ggml-rpc.cpp 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388
  1. #include "ggml-rpc.h"
  2. #include "ggml-impl.h"
  3. #include "ggml-backend-impl.h"
  4. #include <cinttypes>
  5. #include <string>
  6. #include <vector>
  7. #include <memory>
  8. #include <mutex>
  9. #include <unordered_map>
  10. #include <unordered_set>
  11. #ifdef _WIN32
  12. # define WIN32_LEAN_AND_MEAN
  13. # ifndef NOMINMAX
  14. # define NOMINMAX
  15. # endif
  16. # include <windows.h>
  17. # include <winsock2.h>
  18. #else
  19. # include <arpa/inet.h>
  20. # include <sys/socket.h>
  21. # include <sys/types.h>
  22. # include <netinet/in.h>
  23. # include <netinet/tcp.h>
  24. # include <netdb.h>
  25. # include <unistd.h>
  26. #endif
  27. #include <cstring>
  28. #define UNUSED GGML_UNUSED
  29. #define GGML_DEBUG 0
  30. #if (GGML_DEBUG >= 1)
  31. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  32. #else
  33. #define GGML_PRINT_DEBUG(...)
  34. #endif
  35. #ifdef _WIN32
  36. typedef SOCKET sockfd_t;
  37. using ssize_t = __int64;
  38. #else
  39. typedef int sockfd_t;
  40. #endif
  41. // cross-platform socket
  42. struct socket_t {
  43. sockfd_t fd;
  44. socket_t(sockfd_t fd) : fd(fd) {}
  45. ~socket_t() {
  46. GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd);
  47. #ifdef _WIN32
  48. closesocket(this->fd);
  49. #else
  50. close(this->fd);
  51. #endif
  52. }
  53. };
  54. // ggml_tensor is serialized into rpc_tensor
  55. #pragma pack(push, 1)
  56. struct rpc_tensor {
  57. uint64_t id;
  58. uint32_t type;
  59. uint64_t buffer;
  60. uint32_t ne[GGML_MAX_DIMS];
  61. uint32_t nb[GGML_MAX_DIMS];
  62. uint32_t op;
  63. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  64. int32_t flags;
  65. uint64_t src[GGML_MAX_SRC];
  66. uint64_t view_src;
  67. uint64_t view_offs;
  68. uint64_t data;
  69. char name[GGML_MAX_NAME];
  70. char padding[4];
  71. };
  72. #pragma pack(pop)
  73. static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
  74. // RPC commands
  75. enum rpc_cmd {
  76. RPC_CMD_ALLOC_BUFFER = 0,
  77. RPC_CMD_GET_ALIGNMENT,
  78. RPC_CMD_GET_MAX_SIZE,
  79. RPC_CMD_BUFFER_GET_BASE,
  80. RPC_CMD_FREE_BUFFER,
  81. RPC_CMD_BUFFER_CLEAR,
  82. RPC_CMD_SET_TENSOR,
  83. RPC_CMD_GET_TENSOR,
  84. RPC_CMD_COPY_TENSOR,
  85. RPC_CMD_GRAPH_COMPUTE,
  86. RPC_CMD_GET_DEVICE_MEMORY,
  87. RPC_CMD_COUNT,
  88. };
  89. // RPC data structures
  90. static ggml_guid_t ggml_backend_rpc_guid() {
  91. static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
  92. return &guid;
  93. }
  94. struct ggml_backend_rpc_buffer_type_context {
  95. std::string endpoint;
  96. std::string name;
  97. size_t alignment;
  98. size_t max_size;
  99. };
  100. struct ggml_backend_rpc_context {
  101. std::string endpoint;
  102. std::string name;
  103. };
  104. struct ggml_backend_rpc_buffer_context {
  105. std::shared_ptr<socket_t> sock;
  106. std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
  107. uint64_t remote_ptr;
  108. std::string name;
  109. };
  110. // RPC helper functions
  111. static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
  112. #ifdef _WIN32
  113. if (fd == INVALID_SOCKET) {
  114. return nullptr;
  115. }
  116. #else
  117. if (fd < 0) {
  118. return nullptr;
  119. }
  120. #endif
  121. return std::make_shared<socket_t>(fd);
  122. }
  123. static bool set_no_delay(sockfd_t sockfd) {
  124. int flag = 1;
  125. // set TCP_NODELAY to disable Nagle's algorithm
  126. int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
  127. return ret == 0;
  128. }
  129. static bool set_reuse_addr(sockfd_t sockfd) {
  130. int flag = 1;
  131. int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
  132. return ret == 0;
  133. }
  134. static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
  135. struct sockaddr_in addr;
  136. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  137. auto sock_ptr = make_socket(sockfd);
  138. if (sock_ptr == nullptr) {
  139. return nullptr;
  140. }
  141. if (!set_no_delay(sockfd)) {
  142. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  143. return nullptr;
  144. }
  145. addr.sin_family = AF_INET;
  146. addr.sin_port = htons(port);
  147. struct hostent * server = gethostbyname(host);
  148. if (server == NULL) {
  149. fprintf(stderr, "Cannot resolve host '%s'\n", host);
  150. return nullptr;
  151. }
  152. memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
  153. if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
  154. return nullptr;
  155. }
  156. return sock_ptr;
  157. }
  158. static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
  159. auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
  160. auto client_socket = make_socket(client_socket_fd);
  161. if (client_socket == nullptr) {
  162. return nullptr;
  163. }
  164. if (!set_no_delay(client_socket_fd)) {
  165. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  166. return nullptr;
  167. }
  168. return client_socket;
  169. }
  170. static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
  171. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  172. auto sock = make_socket(sockfd);
  173. if (sock == nullptr) {
  174. return nullptr;
  175. }
  176. if (!set_reuse_addr(sockfd)) {
  177. fprintf(stderr, "Failed to set SO_REUSEADDR\n");
  178. return nullptr;
  179. }
  180. if (inet_addr(host) == INADDR_NONE) {
  181. fprintf(stderr, "Invalid host address: %s\n", host);
  182. return nullptr;
  183. }
  184. struct sockaddr_in serv_addr;
  185. serv_addr.sin_family = AF_INET;
  186. serv_addr.sin_addr.s_addr = inet_addr(host);
  187. serv_addr.sin_port = htons(port);
  188. if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
  189. return nullptr;
  190. }
  191. if (listen(sockfd, 1) < 0) {
  192. return nullptr;
  193. }
  194. return sock;
  195. }
  196. static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
  197. size_t bytes_sent = 0;
  198. while (bytes_sent < size) {
  199. ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
  200. if (n < 0) {
  201. return false;
  202. }
  203. bytes_sent += n;
  204. }
  205. return true;
  206. }
  207. static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
  208. size_t bytes_recv = 0;
  209. while (bytes_recv < size) {
  210. ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
  211. if (n <= 0) {
  212. return false;
  213. }
  214. bytes_recv += n;
  215. }
  216. return true;
  217. }
  218. static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
  219. size_t pos = endpoint.find(':');
  220. if (pos == std::string::npos) {
  221. return false;
  222. }
  223. host = endpoint.substr(0, pos);
  224. port = std::stoi(endpoint.substr(pos + 1));
  225. return true;
  226. }
  227. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  228. // RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
  229. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  230. uint8_t cmd_byte = cmd;
  231. if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
  232. return false;
  233. }
  234. uint64_t input_size = input.size();
  235. if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
  236. return false;
  237. }
  238. if (!send_data(sock->fd, input.data(), input.size())) {
  239. return false;
  240. }
  241. uint64_t output_size;
  242. if (!recv_data(sock->fd, &output_size, sizeof(output_size))) {
  243. return false;
  244. }
  245. if (output_size == 0) {
  246. output.clear();
  247. return true;
  248. }
  249. output.resize(output_size);
  250. if (!recv_data(sock->fd, output.data(), output_size)) {
  251. return false;
  252. }
  253. return true;
  254. }
  255. // RPC client-side implementation
  256. static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
  257. static std::mutex mutex;
  258. std::lock_guard<std::mutex> lock(mutex);
  259. static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
  260. static bool initialized = false;
  261. auto it = sockets.find(endpoint);
  262. if (it != sockets.end()) {
  263. if (auto sock = it->second.lock()) {
  264. return sock;
  265. }
  266. }
  267. std::string host;
  268. int port;
  269. if (!parse_endpoint(endpoint, host, port)) {
  270. return nullptr;
  271. }
  272. #ifdef _WIN32
  273. if (!initialized) {
  274. WSADATA wsaData;
  275. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  276. if (res != 0) {
  277. return nullptr;
  278. }
  279. initialized = true;
  280. }
  281. #else
  282. UNUSED(initialized);
  283. #endif
  284. auto sock = socket_connect(host.c_str(), port);
  285. if (sock == nullptr) {
  286. return nullptr;
  287. }
  288. GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
  289. sockets[endpoint] = sock;
  290. return sock;
  291. }
  292. static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
  293. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  294. return ctx->name.c_str();
  295. }
  296. static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  297. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  298. // input serialization format: | remote_ptr (8 bytes) |
  299. std::vector<uint8_t> input(sizeof(uint64_t), 0);
  300. uint64_t remote_ptr = ctx->remote_ptr;
  301. memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
  302. std::vector<uint8_t> output;
  303. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, input, output);
  304. GGML_ASSERT(status);
  305. GGML_ASSERT(output.empty());
  306. delete ctx;
  307. }
  308. static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
  309. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  310. if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
  311. return ctx->base_cache[buffer];
  312. }
  313. // input serialization format: | remote_ptr (8 bytes) |
  314. std::vector<uint8_t> input(sizeof(uint64_t), 0);
  315. uint64_t remote_ptr = ctx->remote_ptr;
  316. memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
  317. std::vector<uint8_t> output;
  318. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, input, output);
  319. GGML_ASSERT(status);
  320. GGML_ASSERT(output.size() == sizeof(uint64_t));
  321. // output serialization format: | base_ptr (8 bytes) |
  322. uint64_t base_ptr;
  323. memcpy(&base_ptr, output.data(), sizeof(base_ptr));
  324. void * base = reinterpret_cast<void *>(base_ptr);
  325. ctx->base_cache[buffer] = base;
  326. return base;
  327. }
  328. static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
  329. rpc_tensor result;
  330. result.id = reinterpret_cast<uint64_t>(tensor);
  331. result.type = tensor->type;
  332. if (tensor->buffer) {
  333. ggml_backend_buffer_t buffer = tensor->buffer;
  334. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  335. result.buffer = ctx->remote_ptr;
  336. } else {
  337. result.buffer = 0;
  338. }
  339. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  340. result.ne[i] = tensor->ne[i];
  341. result.nb[i] = tensor->nb[i];
  342. }
  343. result.op = tensor->op;
  344. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  345. result.op_params[i] = tensor->op_params[i];
  346. }
  347. result.flags = tensor->flags;
  348. for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
  349. result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
  350. }
  351. result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
  352. result.view_offs = tensor->view_offs;
  353. result.data = reinterpret_cast<uint64_t>(tensor->data);
  354. snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
  355. return result;
  356. }
  357. static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  358. UNUSED(buffer);
  359. if (ggml_is_quantized(tensor->type)) {
  360. // TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
  361. GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor");
  362. }
  363. }
  364. static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  365. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  366. // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  367. size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
  368. std::vector<uint8_t> input(input_size, 0);
  369. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  370. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  371. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  372. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
  373. std::vector<uint8_t> output;
  374. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input, output);
  375. GGML_ASSERT(status);
  376. }
  377. static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  378. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  379. // input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
  380. int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t);
  381. std::vector<uint8_t> input(input_size, 0);
  382. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  383. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  384. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  385. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &size, sizeof(size));
  386. std::vector<uint8_t> output;
  387. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_GET_TENSOR, input, output);
  388. GGML_ASSERT(status);
  389. GGML_ASSERT(output.size() == size);
  390. // output serialization format: | data (size bytes) |
  391. memcpy(data, output.data(), size);
  392. }
  393. static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  394. // check if src and dst are on the same server
  395. ggml_backend_buffer_t src_buffer = src->buffer;
  396. ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
  397. ggml_backend_buffer_t dst_buffer = dst->buffer;
  398. ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
  399. if (src_ctx->sock != dst_ctx->sock) {
  400. return false;
  401. }
  402. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  403. // input serialization format: | rpc_tensor src | rpc_tensor dst |
  404. int input_size = 2*sizeof(rpc_tensor);
  405. std::vector<uint8_t> input(input_size, 0);
  406. rpc_tensor rpc_src = serialize_tensor(src);
  407. rpc_tensor rpc_dst = serialize_tensor(dst);
  408. memcpy(input.data(), &rpc_src, sizeof(rpc_src));
  409. memcpy(input.data() + sizeof(rpc_src), &rpc_dst, sizeof(rpc_dst));
  410. std::vector<uint8_t> output;
  411. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_COPY_TENSOR, input, output);
  412. GGML_ASSERT(status);
  413. // output serialization format: | result (1 byte) |
  414. GGML_ASSERT(output.size() == 1);
  415. return output[0];
  416. }
  417. static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  418. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  419. // serialization format: | bufptr (8 bytes) | value (1 byte) |
  420. int input_size = sizeof(uint64_t) + sizeof(uint8_t);
  421. std::vector<uint8_t> input(input_size, 0);
  422. memcpy(input.data(), &ctx->remote_ptr, sizeof(ctx->remote_ptr));
  423. memcpy(input.data() + sizeof(ctx->remote_ptr), &value, sizeof(value));
  424. std::vector<uint8_t> output;
  425. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_CLEAR, input, output);
  426. GGML_ASSERT(status);
  427. }
  428. static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
  429. /* .get_name = */ ggml_backend_rpc_buffer_get_name,
  430. /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
  431. /* .get_base = */ ggml_backend_rpc_buffer_get_base,
  432. /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
  433. /* .memset_tensor = */ NULL,
  434. /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
  435. /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
  436. /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
  437. /* .clear = */ ggml_backend_rpc_buffer_clear,
  438. /* .reset = */ NULL,
  439. };
  440. static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
  441. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  442. return buft_ctx->name.c_str();
  443. }
  444. static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  445. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  446. // input serialization format: | size (8 bytes) |
  447. int input_size = sizeof(uint64_t);
  448. std::vector<uint8_t> input(input_size, 0);
  449. memcpy(input.data(), &size, sizeof(size));
  450. std::vector<uint8_t> output;
  451. auto sock = get_socket(buft_ctx->endpoint);
  452. bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, input, output);
  453. GGML_ASSERT(status);
  454. GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
  455. // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
  456. uint64_t remote_ptr;
  457. memcpy(&remote_ptr, output.data(), sizeof(remote_ptr));
  458. size_t remote_size;
  459. memcpy(&remote_size, output.data() + sizeof(uint64_t), sizeof(remote_size));
  460. if (remote_ptr != 0) {
  461. ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
  462. ggml_backend_rpc_buffer_interface,
  463. new ggml_backend_rpc_buffer_context{sock, {}, remote_ptr, "RPC[" + std::string(buft_ctx->endpoint) + "]"},
  464. remote_size);
  465. return buffer;
  466. } else {
  467. return nullptr;
  468. }
  469. }
  470. static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
  471. // input serialization format: | 0 bytes |
  472. std::vector<uint8_t> input;
  473. std::vector<uint8_t> output;
  474. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, input, output);
  475. GGML_ASSERT(status);
  476. GGML_ASSERT(output.size() == sizeof(uint64_t));
  477. // output serialization format: | alignment (8 bytes) |
  478. uint64_t alignment;
  479. memcpy(&alignment, output.data(), sizeof(alignment));
  480. return alignment;
  481. }
  482. static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  483. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  484. return buft_ctx->alignment;
  485. }
  486. static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
  487. // input serialization format: | 0 bytes |
  488. std::vector<uint8_t> input;
  489. std::vector<uint8_t> output;
  490. bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, input, output);
  491. GGML_ASSERT(status);
  492. GGML_ASSERT(output.size() == sizeof(uint64_t));
  493. // output serialization format: | max_size (8 bytes) |
  494. uint64_t max_size;
  495. memcpy(&max_size, output.data(), sizeof(max_size));
  496. return max_size;
  497. }
  498. static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
  499. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  500. return buft_ctx->max_size;
  501. }
  502. static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  503. UNUSED(buft);
  504. return ggml_nbytes(tensor);
  505. }
  506. static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
  507. /* .get_name = */ ggml_backend_rpc_buffer_type_name,
  508. /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
  509. /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
  510. /* .get_max_size = */ ggml_backend_rpc_get_max_size,
  511. /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
  512. /* .is_host = */ NULL,
  513. };
  514. static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
  515. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  516. return rpc_ctx->name.c_str();
  517. }
  518. static void ggml_backend_rpc_free(ggml_backend_t backend) {
  519. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  520. delete rpc_ctx;
  521. delete backend;
  522. }
  523. static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
  524. ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
  525. return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
  526. }
  527. static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
  528. UNUSED(backend);
  529. // this is no-op because we don't have any async operations
  530. }
  531. static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
  532. if (tensor == nullptr) {
  533. return;
  534. }
  535. if (visited.find(tensor) != visited.end()) {
  536. return;
  537. }
  538. visited.insert(tensor);
  539. for (int i = 0; i < GGML_MAX_SRC; i++) {
  540. add_tensor(tensor->src[i], tensors, visited);
  541. }
  542. add_tensor(tensor->view_src, tensors, visited);
  543. tensors.push_back(serialize_tensor(tensor));
  544. }
  545. static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
  546. uint32_t n_nodes = cgraph->n_nodes;
  547. std::vector<rpc_tensor> tensors;
  548. std::unordered_set<ggml_tensor*> visited;
  549. for (uint32_t i = 0; i < n_nodes; i++) {
  550. add_tensor(cgraph->nodes[i], tensors, visited);
  551. }
  552. // serialization format:
  553. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  554. uint32_t n_tensors = tensors.size();
  555. int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
  556. output.resize(output_size, 0);
  557. memcpy(output.data(), &n_nodes, sizeof(n_nodes));
  558. for (uint32_t i = 0; i < n_nodes; i++) {
  559. memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
  560. }
  561. uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
  562. *out_ntensors = n_tensors;
  563. rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
  564. memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
  565. }
  566. static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  567. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  568. std::vector<uint8_t> input;
  569. serialize_graph(cgraph, input);
  570. std::vector<uint8_t> output;
  571. auto sock = get_socket(rpc_ctx->endpoint);
  572. bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input, output);
  573. GGML_ASSERT(status);
  574. GGML_ASSERT(output.size() == 1);
  575. return (enum ggml_status)output[0];
  576. }
  577. static ggml_backend_i ggml_backend_rpc_interface = {
  578. /* .get_name = */ ggml_backend_rpc_name,
  579. /* .free = */ ggml_backend_rpc_free,
  580. /* .get_default_buffer_type = */ ggml_backend_rpc_get_default_buffer_type,
  581. /* .set_tensor_async = */ NULL,
  582. /* .get_tensor_async = */ NULL,
  583. /* .cpy_tensor_async = */ NULL,
  584. /* .synchronize = */ ggml_backend_rpc_synchronize,
  585. /* .graph_plan_create = */ NULL,
  586. /* .graph_plan_free = */ NULL,
  587. /* .graph_plan_update = */ NULL,
  588. /* .graph_plan_compute = */ NULL,
  589. /* .graph_compute = */ ggml_backend_rpc_graph_compute,
  590. /* .supports_op = */ NULL,
  591. /* .supports_buft = */ NULL,
  592. /* .offload_op = */ NULL,
  593. /* .event_record = */ NULL,
  594. /* .event_wait = */ NULL,
  595. };
  596. GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
  597. static std::mutex mutex;
  598. std::lock_guard<std::mutex> lock(mutex);
  599. // NOTE: buffer types are allocated and never freed; this is by design
  600. static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
  601. auto it = buft_map.find(endpoint);
  602. if (it != buft_map.end()) {
  603. return it->second;
  604. }
  605. auto sock = get_socket(endpoint);
  606. if (sock == nullptr) {
  607. fprintf(stderr, "Failed to connect to %s\n", endpoint);
  608. return nullptr;
  609. }
  610. size_t alignment = get_alignment(sock);
  611. size_t max_size = get_max_size(sock);
  612. ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
  613. /* .endpoint = */ endpoint,
  614. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  615. /* .alignment = */ alignment,
  616. /* .max_size = */ max_size
  617. };
  618. ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
  619. /* .iface = */ ggml_backend_rpc_buffer_type_interface,
  620. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  621. /* .context = */ buft_ctx
  622. };
  623. buft_map[endpoint] = buft;
  624. return buft;
  625. }
  626. ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
  627. ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
  628. /* .endpoint = */ endpoint,
  629. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  630. };
  631. ggml_backend_t backend = new ggml_backend {
  632. /* .guid = */ ggml_backend_rpc_guid(),
  633. /* .interface = */ ggml_backend_rpc_interface,
  634. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  635. /* .context = */ ctx
  636. };
  637. return backend;
  638. }
  639. GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend) {
  640. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
  641. }
  642. static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
  643. // input serialization format: | 0 bytes |
  644. std::vector<uint8_t> input;
  645. std::vector<uint8_t> output;
  646. bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, input, output);
  647. GGML_ASSERT(status);
  648. GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
  649. // output serialization format: | free (8 bytes) | total (8 bytes) |
  650. uint64_t free_mem;
  651. memcpy(&free_mem, output.data(), sizeof(free_mem));
  652. uint64_t total_mem;
  653. memcpy(&total_mem, output.data() + sizeof(uint64_t), sizeof(total_mem));
  654. *free = free_mem;
  655. *total = total_mem;
  656. }
  657. GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
  658. auto sock = get_socket(endpoint);
  659. if (sock == nullptr) {
  660. *free = 0;
  661. *total = 0;
  662. return;
  663. }
  664. get_device_memory(sock, free, total);
  665. }
  666. // RPC server-side implementation
  667. class rpc_server {
  668. public:
  669. rpc_server(ggml_backend_t backend) : backend(backend) {}
  670. ~rpc_server();
  671. bool alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
  672. void get_alignment(std::vector<uint8_t> & output);
  673. void get_max_size(std::vector<uint8_t> & output);
  674. bool buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
  675. bool free_buffer(const std::vector<uint8_t> & input);
  676. bool buffer_clear(const std::vector<uint8_t> & input);
  677. bool set_tensor(const std::vector<uint8_t> & input);
  678. bool get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
  679. bool copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
  680. bool graph_compute(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
  681. private:
  682. ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
  683. ggml_tensor * create_node(uint64_t id,
  684. struct ggml_context * ctx,
  685. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  686. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
  687. ggml_backend_t backend;
  688. std::unordered_set<ggml_backend_buffer_t> buffers;
  689. };
  690. bool rpc_server::alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  691. // input serialization format: | size (8 bytes) |
  692. if (input.size() != sizeof(uint64_t)) {
  693. return false;
  694. }
  695. uint64_t size;
  696. memcpy(&size, input.data(), sizeof(size));
  697. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  698. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
  699. uint64_t remote_ptr = 0;
  700. uint64_t remote_size = 0;
  701. if (buffer != nullptr) {
  702. remote_ptr = reinterpret_cast<uint64_t>(buffer);
  703. remote_size = buffer->size;
  704. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, size, remote_ptr, remote_size);
  705. buffers.insert(buffer);
  706. } else {
  707. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> failed\n", __func__, size);
  708. }
  709. // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
  710. output.resize(2*sizeof(uint64_t), 0);
  711. memcpy(output.data(), &remote_ptr, sizeof(remote_ptr));
  712. memcpy(output.data() + sizeof(uint64_t), &remote_size, sizeof(remote_size));
  713. return true;
  714. }
  715. void rpc_server::get_alignment(std::vector<uint8_t> & output) {
  716. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  717. size_t alignment = ggml_backend_buft_get_alignment(buft);
  718. GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
  719. // output serialization format: | alignment (8 bytes) |
  720. output.resize(sizeof(uint64_t), 0);
  721. memcpy(output.data(), &alignment, sizeof(alignment));
  722. }
  723. void rpc_server::get_max_size(std::vector<uint8_t> & output) {
  724. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  725. size_t max_size = ggml_backend_buft_get_max_size(buft);
  726. GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
  727. // output serialization format: | max_size (8 bytes) |
  728. output.resize(sizeof(uint64_t), 0);
  729. memcpy(output.data(), &max_size, sizeof(max_size));
  730. }
  731. bool rpc_server::buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  732. // input serialization format: | remote_ptr (8 bytes) |
  733. if (input.size() != sizeof(uint64_t)) {
  734. return false;
  735. }
  736. uint64_t remote_ptr;
  737. memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
  738. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
  739. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
  740. if (buffers.find(buffer) == buffers.end()) {
  741. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  742. return false;
  743. }
  744. void * base = ggml_backend_buffer_get_base(buffer);
  745. // output serialization format: | base_ptr (8 bytes) |
  746. uint64_t base_ptr = reinterpret_cast<uint64_t>(base);
  747. output.resize(sizeof(uint64_t), 0);
  748. memcpy(output.data(), &base_ptr, sizeof(base_ptr));
  749. return true;
  750. }
  751. bool rpc_server::free_buffer(const std::vector<uint8_t> & input) {
  752. // input serialization format: | remote_ptr (8 bytes) |
  753. if (input.size() != sizeof(uint64_t)) {
  754. return false;
  755. }
  756. uint64_t remote_ptr;
  757. memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
  758. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
  759. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
  760. if (buffers.find(buffer) == buffers.end()) {
  761. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  762. return false;
  763. }
  764. ggml_backend_buffer_free(buffer);
  765. buffers.erase(buffer);
  766. return true;
  767. }
  768. bool rpc_server::buffer_clear(const std::vector<uint8_t> & input) {
  769. // input serialization format: | remote_ptr (8 bytes) | value (1 byte) |
  770. if (input.size() != sizeof(uint64_t) + sizeof(uint8_t)) {
  771. return false;
  772. }
  773. uint64_t remote_ptr;
  774. memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
  775. uint8_t value;
  776. memcpy(&value, input.data() + sizeof(uint64_t), sizeof(value));
  777. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, remote_ptr, value);
  778. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
  779. if (buffers.find(buffer) == buffers.end()) {
  780. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  781. return false;
  782. }
  783. ggml_backend_buffer_clear(buffer, value);
  784. return true;
  785. }
  786. ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
  787. ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
  788. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  789. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  790. result->nb[i] = tensor->nb[i];
  791. }
  792. result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
  793. if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
  794. result->buffer = nullptr;
  795. }
  796. if (result->buffer) {
  797. // require that the tensor data does not go beyond the buffer end
  798. uint64_t tensor_size = (uint64_t) ggml_nbytes(result);
  799. uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer);
  800. uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer);
  801. GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow
  802. GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size);
  803. }
  804. result->op = (ggml_op) tensor->op;
  805. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  806. result->op_params[i] = tensor->op_params[i];
  807. }
  808. result->flags = tensor->flags;
  809. result->data = reinterpret_cast<void *>(tensor->data);
  810. ggml_set_name(result, tensor->name);
  811. return result;
  812. }
  813. bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
  814. // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  815. if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
  816. return false;
  817. }
  818. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  819. uint64_t offset;
  820. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  821. const size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
  822. struct ggml_init_params params {
  823. /*.mem_size =*/ ggml_tensor_overhead(),
  824. /*.mem_buffer =*/ NULL,
  825. /*.no_alloc =*/ true,
  826. };
  827. struct ggml_context * ctx = ggml_init(params);
  828. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  829. if (tensor == nullptr) {
  830. GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
  831. ggml_free(ctx);
  832. return false;
  833. }
  834. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  835. // sanitize tensor->data
  836. {
  837. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  838. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  839. if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
  840. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  841. }
  842. }
  843. const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
  844. ggml_backend_tensor_set(tensor, data, offset, size);
  845. ggml_free(ctx);
  846. return true;
  847. }
  848. bool rpc_server::get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  849. // serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
  850. if (input.size() != sizeof(rpc_tensor) + 2*sizeof(uint64_t)) {
  851. return false;
  852. }
  853. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  854. uint64_t offset;
  855. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  856. uint64_t size;
  857. memcpy(&size, input.data() + sizeof(rpc_tensor) + sizeof(offset), sizeof(size));
  858. struct ggml_init_params params {
  859. /*.mem_size =*/ ggml_tensor_overhead(),
  860. /*.mem_buffer =*/ NULL,
  861. /*.no_alloc =*/ true,
  862. };
  863. struct ggml_context * ctx = ggml_init(params);
  864. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  865. if (tensor == nullptr) {
  866. GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
  867. ggml_free(ctx);
  868. return false;
  869. }
  870. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  871. // sanitize tensor->data
  872. {
  873. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  874. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  875. if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
  876. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  877. }
  878. }
  879. // output serialization format: | data (size bytes) |
  880. output.resize(size, 0);
  881. ggml_backend_tensor_get(tensor, output.data(), offset, size);
  882. ggml_free(ctx);
  883. return true;
  884. }
  885. bool rpc_server::copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  886. // serialization format: | rpc_tensor src | rpc_tensor dst |
  887. if (input.size() != 2*sizeof(rpc_tensor)) {
  888. return false;
  889. }
  890. const rpc_tensor * rpc_src = (const rpc_tensor *)input.data();
  891. const rpc_tensor * rpc_dst = (const rpc_tensor *)(input.data() + sizeof(rpc_src));
  892. struct ggml_init_params params {
  893. /*.mem_size =*/ 2*ggml_tensor_overhead(),
  894. /*.mem_buffer =*/ NULL,
  895. /*.no_alloc =*/ true,
  896. };
  897. struct ggml_context * ctx = ggml_init(params);
  898. ggml_tensor * src = deserialize_tensor(ctx, rpc_src);
  899. ggml_tensor * dst = deserialize_tensor(ctx, rpc_dst);
  900. if (src == nullptr || dst == nullptr) {
  901. GGML_PRINT_DEBUG("[%s] error deserializing tensors\n", __func__);
  902. ggml_free(ctx);
  903. return false;
  904. }
  905. GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer);
  906. bool result = ggml_backend_buffer_copy_tensor(src, dst);
  907. // output serialization format: | result (1 byte) |
  908. output.resize(1, 0);
  909. output[0] = result;
  910. ggml_free(ctx);
  911. return true;
  912. }
  913. ggml_tensor * rpc_server::create_node(uint64_t id,
  914. struct ggml_context * ctx,
  915. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  916. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
  917. if (id == 0) {
  918. return nullptr;
  919. }
  920. if (tensor_map.find(id) != tensor_map.end()) {
  921. return tensor_map[id];
  922. }
  923. const rpc_tensor * tensor = tensor_ptrs.at(id);
  924. struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
  925. if (result == nullptr) {
  926. return nullptr;
  927. }
  928. tensor_map[id] = result;
  929. for (int i = 0; i < GGML_MAX_SRC; i++) {
  930. result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
  931. }
  932. result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
  933. result->view_offs = tensor->view_offs;
  934. return result;
  935. }
  936. bool rpc_server::graph_compute(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  937. // serialization format:
  938. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  939. if (input.size() < sizeof(uint32_t)) {
  940. return false;
  941. }
  942. uint32_t n_nodes;
  943. memcpy(&n_nodes, input.data(), sizeof(n_nodes));
  944. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
  945. return false;
  946. }
  947. const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
  948. uint32_t n_tensors;
  949. memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
  950. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
  951. return false;
  952. }
  953. const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
  954. GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
  955. size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
  956. struct ggml_init_params params = {
  957. /*.mem_size =*/ buf_size,
  958. /*.mem_buffer =*/ NULL,
  959. /*.no_alloc =*/ true,
  960. };
  961. struct ggml_context * ctx = ggml_init(params);
  962. struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
  963. graph->n_nodes = n_nodes;
  964. std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
  965. for (uint32_t i = 0; i < n_tensors; i++) {
  966. tensor_ptrs[tensors[i].id] = &tensors[i];
  967. }
  968. std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
  969. for (uint32_t i = 0; i < n_nodes; i++) {
  970. int64_t id;
  971. memcpy(&id, &nodes[i], sizeof(id));
  972. graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
  973. }
  974. ggml_status status = ggml_backend_graph_compute(backend, graph);
  975. // output serialization format: | status (1 byte) |
  976. output.resize(1, 0);
  977. output[0] = status;
  978. ggml_free(ctx);
  979. return true;
  980. }
  981. rpc_server::~rpc_server() {
  982. for (auto buffer : buffers) {
  983. ggml_backend_buffer_free(buffer);
  984. }
  985. }
  986. static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
  987. rpc_server server(backend);
  988. while (true) {
  989. uint8_t cmd;
  990. if (!recv_data(sockfd, &cmd, 1)) {
  991. break;
  992. }
  993. if (cmd >= RPC_CMD_COUNT) {
  994. // fail fast if the command is invalid
  995. fprintf(stderr, "Unknown command: %d\n", cmd);
  996. break;
  997. }
  998. std::vector<uint8_t> input;
  999. std::vector<uint8_t> output;
  1000. uint64_t input_size;
  1001. if (!recv_data(sockfd, &input_size, sizeof(input_size))) {
  1002. break;
  1003. }
  1004. try {
  1005. input.resize(input_size);
  1006. } catch (const std::bad_alloc & e) {
  1007. fprintf(stderr, "Failed to allocate input buffer of size %" PRIu64 "\n", input_size);
  1008. break;
  1009. }
  1010. if (!recv_data(sockfd, input.data(), input_size)) {
  1011. break;
  1012. }
  1013. bool ok = true;
  1014. switch (cmd) {
  1015. case RPC_CMD_ALLOC_BUFFER: {
  1016. ok = server.alloc_buffer(input, output);
  1017. break;
  1018. }
  1019. case RPC_CMD_GET_ALIGNMENT: {
  1020. server.get_alignment(output);
  1021. break;
  1022. }
  1023. case RPC_CMD_GET_MAX_SIZE: {
  1024. server.get_max_size(output);
  1025. break;
  1026. }
  1027. case RPC_CMD_BUFFER_GET_BASE: {
  1028. ok = server.buffer_get_base(input, output);
  1029. break;
  1030. }
  1031. case RPC_CMD_FREE_BUFFER: {
  1032. ok = server.free_buffer(input);
  1033. break;
  1034. }
  1035. case RPC_CMD_BUFFER_CLEAR: {
  1036. ok = server.buffer_clear(input);
  1037. break;
  1038. }
  1039. case RPC_CMD_SET_TENSOR: {
  1040. ok = server.set_tensor(input);
  1041. break;
  1042. }
  1043. case RPC_CMD_GET_TENSOR: {
  1044. ok = server.get_tensor(input, output);
  1045. break;
  1046. }
  1047. case RPC_CMD_COPY_TENSOR: {
  1048. ok = server.copy_tensor(input, output);
  1049. break;
  1050. }
  1051. case RPC_CMD_GRAPH_COMPUTE: {
  1052. ok = server.graph_compute(input, output);
  1053. break;
  1054. }
  1055. case RPC_CMD_GET_DEVICE_MEMORY: {
  1056. // output serialization format: | free (8 bytes) | total (8 bytes) |
  1057. output.resize(2*sizeof(uint64_t), 0);
  1058. memcpy(output.data(), &free_mem, sizeof(free_mem));
  1059. memcpy(output.data() + sizeof(uint64_t), &total_mem, sizeof(total_mem));
  1060. break;
  1061. }
  1062. default: {
  1063. fprintf(stderr, "Unknown command: %d\n", cmd);
  1064. ok = false;
  1065. }
  1066. }
  1067. if (!ok) {
  1068. break;
  1069. }
  1070. uint64_t output_size = output.size();
  1071. if (!send_data(sockfd, &output_size, sizeof(output_size))) {
  1072. break;
  1073. }
  1074. if (!send_data(sockfd, output.data(), output_size)) {
  1075. break;
  1076. }
  1077. }
  1078. }
  1079. void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
  1080. std::string host;
  1081. int port;
  1082. if (!parse_endpoint(endpoint, host, port)) {
  1083. return;
  1084. }
  1085. #ifdef _WIN32
  1086. {
  1087. WSADATA wsaData;
  1088. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  1089. if (res != 0) {
  1090. fprintf(stderr, "WSAStartup failed: %d\n", res);
  1091. return;
  1092. }
  1093. }
  1094. #endif
  1095. auto server_socket = create_server_socket(host.c_str(), port);
  1096. if (server_socket == nullptr) {
  1097. fprintf(stderr, "Failed to create server socket\n");
  1098. return;
  1099. }
  1100. while (true) {
  1101. auto client_socket = socket_accept(server_socket->fd);
  1102. if (client_socket == nullptr) {
  1103. fprintf(stderr, "Failed to accept client connection\n");
  1104. return;
  1105. }
  1106. printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
  1107. fflush(stdout);
  1108. rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
  1109. printf("Client connection closed\n");
  1110. fflush(stdout);
  1111. }
  1112. #ifdef _WIN32
  1113. WSACleanup();
  1114. #endif
  1115. }
  1116. // device interface
  1117. struct ggml_backend_rpc_device_context {
  1118. std::string endpoint;
  1119. std::string name;
  1120. };
  1121. static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
  1122. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1123. return ctx->name.c_str();
  1124. }
  1125. static const char * ggml_backend_rpc_device_get_description(ggml_backend_dev_t dev) {
  1126. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1127. return ctx->name.c_str();
  1128. }
  1129. static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  1130. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1131. ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), free, total);
  1132. UNUSED(dev);
  1133. }
  1134. static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
  1135. // TODO: obtain value from the server
  1136. return GGML_BACKEND_DEVICE_TYPE_GPU_FULL;
  1137. UNUSED(dev);
  1138. }
  1139. static void ggml_backend_rpc_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  1140. props->name = ggml_backend_rpc_device_get_name(dev);
  1141. props->description = ggml_backend_rpc_device_get_description(dev);
  1142. props->type = ggml_backend_rpc_device_get_type(dev);
  1143. ggml_backend_rpc_device_get_memory(dev, &props->memory_free, &props->memory_total);
  1144. props->caps = {
  1145. /* .async = */ false,
  1146. /* .host_buffer = */ false,
  1147. /* .buffer_from_host_ptr = */ false,
  1148. /* .events = */ false,
  1149. };
  1150. }
  1151. static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const char * params) {
  1152. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1153. return ggml_backend_rpc_init(ctx->endpoint.c_str());
  1154. UNUSED(params);
  1155. }
  1156. static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) {
  1157. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1158. return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
  1159. UNUSED(dev);
  1160. }
  1161. static ggml_backend_buffer_t ggml_backend_rpc_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  1162. return ggml_backend_cpu_buffer_from_ptr(ptr, size);
  1163. UNUSED(dev);
  1164. UNUSED(max_tensor_size);
  1165. }
  1166. static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  1167. UNUSED(dev);
  1168. UNUSED(op);
  1169. //TODO: call the remote backend and cache the results
  1170. return true;
  1171. }
  1172. static bool ggml_backend_rpc_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  1173. if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
  1174. return false;
  1175. }
  1176. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  1177. ggml_backend_rpc_device_context * dev_ctx = (ggml_backend_rpc_device_context *)dev->context;
  1178. return buft_ctx->endpoint == dev_ctx->endpoint;
  1179. }
  1180. static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
  1181. /* .get_name = */ ggml_backend_rpc_device_get_name,
  1182. /* .get_description = */ ggml_backend_rpc_device_get_description,
  1183. /* .get_memory = */ ggml_backend_rpc_device_get_memory,
  1184. /* .get_type = */ ggml_backend_rpc_device_get_type,
  1185. /* .get_props = */ ggml_backend_rpc_device_get_props,
  1186. /* .init_backend = */ ggml_backend_rpc_device_init,
  1187. /* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
  1188. /* .get_host_buffer_type = */ NULL,
  1189. /* .buffer_from_host_ptr = */ ggml_backend_rpc_device_buffer_from_ptr,
  1190. /* .supports_op = */ ggml_backend_rpc_device_supports_op,
  1191. /* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
  1192. /* .offload_op = */ NULL,
  1193. /* .event_new = */ NULL,
  1194. /* .event_free = */ NULL,
  1195. /* .event_synchronize = */ NULL,
  1196. };
  1197. // backend reg interface
  1198. static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
  1199. return "RPC";
  1200. UNUSED(reg);
  1201. }
  1202. static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) {
  1203. return 0;
  1204. UNUSED(reg);
  1205. }
  1206. static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  1207. GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_add_device instead");
  1208. UNUSED(reg);
  1209. UNUSED(index);
  1210. }
  1211. static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  1212. if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
  1213. return (void *)ggml_backend_rpc_add_device;
  1214. }
  1215. return NULL;
  1216. UNUSED(reg);
  1217. }
  1218. static const struct ggml_backend_reg_i ggml_backend_rpc_reg_i = {
  1219. /* .get_name = */ ggml_backend_rpc_reg_get_name,
  1220. /* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
  1221. /* .get_device = */ ggml_backend_rpc_reg_get_device,
  1222. /* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
  1223. };
  1224. ggml_backend_reg_t ggml_backend_rpc_reg(void) {
  1225. static struct ggml_backend_reg ggml_backend_rpc_reg = {
  1226. /* .iface = */ ggml_backend_rpc_reg_i,
  1227. /* .context = */ NULL,
  1228. };
  1229. return &ggml_backend_rpc_reg;
  1230. }
  1231. ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint) {
  1232. static std::unordered_map<std::string, ggml_backend_dev_t> dev_map;
  1233. static std::mutex mutex;
  1234. std::lock_guard<std::mutex> lock(mutex);
  1235. if (dev_map.find(endpoint) != dev_map.end()) {
  1236. return dev_map[endpoint];
  1237. }
  1238. ggml_backend_rpc_device_context * ctx = new ggml_backend_rpc_device_context {
  1239. /* .endpoint = */ endpoint,
  1240. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  1241. };
  1242. ggml_backend_dev_t dev = new ggml_backend_device {
  1243. /* .iface = */ ggml_backend_rpc_device_i,
  1244. /* .reg = */ ggml_backend_rpc_reg(),
  1245. /* .context = */ ctx,
  1246. };
  1247. dev_map[endpoint] = dev;
  1248. return dev;
  1249. }