| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337 |
- //
- // MIT license
- // Copyright (C) 2024 Intel Corporation
- // SPDX-License-Identifier: MIT
- //
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- #include <algorithm>
- #include <assert.h>
- #include <atomic>
- #include <cinttypes>
- #include <cstddef>
- #include <cstdint>
- #include <cstdlib>
- #include <float.h>
- #include <limits>
- #include <stdint.h>
- #include <stdio.h>
- #include <vector>
- #include <cmath>
- #include <iostream>
- #include <fstream>
- #include <stdio.h>
- #include <stdlib.h>
- #include <regex>
- #include <sycl/sycl.hpp>
- #include <sycl/half_type.hpp>
- #include "ggml-sycl.h"
- #include "ggml.h"
- #include "ggml-backend-impl.h"
- #include "ggml-sycl/backend.hpp"
- /*
- Following definition copied from DPCT head files, which are used by ggml-sycl.cpp
- */
- // COPY from DPCT head files
- #include <sycl/sycl.hpp>
- #include <oneapi/mkl.hpp>
- #include <map>
- #if defined(__linux__)
- #include <sys/mman.h>
- #elif defined(_WIN64)
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #else
- #error "Only support Windows and Linux."
- #endif
- #if defined(__linux__)
- #include <unistd.h>
- #include <sys/syscall.h>
- #endif
- #if defined(_WIN64)
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #endif
- #define DPCT_COMPATIBILITY_TEMP (900)
- #if defined(_MSC_VER)
- #define __dpct_align__(n) __declspec(align(n))
- #define __dpct_inline__ __forceinline
- #else
- #define __dpct_align__(n) __attribute__((aligned(n)))
- #define __dpct_inline__ __inline__ __attribute__((always_inline))
- #endif
- #if defined(_MSC_VER)
- #define __dpct_noinline__ __declspec(noinline)
- #else
- #define __dpct_noinline__ __attribute__((noinline))
- #endif
- bool ggml_sycl_loaded(void);
- void ggml_sycl_free_data(struct ggml_tensor * tensor);
- void ggml_sycl_assign_buffers(struct ggml_tensor * tensor);
- void ggml_sycl_assign_buffers_no_scratch(struct ggml_tensor * tensor);
- void ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor);
- void ggml_sycl_assign_buffers_no_alloc(struct ggml_tensor * tensor);
- void ggml_sycl_copy_to_device(struct ggml_tensor * tensor);
- void ggml_sycl_set_main_device(int main_device);
- void ggml_sycl_set_mul_mat_q(bool mul_mat_q);
- void ggml_sycl_set_scratch_size(size_t scratch_size);
- void ggml_sycl_free_scratch(void);
- void ggml_sycl_get_device_description(int device, char * description, size_t description_size);
- bool ggml_backend_is_sycl(ggml_backend_t backend);
- int ggml_backend_sycl_get_device(ggml_backend_t backend);
- static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer);
- void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst,
- const void *ptr_src, size_t size) {
- char *host_buf = (char *)malloc(size);
- q_src.memcpy(host_buf, (const char *)ptr_src, size).wait();
- q_dst.memcpy((char *)ptr_dst, host_buf, size).wait();
- free(host_buf);
- }
- static __dpct_inline__ int get_int_from_int8(const int8_t *x8, const int &i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __dpct_inline__ int get_int_from_uint8(const uint8_t *x8,
- const int &i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __dpct_inline__ int get_int_from_int8_aligned(const int8_t *x8,
- const int &i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- static __dpct_inline__ int get_int_from_uint8_aligned(const uint8_t *x8,
- const int &i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- template <typename T>
- using to_t_sycl_t = void (*)(const void *__restrict__ x, T *__restrict__ y,
- int k, queue_ptr stream);
- typedef to_t_sycl_t<float> to_fp32_sycl_t;
- typedef to_t_sycl_t<sycl::half> to_fp16_sycl_t;
- typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
- typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
- typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
- typedef void (*ggml_sycl_func_t)(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- typedef void (*ggml_sycl_op_mul_mat_t)(
- ggml_backend_sycl_context & ctx,
- const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const queue_ptr &stream);
- typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream);
- typedef float (*vec_dot_q_sycl_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
- typedef void (*allocate_tiles_sycl_t)(int **x_ql, sycl::half2 **x_dm,
- int **x_qh, int **x_sc);
- typedef void (*load_tiles_sycl_t)(const void *__restrict__ vx,
- int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm,
- int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset,
- const int &i_max, const int &k,
- const int &blocks_per_row);
- typedef float (*vec_dot_q_mul_mat_sycl_t)(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ms,
- const int &i, const int &j, const int &k);
- static __dpct_inline__ float warp_reduce_sum(float x,
- const sycl::nd_item<3> &item_ct1) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- /*
- DPCT1096:98: The right-most dimension of the work-group used in the SYCL
- kernel that calls this function may be less than "32". The function
- "dpct::permute_sub_group_by_xor" may return an unexpected result on the
- CPU device. Modify the size of the work-group to ensure that the value
- of the right-most dimension is a multiple of "32".
- */
- x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
- }
- return x;
- }
- static __dpct_inline__ sycl::float2
- warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3> &item_ct1) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
- mask);
- a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
- mask);
- }
- return a;
- }
- static __dpct_inline__ float warp_reduce_max(float x,
- const sycl::nd_item<3> &item_ct1) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- /*
- DPCT1096:97: The right-most dimension of the work-group used in the SYCL
- kernel that calls this function may be less than "32". The function
- "dpct::permute_sub_group_by_xor" may return an unexpected result on the
- CPU device. Modify the size of the work-group to ensure that the value
- of the right-most dimension is a multiple of "32".
- */
- x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
- item_ct1.get_sub_group(), x, mask));
- }
- return x;
- }
- static __dpct_inline__ float op_repeat(const float a, const float b) {
- return b;
- GGML_UNUSED(a);
- }
- static __dpct_inline__ float op_add(const float a, const float b) {
- return a + b;
- }
- static __dpct_inline__ float op_mul(const float a, const float b) {
- return a * b;
- }
- static __dpct_inline__ float op_div(const float a, const float b) {
- return a / b;
- }
- template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
- static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
- int ne0, int ne1, int ne2, int ne3,
- int ne10, int ne11, int ne12, int ne13,
- /*int s0, */ int s1, int s2, int s3,
- /*int s10,*/ int s11, int s12, int s13,
- const sycl::nd_item<3> &item_ct1) {
- const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
- const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
- item_ct1.get_local_id(0)) /
- ne3;
- const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
- item_ct1.get_local_id(0)) %
- ne3;
- if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
- return;
- }
- const int i11 = i1 % ne11;
- const int i12 = i2 % ne12;
- const int i13 = i3 % ne13;
- const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
- const size_t i_dst = i_src0;
- const src0_t * src0_row = src0 + i_src0;
- const src1_t * src1_row = src1 + i_src1;
- dst_t * dst_row = dst + i_dst;
- for (int i0 = i0s; i0 < ne0;
- i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
- const int i10 = i0 % ne10;
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
- }
- }
- template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
- static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
- int ne0, int ne1, int ne2, int ne3,
- int ne10, int ne11, int ne12, int ne13,
- /*int s0, */ int s1, int s2, int s3,
- /*int s10,*/ int s11, int s12, int s13,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int i3 = i/(ne2*ne1*ne0);
- const int i2 = (i/(ne1*ne0)) % ne2;
- const int i1 = (i/ne0) % ne1;
- const int i0 = i % ne0;
- if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
- return;
- }
- const int i11 = i1 % ne11;
- const int i12 = i2 % ne12;
- const int i13 = i3 % ne13;
- const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
- const size_t i_dst = i_src0;
- const src0_t * src0_row = src0 + i_src0;
- const src1_t * src1_row = src1 + i_src1;
- dst_t * dst_row = dst + i_dst;
- const int i10 = i0 % ne10;
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
- }
- static void acc_f32(const float * x, const float * y, float * dst, const int ne,
- const int ne10, const int ne11, const int ne12,
- const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= ne) {
- return;
- }
- int src1_idx = i - offset;
- int oz = src1_idx / nb2;
- int oy = (src1_idx - (oz * nb2)) / nb1;
- int ox = src1_idx % nb1;
- if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
- dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
- } else {
- dst[i] = x[i];
- }
- }
- static void gelu_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const float GELU_COEF_A = 0.044715f;
- const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- float xi = x[i];
- dst[i] = 0.5f * xi *
- (1.0f +
- sycl::tanh(SQRT_2_OVER_PI * xi * (1.0f + GELU_COEF_A * xi * xi)));
- }
- static void silu_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = x[i] / (1.0f + sycl::native::exp(-x[i]));
- }
- static void gelu_quick_f32(const float *x, float *dst, int k,
- const sycl::nd_item<3> &item_ct1) {
- const float GELU_QUICK_COEF = -1.702f;
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * (1.0f / (1.0f + sycl::native::exp(GELU_QUICK_COEF * x[i])));
- }
- static void tanh_f32(const float *x, float *dst, int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = sycl::tanh((float)(x[i]));
- }
- static void relu_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = sycl::fmax((float)(x[i]), (float)0);
- }
- static void hardsigmoid_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
- }
- static void hardswish_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
- }
- static void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = sycl::fmax((float)(x[i]), (float)0) +
- sycl::fmin((float)(x[i]), 0.0f) * negative_slope;
- }
- static void sqr_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * x[i];
- }
- static void norm_f32(const float * x, float * dst, const int ncols, const float eps,
- const sycl::nd_item<3> &item_ct1, sycl::float2 *s_sum, int block_size) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- const int tid = item_ct1.get_local_id(2);
- sycl::float2 mean_var = sycl::float2(0.f, 0.f);
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- mean_var.x() += xi;
- mean_var.y() += xi * xi;
- }
- // sum up partial sums
- mean_var = warp_reduce_sum(mean_var, item_ct1);
- if (block_size > WARP_SIZE) {
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = mean_var;
- }
- /*
- DPCT1118:0: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- item_ct1.barrier(sycl::access::fence_space::local_space);
- mean_var = s_sum[lane_id];
- mean_var = warp_reduce_sum(mean_var, item_ct1);
- }
- const float mean = mean_var.x() / ncols;
- const float var = mean_var.y() / ncols - mean * mean;
- const float inv_std = sycl::rsqrt(var + eps);
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
- }
- }
- static void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02,
- const sycl::nd_item<3> &item_ct1) {
- int nidx = item_ct1.get_local_id(2) +
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
- if (nidx >= ne0) {
- return;
- }
- // operation
- int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
- item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
- if (item_ct1.get_group(0) < ne02) { // src0
- int offset_src =
- nidx + item_ct1.get_group(1) * ne0 +
- item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
- dst[offset_dst] = x[offset_src];
- } else {
- int offset_src =
- nidx + item_ct1.get_group(1) * ne0 +
- (item_ct1.get_group(0) - ne02) * ne0 * item_ct1.get_group_range(1);
- dst[offset_dst] = y[offset_src];
- }
- }
- static void upscale_f32(const float *x, float *dst, const int nb00, const int nb01,
- const int nb02, const int nb03, const int ne10, const int ne11,
- const int ne12, const int ne13, const float sf0, const float sf1,
- const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) {
- int index = item_ct1.get_local_id(0) +
- item_ct1.get_group(0) * item_ct1.get_local_range(0);
- if (index >= ne10 * ne11 * ne12 * ne13) {
- return;
- }
- // operation
- int i10 = index % ne10;
- int i11 = (index / ne10) % ne11;
- int i12 = (index / (ne10 * ne11)) % ne12;
- int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
- int i00 = i10 / sf0;
- int i01 = i11 / sf1;
- int i02 = i12 / sf2;
- int i03 = i13 / sf3;
- dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
- }
- static void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
- const sycl::nd_item<3> &item_ct1) {
- int nidx = item_ct1.get_local_id(2) +
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
- if (nidx >= ne0) {
- return;
- }
- // operation
- int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
- item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
- if (nidx < ne00 && item_ct1.get_group(1) < ne01 &&
- item_ct1.get_group(0) < ne02) {
- int offset_src = nidx + item_ct1.get_group(1) * ne00 +
- item_ct1.get_group(0) * ne00 * ne01;
- dst[offset_dst] = x[offset_src];
- } else {
- dst[offset_dst] = 0.0f;
- }
- }
- static void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps,
- const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
- int start = item_ct1.get_group(2) * group_size;
- int end = start + group_size;
- start += item_ct1.get_local_id(2);
- if (end >= ne_elements) {
- end = ne_elements;
- }
- float tmp = 0.0f; // partial sum for thread in warp
- for (int j = start; j < end; j += block_size) {
- tmp += x[j];
- }
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- /*
- DPCT1118:1: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
- float mean = tmp / group_size;
- tmp = 0.0f;
- for (int j = start; j < end; j += block_size) {
- float xi = x[j] - mean;
- dst[j] = xi;
- tmp += xi * xi;
- }
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- /*
- DPCT1118:2: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
- float variance = tmp / group_size;
- float scale = sycl::rsqrt(variance + eps);
- for (int j = start; j < end; j += block_size) {
- dst[j] *= scale;
- }
- }
- static void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps,
- const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- const int tid = item_ct1.get_local_id(2);
- float tmp = 0.0f; // partial sum for thread in warp
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- tmp += xi * xi;
- }
- // sum up partial sums
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- /*
- DPCT1118:3: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- item_ct1.barrier(sycl::access::fence_space::local_space);
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
- const float mean = tmp / ncols;
- const float scale = sycl::rsqrt(mean + eps);
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = scale * x[row*ncols + col];
- }
- }
- static __dpct_inline__ void dequantize_q4_0(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const dfloat d = x[ib].d;
- const int vui = x[ib].qs[iqs];
- v.x() = vui & 0xF;
- v.y() = vui >> 4;
- #ifdef GGML_SYCL_F16
- // v = v - {8.0f, 8.0f};
- // v = v * {d, d};
- v.s0() = (v.s0() - 8.0f) * d;
- v.s1() = (v.s1() - 8.0f) * d;
- #else
- v.x() = (v.x() - 8.0f) * d;
- v.y() = (v.y() - 8.0f) * d;
- #endif // GGML_SYCL_F16
- }
- static __dpct_inline__ void dequantize_q4_1(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q4_1 * x = (const block_q4_1 *) vx;
- const dfloat d = x[ib].dm[0];
- const dfloat m = x[ib].dm[1];
- const int vui = x[ib].qs[iqs];
- v.x() = vui & 0xF;
- v.y() = vui >> 4;
- #ifdef GGML_SYCL_F16
- // v = v * {d, d};
- // v = v + {m, m};
- v.s0() = (v.s0() * d) + m;
- v.s1() = (v.s1() * d) + m;
- #else
- v.x() = (v.x() * d) + m;
- v.y() = (v.y() * d) + m;
- #endif // GGML_SYCL_F16
- }
- static __dpct_inline__ void dequantize_q5_0(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q5_0 * x = (const block_q5_0 *) vx;
- const dfloat d = x[ib].d;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_SYCL_F16
- // v = v - {16.0f, 16.0f};
- // v = v * {d, d};
- v.s0() = (v.s0() - 16.0f) * d;
- v.s1() = (v.s1() - 16.0f) * d;
- #else
- v.x() = (v.x() - 16.0f) * d;
- v.y() = (v.y() - 16.0f) * d;
- #endif // GGML_SYCL_F16
- }
- static __dpct_inline__ void dequantize_q5_1(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q5_1 * x = (const block_q5_1 *) vx;
- const dfloat d = x[ib].dm[0];
- const dfloat m = x[ib].dm[1];
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_SYCL_F16
- // v = v * {d, d};
- // v = v + {m, m};
- v.s0() = (v.s0() * d) + m;
- v.s1() = (v.s1() * d) + m;
- #else
- v.x() = (v.x() * d) + m;
- v.y() = (v.y() * d) + m;
- #endif // GGML_SYCL_F16
- }
- static __dpct_inline__ void dequantize_q8_0(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q8_0 * x = (const block_q8_0 *) vx;
- const dfloat d = x[ib].d;
- v.x() = x[ib].qs[iqs + 0];
- v.y() = x[ib].qs[iqs + 1];
- #ifdef GGML_SYCL_F16
- // v = v * {d, d};
- v.s0() *= d;
- v.s1() *= d;
- #else
- v.x() *= d;
- v.y() *= d;
- #endif // GGML_SYCL_F16
- }
- template<typename dst_t>
- static void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- // assume 32 threads
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8;
- const int ir = tid%8;
- const int ib = 8*i + ir;
- if (ib >= nb32) {
- return;
- }
- dst_t * y = yy + 256*i + 32*ir + 4*il;
- const block_q4_0 * x = (const block_q4_0 *)vx + ib;
- const float d = sycl::vec<sycl::half, 1>(x->d)
- .convert<float, sycl::rounding_mode::automatic>()[0];
- const float dm = -8*d;
- const uint8_t * q = x->qs + 4*il;
- for (int l = 0; l < 4; ++l) {
- y[l+ 0] = d * (q[l] & 0xF) + dm;
- y[l+16] = d * (q[l] >> 4) + dm;
- }
- }
- template<typename dst_t>
- static void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- // assume 32 threads
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8;
- const int ir = tid%8;
- const int ib = 8*i + ir;
- if (ib >= nb32) {
- return;
- }
- dst_t * y = yy + 256*i + 32*ir + 4*il;
- const block_q4_1 * x = (const block_q4_1 *)vx + ib;
- const sycl::float2 d =
- x->dm.convert<float, sycl::rounding_mode::automatic>();
- const uint8_t * q = x->qs + 4*il;
- for (int l = 0; l < 4; ++l) {
- y[l + 0] = d.x() * (q[l] & 0xF) + d.y();
- y[l + 16] = d.x() * (q[l] >> 4) + d.y();
- }
- }
- //================================== k-quants
- template<typename dst_t>
- static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- const block_q2_K * x = (const block_q2_K *) vx;
- const int tid = item_ct1.get_local_id(2);
- const int n = tid/32;
- const int l = tid - 32*n;
- const int is = 8*n + l/16;
- const uint8_t q = x[i].qs[32*n + l];
- dst_t * y = yy + i*QK_K + 128*n;
- float dall = x[i].dm[0];
- float dmin = x[i].dm[1];
- y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
- y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
- y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
- }
- template<typename dst_t>
- static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- const block_q3_K * x = (const block_q3_K *) vx;
- const int r = item_ct1.get_local_id(2) / 4;
- const int tid = r/2;
- const int is0 = r%2;
- const int l0 = 16 * is0 + 4 * (item_ct1.get_local_id(2) % 4);
- const int n = tid / 4;
- const int j = tid - 4*n;
- uint8_t m = 1 << (4*n + j);
- int is = 8*n + 2*j + is0;
- int shift = 2*j;
- int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
- is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
- is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
- (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
- float d_all = x[i].d;
- float dl = d_all * (us - 32);
- dst_t * y = yy + i*QK_K + 128*n + 32*j;
- const uint8_t * q = x[i].qs + 32*n;
- const uint8_t * hm = x[i].hmask;
- for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
- }
- static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
- if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
- } else {
- d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
- }
- }
- template<typename dst_t>
- static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const block_q4_K * x = (const block_q4_K *) vx;
- const int i = item_ct1.get_group(2);
- // assume 32 threads
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8;
- const int ir = tid%8;
- const int is = 2*il;
- const int n = 4;
- dst_t * y = yy + i*QK_K + 64*il + n*ir;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
- const uint8_t * q = x[i].qs + 32*il + n*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
- }
- }
- template<typename dst_t>
- static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const block_q5_K * x = (const block_q5_K *) vx;
- const int i = item_ct1.get_group(2);
- // assume 64 threads - this is very slightly better than the one below
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/16; // il is in 0...3
- const int ir = tid%16; // ir is in 0...15
- const int is = 2*il; // is is in 0...6
- dst_t * y = yy + i*QK_K + 64*il + 2*ir;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
- const uint8_t * ql = x[i].qs + 32*il + 2*ir;
- const uint8_t * qh = x[i].qh + 2*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- uint8_t hm = 1 << (2*il);
- y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
- y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
- }
- template<typename dst_t>
- static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const block_q6_K * x = (const block_q6_K *) vx;
- const int i = item_ct1.get_group(2);
- // assume 64 threads - this is very slightly better than the one below
- const int tid = item_ct1.get_local_id(2);
- const int ip = tid/32; // ip is 0 or 1
- const int il = tid - 32*ip; // 0...32
- const int is = 8*ip + il/16;
- dst_t * y = yy + i*QK_K + 128*ip + il;
- const float d = x[i].d;
- const uint8_t * ql = x[i].ql + 64*ip + il;
- const uint8_t qh = x[i].qh[32*ip + il];
- const int8_t * sc = x[i].scales + is;
- y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
- }
- template<typename dst_t>
- static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint64_t *iq2xxs_grid_ptr,
- const uint8_t *ksigns_iq2xs_ptr,
- const uint8_t *kmask_iq2xs_ptr) {
- const int i = item_ct1.get_group(2);
- const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * q2 = x[i].qs + 4*ib;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid = (const uint8_t *)(iq2xxs_grid_ptr + aux8[il]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
- const uint8_t signs = ksigns_iq2xs_ptr[(aux32 >> 7*il) & 127];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs_ptr[j] ? -1.f : 1.f);
- }
- template<typename dst_t>
- static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint64_t *iq2xs_grid,
- const uint8_t *ksigns_iq2xs,
- const uint8_t *kmask_iq2xs) {
- const int i = item_ct1.get_group(2);
- const block_iq2_xs * x = (const block_iq2_xs *) vx;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * q2 = x[i].qs + 4*ib;
- const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
- const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
- const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- const block_iq2_s * x = (const block_iq2_s *) vx;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
- const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
- const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
- #pragma unroll
- for (int j = 0; j < 8; ++j) {
- y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
- }
- }
- template<typename dst_t>
- static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint32_t *iq3xxs_grid,
- const uint8_t *ksigns_iq2xs,
- const uint8_t *kmask_iq2xs) {
- const int i = item_ct1.get_group(2);
- const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * q3 = x[i].qs + 8*ib;
- const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
- const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
- const uint32_t aux32 = gas[0] | (gas[1] << 16);
- const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
- const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
- for (int j = 0; j < 4; ++j) {
- y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
- y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
- }
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint8_t *kmask_iq2xs, const uint32_t *iq3s_grid) {
- const int i = item_ct1.get_group(2);
- const block_iq3_s * x = (const block_iq3_s *) vx;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * qs = x[i].qs + 8*ib;
- const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
- const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
- const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
- const uint8_t signs = x[i].signs[4*ib + il];
- #pragma unroll
- for (int j = 0; j < 4; ++j) {
- y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
- y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
- }
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint32_t *iq1s_grid_gpu) {
- const int i = item_ct1.get_group(2);
- const block_iq1_s * x = (const block_iq1_s *) vx;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
- const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
- uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
- grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
- grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
- grid32[0] &= 0x0f0f0f0f;
- #pragma unroll
- for (int j = 0; j < 8; ++j) {
- y[j] = d * (q[j] + delta);
- }
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint32_t *iq1s_grid_gpu) {
- const int i = item_ct1.get_group(2);
- const block_iq1_m * x = (const block_iq1_m *) vx;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * sc = (const uint16_t *)x[i].scales;
- iq1m_scale_t scale;
- scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
- const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
- const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
- const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
- uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
- grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
- grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
- grid32[0] &= 0x0f0f0f0f;
- #pragma unroll
- for (int j = 0; j < 8; ++j) {
- y[j] = d * (q[j] + delta);
- }
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq4_nl(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 4*il;
- const uint8_t * q4 = x[ib].qs + 4*il;
- const float d = (float)x[ib].d;
- #pragma unroll
- for (int j = 0; j < 4; ++j) {
- y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
- y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
- }
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq4_xs(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- const block_iq4_xs * x = (const block_iq4_xs *)vx;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 4*il;
- const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
- const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
- #pragma unroll
- for (int j = 0; j < 4; ++j) {
- y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
- y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
- }
- }
- /*
- DPCT1110:4: The total declared local variable size in device function
- dequantize_mul_mat_vec_q2_k exceeds 128 bytes and may cause high register
- pressure. Consult with your hardware vendor to find the total register size
- available and adjust the code, or use smaller sub-group size to avoid high
- register pressure.
- */
- static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q2_K * x = (const block_q2_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int s_offset = 8*im;
- const int y_offset = 128*im + l0;
- uint32_t aux[4];
- const uint8_t * d = (const uint8_t *)aux;
- const uint8_t * m = (const uint8_t *)(aux + 2);
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
- const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
- aux[0] = a[0] & 0x0f0f0f0f;
- aux[1] = a[1] & 0x0f0f0f0f;
- aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
- aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
- + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
- + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
- + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
- + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
- + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
- + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
- +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
- sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
- + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
- }
- tmp += dall * sum1 - dmin * sum2;
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- /*
- DPCT1110:5: The total declared local variable size in device function
- dequantize_mul_mat_vec_q3_k exceeds 128 bytes and may cause high register
- pressure. Consult with your hardware vendor to find the total register size
- available and adjust the code, or use smaller sub-group size to avoid high
- register pressure.
- */
- static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q3_K * x = (const block_q3_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- const uint16_t kmask1 = 0x0303;
- const uint16_t kmask2 = 0x0f0f;
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0....15 or 0...7
- const uint8_t m = 1 << (4*im);
- const int l0 = n*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int y_offset = 128*im + l0;
- uint16_t utmp[4];
- const int8_t * s = (const int8_t *)utmp;
- const uint16_t s_shift = 4*im;
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const uint8_t * h = x[i].hmask + l0;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
- utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
- utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
- utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
- const float d = x[i].d;
- float sum = 0;
- for (int l = 0; l < n; ++l) {
- sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
- + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
- + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
- + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
- sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
- + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
- + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
- + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
- }
- tmp += d * sum;
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- /*
- DPCT1110:6: The total declared local variable size in device function
- dequantize_mul_mat_vec_q4_k exceeds 128 bytes and may cause high register
- pressure. Consult with your hardware vendor to find the total register size
- available and adjust the code, or use smaller sub-group size to avoid high
- register pressure.
- */
- static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q4_K * x = (const block_q4_K *)vx + ib0;
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
- const int il = tid/step; // 0...3
- const int ir = tid - step*il; // 0...7 or 0...3
- const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- #if K_QUANTS_PER_ITERATION == 2
- uint32_t q32[4];
- const uint8_t * q4 = (const uint8_t *)q32;
- #else
- uint16_t q16[4];
- const uint8_t * q4 = (const uint8_t *)q16;
- #endif
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- #if K_QUANTS_PER_ITERATION == 2
- const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
- const uint32_t * q2 = q1 + 16;
- q32[0] = q1[0] & 0x0f0f0f0f;
- q32[1] = q1[0] & 0xf0f0f0f0;
- q32[2] = q2[0] & 0x0f0f0f0f;
- q32[3] = q2[0] & 0xf0f0f0f0;
- sycl::float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 4; ++l) {
- s.x() += y1[l] * q4[l + 0]; s.y() += y1[l + 32] * q4[l + 4];
- s.z() += y2[l] * q4[l + 8]; s.w() += y2[l + 32] * q4[l + 12];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x() * sc[0] + s.y() * sc[1] * 1.f / 16.f +
- s.z() * sc[4] + s.w() * sc[5] * 1.f / 16.f) -
- dmin * smin;
- #else
- const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[0] & 0xf0f0;
- q16[2] = q2[0] & 0x0f0f;
- q16[3] = q2[0] & 0xf0f0;
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 2; ++l) {
- s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
- s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
- #endif
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- /*
- DPCT1110:7: The total declared local variable size in device function
- dequantize_mul_mat_vec_q5_k exceeds 128 bytes and may cause high register
- pressure. Consult with your hardware vendor to find the total register size
- available and adjust the code, or use smaller sub-group size to avoid high
- register pressure.
- */
- static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2);
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q5_K * x = (const block_q5_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid = item_ct1.get_local_id(2) / 2; // 0...15
- const int ix = item_ct1.get_local_id(2) % 2;
- const int il = tid/4; // 0...3
- const int ir = tid - 4*il;// 0...3
- const int n = 2;
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- const uint8_t hm1 = 1 << (2*im);
- const uint8_t hm2 = hm1 << 4;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- uint16_t q16[8];
- const uint8_t * q4 = (const uint8_t *)q16;
- for (int i = ix; i < num_blocks_per_row; i += 2) {
- const uint8_t * ql1 = x[i].qs + q_offset;
- const uint8_t * qh = x[i].qh + l0;
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- sycl::float4 sum = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- const uint16_t * q1 = (const uint16_t *)ql1;
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[8] & 0x0f0f;
- q16[2] = (q1[0] >> 4) & 0x0f0f;
- q16[3] = (q1[8] >> 4) & 0x0f0f;
- q16[4] = q2[0] & 0x0f0f;
- q16[5] = q2[8] & 0x0f0f;
- q16[6] = (q2[0] >> 4) & 0x0f0f;
- q16[7] = (q2[8] >> 4) & 0x0f0f;
- for (int l = 0; l < n; ++l) {
- sum.x() +=
- y1[l + 0] * (q4[l + 0] + (qh[l + 0] & (hm1 << 0) ? 16 : 0)) +
- y1[l + 16] * (q4[l + 2] + (qh[l + 16] & (hm1 << 0) ? 16 : 0));
- sum.y() +=
- y1[l + 32] * (q4[l + 4] + (qh[l + 0] & (hm1 << 1) ? 16 : 0)) +
- y1[l + 48] * (q4[l + 6] + (qh[l + 16] & (hm1 << 1) ? 16 : 0));
- sum.z() +=
- y2[l + 0] * (q4[l + 8] + (qh[l + 0] & (hm2 << 0) ? 16 : 0)) +
- y2[l + 16] * (q4[l + 10] + (qh[l + 16] & (hm2 << 0) ? 16 : 0));
- sum.w() +=
- y2[l + 32] * (q4[l + 12] + (qh[l + 0] & (hm2 << 1) ? 16 : 0)) +
- y2[l + 48] * (q4[l + 14] + (qh[l + 16] & (hm2 << 1) ? 16 : 0));
- smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
- + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
- }
- tmp += dall * (sum.x() * sc[0] + sum.y() * sc[1] + sum.z() * sc[4] +
- sum.w() * sc[5]) -
- dmin * smin;
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q6_K * x = (const block_q6_K *)vx + ib0;
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0, 1
- const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- #if K_QUANTS_PER_ITERATION == 1
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
- const int is = 0;
- #else
- const int l0 = 4 * in; // 0, 4, 8, ..., 28
- const int is = in / 4;
- #endif
- const int ql_offset = 64*im + l0;
- const int qh_offset = 32*im + l0;
- const int s_offset = 8*im + is;
- const int y_offset = 128*im + l0;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * ql = x[i].ql + ql_offset;
- const uint8_t * qh = x[i].qh + qh_offset;
- const int8_t * s = x[i].scales + s_offset;
- const float d = x[i].d;
- #if K_QUANTS_PER_ITERATION == 1
- float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
- + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
- + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
- + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
- + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
- + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
- + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
- +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
- tmp += sum;
- #else
- float sum = 0;
- for (int l = 0; l < 4; ++l) {
- sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
- + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
- + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
- + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
- }
- tmp += sum;
- #endif
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const sycl::half *x = (const sycl::half *)vx;
- // automatic half -> float type cast if dfloat == float
- v.x() = x[ib + iqs + 0];
- v.y() = x[ib + iqs + 1];
- }
- static void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const float * x = (const float *) vx;
- // automatic half -> float type cast if dfloat == float
- v.x() = x[ib + iqs + 0];
- v.y() = x[ib + iqs + 1];
- }
- static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
- const sycl::nd_item<3> &item_ct1) {
- const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (ix >= kx_padded) {
- return;
- }
- const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int i_padded = iy*kx_padded + ix;
- block_q8_1 * y = (block_q8_1 *) vy;
- const int ib = i_padded / QK8_1; // block index
- const int iqs = i_padded % QK8_1; // quant index
- const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
- float amax = sycl::fabs((float)xi);
- float sum = xi;
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
- item_ct1.get_sub_group(), amax, mask));
- sum +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
- }
- const float d = amax / 127;
- const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
- y[ib].qs[iqs] = q;
- if (iqs > 0) {
- return;
- }
- reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
- reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
- }
- template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static void k_get_rows(
- const void * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12,
- const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
- const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
- item_ct1.get_local_id(2)) *
- 2;
- const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) /
- ne12;
- const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) %
- ne12;
- if (i00 >= ne00) {
- return;
- }
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
- const int ib = i00/qk; // block index
- const int iqs = (i00%qk)/qr; // quant index
- const int iybs = i00 - i00%qk; // dst block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- dfloat2 v;
- dequantize_kernel(src0_row, ib, iqs, v);
- dst_row[iybs + iqs + 0] = v.x();
- dst_row[iybs + iqs + y_offset] = v.y();
- }
- template<typename src0_t, typename dst_t>
- static void k_get_rows_float(
- const src0_t * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12,
- const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
- const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
- item_ct1.get_local_id(2);
- const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) /
- ne12;
- const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) %
- ne12;
- if (i00 >= ne00) {
- return;
- }
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
- dst_row[i00] = src0_row[i00];
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = 2 * (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2));
- if (i >= k) {
- return;
- }
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs, v);
- y[iybs + iqs + 0] = v.x();
- y[iybs + iqs + y_offset] = v.y();
- }
- template <typename src_t, typename dst_t>
- static void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- const src_t * x = (src_t *) vx;
- y[i] = x[i];
- }
- // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
- // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
- #define VDR_Q4_0_Q8_1_MMVQ 2
- #define VDR_Q4_0_Q8_1_MMQ 4
- template <int vdr>
- static __dpct_inline__ float vec_dot_q4_0_q8_1_impl(const int *v, const int *u,
- const float &d4,
- const sycl::half2 &ds8) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
- sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
- }
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- // second part effectively subtracts 8 from each quant value
- return d4 * (sumi * ds8f.x() - (8 * vdr / QI4_0) * ds8f.y());
- }
- #define VDR_Q4_1_Q8_1_MMVQ 2
- #define VDR_Q4_1_Q8_1_MMQ 4
- template <int vdr>
- static __dpct_inline__ float vec_dot_q4_1_q8_1_impl(const int *v, const int *u,
- const sycl::half2 &dm4,
- const sycl::half2 &ds8) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
- sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
- }
- #ifdef GGML_SYCL_F16
- const sycl::float2 tmp =
- (dm4 * ds8).convert<float, sycl::rounding_mode::automatic>();
- const float d4d8 = tmp.x();
- const float m4s8 = tmp.y();
- #else
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- const float d4d8 = dm4f.x() * ds8f.x();
- const float m4s8 = dm4f.y() * ds8f.y();
- #endif // GGML_SYCL_F16
- // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
- return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
- }
- #define VDR_Q5_0_Q8_1_MMVQ 2
- #define VDR_Q5_0_Q8_1_MMQ 4
- template <int vdr>
- static __dpct_inline__ float
- vec_dot_q5_0_q8_1_impl(const int *vl, const int *vh, const int *u,
- const float &d5, const sycl::half2 &ds8) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = dpct::dp4a(vi0, u[2 * i + 0],
- sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = dpct::dp4a(vi1, u[2 * i + 1],
- sumi); // SIMD dot product of quantized values
- }
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- // second part effectively subtracts 16 from each quant value
- return d5 * (sumi * ds8f.x() - (16 * vdr / QI5_0) * ds8f.y());
- }
- #define VDR_Q5_1_Q8_1_MMVQ 2
- #define VDR_Q5_1_Q8_1_MMQ 4
- template <int vdr>
- static __dpct_inline__ float
- vec_dot_q5_1_q8_1_impl(const int *vl, const int *vh, const int *u,
- const sycl::half2 &dm5, const sycl::half2 &ds8) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = dpct::dp4a(vi0, u[2 * i + 0],
- sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = dpct::dp4a(vi1, u[2 * i + 1],
- sumi); // SIMD dot product of quantized values
- }
- #ifdef GGML_SYCL_F16
- const sycl::float2 tmp =
- (dm5 * ds8).convert<float, sycl::rounding_mode::automatic>();
- const float d5d8 = tmp.x();
- const float m5s8 = tmp.y();
- #else
- const sycl::float2 dm5f =
- dm5.convert<float, sycl::rounding_mode::automatic>();
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- const float d5d8 = dm5f.x() * ds8f.x();
- const float m5s8 = dm5f.y() * ds8f.y();
- #endif // GGML_SYCL_F16
- // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
- return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
- }
- #define VDR_Q8_0_Q8_1_MMVQ 2
- #define VDR_Q8_0_Q8_1_MMQ 8
- template <int vdr>
- static __dpct_inline__ float vec_dot_q8_0_q8_1_impl(const int *v, const int *u,
- const float &d8_0,
- const float &d8_1) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(v[i], u[i], sumi);
- }
- return d8_0*d8_1 * sumi;
- }
- template <int vdr>
- static __dpct_inline__ float vec_dot_q8_1_q8_1_impl(const int *v, const int *u,
- const sycl::half2 &dm8,
- const sycl::half2 &ds8) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(v[i], u[i], sumi);
- }
- #ifdef GGML_SYCL_F16
- const sycl::float2 tmp =
- (dm8 * ds8).convert<float, sycl::rounding_mode::automatic>();
- const float d8d8 = tmp.x();
- const float m8s8 = tmp.y();
- #else
- const sycl::float2 dm8f =
- dm8.convert<float, sycl::rounding_mode::automatic>();
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- const float d8d8 = dm8f.x() * ds8f.x();
- const float m8s8 = dm8f.y() * ds8f.y();
- #endif // GGML_SYCL_F16
- // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
- return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
- }
- #define VDR_Q2_K_Q8_1_MMVQ 1
- #define VDR_Q2_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __dpct_inline__ float vec_dot_q2_K_q8_1_impl_mmvq(
- const int &v, const int *__restrict__ u, const uint8_t *__restrict__ scales,
- const sycl::half2 &dm2, const float *__restrict__ d8) {
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR2_K; ++i) {
- const int sc = scales[2*i];
- const int vi = (v >> (2*i)) & 0x03030303;
- sumf_d +=
- d8[i] * (dpct::dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- sumf_m += d8[i] *
- dpct::dp4a(
- m, u[i],
- 0); // multiply constant q2_K part with sum of q8_1 values
- }
- const sycl::float2 dm2f =
- dm2.convert<float, sycl::rounding_mode::automatic>();
- return dm2f.x() * sumf_d - dm2f.y() * sumf_m;
- }
- // contiguous u/y values
- static __dpct_inline__ float
- vec_dot_q2_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ scales,
- const sycl::half2 &dm2, const float &d8) {
- int sumi_d = 0;
- int sumi_m = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
- int sumi_d_sc = 0;
- const int sc = scales[i0 / (QI8_1/2)];
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- #pragma unroll
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_d_sc = dpct::dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
- sumi_m = dpct::dp4a(m, u[i],
- sumi_m); // multiply sum of q8_1 values with m
- }
- sumi_d += sumi_d_sc * (sc & 0xF);
- }
- const sycl::float2 dm2f =
- dm2.convert<float, sycl::rounding_mode::automatic>();
- return d8 * (dm2f.x() * sumi_d - dm2f.y() * sumi_m);
- }
- #define VDR_Q3_K_Q8_1_MMVQ 1
- #define VDR_Q3_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __dpct_inline__ float vec_dot_q3_K_q8_1_impl_mmvq(
- const int &vl, const int &vh, const int *__restrict__ u,
- const uint8_t *__restrict__ scales, const int &scale_offset,
- const float &d3, const float *__restrict__ d8) {
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- const int isc = scale_offset + 2*i;
- const int isc_low = isc % (QK_K/32);
- const int sc_shift_low = 4 * (isc / (QK_K/32));
- const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
- const int isc_high = isc % (QK_K/64);
- const int sc_shift_high = 2 * (isc / (QK_K/64));
- const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
- const int sc = (sc_low | sc_high) - 32;
- const int vil = (vl >> (2*i)) & 0x03030303;
- const int vih = ((vh >> i) << 2) & 0x04040404;
- const int vi =
- dpct::vectorized_binary<sycl::char4>(vil, vih, dpct::sub_sat());
- sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d3 * sumf;
- }
- // contiguous u/y values
- static __dpct_inline__ float
- vec_dot_q3_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
- const int8_t *__restrict__ scales, const float &d3,
- const float &d8) {
- int sumi = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
- int sumi_sc = 0;
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_sc = dpct::dp4a(v[i], u[i], sumi_sc); // SIMD dot product
- }
- sumi += sumi_sc * scales[i0 / (QI8_1/2)];
- }
- return d3*d8 * sumi;
- }
- #define VDR_Q4_K_Q8_1_MMVQ 2
- #define VDR_Q4_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_vmmq(
- const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
- const sycl::half2 &dm4, const float *__restrict__ d8) {
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K; ++i) {
- const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
- const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
- const int dot1 =
- dpct::dp4a(v1i, u[2 * i + 1],
- dpct::dp4a(v0i, u[2 * i + 0], 0)); // SIMD dot product
- const int dot2 =
- dpct::dp4a(0x01010101, u[2 * i + 1],
- dpct::dp4a(0x01010101, u[2 * i + 0], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
- }
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
- return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
- }
- // contiguous u/y values
- static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_mmq(
- const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
- const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = dpct::dp4a((v[j] >> (4 * i)) & 0x0F0F0F0F,
- u[i * QI8_1 + j], sumi_d); // SIMD dot product
- }
- const sycl::float2 ds8f =
- ds8[i].convert<float, sycl::rounding_mode::automatic>();
- sumf_d += ds8f.x() * (sc[i] * sumi_d);
- sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
- }
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
- return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
- }
- #define VDR_Q5_K_Q8_1_MMVQ 2
- #define VDR_Q5_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_vmmq(
- const int *__restrict__ vl, const int *__restrict__ vh,
- const int *__restrict__ u, const uint8_t *__restrict__ sc,
- const uint8_t *__restrict__ m, const sycl::half2 &dm5,
- const float *__restrict__ d8) {
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
- const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
- const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
- const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
- const int v0i = vl0i | vh0i;
- const int v1i = vl1i | vh1i;
- const int dot1 =
- dpct::dp4a(v0i, u[2 * i + 0],
- dpct::dp4a(v1i, u[2 * i + 1], 0)); // SIMD dot product
- const int dot2 =
- dpct::dp4a(0x01010101, u[2 * i + 0],
- dpct::dp4a(0x01010101, u[2 * i + 1], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]);
- }
- const sycl::float2 dm5f =
- dm5.convert<float, sycl::rounding_mode::automatic>();
- return dm5f.x() * sumf_d - dm5f.y() * sumf_m;
- }
- // contiguous u/y values
- static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_mmq(
- const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
- const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = dpct::dp4a(v[i * QI8_1 + j], u[i * QI8_1 + j],
- sumi_d); // SIMD dot product
- }
- const sycl::float2 ds8f =
- ds8[i].convert<float, sycl::rounding_mode::automatic>();
- sumf_d += ds8f.x() * (sc[i] * sumi_d);
- sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
- }
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
- return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
- }
- #define VDR_Q6_K_Q8_1_MMVQ 1
- #define VDR_Q6_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __dpct_inline__ float
- vec_dot_q6_K_q8_1_impl_mmvq(const int &vl, const int &vh,
- const int *__restrict__ u,
- const int8_t *__restrict__ scales, const float &d,
- const float *__restrict__ d8) {
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- const int sc = scales[4*i];
- const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
- const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
- const int vi = dpct::vectorized_binary<sycl::char4>(
- (vil | vih), 0x20202020, dpct::sub_sat()); // vi = (vil | vih) - 32
- sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d*sumf;
- }
- // contiguous u/y values
- static __dpct_inline__ float
- vec_dot_q6_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
- const int8_t *__restrict__ sc, const float &d6,
- const float *__restrict__ d8) {
- float sumf_d = 0.0f;
- #pragma unroll
- for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
- sycl::int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
- #pragma unroll
- for (int i = i0; i < i0 + 2; ++i) {
- sumi_d.x() = dpct::dp4a(v[2 * i + 0], u[2 * i + 0],
- sumi_d.x()); // SIMD dot product
- sumi_d.x() = dpct::dp4a(v[2 * i + 1], u[2 * i + 1],
- sumi_d.x()); // SIMD dot product
- sumi_d.y() = dpct::dp4a(v[2 * i + 4], u[2 * i + 4],
- sumi_d.y()); // SIMD dot product
- sumi_d.y() = dpct::dp4a(v[2 * i + 5], u[2 * i + 5],
- sumi_d.y()); // SIMD dot product
- }
- sumf_d += d8[i0 / 4] *
- (sc[i0 / 2 + 0] * sumi_d.x() + sc[i0 / 2 + 1] * sumi_d.y());
- }
- return d6 * sumf_d;
- }
- static __dpct_inline__ float
- vec_dot_q4_0_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
- int v[VDR_Q4_0_Q8_1_MMVQ];
- int u[2*VDR_Q4_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
- }
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q4_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_qs_q4_0, float *tile_x_d_q4_0) {
- (void)x_qh; (void)x_sc;
- *x_ql = tile_x_qs_q4_0;
- *x_dm = (sycl::half2 *)tile_x_d_q4_0;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q4_0(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_0;
- const int kqsx = k % QI4_0;
- const block_q4_0 * bx0 = (const block_q4_0 *) vx;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
- int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
- }
- }
- static __dpct_inline__ float vec_dot_q4_0_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const float * x_dmf = (const float *) x_dm;
- int u[2*VDR_Q4_0_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
- }
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __dpct_inline__ float
- vec_dot_q4_1_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
- int v[VDR_Q4_1_Q8_1_MMVQ];
- int u[2*VDR_Q4_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
- }
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q4_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_qs_q4_1, sycl::half2 *tile_x_dm_q4_1) {
- (void)x_qh; (void)x_sc;
- *x_ql = tile_x_qs_q4_1;
- *x_dm = tile_x_dm_q4_1;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q4_1(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_1;
- const int kqsx = k % QI4_1;
- const block_q4_1 * bx0 = (const block_q4_1 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
- int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
- }
- }
- static __dpct_inline__ float vec_dot_q4_1_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- int u[2*VDR_Q4_1_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
- }
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __dpct_inline__ float
- vec_dot_q5_0_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
- int vl[VDR_Q5_0_Q8_1_MMVQ];
- int vh[VDR_Q5_0_Q8_1_MMVQ];
- int u[2*VDR_Q5_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
- vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
- }
- return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q5_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q5_0, float *tile_x_d_q5_0) {
- (void)x_qh; (void)x_sc;
- *x_ql = tile_x_ql_q5_0;
- *x_dm = (sycl::half2 *)tile_x_d_q5_0;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q5_0(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_0;
- const int kqsx = k % QI5_0;
- const block_q5_0 * bx0 = (const block_q5_0 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ql = get_int_from_uint8(bxi->qs, kqsx);
- const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- qs0 = dpct::vectorized_binary<sycl::char4>(
- qs0, 0x10101010, dpct::sub_sat()); // subtract 16
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- qs1 = dpct::vectorized_binary<sycl::char4>(
- qs1, 0x10101010, dpct::sub_sat()); // subtract 16
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
- int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
- }
- }
- static __dpct_inline__ float vec_dot_q5_0_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- int u[2*VDR_Q5_0_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
- }
- return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __dpct_inline__ float
- vec_dot_q5_1_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
- int vl[VDR_Q5_1_Q8_1_MMVQ];
- int vh[VDR_Q5_1_Q8_1_MMVQ];
- int u[2*VDR_Q5_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
- vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
- }
- return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q5_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q5_1, sycl::half2 *tile_x_dm_q5_1) {
- (void)x_qh; (void)x_sc;
- *x_ql = tile_x_ql_q5_1;
- *x_dm = tile_x_dm_q5_1;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q5_1(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_1;
- const int kqsx = k % QI5_1;
- const block_q5_1 * bx0 = (const block_q5_1 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
- int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
- }
- }
- static __dpct_inline__ float vec_dot_q5_1_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
- int u[2*VDR_Q5_1_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
- }
- return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __dpct_inline__ float
- vec_dot_q8_0_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
- int v[VDR_Q8_0_Q8_1_MMVQ];
- int u[VDR_Q8_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
- u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- }
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d,
- bq8_1->ds[0]);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q8_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_qs_q8_0, float *tile_x_d_q8_0) {
- (void)x_qh; (void)x_sc;
- *x_ql = tile_x_qs_q8_0;
- *x_dm = (sycl::half2 *)tile_x_d_q8_0;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q8_0(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI8_0;
- const int kqsx = k % QI8_0;
- float * x_dmf = (float *) x_dm;
- const block_q8_0 * bx0 = (const block_q8_0 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
- int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
- }
- }
- static __dpct_inline__ float vec_dot_q8_0_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
- y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_q2_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q2_K * bq2_K = (const block_q2_K *) vbq;
- const int bq8_offset = QR2_K * (iqs / QI8_1);
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const uint8_t * scales = bq2_K->scales + scale_offset;
- const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
- int u[QR2_K];
- float d8[QR2_K];
- #pragma unroll
- for (int i = 0; i < QR2_K; ++ i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + i].ds[0];
- }
- return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q2_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q2_K, sycl::half2 *tile_x_dm_q2_K,
- int *tile_x_sc_q2_K) {
- (void)x_qh;
- *x_ql = tile_x_ql_q2_K;
- *x_dm = tile_x_dm_q2_K;
- *x_sc = tile_x_sc_q2_K;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q2_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI2_K;
- const int kqsx = k % QI2_K;
- const block_q2_K * bx0 = (const block_q2_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
- int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
- }
- }
- static __dpct_inline__ float vec_dot_q2_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
- const int kbx = k / QI2_K;
- const int ky = (k % QI2_K) * QR2_K;
- const float * y_df = (const float *) y_ds;
- int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
- const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
- #pragma unroll
- for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
- v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
- }
- const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
- const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
- return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_q3_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q3_K * bq3_K = (const block_q3_K *) vbq;
- const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const float d = bq3_K->d;
- const int vl = get_int_from_uint8(bq3_K->qs, iqs);
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
- int u[QR3_K];
- float d8[QR3_K];
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + i].ds[0];
- }
- return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q3_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q3_K, sycl::half2 *tile_x_dm_q3_K,
- int *tile_x_qh_q3_K, int *tile_x_sc_q3_K) {
- *x_ql = tile_x_ql_q3_K;
- *x_dm = tile_x_dm_q3_K;
- *x_qh = tile_x_qh_q3_K;
- *x_sc = tile_x_sc_q3_K;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q3_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI3_K;
- const int kqsx = k % QI3_K;
- const block_q3_K * bx0 = (const block_q3_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
- int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
- int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
- const int ksc = k % (QI3_K/4);
- const int ksc_low = ksc % (QI3_K/8);
- const int shift_low = 4 * (ksc / (QI3_K/8));
- const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
- const int ksc_high = QI3_K/8;
- const int shift_high = 2 * ksc;
- const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
- const int sc = dpct::vectorized_binary<sycl::char4>(
- sc_low | sc_high, 0x20202020, dpct::sub_sat());
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
- }
- }
- static __dpct_inline__ float vec_dot_q3_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- const int kbx = k / QI3_K;
- const int ky = (k % QI3_K) * QR3_K;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
- int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
- const int shift = 2 * ((ky % 32) / 8);
- const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
- const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
- const int vlh = (vh << 2) & 0x04040404;
- v[l] = dpct::vectorized_binary<sycl::char4>(vll, vlh, dpct::sub_sat());
- }
- const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
- return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_q4_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- int v[2];
- int u[2*QR4_K];
- float d8[QR4_K];
- // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
- const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
- // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
- // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
- // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
- // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
- const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- v[0] = q4[0];
- v[1] = q4[4];
- const uint16_t * scales = (const uint16_t *)bq4_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- for (int i = 0; i < QR4_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = bq8i->ds[0];
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q4_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q4_K, sycl::half2 *tile_x_dm_q4_K,
- int *tile_x_sc_q4_K) {
- (void)x_qh;
- *x_ql = tile_x_ql_q4_K;
- *x_dm = tile_x_dm_q4_K;
- *x_sc = tile_x_sc_q4_K;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_K; // == 0 if QK_K == 256
- const int kqsx = k % QI4_K; // == k if QK_K == 256
- const block_q4_K * bx0 = (const block_q4_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
- int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
- const int * scales = (const int *) bxi->scales;
- const int ksc = k % (WARP_SIZE/8);
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
- }
- static __dpct_inline__ float vec_dot_q4_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
- const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
- return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_q5_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- int vl[2];
- int vh[2];
- int u[2*QR5_K];
- float d8[QR5_K];
- const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
- const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
- vl[0] = ql[0];
- vl[1] = ql[4];
- vh[0] = qh[0] >> bq8_offset;
- vh[1] = qh[4] >> bq8_offset;
- const uint16_t * scales = (const uint16_t *)bq5_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = bq8i->ds[0];
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q5_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q5_K, sycl::half2 *tile_x_dm_q5_K,
- int *tile_x_sc_q5_K) {
- (void)x_qh;
- *x_ql = tile_x_ql_q5_K;
- *x_dm = tile_x_dm_q5_K;
- *x_sc = tile_x_sc_q5_K;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_K; // == 0 if QK_K == 256
- const int kqsx = k % QI5_K; // == k if QK_K == 256
- const block_q5_K * bx0 = (const block_q5_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR5_K*kqsx;
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
- const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
- const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
- const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
- const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
- x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
- x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
- int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
- const int * scales = (const int *) bxi->scales;
- const int ksc = k % (WARP_SIZE/8);
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
- }
- static __dpct_inline__ float vec_dot_q5_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
- const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
- const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
- return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_q6_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q6_K * bq6_K = (const block_q6_K *) vbq;
- const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
- const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
- const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
- const int vl = get_int_from_uint8(bq6_K->ql, iqs);
- const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
- const int8_t * scales = bq6_K->scales + scale_offset;
- int u[QR6_K];
- float d8[QR6_K];
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + 2 * i].ds[0];
- }
- return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q6_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_sc) {
- (void)x_qh;
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q6_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI6_K; // == 0 if QK_K == 256
- const int kqsx = k % QI6_K; // == k if QK_K == 256
- const block_q6_K * bx0 = (const block_q6_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR6_K*kqsx;
- const int ql = get_int_from_uint8(bxi->ql, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
- const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
- const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
- const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
- const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
- x_ql[i * (2 * WARP_SIZE + 1) + kq0] =
- dpct::vectorized_binary<sycl::char4>(ql0 | qh0, 0x20202020,
- dpct::sub_sat());
- x_ql[i * (2 * WARP_SIZE + 1) + kq1] =
- dpct::vectorized_binary<sycl::char4>(ql1 | qh1, 0x20202020,
- dpct::sub_sat());
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
- int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
- x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
- }
- }
- static __dpct_inline__ float vec_dot_q6_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
- const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
- const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
- return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint64_t *iq2xxs_grid, const uint8_t *ksigns_iq2xs,
- const uint8_t *kmask_iq2xs) {
- const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
- #if QR2_XXS == 8
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = q2[2] | (q2[3] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
- const uint8_t signs = ksigns_iq2xs[aux32 & 127];
- for (int j = 0; j < 8; ++j) {
- sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
- }
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * bq8_1[ib32].ds[0] * 0.25f;
- return d * sumi;
- #else
- // iqs is 0...15
- const int ib32 = iqs/2;
- const int il = iqs%2;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * bq8_1[ib32].ds[0] * 0.25f;
- const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
- const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
- const int8_t * q8 = bq8_1[ib32].qs + 16*il;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 8; ++j) {
- sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
- sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
- }
- return d * (sumi1 + sumi2);
- #endif
- }
- static __dpct_inline__ float
- vec_dot_iq2_xs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint64_t *iq2xs_grid, const uint64_t *ksigns64) {
- #if DPCT_COMPATIBILITY_TEMP >= \
- MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs[0], signs[0], std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs[1], signs[1], std::minus<>());
- sumi1 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs[0], signs[0], std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs[1], signs[1], std::minus<>());
- sumi2 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * bq8_1[ib32].ds[0] * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
- #else
- assert(false);
- return 0.f;
- #endif
- }
- static __dpct_inline__ float
- vec_dot_iq2_s_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
- const int ib32 = iqs;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const uint32_t signs1 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs0, signs0, std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs1, signs1, std::minus<>());
- sumi1 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const uint32_t signs1 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs0, signs0, std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs1, signs1, std::minus<>());
- sumi2 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * bq8_1[ib32].ds[0] * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
- }
- static __dpct_inline__ float
- vec_dot_iq3_xxs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint32_t *iq3xxs_grid, const uint64_t *ksigns64) {
- #if DPCT_COMPATIBILITY_TEMP >= \
- MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
- const int ib32 = iqs;
- const uint8_t * q3 = bq2->qs + 8*ib32;
- const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = gas[0] | (gas[1] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
- const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid1[0] ^ signs[0], signs[0], std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid2[0] ^ signs[1], signs[1], std::minus<>());
- sumi = dpct::dp4a(grid_l, *((int *)q8 + 0), sumi);
- sumi = dpct::dp4a(grid_h, *((int *)q8 + 1), sumi);
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * bq8_1[ib32].ds[0] * 0.5f;
- return d * sumi;
- #else
- assert(false);
- return 0.f;
- #endif
- }
- static __dpct_inline__ float
- vec_dot_iq3_s_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint32_t *iq3s_grid) {
- const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
- const int ib32 = iqs;
- const uint8_t * qs = bq2->qs + 8*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
- const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
- uint32_t signs0 = dpct::vectorized_binary<sycl::uchar4>(
- ((bq2->signs[4 * ib32 + l] & 0xf) * 0x01010101) & 0x08040201,
- 0x08040201, std::equal_to<>());
- uint32_t signs1 = dpct::vectorized_binary<sycl::uchar4>(
- ((bq2->signs[4 * ib32 + l] >> 4) * 0x01010101) & 0x08040201,
- 0x08040201, std::equal_to<>());
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid1[0] ^ signs0, signs0, std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid2[0] ^ signs1, signs1, std::minus<>());
- sumi = dpct::dp4a(grid_l, *((int *)q8 + 0), sumi);
- sumi = dpct::dp4a(grid_h, *((int *)q8 + 1), sumi);
- q8 += 8;
- }
- const float d =
- (float)bq2->d *
- (1 + 2 * ((bq2->scales[ib32 / 2] >> 4 * (ib32 % 2)) & 0xf)) *
- bq8_1[ib32].ds[0];
- return d * sumi;
- }
- static __dpct_inline__ float
- vec_dot_iq1_s_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint32_t *iq1s_grid_gpu) {
- const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
- const int ib32 = iqs;
- int sumi = 0;
- const int * q8 = (const int *)bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
- int grid0 = grid[0] & 0x0f0f0f0f;
- int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
- sumi = dpct::dp4a(q8[2 * l + 1], grid1,
- dpct::dp4a(q8[2 * l + 0], grid0, sumi));
- }
- const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA;
- const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1);
- const float d = d1q * bq8_1[ib32].ds[0];
- const float m = d1q * bq8_1[ib32].ds[1];
- return d * sumi + m * delta;
- }
- static __dpct_inline__ float
- vec_dot_iq1_m_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
- const int ib32 = iqs;
- int sumi[2] = {0, 0};
- float sumf[2] = {0.f, 0.f};
- const int * q8 = (const int *)bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8)));
- int grid0 = grid[0] & 0x0f0f0f0f;
- int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
- sumi[l / 2] = dpct::dp4a(q8[2 * l + 1], grid1,
- dpct::dp4a(q8[2 * l + 0], grid0, sumi[l / 2]));
- const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
- const int sumy = dpct::dp4a(q8[2 * l + 1], 0x01010101,
- dpct::dp4a(q8[2 * l + 0], 0x01010101, 0));
- sumf[l/2] += delta*sumy;
- }
- iq1m_scale_t scale;
- const uint16_t * sc = (const uint16_t *)bq1->scales;
- scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
- const float d = (float)scale.f16 * bq8_1[ib32].ds[0];
- return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
- }
- static __dpct_inline__ void get_int_from_table_16(const uint32_t &q4,
- const uint8_t *values,
- int &val1, int &val2) {
- uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
- aux32 = q4 & 0x0f0f0f0f;
- uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
- uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
- val1 = v1 | (v2 << 16);
- aux32 = (q4 >> 4) & 0x0f0f0f0f;
- v1 = values[q8[0]] | (values[q8[1]] << 8);
- v2 = values[q8[2]] | (values[q8[3]] << 8);
- val2 = v1 | (v2 << 16);
- }
- static __dpct_inline__ float
- vec_dot_iq4_nl_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
- const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
- const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
- const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
- get_int_from_table_16(aux, values, v1, v2);
- sumi1 = dpct::dp4a(v1, q8[l + 0], sumi1);
- sumi2 = dpct::dp4a(v2, q8[l + 4], sumi2);
- }
- const float d = (float)bq->d * bq8_1->ds[0];
- return d * (sumi1 + sumi2);
- }
- static __dpct_inline__ float
- vec_dot_iq4_xs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
- // iqs is 0...7
- const int ib32 = iqs;
- const int32_t * q8 = (const int *)bq8_1[ib32].qs;
- const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
- const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
- const float d = (float)bq4->d * (ls - 32) * bq8_1[ib32].ds[0];
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 4; ++j) {
- get_int_from_table_16(q4[j], values, v1, v2);
- sumi1 = dpct::dp4a(v1, q8[j + 0], sumi1);
- sumi2 = dpct::dp4a(v2, q8[j + 4], sumi2);
- }
- return d * (sumi1 + sumi2);
- }
- template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x,
- int mmq_y, int nwarps, load_tiles_sycl_t load_tiles, int vdr,
- vec_dot_q_mul_mat_sycl_t vec_dot>
- /*
- DPCT1110:8: The total declared local variable size in device function mul_mat_q
- exceeds 128 bytes and may cause high register pressure. Consult with your
- hardware vendor to find the total register size available and adjust the code,
- or use smaller sub-group size to avoid high register pressure.
- */
- static __dpct_inline__ void
- mul_mat_q(const void *__restrict__ vx, const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst,
- int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_qh,
- int *tile_x_sc, const sycl::nd_item<3> &item_ct1, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- const int blocks_per_row_x = ncols_x / qk;
- const int blocks_per_col_y = nrows_y / QK8_1;
- const int blocks_per_warp = WARP_SIZE / qi;
- const int & ncols_dst = ncols_y;
- const int row_dst_0 = item_ct1.get_group(2) * mmq_y;
- const int & row_x_0 = row_dst_0;
- const int col_dst_0 = item_ct1.get_group(1) * mmq_x;
- const int & col_y_0 = col_dst_0;
- float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
- for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
- load_tiles(x + row_x_0 * blocks_per_row_x + ib0, tile_x_ql, tile_x_dm,
- tile_x_qh, tile_x_sc, item_ct1.get_local_id(1),
- nrows_x - row_x_0 - 1, item_ct1.get_local_id(2),
- blocks_per_row_x);
- #pragma unroll
- for (int ir = 0; ir < qr; ++ir) {
- const int kqs = ir * WARP_SIZE + item_ct1.get_local_id(2);
- const int kbxd = kqs / QI8_1;
- #pragma unroll
- for (int i = 0; i < mmq_x; i += nwarps) {
- const int col_y_eff = dpct::min(
- (unsigned int)(col_y_0 + item_ct1.get_local_id(1) + i),
- ncols_y - 1); // to prevent out-of-bounds memory accesses
- const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
- const int index_y = (item_ct1.get_local_id(1) + i) * WARP_SIZE +
- kqs % WARP_SIZE;
- tile_y_qs[index_y] = get_int_from_int8_aligned(
- by0->qs, item_ct1.get_local_id(2) % QI8_1);
- }
- #pragma unroll
- for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
- const int ids =
- (ids0 + item_ct1.get_local_id(1) * QI8_1 +
- item_ct1.get_local_id(2) / (WARP_SIZE / QI8_1)) %
- mmq_x;
- const int kby = item_ct1.get_local_id(2) % (WARP_SIZE / QI8_1);
- const int col_y_eff = sycl::min(col_y_0 + ids, ncols_y - 1);
- // if the sum is not needed it's faster to transform the scale to f32 ahead of time
- const sycl::half2 *dsi_src =
- &y[col_y_eff * blocks_per_col_y + ib0 * (qk / QK8_1) +
- ir * (WARP_SIZE / QI8_1) + kby]
- .ds;
- sycl::half2 *dsi_dst =
- &tile_y_ds[ids * (WARP_SIZE / QI8_1) + kby];
- if (need_sum) {
- *dsi_dst = *dsi_src;
- } else {
- float * dfi_dst = (float *) dsi_dst;
- *dfi_dst = (*dsi_src)[0];
- }
- }
- /*
- DPCT1118:9: SYCL group functions and algorithms must be encountered
- in converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:56: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
- // #pragma unroll // unrolling this loop causes too much register pressure
- for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
- #pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- #pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- sum[i / WARP_SIZE][j / nwarps] += vec_dot(
- tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
- tile_y_qs, tile_y_ds, item_ct1.get_local_id(2) + i,
- item_ct1.get_local_id(1) + j, k);
- }
- }
- }
- /*
- DPCT1118:10: SYCL group functions and algorithms must be encountered
- in converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:57: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
- }
- }
- #pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- const int col_dst = col_dst_0 + j + item_ct1.get_local_id(1);
- if (col_dst >= ncols_dst) {
- return;
- }
- #pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- const int row_dst = row_dst_0 + item_ct1.get_local_id(2) + i;
- if (row_dst >= nrows_dst) {
- continue;
- }
- dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
- }
- }
- }
- #define MMQ_X_Q4_0_RDNA2 64
- #define MMQ_Y_Q4_0_RDNA2 128
- #define NWARPS_Q4_0_RDNA2 8
- #define MMQ_X_Q4_0_RDNA1 64
- #define MMQ_Y_Q4_0_RDNA1 64
- #define NWARPS_Q4_0_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q4_0_AMPERE 4
- #define MMQ_Y_Q4_0_AMPERE 32
- #define NWARPS_Q4_0_AMPERE 4
- #else
- #define MMQ_X_Q4_0_AMPERE 64
- #define MMQ_Y_Q4_0_AMPERE 128
- #define NWARPS_Q4_0_AMPERE 4
- #endif
- #define MMQ_X_Q4_0_PASCAL 64
- #define MMQ_Y_Q4_0_PASCAL 64
- #define NWARPS_Q4_0_PASCAL 8
- template <bool need_check> static void
- mul_mat_q4_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_0, float *tile_x_d_q4_0,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q4_0_AMPERE;
- const int mmq_y = MMQ_Y_Q4_0_AMPERE;
- const int nwarps = NWARPS_Q4_0_AMPERE;
- allocate_tiles_q4_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_qs_q4_0, tile_x_d_q4_0);
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ,
- vec_dot_q4_0_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q4_1_RDNA2 64
- #define MMQ_Y_Q4_1_RDNA2 128
- #define NWARPS_Q4_1_RDNA2 8
- #define MMQ_X_Q4_1_RDNA1 64
- #define MMQ_Y_Q4_1_RDNA1 64
- #define NWARPS_Q4_1_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q4_1_AMPERE 4
- #define MMQ_Y_Q4_1_AMPERE 32
- #define NWARPS_Q4_1_AMPERE 4
- #else
- #define MMQ_X_Q4_1_AMPERE 64
- #define MMQ_Y_Q4_1_AMPERE 128
- #define NWARPS_Q4_1_AMPERE 4
- #endif
- #define MMQ_X_Q4_1_PASCAL 64
- #define MMQ_Y_Q4_1_PASCAL 64
- #define NWARPS_Q4_1_PASCAL 8
- template <bool need_check> static void
- mul_mat_q4_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_1,
- sycl::half2 *tile_x_dm_q4_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q4_1_AMPERE;
- const int mmq_y = MMQ_Y_Q4_1_AMPERE;
- const int nwarps = NWARPS_Q4_1_AMPERE;
- allocate_tiles_q4_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_qs_q4_1, tile_x_dm_q4_1);
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ,
- vec_dot_q4_1_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q5_0_RDNA2 64
- #define MMQ_Y_Q5_0_RDNA2 128
- #define NWARPS_Q5_0_RDNA2 8
- #define MMQ_X_Q5_0_RDNA1 64
- #define MMQ_Y_Q5_0_RDNA1 64
- #define NWARPS_Q5_0_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q5_0_AMPERE 4
- #define MMQ_Y_Q5_0_AMPERE 32
- #define NWARPS_Q5_0_AMPERE 4
- #else
- #define MMQ_X_Q5_0_AMPERE 128
- #define MMQ_Y_Q5_0_AMPERE 64
- #define NWARPS_Q5_0_AMPERE 4
- #endif
- #define MMQ_X_Q5_0_PASCAL 64
- #define MMQ_Y_Q5_0_PASCAL 64
- #define NWARPS_Q5_0_PASCAL 8
- template <bool need_check> static void
- mul_mat_q5_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_0, float *tile_x_d_q5_0,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q5_0_AMPERE;
- const int mmq_y = MMQ_Y_Q5_0_AMPERE;
- const int nwarps = NWARPS_Q5_0_AMPERE;
- allocate_tiles_q5_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q5_0, tile_x_d_q5_0);
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ,
- vec_dot_q5_0_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q5_1_RDNA2 64
- #define MMQ_Y_Q5_1_RDNA2 128
- #define NWARPS_Q5_1_RDNA2 8
- #define MMQ_X_Q5_1_RDNA1 64
- #define MMQ_Y_Q5_1_RDNA1 64
- #define NWARPS_Q5_1_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q5_1_AMPERE 4
- #define MMQ_Y_Q5_1_AMPERE 32
- #define NWARPS_Q5_1_AMPERE 4
- #else
- #define MMQ_X_Q5_1_AMPERE 128
- #define MMQ_Y_Q5_1_AMPERE 64
- #define NWARPS_Q5_1_AMPERE 4
- #endif
- #define MMQ_X_Q5_1_PASCAL 64
- #define MMQ_Y_Q5_1_PASCAL 64
- #define NWARPS_Q5_1_PASCAL 8
- template <bool need_check> static void
- mul_mat_q5_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_1,
- sycl::half2 *tile_x_dm_q5_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q5_1_AMPERE;
- const int mmq_y = MMQ_Y_Q5_1_AMPERE;
- const int nwarps = NWARPS_Q5_1_AMPERE;
- allocate_tiles_q5_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q5_1, tile_x_dm_q5_1);
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ,
- vec_dot_q5_1_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q8_0_RDNA2 64
- #define MMQ_Y_Q8_0_RDNA2 128
- #define NWARPS_Q8_0_RDNA2 8
- #define MMQ_X_Q8_0_RDNA1 64
- #define MMQ_Y_Q8_0_RDNA1 64
- #define NWARPS_Q8_0_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q8_0_AMPERE 4
- #define MMQ_Y_Q8_0_AMPERE 32
- #define NWARPS_Q8_0_AMPERE 4
- #else
- #define MMQ_X_Q8_0_AMPERE 128
- #define MMQ_Y_Q8_0_AMPERE 64
- #define NWARPS_Q8_0_AMPERE 4
- #endif
- #define MMQ_X_Q8_0_PASCAL 64
- #define MMQ_Y_Q8_0_PASCAL 64
- #define NWARPS_Q8_0_PASCAL 8
- template <bool need_check> static void
- mul_mat_q8_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q8_0, float *tile_x_d_q8_0,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q8_0_AMPERE;
- const int mmq_y = MMQ_Y_Q8_0_AMPERE;
- const int nwarps = NWARPS_Q8_0_AMPERE;
- allocate_tiles_q8_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_qs_q8_0, tile_x_d_q8_0);
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ,
- vec_dot_q8_0_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q2_K_RDNA2 64
- #define MMQ_Y_Q2_K_RDNA2 128
- #define NWARPS_Q2_K_RDNA2 8
- #define MMQ_X_Q2_K_RDNA1 128
- #define MMQ_Y_Q2_K_RDNA1 32
- #define NWARPS_Q2_K_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q2_K_AMPERE 4
- #define MMQ_Y_Q2_K_AMPERE 32
- #define NWARPS_Q2_K_AMPERE 4
- #else
- #define MMQ_X_Q2_K_AMPERE 64
- #define MMQ_Y_Q2_K_AMPERE 128
- #define NWARPS_Q2_K_AMPERE 4
- #endif
- #define MMQ_X_Q2_K_PASCAL 64
- #define MMQ_Y_Q2_K_PASCAL 64
- #define NWARPS_Q2_K_PASCAL 8
- template <bool need_check> static void
- mul_mat_q2_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q2_K,
- sycl::half2 *tile_x_dm_q2_K, int *tile_x_sc_q2_K, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q2_K_AMPERE;
- const int mmq_y = MMQ_Y_Q2_K_AMPERE;
- const int nwarps = NWARPS_Q2_K_AMPERE;
- allocate_tiles_q2_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q2_K, tile_x_dm_q2_K, tile_x_sc_q2_K);
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ,
- vec_dot_q2_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q3_K_RDNA2 128
- #define MMQ_Y_Q3_K_RDNA2 64
- #define NWARPS_Q3_K_RDNA2 8
- #define MMQ_X_Q3_K_RDNA1 32
- #define MMQ_Y_Q3_K_RDNA1 128
- #define NWARPS_Q3_K_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q3_K_AMPERE 4
- #define MMQ_Y_Q3_K_AMPERE 32
- #define NWARPS_Q3_K_AMPERE 4
- #else
- #define MMQ_X_Q3_K_AMPERE 128
- #define MMQ_Y_Q3_K_AMPERE 128
- #define NWARPS_Q3_K_AMPERE 4
- #endif
- #define MMQ_X_Q3_K_PASCAL 64
- #define MMQ_Y_Q3_K_PASCAL 64
- #define NWARPS_Q3_K_PASCAL 8
- template <bool need_check> static void
- mul_mat_q3_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q3_K,
- sycl::half2 *tile_x_dm_q3_K, int *tile_x_qh_q3_K, int *tile_x_sc_q3_K,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q3_K_AMPERE;
- const int mmq_y = MMQ_Y_Q3_K_AMPERE;
- const int nwarps = NWARPS_Q3_K_AMPERE;
- allocate_tiles_q3_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q3_K, tile_x_dm_q3_K, tile_x_qh_q3_K,
- tile_x_sc_q3_K);
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ,
- vec_dot_q3_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q4_K_RDNA2 64
- #define MMQ_Y_Q4_K_RDNA2 128
- #define NWARPS_Q4_K_RDNA2 8
- #define MMQ_X_Q4_K_RDNA1 32
- #define MMQ_Y_Q4_K_RDNA1 64
- #define NWARPS_Q4_K_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q4_K_AMPERE 4
- #define MMQ_Y_Q4_K_AMPERE 32
- #define NWARPS_Q4_K_AMPERE 4
- #else
- #define MMQ_X_Q4_K_AMPERE 64
- #define MMQ_Y_Q4_K_AMPERE 128
- #define NWARPS_Q4_K_AMPERE 4
- #endif
- #define MMQ_X_Q4_K_PASCAL 64
- #define MMQ_Y_Q4_K_PASCAL 64
- #define NWARPS_Q4_K_PASCAL 8
- template <bool need_check> static void
- mul_mat_q4_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q4_K,
- sycl::half2 *tile_x_dm_q4_K, int *tile_x_sc_q4_K, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q4_K_AMPERE;
- const int mmq_y = MMQ_Y_Q4_K_AMPERE;
- const int nwarps = NWARPS_Q4_K_AMPERE;
- allocate_tiles_q4_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q4_K, tile_x_dm_q4_K, tile_x_sc_q4_K);
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ,
- vec_dot_q4_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q5_K_RDNA2 64
- #define MMQ_Y_Q5_K_RDNA2 128
- #define NWARPS_Q5_K_RDNA2 8
- #define MMQ_X_Q5_K_RDNA1 32
- #define MMQ_Y_Q5_K_RDNA1 64
- #define NWARPS_Q5_K_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q5_K_AMPERE 4
- #define MMQ_Y_Q5_K_AMPERE 32
- #define NWARPS_Q5_K_AMPERE 4
- #else
- #define MMQ_X_Q5_K_AMPERE 64
- #define MMQ_Y_Q5_K_AMPERE 128
- #define NWARPS_Q5_K_AMPERE 4
- #endif
- #define MMQ_X_Q5_K_PASCAL 64
- #define MMQ_Y_Q5_K_PASCAL 64
- #define NWARPS_Q5_K_PASCAL 8
- template <bool need_check> static void
- mul_mat_q5_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_K,
- sycl::half2 *tile_x_dm_q5_K, int *tile_x_sc_q5_K, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q5_K_AMPERE;
- const int mmq_y = MMQ_Y_Q5_K_AMPERE;
- const int nwarps = NWARPS_Q5_K_AMPERE;
- allocate_tiles_q5_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q5_K, tile_x_dm_q5_K, tile_x_sc_q5_K);
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ,
- vec_dot_q5_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q6_K_RDNA2 64
- #define MMQ_Y_Q6_K_RDNA2 128
- #define NWARPS_Q6_K_RDNA2 8
- #define MMQ_X_Q6_K_RDNA1 32
- #define MMQ_Y_Q6_K_RDNA1 64
- #define NWARPS_Q6_K_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q6_K_AMPERE 4
- #define MMQ_Y_Q6_K_AMPERE 32
- #define NWARPS_Q6_K_AMPERE 4
- #else
- #define MMQ_X_Q6_K_AMPERE 64
- #define MMQ_Y_Q6_K_AMPERE 64
- #define NWARPS_Q6_K_AMPERE 4
- #endif
- #define MMQ_X_Q6_K_PASCAL 64
- #define MMQ_Y_Q6_K_PASCAL 64
- #define NWARPS_Q6_K_PASCAL 8
- template <bool need_check> static void
- mul_mat_q6_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql, sycl::half2 *tile_x_dm,
- int *tile_x_sc, int *tile_y_qs, sycl::half2 *tile_y_ds) {
- // int * tile_x_ql = nullptr;
- // sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- // int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q6_K_AMPERE;
- const int mmq_y = MMQ_Y_Q6_K_AMPERE;
- const int nwarps = NWARPS_Q6_K_AMPERE;
- allocate_tiles_q6_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql, tile_x_dm, tile_x_sc);
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ,
- vec_dot_q6_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_sycl_t vec_dot_q_sycl>
- static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- const int qi_vdr = (qi / vdr); // N_threads processing 1 qk block
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / qi_vdr; i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row * blocks_per_row + i; // x block index
- const int iby = i * (qk / QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) -
- i * qi_vdr); // x block quant index when casting the quants to int
- tmp += vec_dot_q_sycl(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq2_xxs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq2_xxs_q8_1(&x[ibx], &y[iby], iqs, iq2xxs_grid, ksigns_iq2xs, kmask_iq2xs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq2_xs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq2_xs_q8_1(&x[ibx], &y[iby], iqs, iq2xs_grid, ksigns64);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq2_s_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq2_s_q8_1(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq3_xxs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq3_xxs_q8_1(&x[ibx], &y[iby], iqs, iq3xxs_grid, ksigns64);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq3_s_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq3_s_q8_1(&x[ibx], &y[iby], iqs, iq3s_grid);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq1_s_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq1_s_q8_1(&x[ibx], &y[iby], iqs, iq1s_grid_gpu);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq1_m_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq1_m_q8_1(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq4_nl_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq4_nl_q8_1(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq4_xs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq4_xs_q8_1(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- // qk = quantized weights per x block
- // qr = number of quantized weights per data value in x block
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int tid = item_ct1.get_local_id(2);
- const int iter_stride = 2*GGML_SYCL_DMMV_X;
- const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
- const int y_offset = qr == 1 ? 1 : qk/2;
- // partial sum for each thread
- #ifdef GGML_SYCL_F16
- sycl::half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
- #else
- float tmp = 0.0f;
- #endif // GGML_SYCL_F16
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = (row*ncols + col)/qk; // x block index
- const int iqs = (col%qk)/qr; // x quant index
- const int iybs = col - col%qk; // y block start index
- // processing >2 values per i iter is faster for fast GPUs
- #pragma unroll
- for (int j = 0; j < vals_per_iter; j += 2) {
- // process 2 vals per j iter
- // dequantize
- // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs + j/qr, v);
- // matrix multiplication
- // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
- #ifdef GGML_SYCL_F16
- dfloat2 t1{y[iybs + iqs + j / qr + 0],
- y[iybs + iqs + j / qr + y_offset]};
- tmp += v * t1;
- #else
- tmp += v.x() * y[iybs + iqs + j / qr + 0];
- tmp += v.y() * y[iybs + iqs + j / qr + y_offset];
- #endif // GGML_SYCL_F16
- }
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (tid == 0) {
- #ifdef GGML_SYCL_F16
- dst[row] = tmp.x() + tmp.y();
- #else
- dst[row] = tmp;
- #endif // GGML_SYCL_F16
- }
- }
- static void mul_mat_p021_f16_f32(
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
- const sycl::nd_item<3> &item_ct1) {
- const sycl::half *x = (const sycl::half *)vx;
- const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
- item_ct1.get_local_id(0);
- const int channel_x = channel / (nchannels_y / nchannels_x);
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x;
- col_x0 += item_ct1.get_local_range(2)) {
- const int col_x = col_x0 + item_ct1.get_local_id(2);
- if (col_x >= ncols_x) {
- break;
- }
- // x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
- const float xi =
- sycl::vec<sycl::half, 1>(x[ix])
- .convert<float, sycl::rounding_mode::automatic>()[0];
- const int row_y = col_x;
- // y is not transposed but permuted
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // dst is not transposed and not permuted
- const int idst = channel*nrows_dst + row_dst;
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[idst] = tmp;
- }
- }
- static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
- const sycl::nd_item<3> &item_ct1) {
- const sycl::half *x = (const sycl::half *)vx;
- const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
- item_ct1.get_local_id(0);
- const int channel_x = channel / channel_x_divisor;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- const int idst = channel*nrows_dst + row_dst;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x;
- col_x0 += item_ct1.get_local_range(2)) {
- const int col_x = col_x0 + item_ct1.get_local_id(2);
- if (col_x >= ncols_x) {
- break;
- }
- const int row_y = col_x;
- const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
- const int iy = channel*nrows_y + row_y;
- const float xi =
- sycl::vec<sycl::half, 1>(x[ix])
- .convert<float, sycl::rounding_mode::automatic>()[0];
- tmp += xi * y[iy];
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[idst] = tmp;
- }
- }
- static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- float * dsti = (float *) cdsti;
- *dsti = *xi;
- }
- static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- sycl::half *dsti = (sycl::half *)cdsti;
- *dsti = sycl::vec<float, 1>(*xi)
- .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
- }
- static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
- const sycl::half *xi = (const sycl::half *)cxi;
- sycl::half *dsti = (sycl::half *)cdsti;
- *dsti = *xi;
- }
- static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
- const sycl::half *xi = (const sycl::half *)cxi;
- float * dsti = (float *) cdsti;
- *dsti = *xi;
- }
- static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
- const int16_t *xi = (const int16_t *)cxi;
- int16_t *dsti = (int16_t *)cdsti;
- *dsti = *xi;
- }
- static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
- const int32_t *xi = (const int32_t *)cxi;
- int32_t *dsti = (int32_t *)cdsti;
- *dsti = *xi;
- }
- template <cpy_kernel_t cpy_1>
- static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= ne) {
- return;
- }
- // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
- // then combine those indices with the corresponding byte offsets to get the total offsets
- const int i03 = i/(ne00 * ne01 * ne02);
- const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
- const int i13 = i/(ne10 * ne11 * ne12);
- const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
- cpy_1(cx + x_offset, cdst + dst_offset);
- }
- static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q8_0 * dsti = (block_q8_0 *) cdsti;
- float amax = 0.0f; // absolute max
- for (int j = 0; j < QK8_0; j++) {
- const float v = xi[j];
- amax = sycl::fmax(amax, sycl::fabs((float)v));
- }
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- dsti->d = d;
- for (int j = 0; j < QK8_0; ++j) {
- const float x0 = xi[j]*id;
- dsti->qs[j] = sycl::round((float)x0);
- }
- }
- static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_0 * dsti = (block_q4_0 *) cdsti;
- float amax = 0.0f;
- float vmax = 0.0f;
- for (int j = 0; j < QK4_0; ++j) {
- const float v = xi[j];
- if (amax < sycl::fabs((float)v)) {
- amax = sycl::fabs((float)v);
- vmax = v;
- }
- }
- const float d = vmax / -8;
- const float id = d ? 1.0f/d : 0.0f;
- dsti->d = d;
- for (int j = 0; j < QK4_0/2; ++j) {
- const float x0 = xi[0 + j]*id;
- const float x1 = xi[QK4_0/2 + j]*id;
- const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
- const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
- }
- }
- static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_1 * dsti = (block_q4_1 *) cdsti;
- float vmin = FLT_MAX;
- float vmax = -FLT_MAX;
- for (int j = 0; j < QK4_1; ++j) {
- const float v = xi[j];
- if (v < vmin) vmin = v;
- if (v > vmax) vmax = v;
- }
- const float d = (vmax - vmin) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- dsti->dm.x() = d;
- dsti->dm.y() = vmin;
- for (int j = 0; j < QK4_1/2; ++j) {
- const float x0 = (xi[0 + j] - vmin)*id;
- const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
- const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
- const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
- }
- }
- template <cpy_kernel_t cpy_blck, int qk>
- static void cpy_f32_q(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
- const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2)) *
- qk;
- if (i >= ne) {
- return;
- }
- const int i03 = i/(ne00 * ne01 * ne02);
- const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
- const int i13 = i/(ne10 * ne11 * ne12);
- const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
- cpy_blck(cx + x_offset, cdst + dst_offset);
- }
- static float rope_yarn_ramp(const float low, const float high, const int i0) {
- const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
- return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
- }
- struct rope_corr_dims {
- float v[4];
- };
- // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
- // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
- static void rope_yarn(
- float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
- float * cos_theta, float * sin_theta
- ) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
- }
- *cos_theta = sycl::cos(theta) * mscale;
- *sin_theta = sycl::sin(theta) * mscale;
- }
- // rope == RoPE == rotary positional embedding
- template<typename T, bool has_pos>
- static void rope(
- const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims
- ,
- const sycl::nd_item<3> &item_ct1) {
- const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
- if (col >= ncols) {
- return;
- }
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int i = row*ncols + col;
- const int i2 = row/p_delta_rows;
- const int p = has_pos ? pos[i2] : 0;
- const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols);
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
- }
- template<typename T, bool has_pos, bool has_freq_facs>
- static void rope_neox(
- const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims,
- const float * freq_factors, const sycl::nd_item<3> &item_ct1) {
- const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
- if (col >= ncols) {
- return;
- }
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int ib = col / n_dims;
- const int ic = col % n_dims;
- if (ib > 0) {
- const int i = row*ncols + ib*n_dims + ic;
- dst[i + 0] = x[i + 0];
- dst[i + 1] = x[i + 1];
- return;
- }
- const int i = row*ncols + ib*n_dims + ic/2;
- const int i2 = row/p_delta_rows;
- float cur_rot = inv_ndims * ic - ib;
- const int p = has_pos ? pos[i2] : 0;
- const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
- const float theta_base =
- p * freq_scale * dpct::pow(theta_scale, col / 2.0f)/freq_factor;
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + n_dims/2];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
- }
- static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(1);
- const int col = item_ct1.get_local_id(2);
- float sum = 0.0f;
- for (int i = col; i < ncols; i += item_ct1.get_local_range(2)) {
- sum += x[row * ncols + i];
- }
- sum = warp_reduce_sum(sum, item_ct1);
- if (col == 0) {
- dst[row] = sum;
- }
- }
- template<typename T>
- static inline void ggml_sycl_swap(T & a, T & b) {
- T tmp = a;
- a = b;
- b = tmp;
- }
- template <ggml_sort_order order>
- __dpct_inline__ static void
- k_argsort_f32_i32(const float *x, int *dst, const int ncols, int ncols_pad,
- const sycl::nd_item<3> &item_ct1, uint8_t *dpct_local) {
- // bitonic sort
- int col = item_ct1.get_local_id(2);
- int row = item_ct1.get_group(1);
- if (col >= ncols_pad) {
- return;
- }
- const float * x_row = x + row * ncols;
- auto dst_row = (int *)dpct_local;
- // initialize indices
- dst_row[col] = col;
- item_ct1.barrier(sycl::access::fence_space::local_space);
- for (int k = 2; k <= ncols_pad; k *= 2) {
- for (int j = k / 2; j > 0; j /= 2) {
- int ixj = col ^ j;
- if (ixj > col) {
- if ((col & k) == 0) {
- if (dst_row[col] >= ncols ||
- (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
- x_row[dst_row[col]] > x_row[dst_row[ixj]] :
- x_row[dst_row[col]] < x_row[dst_row[ixj]]))
- ) {
- ggml_sycl_swap(dst_row[col], dst_row[ixj]);
- }
- } else {
- if (dst_row[ixj] >= ncols ||
- (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
- x_row[dst_row[col]] < x_row[dst_row[ixj]] :
- x_row[dst_row[col]] > x_row[dst_row[ixj]]))
- ) {
- ggml_sycl_swap(dst_row[col], dst_row[ixj]);
- }
- }
- }
- /*
- DPCT1118:1: SYCL group functions and algorithms must be encountered
- in converged control flow. You may need to adjust the code.
- */
- item_ct1.barrier(sycl::access::fence_space::local_space);
- }
- }
- // copy the result to dst without the padding
- if (col < ncols) {
- dst[row * ncols + col] = dst_row[col];
- }
- }
- static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
- const sycl::nd_item<3> &item_ct1) {
- const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (col >= ncols) {
- return;
- }
- const int i = row*ncols + col;
- //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
- //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
- dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
- }
- template <bool vals_smem, int ncols_template, int block_size_template>
- static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
- const int nrows_y, const float scale, const float max_bias, const float m0,
- const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
- const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
- const int tid = item_ct1.get_local_id(2);
- const int rowx = item_ct1.get_group(2);
- const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
- const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
- const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- float slope = 1.0f;
- // ALiBi
- if (max_bias > 0.0f) {
- const uint32_t h = rowx/nrows_y; // head index
- const float base = h < n_head_log2 ? m0 : m1;
- const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
- slope = sycl::pow(base, float(exp));
- }
- float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
- float max_val = -INFINITY;
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
- const int ix = rowx*ncols + col;
- const int iy = rowy*ncols + col;
- const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
- vals[col] = val;
- max_val = sycl::max(max_val, val);
- }
- // find the max value in the block
- max_val = warp_reduce_max(max_val, item_ct1);
- if (block_size > WARP_SIZE) {
- if (warp_id == 0) {
- buf[lane_id] = -INFINITY;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
- if (lane_id == 0) {
- buf[warp_id] = max_val;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
- max_val = buf[lane_id];
- max_val = warp_reduce_max(max_val, item_ct1);
- }
- float tmp = 0.f;
- #pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
- const float val = sycl::native::exp(vals[col] - max_val);
- tmp += val;
- vals[col] = val;
- }
- // find the sum of exps in the block
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
- item_ct1.barrier(sycl::access::fence_space::local_space);
- if (warp_id == 0) {
- buf[lane_id] = 0.f;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
- if (lane_id == 0) {
- buf[warp_id] = tmp;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
- tmp = buf[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
- const float inv_sum = 1.f / tmp;
- #pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- return;
- }
- const int idst = rowx*ncols + col;
- dst[idst] = vals[col] * inv_sum;
- }
- }
- static void scale_f32(const float * x, float * dst, const float scale, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = scale * x[i];
- }
- static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
- }
- template <typename T>
- static void im2col_kernel(const float *x, T *dst, int offset_delta,
- int IW, int IH, int OW, int KW, int KH,
- int pelements, int CHW, int s0, int s1, int p0,
- int p1, int d0, int d1,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_id(2) +
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
- if (i >= pelements) {
- return;
- }
- const int ksize = OW * (KH > 1 ? KW : 1);
- const int kx = i / ksize;
- const int kd = kx * ksize;
- const int ky = (i - kd) / OW;
- const int ix = i % OW;
- const int64_t iiw = ix * s0 + kx * d0 - p0;
- const int64_t iih = item_ct1.get_group(1) * s1 + ky * d1 - p1;
- const int64_t offset_dst =
- (item_ct1.get_group(1) * OW + ix) * CHW +
- (item_ct1.get_group(0) * (KW * KH) + ky * KW + kx);
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst[offset_dst] =
- sycl::vec<float, 1>(0.0f)
- .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
- } else {
- const int64_t offset_src = item_ct1.get_group(0) * offset_delta;
- dst[offset_dst] =
- sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
- .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
- }
- }
- template <typename Ti, typename To>
- static void pool2d_nchw_kernel(
- const int ih, const int iw, const int oh, const int ow,
- const int kh, const int kw, const int sh, const int sw,
- const int ph, const int pw, const int parallel_elements,
- const Ti* src, To* dst, const enum ggml_op_pool op,
- const sycl::nd_item<3> &item_ct1) {
- int idx = item_ct1.get_local_id(2) +
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
- if (idx >= parallel_elements) {
- return;
- }
- const int I_HW = ih * iw;
- const int O_HW = oh * ow;
- const int nc = idx / O_HW;
- const int cur_oh = idx % O_HW / ow;
- const int cur_ow = idx % O_HW % ow;
- const Ti* i_ptr = src + nc * I_HW;
- To* o_ptr = dst + nc * O_HW;
- const int start_h = cur_oh * sh - ph;
- const int bh = sycl::max(0, start_h);
- const int eh = sycl::min(ih, start_h + kh);
- const int start_w = cur_ow * sw - pw;
- const int bw = sycl::max(0, start_w);
- const int ew = sycl::min(iw, start_w + kw);
- To res = 0;
- switch (op) {
- case GGML_OP_POOL_AVG: res = 0; break;
- case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
- }
- for (int i = bh; i < eh; i += 1) {
- for (int j = bw; j < ew; j += 1) {
- #if DPCT_COMPATIBILITY_TEMP >= 350
- /*
- DPCT1098:106: The '*' expression is used instead of the __ldg
- call. These two expressions do not provide the exact same
- functionality. Check the generated code for potential precision
- and/or performance issues.
- */
- Ti cur = *(i_ptr + i * iw + j);
- #else
- Ti cur = i_ptr[i * iw + j];
- #endif
- switch (op) {
- case GGML_OP_POOL_AVG: res += (cur / (kh * kw)); break;
- case GGML_OP_POOL_MAX: res = sycl::max(res, (To)cur); break;
- }
- }
- }
- o_ptr[cur_oh * ow + cur_ow] = res;
- }
- template <int qk, int qr, dequantize_kernel_t dq>
- static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const void *src0_dd,
- const int32_t *src1_dd, float *dst_dd,
- queue_ptr stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
- const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
- const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
- GGML_ASSERT(ne00 % 2 == 0);
- stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_get_rows<qk, qr, dq>(
- src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
- s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
- });
- (void) dst;
- }
- template <typename src0_t>
- static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const src0_t *src0_dd, const int32_t *src1_dd,
- float *dst_dd, queue_ptr stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
- const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
- const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
- s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
- });
- }
- (void) dst;
- }
- template<float (*bin_op)(const float, const float)>
- struct bin_bcast_sycl {
- template <typename src0_t, typename src1_t, typename dst_t>
- void operator()(ggml_backend_sycl_context & ctx,
- const struct ggml_tensor *src0,
- const struct ggml_tensor *src1, struct ggml_tensor *dst,
- const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
- queue_ptr stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- int nr0 = ne10/ne0;
- int nr1 = ne11/ne1;
- int nr2 = ne12/ne2;
- int nr3 = ne13/ne3;
- int nr[4] = { nr0, nr1, nr2, nr3 };
- // collapse dimensions until first broadcast dimension
- int64_t cne0[] = {ne0, ne1, ne2, ne3};
- int64_t cne1[] = {ne10, ne11, ne12, ne13};
- size_t cnb0[] = {nb0, nb1, nb2, nb3};
- size_t cnb1[] = {nb10, nb11, nb12, nb13};
- auto collapse = [](int64_t cne[]) {
- cne[0] *= cne[1];
- cne[1] = cne[2];
- cne[2] = cne[3];
- cne[3] = 1;
- };
- auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
- cnb[1] *= cne[1];
- cnb[2] *= cne[2];
- cnb[3] *= cne[3];
- };
- for (int i = 0; i < 4; i++) {
- if (nr[i] != 1) {
- break;
- }
- if (i > 0) {
- collapse_nb(cnb0, cne0);
- collapse_nb(cnb1, cne1);
- collapse(cne0);
- collapse(cne1);
- }
- }
- {
- int64_t ne0 = cne0[0];
- int64_t ne1 = cne0[1];
- int64_t ne2 = cne0[2];
- int64_t ne3 = cne0[3];
- int64_t ne10 = cne1[0];
- int64_t ne11 = cne1[1];
- int64_t ne12 = cne1[2];
- int64_t ne13 = cne1[3];
- size_t nb0 = cnb0[0];
- size_t nb1 = cnb0[1];
- size_t nb2 = cnb0[2];
- size_t nb3 = cnb0[3];
- size_t nb10 = cnb1[0];
- size_t nb11 = cnb1[1];
- size_t nb12 = cnb1[2];
- size_t nb13 = cnb1[3];
- size_t s0 = nb0 / sizeof(dst_t);
- size_t s1 = nb1 / sizeof(dst_t);
- size_t s2 = nb2 / sizeof(dst_t);
- size_t s3 = nb3 / sizeof(dst_t);
- size_t s10 = nb10 / sizeof(src1_t);
- size_t s11 = nb11 / sizeof(src1_t);
- size_t s12 = nb12 / sizeof(src1_t);
- size_t s13 = nb13 / sizeof(src1_t);
- GGML_ASSERT(s0 == 1);
- GGML_ASSERT(s10 == 1);
- const int block_size = 128;
- int64_t hne0 = std::max(ne0/2LL, 1LL);
- sycl::range<3> block_dims(1, 1, 1);
- block_dims[2] = std::min<unsigned int>(hne0, block_size);
- block_dims[1] = std::min<unsigned int>(
- ne1, block_size / (unsigned int)block_dims[2]);
- block_dims[0] = std::min(
- std::min<unsigned int>(
- ne2 * ne3, block_size / (unsigned int)block_dims[2] /
- (unsigned int)block_dims[1]),
- 64U);
- sycl::range<3> block_nums(
- (ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
- (ne1 + block_dims[1] - 1) / block_dims[1],
- (hne0 + block_dims[2] - 1) / block_dims[2]);
- if (block_nums[0] > 65535) {
- // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
- int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
- sycl::range<3>(1, 1, block_size),
- sycl::range<3>(1, 1, block_size)),
- [=](sycl::nd_item<3> item_ct1) {
- k_bin_bcast_unravel<bin_op>(
- src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
- ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
- s13, item_ct1);
- });
- }
- } else {
- /*
- DPCT1049:16: The work-group size passed to the SYCL kernel may
- exceed the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if
- needed.
- */
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
- ne2, ne3, ne10, ne11, ne12, ne13,
- s1, s2, s3, s11, s12, s13,
- item_ct1);
- });
- }
- }
- }
- };
- static void acc_f32_sycl(const float *x, const float *y, float *dst,
- const int n_elements, const int ne10, const int ne11,
- const int ne12, const int nb1, const int nb2,
- const int offset, queue_ptr stream) {
- int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
- item_ct1);
- });
- }
- static void gelu_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- gelu_f32(x, dst, k, item_ct1);
- });
- }
- static void silu_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- silu_f32(x, dst, k, item_ct1);
- });
- }
- static void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- gelu_quick_f32(x, dst, k, item_ct1);
- });
- }
- static void tanh_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- tanh_f32(x, dst, k, item_ct1);
- });
- }
- static void relu_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- relu_f32(x, dst, k, item_ct1);
- });
- }
- static void hardsigmoid_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- hardsigmoid_f32(x, dst, k, item_ct1);
- });
- }
- static void hardswish_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- hardswish_f32(x, dst, k, item_ct1);
- });
- }
- static void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
- const float negative_slope,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- leaky_relu_f32(x, dst, k, negative_slope, item_ct1);
- });
- }
- static void sqr_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- sqr_f32(x, dst, k, item_ct1);
- });
- }
- static void norm_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, const float eps,
- queue_ptr stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- if (ncols < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
- sycl::range<1>(32), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- // FIXME: 1024 from cuda
- const int work_group_size = GROUP_SIZE;
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
- sycl::range<1>(32), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
- }
- static void group_norm_f32_sycl(const float *x, float *dst,
- const int num_groups, const int group_size,
- const int ne_elements, queue_ptr stream) {
- static const float eps = 1e-6f;
- if (group_size < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
- const float eps_ct4 = eps;
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- group_norm_f32(
- x, dst, group_size, ne_elements, eps_ct4, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- const int work_group_size = GROUP_SIZE;
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
- const float eps_ct4 = eps;
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- group_norm_f32(x, dst, group_size, ne_elements,
- eps_ct4, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
- }
- static void concat_f32_sycl(const float *x, const float *y, float *dst,
- const int ne0, int ne1, int ne2, int ne02,
- queue_ptr stream) {
- int num_blocks = (ne0 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
- sycl::range<3> gridDim(ne2, ne1, num_blocks);
- stream->parallel_for(
- sycl::nd_range<3>(gridDim *
- sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- concat_f32(x, y, dst, ne0, ne02, item_ct1);
- });
- }
- static void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01,
- const int nb02, const int nb03, const int ne10, const int ne11,
- const int ne12, const int ne13, const float sf0, const float sf1,
- const float sf2, const float sf3, queue_ptr stream) {
- int dst_size = ne10 * ne11 * ne12 * ne13;
- int num_blocks = (dst_size + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
- sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
- stream->parallel_for(
- sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)),
- [=](sycl::nd_item<1> item_ct1) {
- upscale_f32(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
- });
- }
- static void pad_f32_sycl(const float *x, float *dst, const int ne00,
- const int ne01, const int ne02, const int ne0,
- const int ne1, const int ne2, queue_ptr stream) {
- int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
- sycl::range<3> gridDim(ne2, ne1, num_blocks);
- stream->parallel_for(
- sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- pad_f32(x, dst, ne0, ne00, ne01, ne02, item_ct1);
- });
- }
- static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, const float eps,
- queue_ptr stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
- if (ncols < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- rms_norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- const int work_group_size = GROUP_SIZE;
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- rms_norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
- }
- static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
- const int ky, const int kx_padded,
- queue_ptr stream) {
- const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
- const sycl::range<3> num_blocks(1, ky, block_num_x);
- const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(num_blocks * block_size, block_size),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- quantize_q8_1(x, vy, kx, kx_padded, item_ct1);
- });
- }
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static void dequantize_block_sycl(const void *__restrict__ vx,
- dst_t *__restrict__ y, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + 2*SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / (2*SYCL_DEQUANTIZE_BLOCK_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(
- sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block<qk, qr, dequantize_kernel>(vx, y, k, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q2_K(vx, y, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q3_K(vx, y, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_q4_0_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb32 = k / 32;
- const int nb = (k + 255) / 256;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q4_0(vx, y, nb32, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_q4_1_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb32 = k / 32;
- const int nb = (k + 255) / 256;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q4_1(vx, y, nb32, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q4_K(vx, y, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q5_K(vx, y, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q6_K(vx, y, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq1_s_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq1_s(
- vx, y, item_ct1, iq1s_grid_gpu
- );
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq1_m_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq1_m(
- vx, y, item_ct1, iq1s_grid_gpu
- );
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq2_xxs_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq2_xxs(
- vx, y, item_ct1, iq2xxs_grid,
- ksigns_iq2xs, kmask_iq2xs);
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq2_xs_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq2_xs(
- vx, y, item_ct1, iq2xs_grid,
- ksigns_iq2xs, kmask_iq2xs);
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq2_s_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq2_s(vx, y, item_ct1);
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq3_xxs_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq3_xxs(
- vx, y, item_ct1, iq3xxs_grid,
- ksigns_iq2xs, kmask_iq2xs);
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq3_s_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq3_s(
- vx, y, item_ct1, kmask_iq2xs, iq3s_grid);
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = (k + QK_K - 1) / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq4_xs(vx, y, item_ct1);
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq4_nl_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = (k + QK_K - 1) / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq4_nl(vx, y, item_ct1);
- });
- });
- }
- }
- template <typename src_t, typename dst_t>
- static void convert_unary_sycl(const void *__restrict__ vx,
- dst_t *__restrict__ y, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(
- sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- convert_unary<src_t>(vx, y, k, item_ct1);
- });
- }
- }
- static to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type) try {
- int id;
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_block_sycl<QK4_0, QR4_0, dequantize_q4_0>;
- case GGML_TYPE_Q4_1:
- return dequantize_block_sycl<QK4_1, QR4_1, dequantize_q4_1>;
- case GGML_TYPE_Q5_0:
- return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_sycl;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_sycl;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_sycl;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_sycl;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_sycl;
- case GGML_TYPE_IQ1_S:
- return dequantize_row_iq1_s_sycl;
- case GGML_TYPE_IQ1_M:
- return dequantize_row_iq1_m_sycl;
- case GGML_TYPE_IQ2_XXS:
- return dequantize_row_iq2_xxs_sycl;
- case GGML_TYPE_IQ2_XS:
- return dequantize_row_iq2_xs_sycl;
- case GGML_TYPE_IQ2_S:
- return dequantize_row_iq2_s_sycl;
- case GGML_TYPE_IQ3_XXS:
- return dequantize_row_iq3_xxs_sycl;
- case GGML_TYPE_IQ3_S:
- return dequantize_row_iq3_s_sycl;
- case GGML_TYPE_IQ4_XS:
- return dequantize_row_iq4_xs_sycl;
- case GGML_TYPE_IQ4_NL:
- return dequantize_row_iq4_nl_sycl;
- case GGML_TYPE_F32:
- return convert_unary_sycl<float>;
- default:
- return nullptr;
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_sycl;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_sycl;
- case GGML_TYPE_Q5_0:
- return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_sycl;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_sycl;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_sycl;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_sycl;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_sycl;
- case GGML_TYPE_IQ1_S:
- return dequantize_row_iq1_s_sycl;
- case GGML_TYPE_IQ1_M:
- return dequantize_row_iq1_m_sycl;
- case GGML_TYPE_IQ2_XXS:
- return dequantize_row_iq2_xxs_sycl;
- case GGML_TYPE_IQ2_XS:
- return dequantize_row_iq2_xs_sycl;
- case GGML_TYPE_IQ2_S:
- return dequantize_row_iq2_s_sycl;
- case GGML_TYPE_IQ3_XXS:
- return dequantize_row_iq3_xxs_sycl;
- case GGML_TYPE_IQ3_S:
- return dequantize_row_iq3_s_sycl;
- case GGML_TYPE_IQ4_XS:
- return dequantize_row_iq4_xs_sycl;
- case GGML_TYPE_IQ4_NL:
- return dequantize_row_iq4_nl_sycl;
- case GGML_TYPE_F16:
- return convert_unary_sycl<sycl::half>;
- default:
- return nullptr;
- }
- }
- static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- }
- static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- }
- static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- }
- static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- }
- static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- }
- static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const sycl::range<3> block_dims(1, 1, 32);
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
- });
- }
- static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
- nrows, item_ct1);
- });
- }
- }
- static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK4_0 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK4_0, QI4_0, block_q4_0,
- VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK4_1 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK4_0, QI4_1, block_q4_1,
- VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK5_0 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK5_0, QI5_0, block_q5_0,
- VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK5_1 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK5_1, QI5_1, block_q5_1,
- VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK8_0 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK8_0, QI8_0, block_q8_0,
- VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI2_K, block_q2_K,
- VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI3_K, block_q3_K,
- VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI4_K, block_q4_K,
- VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI5_K, block_q5_K,
- VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI6_K, block_q6_K,
- VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_xxs_q8_1<QK_K, QI2_XXS, block_iq2_xxs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_xs_q8_1<QK_K, QI2_XS, block_iq2_xs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq2_s_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_s_q8_1<QK_K, QI2_S, block_iq2_s, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- auto iq3xxs_grid_ptr_ct1 = &iq3xxs_grid[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq3_xxs_q8_1<QK_K, QI3_XXS, block_iq3_xxs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- auto iq3s_grid_ptr_ct1 = &iq3s_grid[0];
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq3_s_q8_1<QK_K, QI3_XS, block_iq3_s, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq1_s_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- auto iq1s_grid_ptr_ct1 = &iq1s_grid_gpu[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq1_s_q8_1<QK_K, QI1_S, block_iq1_s, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq1_m_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq1_m_q8_1<QK_K, QI1_S, block_iq1_m, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq4_nl_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK4_NL == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq4_nl_q8_1<QK4_NL, QI4_NL, block_iq4_nl, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq4_xs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq4_xs_q8_1<QK_K, QI4_XS, block_iq4_xs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void ggml_mul_mat_q4_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q4_0_RDNA2;
- mmq_y = MMQ_Y_Q4_0_RDNA2;
- nwarps = NWARPS_Q4_0_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q4_0_RDNA1;
- mmq_y = MMQ_Y_Q4_0_RDNA1;
- nwarps = NWARPS_Q4_0_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q4_0_AMPERE;
- mmq_y = MMQ_Y_Q4_0_AMPERE;
- nwarps = NWARPS_Q4_0_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q4_0_PASCAL;
- mmq_y = MMQ_Y_Q4_0_PASCAL;
- nwarps = NWARPS_Q4_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:20: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_0_acc_ct1.get_pointer(),
- tile_x_d_q4_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:21: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_0_acc_ct1.get_pointer(),
- tile_x_d_q4_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q4_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q4_1_RDNA2;
- mmq_y = MMQ_Y_Q4_1_RDNA2;
- nwarps = NWARPS_Q4_1_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q4_1_RDNA1;
- mmq_y = MMQ_Y_Q4_1_RDNA1;
- nwarps = NWARPS_Q4_1_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q4_1_AMPERE;
- mmq_y = MMQ_Y_Q4_1_AMPERE;
- nwarps = NWARPS_Q4_1_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q4_1_PASCAL;
- mmq_y = MMQ_Y_Q4_1_PASCAL;
- nwarps = NWARPS_Q4_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:22: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_1_acc_ct1.get_pointer(),
- tile_x_dm_q4_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:23: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_1_acc_ct1.get_pointer(),
- tile_x_dm_q4_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q5_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q5_0_RDNA2;
- mmq_y = MMQ_Y_Q5_0_RDNA2;
- nwarps = NWARPS_Q5_0_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q5_0_RDNA1;
- mmq_y = MMQ_Y_Q5_0_RDNA1;
- nwarps = NWARPS_Q5_0_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q5_0_AMPERE;
- mmq_y = MMQ_Y_Q5_0_AMPERE;
- nwarps = NWARPS_Q5_0_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q5_0_PASCAL;
- mmq_y = MMQ_Y_Q5_0_PASCAL;
- nwarps = NWARPS_Q5_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:24: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_0_acc_ct1.get_pointer(),
- tile_x_d_q5_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:25: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_0_acc_ct1.get_pointer(),
- tile_x_d_q5_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q5_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q5_1_RDNA2;
- mmq_y = MMQ_Y_Q5_1_RDNA2;
- nwarps = NWARPS_Q5_1_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q5_1_RDNA1;
- mmq_y = MMQ_Y_Q5_1_RDNA1;
- nwarps = NWARPS_Q5_1_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q5_1_AMPERE;
- mmq_y = MMQ_Y_Q5_1_AMPERE;
- nwarps = NWARPS_Q5_1_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q5_1_PASCAL;
- mmq_y = MMQ_Y_Q5_1_PASCAL;
- nwarps = NWARPS_Q5_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:26: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_1_acc_ct1.get_pointer(),
- tile_x_dm_q5_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:27: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_1_acc_ct1.get_pointer(),
- tile_x_dm_q5_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q8_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q8_0_RDNA2;
- mmq_y = MMQ_Y_Q8_0_RDNA2;
- nwarps = NWARPS_Q8_0_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q8_0_RDNA1;
- mmq_y = MMQ_Y_Q8_0_RDNA1;
- nwarps = NWARPS_Q8_0_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q8_0_AMPERE;
- mmq_y = MMQ_Y_Q8_0_AMPERE;
- nwarps = NWARPS_Q8_0_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q8_0_PASCAL;
- mmq_y = MMQ_Y_Q8_0_PASCAL;
- nwarps = NWARPS_Q8_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:28: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q8_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q8_0_acc_ct1.get_pointer(),
- tile_x_d_q8_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:29: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q8_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q8_0_acc_ct1.get_pointer(),
- tile_x_d_q8_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q2_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q2_K_RDNA2;
- mmq_y = MMQ_Y_Q2_K_RDNA2;
- nwarps = NWARPS_Q2_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q2_K_RDNA1;
- mmq_y = MMQ_Y_Q2_K_RDNA1;
- nwarps = NWARPS_Q2_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q2_K_AMPERE;
- mmq_y = MMQ_Y_Q2_K_AMPERE;
- nwarps = NWARPS_Q2_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q2_K_PASCAL;
- mmq_y = MMQ_Y_Q2_K_PASCAL;
- nwarps = NWARPS_Q2_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:30: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q2_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q2_K_acc_ct1.get_pointer(),
- tile_x_dm_q2_K_acc_ct1.get_pointer(),
- tile_x_sc_q2_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:31: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q2_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q2_K_acc_ct1.get_pointer(),
- tile_x_dm_q2_K_acc_ct1.get_pointer(),
- tile_x_sc_q2_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q3_K_RDNA2;
- mmq_y = MMQ_Y_Q3_K_RDNA2;
- nwarps = NWARPS_Q3_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q3_K_RDNA1;
- mmq_y = MMQ_Y_Q3_K_RDNA1;
- nwarps = NWARPS_Q3_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q3_K_AMPERE;
- mmq_y = MMQ_Y_Q3_K_AMPERE;
- nwarps = NWARPS_Q3_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q3_K_PASCAL;
- mmq_y = MMQ_Y_Q3_K_PASCAL;
- nwarps = NWARPS_Q3_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:32: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q3_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q3_K_acc_ct1.get_pointer(),
- tile_x_dm_q3_K_acc_ct1.get_pointer(),
- tile_x_qh_q3_K_acc_ct1.get_pointer(),
- tile_x_sc_q3_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:33: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q3_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q3_K_acc_ct1.get_pointer(),
- tile_x_dm_q3_K_acc_ct1.get_pointer(),
- tile_x_qh_q3_K_acc_ct1.get_pointer(),
- tile_x_sc_q3_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q4_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q4_K_RDNA2;
- mmq_y = MMQ_Y_Q4_K_RDNA2;
- nwarps = NWARPS_Q4_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q4_K_RDNA1;
- mmq_y = MMQ_Y_Q4_K_RDNA1;
- nwarps = NWARPS_Q4_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q4_K_AMPERE;
- mmq_y = MMQ_Y_Q4_K_AMPERE;
- nwarps = NWARPS_Q4_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q4_K_PASCAL;
- mmq_y = MMQ_Y_Q4_K_PASCAL;
- nwarps = NWARPS_Q4_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:34: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q4_K_acc_ct1.get_pointer(),
- tile_x_dm_q4_K_acc_ct1.get_pointer(),
- tile_x_sc_q4_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:35: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q4_K_acc_ct1.get_pointer(),
- tile_x_dm_q4_K_acc_ct1.get_pointer(),
- tile_x_sc_q4_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q5_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q5_K_RDNA2;
- mmq_y = MMQ_Y_Q5_K_RDNA2;
- nwarps = NWARPS_Q5_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q5_K_RDNA1;
- mmq_y = MMQ_Y_Q5_K_RDNA1;
- nwarps = NWARPS_Q5_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q5_K_AMPERE;
- mmq_y = MMQ_Y_Q5_K_AMPERE;
- nwarps = NWARPS_Q5_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q5_K_PASCAL;
- mmq_y = MMQ_Y_Q5_K_PASCAL;
- nwarps = NWARPS_Q5_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:36: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_K_acc_ct1.get_pointer(),
- tile_x_dm_q5_K_acc_ct1.get_pointer(),
- tile_x_sc_q5_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:37: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_K_acc_ct1.get_pointer(),
- tile_x_dm_q5_K_acc_ct1.get_pointer(),
- tile_x_sc_q5_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q6_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q6_K_RDNA2;
- mmq_y = MMQ_Y_Q6_K_RDNA2;
- nwarps = NWARPS_Q6_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q6_K_RDNA1;
- mmq_y = MMQ_Y_Q6_K_RDNA1;
- nwarps = NWARPS_Q6_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q6_K_AMPERE;
- mmq_y = MMQ_Y_Q6_K_AMPERE;
- nwarps = NWARPS_Q6_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q6_K_PASCAL;
- mmq_y = MMQ_Y_Q6_K_PASCAL;
- nwarps = NWARPS_Q6_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:38: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q6_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_acc_ct1.get_pointer(),
- tile_x_dm_acc_ct1.get_pointer(),
- tile_x_sc_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:39: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q6_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_acc_ct1.get_pointer(),
- tile_x_dm_acc_ct1.get_pointer(),
- tile_x_sc_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
- float *dst, const int ncols_x,
- const int nrows_x,
- const int nchannels_x,
- const int nchannels_y,
- queue_ptr stream) {
- const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
- nchannels_y, item_ct1);
- });
- }
- }
- static void ggml_mul_mat_vec_nc_f16_f32_sycl(
- const void *vx, const float *y, float *dst, const int ncols_x,
- const int nrows_x, const int row_stride_x, const int nchannels_x,
- const int nchannels_y, const int channel_stride_x, queue_ptr stream) {
- const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
- row_stride_x, channel_stride_x,
- nchannels_y / nchannels_x, item_ct1);
- });
- }
- }
- static void
- ggml_cpy_f16_f32_sycl(const char *cx, char *cdst, const int ne, const int ne00,
- const int ne01, const int ne02, const int nb00,
- const int nb01, const int nb02, const int nb03,
- const int ne10, const int ne11, const int ne12,
- const int nb10, const int nb11, const int nb12,
- const int nb13, queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_f16_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00,
- nb01, nb02, nb03, ne10, ne11, ne12,
- nb10, nb11, nb12, nb13, item_ct1);
- });
- }
- }
- static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- }
- static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- }
- static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- queue_ptr stream) {
- GGML_ASSERT(ne % QK8_0 == 0);
- const int num_blocks = ne / QK8_0;
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
- sycl::range<3>(1, 1, 1)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
- cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- queue_ptr stream) {
- GGML_ASSERT(ne % QK4_0 == 0);
- const int num_blocks = ne / QK4_0;
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
- sycl::range<3>(1, 1, 1)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
- cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- queue_ptr stream) {
- GGML_ASSERT(ne % QK4_1 == 0);
- const int num_blocks = ne / QK4_1;
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
- sycl::range<3>(1, 1, 1)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
- cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- }
- static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- // dpct::has_capability_or_fail(stream->get_device(),
- // {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- }
- static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- // dpct::has_capability_or_fail(stream->get_device(),
- // {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- }
- static void scale_f32_sycl(const float *x, float *dst, const float scale,
- const int k, queue_ptr stream) {
- const int num_blocks = (k + SYCL_SCALE_BLOCK_SIZE - 1) / SYCL_SCALE_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- scale_f32(x, dst, scale, k, item_ct1);
- });
- }
- static void clamp_f32_sycl(const float *x, float *dst, const float min,
- const float max, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- clamp_f32(x, dst, min, max, k, item_ct1);
- });
- }
- template <typename T>
- static void rope_sycl(const T *x, T *dst, int ncols, int nrows,
- const int32_t *pos, float freq_scale, int p_delta_rows,
- float freq_base, float ext_factor, float attn_factor,
- rope_corr_dims corr_dims, queue_ptr stream) {
- GGML_ASSERT(ncols % 2 == 0);
- const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
- const sycl::range<3> block_nums(1, num_blocks_x, nrows);
- if (pos == nullptr) {
- /*
- DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope<T, false>(x, dst, ncols, pos, freq_scale, p_delta_rows,
- freq_base, ext_factor, attn_factor, corr_dims,
- item_ct1);
- });
- } else {
- /*
- DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope<T, true>(x, dst, ncols, pos, freq_scale, p_delta_rows,
- freq_base, ext_factor, attn_factor, corr_dims,
- item_ct1);
- });
- }
- }
- template <typename T>
- static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
- const int32_t *pos, float freq_scale,
- int p_delta_rows, float freq_base, float ext_factor,
- float attn_factor, rope_corr_dims corr_dims,
- const float * freq_factors, queue_ptr stream) {
- GGML_ASSERT(ncols % 2 == 0);
- const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
- const sycl::range<3> block_nums(1, num_blocks_x, nrows);
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const float inv_ndims = -1.0f / n_dims;
- if (pos == nullptr) {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- if (freq_factors == nullptr) {
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, false, false>(x, dst, ncols, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, inv_ndims, freq_factors,
- item_ct1);
- });
- } else {
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, false, true>(x, dst, ncols, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, inv_ndims, freq_factors,
- item_ct1);
- });
- }
- } else {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- if (freq_factors == nullptr) {
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, true, false>(x, dst, ncols, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
- });
- } else {
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, true, true>(x, dst, ncols, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
- });
- }
- }
- }
- static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, queue_ptr stream) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- const sycl::range<3> block_nums(1, nrows, 1);
- stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- k_sum_rows_f32(x, dst, ncols, item_ct1);
- });
- }
- static int next_power_of_2(int x) {
- int n = 1;
- while (n < x) {
- n *= 2;
- }
- return n;
- }
- static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
- const int nrows, ggml_sort_order order,
- queue_ptr stream) {
- // bitonic sort requires ncols to be power of 2
- const int ncols_pad = next_power_of_2(ncols);
- const sycl::range<3> block_dims(1, 1, ncols_pad);
- const sycl::range<3> block_nums(1, nrows, 1);
- const size_t shared_mem = ncols_pad * sizeof(int);
- if (order == GGML_SORT_ORDER_ASC) {
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
- sycl::range<1>(shared_mem), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(
- x, dst, ncols, ncols_pad, item_ct1,
- dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
- .get());
- });
- });
- } else if (order == GGML_SORT_ORDER_DESC) {
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
- sycl::range<1>(shared_mem), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(
- x, dst, ncols, ncols_pad, item_ct1,
- dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
- .get());
- });
- });
- } else {
- GGML_ASSERT(false);
- }
- }
- static void diag_mask_inf_f32_sycl(const float *x, float *dst,
- const int ncols_x, const int nrows_x,
- const int rows_per_channel, const int n_past,
- queue_ptr stream) {
- const sycl::range<3> block_dims(1, SYCL_DIAG_MASK_INF_BLOCK_SIZE, 1);
- const int block_num_x = (ncols_x + SYCL_DIAG_MASK_INF_BLOCK_SIZE - 1) / SYCL_DIAG_MASK_INF_BLOCK_SIZE;
- const sycl::range<3> block_nums(1, block_num_x, nrows_x);
- stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- diag_mask_inf_f32(x, dst, ncols_x,
- rows_per_channel, n_past,
- item_ct1);
- });
- }
- template <bool vals_smem, int ncols_template, int block_size_template>
- static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
- const int nrows_y, const float scale, const float max_bias, const float m0,
- const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
- const size_t n_local_scratch, queue_ptr stream) {
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
- nrows_y, scale, max_bias, m0,
- m1, n_head_log2, item_ct1,
- local_buf_acc.get_pointer());
- });
- });
- }
- static void soft_max_f32_sycl(const float * x, const float * mask,
- float * dst, const int ncols_x, const int nrows_x,
- const int nrows_y, const float scale, const float max_bias,
- queue_ptr stream) {
- int nth = WARP_SIZE;
- int max_block_size = GROUP_SIZE;
- while (nth < ncols_x && nth < max_block_size) nth *= 2;
- if (nth>max_block_size) nth = max_block_size;
- const sycl::range<3> block_dims(1, 1, nth);
- const sycl::range<3> block_nums(1, 1, nrows_x);
- const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
- const uint32_t n_head_kv = nrows_x/nrows_y;
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
- if (n_local_scratch*sizeof(float) < local_mem_size) {
- if (ncols_x > max_block_size) {
- soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- return;
- }
- switch (ncols_x) {
- case 32:
- soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 64:
- soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 128:
- soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 256:
- soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 512:
- soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 1024:
- soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 2048:
- soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 4096:
- soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- default:
- soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- }
- } else {
- soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, WARP_SIZE, stream);
- }
- }
- template <typename T>
- static void im2col_sycl(const float *x, T *dst, int IW, int IH,
- int OW, int OH, int KW, int KH, int IC,
- int offset_delta, int s0, int s1, int p0,
- int p1, int d0, int d1,
- queue_ptr stream) {
- const int parallel_elements = OW * KW * KH;
- const int num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;
- sycl::range<3> block_nums(IC, OH, num_blocks);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums *
- sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- im2col_kernel(x, dst, offset_delta, IW, IH, OW, KW, KH,
- parallel_elements, (IC * KH * KW), s0, s1, p0,
- p1, d0, d1, item_ct1);
- });
- }
- }
- static bool g_sycl_loaded = false;
- bool ggml_sycl_loaded(void) {
- return g_sycl_loaded;
- }
- void print_device_detail(int id, sycl::device &device, std::string device_type) {
- dpct::device_info prop;
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::get_device_info(prop, device)));
- std::string version;
- version += std::to_string(prop.get_major_version());
- version += ".";
- version += std::to_string(prop.get_minor_version());
- device_type = std::regex_replace(device_type, std::regex("ext_oneapi_"), "");
- std::string name = std::string(prop.get_name());
- name = std::regex_replace(name, std::regex("\\(R\\)"), "");
- name = std::regex_replace(name, std::regex("\\(TM\\)"), "");
- auto global_mem_size = prop.get_global_mem_size()/1000000;
- fprintf(stderr, "|%2d|%19s|%39s|%7s|%7d|%8d|%5d|%6luM|%21s|\n", id, device_type.c_str(),
- name.c_str(), version.c_str(), prop.get_max_compute_units(),
- prop.get_max_work_group_size(), prop.get_max_sub_group_size(),
- global_mem_size, device.get_info<sycl::info::device::driver_version>().c_str());
- }
- void ggml_backend_sycl_print_sycl_devices() {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_print_sycl_devices\n");
- int device_count = dpct::dev_mgr::instance().device_count();
- std::map<std::string, size_t> DeviceNums;
- fprintf(stderr, "found %d SYCL devices:\n", device_count);
- fprintf(stderr, "| | | | |Max | |Max |Global | |\n");
- fprintf(stderr, "| | | | |compute|Max work|sub |mem | |\n");
- fprintf(stderr, "|ID| Device Type| Name|Version|units |group |group|size | Driver version|\n");
- fprintf(stderr, "|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|\n");
- for (int id = 0; id < device_count; ++id) {
- sycl::device device = dpct::dev_mgr::instance().get_device(id);
- sycl::backend backend = device.get_backend();
- std::string backend_type = get_device_backend_and_type(device);
- int type_id=DeviceNums[backend_type]++;
- std::stringstream device_type;
- device_type << "[" << backend_type << ":" << std::to_string(type_id) << "]";
- print_device_detail(id, device, device_type.str());
- }
- }
- int get_sycl_env(const char *env_name, int default_val) {
- char *user_device_string = getenv(env_name);
- int user_number = default_val;
- unsigned n;
- if (user_device_string != NULL &&
- sscanf(user_device_string, " %u", &n) == 1) {
- user_number = (int)n;
- } else {
- user_number = default_val;
- }
- return user_number;
- }
- int get_work_group_size(int user_device_id) {
- dpct::device_info prop;
- dpct::get_device_info(prop,
- dpct::dev_mgr::instance().get_device(user_device_id));
- return prop.get_max_work_group_size();
- }
- static void ggml_check_sycl() try {
- static bool initialized = false;
- if (!initialized) {
- fprintf(stderr, "[SYCL] call ggml_check_sycl\n");
- g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
- fprintf(stderr, "%s: GGML_SYCL_DEBUG: %d\n", __func__, g_ggml_sycl_debug);
- #if defined(GGML_SYCL_F16)
- fprintf(stderr, "%s: GGML_SYCL_F16: yes\n", __func__);
- #else
- fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__);
- #endif
- /* NOT REMOVE, keep it for next optimize for XMX.
- #if defined(SYCL_USE_XMX)
- fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
- #else
- fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
- #endif
- */
- if (CHECK_TRY_ERROR(g_all_sycl_device_count =
- dpct::dev_mgr::instance().device_count()) != 0) {
- initialized = true;
- g_sycl_loaded = false;
- return;
- }
- GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
- ggml_backend_sycl_print_sycl_devices();
- initialized = true;
- g_sycl_loaded = true;
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static ggml_sycl_device_info ggml_sycl_init() {
- ggml_sycl_device_info info = {};
- info.device_count = dpct::dev_mgr::instance().device_count();
- if (info.device_count == 0) {
- fprintf(stderr, "%s: failed to initialize " GGML_SYCL_NAME ": %s\n", __func__);
- return info;
- }
- GGML_ASSERT(info.device_count <= GGML_SYCL_MAX_DEVICES);
- int64_t total_vram = 0;
- #if defined(GGML_SYCL_FORCE_MMQ)
- fprintf(stderr, "%s: GGML_SYCL_FORCE_MMQ: yes\n", __func__);
- #else
- fprintf(stderr, "%s: GGML_SYCL_FORCE_MMQ: no\n", __func__);
- #endif
- #if defined(SYCL_USE_XMX)
- fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
- #else
- fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
- #endif
- fprintf(stderr, "%s: found %d " GGML_SYCL_NAME " devices:\n", __func__, info.device_count);
- for (int i = 0; i < info.device_count; ++i) {
- info.devices[i].vmm = 0;
- dpct::device_info prop;
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
- prop, dpct::dev_mgr::instance().get_device(i))));
- info.default_tensor_split[i] = total_vram;
- total_vram += prop.get_global_mem_size();
- info.devices[i].cc =
- 100 * prop.get_major_version() + 10 * prop.get_minor_version();
- }
- for (int id = 0; id < info.device_count; ++id) {
- info.default_tensor_split[id] /= total_vram;
- }
- return info;
- }
- const ggml_sycl_device_info & ggml_sycl_info() {
- static ggml_sycl_device_info info = ggml_sycl_init();
- return info;
- }
- /*
- device_index: device index from 0 to n (continue numbers).
- It is used for device select/set in SYCL backend internal data structure.
- */
- inline void check_allow_gpu_index(const int device_index) {
- if (device_index >= ggml_sycl_info().device_count) {
- char error_buf[256];
- snprintf(
- error_buf,
- sizeof(error_buf),
- "%s error: device_index:%d is out of range: [0-%d]",
- __func__,
- device_index,
- ggml_sycl_info().device_count - 1);
- fprintf(stderr, "%s\n", error_buf);
- assert(false);
- }
- }
- // buffer pool for sycl (legacy)
- struct ggml_sycl_pool_leg : public ggml_sycl_pool {
- static const int MAX_SYCL_BUFFERS = 256;
- int device;
- queue_ptr qptr;
- struct ggml_sycl_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- ggml_sycl_buffer buffer_pool[MAX_SYCL_BUFFERS] = {};
- size_t pool_size = 0;
- explicit ggml_sycl_pool_leg(queue_ptr qptr_, int device_) :
- qptr(qptr_),
- device(device_) {
- }
- ~ggml_sycl_pool_leg() {
- for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
- ggml_sycl_buffer & b = buffer_pool[i];
- if (b.ptr != nullptr) {
- SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(b.ptr, *qptr)));
- pool_size -= b.size;
- }
- }
- GGML_ASSERT(pool_size == 0);
- }
- void * alloc(size_t size, size_t * actual_size) override {
- #ifdef DEBUG_sycl_MALLOC
- int nnz = 0;
- size_t max_size = 0;
- #endif
- size_t best_diff = 1ull << 36;
- int ibest = -1;
- for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
- ggml_sycl_buffer& b = buffer_pool[i];
- if (b.ptr != nullptr) {
- #ifdef DEBUG_sycl_MALLOC
- ++nnz;
- if (b.size > max_size) max_size = b.size;
- #endif
- if (b.size >= size) {
- size_t diff = b.size - size;
- if (diff < best_diff) {
- best_diff = diff;
- ibest = i;
- if (!best_diff) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
- }
- }
- }
- if (ibest >= 0) {
- ggml_sycl_buffer& b = buffer_pool[ibest];
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- void * ptr;
- size_t look_ahead_size = (size_t) (1.05 * size);
- SYCL_CHECK(
- CHECK_TRY_ERROR(ptr = (void *)sycl::malloc_device(
- look_ahead_size, *qptr)));
- *actual_size = look_ahead_size;
- pool_size += look_ahead_size;
- #ifdef DEBUG_SYCL_MALLOC
- fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz,
- (uint32_t)(max_size/1024/1024), (uint32_t)(g_sycl_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024));
- #endif
- // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg look_ahead_size=%lu, return %p\n", look_ahead_size, ptr);
- return ptr;
- }
- void free(void * ptr, size_t size) override {
- for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
- ggml_sycl_buffer& b = buffer_pool[i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: sycl buffer pool full, increase MAX_sycl_BUFFERS\n");
- SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, *qptr)));
- pool_size -= size;
- }
- };
- std::unique_ptr<ggml_sycl_pool> ggml_backend_sycl_context::new_pool_for_device(queue_ptr qptr, int device) {
- // TBD: NO VMM support
- // if (ggml_sycl_info().devices[device].vmm) {
- // return std::unique_ptr<ggml_sycl_pool>(new ggml_sycl_pool_vmm(device));
- // }
- return std::unique_ptr<ggml_sycl_pool>(new ggml_sycl_pool_leg(qptr, device));
- }
- // TBD pool with virtual memory management
- // struct ggml_sycl_pool_vmm : public ggml_sycl_pool
- static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
- const struct ggml_tensor *src,
- int64_t i3, int64_t i2,
- int64_t i1_low, int64_t i1_high,
- queue_ptr stream) try {
- dpct::memcpy_direction kind;
- char * src_ptr;
- if (src->backend == GGML_BACKEND_TYPE_CPU) {
- kind = dpct::host_to_device;
- src_ptr = (char *) src->data;
- // GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr);
- } else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
- GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
- kind = dpct::device_to_device;
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
- int id;
- SYCL_CHECK(CHECK_TRY_ERROR(
- id = get_current_device_id()));
- // GGML_SYCL_DEBUG("current device index %d\n", id);
- src_ptr = (char *) extra->data_device[id];
- } else {
- // GGML_SYCL_DEBUG("GGML_ASSERT(false)\n");
- GGML_ASSERT(false);
- }
- char * dst_ptr = (char *) dst;
- GGML_TENSOR_LOCALS_1(int64_t, ne, src, ne);
- GGML_TENSOR_LOCALS(int64_t, nb, src, nb);
- const enum ggml_type type = src->type;
- const int64_t ts = ggml_type_size(type);
- const int64_t bs = ggml_blck_size(type);
- int64_t i1_diff = i1_high - i1_low;
- const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- // GGML_SYCL_DEBUG("stream->memcpy: dst_ptr=%p, x=%p, size=%lu\n", dst_ptr, x, i1_diff * nb1);
- // return CHECK_TRY_ERROR(stream->memcpy(dst_ptr, x, i1_diff * nb1));
- return CHECK_TRY_ERROR(dpct::async_dpct_memcpy(dst_ptr, x, i1_diff * nb1,
- kind, *stream));
- } else if (nb0 == ts) {
- return CHECK_TRY_ERROR(
- dpct::async_dpct_memcpy(dst_ptr, ts * ne0 / bs, x, nb1,
- ts * ne0 / bs, i1_diff, kind, *stream));
- } else {
- for (int64_t i1 = 0; i1 < i1_diff; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- dpct::err0 r = CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
- rd, ts / bs, rx, nb0, ts / bs, ne0, kind, *stream));
- /*
- DPCT1001:85: The statement could not be removed.
- */
- /*
- DPCT1000:86: Error handling if-stmt was detected but could not be
- rewritten.
- */
- if (r != 0) return r;
- }
- return 0;
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_d, const float *src1_d,
- float *dst_d, const queue_ptr &stream) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
- GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
- GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
- const int32_t * src1_i32 = (const int32_t *) src1_d;
- switch (src0->type) {
- case GGML_TYPE_F16:
- get_rows_sycl_float(ctx, src0, src1, dst, (const sycl::half *)src0_d,
- src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_F32:
- get_rows_sycl_float(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q4_0:
- get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q4_1:
- get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q5_0:
- get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q5_1:
- get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q8_0:
- get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- default:
- // TODO: k-quants
- fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
- GGML_ASSERT(false);
- break;
- }
- }
- template <class op>
- inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- op()(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
- (sycl::half *)dst_dd, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
- op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
- main_stream);
- } else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
- op()(ctx, src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
- main_stream);
- } else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
- op()(ctx, src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
- main_stream);
- } else {
- fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
- ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
- GGML_ASSERT(false);
- }
- }
- static void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_d, const float *src1_d,
- float *dst_d,
- const queue_ptr &main_stream) {
- ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
- (void) src1;
- (void) src1_d;
- }
- inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
- int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
- int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
- // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
- int offset = dst->op_params[3] / 4; // offset in bytes
- acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
- (void) dst;
- }
- inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd, const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
- leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int num_groups = dst->op_params[0];
- int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
- group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- #pragma message("TODO: generalize concat kernel for dim != 2")
- #pragma message(" https://github.com/ggerganov/llama.cpp/pull/7563")
- int dim = dst->op_params[0];
- GGML_ASSERT(dim == 2);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- for (int i3 = 0; i3 < dst->ne[3]; i3++) {
- concat_f32_sycl(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
- }
- (void) src1;
- (void) dst;
- }
- inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- const float sf0 = (float)dst->ne[0]/src0->ne[0];
- const float sf1 = (float)dst->ne[1]/src0->ne[1];
- const float sf2 = (float)dst->ne[2]/src0->ne[2];
- const float sf3 = (float)dst->ne[3]/src0->ne[3];
- upscale_f32_sycl(src0_dd, dst_dd, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
- dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3,
- main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- pad_f32_sycl(src0_dd, dst_dd,
- src0->ne[0], src0->ne[1], src0->ne[2],
- dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_mul_mat_q(
- ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const queue_ptr &stream) try {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
- const int64_t ne0 = dst->ne[0];
- const int64_t row_diff = row_high - row_low;
- int device_id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(device_id = get_current_device_id()));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
- const int64_t nrows_dst = device_id == ctx.device ? ne0 : row_diff;
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- ggml_mul_mat_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_1:
- ggml_mul_mat_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_0:
- ggml_mul_mat_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_1:
- ggml_mul_mat_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q8_0:
- ggml_mul_mat_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q2_K:
- ggml_mul_mat_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q3_K:
- ggml_mul_mat_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_K:
- ggml_mul_mat_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_K:
- ggml_mul_mat_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q6_K:
- ggml_mul_mat_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split) {
- int64_t min_compute_capability = INT_MAX;
- int64_t max_compute_capability = INT_MIN;
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- if (tensor_split[i] < (i + 1 < ggml_sycl_info().device_count ? tensor_split[i + 1] : 1.0f)) {
- if (min_compute_capability > ggml_sycl_info().devices[i].cc) {
- min_compute_capability = ggml_sycl_info().devices[i].cc;
- }
- if (max_compute_capability < ggml_sycl_info().devices[i].cc) {
- max_compute_capability = ggml_sycl_info().devices[i].cc;
- }
- }
- }
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- return max_compute_capability >= VER_GEN9 ? 128 : 64;
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ4_NL:
- return max_compute_capability >= VER_GEN9 ? 128 : 64;
- case GGML_TYPE_IQ3_S:
- return max_compute_capability >= VER_GEN9 ? 128 : 64;
- case GGML_TYPE_Q6_K:
- return 64;
- default:
- GGML_ASSERT(false);
- }
- }
- inline void ggml_sycl_op_mul_mat_vec_q(
- ggml_backend_sycl_context & ctx,
- const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const queue_ptr &stream) {
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the kernel writes into
- const int64_t nrows_dst = id == ctx.device ? ne00 : row_diff;
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_1:
- mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_0:
- mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_1:
- mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q8_0:
- mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q2_K:
- mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q3_K:
- mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_K:
- mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_K:
- mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q6_K:
- mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ1_S:
- mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ1_M:
- mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ2_XXS:
- mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ2_XS:
- mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ2_S:
- mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ3_XXS:
- mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ3_S:
- mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ4_NL:
- mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ4_XS:
- mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
- }
- inline void ggml_sycl_op_dequantize_mul_mat_vec(
- ggml_backend_sycl_context & ctx,
- const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const queue_ptr &stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
- #ifdef GGML_SYCL_F16
- ggml_sycl_pool_alloc<sycl::half> src1_dfloat_a(ctx.pool());
- sycl::half *src1_dfloat = nullptr; // dfloat == half
- bool src1_convert_f16 =
- src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
- src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
- src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
- if (src1_convert_f16) {
- src1_dfloat = src1_dfloat_a.alloc(ne00);
- const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
- GGML_ASSERT(to_fp16_sycl != nullptr);
- to_fp16_sycl(src1_ddf_i, src1_dfloat, ne00, stream);
- }
- #else
- const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
- #endif // GGML_SYCL_F16
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- dequantize_mul_mat_vec_q4_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_1:
- dequantize_mul_mat_vec_q4_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_0:
- dequantize_mul_mat_vec_q5_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_1:
- dequantize_mul_mat_vec_q5_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q8_0:
- dequantize_mul_mat_vec_q8_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q2_K:
- dequantize_mul_mat_vec_q2_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q3_K:
- dequantize_mul_mat_vec_q3_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_K:
- dequantize_mul_mat_vec_q4_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_K:
- dequantize_mul_mat_vec_q5_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q6_K:
- dequantize_mul_mat_vec_q6_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_F16:
- convert_mul_mat_vec_f16_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- default:
- printf("ggml_sycl_op_dequantize_mul_mat_vec unsupported GGML_TYPE %d\n", src0->type);
- GGML_ASSERT(false);
- break;
- }
- (void) src1;
- (void) dst;
- (void) src1_ddq_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
- }
- inline void ggml_sycl_op_mul_mat_sycl(
- ggml_backend_sycl_context & ctx,
- const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const queue_ptr &stream) try {
- GGML_ASSERT(src0_dd_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_dd_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t row_diff = row_high - row_low;
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // ldc == nrows of the matrix that cuBLAS writes into
- int ldc = id == ctx.device ? ne0 : row_diff;
- #ifdef GGML_SYCL_F16
- bool use_fp16 = true; // TODO(Yu) SYCL capability check
- #else
- bool use_fp16 = false;
- #endif
- if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- use_fp16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1] &&
- dst->op_params[0] == GGML_PREC_DEFAULT) {
- // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp16 path\n");
- ggml_sycl_pool_alloc<sycl::half> src0_as_f16(ctx.pool());
- if (src0->type != GGML_TYPE_F16) {
- const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src0->type);
- GGML_ASSERT(to_fp16_sycl != nullptr);
- size_t ne = row_diff*ne00;
- src0_as_f16.alloc(ne);
- to_fp16_sycl(src0_dd_i, src0_as_f16.get(), ne, stream);
- }
- const sycl::half *src0_ptr = src0->type == GGML_TYPE_F16
- ? (const sycl::half *)src0_dd_i
- : src0_as_f16.get();
- ggml_sycl_pool_alloc<sycl::half> src1_as_f16(ctx.pool());
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
- GGML_ASSERT(to_fp16_sycl != nullptr);
- size_t ne = src1_ncols*ne10;
- src1_as_f16.alloc(ne);
- to_fp16_sycl(src1_ddf_i, src1_as_f16.get(), ne, stream);
- }
- const sycl::half *src1_ptr = src1->type == GGML_TYPE_F16
- ? (const sycl::half *)src1->data + src1_padded_row_size
- : src1_as_f16.get();
- ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool(), row_diff * src1_ncols);
- const sycl::half alpha_f16 = 1.0f;
- const sycl::half beta_f16 = 0.0f;
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
- *stream, oneapi::mkl::transpose::trans,
- oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
- &alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
- src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
- dst_f16.get(), dpct::library_data_t::real_half, ldc,
- dpct::library_data_t::real_half)));
- const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
- to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
- }
- else {
- // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
- ggml_sycl_pool_alloc<float> src0_ddq_as_f32(ctx.pool());
- ggml_sycl_pool_alloc<float> src1_ddq_as_f32(ctx.pool());
- if (src0->type != GGML_TYPE_F32) {
- const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src0->type);
- GGML_ASSERT(to_fp32_sycl != nullptr);
- src0_ddq_as_f32.alloc(row_diff*ne00);
- to_fp32_sycl(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
- }
- if (src1->type != GGML_TYPE_F32) {
- const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src1->type);
- GGML_ASSERT(to_fp32_sycl != nullptr);
- src1_ddq_as_f32.alloc(src1_ncols*ne10);
- to_fp32_sycl(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
- }
- const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
- const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
- const float alpha = 1.0f;
- const float beta = 0.0f;
- SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
- *stream, oneapi::mkl::transpose::trans,
- oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
- dpct::get_value(&alpha, *stream), src0_ddf_i, ne00,
- src1_ddf1_i, ne10, dpct::get_value(&beta, *stream),
- dst_dd_i, ldc)));
- }
- (void) dst;
- (void) src1_ddq_i;
- (void) src1_padded_row_size;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- const ggml_tensor * src2 = dst->src[2];
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t nrows = ggml_nrows(src0);
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- //const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- // RoPE alteration for extended context
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- const float * freq_factors = nullptr;
- const int32_t * pos = nullptr;
- if ((mode & 1) == 0) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(src1->ne[0] == ne2);
- pos = (const int32_t *) src1_dd;
- }
- const bool is_neox = mode & 2;
- #pragma message("TODO: update rope NORM mode to match NEOX mode")
- #pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634")
- if (is_neox) {
- pos = (const int32_t *) src1_dd;
- if (src2 != nullptr) {
- freq_factors = (const float *) src2->data;
- }
- } else {
- GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox");
- }
- rope_corr_dims corr_dims;
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
- // compute
- if (is_neox) {
- if (src0->type == GGML_TYPE_F32) {
- rope_neox_sycl(
- (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, freq_factors, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd,
- ne00, n_dims, nrows, pos, freq_scale, ne01,
- freq_base, ext_factor, attn_factor, corr_dims,
- freq_factors, main_stream);
- } else {
- GGML_ASSERT(false);
- }
- } else {
- if (src0->type == GGML_TYPE_F32) {
- rope_sycl(
- (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00,
- nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream);
- } else {
- GGML_ASSERT(false);
- }
- }
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd, const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
- const int64_t IH = src0->ne[1];
- const int64_t IW = src0->ne[0];
- const int64_t N = dst->ne[3];
- const int64_t OC = dst->ne[2];
- const int64_t OH = dst->ne[1];
- const int64_t OW = dst->ne[0];
- const int parallel_elements = N * OC * OH * OW;
- const int num_blocks = (parallel_elements + SYCL_POOL2D_BLOCK_SIZE - 1) / SYCL_POOL2D_BLOCK_SIZE;
- sycl::range<3> block_nums(1, 1, num_blocks);
- main_stream->parallel_for(
- sycl::nd_range<3>(block_nums *
- sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- pool2d_nchw_kernel(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0,
- parallel_elements, src0_dd, dst_dd, op,
- item_ct1);
- });
- (void) src1;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_im2col(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
- const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
- const int64_t IC = src1->ne[is_2D ? 2 : 1];
- const int64_t IH = is_2D ? src1->ne[1] : 1;
- const int64_t IW = src1->ne[0];
- const int64_t KH = is_2D ? src0->ne[1] : 1;
- const int64_t KW = src0->ne[0];
- const int64_t OH = is_2D ? dst->ne[2] : 1;
- const int64_t OW = dst->ne[1];
- const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
- if (dst->type == GGML_TYPE_F16) {
- im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
- } else {
- im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
- }
- (void) src0;
- (void) src0_dd;
- }
- inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_I32);
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
- argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int nrows0 = ggml_nrows(src0);
- const int n_past = ((int32_t *) dst->op_params)[0];
- diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- #pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
- #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
- GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows_x = ggml_nrows(src0);
- const int64_t nrows_y = src0->ne[1];
- float scale = 1.0f;
- float max_bias = 0.0f;
- memcpy(&scale, dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, dst->op_params + 1, sizeof(float));
- soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
- nrows_x, nrows_y, scale, max_bias, main_stream);
- }
- inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float scale;
- memcpy(&scale, dst->op_params, sizeof(float));
- scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
- /*
- DPCT1010:87: SYCL uses exceptions to report errors and does not use the
- error codes. The call was replaced with 0. You need to rewrite this code.
- */
- SYCL_CHECK(0);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float min;
- float max;
- memcpy(&min, dst->op_params, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
- clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
- /*
- DPCT1010:88: SYCL uses exceptions to report errors and does not use the
- error codes. The call was replaced with 0. You need to rewrite this code.
- */
- SYCL_CHECK(0);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const ggml_sycl_op_flatten_t op) try {
- const int64_t nrows0 = ggml_nrows(src0);
- const bool use_src1 = src1 != nullptr;
- const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
- GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- // dd = data device
- float * src0_ddf = (float *) src0->data;
- float * src1_ddf = use_src1 ? (float *) src1->data : nullptr;
- float * dst_ddf = (float *) dst->data;
- ggml_sycl_pool_alloc<float> src0_f(ctx.pool());
- ggml_sycl_pool_alloc<float> src1_f(ctx.pool());
- ggml_sycl_pool_alloc<float> dst_f(ctx.pool());
- ggml_sycl_set_device(ctx.device);
- queue_ptr main_stream = ctx.stream();
- // GGML_SYCL_DEBUG("ctx.device=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
- // ctx.device, main_stream, src0_on_device, src1_on_device, dst_on_device);
- // do the computation
- op(ctx, src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
- // print_ggml_tensor("tensor", dst);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_set_peer_access(const int n_tokens, int main_device) {
- static bool peer_access_enabled = false;
- const bool enable_peer_access = n_tokens <= GGML_SYCL_PEER_MAX_BATCH_SIZE;
- if (peer_access_enabled == enable_peer_access) {
- return;
- }
- #ifdef NDEBUG
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- SYCL_CHECK(ggml_sycl_set_device(i));
- }
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- SYCL_CHECK(ggml_sycl_set_device(i));
- for (int id_other = 0; id_other < ggml_sycl_info().device_count; ++id_other) {
- if (i == id_other) {
- continue;
- }
- if (i != main_device && id_other != main_device) {
- continue;
- }
- // int can_access_peer;
- // SYCL_CHECK(syclDeviceCanAccessPeer(&can_access_peer, id, id_other));
- // if (can_access_peer) {
- // if (enable_peer_access) {
- // SYCL_CHECK(syclDeviceEnablePeerAccess(id_other, 0));
- // } else {
- // SYCL_CHECK(syclDeviceDisablePeerAccess(id_other));
- // }
- // }
- }
- }
- #endif // NDEBUG
- peer_access_enabled = enable_peer_access;
- }
- struct ggml_backend_sycl_split_buffer_type_context {
- std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
- };
- static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- ggml_sycl_op_mul_mat_t op,
- const bool convert_src1_to_q8_1) try {
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
- const int64_t nrows1 = ggml_nrows(src1);
- GGML_ASSERT(ne03 == ne13);
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
- GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
- const int64_t i02_divisor = ne12 / ne02;
- const size_t src0_ts = ggml_type_size(src0->type);
- const size_t src0_bs = ggml_blck_size(src0->type);
- const size_t q8_1_ts = sizeof(block_q8_1);
- const size_t q8_1_bs = QK8_1;
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool src0_is_contiguous = ggml_is_contiguous(src0);
- const bool src1_is_contiguous = ggml_is_contiguous(src1);
- int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
- const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
- GGML_ASSERT(!(split && ne02 > 1));
- GGML_ASSERT(!(split && ne03 > 1));
- GGML_ASSERT(!(split && ne02 < ne12));
- std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
- if (split) {
- // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
- // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
- ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context;
- tensor_split = buft_ctx->tensor_split;
- }
- struct dev_data {
- ggml_sycl_pool_alloc<char> src0_dd_alloc;
- ggml_sycl_pool_alloc<float> src1_ddf_alloc;
- ggml_sycl_pool_alloc<char> src1_ddq_alloc;
- ggml_sycl_pool_alloc<float> dst_dd_alloc;
- char *src0_dd = nullptr;
- float *src1_ddf = nullptr; // float
- char *src1_ddq = nullptr; // q8_1
- float *dst_dd = nullptr;
- int64_t row_low;
- int64_t row_high;
- };
- dev_data dev[GGML_SYCL_MAX_DEVICES];
- int used_devices = 0;
- queue_ptr main_stream = ctx.stream();
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- // by default, use all rows
- dev[i].row_low = 0;
- dev[i].row_high = ne01;
- // for multi GPU, get the row boundaries from tensor split
- // and round to mul_mat_q tile sizes
- if (split) {
- const int64_t rounding = get_row_rounding(src0->type, tensor_split);
- if (i != 0) {
- dev[i].row_low = ne01*tensor_split[i];
- if (dev[i].row_low < ne01) {
- dev[i].row_low -= dev[i].row_low % rounding;
- }
- }
- if (i != ggml_sycl_info().device_count - 1) {
- dev[i].row_high = ne01*tensor_split[i + 1];
- if (dev[i].row_high < ne01) {
- dev[i].row_high -= dev[i].row_high % rounding;
- }
- }
- }
- }
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
- continue;
- }
- used_devices++;
- const bool src1_on_device = i == ctx.device;
- const bool dst_on_device = i == ctx.device;
- ggml_sycl_set_device(i);
- queue_ptr stream = ctx.stream(i, 0);
- if (src0_is_contiguous) {
- dev[i].src0_dd = (char *) src0->data;
- } else {
- dev[i].src0_dd = dev[i].src0_dd_alloc.alloc(ctx.pool(i), ggml_nbytes(src0));
- }
- if (src1_on_device && src1_is_contiguous) {
- dev[i].src1_ddf = (float *) src1->data;
- } else {
- dev[i].src1_ddf = dev[i].src1_ddf_alloc.alloc(ctx.pool(i), ggml_nelements(src1));
- }
- if (convert_src1_to_q8_1) {
- dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(ctx.pool(i), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
- if (src1_on_device && src1_is_contiguous) {
- quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
- /*
- DPCT1010:90: SYCL uses exceptions to report errors and does not
- use the error codes. The call was replaced with 0. You need to
- rewrite this code.
- */
- SYCL_CHECK(0);
- }
- }
- if (dst_on_device) {
- dev[i].dst_dd = (float *) dst->data;
- } else {
- const size_t size_dst_ddf = split ? (dev[i].row_high - dev[i].row_low)*ne1 : ggml_nelements(dst);
- dev[i].dst_dd = dev[i].dst_dd_alloc.alloc(ctx.pool(i), size_dst_ddf);
- }
- }
- // if multiple devices are used they need to wait for the main device
- // here an event is recorded that signals that the main device has finished calculating the input data
- if (split && used_devices > 1) {
- ggml_sycl_set_device(ctx.device);
- /*
- DPCT1024:91: The original code returned the error code that was further
- consumed by the program logic. This original code was replaced with 0.
- You may need to rewrite the program logic consuming the error code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- *src0_extra->events[ctx.device][0] =
- ctx.stream()->ext_oneapi_submit_barrier()));
- }
- const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
- for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
- const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_SYCL_MAX_STREAMS : 0;
- const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
- continue;
- }
- const bool src1_on_device = i == ctx.device;
- const bool dst_on_device = i == ctx.device;
- const int64_t row_diff = dev[i].row_high - dev[i].row_low;
- ggml_sycl_set_device(i);
- queue_ptr stream = ctx.stream(i, is);
- // wait for main GPU data if necessary
- if (split && (i != ctx.device || is != 0)) {
- /*
- DPCT1009:163: SYCL uses exceptions to report errors and does not
- use the error codes. The original code was commented out and a
- warning string was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier(
- {*src0_extra->events[ctx.device][0]})));
- }
- for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
- const int64_t i03 = i0 / ne12;
- const int64_t i02 = i0 % ne12;
- const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
- // for split tensors the data begins at i0 == i0_offset_low
- char * src0_dd_i = dev[i].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
- float * src1_ddf_i = dev[i].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
- char * src1_ddq_i = dev[i].src1_ddq + src1_ddq_i_offset;
- float * dst_dd_i = dev[i].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
- // the main device memory buffer can be on VRAM scratch, with space for all partial results
- // in that case an offset on dst_ddf_i is needed
- if (i == ctx.device) {
- dst_dd_i += dev[i].row_low; // offset is 0 if no tensor split
- }
- // copy src0, src1 to device if necessary
- if (src1_is_contiguous) {
- if (i != ctx.device) {
- if (convert_src1_to_q8_1) {
- char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
- SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
- src1_ddq_i, src1_ddq_i_source,
- src1_ncols * src1_padded_col_size * q8_1_ts /
- q8_1_bs).wait()));
- } else {
- float * src1_ddf_i_source = (float *) src1_extra->data_device[ctx.device];
- src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
- SYCL_CHECK(CHECK_TRY_ERROR(dev2dev_memcpy(*stream, *main_stream,
- src1_ddf_i, src1_ddf_i_source,
- src1_ncols * ne10 * sizeof(float))));
- }
- }
- } else if (src1_on_device && !src1_is_contiguous) {
- SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
- src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
- } else {
- GGML_ASSERT(false);
- }
- if (convert_src1_to_q8_1 && !src1_is_contiguous) {
- quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
- /*
- DPCT1010:92: SYCL uses exceptions to report errors and does
- not use the error codes. The call was replaced with 0. You
- need to rewrite this code.
- */
- SYCL_CHECK(0);
- }
- if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
- SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[i].row_low, dev[i].row_high, stream));
- }
- if (src1->type == GGML_TYPE_F16) {
- src1_padded_col_size = (i0 * ne11 + src1_col_0) * ne10;
- }
- // do the computation
- SYCL_CHECK(CHECK_TRY_ERROR(op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
- dev[i].row_low, dev[i].row_high, src1_ncols, src1_padded_col_size, stream)));
- /*
- DPCT1010:93: SYCL uses exceptions to report errors and does not
- use the error codes. The call was replaced with 0. You need to
- rewrite this code.
- */
- SYCL_CHECK(0);
- // copy dst to host or other device if necessary
- if (!dst_on_device) {
- void * dst_off_device = dst->data;
- if (split) {
- // src0 = weight matrix is saved as a transposed matrix for better memory layout.
- // dst is NOT transposed.
- // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
- // Instead they need to be copied to the correct slice in ne0 = dst row index.
- // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0 + dev[i].row_low;
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
- dhf_dst_i, ne0 * sizeof(float), dst_dd_i,
- row_diff * sizeof(float), row_diff * sizeof(float),
- src1_ncols, dpct::device_to_device, *stream)));
- } else {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0;
- SYCL_CHECK(CHECK_TRY_ERROR(
- stream->memcpy(dhf_dst_i, dst_dd_i,
- src1_ncols * ne0 * sizeof(float)).wait()));
- }
- }
- // add event for the main device to wait on until other device is done
- if (split && (i != ctx.device || is != 0)) {
- /*
- DPCT1024:94: The original code returned the error code that
- was further consumed by the program logic. This original
- code was replaced with 0. You may need to rewrite the
- program logic consuming the error code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- *src0_extra->events[i][is] =
- stream->ext_oneapi_submit_barrier()));
- }
- }
- }
- }
- // main device waits for all other devices to be finished
- if (split && ggml_sycl_info().device_count > 1) {
- int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
- is_max = is_max <= GGML_SYCL_MAX_STREAMS ? is_max : GGML_SYCL_MAX_STREAMS;
- ggml_sycl_set_device(ctx.device);
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- if (dev[i].row_low == dev[i].row_high) {
- continue;
- }
- for (int64_t is = 0; is < is_max; ++is) {
- SYCL_CHECK(CHECK_TRY_ERROR(
- ctx.stream()->ext_oneapi_submit_barrier(
- {*src0_extra->events[i][is]})));
- }
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_repeat);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_get_rows);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_add(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_add);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_acc(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_acc);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_mul(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_mul);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_div(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_div);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_silu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_silu);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu_quick);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_tanh);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_relu);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardsigmoid);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardswish);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_leaky_relu);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sqr);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_norm);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_group_norm);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_concat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_concat);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_upscale);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_pad(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pad);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rms_norm);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_mul_mat_vec_p021(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst) try {
- GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
- GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne12 = src1->ne[2];
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
- queue_ptr main_stream = ctx.stream();
- void * src0_ddq = src0->data;
- float * src1_ddf = (float *) src1->data;
- float * dst_ddf = (float *) dst->data;
- ggml_mul_mat_p021_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_mul_mat_vec_nc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst) try {
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(!ggml_is_permuted(src0));
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t ne12 = src1->ne[2];
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
- queue_ptr main_stream = ctx.stream();
- void * src0_ddq = src0->data;
- float * src1_ddf = (float *) src1->data;
- float * dst_ddf = (float *) dst->data;
- const int64_t row_stride_x = nb01 / sizeof(sycl::half);
- const int64_t channel_stride_x = nb02 / sizeof(sycl::half);
- ggml_mul_mat_vec_nc_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void k_compute_batched_ptrs(const sycl::half *src0_as_f16,
- const sycl::half *src1_as_f16, char *dst,
- const void **ptrs_src, void **ptrs_dst,
- int64_t ne12, int64_t ne13, int64_t ne23,
- size_t nb02, size_t nb03, size_t nb12,
- size_t nb13, size_t nbd2, size_t nbd3,
- int64_t r2, int64_t r3,
- const sycl::nd_item<3> &item_ct1) {
- int64_t i13 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
- item_ct1.get_local_id(2);
- int64_t i12 = item_ct1.get_group(1) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
- int64_t i03 = i13 / r3;
- int64_t i02 = i12 / r2;
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
- }
- static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
- const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst) try {
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t ne_dst = ggml_nelements(dst);
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
- queue_ptr main_stream = ctx.stream();;
- bool no_mixed_dtypes = main_stream->get_backend() == sycl::backend::ext_oneapi_cuda ||
- main_stream->get_backend() == sycl::backend::ext_oneapi_hip;
- void * src0_ddq = src0->data;
- sycl::half *src0_as_f16 = (sycl::half *)src0_ddq;
- float * src1_ddf = (float *) src1->data;
- float * dst_ddf = (float *) dst->data;
- // convert src1 to fp16
- ggml_sycl_pool_alloc<sycl::half> src1_f16_alloc(ctx.pool());
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
- const int64_t ne_src1 = ggml_nelements(src1);
- src1_f16_alloc.alloc(ne_src1);
- GGML_ASSERT(to_fp16_sycl != nullptr);
- to_fp16_sycl(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
- }
- sycl::half *src1_f16 = src1->type == GGML_TYPE_F16 ? (sycl::half *)src1_ddf
- : src1_f16_alloc.get();
- ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool());
- char * dst_t;
- dpct::library_data_t cu_compute_type = dpct::library_data_t::real_float;
- dpct::library_data_t cu_data_type = dpct::library_data_t::real_float;
- if (no_mixed_dtypes) {
- cu_compute_type = dpct::library_data_t::real_half;
- cu_data_type = dpct::library_data_t::real_half;
- }
- // dst strides
- size_t nbd2 = dst->nb[2];
- size_t nbd3 = dst->nb[3];
- const float alpha_f32 = 1.0f;
- const float beta_f32 = 0.0f;
- const sycl::half alpha_f16 = 1.0f;
- const sycl::half beta_f16 = 0.0f;
- const void * alpha = &alpha_f32;
- const void * beta = &beta_f32;
- if (no_mixed_dtypes) {
- alpha = &alpha_f16;
- beta = &beta_f16;
- }
- // TODO: Renable (dst->op_params[0] =! GGML_PREC_DEFAULT) pathway
- // when oneMKL open source supports half, half, float, float: datatypes
- dst_t = (char *) dst_ddf;
- if (no_mixed_dtypes) {
- dst_t = (char *) dst_f16.alloc(ne_dst);
- nbd2 /= sizeof(float) / sizeof(sycl::half);
- nbd3 /= sizeof(float) / sizeof(sycl::half);
- }
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
- // there is no broadcast and src0, src1 are contiguous across dims 2, 3
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
- *main_stream, oneapi::mkl::transpose::trans,
- oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
- (const char *)src0_as_f16, dpct::library_data_t::real_half,
- nb01 / nb00, nb02 / nb00,
- (const char *)src1_f16, dpct::library_data_t::real_half,
- nb11 / nb10, nb12 / nb10, beta,
- (char *)dst_t, cu_data_type, ne01, nb2 / nb0,
- ne12 * ne13, cu_compute_type)));
- } else {
- const int ne23 = ne12*ne13;
- ggml_sycl_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
- ggml_sycl_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
- sycl::range<3> block_dims(1, ne12, ne13);
- /*
- DPCT1049:47: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(main_stream->get_device(),
- {sycl::aspect::fp16});
- main_stream->submit([&](sycl::handler &cgh) {
- const void **ptrs_src_get = ptrs_src.get();
- void **ptrs_dst_get = ptrs_dst.get();
- size_t nb12_scaled = src1->type == GGML_TYPE_F16 ? nb12 : nb12 / 2;
- size_t nb13_scaled = src1->type == GGML_TYPE_F16 ? nb13 : nb13 / 2;
- cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_compute_batched_ptrs(
- src0_as_f16, src1_f16,
- dst_t, ptrs_src_get,
- ptrs_dst_get, ne12, ne13, ne23,
- nb02, nb03, nb12_scaled, nb13_scaled,
- nbd2, nbd3, r2, r3, item_ct1);
- });
- });
- }
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
- *main_stream, oneapi::mkl::transpose::trans,
- oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
- (const void **)(ptrs_src.get() + 0 * ne23),
- dpct::library_data_t::real_half, nb01 / nb00,
- (const void **)(ptrs_src.get() + 1 * ne23),
- dpct::library_data_t::real_half, nb11 / nb10, beta,
- (void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
- cu_compute_type)));
- }
- if (no_mixed_dtypes) {
- const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
- to_fp32_sycl(dst_f16.get(), dst_ddf, ne_dst, main_stream);
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- inline bool ggml_sycl_supports_mmq(enum ggml_type type) {
- // TODO: accuracy issues in MMQ
- return false;
- }
- bool ggml_sycl_supports_dmmv(enum ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_F16:
- return true;
- default:
- return false;
- }
- }
- static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
- int64_t min_compute_capability = INT_MAX;
- if (split) {
- ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context;
- auto & tensor_split = buft_ctx->tensor_split;
- for (int id = 0; id < ggml_sycl_info().device_count; ++id) {
- // skip devices that are not going to do any work:
- if (tensor_split[id] >= (id + 1 < ggml_sycl_info().device_count ? tensor_split[id + 1] : 1.0f)) {
- continue;
- }
- if (min_compute_capability > ggml_sycl_info().devices[id].cc) {
- min_compute_capability = ggml_sycl_info().devices[id].cc;
- }
- }
- } else {
- min_compute_capability = ggml_sycl_info().devices[ctx.device].cc;
- }
- // check data types and tensor shapes for custom matrix multiplication kernels:
- bool use_dequantize_mul_mat_vec = ggml_sycl_supports_dmmv(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
- && src0->ne[0] % GGML_SYCL_DMMV_X == 0 && src1->ne[1] == 1;
- bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
- && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
- bool use_mul_mat_q = ggml_sycl_supports_mmq(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
- // mmvq and mmq need the __dp4a instruction which is available for gen12+
- // Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
- use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
- #ifdef SYCL_USE_XMX
- use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
- #endif // SYCL_USE_XMX
- if (!split && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
- // KQ single-batch
- ggml_sycl_mul_mat_vec_p021(ctx, src0, src1, dst);
- } else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
- // KQV single-batch
- ggml_sycl_mul_mat_vec_nc(ctx, src0, src1, dst);
- } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
- // KQ + KQV multi-batch
- ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
- } else if (use_dequantize_mul_mat_vec) {
- ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
- } else if (use_mul_mat_vec_q) {
- ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
- } else if (use_mul_mat_q) {
- ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
- } else {
- ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
- }
- }
- struct mmid_row_mapping {
- int32_t i1;
- int32_t i2;
- };
- __dpct_inline__ static void k_copy_src1_to_contiguous(
- const char *__restrict__ src1_original, char *__restrict__ src1_contiguous,
- int *__restrict__ cur_src1_row, mmid_row_mapping *__restrict__ row_mapping,
- const char *__restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
- int64_t ne11, int64_t ne10, size_t nb11, size_t nb12,
- const sycl::nd_item<3> &item_ct1, int &src1_row) {
- int32_t iid1 = item_ct1.get_group(2);
- int32_t id = item_ct1.get_group(1);
- const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
- if (row_id_i != i02) {
- return;
- }
- const int64_t i11 = id % ne11;
- const int64_t i12 = iid1;
- if (item_ct1.get_local_id(2) == 0) {
- src1_row =
- dpct::atomic_fetch_add<sycl::access::address_space::generic_space>(
- cur_src1_row, 1);
- row_mapping[src1_row] = {id, iid1};
- }
- /*
- DPCT1065:194: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better
- performance if there is no access to global memory.
- */
- item_ct1.barrier();
- const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
- float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
- #pragma unroll
- for (int i = item_ct1.get_local_id(2); i < ne10;
- i += item_ct1.get_local_range(2)) {
- src1_row_contiguous[i] = src1_row_original[i];
- }
- }
- __dpct_inline__ static void k_copy_dst_from_contiguous(
- char *__restrict__ dst_original, const char *__restrict__ dst_contiguous,
- const mmid_row_mapping *__restrict__ row_mapping, int64_t ne0, size_t nb1,
- size_t nb2, const sycl::nd_item<3> &item_ct1) {
- int32_t i = item_ct1.get_group(2);
- const int32_t i1 = row_mapping[i].i1;
- const int32_t i2 = row_mapping[i].i2;
- const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
- float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
- #pragma unroll
- for (int j = item_ct1.get_local_id(2); j < ne0;
- j += item_ct1.get_local_range(2)) {
- dst_row_original[j] = dst_row_contiguous[j];
- }
- }
- static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst) try {
- GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer) && "mul_mat_id does not support split buffers");
- const ggml_tensor *ids = dst->src[2];
- GGML_TENSOR_BINARY_OP_LOCALS
- const queue_ptr stream = ctx.stream();
- const int64_t n_as = ne02;
- const int64_t n_ids = ids->ne[0];
- std::vector<char> ids_host(ggml_nbytes(ids));
- const char * ids_dev = (const char *) ids->data;
- SYCL_CHECK(CHECK_TRY_ERROR(
- stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
- SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
- const ggml_tensor_extra_gpu *src0_extra =
- (const ggml_tensor_extra_gpu *)src0->extra;
- const ggml_tensor_extra_gpu *src1_extra =
- (const ggml_tensor_extra_gpu *)src1->extra;
- const ggml_tensor_extra_gpu *dst_extra =
- (const ggml_tensor_extra_gpu *)dst->extra;
- ggml_tensor_extra_gpu src0_row_extra;
- ggml_tensor_extra_gpu src1_row_extra;
- ggml_tensor_extra_gpu dst_row_extra;
- ggml_tensor src0_row = *src0;
- ggml_tensor src1_row = *src1;
- ggml_tensor dst_row = *dst;
- src1_row.backend = GGML_BACKEND_TYPE_GPU;
- dst_row.backend = GGML_BACKEND_TYPE_GPU;
- src0_row.extra = &src0_row_extra;
- src1_row.extra = &src1_row_extra;
- dst_row.extra = &dst_row_extra;
- char *src0_original = src1->backend == GGML_BACKEND_TYPE_CPU
- ? (char *)src0->data
- : (char *)src0_extra->data_device[ctx.device];
- char *src1_original = src1->backend == GGML_BACKEND_TYPE_CPU
- ? (char *)src1->data
- : (char *)src1_extra->data_device[ctx.device];
- char *dst_original = dst->backend == GGML_BACKEND_TYPE_CPU
- ? (char *)dst->data
- : (char *)dst_extra->data_device[ctx.device];
- src0_row.ne[2] = 1;
- src0_row.ne[3] = 1;
- src0_row.nb[3] = nb02;
- src1_row.ne[1] = 1;
- src1_row.ne[2] = 1;
- src1_row.ne[3] = 1;
- src1_row.nb[2] = nb11;
- src1_row.nb[3] = nb11;
- dst_row.ne[1] = 1;
- dst_row.ne[2] = 1;
- dst_row.ne[3] = 1;
- dst_row.nb[2] = nb1;
- dst_row.nb[3] = nb1;
- if (ne12 == 1) {
- for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
- for (int64_t id = 0; id < n_ids; id++) {
- const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
- GGML_ASSERT(i02 >= 0 && i02 < n_as);
- const int64_t i11 = id % ne11;
- const int64_t i12 = iid1;
- const int64_t i1 = id;
- const int64_t i2 = i12;
- src0_row_extra.data_device[ctx.device] =
- src0_original + i02*nb02;
- src1_row_extra.data_device[ctx.device] =
- src1_original + + i11*nb11 + i12*nb12;
- dst_row_extra.data_device[ctx.device] =
- dst_original + i1*nb1 + i2*nb2;
- ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
- }
- }
- } else {
- ggml_sycl_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
- ggml_sycl_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
- src1_row_extra.data_device[ctx.device] = src1_contiguous.get();
- dst_row_extra.data_device[ctx.device] = dst_contiguous.get();
- for (int64_t i02 = 0; i02 < n_as; i02++) {
- int64_t num_src1_rows = 0;
- for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
- for (int64_t id = 0; id < n_ids; id++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
- GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
- if (row_id_i != i02) {
- continue;
- }
- num_src1_rows++;
- }
- }
- if (num_src1_rows == 0) {
- continue;
- }
- ggml_sycl_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
- ggml_sycl_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
- SYCL_CHECK(CHECK_TRY_ERROR(
- stream->memset(dev_cur_src1_row.get(), 0, sizeof(int))));
- {
- sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne10, 768u));
- sycl::range<3> grid_dims(1, n_ids, ids->ne[1]);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 0> src1_row_acc(cgh);
- char *__restrict src1_contiguous_get =
- src1_contiguous.get();
- int *__restrict dev_cur_src1_row_get =
- dev_cur_src1_row.get();
- mmid_row_mapping *__restrict dev_row_mapping_get =
- dev_row_mapping.get();
- size_t ids_nb_ct6 = ids->nb[1];
- size_t ids_nb_ct7 = ids->nb[0];
- cgh.parallel_for(
- sycl::nd_range<3>(grid_dims * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_copy_src1_to_contiguous(
- src1_original, src1_contiguous_get,
- dev_cur_src1_row_get,
- dev_row_mapping_get, ids_dev, i02,
- ids_nb_ct6, ids_nb_ct7, ne11, ne10, nb11, nb12,
- item_ct1, src1_row_acc);
- });
- });
- }
- src0_row_extra.data_device[ctx.device] = src0_original + i02*nb02;
- GGML_ASSERT(nb11 == sizeof(float)*ne10);
- GGML_ASSERT(nb1 == sizeof(float)*ne0);
- src1_row.ne[1] = num_src1_rows;
- src1_row.nb[1] = nb11;
- src1_row.nb[2] = num_src1_rows*nb11;
- src1_row.nb[3] = num_src1_rows*nb11;
- dst_row.ne[1] = num_src1_rows;
- dst_row.nb[1] = nb1;
- dst_row.nb[2] = num_src1_rows*nb1;
- dst_row.nb[3] = num_src1_rows*nb1;
- ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
- {
- sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne0, 768u));
- sycl::range<3> grid_dims(1, 1, num_src1_rows);
- stream->submit([&](sycl::handler &cgh) {
- const char *__restrict dst_contiguous_get =
- dst_contiguous.get();
- const mmid_row_mapping *__restrict dev_row_mapping_get =
- dev_row_mapping.get();
- cgh.parallel_for(
- sycl::nd_range<3>(grid_dims * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_copy_dst_from_contiguous(dst_original,
- dst_contiguous_get,
- dev_row_mapping_get,
- ne0, nb1, nb2, item_ct1);
- });
- });
- }
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_scale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_scale);
- }
- static void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_clamp);
- }
- static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst) try {
- const int64_t ne = ggml_nelements(src0);
- GGML_ASSERT(ne == ggml_nelements(src1));
- GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
- GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
- GGML_TENSOR_BINARY_OP_LOCALS;
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
- queue_ptr main_stream = ctx.stream();
- char * src0_ddc = (char *) src0->data;
- char * src1_ddc = (char *) src1->data;
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
- ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
- ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
- ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f16_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
- ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
- ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else {
- fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
- ggml_type_name(src0->type), ggml_type_name(src1->type));
- GGML_ASSERT(false);
- }
- (void) dst;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_dup(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- // TODO: why do we pass dst as src1 here?
- ggml_sycl_cpy(ctx, src0, dst, nullptr);
- (void) src1;
- }
- static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_diag_mask_inf);
- }
- static void ggml_sycl_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_soft_max);
- }
- static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rope);
- }
- static void ggml_sycl_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pool2d);
- }
- static void ggml_sycl_im2col(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_im2col);
- }
- static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sum_rows);
- }
- static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_argsort);
- }
- static void ggml_sycl_nop(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- (void) src0;
- (void) src1;
- (void) dst;
- }
- static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
- }
- void ggml_sycl_set_main_device(const int main_device) try {
- if (dpct::get_current_device_id() == main_device) return;
- check_allow_gpu_index(main_device);
- dpct::select_device(main_device);
- if (g_ggml_sycl_debug) {
- dpct::device_info prop;
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
- prop, dpct::dev_mgr::instance().get_device(main_device))));
- fprintf(stderr, "Using device %d (%s) as main device\n",
- main_device, prop.get_name());
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tensor * tensor) {
- if (!g_sycl_loaded) return false;
- ggml_sycl_func_t func;
- switch (tensor->op) {
- case GGML_OP_REPEAT:
- func = ggml_sycl_repeat;
- break;
- case GGML_OP_GET_ROWS:
- func = ggml_sycl_get_rows;
- break;
- case GGML_OP_DUP:
- func = ggml_sycl_dup;
- break;
- case GGML_OP_ADD:
- func = ggml_sycl_add;
- break;
- case GGML_OP_ACC:
- func = ggml_sycl_acc;
- break;
- case GGML_OP_MUL:
- func = ggml_sycl_mul;
- break;
- case GGML_OP_DIV:
- func = ggml_sycl_div;
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_GELU:
- func = ggml_sycl_gelu;
- break;
- case GGML_UNARY_OP_SILU:
- func = ggml_sycl_silu;
- break;
- case GGML_UNARY_OP_GELU_QUICK:
- func = ggml_sycl_gelu_quick;
- break;
- case GGML_UNARY_OP_TANH:
- func = ggml_sycl_tanh;
- break;
- case GGML_UNARY_OP_RELU:
- func = ggml_sycl_relu;
- break;
- case GGML_UNARY_OP_HARDSIGMOID:
- func = ggml_sycl_hardsigmoid;
- break;
- case GGML_UNARY_OP_HARDSWISH:
- func = ggml_sycl_hardswish;
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_NORM:
- func = ggml_sycl_norm;
- break;
- case GGML_OP_GROUP_NORM:
- func = ggml_sycl_group_norm;
- break;
- case GGML_OP_CONCAT:
- func = ggml_sycl_concat;
- break;
- case GGML_OP_UPSCALE:
- func = ggml_sycl_upscale;
- break;
- case GGML_OP_PAD:
- func = ggml_sycl_pad;
- break;
- case GGML_OP_LEAKY_RELU:
- func = ggml_sycl_leaky_relu;
- break;
- case GGML_OP_RMS_NORM:
- func = ggml_sycl_rms_norm;
- break;
- case GGML_OP_MUL_MAT:
- if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
- return false;
- }
- func = ggml_sycl_mul_mat;
- break;
- case GGML_OP_MUL_MAT_ID:
- if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
- return false;
- }
- func = ggml_sycl_mul_mat_id;
- break;
- case GGML_OP_SCALE:
- func = ggml_sycl_scale;
- break;
- case GGML_OP_SQR:
- func = ggml_sycl_sqr;
- break;
- case GGML_OP_CLAMP:
- func = ggml_sycl_clamp;
- break;
- case GGML_OP_CPY:
- func = ggml_sycl_cpy;
- break;
- case GGML_OP_CONT:
- func = ggml_sycl_dup;
- break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- func = ggml_sycl_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- func = ggml_sycl_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- func = ggml_sycl_soft_max;
- break;
- case GGML_OP_ROPE:
- func = ggml_sycl_rope;
- break;
- case GGML_OP_IM2COL:
- func = ggml_sycl_im2col;
- break;
- case GGML_OP_POOL_2D:
- func = ggml_sycl_pool2d;
- break;
- case GGML_OP_SUM_ROWS:
- func = ggml_sycl_sum_rows;
- break;
- case GGML_OP_ARGSORT:
- func = ggml_sycl_argsort;
- break;
- default:
- return false;
- }
- if (tensor->src[0] != nullptr && ggml_backend_buffer_is_sycl_split(tensor->src[0]->buffer)) {
- ggml_sycl_set_peer_access(tensor->src[1]->ne[1], ctx.device);
- }
- func(ctx, tensor->src[0], tensor->src[1], tensor);
- return true;
- }
- GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
- GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_gpu_list\n");
- for(int i=0;i<max_len;i++) id_list[i] = -1;
- for (int i=0;i< ggml_sycl_info().device_count;i++){
- if (i>=max_len) break;
- id_list[i] = i;
- }
- return;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- int ggml_sycl_get_device_count() try {
- int device_count;
- if (CHECK_TRY_ERROR(device_count =
- dpct::dev_mgr::instance().device_count()) != 0) {
- return 0;
- }
- return device_count;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
- size_t description_size) try {
- GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_device_description\n");
- dpct::device_info prop;
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
- prop, dpct::dev_mgr::instance().get_device(device))));
- snprintf(description, description_size, "%s", prop.get_name());
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free,
- size_t *total) try {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_memory\n");
- ggml_sycl_set_device(device);
- /*
- DPCT1009:218: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string was
- inserted. You need to rewrite this code.
- */
- /*
- DPCT1106:217: 'cudaMemGetInfo' was migrated with the Intel extensions for
- device information which may not be supported by all compilers or runtimes.
- You may need to adjust the code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::dev_mgr::instance().get_device(device).get_memory_info(*free, *total)));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- ////////////////////////////////////////////////////////////////////////////////
- // backend interface
- #define UNUSED GGML_UNUSED
- // sycl buffer
- struct ggml_backend_sycl_buffer_context {
- int device;
- void * dev_ptr = nullptr;
- queue_ptr stream;
- std::string name;
- ggml_backend_sycl_buffer_context(int device, void * dev_ptr, queue_ptr stream) :
- device(device), dev_ptr(dev_ptr), stream(stream) {
- check_allow_gpu_index(device);
- name = (GGML_SYCL_NAME + std::to_string(device));
- }
- ~ggml_backend_sycl_buffer_context() {
- if (dev_ptr != nullptr) {
- ggml_sycl_set_device(device);
- SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(dev_ptr, *stream)));
- }
- }
- };
- GGML_CALL static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
- ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
- return ctx->name.c_str();
- }
- GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name;
- }
- static void
- ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
- ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
- ggml_sycl_set_device(ctx->device);
- delete ctx;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
- ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
- return ctx->dev_ptr;
- }
- GGML_CALL static void
- ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
- ggml_tensor *tensor) try {
- ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
- if (tensor->view_src != NULL && tensor->view_offs == 0) {
- assert(tensor->view_src->buffer->buft == buffer->buft);
- tensor->backend = tensor->view_src->backend;
- tensor->extra = tensor->view_src->extra;
- return;
- }
- if (ggml_is_quantized(tensor->type)) {
- // initialize padding to 0 to avoid possible NaN values
- size_t original_size = ggml_nbytes(tensor);
- size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
- if (padded_size > original_size && tensor->view_src == nullptr) {
- SYCL_CHECK(CHECK_TRY_ERROR(ctx->stream->memset(
- (char *)tensor->data + original_size, 0,
- padded_size - original_size).wait()));
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
- ggml_tensor *tensor,
- const void *data, size_t offset,
- size_t size) try {
- ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
- ggml_sycl_set_device(ctx->device);
- auto stream = &(dpct::dev_mgr::instance().get_device(ctx->device).default_queue());
- SYCL_CHECK(
- CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw()));
- char* host_buf = (char*)malloc(size);
- memcpy(host_buf, data, size);
- SYCL_CHECK(
- CHECK_TRY_ERROR((*stream).memcpy((char *)tensor->data + offset, host_buf, size)
- .wait()));
- free(host_buf);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
- const ggml_tensor *tensor,
- void *data, size_t offset,
- size_t size) try {
- ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
- ggml_sycl_set_device(ctx->device);
- auto stream = dpct::dev_mgr::instance().get_device(ctx->device).default_queue();
- SYCL_CHECK(CHECK_TRY_ERROR(
- stream.memcpy(data, (const char *)tensor->data + offset, size)
- .wait()));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static bool
- ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
- const ggml_tensor *src,
- ggml_tensor *dst) try {
- if (ggml_backend_buffer_is_sycl(src->buffer)) {
- ggml_backend_sycl_buffer_context * src_ctx = (ggml_backend_sycl_buffer_context *)src->buffer->context;
- ggml_backend_sycl_buffer_context * dst_ctx = (ggml_backend_sycl_buffer_context *)dst->buffer->context;
- ggml_sycl_set_device(src_ctx->device);
- /*
- DPCT1009:198: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::dev_mgr::instance().get_device(src_ctx->device).queues_wait_and_throw()));
- ggml_sycl_set_device(dst_ctx->device);
- /*
- DPCT1009:199: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
- /*
- DPCT1009:200: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- queue_ptr stream_dst = dst_ctx->stream;
- queue_ptr stream_src = src_ctx->stream;
- size_t size = ggml_nbytes(src);
- //todo. it's dirty solutino to walkaroud known issue:device2device cross GPUs.
- dev2dev_memcpy(*stream_dst, *stream_src, dst->data, src->data, size);
- //todo, it's known issue:error in device2device cross GPUs. reused when the issue is fixed. DON"T remove
- #if 0
- SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy(
- (char *)dst->data, (const char *)src->data, size).wait()));
- /*
- DPCT1009:201: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
- #endif
- return true;
- }
- return false;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer,
- uint8_t value) try {
- ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
- ggml_sycl_set_device(ctx->device);
- queue_ptr stream = ctx->stream;
- SYCL_CHECK(
- CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
- SYCL_CHECK(CHECK_TRY_ERROR((*stream)
- .memset(ctx->dev_ptr, value, buffer->size)
- .wait()));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static struct ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
- /* .get_name = */ ggml_backend_sycl_buffer_get_name,
- /* .free_buffer = */ ggml_backend_sycl_buffer_free_buffer,
- /* .get_base = */ ggml_backend_sycl_buffer_get_base,
- /* .init_tensor = */ ggml_backend_sycl_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_sycl_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_sycl_buffer_get_tensor,
- /* .cpy_tensor = */ ggml_backend_sycl_buffer_cpy_tensor,
- /* .clear = */ ggml_backend_sycl_buffer_clear,
- /* .reset = */ NULL,
- };
- // sycl buffer type
- struct ggml_backend_sycl_buffer_type_context {
- int device;
- std::string name;
- // each buffer type has its own stream
- queue_ptr stream = nullptr;
- };
- GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
- ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
- return ctx->name.c_str();
- }
- GGML_CALL static ggml_backend_buffer_t
- ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
- size_t size) try {
- ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
- ggml_sycl_set_device(buft_ctx->device);
- const queue_ptr stream = buft_ctx->stream;
- size = std::max(size, (size_t)1); // syclMalloc returns null for size 0
- void * dev_ptr;
- SYCL_CHECK(CHECK_TRY_ERROR(dev_ptr = (void *)sycl::malloc_device(
- size, *stream)));
- ggml_backend_sycl_buffer_context * ctx = new ggml_backend_sycl_buffer_context(buft_ctx->device, dev_ptr, buft_ctx->stream);
- return ggml_backend_buffer_init(buft, ggml_backend_sycl_buffer_interface, ctx, size);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
- UNUSED(buft);
- }
- static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
- return dpct::get_current_device().get_max_mem_alloc_size();
- UNUSED(buft);
- }
- GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- size_t size = ggml_nbytes(tensor);
- int64_t ne0 = tensor->ne[0];
- if (ggml_is_quantized(tensor->type)) {
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
- return size;
- UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
- /* .get_name = */ ggml_backend_sycl_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_sycl_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_sycl_buffer_type_get_alignment,
- /* .get_max_size = */ ggml_backend_sycl_buffer_type_get_max_size,
- /* .get_alloc_size = */ ggml_backend_sycl_buffer_type_get_alloc_size,
- /* .is_host = */ nullptr,
- };
- ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
- static std::mutex mutex;
- std::lock_guard<std::mutex> lock(mutex);
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
- if (device>=ggml_sycl_info().device_count or device<0) {
- printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
- device, ggml_sycl_info().device_count-1);
- GGML_ASSERT(device<ggml_sycl_info().device_count);
- }
- static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
- static bool ggml_backend_sycl_buffer_type_initialized = false;
- if (!ggml_backend_sycl_buffer_type_initialized) {
- for (int i = 0; i < ggml_sycl_info().device_count; i++) {
- auto & device_i = dpct::dev_mgr::instance().get_device(i);
- queue_ptr stream = &(device_i.default_queue());
- ggml_backend_sycl_buffer_types[i] = {
- /* .iface = */ ggml_backend_sycl_buffer_type_interface,
- /* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), stream},
- };
- }
- ggml_backend_sycl_buffer_type_initialized = true;
- }
- return &ggml_backend_sycl_buffer_types[device];
- }
- ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(ggml_backend_sycl_context * ctx) {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
- int device = ctx->device;
- if (device>=ggml_sycl_info().device_count or device<0) {
- printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
- device, ggml_sycl_info().device_count-1);
- GGML_ASSERT(device<ggml_sycl_info().device_count);
- }
- static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
- static bool ggml_backend_sycl_buffer_type_initialized = false;
- if (!ggml_backend_sycl_buffer_type_initialized) {
- for (int i = 0; i < ggml_sycl_info().device_count; i++) {
- ggml_backend_sycl_buffer_types[i] = {
- /* .iface = */ ggml_backend_sycl_buffer_type_interface,
- /* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), ctx->stream(i, 0)},
- };
- }
- ggml_backend_sycl_buffer_type_initialized = true;
- }
- return &ggml_backend_sycl_buffer_types[device];
- }
- // sycl split buffer type
- static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split, int id) {
- const int64_t nrows = ggml_nrows(tensor);
- const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
- *row_low = id == 0 ? 0 : nrows*tensor_split[id];
- *row_low -= *row_low % rounding;
- if (id == ggml_sycl_info().device_count - 1) {
- *row_high = nrows;
- } else {
- *row_high = nrows*tensor_split[id + 1];
- *row_high -= *row_high % rounding;
- }
- }
- struct ggml_backend_sycl_split_buffer_context {
- ~ggml_backend_sycl_split_buffer_context() try {
- for (ggml_tensor_extra_gpu * extra : tensor_extras) {
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- for (int64_t is = 0; is < GGML_SYCL_MAX_STREAMS; ++is) {
- if (extra->events[i][is] != nullptr) {
- /*
- DPCT1009:206: SYCL uses exceptions to report errors and
- does not use the error codes. The original code was
- commented out and a warning string was inserted. You
- need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::destroy_event(extra->events[i][is])));
- }
- }
- if (extra->data_device[i] != nullptr) {
- /*
- DPCT1009:207: SYCL uses exceptions to report errors and does
- not use the error codes. The original code was commented out
- and a warning string was inserted. You need to rewrite this
- code.
- */
- ggml_sycl_set_device(i);
- SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(
- extra->data_device[i], *(streams[i]))));
- }
- }
- delete extra;
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- std::vector<ggml_tensor_extra_gpu *> tensor_extras;
- std::vector<queue_ptr> streams;
- };
- GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) {
- return GGML_SYCL_NAME "_Split";
- UNUSED(buffer);
- }
- static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name;
- }
- GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
- delete ctx;
- }
- GGML_CALL static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
- // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
- return (void *)0x1000;
- UNUSED(buffer);
- }
- GGML_CALL static void
- ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
- ggml_tensor *tensor) try {
- GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
- ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
- ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
- ctx->tensor_extras.push_back(extra);
- ctx->streams.push_back(&(dpct::get_current_device().default_queue()));
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- // FIXME: do not crash if cudaMalloc fails
- // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
- ggml_sycl_set_device(i);
- const queue_ptr stream = ctx->streams[i];
- char * buf;
- /*
- DPCT1009:208: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(buf = (char *)sycl::malloc_device(
- size, *stream)));
- // set padding to 0 to avoid possible NaN values
- if (size > original_size) {
- /*
- DPCT1009:209: SYCL uses exceptions to report errors and does not use
- the error codes. The original code was commented out and a warning
- string was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- (*stream)
- .memset(buf + original_size, 0, size - original_size)
- .wait()));
- }
- extra->data_device[i] = buf;
- for (int64_t is = 0; is < GGML_SYCL_MAX_STREAMS; ++is) {
- /*
- DPCT1009:210: SYCL uses exceptions to report errors and does not use
- the error codes. The original code was commented out and a warning
- string was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(
- CHECK_TRY_ERROR(extra->events[i][is] = new sycl::event()));
- }
- }
- tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
- tensor->extra = extra;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static void
- ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer,
- ggml_tensor *tensor, const void *data,
- size_t offset, size_t size) try {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
- ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
- ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- const char * buf_host = (const char *)data + offset_split;
- /*
- DPCT1009:211: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- ggml_sycl_set_device(i);
- const queue_ptr stream = ctx->streams[i];
- SYCL_CHECK(CHECK_TRY_ERROR(
- (*stream)
- .memcpy(extra->data_device[i], buf_host, original_size)
- .wait()));
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static void
- ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer,
- const ggml_tensor *tensor, void *data,
- size_t offset, size_t size) try {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
- ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
- ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- char * buf_host = (char *)data + offset_split;
- /*
- DPCT1009:212: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- ggml_sycl_set_device(i);
- const queue_ptr stream = ctx->streams[i];
- SYCL_CHECK(CHECK_TRY_ERROR(
- (*stream)
- .memcpy(buf_host, extra->data_device[i], original_size)
- .wait()));
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- UNUSED(buffer);
- UNUSED(value);
- }
- static struct ggml_backend_buffer_i ggml_backend_sycl_split_buffer_interface = {
- /* .get_name = */ ggml_backend_sycl_split_buffer_get_name,
- /* .free_buffer = */ ggml_backend_sycl_split_buffer_free_buffer,
- /* .get_base = */ ggml_backend_sycl_split_buffer_get_base,
- /* .init_tensor = */ ggml_backend_sycl_split_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_sycl_split_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_sycl_split_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_sycl_split_buffer_clear,
- /* .reset = */ NULL,
- };
- GGML_CALL static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_SYCL_NAME "_Split";
- UNUSED(buft);
- }
- GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
- // instead, we allocate them for each tensor separately in init_tensor
- // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
- // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
- ggml_backend_sycl_split_buffer_context * ctx = new ggml_backend_sycl_split_buffer_context();
- return ggml_backend_buffer_init(buft, ggml_backend_sycl_split_buffer_interface, ctx, size);
- }
- GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
- UNUSED(buft);
- }
- GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- ggml_backend_sycl_split_buffer_type_context * ctx = (ggml_backend_sycl_split_buffer_type_context *)buft->context;
- size_t total_size = 0;
- const int64_t ne0 = tensor->ne[0];
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, i);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- total_size += ggml_nbytes_split(tensor, nrows_split);
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
- return total_size;
- }
- GGML_CALL static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
- return false;
- UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface = {
- /* .get_name = */ ggml_backend_sycl_split_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_sycl_split_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_sycl_split_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_sycl_split_buffer_type_get_alloc_size,
- /* .is_host = */ ggml_backend_sycl_split_buffer_type_is_host,
- };
- GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
- static std::mutex mutex;
- std::lock_guard<std::mutex> lock(mutex);
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_split_buffer_type\n");
- ggml_check_sycl();
- // FIXME: this is not thread safe
- static std::map<std::array<float, GGML_SYCL_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
- std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split_arr = {};
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_SYCL_MAX_DEVICES, [](float x) { return x == 0.0f; });
- if (all_zero) {
- tensor_split_arr = ggml_sycl_info().default_tensor_split;
- } else {
- float split_sum = 0.0f;
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- tensor_split_arr[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
- tensor_split_arr[i] /= split_sum;
- }
- }
- auto it = buft_map.find(tensor_split_arr);
- if (it != buft_map.end()) {
- return &it->second;
- }
- struct ggml_backend_buffer_type buft {
- /* .iface = */ ggml_backend_sycl_split_buffer_type_interface,
- /* .context = */ new ggml_backend_sycl_split_buffer_type_context{tensor_split_arr},
- };
- auto result = buft_map.emplace(tensor_split_arr, buft);
- return &result.first->second;
- }
- // host buffer type
- GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_SYCL_NAME "_Host";
- UNUSED(buft);
- }
- GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
- return GGML_SYCL_NAME "_Host";
- UNUSED(buffer);
- }
- static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_sycl_host_free(buffer->context);
- }
- static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- void * ptr = ggml_sycl_host_malloc(size);
- if (ptr == nullptr) {
- // fallback to cpu buffer
- return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
- }
- // FIXME: this is a hack to avoid having to implement a new buffer type
- ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
- buffer->buft = buft;
- buffer->iface.get_name = ggml_backend_sycl_host_buffer_name;
- buffer->iface.free_buffer = ggml_backend_sycl_host_buffer_free_buffer;
- return buffer;
- }
- ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_host_buffer_type\n");
- static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_type_host = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_sycl_host_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_sycl_host_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
- /* .get_max_size = */ NULL, // TODO: return device.maxBufferLength
- /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
- /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
- },
- /* .context = */ nullptr,
- };
- return &ggml_backend_sycl_buffer_type_host;
- }
- // backend
- GGML_CALL static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- return sycl_ctx->name.c_str();
- }
- GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- delete sycl_ctx;
- delete backend;
- }
- GGML_CALL static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- return ggml_backend_sycl_buffer_type(sycl_ctx->device);
- }
- GGML_CALL static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
- ggml_tensor *tensor,
- const void *data, size_t offset,
- size_t size) try {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
- GGML_ASSERT(buf->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
- const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
- SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
- (char *)tensor->data + offset, data, size).wait()));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
- const ggml_tensor *tensor,
- void *data, size_t offset,
- size_t size) try {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
- GGML_ASSERT(buf->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
- const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
- SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
- data, (const char *)tensor->data + offset, size).wait()));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
- const ggml_tensor *src,
- ggml_tensor *dst) try {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) {
- /*
- DPCT1009:215: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
- SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
- dst->data, src->data, ggml_nbytes(dst)).wait()));
- return true;
- }
- return false;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
- SYCL_CHECK(CHECK_TRY_ERROR((stream)->wait()));
- UNUSED(backend);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- ggml_sycl_set_main_device(sycl_ctx->device);
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_tensor * node = cgraph->nodes[i];
- if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
- continue;
- }
- #ifndef NDEBUG
- assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j] != nullptr) {
- assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
- }
- }
- #endif
- bool ok = ggml_sycl_compute_forward(*sycl_ctx, node);
- if (!ok) {
- fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
- }
- GGML_ASSERT(ok);
- }
- return GGML_STATUS_SUCCESS;
- }
- GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
- switch (op->op) {
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_TANH:
- return ggml_is_contiguous(op->src[0]);
- default:
- return false;
- }
- break;
- case GGML_OP_MUL_MAT:
- case GGML_OP_MUL_MAT_ID:
- {
- struct ggml_tensor * a;
- struct ggml_tensor * b;
- if (op->op == GGML_OP_MUL_MAT) {
- a = op->src[0];
- b = op->src[1];
- } else {
- a = op->src[2];
- b = op->src[1];
- }
- if (a->ne[3] != b->ne[3]) {
- return false;
- }
- ggml_type a_type = a->type;
- if (a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ4_XS ||
- a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ3_S ||
- a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ2_S ||
- a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ1_M
- ) {
- if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
- return false;
- }
- }
- return true;
- } break;
- case GGML_OP_GET_ROWS:
- {
- switch (op->src[0]->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return true;
- default:
- return false;
- }
- } break;
- case GGML_OP_CPY:
- {
- ggml_type src0_type = op->src[0]->type;
- ggml_type src1_type = op->src[1]->type;
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
- return true;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- return false;
- } break;
- case GGML_OP_CONCAT:
- {
- ggml_type src0_type = op->src[0]->type;
- return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
- } break;
- case GGML_OP_DUP:
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_REPEAT:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_NORM:
- case GGML_OP_ADD:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_RMS_NORM:
- case GGML_OP_SCALE:
- case GGML_OP_SQR:
- case GGML_OP_CLAMP:
- case GGML_OP_CONT:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_ROPE:
- case GGML_OP_IM2COL:
- case GGML_OP_POOL_2D:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_ARGSORT:
- case GGML_OP_ACC:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_UPSCALE:
- case GGML_OP_PAD:
- case GGML_OP_LEAKY_RELU:
- return true;
- default:
- return false;
- }
- UNUSED(backend);
- }
- GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
- const int min_batch_size = 32;
- return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS && op->op != GGML_OP_MUL_MAT_ID;
- GGML_UNUSED(backend);
- }
- GGML_CALL static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
- if (buft->iface.get_name != ggml_backend_sycl_buffer_type_name) {
- return false;
- }
- ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- return buft_ctx->device == sycl_ctx->device;
- }
- static ggml_backend_i ggml_backend_sycl_interface = {
- /* .get_name = */ ggml_backend_sycl_name,
- /* .free = */ ggml_backend_sycl_free,
- /* .get_default_buffer_type = */ ggml_backend_sycl_get_default_buffer_type,
- /* .set_tensor_async = */ ggml_backend_sycl_set_tensor_async,
- /* .get_tensor_async = */ ggml_backend_sycl_get_tensor_async,
- /* .cpy_tensor_async = */ NULL, //ggml_backend_sycl_cpy_tensor_async, // TODO: update for the new interface
- /* .synchronize = */ ggml_backend_sycl_synchronize,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_sycl_graph_compute,
- /* .supports_op = */ ggml_backend_sycl_supports_op,
- /* .supports_buft = */ ggml_backend_sycl_supports_buft,
- /* .offload_op = */ ggml_backend_sycl_offload_op,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
- };
- static ggml_guid_t ggml_backend_sycl_guid() {
- static ggml_guid guid = { 0x58, 0x05, 0x13, 0x8f, 0xcd, 0x3a, 0x61, 0x9d, 0xe7, 0xcd, 0x98, 0xa9, 0x03, 0xfd, 0x7c, 0x53 };
- return &guid;
- }
- GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_init\n");
- ggml_check_sycl();
- check_allow_gpu_index(device);
- ggml_backend_sycl_context * ctx = new ggml_backend_sycl_context(device);
- if (ctx == nullptr) {
- fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
- return nullptr;
- };
- ggml_backend_t sycl_backend = new ggml_backend {
- /* .guid = */ ggml_backend_sycl_guid(),
- /* .interface = */ ggml_backend_sycl_interface,
- /* .context = */ ctx
- };
- return sycl_backend;
- }
- bool ggml_backend_is_sycl(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid());
- }
- GGML_CALL int ggml_backend_sycl_get_device_count() {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_count\n");
- return ggml_sycl_info().device_count;
- }
- GGML_CALL static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) {
- ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data);
- return sycl_backend;
- UNUSED(params);
- }
- extern "C" int ggml_backend_sycl_reg_devices();
- int ggml_backend_sycl_reg_devices() {
- assert(ggml_sycl_info().device_count>0);
- for (int i = 0; i < ggml_sycl_info().device_count; i++) {
- char name[128];
- snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, i);
- ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i);
- }
- return ggml_sycl_info().device_count;
- }
|