| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888 |
- // NOTE: This is modified from clip.cpp only for LLaVA,
- // so there might be still unnecessary artifacts hanging around
- // I'll gradually clean and extend it
- // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
- #include "clip.h"
- #include "clip-impl.h"
- #include "ggml.h"
- #include "ggml-cpp.h"
- #include "ggml-cpu.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #include "gguf.h"
- #define STB_IMAGE_IMPLEMENTATION
- #include "stb_image.h"
- #include <cassert>
- #include <cmath>
- #include <cstdlib>
- #include <cstring>
- #include <fstream>
- #include <map>
- #include <regex>
- #include <stdexcept>
- #include <unordered_set>
- #include <vector>
- #include <sstream>
- #include <cinttypes>
- #include <limits>
- #include <array>
- struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
- //#define CLIP_DEBUG_FUNCTIONS
- #ifdef CLIP_DEBUG_FUNCTIONS
- static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
- std::ofstream file(filename, std::ios::binary);
- if (!file.is_open()) {
- LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
- return;
- }
- // PPM header: P6 format, width, height, and max color value
- file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
- // Write pixel data
- for (size_t i = 0; i < img.buf.size(); i += 3) {
- // PPM expects binary data in RGB format, which matches our image buffer
- file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
- }
- file.close();
- }
- static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
- std::ofstream file(filename, std::ios::binary);
- if (!file.is_open()) {
- LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
- return;
- }
- int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
- int bytesPerPixel = 3;
- int widthInBytes = img.nx * bytesPerPixel;
- int paddingAmount = (4 - (widthInBytes % 4)) % 4;
- int stride = widthInBytes + paddingAmount;
- // Bitmap file header
- unsigned char fileHeader[14] = {
- 'B','M', // Signature
- 0,0,0,0, // Image file size in bytes
- 0,0,0,0, // Reserved
- 54,0,0,0 // Start of pixel array
- };
- // Total file size
- fileSize = 54 + (stride * img.ny);
- fileHeader[2] = (unsigned char)(fileSize);
- fileHeader[3] = (unsigned char)(fileSize >> 8);
- fileHeader[4] = (unsigned char)(fileSize >> 16);
- fileHeader[5] = (unsigned char)(fileSize >> 24);
- // Bitmap information header (BITMAPINFOHEADER)
- unsigned char infoHeader[40] = {
- 40,0,0,0, // Size of this header (40 bytes)
- 0,0,0,0, // Image width
- 0,0,0,0, // Image height
- 1,0, // Number of color planes
- 24,0, // Bits per pixel
- 0,0,0,0, // No compression
- 0,0,0,0, // Image size (can be 0 for no compression)
- 0,0,0,0, // X pixels per meter (not specified)
- 0,0,0,0, // Y pixels per meter (not specified)
- 0,0,0,0, // Total colors (color table not used)
- 0,0,0,0 // Important colors (all are important)
- };
- // Width and height in the information header
- infoHeader[4] = (unsigned char)(img.nx);
- infoHeader[5] = (unsigned char)(img.nx >> 8);
- infoHeader[6] = (unsigned char)(img.nx >> 16);
- infoHeader[7] = (unsigned char)(img.nx >> 24);
- infoHeader[8] = (unsigned char)(img.ny);
- infoHeader[9] = (unsigned char)(img.ny >> 8);
- infoHeader[10] = (unsigned char)(img.ny >> 16);
- infoHeader[11] = (unsigned char)(img.ny >> 24);
- // Write file headers
- file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
- file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
- // Pixel data
- std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
- for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
- for (int x = 0; x < img.nx; ++x) {
- // Each pixel
- size_t pixelIndex = (y * img.nx + x) * 3;
- unsigned char pixel[3] = {
- img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
- img.buf[pixelIndex + 1],
- img.buf[pixelIndex]
- };
- file.write(reinterpret_cast<char*>(pixel), 3);
- }
- // Write padding for the row
- file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
- }
- file.close();
- }
- // debug function to convert f32 to u8
- static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
- dst.nx = src.nx;
- dst.ny = src.ny;
- dst.buf.resize(3 * src.nx * src.ny);
- for (size_t i = 0; i < src.buf.size(); ++i) {
- dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
- }
- }
- #endif
- //
- // clip layers
- //
- enum patch_merge_type {
- PATCH_MERGE_FLAT,
- PATCH_MERGE_SPATIAL_UNPAD,
- };
- struct clip_hparams {
- int32_t image_size;
- int32_t patch_size;
- int32_t hidden_size;
- int32_t n_intermediate;
- int32_t projection_dim;
- int32_t n_head;
- int32_t n_layer;
- patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
- float eps;
- std::vector<int32_t> image_grid_pinpoints;
- int32_t image_crop_resolution;
- std::unordered_set<int32_t> vision_feature_layer;
- };
- struct clip_layer {
- // attention
- struct ggml_tensor * k_w = nullptr;
- struct ggml_tensor * k_b = nullptr;
- struct ggml_tensor * q_w = nullptr;
- struct ggml_tensor * q_b = nullptr;
- struct ggml_tensor * v_w = nullptr;
- struct ggml_tensor * v_b = nullptr;
- struct ggml_tensor * o_w = nullptr;
- struct ggml_tensor * o_b = nullptr;
- // layernorm 1
- struct ggml_tensor * ln_1_w = nullptr;
- struct ggml_tensor * ln_1_b = nullptr;
- // ff
- struct ggml_tensor * ff_i_w = nullptr;
- struct ggml_tensor * ff_i_b = nullptr;
- struct ggml_tensor * ff_o_w = nullptr;
- struct ggml_tensor * ff_o_b = nullptr;
- // layernorm 2
- struct ggml_tensor * ln_2_w = nullptr;
- struct ggml_tensor * ln_2_b = nullptr;
- };
- struct clip_vision_model {
- struct clip_hparams hparams;
- // embeddings
- struct ggml_tensor * class_embedding = nullptr;
- struct ggml_tensor * patch_embeddings_0 = nullptr;
- struct ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
- struct ggml_tensor * patch_bias = nullptr;
- struct ggml_tensor * position_embeddings = nullptr;
- struct ggml_tensor * pre_ln_w = nullptr;
- struct ggml_tensor * pre_ln_b = nullptr;
- std::vector<clip_layer> layers;
- struct ggml_tensor * post_ln_w;
- struct ggml_tensor * post_ln_b;
- struct ggml_tensor * projection;
- // LLaVA projection
- struct ggml_tensor * mm_0_w = nullptr;
- struct ggml_tensor * mm_0_b = nullptr;
- struct ggml_tensor * mm_2_w = nullptr;
- struct ggml_tensor * mm_2_b = nullptr;
- struct ggml_tensor * image_newline = nullptr;
- // Yi type models with mlp+normalization projection
- struct ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
- struct ggml_tensor * mm_1_b = nullptr;
- struct ggml_tensor * mm_3_w = nullptr;
- struct ggml_tensor * mm_3_b = nullptr;
- struct ggml_tensor * mm_4_w = nullptr;
- struct ggml_tensor * mm_4_b = nullptr;
- //GLMV-Edge projection
- struct ggml_tensor * mm_model_adapter_conv_w = nullptr;
- struct ggml_tensor * mm_model_adapter_conv_b = nullptr;
- struct ggml_tensor * boi_w = nullptr;
- struct ggml_tensor * eoi_w = nullptr;
- // MobileVLM projection
- struct ggml_tensor * mm_model_mlp_1_w = nullptr;
- struct ggml_tensor * mm_model_mlp_1_b = nullptr;
- struct ggml_tensor * mm_model_mlp_3_w = nullptr;
- struct ggml_tensor * mm_model_mlp_3_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
- struct ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
- struct ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
- struct ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
- struct ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
- // MobileVLM_V2 projection
- struct ggml_tensor * mm_model_mlp_0_w = nullptr;
- struct ggml_tensor * mm_model_mlp_0_b = nullptr;
- struct ggml_tensor * mm_model_mlp_2_w = nullptr;
- struct ggml_tensor * mm_model_mlp_2_b = nullptr;
- struct ggml_tensor * mm_model_peg_0_w = nullptr;
- struct ggml_tensor * mm_model_peg_0_b = nullptr;
- // MINICPMV projection
- struct ggml_tensor * mm_model_pos_embed_k = nullptr;
- struct ggml_tensor * mm_model_query = nullptr;
- struct ggml_tensor * mm_model_proj = nullptr;
- struct ggml_tensor * mm_model_kv_proj = nullptr;
- struct ggml_tensor * mm_model_attn_q_w = nullptr;
- struct ggml_tensor * mm_model_attn_q_b = nullptr;
- struct ggml_tensor * mm_model_attn_k_w = nullptr;
- struct ggml_tensor * mm_model_attn_k_b = nullptr;
- struct ggml_tensor * mm_model_attn_v_w = nullptr;
- struct ggml_tensor * mm_model_attn_v_b = nullptr;
- struct ggml_tensor * mm_model_attn_o_w = nullptr;
- struct ggml_tensor * mm_model_attn_o_b = nullptr;
- struct ggml_tensor * mm_model_ln_q_w = nullptr;
- struct ggml_tensor * mm_model_ln_q_b = nullptr;
- struct ggml_tensor * mm_model_ln_kv_w = nullptr;
- struct ggml_tensor * mm_model_ln_kv_b = nullptr;
- struct ggml_tensor * mm_model_ln_post_w = nullptr;
- struct ggml_tensor * mm_model_ln_post_b = nullptr;
- // gemma3
- struct ggml_tensor * mm_input_proj_w = nullptr;
- struct ggml_tensor * mm_soft_emb_norm_w = nullptr;
- };
- struct clip_ctx {
- bool has_text_encoder = false;
- bool has_vision_encoder = false;
- bool has_llava_projector = false;
- bool has_minicpmv_projector = false;
- bool has_glm_projector = false;
- bool has_qwen2vl_merger = false;
- int minicpmv_version = 2;
- struct clip_vision_model vision_model;
- projector_type proj_type = PROJECTOR_TYPE_MLP;
- int32_t max_feature_layer; // unused in newer models like gemma3
- float image_mean[3];
- float image_std[3];
- bool use_gelu = false;
- bool use_silu = false;
- gguf_context_ptr ctx_gguf;
- ggml_context_ptr ctx_data;
- std::vector<uint8_t> buf_compute_meta;
- std::vector<ggml_backend_t> backend_ptrs;
- std::vector<ggml_backend_buffer_type_t> backend_buft;
- ggml_backend_t backend;
- ggml_backend_t backend_cpu;
- ggml_backend_buffer_ptr buf;
- ggml_backend_sched_ptr sched;
- clip_image_size load_image_size;
- clip_ctx(clip_context_params & ctx_params) {
- backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
- backend = ctx_params.use_gpu
- ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
- : nullptr;
- if (backend) {
- LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
- backend_ptrs.push_back(backend);
- backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
- } else {
- backend = backend_cpu;
- LOG_INF("%s: CLIP using CPU backend\n", __func__);
- }
- backend_ptrs.push_back(backend_cpu);
- backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
- sched.reset(
- ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
- );
- }
- ~clip_ctx() {
- ggml_backend_free(backend);
- if (backend != backend_cpu) {
- ggml_backend_free(backend_cpu);
- }
- }
- };
- static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- const int image_size = hparams.image_size;
- int image_size_width = image_size;
- int image_size_height = image_size;
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int hidden_size = hparams.hidden_size;
- const int n_head = hparams.n_head;
- const int d_head = hidden_size / n_head;
- const int n_layer = hparams.n_layer;
- const float eps = hparams.eps;
- GGML_ASSERT(imgs.entries.size() == 1); // batch_size == 1
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx0_ptr(ggml_init(params));
- auto ctx0 = ctx0_ptr.get();
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- // input raw
- struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
- inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
- inp = ggml_add(ctx0, inp, model.patch_bias);
- // position embeddings
- struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings);
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
- // layernorm1
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b);
- }
- // self-attention
- {
- struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
- Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- struct ggml_tensor * K =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
- K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- struct ggml_tensor * V =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
- V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
- }
- // attention output
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
- embeddings = cur; // embeddings = residual, cur = hidden_states
- // layernorm2
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
- // siglip uses gelu
- cur = ggml_gelu(ctx0, cur);
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
- embeddings = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "post_ln");
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
- }
- if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- const int batch_size = 1;
- const int mm_tokens_per_image = 256; // default value for gemma3
- const int tokens_per_side = sqrt(mm_tokens_per_image);
- const int patches_per_image = sqrt(num_patches);
- const int kernel_size = patches_per_image / tokens_per_side;
- embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
- embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size);
- // doing a pool2d to reduce the number of output tokens to 256
- embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
- embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size);
- embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
- // apply norm before projection
- embeddings = ggml_rms_norm(ctx0, embeddings, eps);
- embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w);
- // apply projection
- embeddings = ggml_mul_mat(ctx0,
- ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
- embeddings);
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
- if (!ctx->has_vision_encoder) {
- LOG_ERR("This gguf file seems to have no vision encoder\n");
- return nullptr;
- }
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- const int image_size = hparams.image_size;
- int image_size_width = image_size;
- int image_size_height = image_size;
- if (ctx->has_minicpmv_projector) {
- LOG_DBG("%s: %d %d\n", __func__, load_image_size.width, load_image_size.height);
- image_size_width = load_image_size.width;
- image_size_height = load_image_size.height;
- if (is_inf) {
- image_size_width = imgs.entries[0]->nx;
- image_size_height = imgs.entries[0]->ny;
- }
- }
- else if (ctx->has_qwen2vl_merger) {
- // use the image's native resolution when image is avaible
- if (is_inf) {
- // if (imgs->data->nx && imgs->data->ny) {
- image_size_width = imgs.entries[0]->nx;
- image_size_height = imgs.entries[0]->ny;
- }
- }
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int patches_w = image_size_width / patch_size;
- const int patches_h = image_size_height / patch_size;
- const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
- const int num_position_ids = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions;
- const int hidden_size = hparams.hidden_size;
- const int n_head = hparams.n_head;
- const int d_head = hidden_size / n_head;
- const float eps = hparams.eps;
- int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
- const int batch_size = imgs.entries.size();
- if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) {
- GGML_ASSERT(batch_size == 1);
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx0_ptr(ggml_init(params));
- auto ctx0 = ctx0_ptr.get();
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- if (ctx->has_qwen2vl_merger) {
- GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
- GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
- auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_add(ctx0, inp, inp_1);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
- inp = ggml_reshape_4d(
- ctx0, inp,
- hidden_size * 2, patches_w / 2, patches_h, batch_size);
- inp = ggml_reshape_4d(
- ctx0, inp,
- hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
- inp = ggml_reshape_3d(
- ctx0, inp,
- hidden_size, patches_w * patches_h, batch_size);
- }
- else {
- inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
- }
- if (model.patch_bias) {
- // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
- inp = ggml_add(ctx0, inp, model.patch_bias);
- }
- struct ggml_tensor * embeddings = inp;
- struct ggml_tensor * pos_embed = nullptr;
- if (ctx->has_llava_projector) {
- // concat class_embeddings and patch_embeddings
- if (model.class_embedding) {
- embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
- ggml_set_name(embeddings, "embeddings");
- ggml_set_input(embeddings);
- embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
- embeddings = ggml_acc(ctx0, embeddings, inp,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
- }
- }
- struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- if (!ctx->has_qwen2vl_merger) { // qwen2vl use rope position embedding
- embeddings =
- ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
- }
- if (ctx->has_minicpmv_projector) {
- int pos_w = image_size_width/patch_size;
- int pos_h = image_size_height/patch_size;
- if (ctx->minicpmv_version == 2) {
- pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
- }
- else if (ctx->minicpmv_version == 3) {
- pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
- }
- else if (ctx->minicpmv_version == 4) {
- pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
- }
- ggml_set_name(pos_embed, "pos_embed");
- ggml_set_input(pos_embed);
- }
- // pre-layernorm
- if (model.pre_ln_w) {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "pre_ln");
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
- }
- std::vector<struct ggml_tensor *> embedding_stack;
- const auto & vision_feature_layer = hparams.vision_feature_layer;
- // loop over layers
- for (int il = 0; il < ctx->max_feature_layer; il++) {
- struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
- // If this is an embedding feature layer, save the output.
- // NOTE: 0 index here refers to the input to the encoder.
- if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
- embedding_stack.push_back(embeddings);
- }
- //const size_t nb_q_w = model.layers[il].q_w->nb[0];
- // layernorm1
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
- model.layers[il].ln_1_b);
- }
- // self-attention
- {
- struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
- if (ctx->has_qwen2vl_merger) {
- Q = ggml_rope_multi(
- ctx0, Q, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- }
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * K =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- if (ctx->has_qwen2vl_merger) {
- K = ggml_rope_multi(
- ctx0, K, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- }
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * V =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
- }
- // attention output
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
- embeddings = cur; // embeddings = residual, cur = hidden_states
- // layernorm2
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
- if (ctx->use_gelu) {
- cur = ggml_gelu_inplace(ctx0, cur);
- } else if (ctx->use_silu) {
- cur = ggml_silu_inplace(ctx0, cur);
- } else {
- cur = ggml_gelu_quick_inplace(ctx0, cur);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
- embeddings = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "post_ln");
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
- }
- // final layer is a vision feature layer
- if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
- embedding_stack.push_back(embeddings);
- }
- // If feature layers are explicitly set, stack them (if we have multiple)
- if (!embedding_stack.empty()) {
- embeddings = embedding_stack[0];
- for (size_t i = 1; i < embedding_stack.size(); i++) {
- embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
- }
- }
- // llava projector
- if (ctx->has_llava_projector) {
- embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
- struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
- ggml_set_name(patches, "patches");
- ggml_set_input(patches);
- // shape [1, 576, 1024]
- // ne is whcn, ne = [1024, 576, 1, 1]
- embeddings = ggml_get_rows(ctx0, embeddings, patches);
- // print_tensor_info(embeddings, "embeddings");
- // llava projector
- if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- embeddings = ggml_gelu(ctx0, embeddings);
- if (model.mm_2_w) {
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
- }
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
- // First LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
- model.mm_1_b);
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
- // Second LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
- model.mm_4_b);
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
- // MobileVLM projector
- int n_patch = 24;
- struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
- mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
- mlp_1 = ggml_gelu(ctx0, mlp_1);
- struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
- mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
- // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
- // block 1
- struct ggml_tensor * block_1 = nullptr;
- {
- // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
- mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
- mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
- // stride = 1, padding = 1, bias is nullptr
- block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
- // layer norm
- // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // hardswish
- struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // residual
- block_1 = ggml_add(ctx0, mlp_3, block_1);
- }
- // block_2
- {
- // stride = 2
- block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // layer norm
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // hardswish
- struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- // not sure the parameters is right for globalAvgPooling
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
- block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
- // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
- }
- embeddings = block_1;
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
- {
- int n_patch = 24;
- struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
- mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
- mlp_0 = ggml_gelu(ctx0, mlp_0);
- struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
- mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
- // mlp_2 ne = [2048, 576, 1, 1]
- // // AVG Pool Layer 2*2, strides = 2
- mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
- // mlp_2 ne = [576, 2048, 1, 1]
- mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
- // mlp_2 ne [24, 24, 2048, 1]
- mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
- // weight ne = [3, 3, 2048, 1]
- struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
- peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
- mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, mlp_2);
- peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
- embeddings = peg_0;
- }
- else {
- GGML_ABORT("fatal error");
- }
- }
- // minicpmv projector
- else if (ctx->has_minicpmv_projector)
- {
- if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
- struct ggml_tensor * q = model.mm_model_query;
- { // layernorm
- q = ggml_norm(ctx0, q, eps);
- q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
- }
- struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
- { // layernorm
- v = ggml_norm(ctx0, v, eps);
- v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
- }
- struct ggml_tensor * k;
- { // position
- // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
- k = ggml_add(ctx0, v, pos_embed);
- }
- { // attention
- int hidden_size = 4096;
- const int d_head = 128;
- int n_head = hidden_size/d_head;
- int num_query = 96;
- if (ctx->minicpmv_version == 2) {
- hidden_size = 4096;
- n_head = hidden_size/d_head;
- num_query = 96;
- }
- else if (ctx->minicpmv_version == 3) {
- hidden_size = 3584;
- n_head = hidden_size/d_head;
- num_query = 64;
- }
- else if (ctx->minicpmv_version == 4) {
- hidden_size = 3584;
- n_head = hidden_size/d_head;
- num_query = 64;
- }
- struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
- struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
- struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
- // permute
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
- embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
- }
- { // layernorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
- }
- embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
- }
- else {
- GGML_ASSERT(false);
- }
- }
- // glm projector
- else if (ctx->has_glm_projector) {
- if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
- size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
- embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
- embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
- embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
- embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
- embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
- embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
- //GLU
- {
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
- embeddings = ggml_gelu_inplace(ctx0, embeddings);
- struct ggml_tensor * x = embeddings;
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
- x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
- embeddings = ggml_silu_inplace(ctx0, embeddings);
- embeddings = ggml_mul(ctx0, embeddings,x);
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
- }
- } else {
- GGML_ABORT("fatal error");
- }
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
- embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
- if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- return clip_image_build_graph_siglip(ctx, imgs);
- } else {
- // TODO: we should have one build_* function per model
- return clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
- }
- }
- struct clip_model_loader {
- ggml_context_ptr ctx_meta;
- gguf_context_ptr ctx_gguf;
- clip_ctx & ctx_clip;
- std::string fname;
- size_t model_size; // in bytes
- // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model
- clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) {
- struct ggml_context * meta = nullptr;
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &meta,
- };
- ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
- if (!ctx_gguf.get()) {
- throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
- }
- ctx_meta.reset(meta);
- const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
- // print gguf info
- {
- std::string name;
- get_string(KEY_NAME, name, false);
- std::string description;
- get_string(KEY_DESCRIPTION, description, false);
- LOG_INF("%s: model name: %s\n", __func__, name.c_str());
- LOG_INF("%s: description: %s\n", __func__, description.c_str());
- LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
- LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
- LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
- LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
- LOG_INF("\n");
- }
- // tensors
- {
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
- const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
- enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
- struct ggml_tensor * cur = ggml_get_tensor(meta, name);
- size_t tensor_size = ggml_nbytes(cur);
- model_size += tensor_size;
- LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
- __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
- }
- }
- }
- void load_hparams() {
- // projector type
- {
- std::string proj_type;
- get_string(KEY_PROJ_TYPE, proj_type, false);
- if (!proj_type.empty()) {
- ctx_clip.proj_type = clip_projector_type_from_string(proj_type);
- }
- if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) {
- throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
- }
- }
- // other hparams
- {
- get_bool(KEY_HAS_TEXT_ENC, ctx_clip.has_text_encoder, false);
- get_bool(KEY_HAS_VIS_ENC, ctx_clip.has_vision_encoder, false);
- GGML_ASSERT(ctx_clip.has_vision_encoder);
- GGML_ASSERT(!ctx_clip.has_text_encoder);
- // legacy keys, use KEY_PROJ_TYPE instead
- get_bool(KEY_HAS_LLAVA_PROJ, ctx_clip.has_llava_projector, false);
- get_bool(KEY_HAS_MINICPMV_PROJ, ctx_clip.has_minicpmv_projector, false);
- get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false);
- get_bool(KEY_HAS_GLM_PROJ, ctx_clip.has_glm_projector, false);
- get_bool(KEY_HAS_QWEN2VL_MERGER, ctx_clip.has_qwen2vl_merger, false);
- // !!! do NOT extend the list above, use KEY_PROJ_TYPE instead
- get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false);
- get_bool(KEY_USE_SILU, ctx_clip.use_silu, false);
- auto & hparams = ctx_clip.vision_model.hparams;
- get_u32(string_format(KEY_N_EMBD, "vision"), hparams.hidden_size);
- get_u32(string_format(KEY_N_HEAD, "vision"), hparams.n_head);
- get_u32(string_format(KEY_N_FF, "vision"), hparams.n_intermediate);
- get_u32(string_format(KEY_N_BLOCK, "vision"), hparams.n_layer);
- get_u32(string_format(KEY_PROJ_DIM, "vision"), hparams.projection_dim);
- get_f32(string_format(KEY_LAYER_NORM_EPS, "vision"), hparams.eps);
- get_u32(KEY_IMAGE_SIZE, hparams.image_size);
- get_u32(KEY_PATCH_SIZE, hparams.patch_size);
- get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
- get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
- {
- std::string mm_patch_merge_type;
- get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
- if (mm_patch_merge_type == "spatial_unpad") {
- hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
- }
- }
- {
- int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
- int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
- GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
- GGML_ASSERT(idx_std >= 0 && "image_std not found");
- const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
- const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
- for (int i = 0; i < 3; ++i) {
- ctx_clip.image_mean[i] = mean_data[i];
- ctx_clip.image_std[i] = std_data[i];
- }
- }
- // Load the vision feature layer indices if they are explicitly provided;
- // if multiple vision feature layers are present, the values will be concatenated
- // to form the final visual features.
- // NOTE: gguf conversions should standardize the values of the vision feature layer to
- // be non-negative, since we use -1 to mark values as unset here.
- std::vector<int> vision_feature_layer;
- get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
- // convert std::vector to std::unordered_set
- for (auto & layer : vision_feature_layer) {
- hparams.vision_feature_layer.insert(layer);
- }
- // Calculate the deepest feature layer based on hparams and projector type
- ctx_clip.max_feature_layer = get_deepest_feature_layer(&ctx_clip);
- LOG_INF("%s: text_encoder: %d\n", __func__, ctx_clip.has_text_encoder);
- LOG_INF("%s: vision_encoder: %d\n", __func__, ctx_clip.has_vision_encoder);
- LOG_INF("%s: llava_projector: %d\n", __func__, ctx_clip.has_llava_projector);
- LOG_INF("%s: minicpmv_projector: %d\n", __func__, ctx_clip.has_minicpmv_projector);
- LOG_INF("%s: minicpmv_version: %d\n", __func__, ctx_clip.minicpmv_version);
- LOG_INF("%s: glm_projector: %d\n", __func__, ctx_clip.has_glm_projector);
- LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
- LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
- }
- }
- void load_tensors() {
- std::map<std::string, size_t> tensor_offset;
- std::vector<ggml_tensor *> tensors_to_load;
- // get offsets
- for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
- const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
- tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
- }
- // create data context
- struct ggml_init_params params = {
- /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ctx_clip.ctx_data.reset(ggml_init(params));
- if (!ctx_clip.ctx_data) {
- throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
- }
- // helper function
- auto get_tensor = [&](const std::string & name, bool required = true) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
- if (!cur && required) {
- throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
- }
- if (cur) {
- tensors_to_load.push_back(cur);
- // add tensors to context
- struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
- ggml_set_name(data_tensor, cur->name);
- cur = data_tensor;
- }
- return cur;
- };
- auto & vision_model = ctx_clip.vision_model;
- vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
- vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false);
- vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"), false);
- vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false);
- vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"), false);
- vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
- vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
- vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
- if (vision_model.patch_embeddings_1 == nullptr) {
- ctx_clip.has_qwen2vl_merger = false;
- }
- vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
- // layers
- vision_model.layers.resize(vision_model.hparams.n_layer);
- for (int il = 0; il < vision_model.hparams.n_layer; ++il) {
- auto & layer = vision_model.layers[il];
- layer.k_w = get_tensor(string_format(TN_ATTN_K, "v", il, "weight"));
- layer.q_w = get_tensor(string_format(TN_ATTN_Q, "v", il, "weight"));
- layer.v_w = get_tensor(string_format(TN_ATTN_V, "v", il, "weight"));
- layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight"));
- layer.ln_1_w = get_tensor(string_format(TN_LN_1, "v", il, "weight"), false);
- layer.ln_2_w = get_tensor(string_format(TN_LN_2, "v", il, "weight"), false);
- layer.ff_i_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight"));
- layer.ff_o_w = get_tensor(string_format(TN_FFN_UP, "v", il, "weight"));
- layer.k_b = get_tensor(string_format(TN_ATTN_K, "v", il, "bias"), false);
- layer.q_b = get_tensor(string_format(TN_ATTN_Q, "v", il, "bias"), false);
- layer.v_b = get_tensor(string_format(TN_ATTN_V, "v", il, "bias"), false);
- layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false);
- layer.ln_1_b = get_tensor(string_format(TN_LN_1, "v", il, "bias"), false);
- layer.ln_2_b = get_tensor(string_format(TN_LN_2, "v", il, "bias"), false);
- layer.ff_i_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"), false);
- layer.ff_o_b = get_tensor(string_format(TN_FFN_UP, "v", il, "bias"), false);
- }
- switch (ctx_clip.proj_type) {
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_MLP_NORM:
- {
- // LLaVA projection
- vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
- vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
- // Yi-type llava
- vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
- vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
- // missing in Yi-type llava
- vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
- vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
- // Yi-type llava
- vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
- vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
- vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
- vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
- if (vision_model.mm_3_w) {
- // TODO: this is a hack to support Yi-type llava
- ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM;
- }
- vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
- } break;
- case PROJECTOR_TYPE_LDP:
- {
- // MobileVLM projection
- vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
- vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
- vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
- vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
- vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
- vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
- vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
- vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
- vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
- vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
- vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
- vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
- vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
- vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
- vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
- vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
- vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
- vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
- vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
- vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
- vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
- vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
- vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
- vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
- } break;
- case PROJECTOR_TYPE_LDPV2:
- {
- // MobilVLM_V2 projection
- vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
- vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
- vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
- vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
- vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
- vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
- } break;
- case PROJECTOR_TYPE_RESAMPLER:
- {
- // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
- vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
- vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
- vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
- vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
- vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
- vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
- vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
- vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
- vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
- vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
- vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
- vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
- vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
- vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
- vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
- vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
- vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
- vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
- } break;
- case PROJECTOR_TYPE_GLM_EDGE:
- {
- vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
- vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
- vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR,"weight"));
- vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"weight"));
- vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"bias"));
- vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
- vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE,"weight"));
- vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
- vision_model.boi_w = get_tensor(TN_GLM_BOI_W);
- vision_model.eoi_w = get_tensor(TN_GLM_EOI_W);
- } break;
- case PROJECTOR_TYPE_MERGER:
- {
- vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
- vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
- vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
- vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
- } break;
- case PROJECTOR_TYPE_GEMMA3:
- {
- vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
- vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
- } break;
- default:
- GGML_ASSERT(false && "unknown projector type");
- }
- // load data
- {
- std::vector<uint8_t> read_buf;
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
- }
- // alloc memory and offload data
- ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
- ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
- ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
- for (auto & t : tensors_to_load) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
- const size_t offset = tensor_offset[t->name];
- fin.seekg(offset, std::ios::beg);
- if (!fin) {
- throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
- }
- size_t num_bytes = ggml_nbytes(cur);
- if (ggml_backend_buft_is_host(buft)) {
- // for the CPU and Metal backend, we can read directly into the tensor
- fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
- } else {
- // read into a temporary buffer first, then copy to device memory
- read_buf.resize(num_bytes);
- fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
- ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
- }
- }
- fin.close();
- LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
- }
- }
- void alloc_compute_meta() {
- ctx_clip.buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
- // create a fake batch
- clip_image_f32_batch batch;
- clip_image_f32_ptr img(clip_image_f32_init());
- clip_image_size image_size;
- image_size.width = clip_get_image_size(&ctx_clip);
- image_size.height = clip_get_image_size(&ctx_clip);
- int n_patches = clip_get_image_size(&ctx_clip) / image_size.width;
- img->nx = n_patches;
- img->ny = n_patches;
- img->buf.resize(n_patches * image_size.width * image_size.height * 3);
- batch.entries.push_back(std::move(img));
- ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch, image_size, false);
- ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
- for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
- ggml_backend_t backend = ctx_clip.backend_ptrs[i];
- ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
- size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
- if (size > 1) {
- LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
- ggml_backend_buft_name(buft),
- size / 1024.0 / 1024.0);
- }
- }
- }
- void get_bool(const std::string & key, bool & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_bool(ctx_gguf.get(), i);
- }
- void get_i32(const std::string & key, int & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_i32(ctx_gguf.get(), i);
- }
- void get_u32(const std::string & key, int & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_u32(ctx_gguf.get(), i);
- }
- void get_f32(const std::string & key, float & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_f32(ctx_gguf.get(), i);
- }
- void get_string(const std::string & key, std::string & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
- }
- void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- int n = gguf_get_arr_n(ctx_gguf.get(), i);
- output.resize(n);
- const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
- for (int i = 0; i < n; ++i) {
- output[i] = values[i];
- }
- }
- };
- // read and create ggml_context containing the tensors and their data
- struct clip_ctx * clip_model_load(const char * fname, const int verbosity) {
- return clip_init(fname, clip_context_params{
- /* use_gpu */ true,
- /* verbosity */ static_cast<ggml_log_level>(verbosity),
- });
- }
- struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
- g_logger_state.verbosity_thold = ctx_params.verbosity;
- clip_ctx * ctx_clip = new clip_ctx(ctx_params);
- try {
- clip_model_loader loader(fname, *ctx_clip);
- loader.load_hparams();
- loader.load_tensors();
- loader.alloc_compute_meta();
- } catch (const std::exception & e) {
- LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
- delete ctx_clip;
- return nullptr;
- }
- return ctx_clip;
- }
- void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
- ctx_clip->load_image_size = *load_image_size; // copy
- }
- struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
- return &ctx_clip->load_image_size;
- }
- struct clip_image_size * clip_image_size_init() {
- struct clip_image_size * load_image_size = new struct clip_image_size();
- load_image_size->width = 448;
- load_image_size->height = 448;
- return load_image_size;
- }
- struct clip_image_u8 * clip_image_u8_init() {
- return new clip_image_u8();
- }
- struct clip_image_f32 * clip_image_f32_init() {
- return new clip_image_f32();
- }
- struct clip_image_f32_batch * clip_image_f32_batch_init() {
- return new clip_image_f32_batch();
- }
- unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
- if (nx) *nx = img->nx;
- if (ny) *ny = img->ny;
- return img->buf.data();
- }
- void clip_image_size_free(struct clip_image_size * load_image_size) {
- if (load_image_size == nullptr) {
- return;
- }
- delete load_image_size;
- }
- void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
- void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
- void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
- void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
- size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
- return batch->entries.size();
- }
- size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return 0;
- }
- return batch->entries[idx]->nx;
- }
- size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return 0;
- }
- return batch->entries[idx]->ny;
- }
- clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return nullptr;
- }
- return batch->entries[idx].get();
- }
- void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
- img->nx = nx;
- img->ny = ny;
- img->buf.resize(3 * nx * ny);
- memcpy(img->buf.data(), rgb_pixels, img->buf.size());
- }
- bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
- int nx, ny, nc;
- auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
- if (!data) {
- LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
- return false;
- }
- clip_build_img_from_pixels(data, nx, ny, img);
- stbi_image_free(data);
- return true;
- }
- bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
- int nx, ny, nc;
- auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
- if (!data) {
- LOG_ERR("%s: failed to decode image bytes\n", __func__);
- return false;
- }
- clip_build_img_from_pixels(data, nx, ny, img);
- stbi_image_free(data);
- return true;
- }
- // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
- static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
- dst.nx = src.nx;
- dst.ny = src.ny;
- dst.buf.resize(src.buf.size());
- // TODO @ngxson : seems like this could be done more efficiently on cgraph
- for (size_t i = 0; i < src.buf.size(); ++i) {
- int c = i % 3; // rgb
- dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
- }
- }
- // set of tools to manupulate images
- // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
- struct image_manipulation {
- // Bilinear resize function
- static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
- dst.nx = target_width;
- dst.ny = target_height;
- dst.buf.resize(3 * target_width * target_height);
- float x_ratio = static_cast<float>(src.nx - 1) / target_width;
- float y_ratio = static_cast<float>(src.ny - 1) / target_height;
- for (int y = 0; y < target_height; y++) {
- for (int x = 0; x < target_width; x++) {
- float px = x_ratio * x;
- float py = y_ratio * y;
- int x_floor = static_cast<int>(px);
- int y_floor = static_cast<int>(py);
- float x_lerp = px - x_floor;
- float y_lerp = py - y_floor;
- for (int c = 0; c < 3; c++) {
- float top = lerp(
- static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
- static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
- x_lerp
- );
- float bottom = lerp(
- static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
- static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
- x_lerp
- );
- dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
- }
- }
- }
- }
- // Bicubic resize function
- // part of image will be cropped if the aspect ratio is different
- static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
- const int nx = img.nx;
- const int ny = img.ny;
- dst.nx = target_width;
- dst.ny = target_height;
- dst.buf.resize(3 * target_width * target_height);
- float Cc;
- float C[5];
- float d0, d2, d3, a0, a1, a2, a3;
- int i, j, k, jj;
- int x, y;
- float dx, dy;
- float tx, ty;
- tx = (float)nx / (float)target_width;
- ty = (float)ny / (float)target_height;
- // Bicubic interpolation; adapted from ViT.cpp, inspired from :
- // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
- // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
- for (i = 0; i < target_height; i++) {
- for (j = 0; j < target_width; j++) {
- x = (int)(tx * j);
- y = (int)(ty * i);
- dx = tx * j - x;
- dy = ty * i - y;
- for (k = 0; k < 3; k++) {
- for (jj = 0; jj <= 3; jj++) {
- d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
- a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
- a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
- C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
- d0 = C[0] - C[1];
- d2 = C[2] - C[1];
- d3 = C[3] - C[1];
- a0 = C[1];
- a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
- a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
- a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
- Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
- const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
- dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
- }
- }
- }
- }
- return true;
- }
- // llava-1.6 type of resize_and_pad
- // if the ratio is not 1:1, padding with pad_color will be applied
- // pad_color is single channel, default is 0 (black)
- static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
- int target_width = target_resolution.width;
- int target_height = target_resolution.height;
- float scale_w = static_cast<float>(target_width) / image.nx;
- float scale_h = static_cast<float>(target_height) / image.ny;
- int new_width, new_height;
- if (scale_w < scale_h) {
- new_width = target_width;
- new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
- } else {
- new_height = target_height;
- new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
- }
- clip_image_u8 resized_image;
- bicubic_resize(image, resized_image, new_width, new_height);
- clip_image_u8 padded_image;
- padded_image.nx = target_width;
- padded_image.ny = target_height;
- padded_image.buf.resize(3 * target_width * target_height);
- // Fill the padded image with the fill color
- for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
- padded_image.buf[i] = pad_color[0];
- padded_image.buf[i + 1] = pad_color[1];
- padded_image.buf[i + 2] = pad_color[2];
- }
- // Calculate padding offsets
- int pad_x = (target_width - new_width) / 2;
- int pad_y = (target_height - new_height) / 2;
- // Copy the resized image into the center of the padded buffer
- for (int y = 0; y < new_height; ++y) {
- for (int x = 0; x < new_width; ++x) {
- for (int c = 0; c < 3; ++c) {
- padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
- }
- }
- }
- dst = std::move(padded_image);
- }
- static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
- dst.nx = w;
- dst.ny = h;
- dst.buf.resize(3 * w * h);
- for (int i = 0; i < h; ++i) {
- for (int j = 0; j < w; ++j) {
- int src_idx = 3 * ((y + i)*image.nx + (x + j));
- int dst_idx = 3 * (i*w + j);
- dst.buf[dst_idx] = image.buf[src_idx];
- dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
- dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
- }
- }
- }
- private:
- static inline int clip(int x, int lower, int upper) {
- return std::max(lower, std::min(x, upper));
- }
- // Linear interpolation between two points
- static inline float lerp(float s, float e, float t) {
- return s + (e - s) * t;
- }
- };
- /**
- * implementation of LLaVA-UHD:
- * - https://arxiv.org/pdf/2403.11703
- * - https://github.com/thunlp/LLaVA-UHD
- * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
- *
- * overview:
- * - an image always have a single overview (downscaled image)
- * - an image can have 0 or multiple slices, depending on the image size
- * - each slice can then be considered as a separate image
- *
- * for example:
- *
- * [overview] --> [slice 1] --> [slice 2]
- * | |
- * +--> [slice 3] --> [slice 4]
- */
- struct llava_uhd {
- struct slice_coordinates {
- int x;
- int y;
- clip_image_size size;
- };
- struct slice_instructions {
- clip_image_size overview_size; // size of downscaled image
- clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
- clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
- std::vector<slice_coordinates> slices;
- bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
- };
- static int get_max_slices(struct clip_ctx * ctx) {
- if (clip_is_minicpmv(ctx)) {
- return 9;
- }
- return 0;
- }
- static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
- slice_instructions res;
- const int patch_size = clip_get_patch_size(ctx);
- const int slice_size = clip_get_image_size(ctx);
- const int max_slice_nums = get_max_slices(ctx);
- const int original_width = original_size.width;
- const int original_height = original_size.height;
- const float log_ratio = log((float)original_width / original_height);
- const float ratio = (float)original_width * original_height / (slice_size * slice_size);
- const int multiple = fmin(ceil(ratio), max_slice_nums);
- const bool has_slices = (multiple > 1);
- const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();
- if (has_pinpoints) {
- // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
- auto refine_size = llava_uhd::select_best_resolution(
- ctx->vision_model.hparams.image_grid_pinpoints,
- original_size);
- res.overview_size = clip_image_size{slice_size, slice_size};
- res.refined_size = refine_size;
- res.grid_size = clip_image_size{0, 0};
- res.padding_refined = true;
- for (int y = 0; y < refine_size.height; y += slice_size) {
- for (int x = 0; x < refine_size.width; x += slice_size) {
- slice_coordinates slice;
- slice.x = x;
- slice.y = y;
- slice.size.width = std::min(slice_size, refine_size.width - x);
- slice.size.height = std::min(slice_size, refine_size.height - y);
- res.slices.push_back(slice);
- if (x == 0) {
- res.grid_size.width++;
- }
- }
- res.grid_size.height++;
- }
- return res;
- }
- // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
- auto best_size = get_best_resize(original_size, slice_size, patch_size, has_slices);
- res.overview_size = best_size;
- if (!has_slices) {
- // skip slicing logic
- res.refined_size = clip_image_size{0, 0};
- res.grid_size = clip_image_size{0, 0};
- } else {
- auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
- auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
- res.grid_size = best_grid;
- res.refined_size = refine_size;
- int width = refine_size.width;
- int height = refine_size.height;
- int grid_x = int(width / best_grid.width);
- int grid_y = int(height / best_grid.height);
- for (int patches_y = 0, ic = 0;
- patches_y < refine_size.height && ic < best_grid.height;
- patches_y += grid_y, ic += 1) {
- for (int patches_x = 0, jc = 0;
- patches_x < refine_size.width && jc < best_grid.width;
- patches_x += grid_x, jc += 1) {
- slice_coordinates slice;
- slice.x = patches_x;
- slice.y = patches_y;
- slice.size.width = grid_x;
- slice.size.height = grid_y;
- res.slices.push_back(slice);
- // LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
- }
- }
- }
- return res;
- }
- static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
- std::vector<clip_image_u8_ptr> output;
- // resize to overview size
- clip_image_u8_ptr resized_img(clip_image_u8_init());
- image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
- output.push_back(std::move(resized_img));
- if (inst.slices.empty()) {
- // no slices, just return the resized image
- return output;
- }
- // resize to refined size
- clip_image_u8_ptr refined_img(clip_image_u8_init());
- if (inst.padding_refined) {
- image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
- } else {
- image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
- }
- // create slices
- for (const auto & slice : inst.slices) {
- int x = slice.x;
- int y = slice.y;
- int w = slice.size.width;
- int h = slice.size.height;
- clip_image_u8_ptr img_slice(clip_image_u8_init());
- image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
- output.push_back(std::move(img_slice));
- }
- return output;
- }
- private:
- static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
- int width = original_size.width;
- int height = original_size.height;
- if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
- float r = static_cast<float>(width) / height;
- height = static_cast<int>(scale_resolution / std::sqrt(r));
- width = static_cast<int>(height * r);
- }
- clip_image_size res;
- res.width = ensure_divide(width, patch_size);
- res.height = ensure_divide(height, patch_size);
- return res;
- }
- /**
- * Selects the best resolution from a list of possible resolutions based on the original size.
- *
- * @param original_size The original size of the image
- * @param possible_resolutions A list of possible resolutions
- * @return The best fit resolution
- */
- static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
- int original_width = original_size.width;
- int original_height = original_size.height;
- clip_image_size best_fit;
- int max_effective_resolution = 0;
- int min_wasted_resolution = std::numeric_limits<int>::max();
- for (const auto & resolution : possible_resolutions) {
- int width = resolution.width;
- int height = resolution.height;
- float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
- int downscaled_width = static_cast<int>(original_width * scale);
- int downscaled_height = static_cast<int>(original_height * scale);
- int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
- int wasted_resolution = (width * height) - effective_resolution;
- // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
- if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
- max_effective_resolution = effective_resolution;
- min_wasted_resolution = wasted_resolution;
- best_fit = resolution;
- }
- }
- return best_fit;
- }
- // used by llava 1.6 with custom list of pinpoints
- static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
- std::vector<clip_image_size> possible_resolutions;
- for (size_t i = 0; i < pinpoints.size(); i += 2) {
- possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
- }
- return select_best_resolution(original_size, possible_resolutions);
- }
- static int ensure_divide(int length, int patch_size) {
- return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
- }
- static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
- int width = original_size.width;
- int height = original_size.height;
- int grid_x = grid.width;
- int grid_y = grid.height;
- int refine_width = ensure_divide(width, grid_x);
- int refine_height = ensure_divide(height, grid_y);
- clip_image_size grid_size;
- grid_size.width = refine_width / grid_x;
- grid_size.height = refine_height / grid_y;
- auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
- int best_grid_width = best_grid_size.width;
- int best_grid_height = best_grid_size.height;
- clip_image_size refine_size;
- refine_size.width = best_grid_width * grid_x;
- refine_size.height = best_grid_height * grid_y;
- return refine_size;
- }
- static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
- std::vector<int> candidate_split_grids_nums;
- for (int i : {multiple - 1, multiple, multiple + 1}) {
- if (i == 1 || i > max_slice_nums) {
- continue;
- }
- candidate_split_grids_nums.push_back(i);
- }
- std::vector<clip_image_size> candidate_grids;
- for (int split_grids_nums : candidate_split_grids_nums) {
- int m = 1;
- while (m <= split_grids_nums) {
- if (split_grids_nums % m == 0) {
- candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
- }
- ++m;
- }
- }
- clip_image_size best_grid{1, 1};
- float min_error = std::numeric_limits<float>::infinity();
- for (const auto& grid : candidate_grids) {
- float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
- if (error < min_error) {
- best_grid = grid;
- min_error = error;
- }
- }
- return best_grid;
- }
- };
- // TODO @ngxson : decprecate the load_image_size singleton pattern
- int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
- const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
- return inst.grid_size.width;
- }
- // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
- // res_imgs memory is being allocated here, previous allocations will be freed if found
- bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
- if (!ctx->has_vision_encoder) {
- LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
- return false;
- }
- clip_image_size original_size{img->nx, img->ny};
- bool pad_to_square = true;
- auto & params = ctx->vision_model.hparams;
- // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
- if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
- pad_to_square = false;
- }
- if (clip_is_minicpmv(ctx)) {
- auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
- std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
- for (size_t i = 0; i < imgs.size(); ++i) {
- // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
- res_imgs->entries.push_back(std::move(res));
- }
- return true;
- }
- else if (ctx->has_qwen2vl_merger) {
- clip_image_u8 resized;
- auto patch_size = clip_get_patch_size(ctx) * 2;
- int nx = ceil((float)img->nx / patch_size) * patch_size;
- int ny = ceil((float)img->ny / patch_size) * patch_size;
- image_manipulation::bicubic_resize(*img, resized, nx, ny);
- clip_image_f32_ptr img_f32(clip_image_f32_init());
- // clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
- // res_imgs->data[0] = *res;
- res_imgs->entries.push_back(std::move(img_f32));
- return true;
- }
- if (ctx->has_glm_projector || ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- clip_image_u8 resized_image;
- int sz = params.image_size;
- image_manipulation::bicubic_resize(*img, resized_image, sz, sz);
- clip_image_f32_ptr img_f32(clip_image_f32_init());
- //clip_image_save_to_bmp(resized_image, "resized.bmp");
- normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
- res_imgs->entries.push_back(std::move(img_f32));
- return true;
- }
- // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
- // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
- clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
- if (pad_to_square) {
- // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
- // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
- const int longer_side = std::max(img->nx, img->ny);
- temp->nx = longer_side;
- temp->ny = longer_side;
- temp->buf.resize(3 * longer_side * longer_side);
- // background color in RGB from LLaVA (this is the mean rgb color * 255)
- const std::array<uint8_t, 3> pad_color = {122, 116, 104};
- // resize the image to the target_size
- image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
- res_imgs->entries.push_back(std::move(res));
- return true;
- } else if (!params.image_grid_pinpoints.empty()) {
- // "spatial_unpad" with "anyres" processing for llava-1.6
- auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
- std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
- for (size_t i = 0; i < imgs.size(); ++i) {
- // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
- res_imgs->entries.push_back(std::move(res));
- }
- return true;
- }
- GGML_ASSERT(false && "Unknown image preprocessing type");
- }
- ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
- return ctx->vision_model.image_newline;
- }
- void clip_free(clip_ctx * ctx) {
- if (ctx == nullptr) {
- return;
- }
- delete ctx;
- }
- size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
- int extra_tokens = ctx->has_glm_projector ? 2 : 0;
- return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float);
- }
- size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
- clip_image_f32 img;
- img.nx = img_w;
- img.ny = img_h;
- return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
- }
- int32_t clip_get_image_size(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.image_size;
- }
- int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.patch_size;
- }
- int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.hidden_size;
- }
- const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
- }
- const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
- if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
- return &ctx->vision_model.hparams.image_grid_pinpoints.front();
- }
- return nullptr;
- }
- size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.image_grid_pinpoints.size();
- }
- int clip_n_patches(const struct clip_ctx * ctx) {
- clip_image_f32 img;
- img.nx = ctx->vision_model.hparams.image_size;
- img.ny = ctx->vision_model.hparams.image_size;
- return clip_n_patches_by_img(ctx, &img);
- }
- int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
- const auto & params = ctx->vision_model.hparams;
- int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
- if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
- n_patches /= 4;
- } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
- if (ctx->minicpmv_version == 2) {
- n_patches = 96;
- }
- else if (ctx->minicpmv_version == 3) {
- n_patches = 64;
- }
- else if (ctx->minicpmv_version == 4) {
- n_patches = 64;
- }
- } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
- int patch_size = params.patch_size * 2;
- int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
- int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
- n_patches = x_patch * y_patch;
- } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- n_patches = 256;
- }
- return n_patches;
- }
- static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
- assert(embed_dim % 2 == 0);
- int H = pos.size();
- int W = pos[0].size();
- std::vector<float> omega(embed_dim / 2);
- for (int i = 0; i < embed_dim / 2; ++i) {
- omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
- }
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- float out_value = pos[h][w] * omega[d];
- emb[h][w][d] = sin(out_value);
- emb[h][w][d + embed_dim / 2] = cos(out_value);
- }
- }
- }
- return emb;
- }
- static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
- assert(embed_dim % 2 == 0);
- std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
- std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
- int H = emb_h.size();
- int W = emb_h[0].size();
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- emb[h][w][d] = emb_h[h][w][d];
- emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
- }
- }
- }
- return emb;
- }
- static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
- int grid_h_size = image_size.first;
- int grid_w_size = image_size.second;
- std::vector<float> grid_h(grid_h_size);
- std::vector<float> grid_w(grid_w_size);
- for (int i = 0; i < grid_h_size; ++i) {
- grid_h[i] = static_cast<float>(i);
- }
- for (int i = 0; i < grid_w_size; ++i) {
- grid_w[i] = static_cast<float>(i);
- }
- std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid[h][w] = grid_w[w];
- }
- }
- std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid_2d[0][h][w] = grid_h[h];
- grid_2d[1][h][w] = grid_w[w];
- }
- }
- std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
- int H = image_size.first;
- int W = image_size.second;
- std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
- }
- }
- return pos_embed_2d;
- }
- bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
- if (!ctx->has_vision_encoder) {
- LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
- return false;
- }
- clip_image_f32_batch imgs;
- clip_image_f32_ptr img_copy(clip_image_f32_init());
- *img_copy = *img;
- imgs.entries.push_back(std::move(img_copy));
- return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
- }
- bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
- const clip_image_f32_batch & imgs = *imgs_c_ptr;
- if (!ctx->has_vision_encoder) {
- LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
- return false;
- }
- int batch_size = imgs.entries.size();
- if (ctx->has_llava_projector) {
- GGML_ASSERT(batch_size == 1); // TODO: support multiple images
- }
- if (ctx->has_minicpmv_projector) {
- GGML_ASSERT(batch_size == 1);
- }
- if (ctx->has_glm_projector) {
- GGML_ASSERT(batch_size == 1);
- ggml_tensor * boi = ctx->vision_model.boi_w;
- ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi));
- vec = (float*)(vec+ggml_nelements(boi)); //offset for boi
- }
- // build the inference graph
- ggml_backend_sched_reset(ctx->sched.get());
- ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
- ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
- // set inputs
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- const int image_size = hparams.image_size;
- int image_size_width = image_size;
- int image_size_height = image_size;
- if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) {
- image_size_width = imgs.entries[0]->nx;
- image_size_height = imgs.entries[0]->ny;
- }
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
- const int pos_w = ctx->load_image_size.width / patch_size;
- const int pos_h = ctx->load_image_size.height / patch_size;
- {
- struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
- float * data = (float *)malloc(ggml_nbytes(inp_raw));
- for (size_t i = 0; i < imgs.entries.size(); i++) {
- const int nx = imgs.entries[i]->nx;
- const int ny = imgs.entries[i]->ny;
- if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) {
- GGML_ASSERT(nx == image_size && ny == image_size);
- }
- const int n = nx * ny;
- for (int b = 0; b < batch_size; b++) {
- for (int k = 0; k < 3; k++) {
- for (int y = 0; y < ny; y++) {
- for (int x = 0; x < nx; x++) {
- data[(b * 3 * n) + k * n + y * nx + x] = imgs.entries[b]->buf[3 * (y * nx + x) + k];
- }
- }
- }
- }
- }
- ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
- free(data);
- }
- if (ctx->has_minicpmv_projector) {
- {
- // inspired from siglip:
- // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
- // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
- struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
- int* positions_data = (int*)malloc(ggml_nbytes(positions));
- int bucket_coords_h[1024];
- int bucket_coords_w[1024];
- for (int i = 0; i < pos_h; i++){
- bucket_coords_h[i] = std::floor(70.0*i/pos_h);
- }
- for (int i = 0; i < pos_w; i++){
- bucket_coords_w[i] = std::floor(70.0*i/pos_w);
- }
- for (int i = 0, id = 0; i < pos_h; i++){
- for (int j = 0; j < pos_w; j++){
- positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
- }
- }
- ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
- free(positions_data);
- }
- {
- // inspired from resampler of Qwen-VL:
- // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
- // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
- struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
- int embed_dim = 4096;
- if (ctx->minicpmv_version == 2) {
- embed_dim = 4096;
- }
- else if (ctx->minicpmv_version == 3) {
- embed_dim = 3584;
- }
- else if (ctx->minicpmv_version == 4) {
- embed_dim = 3584;
- }
- auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
- float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
- for(int i=0;i < pos_w * pos_h; ++i){
- for(int j=0; j < embed_dim; ++j){
- pos_embed_data[i * embed_dim + j] = pos_embed_t[i][j];
- }
- }
- ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
- free(pos_embed_data);
- }
- }
- else {
- if (model.class_embedding) {
- struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
- void* zero_mem = malloc(ggml_nbytes(embeddings));
- memset(zero_mem, 0, ggml_nbytes(embeddings));
- ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
- free(zero_mem);
- }
- if (ctx->has_qwen2vl_merger) {
- struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
- const int pw = image_size_width / patch_size;
- const int ph = image_size_height / patch_size;
- int* positions_data = (int*)malloc(ggml_nbytes(positions));
- int ptr = 0;
- for (int y = 0; y < ph; y+=2)
- {
- for (int x = 0; x < pw; x+=2)
- {
- for (int dy = 0; dy < 2; dy++) {
- for (int dx = 0; dx < 2; dx++) {
- positions_data[ptr] = y + dy;
- positions_data[num_patches + ptr] = x + dx;
- positions_data[num_patches * 2 + ptr] = y + dy;
- positions_data[num_patches * 3 + ptr] = x + dx;
- ptr++;
- }
- }
- }
- }
- ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
- free(positions_data);
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- // do nothing
- }
- else {
- struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
- int* positions_data = (int*)malloc(ggml_nbytes(positions));
- for (int i = 0; i < num_positions; i++) {
- positions_data[i] = i;
- }
- ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
- free(positions_data);
- if (!ctx->has_glm_projector) {
- struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
- // The patches vector is used to get rows to index into the embeds with;
- // we should skip dim 0 only if we have CLS to avoid going out of bounds
- // when retrieving the rows.
- int patch_offset = model.class_embedding ? 1 : 0;
- int* patches_data = (int*)malloc(ggml_nbytes(patches));
- for (int i = 0; i < num_patches; i++) {
- patches_data[i] = i + patch_offset;
- }
- ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
- free(patches_data);
- }
- }
- }
- ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
- auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
- if (status != GGML_STATUS_SUCCESS) {
- LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
- return false;
- }
- // the last node is the embedding tensor
- struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
- // copy the embeddings to the location passed by the user
- ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
- if (ctx->has_glm_projector) {
- //eoi
- ggml_tensor * eoi = ctx->vision_model.eoi_w;
- int offset = ggml_nelements(embeddings);
- ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi));
- }
- return true;
- }
- bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
- assert(itype < GGML_TYPE_COUNT);
- ggml_type type = static_cast<ggml_type>(itype);
- auto * ctx_clip = clip_init(fname_inp, clip_context_params{
- /* use_gpu */ false,
- /* verbosity */ GGML_LOG_LEVEL_ERROR,
- });
- const auto & ctx_src = ctx_clip->ctx_gguf.get();
- const auto & ctx_data = ctx_clip->ctx_data.get();
- auto * ctx_out = gguf_init_empty();
- gguf_set_kv(ctx_out, ctx_src);
- gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
- gguf_set_val_u32(ctx_out, "general.file_type", itype);
- auto fout = std::ofstream(fname_out, std::ios::binary);
- const int n_tensors = gguf_get_n_tensors(ctx_src);
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
- gguf_add_tensor(ctx_out, cur);
- }
- const size_t meta_size = gguf_get_meta_size(ctx_out);
- for (size_t i = 0; i < meta_size; ++i) {
- fout.put(0);
- }
- // regexes of tensor names to be quantized
- const std::vector<std::string> k_names = {
- ".*weight",
- };
- std::vector<uint8_t> work(512);
- std::vector<float> conv_buf(512);
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- for (int i = 0; i < n_tensors; ++i) {
- const std::string name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- bool quantize = false;
- for (const auto & s : k_names) {
- if (std::regex_match(name, std::regex(s))) {
- quantize = true;
- break;
- }
- }
- // quantize only 2D tensors and bigger than block size
- quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
- if (quantize) {
- new_type = type;
- if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
- new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
- // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
- }
- const size_t n_elms = ggml_nelements(cur);
- float * f32_data;
- switch (cur->type) {
- case GGML_TYPE_F32:
- f32_data = (float *)cur->data;
- break;
- case GGML_TYPE_F16:
- if (conv_buf.size() < n_elms) {
- conv_buf.resize(n_elms);
- }
- for (size_t j = 0; j < n_elms; ++j) {
- conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
- }
- f32_data = (float *)conv_buf.data();
- break;
- default:
- LOG_ERR("%s: Please use an input file in f32 or f16\n", __func__);
- gguf_free(ctx_out);
- return false;
- }
- if (work.size() < n_elms * 4) {
- work.resize(n_elms * 4);
- }
- new_data = work.data();
- new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
- } else {
- new_type = cur->type;
- new_data = cur->data;
- new_size = ggml_nbytes(cur);
- }
- const size_t orig_size = ggml_nbytes(cur);
- total_size_org += orig_size;
- total_size_new += new_size;
- gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
- GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
- gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
- fout.write((const char *)new_data, new_size);
- size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
- for (size_t j = 0; j < pad; ++j) {
- fout.put(0);
- }
- LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
- orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
- }
- // go back to beginning of file and write the updated metadata
- fout.seekp(0, std::ios::beg);
- std::vector<uint8_t> meta(meta_size);
- gguf_get_meta_data(ctx_out, meta.data());
- fout.write((const char *)meta.data(), meta_size);
- fout.close();
- clip_free(ctx_clip);
- gguf_free(ctx_out);
- {
- LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
- LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
- }
- return true;
- }
- int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
- if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
- return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
- return ctx->vision_model.mm_model_peg_0_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- return ctx->vision_model.mm_2_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
- return ctx->vision_model.mm_3_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
- if (ctx->minicpmv_version == 2) {
- return 4096;
- }
- else if (ctx->minicpmv_version == 3) {
- return 3584;
- }
- else if (ctx->minicpmv_version == 4) {
- return 3584;
- }
- }
- if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){
- return ctx->vision_model.mm_model_mlp_3_w->ne[1];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
- return ctx->vision_model.mm_1_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
- return ctx->vision_model.mm_input_proj_w->ne[0];
- }
- std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
- throw std::runtime_error(string_format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
- }
- int clip_is_minicpmv(const struct clip_ctx * ctx) {
- if (ctx->has_minicpmv_projector) {
- return ctx->minicpmv_version;
- }
- return 0;
- }
- bool clip_is_glm(const struct clip_ctx * ctx) {
- return ctx->has_glm_projector;
- }
- bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
- return ctx->has_qwen2vl_merger;
- }
- bool clip_is_llava(const struct clip_ctx * ctx) {
- return ctx->has_llava_projector;
- }
- bool clip_is_gemma3(const struct clip_ctx * ctx) {
- return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
- }
- // Determine the number of encoder layers to iterate over
- int get_deepest_feature_layer(const struct clip_ctx * ctx) {
- // Get the index of the second to last layer; this is the
- // default for models that have a llava projector
- const auto & hparams = ctx->vision_model.hparams;
- int n_layer = hparams.n_layer - 1;
- int deepest_feature_layer = -1;
- // Handle other projectors; incrementing here indicates that we
- // should use the last encoder layer for the vision features.
- if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
- n_layer += 1;
- }
- // If we set explicit vision feature layers, only go up to the deepest one
- for (const auto & feature_layer : hparams.vision_feature_layer) {
- if (feature_layer > deepest_feature_layer) {
- deepest_feature_layer = feature_layer;
- }
- }
- return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
- }
- bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
- clip_image_f32 clip_img;
- clip_img.buf.resize(h * w * 3);
- for (int i = 0; i < h*w*3; i++)
- {
- clip_img.buf[i] = img[i];
- }
- clip_img.nx = w;
- clip_img.ny = h;
- clip_image_encode(ctx, n_threads, &clip_img, vec);
- return true;
- }
- //
- // API used internally with mtmd
- //
- projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
- return ctx->proj_type;
- }
|