. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  508. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  509. ),
  510. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  511. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  512. ),
  513. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  514. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  515. ),
  516. MODEL_TENSOR.ALTUP_ROUTER: (
  517. "model.layers.{bid}.altup.modality_router", # gemma3n
  518. ),
  519. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  520. "model.layers.{bid}.altup.router_norm", # gemma3n
  521. ),
  522. MODEL_TENSOR.LAUREL_L: (
  523. "model.layers.{bid}.laurel.linear_left", # gemma3n
  524. ),
  525. MODEL_TENSOR.LAUREL_R: (
  526. "model.layers.{bid}.laurel.linear_right", # gemma3n
  527. ),
  528. MODEL_TENSOR.LAUREL_POST_NORM: (
  529. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  530. ),
  531. MODEL_TENSOR.SSM_IN: (
  532. "model.layers.{bid}.in_proj", # mamba-hf
  533. "backbone.layers.{bid}.mixer.in_proj", # mamba
  534. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  535. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  536. ),
  537. MODEL_TENSOR.SSM_CONV1D: (
  538. "model.layers.{bid}.conv1d", # mamba-hf
  539. "backbone.layers.{bid}.mixer.conv1d", # mamba
  540. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  541. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  542. ),
  543. MODEL_TENSOR.SSM_X: (
  544. "model.layers.{bid}.x_proj", # mamba-hf
  545. "backbone.layers.{bid}.mixer.x_proj", # mamba
  546. "model.layers.{bid}.mamba.x_proj", # jamba
  547. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  548. ),
  549. MODEL_TENSOR.SSM_DT: (
  550. "model.layers.{bid}.dt_proj", # mamba-hf
  551. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  552. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  553. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  554. ),
  555. MODEL_TENSOR.SSM_DT_NORM: (
  556. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  557. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  558. ),
  559. MODEL_TENSOR.SSM_A: (
  560. "model.layers.{bid}.A_log", # mamba-hf
  561. "backbone.layers.{bid}.mixer.A_log", # mamba
  562. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  563. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  564. ),
  565. MODEL_TENSOR.SSM_B_NORM: (
  566. "model.layers.{bid}.mamba.b_layernorm", # jamba
  567. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  568. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  569. ),
  570. MODEL_TENSOR.SSM_C_NORM: (
  571. "model.layers.{bid}.mamba.c_layernorm", # jamba
  572. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  573. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  574. ),
  575. MODEL_TENSOR.SSM_D: (
  576. "model.layers.{bid}.D", # mamba-hf
  577. "backbone.layers.{bid}.mixer.D", # mamba
  578. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  579. "model.layers.layers.{bid}.mixer.D", # plamo2
  580. ),
  581. MODEL_TENSOR.SSM_NORM: (
  582. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  583. "backbone.layers.{bid}.mixer.norm", # mamba2
  584. ),
  585. MODEL_TENSOR.SSM_OUT: (
  586. "model.layers.{bid}.out_proj", # mamba-hf
  587. "backbone.layers.{bid}.mixer.out_proj", # mamba
  588. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  589. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  590. ),
  591. MODEL_TENSOR.TIME_MIX_W0: (
  592. "model.layers.{bid}.attention.w0", # rwkv7
  593. ),
  594. MODEL_TENSOR.TIME_MIX_W1: (
  595. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  596. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  597. "model.layers.{bid}.attention.w1", # rwkv7
  598. ),
  599. MODEL_TENSOR.TIME_MIX_W2: (
  600. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  601. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  602. "model.layers.{bid}.attention.w2", # rwkv7
  603. ),
  604. MODEL_TENSOR.TIME_MIX_A0: (
  605. "model.layers.{bid}.attention.a0", # rwkv7
  606. ),
  607. MODEL_TENSOR.TIME_MIX_A1: (
  608. "model.layers.{bid}.attention.a1", # rwkv7
  609. ),
  610. MODEL_TENSOR.TIME_MIX_A2: (
  611. "model.layers.{bid}.attention.a2", # rwkv7
  612. ),
  613. MODEL_TENSOR.TIME_MIX_V0: (
  614. "model.layers.{bid}.attention.v0", # rwkv7
  615. ),
  616. MODEL_TENSOR.TIME_MIX_V1: (
  617. "model.layers.{bid}.attention.v1", # rwkv7
  618. ),
  619. MODEL_TENSOR.TIME_MIX_V2: (
  620. "model.layers.{bid}.attention.v2", # rwkv7
  621. ),
  622. MODEL_TENSOR.TIME_MIX_G1: (
  623. "model.layers.{bid}.attention.g1", # rwkv7
  624. ),
  625. MODEL_TENSOR.TIME_MIX_G2: (
  626. "model.layers.{bid}.attention.g2", # rwkv7
  627. ),
  628. MODEL_TENSOR.TIME_MIX_K_K: (
  629. "model.layers.{bid}.attention.k_k", # rwkv7
  630. ),
  631. MODEL_TENSOR.TIME_MIX_K_A: (
  632. "model.layers.{bid}.attention.k_a", # rwkv7
  633. ),
  634. MODEL_TENSOR.TIME_MIX_R_K: (
  635. "model.layers.{bid}.attention.r_k", # rwkv7
  636. ),
  637. MODEL_TENSOR.TIME_MIX_LERP_X: (
  638. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  639. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  640. ),
  641. MODEL_TENSOR.TIME_MIX_LERP_K: (
  642. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  643. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  644. ),
  645. MODEL_TENSOR.TIME_MIX_LERP_V: (
  646. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  647. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  648. ),
  649. MODEL_TENSOR.TIME_MIX_LERP_R: (
  650. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  651. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  652. ),
  653. MODEL_TENSOR.TIME_MIX_LERP_G: (
  654. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  655. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  656. ),
  657. MODEL_TENSOR.TIME_MIX_LERP_W: (
  658. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  659. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  660. ),
  661. MODEL_TENSOR.TIME_MIX_FIRST: (
  662. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  663. ),
  664. MODEL_TENSOR.TIME_MIX_DECAY: (
  665. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  666. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  667. ),
  668. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  669. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  670. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  671. ),
  672. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  673. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  674. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  675. ),
  676. MODEL_TENSOR.TIME_MIX_KEY: (
  677. "rwkv.blocks.{bid}.attention.key", # rwkv6
  678. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  679. "model.layers.{bid}.attention.key", # rwkv7
  680. "model.layers.{bid}.attention.k_proj", # rwkv7
  681. ),
  682. MODEL_TENSOR.TIME_MIX_VALUE: (
  683. "rwkv.blocks.{bid}.attention.value", # rwkv6
  684. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  685. "model.layers.{bid}.attention.value", # rwkv7
  686. "model.layers.{bid}.attention.v_proj", # rwkv7
  687. ),
  688. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  689. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  690. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  691. "model.layers.{bid}.attention.receptance", # rwkv7
  692. "model.layers.{bid}.attention.r_proj", # rwkv7
  693. ),
  694. MODEL_TENSOR.TIME_MIX_GATE: (
  695. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  696. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  697. ),
  698. MODEL_TENSOR.TIME_MIX_LN: (
  699. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  700. "model.layers.{bid}.attention.ln_x" # rwkv7
  701. ),
  702. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  703. "rwkv.blocks.{bid}.attention.output", # rwkv6
  704. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  705. "model.layers.{bid}.attention.output", # rwkv7
  706. "model.layers.{bid}.attention.o_proj", # rwkv7
  707. ),
  708. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  709. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  710. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  711. ),
  712. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  713. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  714. ),
  715. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  716. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  717. "model.layers.{bid}.feed_forward.key", # rwkv7
  718. ),
  719. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  720. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  721. ),
  722. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  723. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  724. "model.layers.{bid}.feed_forward.value", # rwkv7
  725. ),
  726. MODEL_TENSOR.ATTN_Q_A: (
  727. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  728. ),
  729. MODEL_TENSOR.ATTN_Q_B: (
  730. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  731. ),
  732. MODEL_TENSOR.ATTN_KV_A_MQA: (
  733. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  734. ),
  735. MODEL_TENSOR.ATTN_KV_B: (
  736. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  737. ),
  738. MODEL_TENSOR.ATTN_K_B: (
  739. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  740. ),
  741. MODEL_TENSOR.ATTN_V_B: (
  742. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  743. ),
  744. MODEL_TENSOR.ATTN_Q_A_NORM: (
  745. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  746. ),
  747. MODEL_TENSOR.ATTN_KV_A_NORM: (
  748. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  749. ),
  750. MODEL_TENSOR.ATTN_SUB_NORM: (
  751. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  752. ),
  753. MODEL_TENSOR.FFN_SUB_NORM: (
  754. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  755. ),
  756. MODEL_TENSOR.DEC_ATTN_NORM: (
  757. "decoder.block.{bid}.layer.0.layer_norm", # t5
  758. ),
  759. MODEL_TENSOR.DEC_ATTN_Q: (
  760. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  761. ),
  762. MODEL_TENSOR.DEC_ATTN_K: (
  763. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  764. ),
  765. MODEL_TENSOR.DEC_ATTN_V: (
  766. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  767. ),
  768. MODEL_TENSOR.DEC_ATTN_OUT: (
  769. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  770. ),
  771. MODEL_TENSOR.DEC_ATTN_REL_B: (
  772. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  773. ),
  774. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  775. "decoder.block.{bid}.layer.1.layer_norm", # t5
  776. ),
  777. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  778. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  779. ),
  780. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  781. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  782. ),
  783. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  784. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  785. ),
  786. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  787. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  788. ),
  789. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  790. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  791. ),
  792. MODEL_TENSOR.DEC_FFN_NORM: (
  793. "decoder.block.{bid}.layer.2.layer_norm", # t5
  794. ),
  795. MODEL_TENSOR.DEC_FFN_GATE: (
  796. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  797. ),
  798. MODEL_TENSOR.DEC_FFN_UP: (
  799. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  800. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  801. ),
  802. MODEL_TENSOR.DEC_FFN_DOWN: (
  803. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  804. ),
  805. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  806. "decoder.final_layer_norm", # t5
  807. ),
  808. MODEL_TENSOR.ENC_ATTN_NORM: (
  809. "encoder.block.{bid}.layer.0.layer_norm", # t5
  810. ),
  811. MODEL_TENSOR.ENC_ATTN_Q: (
  812. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  813. ),
  814. MODEL_TENSOR.ENC_ATTN_K: (
  815. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  816. ),
  817. MODEL_TENSOR.ENC_ATTN_V: (
  818. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  819. ),
  820. MODEL_TENSOR.ENC_ATTN_OUT: (
  821. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  822. ),
  823. MODEL_TENSOR.ENC_ATTN_REL_B: (
  824. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  825. ),
  826. MODEL_TENSOR.ENC_FFN_NORM: (
  827. "encoder.block.{bid}.layer.1.layer_norm", # t5
  828. ),
  829. MODEL_TENSOR.ENC_FFN_GATE: (
  830. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  831. ),
  832. MODEL_TENSOR.ENC_FFN_UP: (
  833. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  834. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  835. ),
  836. MODEL_TENSOR.ENC_FFN_DOWN: (
  837. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  838. ),
  839. ############################################################################
  840. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  841. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  842. "encoder.final_layer_norm", # t5
  843. "layer_norm", # neobert
  844. ),
  845. MODEL_TENSOR.CLS: (
  846. "classifier", # jina
  847. "classifier.dense", # roberta
  848. "pre_classifier", # distillbert
  849. "dense", # neobert
  850. ),
  851. MODEL_TENSOR.CLS_OUT: (
  852. "classifier.out_proj", # roberta
  853. ),
  854. #############################################################################
  855. MODEL_TENSOR.CONVNEXT_DW: (
  856. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  857. ),
  858. MODEL_TENSOR.CONVNEXT_NORM: (
  859. "backbone.convnext.{bid}.norm", # wavtokenizer
  860. ),
  861. MODEL_TENSOR.CONVNEXT_PW1: (
  862. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  863. ),
  864. MODEL_TENSOR.CONVNEXT_PW2: (
  865. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  866. ),
  867. MODEL_TENSOR.CONVNEXT_GAMMA: (
  868. "backbone.convnext.{bid}.gamma", # wavtokenizer
  869. ),
  870. MODEL_TENSOR.POSNET_CONV1: (
  871. "backbone.posnet.{bid}.conv1", # wavtokenizer
  872. ),
  873. MODEL_TENSOR.POSNET_CONV2: (
  874. "backbone.posnet.{bid}.conv2", # wavtokenizer
  875. ),
  876. MODEL_TENSOR.POSNET_NORM: (
  877. "backbone.posnet.{bid}.norm", # wavtokenizer
  878. ),
  879. MODEL_TENSOR.POSNET_NORM1: (
  880. "backbone.posnet.{bid}.norm1", # wavtokenizer
  881. ),
  882. MODEL_TENSOR.POSNET_NORM2: (
  883. "backbone.posnet.{bid}.norm2", # wavtokenizer
  884. ),
  885. MODEL_TENSOR.POSNET_ATTN_NORM: (
  886. "backbone.posnet.{bid}.norm", # wavtokenizer
  887. ),
  888. MODEL_TENSOR.POSNET_ATTN_Q: (
  889. "backbone.posnet.{bid}.q", # wavtokenizer
  890. ),
  891. MODEL_TENSOR.POSNET_ATTN_K: (
  892. "backbone.posnet.{bid}.k", # wavtokenizer
  893. ),
  894. MODEL_TENSOR.POSNET_ATTN_V: (
  895. "backbone.posnet.{bid}.v", # wavtokenizer
  896. ),
  897. MODEL_TENSOR.POSNET_ATTN_OUT: (
  898. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  899. ),
  900. MODEL_TENSOR.SHORTCONV_CONV: (
  901. "model.layers.{bid}.conv.conv",
  902. ),
  903. MODEL_TENSOR.SHORTCONV_INPROJ: (
  904. "model.layers.{bid}.conv.in_proj",
  905. ),
  906. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  907. "model.layers.{bid}.conv.out_proj",
  908. ),
  909. #############################################################################
  910. ## Vision encoder
  911. MODEL_TENSOR.V_MMPROJ: (
  912. "multi_modal_projector.linear_{bid}",
  913. "visual.merger.mlp.{bid}", # qwen2vl
  914. ),
  915. MODEL_TENSOR.V_MMPROJ_FC: (
  916. "model.connector.modality_projection.proj", # SmolVLM
  917. ),
  918. MODEL_TENSOR.V_MMPROJ_MLP: (
  919. "model.mm_projector.mlp.mlp.{bid}",
  920. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  921. "mlp1.{bid}", # InternVL
  922. ),
  923. MODEL_TENSOR.V_MMPROJ_PEG: (
  924. "model.mm_projector.peg.peg.{bid}",
  925. ),
  926. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  927. "vision_tower.vision_model.embeddings.class_embedding",
  928. "vision_model.class_embedding", # llama 4
  929. ),
  930. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  931. "vision_tower.vision_model.embeddings.patch_embedding",
  932. "vpm.embeddings.patch_embedding",
  933. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  934. "vision_tower.patch_conv", # pixtral
  935. "vision_model.patch_embedding.linear", # llama 4
  936. "visual.patch_embed.proj", # qwen2vl
  937. ),
  938. MODEL_TENSOR.V_ENC_EMBD_POS: (
  939. "vision_tower.vision_model.embeddings.position_embedding",
  940. "vpm.embeddings.position_embedding",
  941. "model.vision_model.embeddings.position_embedding", # SmolVLM
  942. "vision_model.positional_embedding_vlm", # llama 4
  943. ),
  944. MODEL_TENSOR.V_ENC_ATTN_Q: (
  945. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  946. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  947. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  948. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  949. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
  950. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  951. ),
  952. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  953. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  954. ),
  955. MODEL_TENSOR.V_ENC_ATTN_K: (
  956. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  957. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  958. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  959. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  960. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
  961. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  962. ),
  963. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  964. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  965. ),
  966. MODEL_TENSOR.V_ENC_ATTN_V: (
  967. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  968. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  969. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  970. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  971. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
  972. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  973. ),
  974. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  975. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  976. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  977. "vpm.encoder.layers.{bid}.layer_norm1",
  978. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  979. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
  980. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  981. "visual.blocks.{bid}.norm1", # qwen2vl
  982. ),
  983. MODEL_TENSOR.V_ENC_ATTN_O: (
  984. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  985. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  986. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  987. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  988. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  989. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
  990. "visual.blocks.{bid}.attn.proj", # qwen2vl
  991. ),
  992. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  993. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  994. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  995. "vpm.encoder.layers.{bid}.layer_norm2",
  996. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  997. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  998. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
  999. "visual.blocks.{bid}.norm2", # qwen2vl
  1000. ),
  1001. MODEL_TENSOR.V_ENC_FFN_UP: (
  1002. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1003. "vpm.encoder.layers.{bid}.mlp.fc1",
  1004. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1005. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
  1006. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1007. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1008. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1009. ),
  1010. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1011. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
  1012. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1013. ),
  1014. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1015. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1016. "vpm.encoder.layers.{bid}.mlp.fc2",
  1017. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1018. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
  1019. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1020. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1021. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1022. ),
  1023. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1024. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1025. ),
  1026. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1027. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1028. ),
  1029. MODEL_TENSOR.V_PRE_NORM: (
  1030. "vision_tower.vision_model.pre_layrnorm",
  1031. "vision_tower.ln_pre", # pixtral
  1032. "vision_model.layernorm_pre", # llama4
  1033. ),
  1034. MODEL_TENSOR.V_POST_NORM: (
  1035. "vision_tower.vision_model.post_layernorm",
  1036. "model.vision_model.post_layernorm", # SmolVLM
  1037. "vision_model.layernorm_post", # llama4
  1038. "visual.merger.ln_q", # qwen2vl
  1039. ),
  1040. MODEL_TENSOR.V_MM_INP_PROJ: (
  1041. "multi_modal_projector.mm_input_projection",
  1042. ),
  1043. MODEL_TENSOR.V_MM_INP_NORM: (
  1044. "multi_modal_projector.norm",
  1045. ),
  1046. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1047. "multi_modal_projector.mm_soft_emb_norm",
  1048. ),
  1049. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1050. "resampler.pos_embed_k",
  1051. ),
  1052. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1053. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1054. ),
  1055. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1056. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1057. ),
  1058. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1059. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1060. ),
  1061. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1062. "resampler.attn.out_proj",
  1063. ),
  1064. MODEL_TENSOR.V_RESMPL_KV: (
  1065. "resampler.kv_proj",
  1066. ),
  1067. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1068. "resampler.ln_post",
  1069. ),
  1070. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1071. "resampler.ln_kv",
  1072. ),
  1073. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1074. "resampler.ln_q",
  1075. ),
  1076. MODEL_TENSOR.V_RESMPL_PROJ: (
  1077. "resampler.proj",
  1078. ),
  1079. MODEL_TENSOR.V_RESMPL_QUERY: (
  1080. "resampler.query",
  1081. ),
  1082. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1083. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1084. ),
  1085. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1086. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
  1087. ),
  1088. # audio (mtmd)
  1089. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1090. "audio_tower.embed_positions", # ultravox
  1091. ),
  1092. MODEL_TENSOR.A_ENC_CONV1D: (
  1093. "audio_tower.conv{bid}", # ultravox
  1094. ),
  1095. MODEL_TENSOR.A_PRE_NORM: (),
  1096. MODEL_TENSOR.A_POST_NORM: (
  1097. "audio_tower.layer_norm", # ultravox
  1098. "audio_tower.ln_post", # qwen2omni
  1099. ),
  1100. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1101. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1102. ),
  1103. MODEL_TENSOR.A_ENC_ATTN_K: (
  1104. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1105. ),
  1106. MODEL_TENSOR.A_ENC_ATTN_V: (
  1107. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1108. ),
  1109. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1110. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1111. ),
  1112. MODEL_TENSOR.A_ENC_OUTPUT: (
  1113. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1114. ),
  1115. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1116. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1117. ),
  1118. MODEL_TENSOR.A_ENC_FFN_UP: (
  1119. "audio_tower.layers.{bid}.fc1", # ultravox
  1120. ),
  1121. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1122. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1123. "audio_tower.layers.{bid}.fc2", # ultravox
  1124. ),
  1125. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1126. # this prefix is added in the conversion code in modify_tensors()
  1127. MODEL_TENSOR.A_MMPROJ: (
  1128. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1129. ),
  1130. MODEL_TENSOR.A_MMPROJ_FC: (
  1131. "audio.multi_modal_projector.linear", # qwen2audio
  1132. "audio_tower.proj", # qwen2omni
  1133. ),
  1134. MODEL_TENSOR.A_MM_NORM_PRE: (
  1135. "audio.multi_modal_projector.ln_pre", # ultravox
  1136. ),
  1137. MODEL_TENSOR.A_MM_NORM_MID: (
  1138. "audio.multi_modal_projector.ln_mid", # ultravox
  1139. ),
  1140. }
  1141. # architecture-specific block mappings
  1142. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1143. MODEL_ARCH.ARCTIC: {
  1144. MODEL_TENSOR.FFN_NORM: (
  1145. "model.layers.{bid}.residual_layernorm",
  1146. ),
  1147. MODEL_TENSOR.FFN_NORM_EXP: (
  1148. "model.layers.{bid}.post_attention_layernorm",
  1149. ),
  1150. },
  1151. }
  1152. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1153. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1154. self.mapping = {}
  1155. for tensor, keys in self.mappings_cfg.items():
  1156. if tensor not in MODEL_TENSORS[arch]:
  1157. continue
  1158. tensor_name = TENSOR_NAMES[tensor]
  1159. self.mapping[tensor_name] = (tensor, tensor_name)
  1160. for key in keys:
  1161. self.mapping[key] = (tensor, tensor_name)
  1162. if arch in self.arch_block_mappings_cfg:
  1163. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1164. for bid in range(n_blocks):
  1165. for tensor, keys in self.block_mappings_cfg.items():
  1166. if tensor not in MODEL_TENSORS[arch]:
  1167. continue
  1168. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1169. self.mapping[tensor_name] = (tensor, tensor_name)
  1170. for key in keys:
  1171. key = key.format(bid = bid)
  1172. self.mapping[key] = (tensor, tensor_name)
  1173. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1174. result = self.mapping.get(key)
  1175. if result is not None:
  1176. return result
  1177. for suffix in try_suffixes:
  1178. if key.endswith(suffix):
  1179. result = self.mapping.get(key[:-len(suffix)])
  1180. if result is not None:
  1181. return result[0], result[1] + suffix
  1182. return None
  1183. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1184. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1185. if result is None:
  1186. return None
  1187. return result[1]
  1188. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1189. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1190. if result is None:
  1191. return None
  1192. return result[0]
  1193. def __getitem__(self, key: str) -> str:
  1194. try:
  1195. return self.mapping[key][1]
  1196. except KeyError:
  1197. raise KeyError(key)
  1198. def __contains__(self, key: str) -> bool:
  1199. return key in self.mapping
  1200. def __repr__(self) -> str:
  1201. return repr(self.mapping)
  1202. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1203. return TensorNameMap(arch, n_blocks)