test-backend-ops.cpp 166 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdint>
  23. #include <cstdio>
  24. #include <cstdlib>
  25. #include <cstring>
  26. #include <future>
  27. #include <memory>
  28. #include <random>
  29. #include <regex>
  30. #include <string>
  31. #include <thread>
  32. #include <vector>
  33. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  34. size_t nels = ggml_nelements(tensor);
  35. std::vector<float> data(nels);
  36. {
  37. // parallel initialization
  38. static const size_t n_threads = std::thread::hardware_concurrency();
  39. // static RNG initialization (revisit if n_threads stops being constant)
  40. static std::vector<std::default_random_engine> generators = []() {
  41. std::random_device rd;
  42. std::vector<std::default_random_engine> vec;
  43. vec.reserve(n_threads);
  44. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  45. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  46. return vec;
  47. }();
  48. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  49. std::uniform_real_distribution<float> distribution(min, max);
  50. auto & gen = generators[ith];
  51. for (size_t i = start; i < end; i++) {
  52. data[i] = distribution(gen);
  53. }
  54. };
  55. std::vector<std::future<void>> tasks;
  56. tasks.reserve(n_threads);
  57. for (size_t i = 0; i < n_threads; i++) {
  58. size_t start = i*nels/n_threads;
  59. size_t end = (i+1)*nels/n_threads;
  60. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  61. }
  62. for (auto & t : tasks) {
  63. t.get();
  64. }
  65. }
  66. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  67. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  68. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  69. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  70. // dummy importance matrix
  71. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  72. const float * im = imatrix.data();
  73. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  74. // when the imatrix is optional, we want to test both quantization with and without imatrix
  75. // use one of the random numbers to decide
  76. if (data[0] > 0.5f*(min + max)) {
  77. im = nullptr;
  78. }
  79. }
  80. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  81. {
  82. // parallel quantization by block
  83. size_t blck_size = ggml_blck_size(tensor->type);
  84. size_t n_blocks = nels / blck_size;
  85. auto quantize_thread = [&](size_t start, size_t end) {
  86. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  87. start * blck_size, end - start, blck_size, im);
  88. };
  89. const size_t min_blocks_per_thread = 1;
  90. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  91. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  92. std::vector<std::future<void>> tasks;
  93. tasks.reserve(n_threads);
  94. for (size_t i = 0; i < n_threads; i++) {
  95. size_t start = i*n_blocks/n_threads;
  96. size_t end = (i+1)*n_blocks/n_threads;
  97. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  98. }
  99. for (auto & t : tasks) {
  100. t.get();
  101. }
  102. }
  103. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  104. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  105. // This is going to create some weird integers though.
  106. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  107. } else if (tensor->type == GGML_TYPE_I64) {
  108. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  109. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  110. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  111. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  112. } else {
  113. GGML_ABORT("fatal error");
  114. }
  115. }
  116. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  117. std::vector<float> tv;
  118. tv.reserve(ggml_nelements(t));
  119. std::vector<uint8_t> buf(ggml_nbytes(t));
  120. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  121. const auto * tt = ggml_get_type_traits(t->type);
  122. size_t bs = ggml_blck_size(t->type);
  123. std::vector<float> vq(ggml_blck_size(t->type));
  124. bool quantized = ggml_is_quantized(t->type);
  125. // access elements by index to avoid gaps in views
  126. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  127. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  128. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  129. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  130. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  131. if (t->type == GGML_TYPE_F16) {
  132. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  133. } else if (t->type == GGML_TYPE_BF16) {
  134. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  135. } else if (t->type == GGML_TYPE_F32) {
  136. tv.push_back(*(float *) &buf[i]);
  137. } else if (t->type == GGML_TYPE_I64) {
  138. tv.push_back((float)*(int64_t *) &buf[i]);
  139. } else if (t->type == GGML_TYPE_I32) {
  140. tv.push_back((float)*(int32_t *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I16) {
  142. tv.push_back((float)*(int16_t *) &buf[i]);
  143. } else if (t->type == GGML_TYPE_I8) {
  144. tv.push_back((float)*(int8_t *) &buf[i]);
  145. } else if (quantized) {
  146. tt->to_float(&buf[i], vq.data(), bs);
  147. tv.insert(tv.end(), vq.begin(), vq.end());
  148. } else {
  149. GGML_ABORT("fatal error");
  150. }
  151. }
  152. }
  153. }
  154. }
  155. return tv;
  156. }
  157. // normalized mean squared error = mse(a, b) / mse(a, 0)
  158. static double nmse(const float * a, const float * b, size_t n) {
  159. double mse_a_b = 0.0;
  160. double mse_a_0 = 0.0;
  161. for (size_t i = 0; i < n; i++) {
  162. float a_i = a[i];
  163. float b_i = b[i];
  164. mse_a_b += (a_i - b_i) * (a_i - b_i);
  165. mse_a_0 += a_i * a_i;
  166. }
  167. return mse_a_b / mse_a_0;
  168. }
  169. // maximum absolute asymmetry between a and b
  170. // asymmetry: (a - b) / (a + b)
  171. // This is more stable than relative error if one of the values fluctuates towards zero.
  172. // n: number of values to compare.
  173. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  174. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  175. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  176. double sum = 0.0f;
  177. size_t nvalid = 0;
  178. for (size_t i = 0; i < n; i++) {
  179. if (!expected_vals.empty()) {
  180. bool matches_any = false;
  181. for (const float & ev : expected_vals) {
  182. if (fabsf(a[i] - ev) < 1e-3f) {
  183. matches_any = true;
  184. break;
  185. }
  186. }
  187. if (!matches_any) {
  188. continue;
  189. }
  190. }
  191. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  192. sum += fabsf(asymm);
  193. nvalid++;
  194. }
  195. return sum/nvalid;
  196. }
  197. // utils for printing the variables of the test cases
  198. template<typename T>
  199. static std::string var_to_str(const T & x) {
  200. return std::to_string(x);
  201. }
  202. template<typename T, size_t N>
  203. static std::string var_to_str(const T (&x)[N]) {
  204. std::string s = "[";
  205. for (size_t i = 0; i < N; i++) {
  206. if (i > 0) {
  207. s += ",";
  208. }
  209. s += var_to_str(x[i]);
  210. }
  211. s += "]";
  212. return s;
  213. }
  214. template<typename T, size_t N>
  215. static std::string var_to_str(const std::array<T, N> & x) {
  216. std::string s = "[";
  217. for (size_t i = 0; i < N; i++) {
  218. if (i > 0) {
  219. s += ",";
  220. }
  221. s += var_to_str(x[i]);
  222. }
  223. s += "]";
  224. return s;
  225. }
  226. static std::string var_to_str(ggml_type type) {
  227. return ggml_type_name(type);
  228. }
  229. static std::string var_to_str(ggml_op_pool pool) {
  230. switch (pool) {
  231. case GGML_OP_POOL_AVG: return "avg";
  232. case GGML_OP_POOL_MAX: return "max";
  233. default: return std::to_string(pool);
  234. }
  235. }
  236. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  237. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  238. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  239. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  240. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  241. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  242. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  243. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  244. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  245. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  246. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  247. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  248. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  249. #ifdef GGML_USE_SYCL
  250. static bool inline _isinf(float f) {
  251. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  252. }
  253. #else
  254. static bool inline _isinf(float f) { return std::isinf(f); }
  255. #endif
  256. // accept FLT_MAX as infinity
  257. static bool isinf_or_max(float f) {
  258. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  259. }
  260. static bool ggml_is_view_op(enum ggml_op op) {
  261. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  262. }
  263. enum test_mode {
  264. MODE_TEST,
  265. MODE_PERF,
  266. MODE_GRAD,
  267. };
  268. struct test_case {
  269. virtual ~test_case() {}
  270. virtual std::string op_desc(ggml_tensor * t) {
  271. return ggml_op_desc(t);
  272. }
  273. virtual std::string vars() {
  274. return "";
  275. }
  276. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  277. virtual double max_nmse_err() {
  278. return 1e-7;
  279. }
  280. virtual double max_maa_err() {
  281. return 1e-4;
  282. }
  283. virtual float grad_eps() {
  284. return 1e-1f;
  285. }
  286. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  287. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  288. virtual bool grad_precise() {
  289. return false;
  290. }
  291. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  292. virtual int64_t grad_nmax() {
  293. return 10000;
  294. }
  295. // No effect if empty.
  296. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  297. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  298. virtual std::vector<float> grad_expect() {
  299. return {};
  300. }
  301. virtual void initialize_tensors(ggml_context * ctx) {
  302. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  303. init_tensor_uniform(t);
  304. }
  305. }
  306. virtual size_t op_size(ggml_tensor * t) {
  307. size_t size = ggml_nbytes(t);
  308. // add source tensors
  309. for (int i = 0; i < GGML_MAX_SRC; i++) {
  310. if (t->src[i] != NULL) {
  311. size += ggml_nbytes(t->src[i]);
  312. }
  313. }
  314. return size;
  315. }
  316. virtual uint64_t op_flops(ggml_tensor * t) {
  317. GGML_UNUSED(t);
  318. return 0;
  319. }
  320. ggml_cgraph * gf = nullptr;
  321. ggml_cgraph * gb = nullptr;
  322. static const int sentinel_size = 1024;
  323. test_mode mode;
  324. std::vector<ggml_tensor *> sentinels;
  325. void add_sentinel(ggml_context * ctx) {
  326. if (mode == MODE_PERF || mode == MODE_GRAD) {
  327. return;
  328. }
  329. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  330. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  331. sentinels.push_back(sentinel);
  332. }
  333. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  334. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  335. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  336. add_sentinel(ctx);
  337. return t;
  338. }
  339. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  340. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  341. add_sentinel(ctx);
  342. return t;
  343. }
  344. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  345. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  346. add_sentinel(ctx);
  347. return t;
  348. }
  349. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  350. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  351. add_sentinel(ctx);
  352. return t;
  353. }
  354. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  355. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  356. add_sentinel(ctx);
  357. return t;
  358. }
  359. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  360. mode = MODE_TEST;
  361. ggml_init_params params = {
  362. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  363. /* .mem_base = */ NULL,
  364. /* .no_alloc = */ true,
  365. };
  366. ggml_context * ctx = ggml_init(params);
  367. GGML_ASSERT(ctx);
  368. gf = ggml_new_graph(ctx);
  369. // pre-graph sentinel
  370. add_sentinel(ctx);
  371. ggml_tensor * out = build_graph(ctx);
  372. if (op_name != nullptr && op_desc(out) != op_name) {
  373. //printf(" %s: skipping\n", op_desc(out).c_str());
  374. ggml_free(ctx);
  375. return true;
  376. }
  377. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  378. fflush(stdout);
  379. // check if the backends support the ops
  380. bool supported = true;
  381. for (ggml_backend_t backend : {backend1, backend2}) {
  382. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  383. if (!ggml_backend_supports_op(backend, t)) {
  384. printf("not supported [%s] ", ggml_backend_name(backend));
  385. supported = false;
  386. break;
  387. }
  388. }
  389. }
  390. if (!supported) {
  391. printf("\n");
  392. ggml_free(ctx);
  393. return true;
  394. }
  395. // post-graph sentinel
  396. add_sentinel(ctx);
  397. // allocate
  398. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  399. if (buf == NULL) {
  400. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  401. ggml_free(ctx);
  402. return false;
  403. }
  404. // build graph
  405. ggml_build_forward_expand(gf, out);
  406. // add sentinels as graph nodes so that they are checked in the callback
  407. for (ggml_tensor * sentinel : sentinels) {
  408. ggml_graph_add_node(gf, sentinel);
  409. }
  410. // randomize tensors
  411. initialize_tensors(ctx);
  412. // compare
  413. struct callback_userdata {
  414. bool ok;
  415. double max_err;
  416. ggml_backend_t backend1;
  417. ggml_backend_t backend2;
  418. };
  419. callback_userdata ud {
  420. true,
  421. max_nmse_err(),
  422. backend1,
  423. backend2
  424. };
  425. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  426. callback_userdata * ud = (callback_userdata *) user_data;
  427. const char * bn1 = ggml_backend_name(ud->backend1);
  428. const char * bn2 = ggml_backend_name(ud->backend2);
  429. if (t1->op == GGML_OP_NONE) {
  430. // sentinels must be unchanged
  431. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  432. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  433. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  434. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  435. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  436. printf("sentinel mismatch: %s ", t1->name);
  437. ud->ok = false;
  438. return true;
  439. }
  440. }
  441. std::vector<float> f1 = tensor_to_float(t1);
  442. std::vector<float> f2 = tensor_to_float(t2);
  443. for (size_t i = 0; i < f1.size(); i++) {
  444. // check for nans
  445. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  446. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  447. ud->ok = false;
  448. return true;
  449. }
  450. // check for infs: both must be inf of the same sign, or both must be finite
  451. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  452. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  453. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  454. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  455. ud->ok = false;
  456. return true;
  457. }
  458. } else {
  459. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  460. ud->ok = false;
  461. return true;
  462. }
  463. }
  464. }
  465. double err = nmse(f1.data(), f2.data(), f1.size());
  466. if (err > ud->max_err) {
  467. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  468. //for (int i = 0; i < (int) f1.size(); i++) {
  469. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  470. //}
  471. //printf("\n");
  472. //exit(1);
  473. ud->ok = false;
  474. }
  475. return true;
  476. GGML_UNUSED(index);
  477. };
  478. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  479. if (!cmp_ok) {
  480. printf("compare failed ");
  481. }
  482. ggml_backend_buffer_free(buf);
  483. ggml_free(ctx);
  484. if (ud.ok && cmp_ok) {
  485. printf("\033[1;32mOK\033[0m\n");
  486. return true;
  487. }
  488. printf("\033[1;31mFAIL\033[0m\n");
  489. return false;
  490. }
  491. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  492. mode = MODE_PERF;
  493. static const size_t graph_nodes = 8192;
  494. ggml_init_params params = {
  495. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  496. /* .mem_base = */ NULL,
  497. /* .no_alloc = */ true,
  498. };
  499. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  500. GGML_ASSERT(ctx);
  501. ggml_tensor * out = build_graph(ctx.get());
  502. if (op_name != nullptr && op_desc(out) != op_name) {
  503. //printf(" %s: skipping\n", op_desc(out).c_str());
  504. return true;
  505. }
  506. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  507. fflush(stdout);
  508. // check if backends support op
  509. if (!ggml_backend_supports_op(backend, out)) {
  510. printf("not supported\n");
  511. return true;
  512. }
  513. // align while also leaving some margin for variations in parameters
  514. int align = 8;
  515. int last = (len + align - 1) / align * align;
  516. if (last - len < 5) {
  517. last += align;
  518. }
  519. printf("%*s", last - len, "");
  520. // allocate
  521. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  522. if (buf == NULL) {
  523. printf("failed to allocate tensors\n");
  524. return false;
  525. }
  526. // randomize tensors
  527. initialize_tensors(ctx.get());
  528. // build graph
  529. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  530. ggml_build_forward_expand(gf, out);
  531. // warmup run
  532. ggml_status status = ggml_backend_graph_compute(backend, gf);
  533. if (status != GGML_STATUS_SUCCESS) {
  534. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  535. return false;
  536. }
  537. // determine number of runs
  538. int n_runs;
  539. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  540. if (op_flops(out) > 0) {
  541. // based on flops
  542. const uint64_t GFLOP = 1000 * 1000 * 1000;
  543. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  544. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  545. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  546. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  547. } else {
  548. // based on memory size
  549. const size_t GB = 1ULL << 30;
  550. const size_t target_size_cpu = 8 * GB;
  551. const size_t target_size_gpu = 32 * GB;
  552. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  553. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  554. }
  555. // duplicate the op
  556. for (int i = 1; i < n_runs; i++) {
  557. ggml_graph_add_node(gf, out);
  558. }
  559. // calculate memory
  560. size_t mem = n_runs * op_size(out);
  561. auto tensor_op_size = [](ggml_tensor * t) {
  562. size_t size = ggml_nbytes(t);
  563. // add source tensors
  564. for (int i = 0; i < GGML_MAX_SRC; i++) {
  565. if (t->src[i] != NULL) {
  566. size += ggml_nbytes(t->src[i]);
  567. }
  568. }
  569. return size;
  570. };
  571. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  572. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  573. continue;
  574. }
  575. mem += tensor_op_size(ggml_graph_node(gf, i));
  576. }
  577. // run
  578. int64_t total_time_us = 0;
  579. int64_t total_mem = 0;
  580. int total_runs = 0;
  581. do {
  582. int64_t start_time = ggml_time_us();
  583. ggml_status status = ggml_backend_graph_compute(backend, gf);
  584. if (status != GGML_STATUS_SUCCESS) {
  585. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  586. return false;
  587. }
  588. int64_t end_time = ggml_time_us();
  589. total_time_us += end_time - start_time;
  590. total_mem += mem;
  591. total_runs += n_runs;
  592. } while (total_time_us < 1000*1000); // run for at least 1 second
  593. printf(" %8d runs - %8.2f us/run - ",
  594. total_runs,
  595. (double)total_time_us / total_runs);
  596. if (op_flops(out) > 0) {
  597. double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
  598. auto format_flops = [](double flops) -> std::string {
  599. char buf[256];
  600. if (flops >= 1e12) {
  601. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  602. } else if (flops >= 1e9) {
  603. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  604. } else if (flops >= 1e6) {
  605. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  606. } else {
  607. snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
  608. }
  609. return buf;
  610. };
  611. printf("%s/run - \033[1;34m%sS\033[0m",
  612. format_flops(op_flops(out)).c_str(),
  613. format_flops(flops_per_sec).c_str());
  614. } else {
  615. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
  616. op_size(out) / 1024,
  617. total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
  618. }
  619. printf("\n");
  620. return true;
  621. }
  622. bool eval_grad(ggml_backend_t backend, const char * op_name) {
  623. mode = MODE_GRAD;
  624. const std::vector<float> expect = grad_expect();
  625. ggml_init_params params = {
  626. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  627. /* .mem_base = */ NULL,
  628. /* .no_alloc = */ true,
  629. };
  630. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  631. GGML_ASSERT(ctx);
  632. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  633. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  634. ggml_tensor * out = build_graph(ctx.get());
  635. if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  636. //printf(" %s: skipping\n", op_desc(out).c_str());
  637. return true;
  638. }
  639. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  640. fflush(stdout);
  641. if (out->type != GGML_TYPE_F32) {
  642. printf("not supported [%s->type != FP32]\n", out->name);
  643. return true;
  644. }
  645. // check if the backend supports the ops
  646. bool supported = true;
  647. bool any_params = false;
  648. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  649. if (!ggml_backend_supports_op(backend, t)) {
  650. printf("not supported [%s] ", ggml_backend_name(backend));
  651. supported = false;
  652. break;
  653. }
  654. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  655. any_params = true;
  656. if (t->type != GGML_TYPE_F32) {
  657. printf("not supported [%s->type != FP32] ", t->name);
  658. supported = false;
  659. break;
  660. }
  661. }
  662. }
  663. if (!any_params) {
  664. printf("not supported [%s] \n", op_desc(out).c_str());
  665. supported = false;
  666. }
  667. if (!supported) {
  668. printf("\n");
  669. return true;
  670. }
  671. int64_t ngrads = 0;
  672. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  673. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  674. ngrads += ggml_nelements(t);
  675. }
  676. }
  677. if (ngrads > grad_nmax()) {
  678. printf("skipping large tensors for speed \n");
  679. return true;
  680. }
  681. if (!ggml_is_scalar(out)) {
  682. out = ggml_sum(ctx.get(), out);
  683. ggml_set_name(out, "sum_of_out");
  684. }
  685. ggml_set_loss(out);
  686. ggml_build_forward_expand(gf, out);
  687. ggml_graph_cpy(gf, gb);
  688. ggml_build_backward_expand(ctx.get(), ctx.get(), gb, false);
  689. if (expect.size() != 1 || expect[0] != 0.0f) {
  690. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  691. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  692. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  693. }
  694. }
  695. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  696. if (!ggml_backend_supports_op(backend, t)) {
  697. printf("not supported [%s] ", ggml_backend_name(backend));
  698. supported = false;
  699. break;
  700. }
  701. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  702. printf("not supported [%s->type != FP32] ", t->name);
  703. supported = false;
  704. break;
  705. }
  706. }
  707. if (!supported) {
  708. printf("\n");
  709. return true;
  710. }
  711. // allocate
  712. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  713. if (buf == NULL) {
  714. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
  715. return false;
  716. }
  717. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  718. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  719. ggml_status status = ggml_backend_graph_compute(backend, gf);
  720. if (status != GGML_STATUS_SUCCESS) {
  721. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  722. return false;
  723. }
  724. status = ggml_backend_graph_compute(backend, gb);
  725. if (status != GGML_STATUS_SUCCESS) {
  726. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  727. return false;
  728. }
  729. bool ok = true;
  730. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  731. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  732. continue;
  733. }
  734. const char * bn = ggml_backend_name(backend);
  735. const int64_t ne = ggml_nelements(t);
  736. std::vector<float> ga;
  737. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  738. if (grad) {
  739. ga = tensor_to_float(grad);
  740. } else {
  741. ga.resize(ne); // default value is 0.0f
  742. }
  743. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  744. // check for nans
  745. if (!std::isfinite(ga[i])) {
  746. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
  747. ok = false;
  748. break;
  749. }
  750. }
  751. if (!ok) {
  752. break;
  753. }
  754. std::vector<float> gn(ne); // gradient numeric
  755. GGML_ASSERT(ga.size() == gn.size());
  756. std::vector<float> x0 = tensor_to_float(t); // original t data
  757. GGML_ASSERT(ggml_is_scalar(out));
  758. GGML_ASSERT(out->type == GGML_TYPE_F32);
  759. const float eps = grad_eps();
  760. for (int64_t i = 0; i < ne; ++i) {
  761. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  762. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  763. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  764. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  765. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  766. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  767. status = ggml_backend_graph_compute(backend, gf);
  768. if (status != GGML_STATUS_SUCCESS) {
  769. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  770. return false;
  771. }
  772. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  773. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  774. status = ggml_backend_graph_compute(backend, gf);
  775. if (status != GGML_STATUS_SUCCESS) {
  776. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  777. return false;
  778. }
  779. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  780. if (grad_precise()) {
  781. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  782. status = ggml_backend_graph_compute(backend, gf);
  783. if (status != GGML_STATUS_SUCCESS) {
  784. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  785. return false;
  786. }
  787. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  788. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  789. status = ggml_backend_graph_compute(backend, gf);
  790. if (status != GGML_STATUS_SUCCESS) {
  791. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  792. return false;
  793. }
  794. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  795. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  796. } else {
  797. gn[i] = (fu - fd) / (2.0f*eps);
  798. }
  799. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  800. }
  801. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  802. if (err > max_maa_err()) {
  803. printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
  804. ok = false;
  805. break;
  806. }
  807. if (!ok) {
  808. break;
  809. }
  810. }
  811. if (!ok) {
  812. printf("compare failed ");
  813. }
  814. if (ok) {
  815. printf("\033[1;32mOK\033[0m\n");
  816. return true;
  817. }
  818. printf("\033[1;31mFAIL\033[0m\n");
  819. return false;
  820. }
  821. };
  822. // ###################################
  823. // ## Section 2: GGML Op Defintions ##
  824. // ###################################
  825. // The following is an example showing the bare minimum for creating a test for a GGML op.
  826. // GGML_OP_EXAMPLE
  827. struct test_example : public test_case {
  828. // Always define these 2 or variants thereof:
  829. const ggml_type type; // The type of the input tensors.
  830. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  831. // For some ops it's necessary to define multiple types or shapes for the inputs.
  832. // Or they may need additional parameters.
  833. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  834. // In most cases these are just the properties of the struct that you defined above.
  835. // This is needed for info prints.
  836. std::string vars() override {
  837. return VARS_TO_STR2(type, ne);
  838. }
  839. // Define a constructor for the struct.
  840. // In most cases it will be sufficient to have the same arguments as the struct has properties
  841. // and just use initializer lists.
  842. test_example(ggml_type type = GGML_TYPE_F32,
  843. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  844. : type(type), ne(ne) {}
  845. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  846. ggml_tensor * build_graph(ggml_context * ctx) override {
  847. // Step 1: create input tensors that don't depend on any other tensors:
  848. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  849. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  850. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  851. ggml_set_name(b, "b");
  852. // Step 2: use the op that you want to test in the GGML compute graph.
  853. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  854. ggml_set_name(out, "out");
  855. // Step 3: return the output tensor.
  856. return out;
  857. }
  858. // In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
  859. // immediately after you create the tensors.
  860. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  861. };
  862. // GGML_OP_UNARY
  863. struct test_unary : public test_case {
  864. const ggml_unary_op op;
  865. const ggml_type type;
  866. const std::array<int64_t, 4> ne_a;
  867. int v; // view (1 : non-contiguous a)
  868. std::string vars() override {
  869. return VARS_TO_STR3(type, ne_a, v);
  870. }
  871. test_unary(ggml_unary_op op,
  872. ggml_type type = GGML_TYPE_F32,
  873. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  874. int v = 0)
  875. : op(op), type(type), ne_a(ne_a), v(v) {}
  876. ggml_tensor * build_graph(ggml_context * ctx) override {
  877. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  878. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  879. ggml_tensor * a;
  880. if (v & 1) {
  881. auto ne = ne_a; ne[0] *= 3;
  882. a = ggml_new_tensor(ctx, type, 4, ne.data());
  883. if (grad_supported) {
  884. ggml_set_param(ctx, a);
  885. }
  886. ggml_set_name(a, "a");
  887. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  888. ggml_set_name(a, "view_of_a");
  889. } else {
  890. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  891. if (grad_supported) {
  892. ggml_set_param(ctx, a);
  893. }
  894. ggml_set_name(a, "a");
  895. }
  896. ggml_tensor * out = ggml_unary(ctx, a, op);
  897. ggml_set_name(out, "out");
  898. return out;
  899. }
  900. void initialize_tensors(ggml_context * ctx) override {
  901. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  902. // test extended range of values to check for NaNs in GELU
  903. init_tensor_uniform(t, -150.f, 150.f);
  904. }
  905. }
  906. float grad_eps() override {
  907. return 15.0f;
  908. }
  909. std::vector<float> grad_expect() override {
  910. if (op == GGML_UNARY_OP_ABS) {
  911. return {-1.0f, 1.0f};
  912. }
  913. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  914. return {0.0f};
  915. }
  916. if (op == GGML_UNARY_OP_RELU) {
  917. return {0.0f, 1.0f};
  918. }
  919. return {};
  920. }
  921. };
  922. // GGML_OP_GET_ROWS
  923. struct test_get_rows : public test_case {
  924. const ggml_type type;
  925. const int n; // cols
  926. const int m; // rows
  927. const int r; // rows to get
  928. const int b; // batch size
  929. const bool v; // view (non-contiguous src1)
  930. std::string vars() override {
  931. return VARS_TO_STR6(type, n, m, r, b, v);
  932. }
  933. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  934. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  935. ggml_tensor * build_graph(ggml_context * ctx) override {
  936. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  937. ggml_set_name(in, "in");
  938. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  939. ggml_set_name(rows, "rows");
  940. if (v) {
  941. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  942. ggml_set_name(rows, "view_of_rows");
  943. }
  944. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  945. if (grad_supported) {
  946. ggml_set_param(ctx, in);
  947. // rows is a constant input -> no gradients
  948. }
  949. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  950. ggml_set_name(out, "out");
  951. return out;
  952. }
  953. void initialize_tensors(ggml_context * ctx) override {
  954. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  955. if (t->type == GGML_TYPE_I32) {
  956. if (ggml_is_view_op(t->op)) { continue; }
  957. // rows
  958. std::vector<int> data(r*b);
  959. for (int i = 0; i < r*b; i++) {
  960. data[i] = rand() % m;
  961. }
  962. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  963. } else {
  964. init_tensor_uniform(t);
  965. }
  966. }
  967. }
  968. };
  969. // GGML_OP_GET_ROWS_BACK
  970. struct test_get_rows_back : public test_case {
  971. const ggml_type type;
  972. const int n; // cols
  973. const int m; // rows
  974. const int r; // rows to get
  975. const int b; // batch size
  976. const bool v; // view (non-contiguous src1)
  977. std::string vars() override {
  978. return VARS_TO_STR6(type, n, m, r, b, v);
  979. }
  980. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  981. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  982. ggml_tensor * build_graph(ggml_context * ctx) override {
  983. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  984. ggml_set_name(in_forward, "in_forward");
  985. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  986. ggml_set_name(rows, "rows");
  987. if (v) {
  988. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  989. ggml_set_name(rows, "view_of_rows");
  990. }
  991. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  992. ggml_set_name(grad, "grad");
  993. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  994. ggml_set_name(out, "out");
  995. return out;
  996. }
  997. void initialize_tensors(ggml_context * ctx) override {
  998. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  999. if (t->type == GGML_TYPE_I32) {
  1000. if (ggml_is_view_op(t->op)) { continue; }
  1001. // rows
  1002. std::vector<int> data(r*b);
  1003. for (int i = 0; i < r*b; i++) {
  1004. data[i] = rand() % m;
  1005. }
  1006. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1007. } else {
  1008. init_tensor_uniform(t);
  1009. }
  1010. }
  1011. }
  1012. };
  1013. // GGML_OP_ARGMAX
  1014. struct test_argmax : public test_case {
  1015. const ggml_type type;
  1016. const std::array<int64_t, 4> ne;
  1017. std::string vars() override {
  1018. return VARS_TO_STR2(type, ne);
  1019. }
  1020. test_argmax(ggml_type type = GGML_TYPE_F32,
  1021. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1022. : type(type), ne(ne) {}
  1023. ggml_tensor * build_graph(ggml_context * ctx) override {
  1024. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1025. ggml_set_name(a, "a");
  1026. ggml_tensor * out = ggml_argmax(ctx, a);
  1027. ggml_set_name(out, "out");
  1028. return out;
  1029. }
  1030. void initialize_tensors(ggml_context * ctx) override {
  1031. std::random_device rd;
  1032. std::default_random_engine rng(rd());
  1033. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1034. if (t->type == GGML_TYPE_F32) {
  1035. // initialize with unique values to avoid ties
  1036. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1037. std::vector<float> data(t->ne[0]);
  1038. for (int i = 0; i < t->ne[0]; i++) {
  1039. data[i] = i;
  1040. }
  1041. std::shuffle(data.begin(), data.end(), rng);
  1042. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1043. }
  1044. } else {
  1045. init_tensor_uniform(t);
  1046. }
  1047. }
  1048. }
  1049. double max_nmse_err() override {
  1050. return 0.0;
  1051. }
  1052. };
  1053. // GGML_OP_COUNT_EQUAL
  1054. struct test_count_equal : public test_case {
  1055. const ggml_type type;
  1056. const std::array<int64_t, 4> ne;
  1057. std::string vars() override {
  1058. return VARS_TO_STR2(type, ne);
  1059. }
  1060. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1061. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1062. : type(type), ne(ne) {}
  1063. ggml_tensor * build_graph(ggml_context * ctx) override {
  1064. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1065. ggml_set_name(a, "a");
  1066. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1067. ggml_set_name(a_argmax, "a_argmax");
  1068. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1069. ggml_set_name(b, "b");
  1070. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1071. ggml_set_name(b_argmax, "b_argmax");
  1072. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1073. ggml_set_name(out, "out");
  1074. return out;
  1075. }
  1076. double max_nmse_err() override {
  1077. return 0.0;
  1078. }
  1079. };
  1080. // GGML_OP_REPEAT
  1081. struct test_repeat : public test_case {
  1082. const ggml_type type;
  1083. const std::array<int64_t, 4> ne;
  1084. const std::array<int, 4> nr;
  1085. std::string vars() override {
  1086. return VARS_TO_STR3(type, ne, nr);
  1087. }
  1088. size_t op_size(ggml_tensor * t) override {
  1089. return ggml_nbytes(t) * 2;
  1090. }
  1091. test_repeat(ggml_type type = GGML_TYPE_F32,
  1092. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1093. std::array<int, 4> nr = {2, 2, 2, 2})
  1094. : type(type), ne(ne), nr(nr) {}
  1095. ggml_tensor * build_graph(ggml_context * ctx) override {
  1096. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1097. ggml_set_name(target, "target");
  1098. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1099. ggml_set_param(ctx, src);
  1100. ggml_set_name(src, "src");
  1101. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1102. ggml_set_name(out, "out");
  1103. return out;
  1104. }
  1105. };
  1106. // GGML_OP_REPEAT_BACK
  1107. struct test_repeat_back : public test_case {
  1108. const ggml_type type;
  1109. const std::array<int64_t, 4> ne;
  1110. const std::array<int, 4> nr;
  1111. const bool v; // whether src is a noncontiguous view
  1112. std::string vars() override {
  1113. return VARS_TO_STR4(type, ne, nr, v);
  1114. }
  1115. size_t op_size(ggml_tensor * t) override {
  1116. return ggml_nbytes(t) * 2;
  1117. }
  1118. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1119. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1120. std::array<int, 4> nr = {2, 2, 2, 2},
  1121. bool v = false)
  1122. : type(type), ne(ne), nr(nr), v(v) {}
  1123. ggml_tensor * build_graph(ggml_context * ctx) override {
  1124. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1125. ggml_set_name(src, "src");
  1126. if (v) {
  1127. GGML_ASSERT(ne[0] % 2 == 0);
  1128. GGML_ASSERT(ne[1] % 2 == 0);
  1129. GGML_ASSERT(ne[2] % 2 == 0);
  1130. GGML_ASSERT(ne[3] % 2 == 0);
  1131. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1132. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1133. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1134. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1135. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1136. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1137. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1138. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1139. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1140. }
  1141. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1142. ggml_set_name(target, "target");
  1143. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1144. ggml_set_name(out, "out");
  1145. return out;
  1146. }
  1147. };
  1148. // GGML_OP_DUP
  1149. struct test_dup : public test_case {
  1150. const ggml_type type;
  1151. const std::array<int64_t, 4> ne;
  1152. const std::array<int64_t, 4> permute;
  1153. bool _use_permute;
  1154. std::string vars() override {
  1155. std::string v = VARS_TO_STR2(type, ne);
  1156. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1157. return v;
  1158. }
  1159. test_dup(ggml_type type = GGML_TYPE_F32,
  1160. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1161. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1162. : type(type), ne(ne), permute(permute),
  1163. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1164. ggml_tensor * build_graph(ggml_context * ctx) override {
  1165. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1166. ggml_set_param(ctx, src);
  1167. ggml_set_name(src, "src");
  1168. if (_use_permute) {
  1169. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1170. ggml_set_name(src, "src_permuted");
  1171. }
  1172. ggml_tensor * out = ggml_dup(ctx, src);
  1173. ggml_set_name(out, "out");
  1174. return out;
  1175. }
  1176. };
  1177. // GGML_OP_SET
  1178. struct test_set : public test_case {
  1179. const ggml_type type_src;
  1180. const ggml_type type_dst;
  1181. const std::array<int64_t, 4> ne;
  1182. const int dim;
  1183. std::string vars() override {
  1184. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1185. }
  1186. size_t op_size(ggml_tensor * t) override {
  1187. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1188. }
  1189. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1190. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1191. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1192. ggml_tensor * build_graph(ggml_context * ctx) override {
  1193. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1194. ggml_set_param(ctx, src);
  1195. ggml_set_name(src, "src");
  1196. auto ne_dst = ne;
  1197. for (int i = 0; i < dim; ++i) {
  1198. ne_dst[i] *= 2;
  1199. }
  1200. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1201. ggml_set_param(ctx, dst);
  1202. ggml_set_name(dst, "dst");
  1203. size_t offset = 0;
  1204. for (int i = 0; i < dim; ++i) {
  1205. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1206. }
  1207. ggml_tensor * out = ggml_set(ctx, dst, src,
  1208. // The backward pass requires setting a contiguous region:
  1209. src->nb[1], src->nb[2], src->nb[3], offset);
  1210. ggml_set_name(out, "out");
  1211. return out;
  1212. }
  1213. };
  1214. // GGML_OP_CPY
  1215. struct test_cpy : public test_case {
  1216. const ggml_type type_src;
  1217. const ggml_type type_dst;
  1218. const std::array<int64_t, 4> ne;
  1219. const std::array<int64_t, 4> permute;
  1220. bool _src_use_permute;
  1221. std::string vars() override {
  1222. return VARS_TO_STR4(type_src, type_dst, ne, permute);
  1223. }
  1224. double max_nmse_err() override {
  1225. return 1e-6;
  1226. }
  1227. size_t op_size(ggml_tensor * t) override {
  1228. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1229. }
  1230. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1231. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1232. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1233. : type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
  1234. _src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1235. ggml_tensor * build_graph(ggml_context * ctx) override {
  1236. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1237. ggml_set_param(ctx, src);
  1238. ggml_set_name(src, "src");
  1239. if (_src_use_permute) {
  1240. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1241. ggml_set_name(src, "src_permuted");
  1242. }
  1243. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1244. ggml_set_name(dst, "dst");
  1245. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1246. ggml_set_name(out, "out");
  1247. return out;
  1248. }
  1249. };
  1250. // GGML_OP_CONT
  1251. struct test_cont : public test_case {
  1252. const ggml_type type;
  1253. const std::array<int64_t, 4> ne;
  1254. std::string vars() override {
  1255. return VARS_TO_STR2(type, ne);
  1256. }
  1257. test_cont(ggml_type type = GGML_TYPE_F32,
  1258. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1259. : type(type), ne(ne) {}
  1260. ggml_tensor * build_graph(ggml_context * ctx) override {
  1261. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1262. ggml_set_param(ctx, src);
  1263. ggml_set_name(src, "src");
  1264. src = ggml_transpose(ctx, src);
  1265. ggml_set_name(src, "src_transposed");
  1266. ggml_tensor * out = ggml_cont(ctx, src);
  1267. ggml_set_name(out, "out");
  1268. return out;
  1269. }
  1270. };
  1271. // GGML_OP_ADD
  1272. // GGML_OP_SUB
  1273. // GGML_OP_MUL
  1274. // GGML_OP_DIV
  1275. struct test_bin_bcast : public test_case {
  1276. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  1277. op_t op;
  1278. const ggml_type type;
  1279. const std::array<int64_t, 4> ne;
  1280. const std::array<int, 4> nr;
  1281. std::string vars() override {
  1282. return VARS_TO_STR3(type, ne, nr);
  1283. }
  1284. size_t op_size(ggml_tensor * t) override {
  1285. return ggml_nbytes(t) * 3;
  1286. }
  1287. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  1288. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  1289. std::array<int, 4> nr = {1, 2, 1, 1})
  1290. : op(op), type(type), ne(ne), nr(nr) {}
  1291. ggml_tensor * build_graph(ggml_context * ctx) override {
  1292. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1293. ggml_set_name(a, "a");
  1294. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1295. ggml_set_name(b, "b");
  1296. // The backward pass supports broadcasting only for GGML_ADD:
  1297. const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
  1298. if (grad_supported) {
  1299. ggml_set_param(ctx, a);
  1300. ggml_set_param(ctx, b);
  1301. }
  1302. ggml_tensor * out = op(ctx, a, b);
  1303. ggml_set_name(out, "out");
  1304. return out;
  1305. }
  1306. void initialize_tensors(ggml_context * ctx) override {
  1307. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1308. if (op == ggml_mul || op == ggml_div) {
  1309. // MUL and DIV have numerical issues around zero:
  1310. init_tensor_uniform(t, 0.9f, 1.1f);
  1311. } else {
  1312. init_tensor_uniform(t);
  1313. }
  1314. }
  1315. }
  1316. float grad_eps() override {
  1317. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  1318. }
  1319. bool grad_precise() override {
  1320. return op == ggml_div;
  1321. }
  1322. double max_maa_err() override {
  1323. return op == ggml_add ? 1e-4 : 1e-3;
  1324. }
  1325. };
  1326. // GGML_OP_ADD1
  1327. struct test_add1 : public test_case {
  1328. const ggml_type type;
  1329. const std::array<int64_t, 4> ne;
  1330. std::string vars() override {
  1331. return VARS_TO_STR2(type, ne);
  1332. }
  1333. test_add1(ggml_type type = GGML_TYPE_F32,
  1334. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1335. : type(type), ne(ne) {}
  1336. ggml_tensor * build_graph(ggml_context * ctx) override {
  1337. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1338. ggml_set_param(ctx, a);
  1339. ggml_set_name(a, "a");
  1340. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  1341. // ggml_set_param(ctx, b); // TODO: implement
  1342. ggml_set_name(b, "b");
  1343. ggml_tensor * out = ggml_add1(ctx, a, b);
  1344. ggml_set_name(out, "out");
  1345. return out;
  1346. }
  1347. float grad_eps() override {
  1348. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  1349. }
  1350. };
  1351. // GGML_OP_SCALE
  1352. struct test_scale : public test_case {
  1353. const ggml_type type;
  1354. const std::array<int64_t, 4> ne;
  1355. float scale;
  1356. std::string vars() override {
  1357. return VARS_TO_STR3(type, ne, scale);
  1358. }
  1359. test_scale(ggml_type type = GGML_TYPE_F32,
  1360. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1361. float scale = 2.0f)
  1362. : type(type), ne(ne), scale(scale) {}
  1363. ggml_tensor * build_graph(ggml_context * ctx) override {
  1364. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1365. ggml_set_param(ctx, a);
  1366. ggml_set_name(a, "a");
  1367. ggml_tensor * out = ggml_scale(ctx, a, scale);
  1368. ggml_set_name(out, "out");
  1369. return out;
  1370. }
  1371. };
  1372. // GGML_OP_SILU_BACK
  1373. struct test_silu_back : public test_case {
  1374. const ggml_type type;
  1375. const std::array<int64_t, 4> ne;
  1376. float eps;
  1377. std::string vars() override {
  1378. return VARS_TO_STR3(type, ne, eps);
  1379. }
  1380. test_silu_back(ggml_type type = GGML_TYPE_F32,
  1381. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1382. float eps = 1e-6f)
  1383. : type(type), ne(ne), eps(eps) {}
  1384. ggml_tensor * build_graph(ggml_context * ctx) override {
  1385. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1386. ggml_set_name(a, "a");
  1387. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  1388. ggml_set_name(grad, "grad");
  1389. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  1390. ggml_set_name(out, "out");
  1391. return out;
  1392. }
  1393. bool grad_precise() override {
  1394. return true;
  1395. }
  1396. };
  1397. // GGML_OP_NORM
  1398. struct test_norm : public test_case {
  1399. const ggml_type type;
  1400. const std::array<int64_t, 4> ne;
  1401. const bool v; // whether a is a non-contiguous view
  1402. const float eps;
  1403. std::string vars() override {
  1404. return VARS_TO_STR4(type, ne, v, eps);
  1405. }
  1406. test_norm(ggml_type type = GGML_TYPE_F32,
  1407. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1408. bool v = false,
  1409. float eps = 1e-6f)
  1410. : type(type), ne(ne), v(v), eps(eps) {}
  1411. ggml_tensor * build_graph(ggml_context * ctx) override {
  1412. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1413. ggml_set_name(a, "a");
  1414. if (v) {
  1415. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1416. ggml_set_name(a, "view of a");
  1417. }
  1418. ggml_tensor * out = ggml_norm(ctx, a, eps);
  1419. ggml_set_name(out, "out");
  1420. return out;
  1421. }
  1422. };
  1423. // GGML_OP_RMS_NORM
  1424. struct test_rms_norm : public test_case {
  1425. const ggml_type type;
  1426. const std::array<int64_t, 4> ne;
  1427. const bool v; // whether a is a non-contiguous view
  1428. const float eps;
  1429. std::string vars() override {
  1430. return VARS_TO_STR4(type, ne, v, eps);
  1431. }
  1432. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  1433. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1434. bool v = false,
  1435. float eps = 1e-6f)
  1436. : type(type), ne(ne), v(v), eps(eps) {}
  1437. ggml_tensor * build_graph(ggml_context * ctx) override {
  1438. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1439. ggml_set_param(ctx, a);
  1440. ggml_set_name(a, "a");
  1441. if (v) {
  1442. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1443. ggml_set_name(a, "view of a");
  1444. }
  1445. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  1446. ggml_set_name(out, "out");
  1447. return out;
  1448. }
  1449. void initialize_tensors(ggml_context * ctx) override {
  1450. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1451. init_tensor_uniform(t, -10.f, 10.f);
  1452. }
  1453. }
  1454. float grad_eps() override {
  1455. return 1.0f;
  1456. }
  1457. bool grad_precise() override {
  1458. return true;
  1459. }
  1460. };
  1461. // GGML_OP_RMS_NORM_BACK
  1462. struct test_rms_norm_back : public test_case {
  1463. const ggml_type type;
  1464. const std::array<int64_t, 4> ne;
  1465. const float eps;
  1466. std::string vars() override {
  1467. return VARS_TO_STR3(type, ne, eps);
  1468. }
  1469. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  1470. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1471. float eps = 1e-6f)
  1472. : type(type), ne(ne), eps(eps) {}
  1473. ggml_tensor * build_graph(ggml_context * ctx) override {
  1474. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1475. ggml_set_name(a, "a");
  1476. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1477. ggml_set_name(b, "b");
  1478. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  1479. ggml_set_name(out, "out");
  1480. return out;
  1481. }
  1482. void initialize_tensors(ggml_context * ctx) override {
  1483. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1484. init_tensor_uniform(t, -10.f, 10.f);
  1485. }
  1486. }
  1487. };
  1488. // GGML_OP_SSM_CONV
  1489. struct test_ssm_conv : public test_case {
  1490. const ggml_type type;
  1491. const std::array<int64_t, 4> ne_a;
  1492. const std::array<int64_t, 4> ne_b;
  1493. std::string vars() override {
  1494. return VARS_TO_STR3(type, ne_a, ne_b);
  1495. }
  1496. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  1497. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  1498. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  1499. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1500. ggml_tensor * build_graph(ggml_context * ctx) override {
  1501. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1502. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1503. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  1504. return out;
  1505. }
  1506. };
  1507. // GGML_OP_SSM_SCAN
  1508. struct test_ssm_scan : public test_case {
  1509. const ggml_type type;
  1510. const int64_t d_state;
  1511. const int64_t d_inner;
  1512. const int64_t n_seq_tokens;
  1513. const int64_t n_seqs;
  1514. std::string vars() override {
  1515. return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
  1516. }
  1517. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  1518. int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1519. : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1520. ggml_tensor * build_graph(ggml_context * ctx) override {
  1521. ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
  1522. ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1523. ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1524. ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
  1525. ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1526. ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1527. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
  1528. return out;
  1529. }
  1530. };
  1531. // GGML_OP_RWKV_WKV6
  1532. struct test_rwkv_wkv6 : public test_case {
  1533. const ggml_type type;
  1534. const int64_t head_count;
  1535. const int64_t head_size;
  1536. const int64_t n_seq_tokens;
  1537. const int64_t n_seqs;
  1538. std::string vars() override {
  1539. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1540. }
  1541. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  1542. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1543. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1544. ggml_tensor * build_graph(ggml_context * ctx) override {
  1545. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1546. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1547. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1548. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1549. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  1550. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1551. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1552. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  1553. return out;
  1554. }
  1555. };
  1556. // GGML_OP_GATED_LINEAR_ATTN
  1557. struct test_gla : public test_case {
  1558. const ggml_type type;
  1559. const int64_t head_count;
  1560. const int64_t head_size;
  1561. const int64_t n_seq_tokens;
  1562. const int64_t n_seqs;
  1563. std::string vars() override {
  1564. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1565. }
  1566. test_gla(ggml_type type = GGML_TYPE_F32,
  1567. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1568. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1569. ggml_tensor * build_graph(ggml_context * ctx) override {
  1570. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1571. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1572. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1573. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1574. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1575. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1576. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  1577. return out;
  1578. }
  1579. };
  1580. // GGML_OP_MUL_MAT
  1581. struct test_mul_mat : public test_case {
  1582. const ggml_type type_a;
  1583. const ggml_type type_b;
  1584. const int64_t m;
  1585. const int64_t n;
  1586. const int64_t k;
  1587. const std::array<int64_t, 2> bs; // dims 3 and 4
  1588. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1589. const std::array<int64_t, 4> per; // permutation of dimensions
  1590. std::string vars() override {
  1591. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per);
  1592. }
  1593. double max_nmse_err() override {
  1594. return 5e-4;
  1595. }
  1596. int64_t grad_nmax() override {
  1597. return 20000;
  1598. }
  1599. uint64_t op_flops(ggml_tensor * t) override {
  1600. GGML_UNUSED(t);
  1601. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  1602. }
  1603. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1604. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1605. std::array<int64_t, 2> bs = {10, 10},
  1606. std::array<int64_t, 2> nr = {2, 2},
  1607. std::array<int64_t, 4> per = {0, 1, 2, 3})
  1608. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {}
  1609. ggml_tensor * build_graph(ggml_context * ctx) override {
  1610. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1611. ggml_tensor * a;
  1612. ggml_tensor * b;
  1613. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  1614. if (npermuted > 0) {
  1615. GGML_ASSERT(npermuted == 2);
  1616. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  1617. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  1618. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  1619. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  1620. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  1621. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  1622. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  1623. if (!ggml_is_quantized(type_a)) {
  1624. if (bs[1] == 1 && nr[1] == 1) {
  1625. ggml_set_param(ctx, a);
  1626. }
  1627. ggml_set_param(ctx, b);
  1628. }
  1629. ggml_set_name(a, "a");
  1630. ggml_set_name(b, "b");
  1631. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  1632. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  1633. ggml_set_name(a, "a_permuted");
  1634. ggml_set_name(b, "b_permuted");
  1635. } else {
  1636. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  1637. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1638. if (!ggml_is_quantized(type_a)) {
  1639. if (bs[1] == 1 && nr[1] == 1) {
  1640. ggml_set_param(ctx, a);
  1641. }
  1642. ggml_set_param(ctx, b);
  1643. }
  1644. ggml_set_name(a, "a");
  1645. ggml_set_name(b, "b");
  1646. }
  1647. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  1648. ggml_set_name(out, "out");
  1649. return out;
  1650. }
  1651. };
  1652. // GGML_OP_MUL_MAT_ID
  1653. struct test_mul_mat_id : public test_case {
  1654. const ggml_type type_a;
  1655. const ggml_type type_b;
  1656. const int n_mats;
  1657. const int n_used;
  1658. const bool b; // brodcast b matrix
  1659. const int64_t m;
  1660. const int64_t n;
  1661. const int64_t k;
  1662. std::string vars() override {
  1663. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  1664. }
  1665. double max_nmse_err() override {
  1666. return 5e-4;
  1667. }
  1668. uint64_t op_flops(ggml_tensor * t) override {
  1669. GGML_UNUSED(t);
  1670. return 2 * m * k * n * n_used;
  1671. }
  1672. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1673. int n_mats = 8, int n_used = 2, bool b = false,
  1674. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  1675. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  1676. m(m), n(n), k(k) {
  1677. GGML_ASSERT(n_used <= n_mats);
  1678. }
  1679. ggml_tensor * build_graph(ggml_context * ctx) override {
  1680. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1681. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  1682. ggml_set_name(as, "as");
  1683. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  1684. ggml_set_name(ids, "ids");
  1685. if (n_used != n_mats) {
  1686. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  1687. ggml_set_name(ids, "view_of_ids");
  1688. }
  1689. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  1690. ggml_set_name(b, "b");
  1691. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  1692. ggml_set_name(out, "out");
  1693. return out;
  1694. }
  1695. void initialize_tensors(ggml_context * ctx) override {
  1696. std::random_device rd;
  1697. std::default_random_engine rng(rd());
  1698. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1699. if (t->type == GGML_TYPE_I32) {
  1700. if (ggml_is_view_op(t->op)) { continue; }
  1701. // ids
  1702. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1703. std::vector<int32_t> data(t->ne[0]);
  1704. for (int i = 0; i < t->ne[0]; i++) {
  1705. data[i] = i % n_mats;
  1706. }
  1707. std::shuffle(data.begin(), data.end(), rng);
  1708. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  1709. }
  1710. } else {
  1711. init_tensor_uniform(t);
  1712. }
  1713. }
  1714. }
  1715. };
  1716. // GGML_OP_OUT_PROD
  1717. struct test_out_prod : public test_case {
  1718. const ggml_type type_a;
  1719. const ggml_type type_b;
  1720. const int64_t m;
  1721. const int64_t n;
  1722. const int64_t k;
  1723. const std::array<int64_t, 2> bs; // dims 3 and 4
  1724. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1725. const bool trans_b;
  1726. std::string vars() override {
  1727. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  1728. }
  1729. double max_nmse_err() override {
  1730. return 5e-4;
  1731. }
  1732. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1733. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1734. std::array<int64_t, 2> bs = {10, 10},
  1735. std::array<int64_t, 2> nr = {2, 2},
  1736. bool trans_b = false)
  1737. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  1738. ggml_tensor * build_graph(ggml_context * ctx) override {
  1739. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  1740. ggml_set_name(a, "a");
  1741. ggml_tensor * b;
  1742. if (trans_b) {
  1743. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1744. b = ggml_transpose(ctx, b);
  1745. } else {
  1746. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  1747. }
  1748. ggml_set_name(b, "b");
  1749. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  1750. ggml_set_name(out, "out");
  1751. return out;
  1752. }
  1753. };
  1754. // GGML_OP_SQR
  1755. struct test_sqr : public test_case {
  1756. const ggml_type type;
  1757. const std::array<int64_t, 4> ne;
  1758. std::string vars() override {
  1759. return VARS_TO_STR2(type, ne);
  1760. }
  1761. test_sqr(ggml_type type = GGML_TYPE_F32,
  1762. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1763. : type(type), ne(ne) {}
  1764. ggml_tensor * build_graph(ggml_context * ctx) override {
  1765. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1766. ggml_set_param(ctx, a);
  1767. ggml_set_name(a, "a");
  1768. ggml_tensor * out = ggml_sqr(ctx, a);
  1769. ggml_set_name(out, "out");
  1770. return out;
  1771. }
  1772. float grad_eps() override {
  1773. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  1774. }
  1775. };
  1776. // GGML_OP_SQRT
  1777. struct test_sqrt : public test_case {
  1778. const ggml_type type;
  1779. const std::array<int64_t, 4> ne;
  1780. std::string vars() override {
  1781. return VARS_TO_STR2(type, ne);
  1782. }
  1783. test_sqrt(ggml_type type = GGML_TYPE_F32,
  1784. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  1785. : type(type), ne(ne) {}
  1786. ggml_tensor * build_graph(ggml_context * ctx) override {
  1787. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1788. ggml_set_param(ctx, a);
  1789. ggml_set_name(a, "a");
  1790. ggml_tensor * out = ggml_sqrt(ctx, a);
  1791. ggml_set_name(out, "out");
  1792. return out;
  1793. }
  1794. void initialize_tensors(ggml_context * ctx) override {
  1795. // fill with positive values
  1796. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1797. init_tensor_uniform(t, 50.0f, 100.0f);
  1798. }
  1799. }
  1800. float grad_eps() override {
  1801. return 20.0f;
  1802. }
  1803. bool grad_precise() override {
  1804. return true;
  1805. }
  1806. };
  1807. // GGML_OP_LOG
  1808. struct test_log : public test_case {
  1809. const ggml_type type;
  1810. const std::array<int64_t, 4> ne;
  1811. std::string vars() override {
  1812. return VARS_TO_STR2(type, ne);
  1813. }
  1814. test_log(ggml_type type = GGML_TYPE_F32,
  1815. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1816. : type(type), ne(ne) {}
  1817. ggml_tensor * build_graph(ggml_context * ctx) override {
  1818. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1819. ggml_set_param(ctx, a);
  1820. ggml_set_name(a, "a");
  1821. ggml_tensor * out = ggml_log(ctx, a);
  1822. ggml_set_name(out, "out");
  1823. return out;
  1824. }
  1825. void initialize_tensors(ggml_context * ctx) override {
  1826. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1827. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  1828. init_tensor_uniform(t, 0.9f, 1.1f);
  1829. }
  1830. }
  1831. bool grad_precise() override {
  1832. return true;
  1833. }
  1834. };
  1835. // GGML_OP_SIN
  1836. struct test_sin : public test_case {
  1837. const ggml_type type;
  1838. const std::array<int64_t, 4> ne;
  1839. std::string vars() override {
  1840. return VARS_TO_STR2(type, ne);
  1841. }
  1842. test_sin(ggml_type type = GGML_TYPE_F32,
  1843. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1844. : type(type), ne(ne) {}
  1845. ggml_tensor * build_graph(ggml_context * ctx) override {
  1846. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1847. ggml_set_param(ctx, a);
  1848. ggml_set_name(a, "a");
  1849. ggml_tensor * out = ggml_sin(ctx, a);
  1850. ggml_set_name(out, "out");
  1851. return out;
  1852. }
  1853. void initialize_tensors(ggml_context * ctx) override {
  1854. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1855. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1856. }
  1857. }
  1858. double max_maa_err() override {
  1859. return 1e-3;
  1860. }
  1861. float grad_eps() override {
  1862. return 0.2f;
  1863. }
  1864. bool grad_precise() override {
  1865. return true;
  1866. }
  1867. };
  1868. // GGML_OP_COS
  1869. struct test_cos : public test_case {
  1870. const ggml_type type;
  1871. const std::array<int64_t, 4> ne;
  1872. std::string vars() override {
  1873. return VARS_TO_STR2(type, ne);
  1874. }
  1875. test_cos(ggml_type type = GGML_TYPE_F32,
  1876. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1877. : type(type), ne(ne) {}
  1878. ggml_tensor * build_graph(ggml_context * ctx) override {
  1879. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1880. ggml_set_param(ctx, a);
  1881. ggml_set_name(a, "a");
  1882. ggml_tensor * out = ggml_cos(ctx, a);
  1883. ggml_set_name(out, "out");
  1884. return out;
  1885. }
  1886. void initialize_tensors(ggml_context * ctx) override {
  1887. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1888. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1889. }
  1890. }
  1891. double max_maa_err() override {
  1892. return 1e-3;
  1893. }
  1894. float grad_eps() override {
  1895. return 0.2f;
  1896. }
  1897. bool grad_precise() override {
  1898. return true;
  1899. }
  1900. };
  1901. // GGML_OP_CLAMP
  1902. struct test_clamp : public test_case {
  1903. const ggml_type type;
  1904. const std::array<int64_t, 4> ne;
  1905. float min;
  1906. float max;
  1907. std::string vars() override {
  1908. return VARS_TO_STR4(type, ne, min, max);
  1909. }
  1910. test_clamp(ggml_type type = GGML_TYPE_F32,
  1911. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1912. float min = -0.5f, float max = 0.5f)
  1913. : type(type), ne(ne), min(min), max(max) {}
  1914. ggml_tensor * build_graph(ggml_context * ctx) override {
  1915. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1916. ggml_set_name(a, "a");
  1917. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  1918. ggml_set_name(out, "out");
  1919. return out;
  1920. }
  1921. float grad_eps() override {
  1922. return 1e-2f;
  1923. }
  1924. std::vector<float> grad_expect() override {
  1925. return {0.0f, 1.0f};
  1926. }
  1927. };
  1928. // GGML_OP_DIAG_MASK_INF
  1929. struct test_diag_mask_inf : public test_case {
  1930. const ggml_type type;
  1931. const std::array<int64_t, 4> ne;
  1932. const int n_past;
  1933. std::string vars() override {
  1934. return VARS_TO_STR3(type, ne, n_past);
  1935. }
  1936. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  1937. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  1938. int n_past = 5)
  1939. : type(type), ne(ne), n_past(n_past) {}
  1940. ggml_tensor * build_graph(ggml_context * ctx) override {
  1941. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1942. ggml_set_param(ctx, a);
  1943. ggml_set_name(a, "a");
  1944. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  1945. ggml_set_name(out, "out");
  1946. return out;
  1947. }
  1948. };
  1949. // GGML_OP_SOFT_MAX
  1950. struct test_soft_max : public test_case {
  1951. const ggml_type type;
  1952. const std::array<int64_t, 4> ne;
  1953. const bool mask;
  1954. const ggml_type m_prec;
  1955. const float scale;
  1956. const float max_bias;
  1957. std::string vars() override {
  1958. return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
  1959. }
  1960. // the 1024 test with bias occasionally fails:
  1961. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  1962. virtual double max_nmse_err() override {
  1963. return 1e-6;
  1964. }
  1965. test_soft_max(ggml_type type = GGML_TYPE_F32,
  1966. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1967. bool mask = false,
  1968. ggml_type m_prec = GGML_TYPE_F32,
  1969. float scale = 1.0f,
  1970. float max_bias = 0.0f)
  1971. : type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
  1972. ggml_tensor * build_graph(ggml_context * ctx) override {
  1973. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1974. ggml_set_param(ctx, a);
  1975. ggml_set_name(a, "a");
  1976. ggml_tensor * mask = nullptr;
  1977. if (this->mask) {
  1978. mask = ggml_new_tensor_2d(ctx, m_prec, ne[0], ne[1]);
  1979. ggml_set_name(mask, "mask");
  1980. }
  1981. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  1982. ggml_set_name(out, "out");
  1983. return out;
  1984. }
  1985. bool grad_precise() override {
  1986. return true;
  1987. }
  1988. };
  1989. // GGML_OP_SOFT_MAX_BACK
  1990. struct test_soft_max_back : public test_case {
  1991. const ggml_type type;
  1992. const std::array<int64_t, 4> ne;
  1993. const float scale;
  1994. const float max_bias;
  1995. std::string vars() override {
  1996. return VARS_TO_STR4(type, ne, scale, max_bias);
  1997. }
  1998. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  1999. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2000. float scale = 1.0f,
  2001. float max_bias = 0.0f)
  2002. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  2003. ggml_tensor * build_graph(ggml_context * ctx) override {
  2004. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2005. ggml_set_name(a, "a");
  2006. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2007. ggml_set_name(a, "a");
  2008. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  2009. ggml_set_name(out, "out");
  2010. return out;
  2011. }
  2012. };
  2013. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  2014. struct test_rope : public test_case {
  2015. const ggml_type type;
  2016. const std::array<int64_t, 4> ne_a;
  2017. int n_dims;
  2018. int mode;
  2019. int n_ctx; // used to generate positions
  2020. float fs; // freq_scale
  2021. float ef; // ext_factor
  2022. float af; // attn_factor
  2023. bool ff;
  2024. int v; // view (1 : non-contiguous a)
  2025. bool forward;
  2026. std::string vars() override {
  2027. // forward can be inferred from the op, does not need to be printed
  2028. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  2029. }
  2030. test_rope(ggml_type type = GGML_TYPE_F32,
  2031. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  2032. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  2033. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  2034. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  2035. ggml_tensor * build_graph(ggml_context * ctx) override {
  2036. ggml_tensor * a;
  2037. if (v & 1) {
  2038. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2039. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2040. if (forward) {
  2041. ggml_set_param(ctx, a);
  2042. }
  2043. ggml_set_name(a, "a");
  2044. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2045. ggml_set_name(a, "view_of_a");
  2046. } else {
  2047. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2048. if (forward) {
  2049. ggml_set_param(ctx, a);
  2050. }
  2051. ggml_set_name(a, "a");
  2052. }
  2053. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2054. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2055. ggml_tensor * pos;
  2056. if (is_mrope || is_vision) {
  2057. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2058. } else {
  2059. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2060. }
  2061. ggml_set_name(pos, "pos");
  2062. ggml_tensor * freq = nullptr;
  2063. if (ff) {
  2064. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  2065. ggml_set_name(freq, "freq");
  2066. }
  2067. ggml_tensor * out;
  2068. if (is_mrope) {
  2069. if (is_vision) {
  2070. GGML_ASSERT(n_dims/4 > 0);
  2071. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2072. if (forward) {
  2073. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2074. } else {
  2075. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2076. }
  2077. } else {
  2078. GGML_ASSERT(n_dims/3 > 0);
  2079. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2080. if (forward) {
  2081. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2082. } else {
  2083. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2084. }
  2085. }
  2086. } else {
  2087. if (forward) {
  2088. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2089. } else {
  2090. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2091. }
  2092. }
  2093. ggml_set_name(out, "out");
  2094. return out;
  2095. }
  2096. void initialize_tensors(ggml_context * ctx) override {
  2097. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2098. if (t->type == GGML_TYPE_I32) {
  2099. // pos
  2100. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2101. std::vector<int> data(num_pos_ids);
  2102. for (int i = 0; i < num_pos_ids; i++) {
  2103. data[i] = rand() % n_ctx;
  2104. }
  2105. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2106. } else {
  2107. if (t->ne[0] == n_dims/2) {
  2108. // frequency factors in the range [0.9f, 1.1f]
  2109. init_tensor_uniform(t, 0.9f, 1.1f);
  2110. } else {
  2111. init_tensor_uniform(t);
  2112. }
  2113. }
  2114. }
  2115. }
  2116. double max_maa_err() override {
  2117. return 1e-3;
  2118. }
  2119. bool grad_precise() override {
  2120. return true;
  2121. }
  2122. };
  2123. // GGML_OP_POOL2D
  2124. struct test_pool2d : public test_case {
  2125. enum ggml_op_pool pool_type;
  2126. const ggml_type type_input;
  2127. const std::array<int64_t, 4> ne_input;
  2128. // kernel size
  2129. const int k0;
  2130. const int k1;
  2131. // stride
  2132. const int s0;
  2133. const int s1;
  2134. // padding
  2135. const int p0;
  2136. const int p1;
  2137. std::string vars() override {
  2138. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  2139. }
  2140. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  2141. ggml_type type_input = GGML_TYPE_F32,
  2142. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2143. int k0 = 3, int k1 = 3,
  2144. int s0 = 1, int s1 = 1,
  2145. int p0 = 1, int p1 = 1)
  2146. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  2147. ggml_tensor * build_graph(ggml_context * ctx) override {
  2148. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2149. ggml_set_param(ctx, input);
  2150. ggml_set_name(input, "input");
  2151. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  2152. ggml_set_name(out, "out");
  2153. return out;
  2154. }
  2155. };
  2156. // GGML_OP_CONV_TRANSPOSE_1D
  2157. struct test_conv_transpose_1d : public test_case {
  2158. const std::array<int64_t, 4> ne_input;
  2159. const std::array<int64_t, 4> ne_kernel;
  2160. const int s0; // stride
  2161. const int p0; // padding
  2162. const int d0; // dilation
  2163. std::string vars() override {
  2164. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  2165. }
  2166. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
  2167. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2168. int s0 = 1, int p0 = 0, int d0 = 1)
  2169. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  2170. ggml_tensor * build_graph(ggml_context * ctx) override {
  2171. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2172. ggml_set_name(input, "input");
  2173. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2174. ggml_set_name(kernel, "kernel");
  2175. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  2176. ggml_set_name(out, "out");
  2177. return out;
  2178. }
  2179. };
  2180. // GGML_OP_IM2COL
  2181. struct test_im2col : public test_case {
  2182. const ggml_type type_input;
  2183. const ggml_type type_kernel;
  2184. const ggml_type dst_type;
  2185. const std::array<int64_t, 4> ne_input;
  2186. const std::array<int64_t, 4> ne_kernel;
  2187. // stride
  2188. const int s0;
  2189. const int s1;
  2190. // padding
  2191. const int p0;
  2192. const int p1;
  2193. // dilation
  2194. const int d0;
  2195. const int d1;
  2196. // mode
  2197. const bool is_2D;
  2198. std::string vars() override {
  2199. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  2200. }
  2201. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  2202. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2203. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2204. int s0 = 1, int s1 = 1,
  2205. int p0 = 1, int p1 = 1,
  2206. int d0 = 1, int d1 = 1,
  2207. bool is_2D = true)
  2208. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  2209. ggml_tensor * build_graph(ggml_context * ctx) override {
  2210. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2211. ggml_set_param(ctx, input);
  2212. ggml_set_name(input, "input");
  2213. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  2214. ggml_set_name(kernel, "kernel");
  2215. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  2216. ggml_set_name(out, "out");
  2217. return out;
  2218. }
  2219. };
  2220. // GGML_OP_CONCAT
  2221. struct test_concat : public test_case {
  2222. const ggml_type type;
  2223. const std::array<int64_t, 4> ne_a;
  2224. const int64_t ne_b_d;
  2225. const int dim;
  2226. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  2227. std::string vars() override {
  2228. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  2229. }
  2230. test_concat(ggml_type type = GGML_TYPE_F32,
  2231. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  2232. int64_t ne_b_d = 5,
  2233. int dim = 2, int v = 0)
  2234. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  2235. ggml_tensor * build_graph(ggml_context * ctx) override {
  2236. auto ne_b = ne_a;
  2237. ne_b[dim] = ne_b_d;
  2238. ggml_tensor * a;
  2239. if (v & 1) {
  2240. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2241. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2242. ggml_set_name(a, "a");
  2243. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2244. ggml_set_name(a, "view_of_a");
  2245. } else {
  2246. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2247. ggml_set_name(a, "a");
  2248. }
  2249. ggml_tensor * b;
  2250. if (v & 2) {
  2251. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  2252. b = ggml_new_tensor(ctx, type, 4, ne.data());
  2253. ggml_set_name(b, "b");
  2254. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  2255. ggml_set_name(b, "view_of_b");
  2256. } else {
  2257. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2258. ggml_set_name(b, "b");
  2259. }
  2260. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  2261. ggml_set_name(out, "out");
  2262. return out;
  2263. }
  2264. };
  2265. // GGML_OP_ARGSORT
  2266. struct test_argsort : public test_case {
  2267. const ggml_type type;
  2268. const std::array<int64_t, 4> ne;
  2269. ggml_sort_order order;
  2270. std::string vars() override {
  2271. return VARS_TO_STR3(type, ne, order);
  2272. }
  2273. test_argsort(ggml_type type = GGML_TYPE_F32,
  2274. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  2275. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  2276. : type(type), ne(ne), order(order) {}
  2277. ggml_tensor * build_graph(ggml_context * ctx) override {
  2278. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2279. ggml_set_name(a, "a");
  2280. ggml_tensor * out = ggml_argsort(ctx, a, order);
  2281. ggml_set_name(out, "out");
  2282. return out;
  2283. }
  2284. void initialize_tensors(ggml_context * ctx) override {
  2285. std::random_device rd;
  2286. std::default_random_engine rng(rd());
  2287. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2288. if (t->type == GGML_TYPE_I32) {
  2289. // indices
  2290. std::vector<int> data(ggml_nelements(t));
  2291. for (int i = 0; i < ggml_nelements(t); i++) {
  2292. data[i] = rand();
  2293. }
  2294. std::shuffle(data.begin(), data.end(), rng);
  2295. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  2296. } else if (t->type == GGML_TYPE_F32) {
  2297. // initialize with unique values to avoid ties
  2298. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2299. std::vector<float> data(t->ne[0]);
  2300. for (int i = 0; i < t->ne[0]; i++) {
  2301. data[i] = i;
  2302. }
  2303. std::shuffle(data.begin(), data.end(), rng);
  2304. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2305. }
  2306. } else {
  2307. GGML_ABORT("fatal error");
  2308. }
  2309. }
  2310. }
  2311. };
  2312. // GGML_OP_SUM
  2313. struct test_sum : public test_case {
  2314. const ggml_type type;
  2315. const std::array<int64_t, 4> ne;
  2316. std::string vars() override {
  2317. return VARS_TO_STR2(type, ne);
  2318. }
  2319. test_sum(ggml_type type = GGML_TYPE_F32,
  2320. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2321. : type(type), ne(ne) {}
  2322. ggml_tensor * build_graph(ggml_context * ctx) override {
  2323. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2324. ggml_set_param(ctx, a);
  2325. ggml_set_name(a, "a");
  2326. ggml_tensor * out = ggml_sum(ctx, a);
  2327. ggml_set_name(out, "out");
  2328. return out;
  2329. }
  2330. float grad_eps() override {
  2331. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  2332. }
  2333. };
  2334. // GGML_OP_SUM_ROWS
  2335. struct test_sum_rows : public test_case {
  2336. const ggml_type type;
  2337. const std::array<int64_t, 4> ne;
  2338. std::string vars() override {
  2339. return VARS_TO_STR2(type, ne);
  2340. }
  2341. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  2342. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2343. : type(type), ne(ne) {}
  2344. ggml_tensor * build_graph(ggml_context * ctx) override {
  2345. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2346. ggml_set_param(ctx, a);
  2347. ggml_set_name(a, "a");
  2348. ggml_tensor * out = ggml_sum_rows(ctx, a);
  2349. ggml_set_name(out, "out");
  2350. return out;
  2351. }
  2352. };
  2353. // GGML_OP_MEAN
  2354. struct test_mean : public test_case {
  2355. const ggml_type type;
  2356. const std::array<int64_t, 4> ne;
  2357. std::string vars() override {
  2358. return VARS_TO_STR2(type, ne);
  2359. }
  2360. test_mean(ggml_type type = GGML_TYPE_F32,
  2361. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2362. : type(type), ne(ne) {}
  2363. ggml_tensor * build_graph(ggml_context * ctx) override {
  2364. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2365. ggml_set_param(ctx, a);
  2366. ggml_set_name(a, "a");
  2367. ggml_tensor * out = ggml_mean(ctx, a);
  2368. ggml_set_name(out, "out");
  2369. return out;
  2370. }
  2371. float grad_eps() override {
  2372. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2373. }
  2374. };
  2375. // GGML_OP_UPSCALE
  2376. struct test_upscale : public test_case {
  2377. const ggml_type type;
  2378. const std::array<int64_t, 4> ne;
  2379. const int32_t scale_factor;
  2380. const bool transpose;
  2381. std::string vars() override {
  2382. return VARS_TO_STR4(type, ne, scale_factor, transpose);
  2383. }
  2384. test_upscale(ggml_type type = GGML_TYPE_F32,
  2385. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  2386. int32_t scale_factor = 2, bool transpose = false)
  2387. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
  2388. ggml_tensor * build_graph(ggml_context * ctx) override {
  2389. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2390. ggml_set_name(a, "a");
  2391. if (transpose) {
  2392. a = ggml_transpose(ctx, a);
  2393. ggml_set_name(a, "a_transposed");
  2394. }
  2395. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  2396. ggml_set_name(out, "out");
  2397. return out;
  2398. }
  2399. };
  2400. // GGML_OP_UPSCALE (ext)
  2401. struct test_upscale_ext : public test_case {
  2402. const ggml_type type;
  2403. const std::array<int64_t, 4> ne;
  2404. const std::array<int64_t, 4> ne_tgt;
  2405. std::string vars() override {
  2406. return VARS_TO_STR3(type, ne, ne_tgt);
  2407. }
  2408. test_upscale_ext(ggml_type type = GGML_TYPE_F32,
  2409. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  2410. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
  2411. : type(type), ne(ne), ne_tgt(ne_tgt) {}
  2412. ggml_tensor * build_graph(ggml_context * ctx) override {
  2413. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2414. ggml_set_name(a, "a");
  2415. ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
  2416. ggml_set_name(out, "out");
  2417. return out;
  2418. }
  2419. };
  2420. // GGML_OP_GROUP_NORM
  2421. struct test_group_norm : public test_case {
  2422. const ggml_type type;
  2423. const std::array<int64_t, 4> ne;
  2424. const int32_t num_groups;
  2425. const float eps;
  2426. std::string vars() override {
  2427. return VARS_TO_STR4(type, ne, num_groups, eps);
  2428. }
  2429. test_group_norm(ggml_type type = GGML_TYPE_F32,
  2430. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2431. int32_t num_groups = 32,
  2432. float eps = 1e-6f)
  2433. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  2434. ggml_tensor * build_graph(ggml_context * ctx) override {
  2435. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2436. ggml_set_name(a, "a");
  2437. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  2438. ggml_set_name(out, "out");
  2439. return out;
  2440. }
  2441. };
  2442. // GGML_OP_ACC
  2443. struct test_acc : public test_case {
  2444. const ggml_type type;
  2445. const std::array<int64_t, 4> ne_a;
  2446. const std::array<int64_t, 4> ne_b;
  2447. std::string vars() override {
  2448. return VARS_TO_STR3(type, ne_a, ne_b);
  2449. }
  2450. test_acc(ggml_type type = GGML_TYPE_F32,
  2451. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  2452. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  2453. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2454. ggml_tensor * build_graph(ggml_context * ctx) override {
  2455. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2456. ggml_set_param(ctx, a);
  2457. ggml_set_name(a, "a");
  2458. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2459. ggml_set_param(ctx, b);
  2460. ggml_set_name(b, "b");
  2461. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  2462. ggml_set_name(out, "out");
  2463. return out;
  2464. }
  2465. };
  2466. // GGML_OP_PAD
  2467. struct test_pad : public test_case {
  2468. const ggml_type type;
  2469. const std::array<int64_t, 4> ne_a;
  2470. const int pad_0;
  2471. const int pad_1;
  2472. std::string vars() override {
  2473. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2474. }
  2475. test_pad(ggml_type type = GGML_TYPE_F32,
  2476. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  2477. int pad_0 = 1, int pad_1 = 1)
  2478. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2479. ggml_tensor * build_graph(ggml_context * ctx) override {
  2480. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2481. ggml_set_name(a, "a");
  2482. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  2483. ggml_set_name(out, "out");
  2484. return out;
  2485. }
  2486. };
  2487. // GGML_OP_PAD_REFLECT_1D
  2488. struct test_pad_reflect_1d : public test_case {
  2489. const ggml_type type;
  2490. const std::array<int64_t, 4> ne_a;
  2491. const int pad_0;
  2492. const int pad_1;
  2493. std::string vars() override {
  2494. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2495. }
  2496. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  2497. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  2498. int pad_0 = 10, int pad_1 = 9)
  2499. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2500. ggml_tensor * build_graph(ggml_context * ctx) override {
  2501. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  2502. ggml_set_name(a, "a");
  2503. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  2504. ggml_set_name(out, "out");
  2505. return out;
  2506. }
  2507. };
  2508. // GGML_OP_ARANGE
  2509. struct test_arange : public test_case {
  2510. const ggml_type type;
  2511. const float start;
  2512. const float stop;
  2513. const float step;
  2514. std::string vars() override {
  2515. return VARS_TO_STR4(type, start, stop, step);
  2516. }
  2517. test_arange(ggml_type type = GGML_TYPE_F32,
  2518. float start = 0.f, float stop = 10.f, float step = 1.f)
  2519. : type(type), start(start), stop(stop), step(step) {}
  2520. ggml_tensor * build_graph(ggml_context * ctx) override {
  2521. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  2522. ggml_set_name(out, "out");
  2523. return out;
  2524. }
  2525. };
  2526. // GGML_OP_TIMESTEP_EMBEDDING
  2527. struct test_timestep_embedding : public test_case {
  2528. const ggml_type type;
  2529. const std::array<int64_t, 4> ne_a;
  2530. const int dim;
  2531. const int max_period;
  2532. std::string vars() override {
  2533. return VARS_TO_STR4(type, ne_a, dim, max_period);
  2534. }
  2535. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  2536. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  2537. int dim = 320, int max_period=10000)
  2538. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  2539. ggml_tensor * build_graph(ggml_context * ctx) override {
  2540. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2541. ggml_set_name(a, "a");
  2542. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  2543. ggml_set_name(out, "out");
  2544. return out;
  2545. }
  2546. };
  2547. // GGML_OP_LEAKY_RELU
  2548. struct test_leaky_relu : public test_case {
  2549. const ggml_type type;
  2550. const std::array<int64_t, 4> ne_a;
  2551. const float negative_slope;
  2552. std::string vars() override {
  2553. return VARS_TO_STR3(type, ne_a, negative_slope);
  2554. }
  2555. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  2556. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  2557. float negative_slope = 0.1f)
  2558. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  2559. ggml_tensor * build_graph(ggml_context * ctx) override {
  2560. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2561. ggml_set_name(a, "a");
  2562. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  2563. ggml_set_name(out, "out");
  2564. return out;
  2565. }
  2566. };
  2567. // GGML_OP_FLASH_ATTN_EXT
  2568. struct test_flash_attn_ext : public test_case {
  2569. const int64_t hs; // head size
  2570. const int64_t nh; // num heads
  2571. const int64_t nr; // repeat in Q, tests for grouped-query attention
  2572. const int64_t kv; // kv size
  2573. const int64_t nb; // batch size
  2574. const bool mask; // use mask
  2575. const float max_bias; // ALiBi
  2576. const float logit_softcap; // Gemma 2
  2577. const ggml_type type_KV;
  2578. std::array<int32_t, 4> permute;
  2579. std::string vars() override {
  2580. return VARS_TO_STR10(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, type_KV, permute);
  2581. }
  2582. double max_nmse_err() override {
  2583. return 5e-4;
  2584. }
  2585. uint64_t op_flops(ggml_tensor * t) override {
  2586. GGML_UNUSED(t);
  2587. // Just counting matmul costs:
  2588. // Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
  2589. return 2 * 2 * nh*nr * nb * hs * kv;
  2590. }
  2591. test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t nr = 1, int64_t kv = 96, int64_t nb = 8,
  2592. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16,
  2593. std::array<int32_t, 4> permute = {0, 1, 2, 3})
  2594. : hs(hs), nh(nh), nr(nr), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV), permute(permute) {}
  2595. ggml_tensor * build_graph(ggml_context * ctx) override {
  2596. const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
  2597. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
  2598. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  2599. int64_t ne_perm[4];
  2600. for (int i = 0; i < 4; ++i) {
  2601. ne_perm[permute[i]] = ne[i];
  2602. }
  2603. ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  2604. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  2605. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  2606. }
  2607. return t;
  2608. };
  2609. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hs_padded, nb, nh*nr, 1);
  2610. ggml_set_name(q, "q");
  2611. ggml_tensor * k = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2612. ggml_set_name(k, "k");
  2613. ggml_tensor * v = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2614. ggml_set_name(v, "v");
  2615. ggml_tensor * m = nullptr;
  2616. if (mask) {
  2617. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
  2618. ggml_set_name(m, "m");
  2619. }
  2620. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
  2621. ggml_set_name(out, "out");
  2622. return out;
  2623. }
  2624. bool grad_precise() override {
  2625. return true;
  2626. }
  2627. };
  2628. // GGML_OP_CROSS_ENTROPY_LOSS
  2629. struct test_cross_entropy_loss : public test_case {
  2630. const ggml_type type;
  2631. const std::array<int64_t, 4> ne;
  2632. std::string vars() override {
  2633. return VARS_TO_STR2(type, ne);
  2634. }
  2635. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  2636. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2637. : type(type), ne(ne) {}
  2638. ggml_tensor * build_graph(ggml_context * ctx) override {
  2639. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2640. ggml_set_param(ctx, logits);
  2641. ggml_set_name(logits, "logits");
  2642. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2643. // The labels are assumed to be constant -> no gradients.
  2644. ggml_set_name(labels, "labels");
  2645. // Ensure labels add up to 1:
  2646. labels = ggml_soft_max(ctx, labels);
  2647. ggml_set_name(labels, "labels_normalized");
  2648. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  2649. ggml_set_name(out, "out");
  2650. return out;
  2651. }
  2652. void initialize_tensors(ggml_context * ctx) override {
  2653. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  2654. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2655. init_tensor_uniform(t, -100.0f, 100.0f);
  2656. }
  2657. }
  2658. float grad_eps() override {
  2659. return 1.0f;
  2660. }
  2661. bool grad_precise() override {
  2662. return true;
  2663. }
  2664. };
  2665. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  2666. struct test_cross_entropy_loss_back : public test_case {
  2667. const ggml_type type;
  2668. const std::array<int64_t, 4> ne;
  2669. std::string vars() override {
  2670. return VARS_TO_STR2(type, ne);
  2671. }
  2672. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  2673. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2674. : type(type), ne(ne) {}
  2675. ggml_tensor * build_graph(ggml_context * ctx) override {
  2676. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2677. ggml_set_name(grad, "grad");
  2678. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2679. ggml_set_name(logits, "logits");
  2680. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2681. ggml_set_name(labels, "labels");
  2682. // Ensure labels add up to 1:
  2683. labels = ggml_soft_max(ctx, labels);
  2684. ggml_set_name(labels, "labels_normalized");
  2685. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  2686. ggml_set_name(out, "out");
  2687. return out;
  2688. }
  2689. };
  2690. // GGML_OP_OPT_STEP_ADAMW
  2691. struct test_opt_step_adamw : public test_case {
  2692. const ggml_type type;
  2693. const std::array<int64_t, 4> ne;
  2694. std::string vars() override {
  2695. return VARS_TO_STR2(type, ne);
  2696. }
  2697. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  2698. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2699. : type(type), ne(ne) {}
  2700. ggml_tensor * build_graph(ggml_context * ctx) override {
  2701. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2702. ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
  2703. ggml_set_name(a, "a");
  2704. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2705. ggml_set_name(grad, "grad");
  2706. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2707. ggml_set_name(grad_m, "grad_m");
  2708. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2709. ggml_set_name(grad_v, "grad_v");
  2710. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  2711. ggml_set_name(adamw_params, "adamw_params");
  2712. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  2713. ggml_set_name(out, "out");
  2714. return out;
  2715. }
  2716. void initialize_tensors(ggml_context * ctx) override {
  2717. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2718. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  2719. }
  2720. }
  2721. bool grad_precise() override {
  2722. return true;
  2723. }
  2724. };
  2725. enum llm_norm_type {
  2726. LLM_NORM,
  2727. LLM_NORM_RMS,
  2728. };
  2729. struct llama_hparams {
  2730. uint32_t n_vocab;
  2731. uint32_t n_embd;
  2732. uint32_t n_head;
  2733. uint32_t n_head_kv;
  2734. static constexpr uint32_t n_layer = 1;
  2735. uint32_t n_rot;
  2736. uint32_t n_embd_head; // dimension of values (d_v)
  2737. uint32_t n_ff;
  2738. float f_norm_eps;
  2739. float f_norm_rms_eps;
  2740. // cparams
  2741. static constexpr uint32_t n_ctx = 512; // user-specified context size
  2742. static constexpr uint32_t n_ctx_orig = n_ctx;
  2743. // batch
  2744. int32_t n_tokens;
  2745. // llm_build_context
  2746. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  2747. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  2748. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  2749. return n_embd_head * n_head_kv;
  2750. }
  2751. };
  2752. // LLM base class
  2753. struct test_llm : public test_case {
  2754. llama_hparams hp;
  2755. protected:
  2756. test_llm(llama_hparams hp)
  2757. : hp(std::move(hp)) {
  2758. }
  2759. public:
  2760. struct ggml_tensor * llm_build_norm(
  2761. struct ggml_context * ctx,
  2762. struct ggml_tensor * cur,
  2763. struct ggml_tensor * mw,
  2764. struct ggml_tensor * mb,
  2765. llm_norm_type type) {
  2766. switch (type) {
  2767. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  2768. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  2769. }
  2770. cur = ggml_mul(ctx, cur, mw);
  2771. if (mb) {
  2772. cur = ggml_add(ctx, cur, mb);
  2773. }
  2774. return cur;
  2775. }
  2776. void llm_build_kv_store(
  2777. struct ggml_context * ctx,
  2778. struct ggml_tensor * k_l,
  2779. struct ggml_tensor * v_l,
  2780. struct ggml_tensor * k_cur,
  2781. struct ggml_tensor * v_cur) {
  2782. // compute the transposed [n_tokens, n_embd] V matrix
  2783. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  2784. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  2785. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  2786. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  2787. ( hp.n_ctx)*ggml_element_size(v_l),
  2788. (hp.kv_head)*ggml_element_size(v_l));
  2789. // important: storing RoPE-ed version of K in the KV cache!
  2790. ggml_cpy(ctx, k_cur, k_cache_view);
  2791. ggml_cpy(ctx, v_cur_t, v_cache_view);
  2792. }
  2793. struct ggml_tensor * llm_build_kqv(
  2794. struct ggml_context * ctx,
  2795. struct ggml_tensor * k_l,
  2796. struct ggml_tensor * v_l,
  2797. struct ggml_tensor * q_cur,
  2798. struct ggml_tensor * kq_mask,
  2799. float kq_scale) {
  2800. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  2801. struct ggml_tensor * k =
  2802. ggml_view_3d(ctx, k_l,
  2803. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  2804. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  2805. ggml_row_size(k_l->type, hp.n_embd_head),
  2806. 0);
  2807. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  2808. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  2809. // split cached v into n_head heads
  2810. struct ggml_tensor * v =
  2811. ggml_view_3d(ctx, v_l,
  2812. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  2813. ggml_element_size(v_l)*hp.n_ctx,
  2814. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  2815. 0);
  2816. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  2817. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  2818. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  2819. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2820. cur = ggml_mul_mat(ctx, wo, cur);
  2821. return cur;
  2822. }
  2823. void initialize_tensors(ggml_context * ctx) override {
  2824. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2825. if (t->type == GGML_TYPE_I32) {
  2826. // pos
  2827. std::vector<int> data(hp.n_tokens);
  2828. for (int i = 0; i < hp.n_tokens; i++) {
  2829. data[i] = rand() % hp.n_ctx;
  2830. }
  2831. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  2832. } else {
  2833. init_tensor_uniform(t);
  2834. }
  2835. }
  2836. }
  2837. };
  2838. // Llama
  2839. struct test_llama : public test_llm {
  2840. static constexpr float freq_base = 10000.0f;
  2841. static constexpr float freq_scale = 1.0f;
  2842. static constexpr float ext_factor = 0.0f;
  2843. static constexpr float attn_factor = 1.0f;
  2844. static constexpr float beta_fast = 32.0f;
  2845. static constexpr float beta_slow = 1.0f;
  2846. std::string op_desc(ggml_tensor * t) override {
  2847. GGML_UNUSED(t);
  2848. return "LLAMA";
  2849. }
  2850. std::string vars() override {
  2851. auto n_tokens = hp.n_tokens;
  2852. return VARS_TO_STR1(n_tokens);
  2853. }
  2854. double max_nmse_err() override {
  2855. return 2e-3;
  2856. }
  2857. test_llama(int n_tokens = 1)
  2858. : test_llm({
  2859. /*n_vocab =*/ 32000,
  2860. /*n_embd =*/ 3200,
  2861. /*n_head =*/ 32,
  2862. /*n_head_kv =*/ 32,
  2863. /*n_rot =*/ 100,
  2864. /*n_embd_head =*/ 100,
  2865. /*n_ff =*/ 8640,
  2866. /*f_norm_eps =*/ 0.f,
  2867. /*f_norm_rms_eps =*/ 1e-5f,
  2868. /*n_tokens =*/ n_tokens,
  2869. }) {
  2870. }
  2871. ggml_tensor * build_graph(ggml_context * ctx) override {
  2872. struct ggml_tensor * cur;
  2873. struct ggml_tensor * inpL;
  2874. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  2875. // inp_pos - contains the positions
  2876. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  2877. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2878. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  2879. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2880. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2881. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  2882. struct ggml_tensor * inpSA = inpL;
  2883. // norm
  2884. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2885. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  2886. // self-attention
  2887. {
  2888. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2889. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2890. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2891. // compute Q and K and RoPE them
  2892. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  2893. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  2894. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  2895. Qcur = ggml_rope_ext(
  2896. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  2897. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2898. ext_factor, attn_factor, beta_fast, beta_slow
  2899. );
  2900. Kcur = ggml_rope_ext(
  2901. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  2902. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2903. ext_factor, attn_factor, beta_fast, beta_slow
  2904. );
  2905. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  2906. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  2907. }
  2908. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  2909. // feed-forward network
  2910. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2911. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  2912. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2913. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  2914. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2915. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  2916. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  2917. cur = ggml_silu(ctx, cur);
  2918. cur = ggml_mul(ctx, cur, tmp);
  2919. cur = ggml_mul_mat(ctx, ffn_down, cur);
  2920. cur = ggml_add(ctx, cur, ffn_inp);
  2921. // input for next layer
  2922. inpL = cur;
  2923. }
  2924. cur = inpL;
  2925. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2926. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  2927. // lm_head
  2928. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  2929. cur = ggml_mul_mat(ctx, output, cur);
  2930. return cur;
  2931. }
  2932. };
  2933. // Falcon
  2934. struct test_falcon : public test_llm {
  2935. static constexpr float freq_base = 10000.0f;
  2936. static constexpr float freq_scale = 1.0f;
  2937. static constexpr float ext_factor = 0.0f;
  2938. static constexpr float attn_factor = 1.0f;
  2939. static constexpr float beta_fast = 32.0f;
  2940. static constexpr float beta_slow = 1.0f;
  2941. std::string op_desc(ggml_tensor * t) override {
  2942. GGML_UNUSED(t);
  2943. return "FALCON";
  2944. }
  2945. std::string vars() override {
  2946. auto n_tokens = hp.n_tokens;
  2947. return VARS_TO_STR1(n_tokens);
  2948. }
  2949. double max_nmse_err() override {
  2950. return 2e-3;
  2951. }
  2952. test_falcon(int n_tokens = 1)
  2953. : test_llm({
  2954. /*n_vocab =*/ 32000,
  2955. /*n_embd =*/ 3200,
  2956. /*n_head =*/ 50,
  2957. /*n_head_kv =*/ 1,
  2958. /*n_rot =*/ 64,
  2959. /*n_embd_head =*/ 64,
  2960. /*n_ff =*/ 8640,
  2961. /*f_norm_eps =*/ 1e-5f,
  2962. /*f_norm_rms_eps =*/ 0.f,
  2963. /*n_tokens =*/ n_tokens,
  2964. }) {
  2965. }
  2966. ggml_tensor * build_graph(ggml_context * ctx) override {
  2967. struct ggml_tensor * cur;
  2968. struct ggml_tensor * inpL;
  2969. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  2970. // inp_pos - contains the positions
  2971. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  2972. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2973. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  2974. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2975. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2976. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  2977. // norm
  2978. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2979. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2980. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  2981. // self-attention
  2982. {
  2983. cur = attn_norm;
  2984. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  2985. cur = ggml_mul_mat(ctx, wqkv, cur);
  2986. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  2987. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  2988. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  2989. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  2990. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  2991. // using mode = 2 for neox mode
  2992. Qcur = ggml_rope_ext(
  2993. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  2994. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  2995. );
  2996. Kcur = ggml_rope_ext(
  2997. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  2998. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  2999. );
  3000. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3001. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3002. }
  3003. struct ggml_tensor * ffn_inp = cur;
  3004. // feed forward
  3005. {
  3006. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3007. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3008. cur = attn_norm;
  3009. cur = ggml_mul_mat(ctx, ffn_up, cur);
  3010. cur = ggml_gelu(ctx, cur);
  3011. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3012. }
  3013. cur = ggml_add(ctx, cur, ffn_inp);
  3014. cur = ggml_add(ctx, cur, inpL);
  3015. // input for next layer
  3016. inpL = cur;
  3017. }
  3018. cur = inpL;
  3019. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3020. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3021. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  3022. // lm_head
  3023. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  3024. cur = ggml_mul_mat(ctx, output, cur);
  3025. return cur;
  3026. }
  3027. };
  3028. // ###########################################
  3029. // ## Section 3: GGML Op Test Instantiation ##
  3030. // ###########################################
  3031. static const ggml_type all_types[] = {
  3032. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  3033. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  3034. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3035. GGML_TYPE_Q8_0,
  3036. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3037. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  3038. GGML_TYPE_Q6_K,
  3039. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3040. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3041. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3042. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3043. };
  3044. static const ggml_type base_types[] = {
  3045. GGML_TYPE_F32, GGML_TYPE_F16,
  3046. GGML_TYPE_Q8_0, // for I8MM tests
  3047. GGML_TYPE_Q4_0,
  3048. GGML_TYPE_Q4_1, // for I8MM tests
  3049. GGML_TYPE_Q4_K,
  3050. GGML_TYPE_IQ2_XXS
  3051. };
  3052. static const ggml_type other_types[] = {
  3053. GGML_TYPE_Q4_1,
  3054. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3055. GGML_TYPE_Q8_0,
  3056. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3057. GGML_TYPE_Q5_K,
  3058. GGML_TYPE_Q6_K,
  3059. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3060. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3061. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3062. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3063. GGML_TYPE_BF16,
  3064. };
  3065. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  3066. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  3067. std::vector<std::unique_ptr<test_case>> test_cases;
  3068. std::default_random_engine rng(0);
  3069. // unary ops
  3070. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3071. for (int v : {0, 1}) {
  3072. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  3073. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  3074. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  3075. }
  3076. }
  3077. }
  3078. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3079. for (ggml_type type : all_types) {
  3080. for (int b : {1, 7}) {
  3081. for (bool v : {false, true}) {
  3082. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  3083. }
  3084. }
  3085. }
  3086. for (int b : {1, 7}) {
  3087. for (bool v : {false, true}) {
  3088. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  3089. }
  3090. }
  3091. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3092. for (ggml_type type : all_types) {
  3093. for (bool v : {false, true}) {
  3094. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  3095. }
  3096. }
  3097. for (bool v : {false, true}) {
  3098. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  3099. }
  3100. for (ggml_type type_input : {GGML_TYPE_F32}) {
  3101. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  3102. for (int k0 : {1, 3}) {
  3103. for (int k1 : {1, 3}) {
  3104. for (int s0 : {1, 2}) {
  3105. for (int s1 : {1, 2}) {
  3106. for (int p0 : {0, 1}) {
  3107. for (int p1 : {0, 1}) {
  3108. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  3109. }
  3110. }
  3111. }
  3112. }
  3113. }
  3114. }
  3115. }
  3116. }
  3117. // im2col 1D
  3118. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3119. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3120. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3121. for (int s0 : {1, 3}) {
  3122. for (int p0 : {0, 3}) {
  3123. for (int d0 : {1, 3}) {
  3124. test_cases.emplace_back(new test_im2col(
  3125. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  3126. s0, 0, p0, 0, d0, 0, false));
  3127. }
  3128. }
  3129. }
  3130. // im2col 2D
  3131. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  3132. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  3133. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  3134. for (int s0 : {1, 3}) {
  3135. for (int s1 : {1, 3}) {
  3136. for (int p0 : {0, 3}) {
  3137. for (int p1 : {0, 3}) {
  3138. for (int d0 : {1, 3}) {
  3139. for (int d1 : {1, 3}) {
  3140. test_cases.emplace_back(new test_im2col(
  3141. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  3142. s0, s1, p0, p1, d0, d1, true));
  3143. }
  3144. }
  3145. }
  3146. }
  3147. }
  3148. }
  3149. // extra tests for im2col 2D
  3150. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  3151. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  3152. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  3153. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  3154. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  3155. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  3156. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  3157. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  3158. // sycl backend will limit task global_range < MAX_INT
  3159. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  3160. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3161. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3162. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3163. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3164. test_cases.emplace_back(new test_conv_transpose_1d());
  3165. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  3166. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  3167. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  3168. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  3169. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  3170. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  3171. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  3172. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  3173. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  3174. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  3175. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  3176. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3177. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  3178. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  3179. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  3180. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  3181. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  3182. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3183. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  3184. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  3185. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3186. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3187. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3188. }
  3189. for (bool view : {false, true}) {
  3190. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  3191. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  3192. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  3193. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  3194. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  3195. }
  3196. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  3197. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  3198. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  3199. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  3200. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  3201. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  3202. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  3203. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  3204. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  3205. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  3206. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3207. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  3208. }
  3209. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3210. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  3211. }
  3212. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3213. for (ggml_type type_dst : all_types) {
  3214. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3215. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3216. }
  3217. }
  3218. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  3219. for (ggml_type type_src : all_types) {
  3220. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3221. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3222. }
  3223. }
  3224. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3225. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3226. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  3227. }
  3228. }
  3229. test_cases.emplace_back(new test_cont());
  3230. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  3231. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  3232. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  3233. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  3234. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  3235. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  3236. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  3237. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  3238. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  3239. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  3240. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  3241. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  3242. }
  3243. };
  3244. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3245. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  3246. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  3247. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  3248. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  3249. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  3250. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  3251. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  3252. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  3253. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  3254. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  3255. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  3256. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  3257. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  3258. // stable diffusion
  3259. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  3260. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  3261. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  3262. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  3263. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  3264. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  3265. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  3266. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  3267. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  3268. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  3269. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  3270. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  3271. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  3272. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  3273. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  3274. }
  3275. test_cases.emplace_back(new test_add1());
  3276. test_cases.emplace_back(new test_scale());
  3277. test_cases.emplace_back(new test_silu_back());
  3278. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  3279. for (bool v : {false, true}) {
  3280. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3281. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3282. }
  3283. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3284. }
  3285. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
  3286. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
  3287. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
  3288. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
  3289. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  3290. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  3291. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  3292. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  3293. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  3294. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  3295. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  3296. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  3297. for (ggml_type type_a : all_types) {
  3298. for (int i = 1; i < 10; ++i) {
  3299. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3300. }
  3301. }
  3302. #if 1
  3303. for (ggml_type type_a : base_types) {
  3304. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3305. // test cases without permutation
  3306. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3307. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {2, 1}));
  3308. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 2}));
  3309. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {1, 1}));
  3310. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {2, 1}));
  3311. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 1}));
  3312. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 1}));
  3313. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 2}));
  3314. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 2}));
  3315. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 1}));
  3316. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {2, 1}));
  3317. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 2}));
  3318. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {1, 1}));
  3319. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {2, 1}));
  3320. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 1}));
  3321. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 1}));
  3322. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 2}));
  3323. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 2}));
  3324. // test cases with permutation
  3325. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3326. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3327. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3328. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3329. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3330. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3331. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3332. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3333. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3334. }
  3335. }
  3336. for (ggml_type type_a : other_types) {
  3337. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3338. if (ggml_blck_size(type_a) != 256) {
  3339. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  3340. }
  3341. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3342. }
  3343. }
  3344. #else
  3345. // m = a rows
  3346. // n = b rows
  3347. // k = cols
  3348. std::uniform_int_distribution<> dist_m(1, 128);
  3349. std::uniform_int_distribution<> dist_n(16, 128);
  3350. std::uniform_int_distribution<> dist_k(1, 16);
  3351. for (int i = 0; i < 1000; i++) {
  3352. for (ggml_type type_a : all_types) {
  3353. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3354. int m = dist_m(rng);
  3355. int n = dist_n(rng);
  3356. int k = dist_k(rng) * ggml_blck_size(type_a);
  3357. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  3358. }
  3359. }
  3360. }
  3361. #endif
  3362. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  3363. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  3364. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  3365. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  3366. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  3367. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  3368. // sycl backend will limit task global_range < MAX_INT
  3369. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  3370. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3371. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3372. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  3373. for (ggml_type type_a : base_types) {
  3374. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3375. for (int n_mats : {4, 8}) {
  3376. for (int n_used : {1, 2, 4}) {
  3377. for (bool b : {false, true}) {
  3378. for (int n : {1, 32, 129}) {
  3379. int m = 512;
  3380. int k = 256;
  3381. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3382. }
  3383. }
  3384. }
  3385. }
  3386. }
  3387. }
  3388. for (ggml_type type_a : other_types) {
  3389. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3390. for (int n_mats : {4}) {
  3391. for (int n_used : {2}) {
  3392. for (bool b : {false}) {
  3393. for (int n : {1, 32}) {
  3394. int m = 512;
  3395. int k = 256;
  3396. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3397. }
  3398. }
  3399. }
  3400. }
  3401. }
  3402. }
  3403. for (ggml_type type_a : base_types) {
  3404. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3405. for (int n : {1, 16}) {
  3406. for (int k : {1, 16}) {
  3407. for (int bs2 : {1, 3}) {
  3408. for (int bs3 : {1, 3}) {
  3409. for (int nr2 : {1, 2}) {
  3410. for (int nr3 : {1, 2}) {
  3411. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  3412. }
  3413. }
  3414. }
  3415. }
  3416. }
  3417. }
  3418. }
  3419. }
  3420. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3421. test_cases.emplace_back(new test_sqr(type));
  3422. test_cases.emplace_back(new test_sqrt(type));
  3423. test_cases.emplace_back(new test_log(type));
  3424. test_cases.emplace_back(new test_sin(type));
  3425. test_cases.emplace_back(new test_cos(type));
  3426. test_cases.emplace_back(new test_clamp(type));
  3427. }
  3428. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  3429. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  3430. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  3431. #if 0
  3432. std::uniform_int_distribution<> dist_ne1(1, 50);
  3433. int exponent = 1;
  3434. while (exponent < (1 << 17)) {
  3435. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  3436. for (int n = 0; n < 10; ++n) {
  3437. int64_t ne0 = dist_ne0(rng);
  3438. int64_t ne1 = dist_ne1(rng);
  3439. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  3440. }
  3441. exponent <<= 1;
  3442. }
  3443. #endif
  3444. for (bool mask : {false, true}) {
  3445. for (float max_bias : {0.0f, 8.0f}) {
  3446. if (!mask && max_bias > 0.0f) continue;
  3447. for (float scale : {1.0f, 0.1f}) {
  3448. for (int64_t ne0 : {16, 1024}) {
  3449. for (int64_t ne1 : {16, 1024}) {
  3450. if (mask) {
  3451. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3452. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
  3453. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
  3454. }
  3455. } else {
  3456. /* The precision of mask here doesn't matter as boolean mask is false */
  3457. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3458. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3459. }
  3460. }
  3461. }
  3462. }
  3463. }
  3464. }
  3465. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3466. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3467. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
  3468. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3469. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3470. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
  3471. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
  3472. for (float max_bias : {0.0f, 8.0f}) {
  3473. for (float scale : {1.0f, 0.1f}) {
  3474. for (int64_t ne0 : {16, 1024}) {
  3475. for (int64_t ne1 : {16, 1024}) {
  3476. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  3477. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  3478. }
  3479. }
  3480. }
  3481. }
  3482. for (bool fw : {true, false}) { // fw == forward
  3483. bool all = true;
  3484. for (float v : { 0, 1 }) {
  3485. for (float fs : { 1.0f, 1.4245f }) {
  3486. for (float ef : { 0.0f, 0.7465f }) {
  3487. for (float af : { 1.0f, 1.4245f }) {
  3488. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3489. for (bool ff : {false, true}) { // freq_factors
  3490. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  3491. if (all) {
  3492. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  3493. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  3494. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  3495. }
  3496. if (all) {
  3497. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3498. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3499. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3500. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  3501. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  3502. }
  3503. if (all) {
  3504. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  3505. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  3506. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  3507. }
  3508. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3509. }
  3510. }
  3511. all = false;
  3512. }
  3513. }
  3514. }
  3515. }
  3516. }
  3517. for (int v : { 0, 1, 2, 3 }) {
  3518. for (int dim : { 0, 1, 2, 3, }) {
  3519. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  3520. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  3521. }
  3522. }
  3523. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  3524. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  3525. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  3526. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  3527. }
  3528. test_cases.emplace_back(new test_sum());
  3529. test_cases.emplace_back(new test_sum_rows());
  3530. test_cases.emplace_back(new test_mean());
  3531. test_cases.emplace_back(new test_upscale());
  3532. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
  3533. test_cases.emplace_back(new test_upscale_ext());
  3534. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  3535. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  3536. test_cases.emplace_back(new test_acc());
  3537. test_cases.emplace_back(new test_pad());
  3538. test_cases.emplace_back(new test_pad_reflect_1d());
  3539. test_cases.emplace_back(new test_arange());
  3540. test_cases.emplace_back(new test_timestep_embedding());
  3541. test_cases.emplace_back(new test_leaky_relu());
  3542. for (int hs : { 64, 80, 128, 256, }) {
  3543. for (bool mask : { true, false } ) {
  3544. for (float max_bias : { 0.0f, 8.0f }) {
  3545. if (!mask && max_bias > 0.0f) continue;
  3546. for (float logit_softcap : {0.0f, 10.0f}) {
  3547. if (hs != 128 && logit_softcap != 0.0f) continue;
  3548. for (int nh : { 4, }) {
  3549. for (int nr : { 1, 4, 16 }) {
  3550. if (nr == 16 && hs != 128) continue;
  3551. for (int kv : { 512, 1024, }) {
  3552. if (nr != 1 && kv != 512) continue;
  3553. for (int nb : { 1, 3, 32, 35, }) {
  3554. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  3555. test_cases.emplace_back(new test_flash_attn_ext(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, type_KV));
  3556. // run fewer test cases permuted
  3557. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  3558. test_cases.emplace_back(new test_flash_attn_ext(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, type_KV, {0, 2, 1, 3}));
  3559. }
  3560. }
  3561. }
  3562. }
  3563. }
  3564. }
  3565. }
  3566. }
  3567. }
  3568. }
  3569. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  3570. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  3571. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  3572. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  3573. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  3574. // these tests are disabled to save execution time, but they can be handy for debugging
  3575. #if 0
  3576. test_cases.emplace_back(new test_llama(1));
  3577. test_cases.emplace_back(new test_llama(2));
  3578. test_cases.emplace_back(new test_falcon(1));
  3579. test_cases.emplace_back(new test_falcon(2));
  3580. #endif
  3581. return test_cases;
  3582. }
  3583. // Test cases for performance evaluation: should be representative of real-world use cases
  3584. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  3585. std::vector<std::unique_ptr<test_case>> test_cases;
  3586. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  3587. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  3588. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  3589. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  3590. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  3591. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3592. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3593. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3594. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3595. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3596. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3597. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3598. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  3599. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3600. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  3601. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  3602. for (ggml_type type_a : all_types) {
  3603. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3604. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  3605. }
  3606. }
  3607. }
  3608. for (int K : {3, 5}) {
  3609. for (int IC : {256, 2560}) {
  3610. for (int IW_IH : {32, 64, 256}) {
  3611. if (IC == 2560 && IW_IH == 256) {
  3612. // too big
  3613. continue;
  3614. }
  3615. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  3616. }
  3617. }
  3618. }
  3619. return test_cases;
  3620. }
  3621. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter) {
  3622. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  3623. if (params_filter == nullptr) {
  3624. return;
  3625. }
  3626. std::regex params_filter_regex(params_filter);
  3627. for (auto it = test_cases.begin(); it != test_cases.end();) {
  3628. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  3629. it = test_cases.erase(it);
  3630. continue;
  3631. }
  3632. it++;
  3633. }
  3634. };
  3635. if (mode == MODE_TEST) {
  3636. auto test_cases = make_test_cases_eval();
  3637. filter_test_cases(test_cases, params_filter);
  3638. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  3639. if (backend_cpu == NULL) {
  3640. printf(" Failed to initialize CPU backend\n");
  3641. return false;
  3642. }
  3643. size_t n_ok = 0;
  3644. for (auto & test : test_cases) {
  3645. if (test->eval(backend, backend_cpu, op_name)) {
  3646. n_ok++;
  3647. }
  3648. }
  3649. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3650. ggml_backend_free(backend_cpu);
  3651. return n_ok == test_cases.size();
  3652. }
  3653. if (mode == MODE_GRAD) {
  3654. auto test_cases = make_test_cases_eval();
  3655. filter_test_cases(test_cases, params_filter);
  3656. size_t n_ok = 0;
  3657. for (auto & test : test_cases) {
  3658. if (test->eval_grad(backend, op_name)) {
  3659. n_ok++;
  3660. }
  3661. }
  3662. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3663. return n_ok == test_cases.size();
  3664. }
  3665. if (mode == MODE_PERF) {
  3666. auto test_cases = make_test_cases_perf();
  3667. filter_test_cases(test_cases, params_filter);
  3668. for (auto & test : test_cases) {
  3669. test->eval_perf(backend, op_name);
  3670. }
  3671. return true;
  3672. }
  3673. GGML_ABORT("fatal error");
  3674. }
  3675. static void usage(char ** argv) {
  3676. printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>]\n", argv[0]);
  3677. printf(" valid modes:\n");
  3678. printf(" - test (default, compare with CPU backend for correctness)\n");
  3679. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  3680. printf(" - perf (performance evaluation)\n");
  3681. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
  3682. }
  3683. int main(int argc, char ** argv) {
  3684. test_mode mode = MODE_TEST;
  3685. const char * op_name_filter = nullptr;
  3686. const char * backend_filter = nullptr;
  3687. const char * params_filter = nullptr;
  3688. for (int i = 1; i < argc; i++) {
  3689. if (strcmp(argv[i], "test") == 0) {
  3690. mode = MODE_TEST;
  3691. } else if (strcmp(argv[i], "perf") == 0) {
  3692. mode = MODE_PERF;
  3693. } else if (strcmp(argv[i], "grad") == 0) {
  3694. mode = MODE_GRAD;
  3695. } else if (strcmp(argv[i], "-o") == 0) {
  3696. if (i + 1 < argc) {
  3697. op_name_filter = argv[++i];
  3698. } else {
  3699. usage(argv);
  3700. return 1;
  3701. }
  3702. } else if (strcmp(argv[i], "-b") == 0) {
  3703. if (i + 1 < argc) {
  3704. backend_filter = argv[++i];
  3705. } else {
  3706. usage(argv);
  3707. return 1;
  3708. }
  3709. } else if (strcmp(argv[i], "-p") == 0) {
  3710. if (i + 1 < argc) {
  3711. params_filter = argv[++i];
  3712. } else {
  3713. usage(argv);
  3714. return 1;
  3715. }
  3716. } else {
  3717. usage(argv);
  3718. return 1;
  3719. }
  3720. }
  3721. // load and enumerate backends
  3722. ggml_backend_load_all();
  3723. printf("Testing %zu devices\n\n", ggml_backend_dev_count());
  3724. size_t n_ok = 0;
  3725. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  3726. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  3727. printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
  3728. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  3729. printf(" Skipping\n");
  3730. n_ok++;
  3731. continue;
  3732. }
  3733. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  3734. printf(" Skipping CPU backend\n");
  3735. n_ok++;
  3736. continue;
  3737. }
  3738. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  3739. GGML_ASSERT(backend != NULL);
  3740. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  3741. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3742. if (ggml_backend_set_n_threads_fn) {
  3743. // TODO: better value for n_threads
  3744. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  3745. }
  3746. printf(" Device description: %s\n", ggml_backend_dev_description(dev));
  3747. size_t free, total; // NOLINT
  3748. ggml_backend_dev_memory(dev, &free, &total);
  3749. printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
  3750. printf("\n");
  3751. bool ok = test_backend(backend, mode, op_name_filter, params_filter);
  3752. printf(" Backend %s: ", ggml_backend_name(backend));
  3753. if (ok) {
  3754. printf("\033[1;32mOK\033[0m\n");
  3755. n_ok++;
  3756. } else {
  3757. printf("\033[1;31mFAIL\033[0m\n");
  3758. }
  3759. printf("\n");
  3760. ggml_backend_free(backend);
  3761. }
  3762. ggml_quantize_free();
  3763. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
  3764. if (n_ok != ggml_backend_dev_count()) {
  3765. printf("\033[1;31mFAIL\033[0m\n");
  3766. return 1;
  3767. }
  3768. printf("\033[1;32mOK\033[0m\n");
  3769. return 0;
  3770. }