ggml.c 727 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_OPENMP
  28. #include <omp.h>
  29. #endif
  30. #ifdef GGML_USE_METAL
  31. #include <unistd.h>
  32. #endif
  33. #ifdef __ARM_FEATURE_MATMUL_INT8
  34. #undef GGML_USE_LLAMAFILE
  35. #endif
  36. #ifdef GGML_USE_LLAMAFILE
  37. #include "sgemm.h"
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. // disable POSIX deprecation warnings
  44. // these functions are never going away, anyway
  45. #pragma warning(disable: 4996)
  46. #endif
  47. #if defined(_WIN32)
  48. #define WIN32_LEAN_AND_MEAN
  49. #ifndef NOMINMAX
  50. #define NOMINMAX
  51. #endif
  52. #include <windows.h>
  53. typedef volatile LONG atomic_int;
  54. typedef atomic_int atomic_bool;
  55. typedef atomic_int atomic_flag;
  56. #define ATOMIC_FLAG_INIT 0
  57. static void atomic_store(atomic_int * ptr, LONG val) {
  58. InterlockedExchange(ptr, val);
  59. }
  60. static LONG atomic_load(atomic_int * ptr) {
  61. return InterlockedCompareExchange(ptr, 0, 0);
  62. }
  63. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  64. return InterlockedExchangeAdd(ptr, inc);
  65. }
  66. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  67. return atomic_fetch_add(ptr, -(dec));
  68. }
  69. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  70. return InterlockedExchange(ptr, 1);
  71. }
  72. static void atomic_flag_clear(atomic_flag * ptr) {
  73. InterlockedExchange(ptr, 0);
  74. }
  75. typedef HANDLE pthread_t;
  76. typedef DWORD thread_ret_t;
  77. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  78. (void) unused;
  79. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  80. if (handle == NULL)
  81. {
  82. return EAGAIN;
  83. }
  84. *out = handle;
  85. return 0;
  86. }
  87. static int pthread_join(pthread_t thread, void * unused) {
  88. (void) unused;
  89. int ret = (int) WaitForSingleObject(thread, INFINITE);
  90. CloseHandle(thread);
  91. return ret;
  92. }
  93. static int sched_yield (void) {
  94. Sleep (0);
  95. return 0;
  96. }
  97. #else
  98. #include <pthread.h>
  99. #include <stdatomic.h>
  100. typedef void * thread_ret_t;
  101. #include <sys/types.h>
  102. #include <sys/stat.h>
  103. #include <unistd.h>
  104. #endif
  105. typedef pthread_t ggml_thread_t;
  106. #ifdef GGML_USE_CPU_HBM
  107. #include <hbwmalloc.h>
  108. #endif
  109. #if defined(__APPLE__)
  110. #include <TargetConditionals.h>
  111. #endif
  112. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  113. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  114. #include <sys/wait.h>
  115. void ggml_print_backtrace(void) {
  116. /*
  117. #include <execinfo.h>
  118. #include <dlfcn.h>
  119. void * trace[100];
  120. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  121. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  122. */
  123. // backtrack_symbols does not show line numbers, use gdb instead
  124. char attach[32];
  125. snprintf(attach, sizeof(attach), "attach %d", getpid());
  126. int pid = fork();
  127. if (pid == 0) {
  128. execlp("gdb", "gdb", "--batch",
  129. "-ex", "set style enabled on",
  130. "-ex", attach,
  131. "-ex", "bt -frame-info source-and-location",
  132. "-ex", "detach",
  133. "-ex", "quit",
  134. (char *) NULL);
  135. } else {
  136. waitpid(pid, NULL, 0);
  137. }
  138. }
  139. #else
  140. void ggml_print_backtrace(void) {
  141. // platform not supported
  142. }
  143. #endif
  144. /*#define GGML_PERF*/
  145. #define GGML_DEBUG 0
  146. #define GGML_GELU_FP16
  147. #define GGML_GELU_QUICK_FP16
  148. #define GGML_SOFT_MAX_UNROLL 4
  149. #define GGML_VEC_DOT_UNROLL 2
  150. #define GGML_VEC_MAD_UNROLL 32
  151. //
  152. // logging
  153. //
  154. #if (GGML_DEBUG >= 1)
  155. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  156. #else
  157. #define GGML_PRINT_DEBUG(...)
  158. #endif
  159. #if (GGML_DEBUG >= 5)
  160. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  161. #else
  162. #define GGML_PRINT_DEBUG_5(...)
  163. #endif
  164. #if (GGML_DEBUG >= 10)
  165. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  166. #else
  167. #define GGML_PRINT_DEBUG_10(...)
  168. #endif
  169. #define GGML_PRINT(...) printf(__VA_ARGS__)
  170. //
  171. // end of logging block
  172. //
  173. #ifdef GGML_USE_ACCELERATE
  174. // uncomment to use vDSP for soft max computation
  175. // note: not sure if it is actually faster
  176. //#define GGML_SOFT_MAX_ACCELERATE
  177. #endif
  178. #if defined(_MSC_VER) || defined(__MINGW32__)
  179. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  180. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  181. #else
  182. inline static void * ggml_aligned_malloc(size_t size) {
  183. if (size == 0) {
  184. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  185. return NULL;
  186. }
  187. void * aligned_memory = NULL;
  188. #ifdef GGML_USE_CPU_HBM
  189. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  190. #elif GGML_USE_METAL
  191. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  192. #else
  193. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  194. #endif
  195. if (result != 0) {
  196. // Handle allocation failure
  197. const char *error_desc = "unknown allocation error";
  198. switch (result) {
  199. case EINVAL:
  200. error_desc = "invalid alignment value";
  201. break;
  202. case ENOMEM:
  203. error_desc = "insufficient memory";
  204. break;
  205. }
  206. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. return NULL;
  209. }
  210. return aligned_memory;
  211. }
  212. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  213. #ifdef GGML_USE_CPU_HBM
  214. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  215. #else
  216. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  217. #endif
  218. #endif
  219. inline static void * ggml_malloc(size_t size) {
  220. if (size == 0) {
  221. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  222. return NULL;
  223. }
  224. void * result = malloc(size);
  225. if (result == NULL) {
  226. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  227. GGML_ASSERT(false);
  228. }
  229. return result;
  230. }
  231. // calloc
  232. inline static void * ggml_calloc(size_t num, size_t size) {
  233. if (num == 0 || size == 0) {
  234. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  235. return NULL;
  236. }
  237. void * result = calloc(num, size);
  238. if (result == NULL) {
  239. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  240. GGML_ASSERT(false);
  241. }
  242. return result;
  243. }
  244. #define GGML_MALLOC(size) ggml_malloc(size)
  245. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  246. #define GGML_FREE(ptr) free(ptr)
  247. #define UNUSED GGML_UNUSED
  248. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  249. #if defined(GGML_USE_ACCELERATE)
  250. #include <Accelerate/Accelerate.h>
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  266. float ggml_table_f32_f16[1 << 16];
  267. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  268. switch (status) {
  269. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  270. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  271. case GGML_STATUS_SUCCESS: return "GGML status: success";
  272. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  273. }
  274. return "GGML status: unknown";
  275. }
  276. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  277. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  278. return GGML_FP16_TO_FP32(x);
  279. }
  280. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  281. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  285. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  286. return GGML_BF16_TO_FP32(x); // it just left shifts
  287. }
  288. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  289. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  290. return GGML_FP32_TO_BF16(x);
  291. }
  292. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  293. for (int64_t i = 0; i < n; i++) {
  294. y[i] = GGML_FP16_TO_FP32(x[i]);
  295. }
  296. }
  297. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  298. int64_t i = 0;
  299. #if defined(__F16C__)
  300. for (; i + 7 < n; i += 8) {
  301. __m256 x_vec = _mm256_loadu_ps(x + i);
  302. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  304. }
  305. for(; i + 3 < n; i += 4) {
  306. __m128 x_vec = _mm_loadu_ps(x + i);
  307. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  308. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  309. }
  310. #endif
  311. for (; i < n; i++) {
  312. y[i] = GGML_FP32_TO_FP16(x[i]);
  313. }
  314. }
  315. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  316. int64_t i = 0;
  317. #if defined(__AVX512F__)
  318. for (; i + 16 <= n; i += 16) {
  319. _mm512_storeu_ps(y + i,
  320. _mm512_castsi512_ps(
  321. _mm512_slli_epi32(
  322. _mm512_cvtepu16_epi32(
  323. _mm256_loadu_si256(
  324. (const __m256i *)(x + i))),
  325. 16)));
  326. }
  327. #elif defined(__AVX2__)
  328. for (; i + 8 <= n; i += 8) {
  329. _mm256_storeu_ps(y + i,
  330. _mm256_castsi256_ps(
  331. _mm256_slli_epi32(
  332. _mm256_cvtepu16_epi32(
  333. _mm_loadu_si128(
  334. (const __m128i *)(x + i))),
  335. 16)));
  336. }
  337. #endif
  338. for (; i < n; i++) {
  339. y[i] = GGML_BF16_TO_FP32(x[i]);
  340. }
  341. }
  342. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  343. int i = 0;
  344. #if defined(__AVX512BF16__)
  345. for (; i + 32 <= n; i += 32) {
  346. _mm512_storeu_si512(
  347. (__m512i *)(y + i),
  348. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  349. _mm512_loadu_ps(x + i))));
  350. }
  351. #endif
  352. for (; i < n; i++) {
  353. y[i] = GGML_FP32_TO_BF16(x[i]);
  354. }
  355. }
  356. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  357. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  358. }
  359. //
  360. // timing
  361. //
  362. #if defined(_MSC_VER) || defined(__MINGW32__)
  363. static int64_t timer_freq, timer_start;
  364. void ggml_time_init(void) {
  365. LARGE_INTEGER t;
  366. QueryPerformanceFrequency(&t);
  367. timer_freq = t.QuadPart;
  368. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  369. // and the uptime is high enough.
  370. // We subtract the program start time to reduce the likelihood of that happening.
  371. QueryPerformanceCounter(&t);
  372. timer_start = t.QuadPart;
  373. }
  374. int64_t ggml_time_ms(void) {
  375. LARGE_INTEGER t;
  376. QueryPerformanceCounter(&t);
  377. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  378. }
  379. int64_t ggml_time_us(void) {
  380. LARGE_INTEGER t;
  381. QueryPerformanceCounter(&t);
  382. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  383. }
  384. #else
  385. void ggml_time_init(void) {}
  386. int64_t ggml_time_ms(void) {
  387. struct timespec ts;
  388. clock_gettime(CLOCK_MONOTONIC, &ts);
  389. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  390. }
  391. int64_t ggml_time_us(void) {
  392. struct timespec ts;
  393. clock_gettime(CLOCK_MONOTONIC, &ts);
  394. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  395. }
  396. #endif
  397. int64_t ggml_cycles(void) {
  398. return clock();
  399. }
  400. int64_t ggml_cycles_per_ms(void) {
  401. return CLOCKS_PER_SEC/1000;
  402. }
  403. #ifdef GGML_PERF
  404. #define ggml_perf_time_ms() ggml_time_ms()
  405. #define ggml_perf_time_us() ggml_time_us()
  406. #define ggml_perf_cycles() ggml_cycles()
  407. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  408. #else
  409. #define ggml_perf_time_ms() 0
  410. #define ggml_perf_time_us() 0
  411. #define ggml_perf_cycles() 0
  412. #define ggml_perf_cycles_per_ms() 0
  413. #endif
  414. //
  415. // cross-platform UTF-8 file paths
  416. //
  417. #ifdef _WIN32
  418. static wchar_t * ggml_mbstowcs(const char * mbs) {
  419. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  420. if (!wlen) {
  421. errno = EINVAL;
  422. return NULL;
  423. }
  424. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  425. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  426. if (!wlen) {
  427. GGML_FREE(wbuf);
  428. errno = EINVAL;
  429. return NULL;
  430. }
  431. return wbuf;
  432. }
  433. #endif
  434. FILE * ggml_fopen(const char * fname, const char * mode) {
  435. #ifdef _WIN32
  436. FILE * file = NULL;
  437. // convert fname (UTF-8)
  438. wchar_t * wfname = ggml_mbstowcs(fname);
  439. if (wfname) {
  440. // convert mode (ANSI)
  441. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  442. wchar_t * wmode_p = wmode;
  443. do {
  444. *wmode_p++ = (wchar_t)*mode;
  445. } while (*mode++);
  446. // open file
  447. file = _wfopen(wfname, wmode);
  448. GGML_FREE(wfname);
  449. GGML_FREE(wmode);
  450. }
  451. return file;
  452. #else
  453. return fopen(fname, mode);
  454. #endif
  455. }
  456. //
  457. // cache line
  458. //
  459. #if defined(__cpp_lib_hardware_interference_size)
  460. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  461. #else
  462. #if defined(__POWER9_VECTOR__)
  463. #define CACHE_LINE_SIZE 128
  464. #else
  465. #define CACHE_LINE_SIZE 64
  466. #endif
  467. #endif
  468. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  469. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  470. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  471. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  472. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  473. [GGML_TYPE_I8] = {
  474. .type_name = "i8",
  475. .blck_size = 1,
  476. .type_size = sizeof(int8_t),
  477. .is_quantized = false,
  478. },
  479. [GGML_TYPE_I16] = {
  480. .type_name = "i16",
  481. .blck_size = 1,
  482. .type_size = sizeof(int16_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I32] = {
  486. .type_name = "i32",
  487. .blck_size = 1,
  488. .type_size = sizeof(int32_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I64] = {
  492. .type_name = "i64",
  493. .blck_size = 1,
  494. .type_size = sizeof(int64_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_F64] = {
  498. .type_name = "f64",
  499. .blck_size = 1,
  500. .type_size = sizeof(double),
  501. .is_quantized = false,
  502. .nrows = 1,
  503. },
  504. [GGML_TYPE_F32] = {
  505. .type_name = "f32",
  506. .blck_size = 1,
  507. .type_size = sizeof(float),
  508. .is_quantized = false,
  509. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  510. .vec_dot_type = GGML_TYPE_F32,
  511. .nrows = 1,
  512. },
  513. [GGML_TYPE_F16] = {
  514. .type_name = "f16",
  515. .blck_size = 1,
  516. .type_size = sizeof(ggml_fp16_t),
  517. .is_quantized = false,
  518. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  519. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  520. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  521. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  522. .vec_dot_type = GGML_TYPE_F16,
  523. .nrows = 1,
  524. },
  525. [GGML_TYPE_Q4_0] = {
  526. .type_name = "q4_0",
  527. .blck_size = QK4_0,
  528. .type_size = sizeof(block_q4_0),
  529. .is_quantized = true,
  530. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  531. .from_float = quantize_row_q4_0,
  532. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  533. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  534. .vec_dot_type = GGML_TYPE_Q8_0,
  535. #if defined (__ARM_FEATURE_MATMUL_INT8)
  536. .nrows = 2,
  537. #else
  538. .nrows = 1,
  539. #endif
  540. },
  541. [GGML_TYPE_Q4_1] = {
  542. .type_name = "q4_1",
  543. .blck_size = QK4_1,
  544. .type_size = sizeof(block_q4_1),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  547. .from_float = quantize_row_q4_1,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  549. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  550. .vec_dot_type = GGML_TYPE_Q8_1,
  551. #if defined (__ARM_FEATURE_MATMUL_INT8)
  552. .nrows = 2,
  553. #else
  554. .nrows = 1,
  555. #endif
  556. },
  557. [4] = { // GGML_TYPE_Q4_2
  558. .type_name = "DEPRECATED",
  559. .blck_size = 0,
  560. .type_size = 0,
  561. .is_quantized = false,
  562. .to_float = NULL,
  563. .from_float = NULL,
  564. .from_float_reference = NULL,
  565. .vec_dot = NULL,
  566. .vec_dot_type = GGML_TYPE_COUNT,
  567. .nrows = 1,
  568. },
  569. [5] = { // GGML_TYPE_Q4_3
  570. .type_name = "DEPRECATED",
  571. .blck_size = 0,
  572. .type_size = 0,
  573. .is_quantized = false,
  574. .to_float = NULL,
  575. .from_float = NULL,
  576. .from_float_reference = NULL,
  577. .vec_dot = NULL,
  578. .vec_dot_type = GGML_TYPE_COUNT,
  579. .nrows = 1,
  580. },
  581. [GGML_TYPE_Q5_0] = {
  582. .type_name = "q5_0",
  583. .blck_size = QK5_0,
  584. .type_size = sizeof(block_q5_0),
  585. .is_quantized = true,
  586. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  587. .from_float = quantize_row_q5_0,
  588. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  589. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  590. .vec_dot_type = GGML_TYPE_Q8_0,
  591. .nrows = 1,
  592. },
  593. [GGML_TYPE_Q5_1] = {
  594. .type_name = "q5_1",
  595. .blck_size = QK5_1,
  596. .type_size = sizeof(block_q5_1),
  597. .is_quantized = true,
  598. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  599. .from_float = quantize_row_q5_1,
  600. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  601. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  602. .vec_dot_type = GGML_TYPE_Q8_1,
  603. .nrows = 1,
  604. },
  605. [GGML_TYPE_Q8_0] = {
  606. .type_name = "q8_0",
  607. .blck_size = QK8_0,
  608. .type_size = sizeof(block_q8_0),
  609. .is_quantized = true,
  610. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  611. .from_float = quantize_row_q8_0,
  612. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  613. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  614. .vec_dot_type = GGML_TYPE_Q8_0,
  615. #if defined (__ARM_FEATURE_MATMUL_INT8)
  616. .nrows = 2,
  617. #else
  618. .nrows = 1,
  619. #endif
  620. },
  621. [GGML_TYPE_Q8_1] = {
  622. .type_name = "q8_1",
  623. .blck_size = QK8_1,
  624. .type_size = sizeof(block_q8_1),
  625. .is_quantized = true,
  626. .from_float = quantize_row_q8_1,
  627. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  628. .vec_dot_type = GGML_TYPE_Q8_1,
  629. .nrows = 1,
  630. },
  631. [GGML_TYPE_Q2_K] = {
  632. .type_name = "q2_K",
  633. .blck_size = QK_K,
  634. .type_size = sizeof(block_q2_K),
  635. .is_quantized = true,
  636. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  637. .from_float = quantize_row_q2_K,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  639. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  640. .vec_dot_type = GGML_TYPE_Q8_K,
  641. .nrows = 1,
  642. },
  643. [GGML_TYPE_Q3_K] = {
  644. .type_name = "q3_K",
  645. .blck_size = QK_K,
  646. .type_size = sizeof(block_q3_K),
  647. .is_quantized = true,
  648. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  649. .from_float = quantize_row_q3_K,
  650. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  651. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  652. .vec_dot_type = GGML_TYPE_Q8_K,
  653. .nrows = 1,
  654. },
  655. [GGML_TYPE_Q4_K] = {
  656. .type_name = "q4_K",
  657. .blck_size = QK_K,
  658. .type_size = sizeof(block_q4_K),
  659. .is_quantized = true,
  660. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  661. .from_float = quantize_row_q4_K,
  662. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  663. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  664. .vec_dot_type = GGML_TYPE_Q8_K,
  665. .nrows = 1,
  666. },
  667. [GGML_TYPE_Q5_K] = {
  668. .type_name = "q5_K",
  669. .blck_size = QK_K,
  670. .type_size = sizeof(block_q5_K),
  671. .is_quantized = true,
  672. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  673. .from_float = quantize_row_q5_K,
  674. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  675. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  676. .vec_dot_type = GGML_TYPE_Q8_K,
  677. .nrows = 1,
  678. },
  679. [GGML_TYPE_Q6_K] = {
  680. .type_name = "q6_K",
  681. .blck_size = QK_K,
  682. .type_size = sizeof(block_q6_K),
  683. .is_quantized = true,
  684. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  685. .from_float = quantize_row_q6_K,
  686. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  687. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  688. .vec_dot_type = GGML_TYPE_Q8_K,
  689. .nrows = 1,
  690. },
  691. [GGML_TYPE_IQ2_XXS] = {
  692. .type_name = "iq2_xxs",
  693. .blck_size = QK_K,
  694. .type_size = sizeof(block_iq2_xxs),
  695. .is_quantized = true,
  696. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  697. .from_float = NULL,
  698. .from_float_reference = NULL,
  699. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  700. .vec_dot_type = GGML_TYPE_Q8_K,
  701. .nrows = 1,
  702. },
  703. [GGML_TYPE_IQ2_XS] = {
  704. .type_name = "iq2_xs",
  705. .blck_size = QK_K,
  706. .type_size = sizeof(block_iq2_xs),
  707. .is_quantized = true,
  708. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  709. .from_float = NULL,
  710. .from_float_reference = NULL,
  711. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  712. .vec_dot_type = GGML_TYPE_Q8_K,
  713. .nrows = 1,
  714. },
  715. [GGML_TYPE_IQ3_XXS] = {
  716. .type_name = "iq3_xxs",
  717. .blck_size = QK_K,
  718. .type_size = sizeof(block_iq3_xxs),
  719. .is_quantized = true,
  720. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  721. .from_float = quantize_row_iq3_xxs,
  722. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  723. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  724. .vec_dot_type = GGML_TYPE_Q8_K,
  725. .nrows = 1,
  726. },
  727. [GGML_TYPE_IQ3_S] = {
  728. .type_name = "iq3_s",
  729. .blck_size = QK_K,
  730. .type_size = sizeof(block_iq3_s),
  731. .is_quantized = true,
  732. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  733. .from_float = quantize_row_iq3_s,
  734. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  735. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  736. .vec_dot_type = GGML_TYPE_Q8_K,
  737. .nrows = 1,
  738. },
  739. [GGML_TYPE_IQ2_S] = {
  740. .type_name = "iq2_s",
  741. .blck_size = QK_K,
  742. .type_size = sizeof(block_iq2_s),
  743. .is_quantized = true,
  744. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  745. .from_float = quantize_row_iq2_s,
  746. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  747. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  748. .vec_dot_type = GGML_TYPE_Q8_K,
  749. .nrows = 1,
  750. },
  751. [GGML_TYPE_IQ1_S] = {
  752. .type_name = "iq1_s",
  753. .blck_size = QK_K,
  754. .type_size = sizeof(block_iq1_s),
  755. .is_quantized = true,
  756. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  757. .from_float = NULL,
  758. .from_float_reference = NULL,
  759. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  760. .vec_dot_type = GGML_TYPE_Q8_K,
  761. .nrows = 1,
  762. },
  763. [GGML_TYPE_IQ1_M] = {
  764. .type_name = "iq1_m",
  765. .blck_size = QK_K,
  766. .type_size = sizeof(block_iq1_m),
  767. .is_quantized = true,
  768. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  769. .from_float = NULL,
  770. .from_float_reference = NULL,
  771. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  772. .vec_dot_type = GGML_TYPE_Q8_K,
  773. .nrows = 1,
  774. },
  775. [GGML_TYPE_IQ4_NL] = {
  776. .type_name = "iq4_nl",
  777. .blck_size = QK4_NL,
  778. .type_size = sizeof(block_iq4_nl),
  779. .is_quantized = true,
  780. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  781. .from_float = quantize_row_iq4_nl,
  782. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  783. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  784. .vec_dot_type = GGML_TYPE_Q8_0,
  785. .nrows = 1,
  786. },
  787. [GGML_TYPE_IQ4_XS] = {
  788. .type_name = "iq4_xs",
  789. .blck_size = QK_K,
  790. .type_size = sizeof(block_iq4_xs),
  791. .is_quantized = true,
  792. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  793. .from_float = quantize_row_iq4_xs,
  794. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  795. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  796. .vec_dot_type = GGML_TYPE_Q8_K,
  797. .nrows = 1,
  798. },
  799. [GGML_TYPE_Q8_K] = {
  800. .type_name = "q8_K",
  801. .blck_size = QK_K,
  802. .type_size = sizeof(block_q8_K),
  803. .is_quantized = true,
  804. .from_float = quantize_row_q8_K,
  805. },
  806. [GGML_TYPE_BF16] = {
  807. .type_name = "bf16",
  808. .blck_size = 1,
  809. .type_size = sizeof(ggml_bf16_t),
  810. .is_quantized = false,
  811. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  812. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  813. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  814. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  815. .vec_dot_type = GGML_TYPE_BF16,
  816. .nrows = 1,
  817. }
  818. };
  819. // For internal test use
  820. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  821. GGML_ASSERT(type < GGML_TYPE_COUNT);
  822. return type_traits[type];
  823. }
  824. //
  825. // simd mappings
  826. //
  827. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  828. // we then implement the fundamental computation operations below using only these macros
  829. // adding support for new architectures requires to define the corresponding SIMD macros
  830. //
  831. // GGML_F32_STEP / GGML_F16_STEP
  832. // number of elements to process in a single step
  833. //
  834. // GGML_F32_EPR / GGML_F16_EPR
  835. // number of elements to fit in a single register
  836. //
  837. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  838. #define GGML_SIMD
  839. // F32 NEON
  840. #define GGML_F32_STEP 16
  841. #define GGML_F32_EPR 4
  842. #define GGML_F32x4 float32x4_t
  843. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  844. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  845. #define GGML_F32x4_LOAD vld1q_f32
  846. #define GGML_F32x4_STORE vst1q_f32
  847. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  848. #define GGML_F32x4_ADD vaddq_f32
  849. #define GGML_F32x4_MUL vmulq_f32
  850. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  851. #define GGML_F32x4_REDUCE(res, x) \
  852. { \
  853. int offset = GGML_F32_ARR >> 1; \
  854. for (int i = 0; i < offset; ++i) { \
  855. x[i] = vaddq_f32(x[i], x[offset+i]); \
  856. } \
  857. offset >>= 1; \
  858. for (int i = 0; i < offset; ++i) { \
  859. x[i] = vaddq_f32(x[i], x[offset+i]); \
  860. } \
  861. offset >>= 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vaddq_f32(x[i], x[offset+i]); \
  864. } \
  865. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  866. }
  867. #define GGML_F32_VEC GGML_F32x4
  868. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  869. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  870. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  871. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  872. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  873. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  874. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  875. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  876. // F16 NEON
  877. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  878. #define GGML_F16_STEP 32
  879. #define GGML_F16_EPR 8
  880. #define GGML_F16x8 float16x8_t
  881. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  882. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  883. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  884. #define GGML_F16x8_STORE vst1q_f16
  885. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  886. #define GGML_F16x8_ADD vaddq_f16
  887. #define GGML_F16x8_MUL vmulq_f16
  888. #define GGML_F16x8_REDUCE(res, x) \
  889. do { \
  890. int offset = GGML_F16_ARR >> 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = vaddq_f16(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = vaddq_f16(x[i], x[offset+i]); \
  897. } \
  898. offset >>= 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = vaddq_f16(x[i], x[offset+i]); \
  901. } \
  902. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  903. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  904. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  905. } while (0)
  906. #define GGML_F16_VEC GGML_F16x8
  907. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  908. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  909. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  910. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  911. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  912. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  913. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  914. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  915. #else
  916. // if FP16 vector arithmetic is not supported, we use FP32 instead
  917. // and take advantage of the vcvt_ functions to convert to/from FP16
  918. #define GGML_F16_STEP 16
  919. #define GGML_F16_EPR 4
  920. #define GGML_F32Cx4 float32x4_t
  921. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  922. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  923. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  924. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  925. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  926. #define GGML_F32Cx4_ADD vaddq_f32
  927. #define GGML_F32Cx4_MUL vmulq_f32
  928. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  929. #define GGML_F16_VEC GGML_F32Cx4
  930. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  931. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  932. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  933. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  934. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  935. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  936. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  937. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  938. #endif
  939. #elif defined(__AVX512F__)
  940. #define GGML_SIMD
  941. // F32 AVX512
  942. #define GGML_F32_STEP 64
  943. #define GGML_F32_EPR 16
  944. #define GGML_F32x16 __m512
  945. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  946. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  947. #define GGML_F32x16_LOAD _mm512_loadu_ps
  948. #define GGML_F32x16_STORE _mm512_storeu_ps
  949. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  950. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  951. #define GGML_F32x16_ADD _mm512_add_ps
  952. #define GGML_F32x16_MUL _mm512_mul_ps
  953. #define GGML_F32x16_REDUCE(res, x) \
  954. do { \
  955. int offset = GGML_F32_ARR >> 1; \
  956. for (int i = 0; i < offset; ++i) { \
  957. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  958. } \
  959. offset >>= 1; \
  960. for (int i = 0; i < offset; ++i) { \
  961. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  962. } \
  963. offset >>= 1; \
  964. for (int i = 0; i < offset; ++i) { \
  965. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  966. } \
  967. res = _mm512_reduce_add_ps(x[0]); \
  968. } while (0)
  969. // TODO: is this optimal ?
  970. #define GGML_F32_VEC GGML_F32x16
  971. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  972. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  973. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  974. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  975. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  976. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  977. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  978. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  979. // F16 AVX512
  980. // F16 AVX
  981. #define GGML_F16_STEP 64
  982. #define GGML_F16_EPR 16
  983. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  984. #define GGML_F32Cx16 __m512
  985. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  986. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  987. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  988. // so F16C guard isn't required
  989. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  990. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  991. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  992. #define GGML_F32Cx16_ADD _mm512_add_ps
  993. #define GGML_F32Cx16_MUL _mm512_mul_ps
  994. #define GGML_F32Cx16_REDUCE(res, x) \
  995. do { \
  996. int offset = GGML_F32_ARR >> 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. offset >>= 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. res = _mm512_reduce_add_ps(x[0]); \
  1009. } while (0)
  1010. #define GGML_F16_VEC GGML_F32Cx16
  1011. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1012. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1013. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1014. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1015. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1016. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1017. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1018. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1019. #elif defined(__AVX__)
  1020. #define GGML_SIMD
  1021. // F32 AVX
  1022. #define GGML_F32_STEP 32
  1023. #define GGML_F32_EPR 8
  1024. #define GGML_F32x8 __m256
  1025. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1026. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1027. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1028. #define GGML_F32x8_STORE _mm256_storeu_ps
  1029. #if defined(__FMA__)
  1030. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1031. #else
  1032. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1033. #endif
  1034. #define GGML_F32x8_ADD _mm256_add_ps
  1035. #define GGML_F32x8_MUL _mm256_mul_ps
  1036. #define GGML_F32x8_REDUCE(res, x) \
  1037. do { \
  1038. int offset = GGML_F32_ARR >> 1; \
  1039. for (int i = 0; i < offset; ++i) { \
  1040. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1041. } \
  1042. offset >>= 1; \
  1043. for (int i = 0; i < offset; ++i) { \
  1044. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1045. } \
  1046. offset >>= 1; \
  1047. for (int i = 0; i < offset; ++i) { \
  1048. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1049. } \
  1050. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1051. _mm256_extractf128_ps(x[0], 1)); \
  1052. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1053. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1054. } while (0)
  1055. // TODO: is this optimal ?
  1056. #define GGML_F32_VEC GGML_F32x8
  1057. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1058. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1059. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1060. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1061. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1062. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1063. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1064. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1065. // F16 AVX
  1066. #define GGML_F16_STEP 32
  1067. #define GGML_F16_EPR 8
  1068. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1069. #define GGML_F32Cx8 __m256
  1070. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1071. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1072. #if defined(__F16C__)
  1073. // the _mm256_cvt intrinsics require F16C
  1074. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1075. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1076. #else
  1077. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1078. float tmp[8];
  1079. for (int i = 0; i < 8; i++) {
  1080. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1081. }
  1082. return _mm256_loadu_ps(tmp);
  1083. }
  1084. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1085. float arr[8];
  1086. _mm256_storeu_ps(arr, y);
  1087. for (int i = 0; i < 8; i++)
  1088. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1089. }
  1090. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1091. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1092. #endif
  1093. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1094. #define GGML_F32Cx8_ADD _mm256_add_ps
  1095. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1096. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1097. #define GGML_F16_VEC GGML_F32Cx8
  1098. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1099. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1100. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1101. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1102. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1103. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1104. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1105. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1106. #elif defined(__POWER9_VECTOR__)
  1107. #define GGML_SIMD
  1108. // F32 POWER9
  1109. #define GGML_F32_STEP 32
  1110. #define GGML_F32_EPR 4
  1111. #define GGML_F32x4 vector float
  1112. #define GGML_F32x4_ZERO 0.0f
  1113. #define GGML_F32x4_SET1 vec_splats
  1114. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1115. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1116. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1117. #define GGML_F32x4_ADD vec_add
  1118. #define GGML_F32x4_MUL vec_mul
  1119. #define GGML_F32x4_REDUCE(res, x) \
  1120. { \
  1121. int offset = GGML_F32_ARR >> 1; \
  1122. for (int i = 0; i < offset; ++i) { \
  1123. x[i] = vec_add(x[i], x[offset+i]); \
  1124. } \
  1125. offset >>= 1; \
  1126. for (int i = 0; i < offset; ++i) { \
  1127. x[i] = vec_add(x[i], x[offset+i]); \
  1128. } \
  1129. offset >>= 1; \
  1130. for (int i = 0; i < offset; ++i) { \
  1131. x[i] = vec_add(x[i], x[offset+i]); \
  1132. } \
  1133. res = vec_extract(x[0], 0) + \
  1134. vec_extract(x[0], 1) + \
  1135. vec_extract(x[0], 2) + \
  1136. vec_extract(x[0], 3); \
  1137. }
  1138. #define GGML_F32_VEC GGML_F32x4
  1139. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1140. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1141. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1142. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1143. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1144. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1145. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1146. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1147. // F16 POWER9
  1148. #define GGML_F16_STEP GGML_F32_STEP
  1149. #define GGML_F16_EPR GGML_F32_EPR
  1150. #define GGML_F16_VEC GGML_F32x4
  1151. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1152. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1153. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1154. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1155. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1156. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1157. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1158. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1159. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1160. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1161. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1162. #define GGML_F16_VEC_STORE(p, r, i) \
  1163. if (i & 0x1) \
  1164. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1165. r[i - GGML_ENDIAN_BYTE(0)]), \
  1166. 0, p - GGML_F16_EPR)
  1167. #elif defined(__wasm_simd128__)
  1168. #define GGML_SIMD
  1169. // F32 WASM
  1170. #define GGML_F32_STEP 16
  1171. #define GGML_F32_EPR 4
  1172. #define GGML_F32x4 v128_t
  1173. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1174. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1175. #define GGML_F32x4_LOAD wasm_v128_load
  1176. #define GGML_F32x4_STORE wasm_v128_store
  1177. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1178. #define GGML_F32x4_ADD wasm_f32x4_add
  1179. #define GGML_F32x4_MUL wasm_f32x4_mul
  1180. #define GGML_F32x4_REDUCE(res, x) \
  1181. { \
  1182. int offset = GGML_F32_ARR >> 1; \
  1183. for (int i = 0; i < offset; ++i) { \
  1184. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1185. } \
  1186. offset >>= 1; \
  1187. for (int i = 0; i < offset; ++i) { \
  1188. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1189. } \
  1190. offset >>= 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1193. } \
  1194. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1195. wasm_f32x4_extract_lane(x[0], 1) + \
  1196. wasm_f32x4_extract_lane(x[0], 2) + \
  1197. wasm_f32x4_extract_lane(x[0], 3); \
  1198. }
  1199. #define GGML_F32_VEC GGML_F32x4
  1200. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1201. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1202. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1203. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1204. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1205. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1206. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1207. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1208. // F16 WASM
  1209. #define GGML_F16_STEP 16
  1210. #define GGML_F16_EPR 4
  1211. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1212. float tmp[4];
  1213. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1214. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1215. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1216. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1217. return wasm_v128_load(tmp);
  1218. }
  1219. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1220. float tmp[4];
  1221. wasm_v128_store(tmp, x);
  1222. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1223. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1224. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1225. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1226. }
  1227. #define GGML_F16x4 v128_t
  1228. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1229. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1230. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1231. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1232. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1233. #define GGML_F16x4_ADD wasm_f32x4_add
  1234. #define GGML_F16x4_MUL wasm_f32x4_mul
  1235. #define GGML_F16x4_REDUCE(res, x) \
  1236. { \
  1237. int offset = GGML_F16_ARR >> 1; \
  1238. for (int i = 0; i < offset; ++i) { \
  1239. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1240. } \
  1241. offset >>= 1; \
  1242. for (int i = 0; i < offset; ++i) { \
  1243. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1244. } \
  1245. offset >>= 1; \
  1246. for (int i = 0; i < offset; ++i) { \
  1247. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1248. } \
  1249. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1250. wasm_f32x4_extract_lane(x[0], 1) + \
  1251. wasm_f32x4_extract_lane(x[0], 2) + \
  1252. wasm_f32x4_extract_lane(x[0], 3); \
  1253. }
  1254. #define GGML_F16_VEC GGML_F16x4
  1255. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1256. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1257. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1258. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1259. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1260. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1261. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1262. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1263. #elif defined(__SSE3__)
  1264. #define GGML_SIMD
  1265. // F32 SSE
  1266. #define GGML_F32_STEP 32
  1267. #define GGML_F32_EPR 4
  1268. #define GGML_F32x4 __m128
  1269. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1270. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1271. #define GGML_F32x4_LOAD _mm_loadu_ps
  1272. #define GGML_F32x4_STORE _mm_storeu_ps
  1273. #if defined(__FMA__)
  1274. // TODO: Does this work?
  1275. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1276. #else
  1277. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1278. #endif
  1279. #define GGML_F32x4_ADD _mm_add_ps
  1280. #define GGML_F32x4_MUL _mm_mul_ps
  1281. #define GGML_F32x4_REDUCE(res, x) \
  1282. { \
  1283. int offset = GGML_F32_ARR >> 1; \
  1284. for (int i = 0; i < offset; ++i) { \
  1285. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1286. } \
  1287. offset >>= 1; \
  1288. for (int i = 0; i < offset; ++i) { \
  1289. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1290. } \
  1291. offset >>= 1; \
  1292. for (int i = 0; i < offset; ++i) { \
  1293. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1294. } \
  1295. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1296. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1297. }
  1298. // TODO: is this optimal ?
  1299. #define GGML_F32_VEC GGML_F32x4
  1300. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1301. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1302. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1303. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1304. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1305. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1306. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1307. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1308. // F16 SSE
  1309. #define GGML_F16_STEP 32
  1310. #define GGML_F16_EPR 4
  1311. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1312. float tmp[4];
  1313. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1314. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1315. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1316. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1317. return _mm_loadu_ps(tmp);
  1318. }
  1319. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1320. float arr[4];
  1321. _mm_storeu_ps(arr, y);
  1322. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1323. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1324. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1325. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1326. }
  1327. #define GGML_F32Cx4 __m128
  1328. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1329. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1330. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1331. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1332. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1333. #define GGML_F32Cx4_ADD _mm_add_ps
  1334. #define GGML_F32Cx4_MUL _mm_mul_ps
  1335. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1336. #define GGML_F16_VEC GGML_F32Cx4
  1337. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1338. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1339. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1340. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1341. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1342. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1343. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1344. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1345. #elif defined(__loongarch_asx)
  1346. #define GGML_SIMD
  1347. // F32 LASX
  1348. #define GGML_F32_STEP 32
  1349. #define GGML_F32_EPR 8
  1350. #define GGML_F32x8 __m256
  1351. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1352. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1353. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1354. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1355. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1356. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1357. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1358. #define GGML_F32x8_REDUCE(res, x) \
  1359. do { \
  1360. int offset = GGML_F32_ARR >> 1; \
  1361. for (int i = 0; i < offset; ++i) { \
  1362. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1363. } \
  1364. offset >>= 1; \
  1365. for (int i = 0; i < offset; ++i) { \
  1366. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1367. } \
  1368. offset >>= 1; \
  1369. for (int i = 0; i < offset; ++i) { \
  1370. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1371. } \
  1372. float *tmp_p = (float *)&x[0]; \
  1373. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1374. } while (0)
  1375. // TODO: is this optimal ?
  1376. #define GGML_F32_VEC GGML_F32x8
  1377. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1378. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1379. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1380. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1381. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1382. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1383. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1384. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1385. // F16 LASX
  1386. #define GGML_F16_STEP 32
  1387. #define GGML_F16_EPR 8
  1388. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1389. #define GGML_F32Cx8 __m256
  1390. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1391. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1392. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1393. float tmp[8];
  1394. for (int i = 0; i < 8; i++) {
  1395. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1396. }
  1397. return (__m256)__lasx_xvld(tmp, 0);
  1398. }
  1399. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1400. float arr[8];
  1401. __lasx_xvst(y, arr, 0);
  1402. for (int i = 0; i < 8; i++) {
  1403. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1404. }
  1405. }
  1406. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1407. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1408. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1409. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1410. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1411. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1412. #define GGML_F16_VEC GGML_F32Cx8
  1413. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1414. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1415. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1416. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1417. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1418. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1419. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1420. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1421. #elif defined(__loongarch_sx)
  1422. #define GGML_SIMD
  1423. // F32 LSX
  1424. #define GGML_F32_STEP 32
  1425. #define GGML_F32_EPR 4
  1426. #define GGML_F32x4 __m128
  1427. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1428. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1429. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1430. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1431. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1432. #define GGML_F32x4_ADD __lsx_vfadd_s
  1433. #define GGML_F32x4_MUL __lsx_vfmul_s
  1434. #define GGML_F32x4_REDUCE(res, x) \
  1435. { \
  1436. int offset = GGML_F32_ARR >> 1; \
  1437. for (int i = 0; i < offset; ++i) { \
  1438. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1439. } \
  1440. offset >>= 1; \
  1441. for (int i = 0; i < offset; ++i) { \
  1442. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1443. } \
  1444. offset >>= 1; \
  1445. for (int i = 0; i < offset; ++i) { \
  1446. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1447. } \
  1448. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1449. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1450. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1451. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1452. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1453. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1454. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1455. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1456. }
  1457. #define GGML_F32_VEC GGML_F32x4
  1458. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1459. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1460. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1461. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1462. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1463. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1464. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1465. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1466. // F16 LSX
  1467. #define GGML_F16_STEP 32
  1468. #define GGML_F16_EPR 4
  1469. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1470. float tmp[4];
  1471. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1472. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1473. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1474. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1475. return __lsx_vld(tmp, 0);
  1476. }
  1477. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1478. float arr[4];
  1479. __lsx_vst(y, arr, 0);
  1480. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1481. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1482. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1483. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1484. }
  1485. #define GGML_F32Cx4 __m128
  1486. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1487. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1488. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1489. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1490. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1491. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1492. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1493. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1494. #define GGML_F16_VEC GGML_F32Cx4
  1495. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1496. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1497. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1498. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1499. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1500. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1501. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1502. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1503. #endif
  1504. // GGML_F32_ARR / GGML_F16_ARR
  1505. // number of registers to use per step
  1506. #ifdef GGML_SIMD
  1507. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1508. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1509. #endif
  1510. //
  1511. // ggml context
  1512. //
  1513. struct ggml_context {
  1514. size_t mem_size;
  1515. void* mem_buffer;
  1516. bool mem_buffer_owned;
  1517. bool no_alloc;
  1518. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1519. int n_objects;
  1520. struct ggml_object* objects_begin;
  1521. struct ggml_object* objects_end;
  1522. struct ggml_scratch scratch;
  1523. struct ggml_scratch scratch_save;
  1524. };
  1525. struct ggml_context_container {
  1526. bool used;
  1527. struct ggml_context context;
  1528. };
  1529. struct ggml_compute_state_shared {
  1530. const struct ggml_cgraph* cgraph;
  1531. const struct ggml_cplan* cplan;
  1532. int64_t perf_node_start_cycles;
  1533. int64_t perf_node_start_time_us;
  1534. int n_threads;
  1535. // synchronization primitives
  1536. atomic_int n_active; // num active threads
  1537. atomic_int node_n; // active graph node
  1538. atomic_int node_task; // active graph node task phase
  1539. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1540. void* abort_callback_data;
  1541. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1542. };
  1543. struct ggml_compute_state {
  1544. ggml_thread_t thrd;
  1545. int ith;
  1546. struct ggml_compute_state_shared* shared;
  1547. enum ggml_status ec;
  1548. };
  1549. //
  1550. // fundamental operations
  1551. //
  1552. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1553. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1554. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1555. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1556. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1557. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1558. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1559. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1560. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1561. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1562. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1563. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1564. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1565. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1566. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1567. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1568. assert(nrc == 1);
  1569. UNUSED(nrc);
  1570. UNUSED(bx);
  1571. UNUSED(by);
  1572. UNUSED(bs);
  1573. #if defined(GGML_SIMD)
  1574. float sumf = 0.0f;
  1575. const int np = (n & ~(GGML_F32_STEP - 1));
  1576. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1577. GGML_F32_VEC ax[GGML_F32_ARR];
  1578. GGML_F32_VEC ay[GGML_F32_ARR];
  1579. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1580. for (int j = 0; j < GGML_F32_ARR; j++) {
  1581. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1582. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1583. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1584. }
  1585. }
  1586. // reduce sum0..sum3 to sum0
  1587. GGML_F32_VEC_REDUCE(sumf, sum);
  1588. // leftovers
  1589. for (int i = np; i < n; ++i) {
  1590. sumf += x[i]*y[i];
  1591. }
  1592. #else
  1593. // scalar
  1594. ggml_float sumf = 0.0;
  1595. for (int i = 0; i < n; ++i) {
  1596. sumf += (ggml_float)(x[i]*y[i]);
  1597. }
  1598. #endif
  1599. *s = sumf;
  1600. }
  1601. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1602. assert(nrc == 1);
  1603. UNUSED(nrc);
  1604. UNUSED(bx);
  1605. UNUSED(by);
  1606. UNUSED(bs);
  1607. int i = 0;
  1608. ggml_float sumf = 0;
  1609. #if defined(__AVX512BF16__)
  1610. __m512 c1 = _mm512_setzero_ps();
  1611. __m512 c2 = _mm512_setzero_ps();
  1612. for (; i + 64 <= n; i += 64) {
  1613. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1614. m512bh(_mm512_loadu_si512((y + i))));
  1615. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1616. m512bh(_mm512_loadu_si512((y + i + 32))));
  1617. }
  1618. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1619. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1620. #elif defined(__AVX512F__)
  1621. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1622. __m512 c1 = _mm512_setzero_ps();
  1623. __m512 c2 = _mm512_setzero_ps();
  1624. for (; i + 32 <= n; i += 32) {
  1625. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1626. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1627. }
  1628. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1629. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1630. #undef LOAD
  1631. #elif defined(__AVX2__)
  1632. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1633. __m256 c1 = _mm256_setzero_ps();
  1634. __m256 c2 = _mm256_setzero_ps();
  1635. __m256 c3 = _mm256_setzero_ps();
  1636. __m256 c4 = _mm256_setzero_ps();
  1637. for (; i + 32 <= n; i += 32) {
  1638. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1639. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1640. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1641. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1642. }
  1643. __m128 g;
  1644. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1645. _mm256_add_ps(c2, c4));
  1646. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1647. _mm256_castps256_ps128(c1));
  1648. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1649. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1650. sumf += (ggml_float)_mm_cvtss_f32(g);
  1651. #undef LOAD
  1652. #endif
  1653. for (; i < n; ++i) {
  1654. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1655. GGML_BF16_TO_FP32(y[i]));
  1656. }
  1657. *s = sumf;
  1658. }
  1659. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1660. assert(nrc == 1);
  1661. UNUSED(nrc);
  1662. UNUSED(bx);
  1663. UNUSED(by);
  1664. UNUSED(bs);
  1665. ggml_float sumf = 0.0;
  1666. #if defined(GGML_SIMD)
  1667. const int np = (n & ~(GGML_F16_STEP - 1));
  1668. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1669. GGML_F16_VEC ax[GGML_F16_ARR];
  1670. GGML_F16_VEC ay[GGML_F16_ARR];
  1671. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1672. for (int j = 0; j < GGML_F16_ARR; j++) {
  1673. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1674. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1675. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1676. }
  1677. }
  1678. // reduce sum0..sum3 to sum0
  1679. GGML_F16_VEC_REDUCE(sumf, sum);
  1680. // leftovers
  1681. for (int i = np; i < n; ++i) {
  1682. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1683. }
  1684. #else
  1685. for (int i = 0; i < n; ++i) {
  1686. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1687. }
  1688. #endif
  1689. *s = sumf;
  1690. }
  1691. // compute GGML_VEC_DOT_UNROLL dot products at once
  1692. // xs - x row stride in bytes
  1693. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1694. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1695. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1696. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1697. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1698. }
  1699. #if defined(GGML_SIMD)
  1700. const int np = (n & ~(GGML_F16_STEP - 1));
  1701. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1702. GGML_F16_VEC ax[GGML_F16_ARR];
  1703. GGML_F16_VEC ay[GGML_F16_ARR];
  1704. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1705. for (int j = 0; j < GGML_F16_ARR; j++) {
  1706. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1707. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1708. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1709. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1710. }
  1711. }
  1712. }
  1713. // reduce sum0..sum3 to sum0
  1714. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1715. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1716. }
  1717. // leftovers
  1718. for (int i = np; i < n; ++i) {
  1719. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1720. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1721. }
  1722. }
  1723. #else
  1724. for (int i = 0; i < n; ++i) {
  1725. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1726. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1727. }
  1728. }
  1729. #endif
  1730. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1731. s[i] = sumf[i];
  1732. }
  1733. }
  1734. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1735. #if defined(GGML_SIMD)
  1736. const int np = (n & ~(GGML_F32_STEP - 1));
  1737. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1738. GGML_F32_VEC ax[GGML_F32_ARR];
  1739. GGML_F32_VEC ay[GGML_F32_ARR];
  1740. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1741. for (int j = 0; j < GGML_F32_ARR; j++) {
  1742. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1743. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1744. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1745. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1746. }
  1747. }
  1748. // leftovers
  1749. for (int i = np; i < n; ++i) {
  1750. y[i] += x[i]*v;
  1751. }
  1752. #else
  1753. // scalar
  1754. for (int i = 0; i < n; ++i) {
  1755. y[i] += x[i]*v;
  1756. }
  1757. #endif
  1758. }
  1759. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1760. #if defined(GGML_SIMD)
  1761. const int np = (n & ~(GGML_F16_STEP - 1));
  1762. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1763. GGML_F16_VEC ax[GGML_F16_ARR];
  1764. GGML_F16_VEC ay[GGML_F16_ARR];
  1765. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1766. for (int j = 0; j < GGML_F16_ARR; j++) {
  1767. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1768. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1769. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1770. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1771. }
  1772. }
  1773. // leftovers
  1774. for (int i = np; i < n; ++i) {
  1775. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1776. }
  1777. #else
  1778. // scalar
  1779. for (int i = 0; i < n; ++i) {
  1780. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1781. }
  1782. #endif
  1783. }
  1784. // xs and vs are byte strides of x and v
  1785. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1786. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1787. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1788. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1789. x[i] = (const float *) ((const char *) xv + i*xs);
  1790. v[i] = (const float *) ((const char *) vv + i*vs);
  1791. }
  1792. #if defined(GGML_SIMD)
  1793. const int np = (n & ~(GGML_F32_STEP - 1));
  1794. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1795. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1796. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1797. }
  1798. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1799. GGML_F32_VEC ay[GGML_F32_ARR];
  1800. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1801. for (int j = 0; j < GGML_F32_ARR; j++) {
  1802. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1803. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1804. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1805. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1806. }
  1807. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1808. }
  1809. }
  1810. // leftovers
  1811. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1812. for (int i = np; i < n; ++i) {
  1813. y[i] += x[k][i]*v[k][0];
  1814. }
  1815. }
  1816. #else
  1817. // scalar
  1818. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1819. for (int i = 0; i < n; ++i) {
  1820. y[i] += x[k][i]*v[k][0];
  1821. }
  1822. }
  1823. #endif
  1824. }
  1825. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1826. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1827. #if defined(GGML_USE_ACCELERATE)
  1828. vDSP_vsmul(y, 1, &v, y, 1, n);
  1829. #elif defined(GGML_SIMD)
  1830. const int np = (n & ~(GGML_F32_STEP - 1));
  1831. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1832. GGML_F32_VEC ay[GGML_F32_ARR];
  1833. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1834. for (int j = 0; j < GGML_F32_ARR; j++) {
  1835. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1836. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1837. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1838. }
  1839. }
  1840. // leftovers
  1841. for (int i = np; i < n; ++i) {
  1842. y[i] *= v;
  1843. }
  1844. #else
  1845. // scalar
  1846. for (int i = 0; i < n; ++i) {
  1847. y[i] *= v;
  1848. }
  1849. #endif
  1850. }
  1851. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1852. #if defined(GGML_SIMD)
  1853. const int np = (n & ~(GGML_F16_STEP - 1));
  1854. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1855. GGML_F16_VEC ay[GGML_F16_ARR];
  1856. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1857. for (int j = 0; j < GGML_F16_ARR; j++) {
  1858. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1859. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1860. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1861. }
  1862. }
  1863. // leftovers
  1864. for (int i = np; i < n; ++i) {
  1865. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1866. }
  1867. #else
  1868. // scalar
  1869. for (int i = 0; i < n; ++i) {
  1870. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1871. }
  1872. #endif
  1873. }
  1874. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1875. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1876. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1877. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1878. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1879. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1880. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1881. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1882. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1883. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1884. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1885. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1886. // TODO: optimize performance
  1887. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1888. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1889. static const float GELU_COEF_A = 0.044715f;
  1890. static const float GELU_QUICK_COEF = -1.702f;
  1891. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1892. inline static float ggml_gelu_f32(float x) {
  1893. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1894. }
  1895. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1896. const uint16_t * i16 = (const uint16_t *) x;
  1897. for (int i = 0; i < n; ++i) {
  1898. y[i] = ggml_table_gelu_f16[i16[i]];
  1899. }
  1900. }
  1901. #ifdef GGML_GELU_FP16
  1902. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1903. uint16_t t;
  1904. for (int i = 0; i < n; ++i) {
  1905. if (x[i] <= -10.0f) {
  1906. y[i] = 0.0f;
  1907. } else if (x[i] >= 10.0f) {
  1908. y[i] = x[i];
  1909. } else {
  1910. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1911. memcpy(&t, &fp16, sizeof(uint16_t));
  1912. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1913. }
  1914. }
  1915. }
  1916. #else
  1917. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1918. for (int i = 0; i < n; ++i) {
  1919. y[i] = ggml_gelu_f32(x[i]);
  1920. }
  1921. }
  1922. #endif
  1923. inline static float ggml_gelu_quick_f32(float x) {
  1924. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1925. }
  1926. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1927. // const uint16_t * i16 = (const uint16_t *) x;
  1928. // for (int i = 0; i < n; ++i) {
  1929. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1930. // }
  1931. //}
  1932. #ifdef GGML_GELU_QUICK_FP16
  1933. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1934. uint16_t t;
  1935. for (int i = 0; i < n; ++i) {
  1936. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1937. memcpy(&t, &fp16, sizeof(uint16_t));
  1938. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1939. }
  1940. }
  1941. #else
  1942. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1943. for (int i = 0; i < n; ++i) {
  1944. y[i] = ggml_gelu_quick_f32(x[i]);
  1945. }
  1946. }
  1947. #endif
  1948. // Sigmoid Linear Unit (SiLU) function
  1949. inline static float ggml_silu_f32(float x) {
  1950. return x/(1.0f + expf(-x));
  1951. }
  1952. #if __FINITE_MATH_ONLY__
  1953. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  1954. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  1955. #endif
  1956. #if defined(__ARM_NEON) && defined(__aarch64__)
  1957. // adapted from arm limited optimized routine
  1958. // the maximum error is 1.45358 plus 0.5 ulps
  1959. // numbers above 88.38 will flush to infinity
  1960. // numbers beneath -103.97 will flush to zero
  1961. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1962. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1963. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1964. const float32x4_t n = vsubq_f32(z, r);
  1965. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1966. vdupq_n_f32(0x1.7f7d1cp-20f));
  1967. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1968. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1969. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1970. const float32x4_t u = vmulq_f32(b, b);
  1971. const float32x4_t j = vfmaq_f32(
  1972. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1973. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1974. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1975. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1976. return vfmaq_f32(k, j, k);
  1977. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1978. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1979. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1980. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1981. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1982. }
  1983. // computes silu x/(1+exp(-x)) in single precision vector
  1984. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1985. const float32x4_t one = vdupq_n_f32(1.0f);
  1986. const float32x4_t zero = vdupq_n_f32(0.0f);
  1987. const float32x4_t neg_x = vsubq_f32(zero, x);
  1988. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1989. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1990. return vdivq_f32(x, one_plus_exp_neg_x);
  1991. }
  1992. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1993. // adapted from arm limited optimized routine
  1994. // the maximum error is 1.45358 plus 0.5 ulps
  1995. // numbers above 88.38 will flush to infinity
  1996. // numbers beneath -103.97 will flush to zero
  1997. inline static __m512 ggml_v_expf(__m512 x) {
  1998. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  1999. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2000. const __m512 n = _mm512_sub_ps(z, r);
  2001. const __m512 b =
  2002. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2003. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2004. const __mmask16 d =
  2005. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2006. const __m512 u = _mm512_mul_ps(b, b);
  2007. const __m512 j = _mm512_fmadd_ps(
  2008. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2009. _mm512_set1_ps(0x1.573e2ep-5f)),
  2010. u,
  2011. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2012. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2013. u,
  2014. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2015. const __m512 res = _mm512_scalef_ps(j, n);
  2016. if (_mm512_kortestz(d, d))
  2017. return res;
  2018. const __m512 zero = _mm512_setzero_ps();
  2019. const __m512 alt = _mm512_mask_blend_ps(
  2020. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2021. return _mm512_mask_blend_ps(d, res, alt);
  2022. }
  2023. // computes silu x/(1+exp(-x)) in single precision vector
  2024. inline static __m512 ggml_v_silu(__m512 x) {
  2025. const __m512 one = _mm512_set1_ps(1);
  2026. const __m512 zero = _mm512_setzero_ps();
  2027. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2028. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2029. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2030. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2031. }
  2032. #elif defined(__AVX2__) && defined(__FMA__)
  2033. // adapted from arm limited optimized routine
  2034. // the maximum error is 1.45358 plus 0.5 ulps
  2035. // numbers above 88.38 will flush to infinity
  2036. // numbers beneath -103.97 will flush to zero
  2037. inline static __m256 ggml_v_expf(__m256 x) {
  2038. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2039. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2040. const __m256 n = _mm256_sub_ps(z, r);
  2041. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2042. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2043. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2044. const __m256 k = _mm256_castsi256_ps(
  2045. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2046. const __m256i c = _mm256_castps_si256(
  2047. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2048. _mm256_set1_ps(126), _CMP_GT_OQ));
  2049. const __m256 u = _mm256_mul_ps(b, b);
  2050. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2051. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2052. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2053. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2054. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2055. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2056. return _mm256_fmadd_ps(j, k, k);
  2057. const __m256i g = _mm256_and_si256(
  2058. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2059. _mm256_set1_epi32(0x82000000u));
  2060. const __m256 s1 =
  2061. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2062. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2063. const __m256i d = _mm256_castps_si256(
  2064. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2065. _mm256_set1_ps(192), _CMP_GT_OQ));
  2066. return _mm256_or_ps(
  2067. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2068. _mm256_andnot_ps(
  2069. _mm256_castsi256_ps(d),
  2070. _mm256_or_ps(
  2071. _mm256_and_ps(_mm256_castsi256_ps(c),
  2072. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2073. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2074. }
  2075. // computes silu x/(1+exp(-x)) in single precision vector
  2076. inline static __m256 ggml_v_silu(__m256 x) {
  2077. const __m256 one = _mm256_set1_ps(1);
  2078. const __m256 zero = _mm256_setzero_ps();
  2079. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2080. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2081. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2082. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2083. }
  2084. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2085. #if defined(__FMA__)
  2086. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2087. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2088. #else
  2089. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2090. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2091. #endif
  2092. // adapted from arm limited optimized routine
  2093. // the maximum error is 1.45358 plus 0.5 ulps
  2094. // numbers above 88.38 will flush to infinity
  2095. // numbers beneath -103.97 will flush to zero
  2096. inline static __m128 ggml_v_expf(__m128 x) {
  2097. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2098. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2099. const __m128 n = _mm_sub_ps(z, r);
  2100. const __m128 b =
  2101. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2102. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2103. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2104. const __m128i c =
  2105. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2106. const __m128 u = _mm_mul_ps(b, b);
  2107. const __m128 j =
  2108. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2109. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2110. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2111. if (!_mm_movemask_epi8(c))
  2112. return MADD128(j, k, k);
  2113. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2114. _mm_set1_epi32(0x82000000u));
  2115. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2116. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2117. const __m128i d =
  2118. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2119. return _mm_or_ps(
  2120. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2121. _mm_andnot_ps(_mm_castsi128_ps(d),
  2122. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2123. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2124. }
  2125. // computes silu x/(1+exp(-x)) in single precision vector
  2126. inline static __m128 ggml_v_silu(__m128 x) {
  2127. const __m128 one = _mm_set1_ps(1);
  2128. const __m128 zero = _mm_setzero_ps();
  2129. const __m128 neg_x = _mm_sub_ps(zero, x);
  2130. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2131. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2132. return _mm_div_ps(x, one_plus_exp_neg_x);
  2133. }
  2134. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2135. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2136. int i = 0;
  2137. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2138. for (; i + 15 < n; i += 16) {
  2139. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2140. }
  2141. #elif defined(__AVX2__) && defined(__FMA__)
  2142. for (; i + 7 < n; i += 8) {
  2143. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2144. }
  2145. #elif defined(__SSE2__)
  2146. for (; i + 3 < n; i += 4) {
  2147. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2148. }
  2149. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2150. for (; i + 3 < n; i += 4) {
  2151. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2152. }
  2153. #endif
  2154. for (; i < n; ++i) {
  2155. y[i] = ggml_silu_f32(x[i]);
  2156. }
  2157. }
  2158. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2159. int i = 0;
  2160. ggml_float sum = 0;
  2161. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2162. for (; i + 15 < n; i += 16) {
  2163. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2164. _mm512_set1_ps(max)));
  2165. _mm512_storeu_ps(y + i, val);
  2166. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2167. }
  2168. #elif defined(__AVX2__) && defined(__FMA__)
  2169. for (; i + 7 < n; i += 8) {
  2170. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2171. _mm256_set1_ps(max)));
  2172. _mm256_storeu_ps(y + i, val);
  2173. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2174. _mm256_castps256_ps128(val));
  2175. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2176. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2177. sum += (ggml_float)_mm_cvtss_f32(val2);
  2178. }
  2179. #elif defined(__SSE2__)
  2180. for (; i + 3 < n; i += 4) {
  2181. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2182. _mm_set1_ps(max)));
  2183. _mm_storeu_ps(y + i, val);
  2184. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2185. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2186. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2187. #else
  2188. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2189. val = _mm_add_ps(val, tmp);
  2190. tmp = _mm_movehl_ps(tmp, val);
  2191. val = _mm_add_ss(val, tmp);
  2192. #endif
  2193. sum += (ggml_float)_mm_cvtss_f32(val);
  2194. }
  2195. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2196. for (; i + 3 < n; i += 4) {
  2197. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2198. vdupq_n_f32(max)));
  2199. vst1q_f32(y + i, val);
  2200. sum += (ggml_float)vaddvq_f32(val);
  2201. }
  2202. #endif
  2203. for (; i < n; ++i) {
  2204. float val = expf(x[i] - max);
  2205. sum += (ggml_float)val;
  2206. y[i] = val;
  2207. }
  2208. return sum;
  2209. }
  2210. inline static float ggml_silu_backward_f32(float x, float dy) {
  2211. const float s = 1.0f/(1.0f + expf(-x));
  2212. return dy*s*(1.0f + x*(1.0f - s));
  2213. }
  2214. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2215. for (int i = 0; i < n; ++i) {
  2216. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2217. }
  2218. }
  2219. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2220. #ifndef GGML_USE_ACCELERATE
  2221. ggml_float sum = 0.0;
  2222. for (int i = 0; i < n; ++i) {
  2223. sum += (ggml_float)x[i];
  2224. }
  2225. *s = sum;
  2226. #else
  2227. vDSP_sve(x, 1, s, n);
  2228. #endif
  2229. }
  2230. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2231. ggml_float sum = 0.0;
  2232. for (int i = 0; i < n; ++i) {
  2233. sum += (ggml_float)x[i];
  2234. }
  2235. *s = sum;
  2236. }
  2237. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2238. float sum = 0.0f;
  2239. for (int i = 0; i < n; ++i) {
  2240. sum += GGML_FP16_TO_FP32(x[i]);
  2241. }
  2242. *s = sum;
  2243. }
  2244. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2245. float sum = 0.0f;
  2246. for (int i = 0; i < n; ++i) {
  2247. sum += GGML_BF16_TO_FP32(x[i]);
  2248. }
  2249. *s = sum;
  2250. }
  2251. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2252. #ifndef GGML_USE_ACCELERATE
  2253. float max = -INFINITY;
  2254. for (int i = 0; i < n; ++i) {
  2255. max = MAX(max, x[i]);
  2256. }
  2257. *s = max;
  2258. #else
  2259. vDSP_maxv(x, 1, s, n);
  2260. #endif
  2261. }
  2262. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2263. ggml_vec_norm_f32(n, s, x);
  2264. *s = 1.f/(*s);
  2265. }
  2266. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2267. float max = -INFINITY;
  2268. int idx = 0;
  2269. for (int i = 0; i < n; ++i) {
  2270. max = MAX(max, x[i]);
  2271. if (max == x[i]) { idx = i; }
  2272. }
  2273. *s = idx;
  2274. }
  2275. //
  2276. // data types
  2277. //
  2278. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2279. "NONE",
  2280. "DUP",
  2281. "ADD",
  2282. "ADD1",
  2283. "ACC",
  2284. "SUB",
  2285. "MUL",
  2286. "DIV",
  2287. "SQR",
  2288. "SQRT",
  2289. "LOG",
  2290. "SUM",
  2291. "SUM_ROWS",
  2292. "MEAN",
  2293. "ARGMAX",
  2294. "REPEAT",
  2295. "REPEAT_BACK",
  2296. "CONCAT",
  2297. "SILU_BACK",
  2298. "NORM",
  2299. "RMS_NORM",
  2300. "RMS_NORM_BACK",
  2301. "GROUP_NORM",
  2302. "MUL_MAT",
  2303. "MUL_MAT_ID",
  2304. "OUT_PROD",
  2305. "SCALE",
  2306. "SET",
  2307. "CPY",
  2308. "CONT",
  2309. "RESHAPE",
  2310. "VIEW",
  2311. "PERMUTE",
  2312. "TRANSPOSE",
  2313. "GET_ROWS",
  2314. "GET_ROWS_BACK",
  2315. "DIAG",
  2316. "DIAG_MASK_INF",
  2317. "DIAG_MASK_ZERO",
  2318. "SOFT_MAX",
  2319. "SOFT_MAX_BACK",
  2320. "ROPE",
  2321. "ROPE_BACK",
  2322. "CLAMP",
  2323. "CONV_TRANSPOSE_1D",
  2324. "IM2COL",
  2325. "CONV_TRANSPOSE_2D",
  2326. "POOL_1D",
  2327. "POOL_2D",
  2328. "UPSCALE",
  2329. "PAD",
  2330. "ARANGE",
  2331. "TIMESTEP_EMBEDDING",
  2332. "ARGSORT",
  2333. "LEAKY_RELU",
  2334. "FLASH_ATTN_EXT",
  2335. "FLASH_ATTN_BACK",
  2336. "SSM_CONV",
  2337. "SSM_SCAN",
  2338. "WIN_PART",
  2339. "WIN_UNPART",
  2340. "GET_REL_POS",
  2341. "ADD_REL_POS",
  2342. "UNARY",
  2343. "MAP_UNARY",
  2344. "MAP_BINARY",
  2345. "MAP_CUSTOM1_F32",
  2346. "MAP_CUSTOM2_F32",
  2347. "MAP_CUSTOM3_F32",
  2348. "MAP_CUSTOM1",
  2349. "MAP_CUSTOM2",
  2350. "MAP_CUSTOM3",
  2351. "CROSS_ENTROPY_LOSS",
  2352. "CROSS_ENTROPY_LOSS_BACK",
  2353. };
  2354. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2355. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2356. "none",
  2357. "x",
  2358. "x+y",
  2359. "x+y",
  2360. "view(x,nb,offset)+=y->x",
  2361. "x-y",
  2362. "x*y",
  2363. "x/y",
  2364. "x^2",
  2365. "√x",
  2366. "log(x)",
  2367. "Σx",
  2368. "Σx_k",
  2369. "Σx/n",
  2370. "argmax(x)",
  2371. "repeat(x)",
  2372. "repeat_back(x)",
  2373. "concat(x, y)",
  2374. "silu_back(x)",
  2375. "norm(x)",
  2376. "rms_norm(x)",
  2377. "rms_norm_back(x)",
  2378. "group_norm(x)",
  2379. "X*Y",
  2380. "X[i]*Y",
  2381. "X*Y",
  2382. "x*v",
  2383. "y-\\>view(x)",
  2384. "x-\\>y",
  2385. "cont(x)",
  2386. "reshape(x)",
  2387. "view(x)",
  2388. "permute(x)",
  2389. "transpose(x)",
  2390. "get_rows(x)",
  2391. "get_rows_back(x)",
  2392. "diag(x)",
  2393. "diag_mask_inf(x)",
  2394. "diag_mask_zero(x)",
  2395. "soft_max(x)",
  2396. "soft_max_back(x)",
  2397. "rope(x)",
  2398. "rope_back(x)",
  2399. "clamp(x)",
  2400. "conv_transpose_1d(x)",
  2401. "im2col(x)",
  2402. "conv_transpose_2d(x)",
  2403. "pool_1d(x)",
  2404. "pool_2d(x)",
  2405. "upscale(x)",
  2406. "pad(x)",
  2407. "arange(start, stop, step)",
  2408. "timestep_embedding(timesteps, dim, max_period)",
  2409. "argsort(x)",
  2410. "leaky_relu(x)",
  2411. "flash_attn_ext(x)",
  2412. "flash_attn_back(x)",
  2413. "ssm_conv(x)",
  2414. "ssm_scan(x)",
  2415. "win_part(x)",
  2416. "win_unpart(x)",
  2417. "get_rel_pos(x)",
  2418. "add_rel_pos(x)",
  2419. "unary(x)",
  2420. "f(x)",
  2421. "f(x,y)",
  2422. "custom_f32(x)",
  2423. "custom_f32(x,y)",
  2424. "custom_f32(x,y,z)",
  2425. "custom(x)",
  2426. "custom(x,y)",
  2427. "custom(x,y,z)",
  2428. "cross_entropy_loss(x,y)",
  2429. "cross_entropy_loss_back(x,y)",
  2430. };
  2431. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2432. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2433. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2434. "ABS",
  2435. "SGN",
  2436. "NEG",
  2437. "STEP",
  2438. "TANH",
  2439. "ELU",
  2440. "RELU",
  2441. "SIGMOID",
  2442. "GELU",
  2443. "GELU_QUICK",
  2444. "SILU",
  2445. "HARDSWISH",
  2446. "HARDSIGMOID",
  2447. };
  2448. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2449. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2450. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2451. // WARN:
  2452. // Mis-configuration can lead to problem that's hard to reason about:
  2453. // * At best it crash or talks nosense.
  2454. // * At worst it talks slightly difference but hard to perceive.
  2455. //
  2456. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2457. // Take care about compile options (e.g., GGML_USE_xxx).
  2458. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2459. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2460. static void ggml_setup_op_has_task_pass(void) {
  2461. { // INIT
  2462. bool * p = GGML_OP_HAS_INIT;
  2463. p[GGML_OP_ACC ] = true;
  2464. p[GGML_OP_MUL_MAT ] = true;
  2465. p[GGML_OP_MUL_MAT_ID ] = true;
  2466. p[GGML_OP_OUT_PROD ] = true;
  2467. p[GGML_OP_SET ] = true;
  2468. p[GGML_OP_GET_ROWS_BACK ] = true;
  2469. p[GGML_OP_DIAG_MASK_INF ] = true;
  2470. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2471. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2472. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2473. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2474. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2475. p[GGML_OP_ADD_REL_POS ] = true;
  2476. }
  2477. { // FINALIZE
  2478. bool * p = GGML_OP_HAS_FINALIZE;
  2479. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2480. }
  2481. }
  2482. //
  2483. // NUMA support
  2484. //
  2485. #define GGML_NUMA_MAX_NODES 8
  2486. #define GGML_NUMA_MAX_CPUS 512
  2487. struct ggml_numa_node {
  2488. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2489. uint32_t n_cpus;
  2490. };
  2491. struct ggml_numa_nodes {
  2492. enum ggml_numa_strategy numa_strategy;
  2493. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2494. uint32_t n_nodes;
  2495. uint32_t total_cpus; // hardware threads on system
  2496. uint32_t current_node; // node on which main process is execting
  2497. #if defined(__gnu_linux__)
  2498. cpu_set_t cpuset; // cpuset from numactl
  2499. #else
  2500. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2501. #endif
  2502. };
  2503. //
  2504. // ggml state
  2505. //
  2506. struct ggml_state {
  2507. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2508. struct ggml_numa_nodes numa;
  2509. };
  2510. // global state
  2511. static struct ggml_state g_state;
  2512. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2513. // barrier via spin lock
  2514. inline static void ggml_critical_section_start(void) {
  2515. while (atomic_flag_test_and_set(&g_state_critical)) {
  2516. // spin
  2517. sched_yield();
  2518. }
  2519. }
  2520. // TODO: make this somehow automatically executed
  2521. // some sort of "sentry" mechanism
  2522. inline static void ggml_critical_section_end(void) {
  2523. atomic_flag_clear(&g_state_critical);
  2524. }
  2525. #if defined(__gnu_linux__)
  2526. static cpu_set_t ggml_get_numa_affinity(void) {
  2527. cpu_set_t cpuset;
  2528. pthread_t thread;
  2529. thread = pthread_self();
  2530. CPU_ZERO(&cpuset);
  2531. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2532. return cpuset;
  2533. }
  2534. #else
  2535. static uint32_t ggml_get_numa_affinity(void) {
  2536. return 0; // no NUMA support
  2537. }
  2538. #endif
  2539. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2540. if (g_state.numa.n_nodes > 0) {
  2541. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2542. return;
  2543. }
  2544. #if defined(__gnu_linux__)
  2545. struct stat st;
  2546. char path[256];
  2547. int rv;
  2548. // set numa scheme
  2549. g_state.numa.numa_strategy = numa_flag;
  2550. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2551. g_state.numa.cpuset = ggml_get_numa_affinity();
  2552. // enumerate nodes
  2553. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2554. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2555. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2556. if (stat(path, &st) != 0) { break; }
  2557. ++g_state.numa.n_nodes;
  2558. }
  2559. // enumerate CPUs
  2560. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2561. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2562. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2563. if (stat(path, &st) != 0) { break; }
  2564. ++g_state.numa.total_cpus;
  2565. }
  2566. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2567. // figure out which node we're on
  2568. uint current_cpu;
  2569. int getcpu_ret = 0;
  2570. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2571. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2572. #else
  2573. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2574. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2575. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2576. # endif
  2577. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2578. #endif
  2579. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2580. g_state.numa.n_nodes = 0;
  2581. return;
  2582. }
  2583. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2584. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2585. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2586. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2587. node->n_cpus = 0;
  2588. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2589. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2590. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2591. if (stat(path, &st) == 0) {
  2592. node->cpus[node->n_cpus++] = c;
  2593. GGML_PRINT_DEBUG(" %u", c);
  2594. }
  2595. }
  2596. GGML_PRINT_DEBUG("\n");
  2597. }
  2598. if (ggml_is_numa()) {
  2599. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2600. if (fptr != NULL) {
  2601. char buf[42];
  2602. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2603. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2604. }
  2605. fclose(fptr);
  2606. }
  2607. }
  2608. #else
  2609. GGML_UNUSED(numa_flag);
  2610. // TODO
  2611. #endif
  2612. }
  2613. bool ggml_is_numa(void) {
  2614. return g_state.numa.n_nodes > 1;
  2615. }
  2616. ////////////////////////////////////////////////////////////////////////////////
  2617. void ggml_print_object(const struct ggml_object * obj) {
  2618. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2619. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2620. }
  2621. void ggml_print_objects(const struct ggml_context * ctx) {
  2622. struct ggml_object * obj = ctx->objects_begin;
  2623. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2624. while (obj != NULL) {
  2625. ggml_print_object(obj);
  2626. obj = obj->next;
  2627. }
  2628. GGML_PRINT("%s: --- end ---\n", __func__);
  2629. }
  2630. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2631. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2632. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2633. }
  2634. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2635. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2636. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2637. }
  2638. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2639. size_t nbytes;
  2640. size_t blck_size = ggml_blck_size(tensor->type);
  2641. if (blck_size == 1) {
  2642. nbytes = ggml_type_size(tensor->type);
  2643. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2644. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2645. }
  2646. }
  2647. else {
  2648. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2649. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2650. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2651. }
  2652. }
  2653. return nbytes;
  2654. }
  2655. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2656. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2657. }
  2658. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2659. return type_traits[type].blck_size;
  2660. }
  2661. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2662. return type_traits[type].type_size;
  2663. }
  2664. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2665. assert(ne % ggml_blck_size(type) == 0);
  2666. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2667. }
  2668. double ggml_type_sizef(enum ggml_type type) {
  2669. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2670. }
  2671. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2672. return type_traits[type].type_name;
  2673. }
  2674. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2675. return type_traits[type].is_quantized;
  2676. }
  2677. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2678. return GGML_OP_NAME[op];
  2679. }
  2680. const char * ggml_op_symbol(enum ggml_op op) {
  2681. return GGML_OP_SYMBOL[op];
  2682. }
  2683. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2684. return GGML_UNARY_OP_NAME[op];
  2685. }
  2686. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2687. if (t->op == GGML_OP_UNARY) {
  2688. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2689. return ggml_unary_op_name(uop);
  2690. }
  2691. else {
  2692. return ggml_op_name(t->op);
  2693. }
  2694. }
  2695. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2696. return ggml_type_size(tensor->type);
  2697. }
  2698. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2699. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2700. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2701. }
  2702. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2703. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2704. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2705. }
  2706. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2707. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2708. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2709. }
  2710. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2711. return tensor->ne[3] == 1;
  2712. }
  2713. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2714. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2715. if (tensor->ne[i] > 1) {
  2716. return i + 1;
  2717. }
  2718. }
  2719. return 1;
  2720. }
  2721. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2722. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2723. return (t0->ne[0] == t1->ne[0]) &&
  2724. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2725. (t1->ne[3]%t0->ne[3] == 0);
  2726. }
  2727. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2728. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2729. return (t0->ne[1] == t1->ne[1]) &&
  2730. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2731. (t1->ne[3]%t0->ne[3] == 0);
  2732. }
  2733. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2734. enum ggml_type wtype = GGML_TYPE_COUNT;
  2735. switch (ftype) {
  2736. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2737. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2738. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2739. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2740. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2741. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2742. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2743. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2744. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2745. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2746. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2747. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2748. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2749. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2750. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2751. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2752. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2753. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2754. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2755. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2756. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2757. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2758. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2759. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2760. }
  2761. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2762. return wtype;
  2763. }
  2764. size_t ggml_tensor_overhead(void) {
  2765. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2766. }
  2767. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2768. return tensor->nb[0] > tensor->nb[1];
  2769. }
  2770. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  2771. size_t next_nb = ggml_type_size(tensor->type);
  2772. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  2773. return false;
  2774. }
  2775. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  2776. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2777. if (tensor->ne[i] != 1) {
  2778. if (i > n) {
  2779. if (tensor->nb[i] != next_nb) {
  2780. return false;
  2781. }
  2782. next_nb *= tensor->ne[i];
  2783. } else {
  2784. // this dimension does not need to be contiguous
  2785. next_nb = tensor->ne[i]*tensor->nb[i];
  2786. }
  2787. }
  2788. }
  2789. return true;
  2790. }
  2791. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2792. return ggml_is_contiguous_0(tensor);
  2793. }
  2794. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2795. return ggml_is_contiguous_n(tensor, 0);
  2796. }
  2797. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2798. return ggml_is_contiguous_n(tensor, 1);
  2799. }
  2800. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2801. return ggml_is_contiguous_n(tensor, 2);
  2802. }
  2803. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2804. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2805. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2806. }
  2807. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2808. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2809. return
  2810. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2811. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2812. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2813. }
  2814. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2815. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2816. if (tensor->ne[i] == 0) {
  2817. // empty if any dimension has no elements
  2818. return true;
  2819. }
  2820. }
  2821. return false;
  2822. }
  2823. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2824. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2825. return
  2826. (t0->ne[0] == t1->ne[0]) &&
  2827. (t0->ne[1] == t1->ne[1]) &&
  2828. (t0->ne[2] == t1->ne[2]) &&
  2829. (t0->ne[3] == t1->ne[3]);
  2830. }
  2831. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2832. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2833. return
  2834. (t0->nb[0] == t1->nb[0]) &&
  2835. (t0->nb[1] == t1->nb[1]) &&
  2836. (t0->nb[2] == t1->nb[2]) &&
  2837. (t0->nb[3] == t1->nb[3]);
  2838. }
  2839. // check if t1 can be represented as a repeatition of t0
  2840. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2841. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2842. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2843. (t1->ne[0]%t0->ne[0] == 0) &&
  2844. (t1->ne[1]%t0->ne[1] == 0) &&
  2845. (t1->ne[2]%t0->ne[2] == 0) &&
  2846. (t1->ne[3]%t0->ne[3] == 0);
  2847. }
  2848. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2849. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2850. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2851. }
  2852. static inline int ggml_up32(int n) {
  2853. return (n + 31) & ~31;
  2854. }
  2855. //static inline int ggml_up64(int n) {
  2856. // return (n + 63) & ~63;
  2857. //}
  2858. static inline int ggml_up(int n, int m) {
  2859. // assert m is a power of 2
  2860. GGML_ASSERT((m & (m - 1)) == 0);
  2861. return (n + m - 1) & ~(m - 1);
  2862. }
  2863. // assert that pointer is aligned to GGML_MEM_ALIGN
  2864. #define ggml_assert_aligned(ptr) \
  2865. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2866. ////////////////////////////////////////////////////////////////////////////////
  2867. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2868. // make this function thread safe
  2869. ggml_critical_section_start();
  2870. static bool is_first_call = true;
  2871. if (is_first_call) {
  2872. // initialize time system (required on Windows)
  2873. ggml_time_init();
  2874. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2875. {
  2876. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2877. for (int i = 0; i < (1 << 16); ++i) {
  2878. union {
  2879. uint16_t u16;
  2880. ggml_fp16_t fp16;
  2881. } u = {i};
  2882. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2883. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2884. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2885. }
  2886. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2887. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2888. }
  2889. // initialize g_state
  2890. {
  2891. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2892. g_state = (struct ggml_state) {
  2893. /*.contexts =*/ { { 0 } },
  2894. /*.numa =*/ {
  2895. .n_nodes = 0,
  2896. .total_cpus = 0,
  2897. },
  2898. };
  2899. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2900. g_state.contexts[i].used = false;
  2901. }
  2902. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2903. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2904. }
  2905. ggml_setup_op_has_task_pass();
  2906. is_first_call = false;
  2907. }
  2908. // find non-used context in g_state
  2909. struct ggml_context * ctx = NULL;
  2910. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2911. if (!g_state.contexts[i].used) {
  2912. g_state.contexts[i].used = true;
  2913. ctx = &g_state.contexts[i].context;
  2914. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2915. break;
  2916. }
  2917. }
  2918. if (ctx == NULL) {
  2919. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2920. ggml_critical_section_end();
  2921. return NULL;
  2922. }
  2923. // allow to call ggml_init with 0 size
  2924. if (params.mem_size == 0) {
  2925. params.mem_size = GGML_MEM_ALIGN;
  2926. }
  2927. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2928. *ctx = (struct ggml_context) {
  2929. /*.mem_size =*/ mem_size,
  2930. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2931. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2932. /*.no_alloc =*/ params.no_alloc,
  2933. /*.no_alloc_save =*/ params.no_alloc,
  2934. /*.n_objects =*/ 0,
  2935. /*.objects_begin =*/ NULL,
  2936. /*.objects_end =*/ NULL,
  2937. /*.scratch =*/ { 0, 0, NULL, },
  2938. /*.scratch_save =*/ { 0, 0, NULL, },
  2939. };
  2940. GGML_ASSERT(ctx->mem_buffer != NULL);
  2941. ggml_assert_aligned(ctx->mem_buffer);
  2942. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2943. ggml_critical_section_end();
  2944. return ctx;
  2945. }
  2946. void ggml_free(struct ggml_context * ctx) {
  2947. if (ctx == NULL) {
  2948. return;
  2949. }
  2950. // make this function thread safe
  2951. ggml_critical_section_start();
  2952. bool found = false;
  2953. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2954. if (&g_state.contexts[i].context == ctx) {
  2955. g_state.contexts[i].used = false;
  2956. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2957. __func__, i, ggml_used_mem(ctx));
  2958. if (ctx->mem_buffer_owned) {
  2959. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2960. }
  2961. found = true;
  2962. break;
  2963. }
  2964. }
  2965. if (!found) {
  2966. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2967. }
  2968. ggml_critical_section_end();
  2969. }
  2970. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2971. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2972. }
  2973. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2974. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2975. ctx->scratch = scratch;
  2976. return result;
  2977. }
  2978. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2979. return ctx->no_alloc;
  2980. }
  2981. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2982. ctx->no_alloc = no_alloc;
  2983. }
  2984. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2985. return ctx->mem_buffer;
  2986. }
  2987. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2988. return ctx->mem_size;
  2989. }
  2990. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2991. size_t max_size = 0;
  2992. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2993. size_t bytes = ggml_nbytes(tensor);
  2994. max_size = MAX(max_size, bytes);
  2995. }
  2996. return max_size;
  2997. }
  2998. // IMPORTANT:
  2999. // when creating "opt" tensors, always save and load the scratch buffer
  3000. // this is an error prone process, but it is necessary to support inplace
  3001. // operators when using scratch buffers
  3002. // TODO: implement a better way
  3003. static void ggml_scratch_save(struct ggml_context * ctx) {
  3004. // this is needed to allow opt tensors to store their data
  3005. // TODO: again, need to find a better way
  3006. ctx->no_alloc_save = ctx->no_alloc;
  3007. ctx->no_alloc = false;
  3008. ctx->scratch_save = ctx->scratch;
  3009. ctx->scratch.data = NULL;
  3010. }
  3011. static void ggml_scratch_load(struct ggml_context * ctx) {
  3012. ctx->no_alloc = ctx->no_alloc_save;
  3013. ctx->scratch = ctx->scratch_save;
  3014. }
  3015. ////////////////////////////////////////////////////////////////////////////////
  3016. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3017. // always insert objects at the end of the context's memory pool
  3018. struct ggml_object * obj_cur = ctx->objects_end;
  3019. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3020. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3021. const size_t cur_end = cur_offs + cur_size;
  3022. // align to GGML_MEM_ALIGN
  3023. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3024. char * const mem_buffer = ctx->mem_buffer;
  3025. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3026. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3027. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3028. __func__, cur_end + size_needed, ctx->mem_size);
  3029. assert(false);
  3030. return NULL;
  3031. }
  3032. *obj_new = (struct ggml_object) {
  3033. .offs = cur_end + GGML_OBJECT_SIZE,
  3034. .size = size_needed,
  3035. .next = NULL,
  3036. .type = type,
  3037. };
  3038. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3039. if (obj_cur != NULL) {
  3040. obj_cur->next = obj_new;
  3041. } else {
  3042. // this is the first object in this context
  3043. ctx->objects_begin = obj_new;
  3044. }
  3045. ctx->objects_end = obj_new;
  3046. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3047. return obj_new;
  3048. }
  3049. static struct ggml_tensor * ggml_new_tensor_impl(
  3050. struct ggml_context * ctx,
  3051. enum ggml_type type,
  3052. int n_dims,
  3053. const int64_t * ne,
  3054. struct ggml_tensor * view_src,
  3055. size_t view_offs) {
  3056. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3057. // find the base tensor and absolute offset
  3058. if (view_src != NULL && view_src->view_src != NULL) {
  3059. view_offs += view_src->view_offs;
  3060. view_src = view_src->view_src;
  3061. }
  3062. size_t data_size = ggml_row_size(type, ne[0]);
  3063. for (int i = 1; i < n_dims; i++) {
  3064. data_size *= ne[i];
  3065. }
  3066. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3067. void * data = view_src != NULL ? view_src->data : NULL;
  3068. if (data != NULL) {
  3069. data = (char *) data + view_offs;
  3070. }
  3071. size_t obj_alloc_size = 0;
  3072. if (view_src == NULL && !ctx->no_alloc) {
  3073. if (ctx->scratch.data != NULL) {
  3074. // allocate tensor data in the scratch buffer
  3075. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3076. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3077. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3078. assert(false);
  3079. return NULL;
  3080. }
  3081. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3082. ctx->scratch.offs += data_size;
  3083. } else {
  3084. // allocate tensor data in the context's memory pool
  3085. obj_alloc_size = data_size;
  3086. }
  3087. }
  3088. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3089. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3090. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3091. #ifdef __clang__
  3092. // temporary until ggml_tensor::backend is removed
  3093. #pragma clang diagnostic push
  3094. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3095. #endif
  3096. *result = (struct ggml_tensor) {
  3097. /*.type =*/ type,
  3098. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3099. /*.buffer =*/ NULL,
  3100. /*.ne =*/ { 1, 1, 1, 1 },
  3101. /*.nb =*/ { 0, 0, 0, 0 },
  3102. /*.op =*/ GGML_OP_NONE,
  3103. /*.op_params =*/ { 0 },
  3104. /*.flags =*/ 0,
  3105. /*.grad =*/ NULL,
  3106. /*.src =*/ { NULL },
  3107. /*.perf_runs =*/ 0,
  3108. /*.perf_cycles =*/ 0,
  3109. /*.perf_time_us =*/ 0,
  3110. /*.view_src =*/ view_src,
  3111. /*.view_offs =*/ view_offs,
  3112. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3113. /*.name =*/ { 0 },
  3114. /*.extra =*/ NULL,
  3115. /*.padding =*/ { 0 },
  3116. };
  3117. #ifdef __clang__
  3118. #pragma clang diagnostic pop
  3119. #endif
  3120. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3121. //ggml_assert_aligned(result->data);
  3122. for (int i = 0; i < n_dims; i++) {
  3123. result->ne[i] = ne[i];
  3124. }
  3125. result->nb[0] = ggml_type_size(type);
  3126. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3127. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3128. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3129. }
  3130. ctx->n_objects++;
  3131. return result;
  3132. }
  3133. struct ggml_tensor * ggml_new_tensor(
  3134. struct ggml_context * ctx,
  3135. enum ggml_type type,
  3136. int n_dims,
  3137. const int64_t * ne) {
  3138. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3139. }
  3140. struct ggml_tensor * ggml_new_tensor_1d(
  3141. struct ggml_context * ctx,
  3142. enum ggml_type type,
  3143. int64_t ne0) {
  3144. return ggml_new_tensor(ctx, type, 1, &ne0);
  3145. }
  3146. struct ggml_tensor * ggml_new_tensor_2d(
  3147. struct ggml_context * ctx,
  3148. enum ggml_type type,
  3149. int64_t ne0,
  3150. int64_t ne1) {
  3151. const int64_t ne[2] = { ne0, ne1 };
  3152. return ggml_new_tensor(ctx, type, 2, ne);
  3153. }
  3154. struct ggml_tensor * ggml_new_tensor_3d(
  3155. struct ggml_context * ctx,
  3156. enum ggml_type type,
  3157. int64_t ne0,
  3158. int64_t ne1,
  3159. int64_t ne2) {
  3160. const int64_t ne[3] = { ne0, ne1, ne2 };
  3161. return ggml_new_tensor(ctx, type, 3, ne);
  3162. }
  3163. struct ggml_tensor * ggml_new_tensor_4d(
  3164. struct ggml_context * ctx,
  3165. enum ggml_type type,
  3166. int64_t ne0,
  3167. int64_t ne1,
  3168. int64_t ne2,
  3169. int64_t ne3) {
  3170. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3171. return ggml_new_tensor(ctx, type, 4, ne);
  3172. }
  3173. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3174. ggml_scratch_save(ctx);
  3175. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3176. ggml_scratch_load(ctx);
  3177. ggml_set_i32(result, value);
  3178. return result;
  3179. }
  3180. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3181. ggml_scratch_save(ctx);
  3182. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3183. ggml_scratch_load(ctx);
  3184. ggml_set_f32(result, value);
  3185. return result;
  3186. }
  3187. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3188. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3189. }
  3190. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3191. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3192. assert(params_size <= GGML_MAX_OP_PARAMS);
  3193. memcpy(tensor->op_params, params, params_size);
  3194. }
  3195. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3196. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3197. return ((const int32_t *)(tensor->op_params))[i];
  3198. }
  3199. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3200. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3201. return ((const float *)(tensor->op_params))[i];
  3202. }
  3203. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3204. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3205. ((int32_t *)(tensor->op_params))[i] = value;
  3206. }
  3207. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3208. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3209. ((float *)(tensor->op_params))[i] = value;
  3210. }
  3211. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3212. memset(tensor->data, 0, ggml_nbytes(tensor));
  3213. return tensor;
  3214. }
  3215. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3216. const int n = ggml_nrows(tensor);
  3217. const int nc = tensor->ne[0];
  3218. const size_t n1 = tensor->nb[1];
  3219. char * const data = tensor->data;
  3220. switch (tensor->type) {
  3221. case GGML_TYPE_I8:
  3222. {
  3223. assert(tensor->nb[0] == sizeof(int8_t));
  3224. for (int i = 0; i < n; i++) {
  3225. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3226. }
  3227. } break;
  3228. case GGML_TYPE_I16:
  3229. {
  3230. assert(tensor->nb[0] == sizeof(int16_t));
  3231. for (int i = 0; i < n; i++) {
  3232. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3233. }
  3234. } break;
  3235. case GGML_TYPE_I32:
  3236. {
  3237. assert(tensor->nb[0] == sizeof(int32_t));
  3238. for (int i = 0; i < n; i++) {
  3239. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3240. }
  3241. } break;
  3242. case GGML_TYPE_F16:
  3243. {
  3244. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3245. for (int i = 0; i < n; i++) {
  3246. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3247. }
  3248. } break;
  3249. case GGML_TYPE_BF16:
  3250. {
  3251. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3252. for (int i = 0; i < n; i++) {
  3253. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3254. }
  3255. } break;
  3256. case GGML_TYPE_F32:
  3257. {
  3258. assert(tensor->nb[0] == sizeof(float));
  3259. for (int i = 0; i < n; i++) {
  3260. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3261. }
  3262. } break;
  3263. default:
  3264. {
  3265. GGML_ASSERT(false);
  3266. } break;
  3267. }
  3268. return tensor;
  3269. }
  3270. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3271. const int n = ggml_nrows(tensor);
  3272. const int nc = tensor->ne[0];
  3273. const size_t n1 = tensor->nb[1];
  3274. char * const data = tensor->data;
  3275. switch (tensor->type) {
  3276. case GGML_TYPE_I8:
  3277. {
  3278. assert(tensor->nb[0] == sizeof(int8_t));
  3279. for (int i = 0; i < n; i++) {
  3280. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3281. }
  3282. } break;
  3283. case GGML_TYPE_I16:
  3284. {
  3285. assert(tensor->nb[0] == sizeof(int16_t));
  3286. for (int i = 0; i < n; i++) {
  3287. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3288. }
  3289. } break;
  3290. case GGML_TYPE_I32:
  3291. {
  3292. assert(tensor->nb[0] == sizeof(int32_t));
  3293. for (int i = 0; i < n; i++) {
  3294. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3295. }
  3296. } break;
  3297. case GGML_TYPE_F16:
  3298. {
  3299. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3300. for (int i = 0; i < n; i++) {
  3301. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3302. }
  3303. } break;
  3304. case GGML_TYPE_BF16:
  3305. {
  3306. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3307. for (int i = 0; i < n; i++) {
  3308. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3309. }
  3310. } break;
  3311. case GGML_TYPE_F32:
  3312. {
  3313. assert(tensor->nb[0] == sizeof(float));
  3314. for (int i = 0; i < n; i++) {
  3315. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3316. }
  3317. } break;
  3318. default:
  3319. {
  3320. GGML_ASSERT(false);
  3321. } break;
  3322. }
  3323. return tensor;
  3324. }
  3325. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3326. const int64_t ne2 = tensor->ne[2];
  3327. const int64_t ne1 = tensor->ne[1];
  3328. const int64_t ne0 = tensor->ne[0];
  3329. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3330. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3331. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3332. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3333. if (i0) {
  3334. * i0 = i0_;
  3335. }
  3336. if (i1) {
  3337. * i1 = i1_;
  3338. }
  3339. if (i2) {
  3340. * i2 = i2_;
  3341. }
  3342. if (i3) {
  3343. * i3 = i3_;
  3344. }
  3345. }
  3346. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3347. if (!ggml_is_contiguous(tensor)) {
  3348. int64_t id[4] = { 0, 0, 0, 0 };
  3349. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3350. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3351. }
  3352. switch (tensor->type) {
  3353. case GGML_TYPE_I8:
  3354. {
  3355. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3356. return ((int8_t *)(tensor->data))[i];
  3357. }
  3358. case GGML_TYPE_I16:
  3359. {
  3360. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3361. return ((int16_t *)(tensor->data))[i];
  3362. }
  3363. case GGML_TYPE_I32:
  3364. {
  3365. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3366. return ((int32_t *)(tensor->data))[i];
  3367. }
  3368. case GGML_TYPE_F16:
  3369. {
  3370. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3371. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3372. }
  3373. case GGML_TYPE_BF16:
  3374. {
  3375. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3376. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3377. }
  3378. case GGML_TYPE_F32:
  3379. {
  3380. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3381. return ((float *)(tensor->data))[i];
  3382. }
  3383. default:
  3384. {
  3385. GGML_ASSERT(false);
  3386. }
  3387. }
  3388. return 0.0f;
  3389. }
  3390. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3391. if (!ggml_is_contiguous(tensor)) {
  3392. int64_t id[4] = { 0, 0, 0, 0 };
  3393. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3394. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3395. return;
  3396. }
  3397. switch (tensor->type) {
  3398. case GGML_TYPE_I8:
  3399. {
  3400. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3401. ((int8_t *)(tensor->data))[i] = value;
  3402. } break;
  3403. case GGML_TYPE_I16:
  3404. {
  3405. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3406. ((int16_t *)(tensor->data))[i] = value;
  3407. } break;
  3408. case GGML_TYPE_I32:
  3409. {
  3410. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3411. ((int32_t *)(tensor->data))[i] = value;
  3412. } break;
  3413. case GGML_TYPE_F16:
  3414. {
  3415. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3416. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3417. } break;
  3418. case GGML_TYPE_BF16:
  3419. {
  3420. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3421. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3422. } break;
  3423. case GGML_TYPE_F32:
  3424. {
  3425. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3426. ((float *)(tensor->data))[i] = value;
  3427. } break;
  3428. default:
  3429. {
  3430. GGML_ASSERT(false);
  3431. } break;
  3432. }
  3433. }
  3434. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3435. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3436. switch (tensor->type) {
  3437. case GGML_TYPE_I8:
  3438. return ((int8_t *) data)[0];
  3439. case GGML_TYPE_I16:
  3440. return ((int16_t *) data)[0];
  3441. case GGML_TYPE_I32:
  3442. return ((int32_t *) data)[0];
  3443. case GGML_TYPE_F16:
  3444. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3445. case GGML_TYPE_BF16:
  3446. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3447. case GGML_TYPE_F32:
  3448. return ((float *) data)[0];
  3449. default:
  3450. GGML_ASSERT(false);
  3451. }
  3452. return 0.0f;
  3453. }
  3454. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3455. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3456. switch (tensor->type) {
  3457. case GGML_TYPE_I8:
  3458. {
  3459. ((int8_t *)(data))[0] = value;
  3460. } break;
  3461. case GGML_TYPE_I16:
  3462. {
  3463. ((int16_t *)(data))[0] = value;
  3464. } break;
  3465. case GGML_TYPE_I32:
  3466. {
  3467. ((int32_t *)(data))[0] = value;
  3468. } break;
  3469. case GGML_TYPE_F16:
  3470. {
  3471. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3472. } break;
  3473. case GGML_TYPE_BF16:
  3474. {
  3475. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3476. } break;
  3477. case GGML_TYPE_F32:
  3478. {
  3479. ((float *)(data))[0] = value;
  3480. } break;
  3481. default:
  3482. {
  3483. GGML_ASSERT(false);
  3484. } break;
  3485. }
  3486. }
  3487. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3488. if (!ggml_is_contiguous(tensor)) {
  3489. int64_t id[4] = { 0, 0, 0, 0 };
  3490. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3491. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3492. }
  3493. switch (tensor->type) {
  3494. case GGML_TYPE_I8:
  3495. {
  3496. return ((int8_t *)(tensor->data))[i];
  3497. }
  3498. case GGML_TYPE_I16:
  3499. {
  3500. return ((int16_t *)(tensor->data))[i];
  3501. }
  3502. case GGML_TYPE_I32:
  3503. {
  3504. return ((int32_t *)(tensor->data))[i];
  3505. }
  3506. case GGML_TYPE_F16:
  3507. {
  3508. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3509. }
  3510. case GGML_TYPE_BF16:
  3511. {
  3512. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3513. }
  3514. case GGML_TYPE_F32:
  3515. {
  3516. return ((float *)(tensor->data))[i];
  3517. }
  3518. default:
  3519. {
  3520. GGML_ASSERT(false);
  3521. }
  3522. }
  3523. return 0.0f;
  3524. }
  3525. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3526. if (!ggml_is_contiguous(tensor)) {
  3527. int64_t id[4] = { 0, 0, 0, 0 };
  3528. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3529. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3530. return;
  3531. }
  3532. switch (tensor->type) {
  3533. case GGML_TYPE_I8:
  3534. {
  3535. ((int8_t *)(tensor->data))[i] = value;
  3536. } break;
  3537. case GGML_TYPE_I16:
  3538. {
  3539. ((int16_t *)(tensor->data))[i] = value;
  3540. } break;
  3541. case GGML_TYPE_I32:
  3542. {
  3543. ((int32_t *)(tensor->data))[i] = value;
  3544. } break;
  3545. case GGML_TYPE_F16:
  3546. {
  3547. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3548. } break;
  3549. case GGML_TYPE_BF16:
  3550. {
  3551. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3552. } break;
  3553. case GGML_TYPE_F32:
  3554. {
  3555. ((float *)(tensor->data))[i] = value;
  3556. } break;
  3557. default:
  3558. {
  3559. GGML_ASSERT(false);
  3560. } break;
  3561. }
  3562. }
  3563. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3564. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3565. switch (tensor->type) {
  3566. case GGML_TYPE_I8:
  3567. return ((int8_t *) data)[0];
  3568. case GGML_TYPE_I16:
  3569. return ((int16_t *) data)[0];
  3570. case GGML_TYPE_I32:
  3571. return ((int32_t *) data)[0];
  3572. case GGML_TYPE_F16:
  3573. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3574. case GGML_TYPE_BF16:
  3575. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3576. case GGML_TYPE_F32:
  3577. return ((float *) data)[0];
  3578. default:
  3579. GGML_ASSERT(false);
  3580. }
  3581. return 0.0f;
  3582. }
  3583. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3584. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3585. switch (tensor->type) {
  3586. case GGML_TYPE_I8:
  3587. {
  3588. ((int8_t *)(data))[0] = value;
  3589. } break;
  3590. case GGML_TYPE_I16:
  3591. {
  3592. ((int16_t *)(data))[0] = value;
  3593. } break;
  3594. case GGML_TYPE_I32:
  3595. {
  3596. ((int32_t *)(data))[0] = value;
  3597. } break;
  3598. case GGML_TYPE_F16:
  3599. {
  3600. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3601. } break;
  3602. case GGML_TYPE_BF16:
  3603. {
  3604. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3605. } break;
  3606. case GGML_TYPE_F32:
  3607. {
  3608. ((float *)(data))[0] = value;
  3609. } break;
  3610. default:
  3611. {
  3612. GGML_ASSERT(false);
  3613. } break;
  3614. }
  3615. }
  3616. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3617. return tensor->data;
  3618. }
  3619. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3620. assert(tensor->type == GGML_TYPE_F32);
  3621. return (float *)(tensor->data);
  3622. }
  3623. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3624. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3625. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3626. }
  3627. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3628. return tensor->name;
  3629. }
  3630. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3631. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3632. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3633. return tensor;
  3634. }
  3635. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3636. va_list args;
  3637. va_start(args, fmt);
  3638. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3639. va_end(args);
  3640. return tensor;
  3641. }
  3642. struct ggml_tensor * ggml_view_tensor(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * src) {
  3645. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3646. ggml_format_name(result, "%s (view)", src->name);
  3647. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3648. result->nb[i] = src->nb[i];
  3649. }
  3650. return result;
  3651. }
  3652. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3653. struct ggml_object * obj = ctx->objects_begin;
  3654. char * const mem_buffer = ctx->mem_buffer;
  3655. while (obj != NULL) {
  3656. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3657. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3658. }
  3659. obj = obj->next;
  3660. }
  3661. return NULL;
  3662. }
  3663. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3664. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3665. obj = obj->next;
  3666. char * const mem_buffer = ctx->mem_buffer;
  3667. while (obj != NULL) {
  3668. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3669. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3670. }
  3671. obj = obj->next;
  3672. }
  3673. return NULL;
  3674. }
  3675. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3676. struct ggml_object * obj = ctx->objects_begin;
  3677. char * const mem_buffer = ctx->mem_buffer;
  3678. while (obj != NULL) {
  3679. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3680. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3681. if (strcmp(cur->name, name) == 0) {
  3682. return cur;
  3683. }
  3684. }
  3685. obj = obj->next;
  3686. }
  3687. return NULL;
  3688. }
  3689. ////////////////////////////////////////////////////////////////////////////////
  3690. // ggml_dup
  3691. static struct ggml_tensor * ggml_dup_impl(
  3692. struct ggml_context * ctx,
  3693. struct ggml_tensor * a,
  3694. bool inplace) {
  3695. bool is_node = false;
  3696. if (!inplace && (a->grad)) {
  3697. is_node = true;
  3698. }
  3699. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3700. result->op = GGML_OP_DUP;
  3701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3702. result->src[0] = a;
  3703. return result;
  3704. }
  3705. struct ggml_tensor * ggml_dup(
  3706. struct ggml_context * ctx,
  3707. struct ggml_tensor * a) {
  3708. return ggml_dup_impl(ctx, a, false);
  3709. }
  3710. struct ggml_tensor * ggml_dup_inplace(
  3711. struct ggml_context * ctx,
  3712. struct ggml_tensor * a) {
  3713. return ggml_dup_impl(ctx, a, true);
  3714. }
  3715. // ggml_add
  3716. static struct ggml_tensor * ggml_add_impl(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a,
  3719. struct ggml_tensor * b,
  3720. bool inplace) {
  3721. GGML_ASSERT(ggml_can_repeat(b, a));
  3722. bool is_node = false;
  3723. if (!inplace && (a->grad || b->grad)) {
  3724. // TODO: support backward pass for broadcasting
  3725. GGML_ASSERT(ggml_are_same_shape(a, b));
  3726. is_node = true;
  3727. }
  3728. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3729. result->op = GGML_OP_ADD;
  3730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3731. result->src[0] = a;
  3732. result->src[1] = b;
  3733. return result;
  3734. }
  3735. struct ggml_tensor * ggml_add(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a,
  3738. struct ggml_tensor * b) {
  3739. return ggml_add_impl(ctx, a, b, false);
  3740. }
  3741. struct ggml_tensor * ggml_add_inplace(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a,
  3744. struct ggml_tensor * b) {
  3745. return ggml_add_impl(ctx, a, b, true);
  3746. }
  3747. // ggml_add_cast
  3748. static struct ggml_tensor * ggml_add_cast_impl(
  3749. struct ggml_context * ctx,
  3750. struct ggml_tensor * a,
  3751. struct ggml_tensor * b,
  3752. enum ggml_type type) {
  3753. // TODO: support less-strict constraint
  3754. // GGML_ASSERT(ggml_can_repeat(b, a));
  3755. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3756. // currently only supported for quantized input and f16
  3757. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3758. a->type == GGML_TYPE_F16 ||
  3759. a->type == GGML_TYPE_BF16);
  3760. bool is_node = false;
  3761. if (a->grad || b->grad) {
  3762. // TODO: support backward pass for broadcasting
  3763. GGML_ASSERT(ggml_are_same_shape(a, b));
  3764. is_node = true;
  3765. }
  3766. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3767. result->op = GGML_OP_ADD;
  3768. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3769. result->src[0] = a;
  3770. result->src[1] = b;
  3771. return result;
  3772. }
  3773. struct ggml_tensor * ggml_add_cast(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a,
  3776. struct ggml_tensor * b,
  3777. enum ggml_type type) {
  3778. return ggml_add_cast_impl(ctx, a, b, type);
  3779. }
  3780. // ggml_add1
  3781. static struct ggml_tensor * ggml_add1_impl(
  3782. struct ggml_context * ctx,
  3783. struct ggml_tensor * a,
  3784. struct ggml_tensor * b,
  3785. bool inplace) {
  3786. GGML_ASSERT(ggml_is_scalar(b));
  3787. GGML_ASSERT(ggml_is_padded_1d(a));
  3788. bool is_node = false;
  3789. if (a->grad || b->grad) {
  3790. is_node = true;
  3791. }
  3792. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3793. result->op = GGML_OP_ADD1;
  3794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3795. result->src[0] = a;
  3796. result->src[1] = b;
  3797. return result;
  3798. }
  3799. struct ggml_tensor * ggml_add1(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. struct ggml_tensor * b) {
  3803. return ggml_add1_impl(ctx, a, b, false);
  3804. }
  3805. struct ggml_tensor * ggml_add1_inplace(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a,
  3808. struct ggml_tensor * b) {
  3809. return ggml_add1_impl(ctx, a, b, true);
  3810. }
  3811. // ggml_acc
  3812. static struct ggml_tensor * ggml_acc_impl(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a,
  3815. struct ggml_tensor * b,
  3816. size_t nb1,
  3817. size_t nb2,
  3818. size_t nb3,
  3819. size_t offset,
  3820. bool inplace) {
  3821. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3822. GGML_ASSERT(ggml_is_contiguous(a));
  3823. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3824. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3825. bool is_node = false;
  3826. if (!inplace && (a->grad || b->grad)) {
  3827. is_node = true;
  3828. }
  3829. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3830. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3831. ggml_set_op_params(result, params, sizeof(params));
  3832. result->op = GGML_OP_ACC;
  3833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3834. result->src[0] = a;
  3835. result->src[1] = b;
  3836. return result;
  3837. }
  3838. struct ggml_tensor * ggml_acc(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a,
  3841. struct ggml_tensor * b,
  3842. size_t nb1,
  3843. size_t nb2,
  3844. size_t nb3,
  3845. size_t offset) {
  3846. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3847. }
  3848. struct ggml_tensor * ggml_acc_inplace(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. struct ggml_tensor * b,
  3852. size_t nb1,
  3853. size_t nb2,
  3854. size_t nb3,
  3855. size_t offset) {
  3856. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3857. }
  3858. // ggml_sub
  3859. static struct ggml_tensor * ggml_sub_impl(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. struct ggml_tensor * b,
  3863. bool inplace) {
  3864. GGML_ASSERT(ggml_are_same_shape(a, b));
  3865. bool is_node = false;
  3866. if (!inplace && (a->grad || b->grad)) {
  3867. is_node = true;
  3868. }
  3869. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3870. result->op = GGML_OP_SUB;
  3871. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3872. result->src[0] = a;
  3873. result->src[1] = b;
  3874. return result;
  3875. }
  3876. struct ggml_tensor * ggml_sub(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. struct ggml_tensor * b) {
  3880. return ggml_sub_impl(ctx, a, b, false);
  3881. }
  3882. struct ggml_tensor * ggml_sub_inplace(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b) {
  3886. return ggml_sub_impl(ctx, a, b, true);
  3887. }
  3888. // ggml_mul
  3889. static struct ggml_tensor * ggml_mul_impl(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. struct ggml_tensor * b,
  3893. bool inplace) {
  3894. GGML_ASSERT(ggml_can_repeat(b, a));
  3895. bool is_node = false;
  3896. if (!inplace && (a->grad || b->grad)) {
  3897. // TODO: support backward pass for broadcasting
  3898. GGML_ASSERT(ggml_are_same_shape(a, b));
  3899. is_node = true;
  3900. }
  3901. if (inplace) {
  3902. GGML_ASSERT(!is_node);
  3903. }
  3904. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3905. result->op = GGML_OP_MUL;
  3906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3907. result->src[0] = a;
  3908. result->src[1] = b;
  3909. return result;
  3910. }
  3911. struct ggml_tensor * ggml_mul(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. struct ggml_tensor * b) {
  3915. return ggml_mul_impl(ctx, a, b, false);
  3916. }
  3917. struct ggml_tensor * ggml_mul_inplace(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. struct ggml_tensor * b) {
  3921. return ggml_mul_impl(ctx, a, b, true);
  3922. }
  3923. // ggml_div
  3924. static struct ggml_tensor * ggml_div_impl(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a,
  3927. struct ggml_tensor * b,
  3928. bool inplace) {
  3929. GGML_ASSERT(ggml_can_repeat(b, a));
  3930. bool is_node = false;
  3931. if (!inplace && (a->grad || b->grad)) {
  3932. is_node = true;
  3933. }
  3934. if (inplace) {
  3935. GGML_ASSERT(!is_node);
  3936. }
  3937. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3938. result->op = GGML_OP_DIV;
  3939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3940. result->src[0] = a;
  3941. result->src[1] = b;
  3942. return result;
  3943. }
  3944. struct ggml_tensor * ggml_div(
  3945. struct ggml_context * ctx,
  3946. struct ggml_tensor * a,
  3947. struct ggml_tensor * b) {
  3948. return ggml_div_impl(ctx, a, b, false);
  3949. }
  3950. struct ggml_tensor * ggml_div_inplace(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. struct ggml_tensor * b) {
  3954. return ggml_div_impl(ctx, a, b, true);
  3955. }
  3956. // ggml_sqr
  3957. static struct ggml_tensor * ggml_sqr_impl(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. bool inplace) {
  3961. bool is_node = false;
  3962. if (!inplace && (a->grad)) {
  3963. is_node = true;
  3964. }
  3965. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3966. result->op = GGML_OP_SQR;
  3967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3968. result->src[0] = a;
  3969. return result;
  3970. }
  3971. struct ggml_tensor * ggml_sqr(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a) {
  3974. return ggml_sqr_impl(ctx, a, false);
  3975. }
  3976. struct ggml_tensor * ggml_sqr_inplace(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a) {
  3979. return ggml_sqr_impl(ctx, a, true);
  3980. }
  3981. // ggml_sqrt
  3982. static struct ggml_tensor * ggml_sqrt_impl(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. bool inplace) {
  3986. bool is_node = false;
  3987. if (!inplace && (a->grad)) {
  3988. is_node = true;
  3989. }
  3990. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3991. result->op = GGML_OP_SQRT;
  3992. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3993. result->src[0] = a;
  3994. return result;
  3995. }
  3996. struct ggml_tensor * ggml_sqrt(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a) {
  3999. return ggml_sqrt_impl(ctx, a, false);
  4000. }
  4001. struct ggml_tensor * ggml_sqrt_inplace(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a) {
  4004. return ggml_sqrt_impl(ctx, a, true);
  4005. }
  4006. // ggml_log
  4007. static struct ggml_tensor * ggml_log_impl(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. bool inplace) {
  4011. bool is_node = false;
  4012. if (!inplace && (a->grad)) {
  4013. is_node = true;
  4014. }
  4015. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4016. result->op = GGML_OP_LOG;
  4017. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4018. result->src[0] = a;
  4019. return result;
  4020. }
  4021. struct ggml_tensor * ggml_log(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a) {
  4024. return ggml_log_impl(ctx, a, false);
  4025. }
  4026. struct ggml_tensor * ggml_log_inplace(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a) {
  4029. return ggml_log_impl(ctx, a, true);
  4030. }
  4031. // ggml_sum
  4032. struct ggml_tensor * ggml_sum(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a) {
  4035. bool is_node = false;
  4036. if (a->grad) {
  4037. is_node = true;
  4038. }
  4039. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4040. result->op = GGML_OP_SUM;
  4041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4042. result->src[0] = a;
  4043. return result;
  4044. }
  4045. // ggml_sum_rows
  4046. struct ggml_tensor * ggml_sum_rows(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a) {
  4049. bool is_node = false;
  4050. if (a->grad) {
  4051. is_node = true;
  4052. }
  4053. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4054. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4055. ne[i] = a->ne[i];
  4056. }
  4057. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4058. result->op = GGML_OP_SUM_ROWS;
  4059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4060. result->src[0] = a;
  4061. return result;
  4062. }
  4063. // ggml_mean
  4064. struct ggml_tensor * ggml_mean(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a) {
  4067. bool is_node = false;
  4068. if (a->grad) {
  4069. GGML_ASSERT(false); // TODO: implement
  4070. is_node = true;
  4071. }
  4072. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4073. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4074. result->op = GGML_OP_MEAN;
  4075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4076. result->src[0] = a;
  4077. return result;
  4078. }
  4079. // ggml_argmax
  4080. struct ggml_tensor * ggml_argmax(
  4081. struct ggml_context * ctx,
  4082. struct ggml_tensor * a) {
  4083. GGML_ASSERT(ggml_is_matrix(a));
  4084. bool is_node = false;
  4085. if (a->grad) {
  4086. GGML_ASSERT(false);
  4087. is_node = true;
  4088. }
  4089. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4090. result->op = GGML_OP_ARGMAX;
  4091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4092. result->src[0] = a;
  4093. return result;
  4094. }
  4095. // ggml_repeat
  4096. struct ggml_tensor * ggml_repeat(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a,
  4099. struct ggml_tensor * b) {
  4100. GGML_ASSERT(ggml_can_repeat(a, b));
  4101. bool is_node = false;
  4102. if (a->grad) {
  4103. is_node = true;
  4104. }
  4105. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4106. result->op = GGML_OP_REPEAT;
  4107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4108. result->src[0] = a;
  4109. return result;
  4110. }
  4111. // ggml_repeat_back
  4112. struct ggml_tensor * ggml_repeat_back(
  4113. struct ggml_context * ctx,
  4114. struct ggml_tensor * a,
  4115. struct ggml_tensor * b) {
  4116. GGML_ASSERT(ggml_can_repeat(b, a));
  4117. bool is_node = false;
  4118. if (a->grad) {
  4119. is_node = true;
  4120. }
  4121. if (ggml_are_same_shape(a, b) && !is_node) {
  4122. return a;
  4123. }
  4124. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4125. result->op = GGML_OP_REPEAT_BACK;
  4126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4127. result->src[0] = a;
  4128. return result;
  4129. }
  4130. // ggml_concat
  4131. struct ggml_tensor * ggml_concat(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. struct ggml_tensor * b,
  4135. int dim) {
  4136. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4137. int64_t ne[GGML_MAX_DIMS];
  4138. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4139. if (d == dim) {
  4140. ne[d] = a->ne[d] + b->ne[d];
  4141. continue;
  4142. }
  4143. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4144. ne[d] = a->ne[d];
  4145. }
  4146. bool is_node = false;
  4147. if (a->grad || b->grad) {
  4148. is_node = true;
  4149. }
  4150. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4151. ggml_set_op_params_i32(result, 0, dim);
  4152. result->op = GGML_OP_CONCAT;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src[0] = a;
  4155. result->src[1] = b;
  4156. return result;
  4157. }
  4158. // ggml_abs
  4159. struct ggml_tensor * ggml_abs(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a) {
  4162. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4163. }
  4164. struct ggml_tensor * ggml_abs_inplace(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a) {
  4167. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4168. }
  4169. // ggml_sgn
  4170. struct ggml_tensor * ggml_sgn(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a) {
  4173. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4174. }
  4175. struct ggml_tensor * ggml_sgn_inplace(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a) {
  4178. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4179. }
  4180. // ggml_neg
  4181. struct ggml_tensor * ggml_neg(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4185. }
  4186. struct ggml_tensor * ggml_neg_inplace(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a) {
  4189. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4190. }
  4191. // ggml_step
  4192. struct ggml_tensor * ggml_step(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a) {
  4195. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4196. }
  4197. struct ggml_tensor * ggml_step_inplace(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a) {
  4200. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4201. }
  4202. // ggml_tanh
  4203. struct ggml_tensor * ggml_tanh(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a) {
  4206. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4207. }
  4208. struct ggml_tensor * ggml_tanh_inplace(
  4209. struct ggml_context * ctx,
  4210. struct ggml_tensor * a) {
  4211. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4212. }
  4213. // ggml_elu
  4214. struct ggml_tensor * ggml_elu(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a) {
  4217. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4218. }
  4219. struct ggml_tensor * ggml_elu_inplace(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a) {
  4222. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4223. }
  4224. // ggml_relu
  4225. struct ggml_tensor * ggml_relu(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a) {
  4228. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4229. }
  4230. struct ggml_tensor * ggml_relu_inplace(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a) {
  4233. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4234. }
  4235. // ggml_leaky_relu
  4236. struct ggml_tensor * ggml_leaky_relu(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4239. bool is_node = false;
  4240. if (!inplace && (a->grad)) {
  4241. is_node = true;
  4242. }
  4243. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4244. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4245. result->op = GGML_OP_LEAKY_RELU;
  4246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4247. result->src[0] = a;
  4248. return result;
  4249. }
  4250. // ggml_sigmoid
  4251. struct ggml_tensor * ggml_sigmoid(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a) {
  4254. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4255. }
  4256. struct ggml_tensor * ggml_sigmoid_inplace(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a) {
  4259. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4260. }
  4261. // ggml_gelu
  4262. struct ggml_tensor * ggml_gelu(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a) {
  4265. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4266. }
  4267. struct ggml_tensor * ggml_gelu_inplace(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a) {
  4270. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4271. }
  4272. // ggml_gelu_quick
  4273. struct ggml_tensor * ggml_gelu_quick(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a) {
  4276. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4277. }
  4278. struct ggml_tensor * ggml_gelu_quick_inplace(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a) {
  4281. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4282. }
  4283. // ggml_silu
  4284. struct ggml_tensor * ggml_silu(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a) {
  4287. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4288. }
  4289. struct ggml_tensor * ggml_silu_inplace(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a) {
  4292. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4293. }
  4294. // ggml_silu_back
  4295. struct ggml_tensor * ggml_silu_back(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a,
  4298. struct ggml_tensor * b) {
  4299. bool is_node = false;
  4300. if (a->grad || b->grad) {
  4301. // TODO: implement backward
  4302. is_node = true;
  4303. }
  4304. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4305. result->op = GGML_OP_SILU_BACK;
  4306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4307. result->src[0] = a;
  4308. result->src[1] = b;
  4309. return result;
  4310. }
  4311. // ggml hardswish
  4312. struct ggml_tensor * ggml_hardswish(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a) {
  4315. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4316. }
  4317. // ggml hardsigmoid
  4318. struct ggml_tensor * ggml_hardsigmoid(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a) {
  4321. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4322. }
  4323. // ggml_norm
  4324. static struct ggml_tensor * ggml_norm_impl(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. float eps,
  4328. bool inplace) {
  4329. bool is_node = false;
  4330. if (!inplace && (a->grad)) {
  4331. GGML_ASSERT(false); // TODO: implement backward
  4332. is_node = true;
  4333. }
  4334. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4335. ggml_set_op_params(result, &eps, sizeof(eps));
  4336. result->op = GGML_OP_NORM;
  4337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4338. result->src[0] = a;
  4339. return result;
  4340. }
  4341. struct ggml_tensor * ggml_norm(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. float eps) {
  4345. return ggml_norm_impl(ctx, a, eps, false);
  4346. }
  4347. struct ggml_tensor * ggml_norm_inplace(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. float eps) {
  4351. return ggml_norm_impl(ctx, a, eps, true);
  4352. }
  4353. // ggml_rms_norm
  4354. static struct ggml_tensor * ggml_rms_norm_impl(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. float eps,
  4358. bool inplace) {
  4359. bool is_node = false;
  4360. if (!inplace && (a->grad)) {
  4361. is_node = true;
  4362. }
  4363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4364. ggml_set_op_params(result, &eps, sizeof(eps));
  4365. result->op = GGML_OP_RMS_NORM;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src[0] = a;
  4368. return result;
  4369. }
  4370. struct ggml_tensor * ggml_rms_norm(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. float eps) {
  4374. return ggml_rms_norm_impl(ctx, a, eps, false);
  4375. }
  4376. struct ggml_tensor * ggml_rms_norm_inplace(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. float eps) {
  4380. return ggml_rms_norm_impl(ctx, a, eps, true);
  4381. }
  4382. // ggml_rms_norm_back
  4383. struct ggml_tensor * ggml_rms_norm_back(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a,
  4386. struct ggml_tensor * b,
  4387. float eps) {
  4388. bool is_node = false;
  4389. if (a->grad) {
  4390. // TODO: implement backward
  4391. is_node = true;
  4392. }
  4393. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4394. ggml_set_op_params(result, &eps, sizeof(eps));
  4395. result->op = GGML_OP_RMS_NORM_BACK;
  4396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4397. result->src[0] = a;
  4398. result->src[1] = b;
  4399. return result;
  4400. }
  4401. // ggml_group_norm
  4402. static struct ggml_tensor * ggml_group_norm_impl(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a,
  4405. int n_groups,
  4406. bool inplace) {
  4407. bool is_node = false;
  4408. if (!inplace && (a->grad)) {
  4409. GGML_ASSERT(false); // TODO: implement backward
  4410. is_node = true;
  4411. }
  4412. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4413. result->op_params[0] = n_groups;
  4414. result->op = GGML_OP_GROUP_NORM;
  4415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4416. result->src[0] = a;
  4417. return result;
  4418. }
  4419. struct ggml_tensor * ggml_group_norm(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a,
  4422. int n_groups) {
  4423. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4424. }
  4425. struct ggml_tensor * ggml_group_norm_inplace(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. int n_groups) {
  4429. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4430. }
  4431. // ggml_mul_mat
  4432. struct ggml_tensor * ggml_mul_mat(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. struct ggml_tensor * b) {
  4436. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4437. GGML_ASSERT(!ggml_is_transposed(a));
  4438. bool is_node = false;
  4439. if (a->grad || b->grad) {
  4440. is_node = true;
  4441. }
  4442. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4443. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4444. result->op = GGML_OP_MUL_MAT;
  4445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4446. result->src[0] = a;
  4447. result->src[1] = b;
  4448. return result;
  4449. }
  4450. void ggml_mul_mat_set_prec(
  4451. struct ggml_tensor * a,
  4452. enum ggml_prec prec) {
  4453. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4454. const int32_t prec_i32 = (int32_t) prec;
  4455. ggml_set_op_params_i32(a, 0, prec_i32);
  4456. }
  4457. // ggml_mul_mat_id
  4458. /*
  4459. c = ggml_mul_mat_id(ctx, as, b, ids);
  4460. as -> [cols, rows, n_expert]
  4461. ids -> [n_experts_used, n_tokens] (i32)
  4462. b -> [cols, n_expert_used, n_tokens]
  4463. c -> [cols, n_expert_used, n_tokens]
  4464. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4465. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4466. */
  4467. struct ggml_tensor * ggml_mul_mat_id(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * as,
  4470. struct ggml_tensor * b,
  4471. struct ggml_tensor * ids) {
  4472. GGML_ASSERT(!ggml_is_transposed(as));
  4473. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4474. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4475. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4476. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4477. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4478. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4479. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4480. bool is_node = false;
  4481. if (as->grad || b->grad) {
  4482. is_node = true;
  4483. }
  4484. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4485. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4486. result->op = GGML_OP_MUL_MAT_ID;
  4487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4488. result->src[0] = as;
  4489. result->src[1] = b;
  4490. result->src[2] = ids;
  4491. return result;
  4492. }
  4493. // ggml_out_prod
  4494. struct ggml_tensor * ggml_out_prod(
  4495. struct ggml_context * ctx,
  4496. struct ggml_tensor * a,
  4497. struct ggml_tensor * b) {
  4498. GGML_ASSERT(ggml_can_out_prod(a, b));
  4499. GGML_ASSERT(!ggml_is_transposed(a));
  4500. bool is_node = false;
  4501. if (a->grad || b->grad) {
  4502. is_node = true;
  4503. }
  4504. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4505. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4506. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4507. result->op = GGML_OP_OUT_PROD;
  4508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4509. result->src[0] = a;
  4510. result->src[1] = b;
  4511. return result;
  4512. }
  4513. // ggml_scale
  4514. static struct ggml_tensor * ggml_scale_impl(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. float s,
  4518. bool inplace) {
  4519. GGML_ASSERT(ggml_is_padded_1d(a));
  4520. bool is_node = false;
  4521. if (a->grad) {
  4522. is_node = true;
  4523. }
  4524. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4525. ggml_set_op_params(result, &s, sizeof(s));
  4526. result->op = GGML_OP_SCALE;
  4527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4528. result->src[0] = a;
  4529. return result;
  4530. }
  4531. struct ggml_tensor * ggml_scale(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a,
  4534. float s) {
  4535. return ggml_scale_impl(ctx, a, s, false);
  4536. }
  4537. struct ggml_tensor * ggml_scale_inplace(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. float s) {
  4541. return ggml_scale_impl(ctx, a, s, true);
  4542. }
  4543. // ggml_set
  4544. static struct ggml_tensor * ggml_set_impl(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a,
  4547. struct ggml_tensor * b,
  4548. size_t nb1,
  4549. size_t nb2,
  4550. size_t nb3,
  4551. size_t offset,
  4552. bool inplace) {
  4553. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4554. bool is_node = false;
  4555. if (a->grad || b->grad) {
  4556. is_node = true;
  4557. }
  4558. // make a view of the destination
  4559. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4560. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4561. ggml_set_op_params(result, params, sizeof(params));
  4562. result->op = GGML_OP_SET;
  4563. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4564. result->src[0] = a;
  4565. result->src[1] = b;
  4566. return result;
  4567. }
  4568. struct ggml_tensor * ggml_set(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a,
  4571. struct ggml_tensor * b,
  4572. size_t nb1,
  4573. size_t nb2,
  4574. size_t nb3,
  4575. size_t offset) {
  4576. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4577. }
  4578. struct ggml_tensor * ggml_set_inplace(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. struct ggml_tensor * b,
  4582. size_t nb1,
  4583. size_t nb2,
  4584. size_t nb3,
  4585. size_t offset) {
  4586. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4587. }
  4588. struct ggml_tensor * ggml_set_1d(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. struct ggml_tensor * b,
  4592. size_t offset) {
  4593. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4594. }
  4595. struct ggml_tensor * ggml_set_1d_inplace(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. struct ggml_tensor * b,
  4599. size_t offset) {
  4600. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4601. }
  4602. struct ggml_tensor * ggml_set_2d(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. struct ggml_tensor * b,
  4606. size_t nb1,
  4607. size_t offset) {
  4608. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4609. }
  4610. struct ggml_tensor * ggml_set_2d_inplace(
  4611. struct ggml_context * ctx,
  4612. struct ggml_tensor * a,
  4613. struct ggml_tensor * b,
  4614. size_t nb1,
  4615. size_t offset) {
  4616. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4617. }
  4618. // ggml_cpy
  4619. static struct ggml_tensor * ggml_cpy_impl(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. struct ggml_tensor * b) {
  4623. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4624. bool is_node = false;
  4625. if (a->grad || b->grad) {
  4626. // inplace is false and either one have a grad
  4627. is_node = true;
  4628. }
  4629. // make a view of the destination
  4630. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4631. if (strlen(b->name) > 0) {
  4632. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4633. } else {
  4634. ggml_format_name(result, "%s (copy)", a->name);
  4635. }
  4636. result->op = GGML_OP_CPY;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src[0] = a;
  4639. result->src[1] = b;
  4640. return result;
  4641. }
  4642. struct ggml_tensor * ggml_cpy(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. struct ggml_tensor * b) {
  4646. return ggml_cpy_impl(ctx, a, b);
  4647. }
  4648. struct ggml_tensor * ggml_cast(
  4649. struct ggml_context * ctx,
  4650. struct ggml_tensor * a,
  4651. enum ggml_type type) {
  4652. bool is_node = false;
  4653. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4654. ggml_format_name(result, "%s (copy)", a->name);
  4655. result->op = GGML_OP_CPY;
  4656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4657. result->src[0] = a;
  4658. result->src[1] = result;
  4659. return result;
  4660. }
  4661. // ggml_cont
  4662. static struct ggml_tensor * ggml_cont_impl(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a) {
  4665. bool is_node = false;
  4666. if (a->grad) {
  4667. is_node = true;
  4668. }
  4669. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4670. ggml_format_name(result, "%s (cont)", a->name);
  4671. result->op = GGML_OP_CONT;
  4672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4673. result->src[0] = a;
  4674. return result;
  4675. }
  4676. struct ggml_tensor * ggml_cont(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a) {
  4679. return ggml_cont_impl(ctx, a);
  4680. }
  4681. // make contiguous, with new shape
  4682. GGML_API struct ggml_tensor * ggml_cont_1d(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a,
  4685. int64_t ne0) {
  4686. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4687. }
  4688. GGML_API struct ggml_tensor * ggml_cont_2d(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * a,
  4691. int64_t ne0,
  4692. int64_t ne1) {
  4693. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4694. }
  4695. GGML_API struct ggml_tensor * ggml_cont_3d(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a,
  4698. int64_t ne0,
  4699. int64_t ne1,
  4700. int64_t ne2) {
  4701. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4702. }
  4703. struct ggml_tensor * ggml_cont_4d(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. int64_t ne0,
  4707. int64_t ne1,
  4708. int64_t ne2,
  4709. int64_t ne3) {
  4710. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4711. bool is_node = false;
  4712. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4713. ggml_format_name(result, "%s (cont)", a->name);
  4714. result->op = GGML_OP_CONT;
  4715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4716. result->src[0] = a;
  4717. return result;
  4718. }
  4719. // ggml_reshape
  4720. struct ggml_tensor * ggml_reshape(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * b) {
  4724. GGML_ASSERT(ggml_is_contiguous(a));
  4725. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4726. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4727. bool is_node = false;
  4728. if (a->grad) {
  4729. is_node = true;
  4730. }
  4731. if (b->grad) {
  4732. // gradient propagation is not supported
  4733. //GGML_ASSERT(false);
  4734. }
  4735. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4736. ggml_format_name(result, "%s (reshaped)", a->name);
  4737. result->op = GGML_OP_RESHAPE;
  4738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4739. result->src[0] = a;
  4740. return result;
  4741. }
  4742. struct ggml_tensor * ggml_reshape_1d(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a,
  4745. int64_t ne0) {
  4746. GGML_ASSERT(ggml_is_contiguous(a));
  4747. GGML_ASSERT(ggml_nelements(a) == ne0);
  4748. bool is_node = false;
  4749. if (a->grad) {
  4750. is_node = true;
  4751. }
  4752. const int64_t ne[1] = { ne0 };
  4753. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4754. ggml_format_name(result, "%s (reshaped)", a->name);
  4755. result->op = GGML_OP_RESHAPE;
  4756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4757. result->src[0] = a;
  4758. return result;
  4759. }
  4760. struct ggml_tensor * ggml_reshape_2d(
  4761. struct ggml_context * ctx,
  4762. struct ggml_tensor * a,
  4763. int64_t ne0,
  4764. int64_t ne1) {
  4765. GGML_ASSERT(ggml_is_contiguous(a));
  4766. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4767. bool is_node = false;
  4768. if (a->grad) {
  4769. is_node = true;
  4770. }
  4771. const int64_t ne[2] = { ne0, ne1 };
  4772. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4773. ggml_format_name(result, "%s (reshaped)", a->name);
  4774. result->op = GGML_OP_RESHAPE;
  4775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4776. result->src[0] = a;
  4777. return result;
  4778. }
  4779. struct ggml_tensor * ggml_reshape_3d(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a,
  4782. int64_t ne0,
  4783. int64_t ne1,
  4784. int64_t ne2) {
  4785. GGML_ASSERT(ggml_is_contiguous(a));
  4786. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4787. bool is_node = false;
  4788. if (a->grad) {
  4789. is_node = true;
  4790. }
  4791. const int64_t ne[3] = { ne0, ne1, ne2 };
  4792. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4793. ggml_format_name(result, "%s (reshaped)", a->name);
  4794. result->op = GGML_OP_RESHAPE;
  4795. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4796. result->src[0] = a;
  4797. return result;
  4798. }
  4799. struct ggml_tensor * ggml_reshape_4d(
  4800. struct ggml_context * ctx,
  4801. struct ggml_tensor * a,
  4802. int64_t ne0,
  4803. int64_t ne1,
  4804. int64_t ne2,
  4805. int64_t ne3) {
  4806. GGML_ASSERT(ggml_is_contiguous(a));
  4807. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4808. bool is_node = false;
  4809. if (a->grad) {
  4810. is_node = true;
  4811. }
  4812. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4813. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4814. ggml_format_name(result, "%s (reshaped)", a->name);
  4815. result->op = GGML_OP_RESHAPE;
  4816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4817. result->src[0] = a;
  4818. return result;
  4819. }
  4820. static struct ggml_tensor * ggml_view_impl(
  4821. struct ggml_context * ctx,
  4822. struct ggml_tensor * a,
  4823. int n_dims,
  4824. const int64_t * ne,
  4825. size_t offset) {
  4826. bool is_node = false;
  4827. if (a->grad) {
  4828. is_node = true;
  4829. }
  4830. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4831. ggml_format_name(result, "%s (view)", a->name);
  4832. ggml_set_op_params(result, &offset, sizeof(offset));
  4833. result->op = GGML_OP_VIEW;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src[0] = a;
  4836. return result;
  4837. }
  4838. // ggml_view_1d
  4839. struct ggml_tensor * ggml_view_1d(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. int64_t ne0,
  4843. size_t offset) {
  4844. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4845. return result;
  4846. }
  4847. // ggml_view_2d
  4848. struct ggml_tensor * ggml_view_2d(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. int64_t ne0,
  4852. int64_t ne1,
  4853. size_t nb1,
  4854. size_t offset) {
  4855. const int64_t ne[2] = { ne0, ne1 };
  4856. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4857. result->nb[1] = nb1;
  4858. result->nb[2] = result->nb[1]*ne1;
  4859. result->nb[3] = result->nb[2];
  4860. return result;
  4861. }
  4862. // ggml_view_3d
  4863. struct ggml_tensor * ggml_view_3d(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. int64_t ne0,
  4867. int64_t ne1,
  4868. int64_t ne2,
  4869. size_t nb1,
  4870. size_t nb2,
  4871. size_t offset) {
  4872. const int64_t ne[3] = { ne0, ne1, ne2 };
  4873. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4874. result->nb[1] = nb1;
  4875. result->nb[2] = nb2;
  4876. result->nb[3] = result->nb[2]*ne2;
  4877. return result;
  4878. }
  4879. // ggml_view_4d
  4880. struct ggml_tensor * ggml_view_4d(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. int64_t ne0,
  4884. int64_t ne1,
  4885. int64_t ne2,
  4886. int64_t ne3,
  4887. size_t nb1,
  4888. size_t nb2,
  4889. size_t nb3,
  4890. size_t offset) {
  4891. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4892. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4893. result->nb[1] = nb1;
  4894. result->nb[2] = nb2;
  4895. result->nb[3] = nb3;
  4896. return result;
  4897. }
  4898. // ggml_permute
  4899. struct ggml_tensor * ggml_permute(
  4900. struct ggml_context * ctx,
  4901. struct ggml_tensor * a,
  4902. int axis0,
  4903. int axis1,
  4904. int axis2,
  4905. int axis3) {
  4906. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4907. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4908. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4909. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4910. GGML_ASSERT(axis0 != axis1);
  4911. GGML_ASSERT(axis0 != axis2);
  4912. GGML_ASSERT(axis0 != axis3);
  4913. GGML_ASSERT(axis1 != axis2);
  4914. GGML_ASSERT(axis1 != axis3);
  4915. GGML_ASSERT(axis2 != axis3);
  4916. bool is_node = false;
  4917. if (a->grad) {
  4918. is_node = true;
  4919. }
  4920. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4921. ggml_format_name(result, "%s (permuted)", a->name);
  4922. int ne[GGML_MAX_DIMS];
  4923. int nb[GGML_MAX_DIMS];
  4924. ne[axis0] = a->ne[0];
  4925. ne[axis1] = a->ne[1];
  4926. ne[axis2] = a->ne[2];
  4927. ne[axis3] = a->ne[3];
  4928. nb[axis0] = a->nb[0];
  4929. nb[axis1] = a->nb[1];
  4930. nb[axis2] = a->nb[2];
  4931. nb[axis3] = a->nb[3];
  4932. result->ne[0] = ne[0];
  4933. result->ne[1] = ne[1];
  4934. result->ne[2] = ne[2];
  4935. result->ne[3] = ne[3];
  4936. result->nb[0] = nb[0];
  4937. result->nb[1] = nb[1];
  4938. result->nb[2] = nb[2];
  4939. result->nb[3] = nb[3];
  4940. result->op = GGML_OP_PERMUTE;
  4941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4942. result->src[0] = a;
  4943. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4944. ggml_set_op_params(result, params, sizeof(params));
  4945. return result;
  4946. }
  4947. // ggml_transpose
  4948. struct ggml_tensor * ggml_transpose(
  4949. struct ggml_context * ctx,
  4950. struct ggml_tensor * a) {
  4951. bool is_node = false;
  4952. if (a->grad) {
  4953. is_node = true;
  4954. }
  4955. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4956. ggml_format_name(result, "%s (transposed)", a->name);
  4957. result->ne[0] = a->ne[1];
  4958. result->ne[1] = a->ne[0];
  4959. result->nb[0] = a->nb[1];
  4960. result->nb[1] = a->nb[0];
  4961. result->op = GGML_OP_TRANSPOSE;
  4962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4963. result->src[0] = a;
  4964. return result;
  4965. }
  4966. // ggml_get_rows
  4967. struct ggml_tensor * ggml_get_rows(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. struct ggml_tensor * b) {
  4971. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4972. GGML_ASSERT(b->ne[3] == 1);
  4973. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4974. bool is_node = false;
  4975. if (a->grad || b->grad) {
  4976. is_node = true;
  4977. }
  4978. // TODO: implement non F32 return
  4979. enum ggml_type type = GGML_TYPE_F32;
  4980. if (a->type == GGML_TYPE_I32) {
  4981. type = a->type;
  4982. }
  4983. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4984. result->op = GGML_OP_GET_ROWS;
  4985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4986. result->src[0] = a;
  4987. result->src[1] = b;
  4988. return result;
  4989. }
  4990. // ggml_get_rows_back
  4991. struct ggml_tensor * ggml_get_rows_back(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a,
  4994. struct ggml_tensor * b,
  4995. struct ggml_tensor * c) {
  4996. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4997. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4998. bool is_node = false;
  4999. if (a->grad || b->grad) {
  5000. is_node = true;
  5001. }
  5002. // TODO: implement non F32 return
  5003. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5004. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5005. result->op = GGML_OP_GET_ROWS_BACK;
  5006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5007. result->src[0] = a;
  5008. result->src[1] = b;
  5009. return result;
  5010. }
  5011. // ggml_diag
  5012. struct ggml_tensor * ggml_diag(
  5013. struct ggml_context * ctx,
  5014. struct ggml_tensor * a) {
  5015. GGML_ASSERT(a->ne[1] == 1);
  5016. bool is_node = false;
  5017. if (a->grad) {
  5018. is_node = true;
  5019. }
  5020. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5021. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5022. result->op = GGML_OP_DIAG;
  5023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5024. result->src[0] = a;
  5025. return result;
  5026. }
  5027. // ggml_diag_mask_inf
  5028. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. int n_past,
  5032. bool inplace) {
  5033. bool is_node = false;
  5034. if (a->grad) {
  5035. is_node = true;
  5036. }
  5037. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5038. int32_t params[] = { n_past };
  5039. ggml_set_op_params(result, params, sizeof(params));
  5040. result->op = GGML_OP_DIAG_MASK_INF;
  5041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5042. result->src[0] = a;
  5043. return result;
  5044. }
  5045. struct ggml_tensor * ggml_diag_mask_inf(
  5046. struct ggml_context * ctx,
  5047. struct ggml_tensor * a,
  5048. int n_past) {
  5049. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5050. }
  5051. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. int n_past) {
  5055. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5056. }
  5057. // ggml_diag_mask_zero
  5058. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. int n_past,
  5062. bool inplace) {
  5063. bool is_node = false;
  5064. if (a->grad) {
  5065. is_node = true;
  5066. }
  5067. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5068. int32_t params[] = { n_past };
  5069. ggml_set_op_params(result, params, sizeof(params));
  5070. result->op = GGML_OP_DIAG_MASK_ZERO;
  5071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5072. result->src[0] = a;
  5073. return result;
  5074. }
  5075. struct ggml_tensor * ggml_diag_mask_zero(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. int n_past) {
  5079. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5080. }
  5081. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. int n_past) {
  5085. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5086. }
  5087. // ggml_soft_max
  5088. static struct ggml_tensor * ggml_soft_max_impl(
  5089. struct ggml_context * ctx,
  5090. struct ggml_tensor * a,
  5091. struct ggml_tensor * mask,
  5092. float scale,
  5093. float max_bias,
  5094. bool inplace) {
  5095. GGML_ASSERT(ggml_is_contiguous(a));
  5096. if (mask) {
  5097. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5098. GGML_ASSERT(ggml_is_contiguous(mask));
  5099. GGML_ASSERT(ggml_is_matrix(mask));
  5100. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5101. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5102. }
  5103. if (max_bias > 0.0f) {
  5104. GGML_ASSERT(mask);
  5105. }
  5106. bool is_node = false;
  5107. if (a->grad) {
  5108. is_node = true;
  5109. }
  5110. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5111. float params[] = { scale, max_bias };
  5112. ggml_set_op_params(result, params, sizeof(params));
  5113. result->op = GGML_OP_SOFT_MAX;
  5114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5115. result->src[0] = a;
  5116. result->src[1] = mask;
  5117. return result;
  5118. }
  5119. struct ggml_tensor * ggml_soft_max(
  5120. struct ggml_context * ctx,
  5121. struct ggml_tensor * a) {
  5122. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5123. }
  5124. struct ggml_tensor * ggml_soft_max_inplace(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a) {
  5127. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5128. }
  5129. struct ggml_tensor * ggml_soft_max_ext(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a,
  5132. struct ggml_tensor * mask,
  5133. float scale,
  5134. float max_bias) {
  5135. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5136. }
  5137. // ggml_soft_max_back
  5138. static struct ggml_tensor * ggml_soft_max_back_impl(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a,
  5141. struct ggml_tensor * b,
  5142. bool inplace) {
  5143. bool is_node = false;
  5144. if (a->grad || b->grad) {
  5145. is_node = true; // TODO : implement backward pass
  5146. }
  5147. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5148. result->op = GGML_OP_SOFT_MAX_BACK;
  5149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5150. result->src[0] = a;
  5151. result->src[1] = b;
  5152. return result;
  5153. }
  5154. struct ggml_tensor * ggml_soft_max_back(
  5155. struct ggml_context * ctx,
  5156. struct ggml_tensor * a,
  5157. struct ggml_tensor * b) {
  5158. return ggml_soft_max_back_impl(ctx, a, b, false);
  5159. }
  5160. struct ggml_tensor * ggml_soft_max_back_inplace(
  5161. struct ggml_context * ctx,
  5162. struct ggml_tensor * a,
  5163. struct ggml_tensor * b) {
  5164. return ggml_soft_max_back_impl(ctx, a, b, true);
  5165. }
  5166. // ggml_rope
  5167. static struct ggml_tensor * ggml_rope_impl(
  5168. struct ggml_context * ctx,
  5169. struct ggml_tensor * a,
  5170. struct ggml_tensor * b,
  5171. struct ggml_tensor * c,
  5172. int n_dims,
  5173. int mode,
  5174. int n_ctx_orig,
  5175. float freq_base,
  5176. float freq_scale,
  5177. float ext_factor,
  5178. float attn_factor,
  5179. float beta_fast,
  5180. float beta_slow,
  5181. bool inplace) {
  5182. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5183. GGML_ASSERT(ggml_is_vector(b));
  5184. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5185. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5186. if (c) {
  5187. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5188. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5189. }
  5190. bool is_node = false;
  5191. if (a->grad) {
  5192. is_node = true;
  5193. }
  5194. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5195. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5196. memcpy(params + 5, &freq_base, sizeof(float));
  5197. memcpy(params + 6, &freq_scale, sizeof(float));
  5198. memcpy(params + 7, &ext_factor, sizeof(float));
  5199. memcpy(params + 8, &attn_factor, sizeof(float));
  5200. memcpy(params + 9, &beta_fast, sizeof(float));
  5201. memcpy(params + 10, &beta_slow, sizeof(float));
  5202. ggml_set_op_params(result, params, sizeof(params));
  5203. result->op = GGML_OP_ROPE;
  5204. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5205. result->src[0] = a;
  5206. result->src[1] = b;
  5207. result->src[2] = c;
  5208. return result;
  5209. }
  5210. struct ggml_tensor * ggml_rope(
  5211. struct ggml_context * ctx,
  5212. struct ggml_tensor * a,
  5213. struct ggml_tensor * b,
  5214. int n_dims,
  5215. int mode) {
  5216. return ggml_rope_impl(
  5217. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5218. );
  5219. }
  5220. struct ggml_tensor * ggml_rope_inplace(
  5221. struct ggml_context * ctx,
  5222. struct ggml_tensor * a,
  5223. struct ggml_tensor * b,
  5224. int n_dims,
  5225. int mode) {
  5226. return ggml_rope_impl(
  5227. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5228. );
  5229. }
  5230. struct ggml_tensor * ggml_rope_ext(
  5231. struct ggml_context * ctx,
  5232. struct ggml_tensor * a,
  5233. struct ggml_tensor * b,
  5234. struct ggml_tensor * c,
  5235. int n_dims,
  5236. int mode,
  5237. int n_ctx_orig,
  5238. float freq_base,
  5239. float freq_scale,
  5240. float ext_factor,
  5241. float attn_factor,
  5242. float beta_fast,
  5243. float beta_slow) {
  5244. return ggml_rope_impl(
  5245. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5246. ext_factor, attn_factor, beta_fast, beta_slow, false
  5247. );
  5248. }
  5249. struct ggml_tensor * ggml_rope_ext_inplace(
  5250. struct ggml_context * ctx,
  5251. struct ggml_tensor * a,
  5252. struct ggml_tensor * b,
  5253. struct ggml_tensor * c,
  5254. int n_dims,
  5255. int mode,
  5256. int n_ctx_orig,
  5257. float freq_base,
  5258. float freq_scale,
  5259. float ext_factor,
  5260. float attn_factor,
  5261. float beta_fast,
  5262. float beta_slow) {
  5263. return ggml_rope_impl(
  5264. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5265. ext_factor, attn_factor, beta_fast, beta_slow, true
  5266. );
  5267. }
  5268. struct ggml_tensor * ggml_rope_custom(
  5269. struct ggml_context * ctx,
  5270. struct ggml_tensor * a,
  5271. struct ggml_tensor * b,
  5272. int n_dims,
  5273. int mode,
  5274. int n_ctx_orig,
  5275. float freq_base,
  5276. float freq_scale,
  5277. float ext_factor,
  5278. float attn_factor,
  5279. float beta_fast,
  5280. float beta_slow) {
  5281. return ggml_rope_impl(
  5282. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5283. ext_factor, attn_factor, beta_fast, beta_slow, false
  5284. );
  5285. }
  5286. struct ggml_tensor * ggml_rope_custom_inplace(
  5287. struct ggml_context * ctx,
  5288. struct ggml_tensor * a,
  5289. struct ggml_tensor * b,
  5290. int n_dims,
  5291. int mode,
  5292. int n_ctx_orig,
  5293. float freq_base,
  5294. float freq_scale,
  5295. float ext_factor,
  5296. float attn_factor,
  5297. float beta_fast,
  5298. float beta_slow) {
  5299. return ggml_rope_impl(
  5300. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5301. ext_factor, attn_factor, beta_fast, beta_slow, true
  5302. );
  5303. }
  5304. // ggml_rope_back
  5305. struct ggml_tensor * ggml_rope_back(
  5306. struct ggml_context * ctx,
  5307. struct ggml_tensor * a,
  5308. struct ggml_tensor * b,
  5309. struct ggml_tensor * c,
  5310. int n_dims,
  5311. int mode,
  5312. int n_ctx_orig,
  5313. float freq_base,
  5314. float freq_scale,
  5315. float ext_factor,
  5316. float attn_factor,
  5317. float beta_fast,
  5318. float beta_slow) {
  5319. GGML_ASSERT(ggml_is_vector(b));
  5320. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5321. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5322. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5323. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5324. bool is_node = false;
  5325. if (a->grad) {
  5326. is_node = false; // TODO: implement backward
  5327. }
  5328. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5329. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5330. memcpy(params + 5, &freq_base, sizeof(float));
  5331. memcpy(params + 6, &freq_scale, sizeof(float));
  5332. memcpy(params + 7, &ext_factor, sizeof(float));
  5333. memcpy(params + 8, &attn_factor, sizeof(float));
  5334. memcpy(params + 9, &beta_fast, sizeof(float));
  5335. memcpy(params + 10, &beta_slow, sizeof(float));
  5336. ggml_set_op_params(result, params, sizeof(params));
  5337. result->op = GGML_OP_ROPE_BACK;
  5338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5339. result->src[0] = a;
  5340. result->src[1] = b;
  5341. return result;
  5342. }
  5343. // ggml_clamp
  5344. struct ggml_tensor * ggml_clamp(
  5345. struct ggml_context * ctx,
  5346. struct ggml_tensor * a,
  5347. float min,
  5348. float max) {
  5349. bool is_node = false;
  5350. if (a->grad) {
  5351. GGML_ASSERT(false); // TODO: implement backward
  5352. is_node = true;
  5353. }
  5354. // TODO: when implement backward, fix this:
  5355. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5356. float params[] = { min, max };
  5357. ggml_set_op_params(result, params, sizeof(params));
  5358. result->op = GGML_OP_CLAMP;
  5359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5360. result->src[0] = a;
  5361. return result;
  5362. }
  5363. // ggml_conv_1d
  5364. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5365. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5366. }
  5367. GGML_API struct ggml_tensor * ggml_conv_1d(
  5368. struct ggml_context * ctx,
  5369. struct ggml_tensor * a,
  5370. struct ggml_tensor * b,
  5371. int s0,
  5372. int p0,
  5373. int d0) {
  5374. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5375. struct ggml_tensor * result =
  5376. ggml_mul_mat(ctx,
  5377. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5378. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5379. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5380. return result;
  5381. }
  5382. // ggml_conv_1d_ph
  5383. struct ggml_tensor* ggml_conv_1d_ph(
  5384. struct ggml_context * ctx,
  5385. struct ggml_tensor * a,
  5386. struct ggml_tensor * b,
  5387. int s,
  5388. int d) {
  5389. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5390. }
  5391. // ggml_conv_transpose_1d
  5392. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5393. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5394. }
  5395. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5396. struct ggml_context * ctx,
  5397. struct ggml_tensor * a,
  5398. struct ggml_tensor * b,
  5399. int s0,
  5400. int p0,
  5401. int d0) {
  5402. GGML_ASSERT(ggml_is_matrix(b));
  5403. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5404. GGML_ASSERT(a->ne[3] == 1);
  5405. GGML_ASSERT(p0 == 0);
  5406. GGML_ASSERT(d0 == 1);
  5407. bool is_node = false;
  5408. if (a->grad || b->grad) {
  5409. GGML_ASSERT(false); // TODO: implement backward
  5410. is_node = true;
  5411. }
  5412. const int64_t ne[4] = {
  5413. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5414. a->ne[1], b->ne[2], 1,
  5415. };
  5416. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5417. int32_t params[] = { s0, p0, d0 };
  5418. ggml_set_op_params(result, params, sizeof(params));
  5419. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5421. result->src[0] = a;
  5422. result->src[1] = b;
  5423. return result;
  5424. }
  5425. // ggml_conv_depthwise
  5426. struct ggml_tensor * ggml_conv_depthwise_2d(
  5427. struct ggml_context * ctx,
  5428. struct ggml_tensor * a,
  5429. struct ggml_tensor * b,
  5430. int s0,
  5431. int s1,
  5432. int p0,
  5433. int p1,
  5434. int d0,
  5435. int d1) {
  5436. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5437. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5438. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5439. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5440. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5441. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5442. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5443. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5444. return result;
  5445. }
  5446. // ggml_conv_2d
  5447. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5448. // a: [OC,IC, KH, KW]
  5449. // b: [N, IC, IH, IW]
  5450. // result: [N, OH, OW, IC*KH*KW]
  5451. struct ggml_tensor * ggml_im2col(
  5452. struct ggml_context * ctx,
  5453. struct ggml_tensor * a,
  5454. struct ggml_tensor * b,
  5455. int s0,
  5456. int s1,
  5457. int p0,
  5458. int p1,
  5459. int d0,
  5460. int d1,
  5461. bool is_2D,
  5462. enum ggml_type dst_type) {
  5463. if(is_2D) {
  5464. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5465. } else {
  5466. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5467. }
  5468. bool is_node = false;
  5469. if (a->grad || b->grad) {
  5470. GGML_ASSERT(false); // TODO: implement backward
  5471. is_node = true;
  5472. }
  5473. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5474. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5475. const int64_t ne[4] = {
  5476. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5477. OW,
  5478. is_2D ? OH : b->ne[2],
  5479. is_2D ? b->ne[3] : 1,
  5480. };
  5481. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5482. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5483. ggml_set_op_params(result, params, sizeof(params));
  5484. result->op = GGML_OP_IM2COL;
  5485. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5486. result->src[0] = a;
  5487. result->src[1] = b;
  5488. return result;
  5489. }
  5490. // a: [OC,IC, KH, KW]
  5491. // b: [N, IC, IH, IW]
  5492. // result: [N, OC, OH, OW]
  5493. struct ggml_tensor * ggml_conv_2d(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a,
  5496. struct ggml_tensor * b,
  5497. int s0,
  5498. int s1,
  5499. int p0,
  5500. int p1,
  5501. int d0,
  5502. int d1) {
  5503. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5504. struct ggml_tensor * result =
  5505. ggml_mul_mat(ctx,
  5506. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5507. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5508. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5509. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5510. return result;
  5511. }
  5512. // ggml_conv_2d_sk_p0
  5513. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5514. struct ggml_context * ctx,
  5515. struct ggml_tensor * a,
  5516. struct ggml_tensor * b) {
  5517. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5518. }
  5519. // ggml_conv_2d_s1_ph
  5520. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5521. struct ggml_context * ctx,
  5522. struct ggml_tensor * a,
  5523. struct ggml_tensor * b) {
  5524. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5525. }
  5526. // ggml_conv_transpose_2d_p0
  5527. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5528. return (ins - 1) * s - 2 * p + ks;
  5529. }
  5530. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5531. struct ggml_context * ctx,
  5532. struct ggml_tensor * a,
  5533. struct ggml_tensor * b,
  5534. int stride) {
  5535. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5536. bool is_node = false;
  5537. if (a->grad || b->grad) {
  5538. GGML_ASSERT(false); // TODO: implement backward
  5539. is_node = true;
  5540. }
  5541. const int64_t ne[4] = {
  5542. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5543. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5544. a->ne[2], b->ne[3],
  5545. };
  5546. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5547. ggml_set_op_params_i32(result, 0, stride);
  5548. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5550. result->src[0] = a;
  5551. result->src[1] = b;
  5552. return result;
  5553. }
  5554. // ggml_pool_*
  5555. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5556. return (ins + 2 * p - ks) / s + 1;
  5557. }
  5558. // ggml_pool_1d
  5559. struct ggml_tensor * ggml_pool_1d(
  5560. struct ggml_context * ctx,
  5561. struct ggml_tensor * a,
  5562. enum ggml_op_pool op,
  5563. int k0,
  5564. int s0,
  5565. int p0) {
  5566. bool is_node = false;
  5567. if (a->grad) {
  5568. GGML_ASSERT(false); // TODO: implement backward
  5569. is_node = true;
  5570. }
  5571. const int64_t ne[4] = {
  5572. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5573. a->ne[1],
  5574. a->ne[2],
  5575. a->ne[3],
  5576. };
  5577. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5578. int32_t params[] = { op, k0, s0, p0 };
  5579. ggml_set_op_params(result, params, sizeof(params));
  5580. result->op = GGML_OP_POOL_1D;
  5581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5582. result->src[0] = a;
  5583. return result;
  5584. }
  5585. // ggml_pool_2d
  5586. struct ggml_tensor * ggml_pool_2d(
  5587. struct ggml_context * ctx,
  5588. struct ggml_tensor * a,
  5589. enum ggml_op_pool op,
  5590. int k0,
  5591. int k1,
  5592. int s0,
  5593. int s1,
  5594. float p0,
  5595. float p1) {
  5596. bool is_node = false;
  5597. if (a->grad) {
  5598. GGML_ASSERT(false); // TODO: implement backward
  5599. is_node = true;
  5600. }
  5601. struct ggml_tensor * result;
  5602. const int64_t ne[3] = {
  5603. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5604. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5605. a->ne[2],
  5606. };
  5607. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5608. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5609. ggml_set_op_params(result, params, sizeof(params));
  5610. result->op = GGML_OP_POOL_2D;
  5611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5612. result->src[0] = a;
  5613. return result;
  5614. }
  5615. // ggml_upscale
  5616. static struct ggml_tensor * ggml_upscale_impl(
  5617. struct ggml_context * ctx,
  5618. struct ggml_tensor * a,
  5619. int ne0,
  5620. int ne1,
  5621. int ne2,
  5622. int ne3) {
  5623. bool is_node = false;
  5624. if (a->grad) {
  5625. GGML_ASSERT(false); // TODO: implement backward
  5626. is_node = true;
  5627. }
  5628. GGML_ASSERT(a->ne[0] <= ne0);
  5629. GGML_ASSERT(a->ne[1] <= ne1);
  5630. GGML_ASSERT(a->ne[2] <= ne2);
  5631. GGML_ASSERT(a->ne[3] <= ne3);
  5632. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5633. ne0,
  5634. ne1,
  5635. ne2,
  5636. ne3
  5637. );
  5638. result->op = GGML_OP_UPSCALE;
  5639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5640. result->src[0] = a;
  5641. return result;
  5642. }
  5643. struct ggml_tensor * ggml_upscale(
  5644. struct ggml_context * ctx,
  5645. struct ggml_tensor * a,
  5646. int scale_factor) {
  5647. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5648. }
  5649. struct ggml_tensor * ggml_upscale_ext(
  5650. struct ggml_context * ctx,
  5651. struct ggml_tensor * a,
  5652. int ne0,
  5653. int ne1,
  5654. int ne2,
  5655. int ne3) {
  5656. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5657. }
  5658. // ggml_pad
  5659. struct ggml_tensor * ggml_pad(
  5660. struct ggml_context * ctx,
  5661. struct ggml_tensor * a,
  5662. int p0, int p1, int p2, int p3) {
  5663. bool is_node = false;
  5664. if (a->grad) {
  5665. GGML_ASSERT(false); // TODO: implement backward
  5666. is_node = true;
  5667. }
  5668. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5669. a->ne[0] + p0,
  5670. a->ne[1] + p1,
  5671. a->ne[2] + p2,
  5672. a->ne[3] + p3);
  5673. result->op = GGML_OP_PAD;
  5674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5675. result->src[0] = a;
  5676. return result;
  5677. }
  5678. // ggml_arange
  5679. struct ggml_tensor * ggml_arange(
  5680. struct ggml_context * ctx,
  5681. float start,
  5682. float stop,
  5683. float step) {
  5684. GGML_ASSERT(stop > start);
  5685. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5686. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5687. result->op = GGML_OP_ARANGE;
  5688. ggml_set_op_params_f32(result, 0, start);
  5689. ggml_set_op_params_f32(result, 1, stop);
  5690. ggml_set_op_params_f32(result, 2, step);
  5691. return result;
  5692. }
  5693. // ggml_timestep_embedding
  5694. struct ggml_tensor * ggml_timestep_embedding(
  5695. struct ggml_context * ctx,
  5696. struct ggml_tensor * timesteps,
  5697. int dim,
  5698. int max_period) {
  5699. bool is_node = false;
  5700. if (timesteps->grad) {
  5701. GGML_ASSERT(false); // TODO: implement backward
  5702. is_node = true;
  5703. }
  5704. int actual_dim = dim;
  5705. if (dim % 2 != 0) {
  5706. actual_dim = dim + 1;
  5707. }
  5708. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5709. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5710. ggml_set_op_params_i32(result, 0, dim);
  5711. ggml_set_op_params_i32(result, 1, max_period);
  5712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5713. result->src[0] = timesteps;
  5714. return result;
  5715. }
  5716. // ggml_argsort
  5717. struct ggml_tensor * ggml_argsort(
  5718. struct ggml_context * ctx,
  5719. struct ggml_tensor * a,
  5720. enum ggml_sort_order order) {
  5721. bool is_node = false;
  5722. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5723. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5724. result->op = GGML_OP_ARGSORT;
  5725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5726. result->src[0] = a;
  5727. return result;
  5728. }
  5729. // ggml_top_k
  5730. struct ggml_tensor * ggml_top_k(
  5731. struct ggml_context * ctx,
  5732. struct ggml_tensor * a,
  5733. int k) {
  5734. GGML_ASSERT(a->ne[0] >= k);
  5735. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5736. result = ggml_view_4d(ctx, result,
  5737. k, result->ne[1], result->ne[2], result->ne[3],
  5738. result->nb[1], result->nb[2], result->nb[3],
  5739. 0);
  5740. return result;
  5741. }
  5742. // ggml_flash_attn_ext
  5743. struct ggml_tensor * ggml_flash_attn_ext(
  5744. struct ggml_context * ctx,
  5745. struct ggml_tensor * q,
  5746. struct ggml_tensor * k,
  5747. struct ggml_tensor * v,
  5748. struct ggml_tensor * mask,
  5749. float scale,
  5750. float max_bias) {
  5751. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5752. // TODO: check if vT can be multiplied by (k*qT)
  5753. if (mask) {
  5754. GGML_ASSERT(ggml_is_contiguous(mask));
  5755. GGML_ASSERT(mask->ne[2] == 1);
  5756. GGML_ASSERT(mask->ne[3] == 1);
  5757. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5758. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5759. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5760. }
  5761. if (max_bias > 0.0f) {
  5762. GGML_ASSERT(mask);
  5763. }
  5764. bool is_node = false;
  5765. if (q->grad || k->grad || v->grad) {
  5766. is_node = true;
  5767. }
  5768. // permute(0, 2, 1, 3)
  5769. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5770. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5771. float params[] = { scale, max_bias };
  5772. ggml_set_op_params(result, params, sizeof(params));
  5773. result->op = GGML_OP_FLASH_ATTN_EXT;
  5774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5775. result->src[0] = q;
  5776. result->src[1] = k;
  5777. result->src[2] = v;
  5778. result->src[3] = mask;
  5779. return result;
  5780. }
  5781. void ggml_flash_attn_ext_set_prec(
  5782. struct ggml_tensor * a,
  5783. enum ggml_prec prec) {
  5784. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5785. const int32_t prec_i32 = (int32_t) prec;
  5786. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5787. }
  5788. // ggml_flash_attn_back
  5789. struct ggml_tensor * ggml_flash_attn_back(
  5790. struct ggml_context * ctx,
  5791. struct ggml_tensor * q,
  5792. struct ggml_tensor * k,
  5793. struct ggml_tensor * v,
  5794. struct ggml_tensor * d,
  5795. bool masked) {
  5796. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5797. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5798. // TODO: check if vT can be multiplied by (k*qT)
  5799. // d shape [D,N,ne2,ne3]
  5800. // q shape [D,N,ne2,ne3]
  5801. // k shape [D,M,kvne2,ne3]
  5802. // v shape [M,D,kvne2,ne3]
  5803. const int64_t D = q->ne[0];
  5804. const int64_t N = q->ne[1];
  5805. const int64_t M = k->ne[1];
  5806. const int64_t ne2 = q->ne[2];
  5807. const int64_t ne3 = q->ne[3];
  5808. const int64_t kvne2 = k->ne[2];
  5809. GGML_ASSERT(k->ne[0] == D);
  5810. GGML_ASSERT(v->ne[0] == M);
  5811. GGML_ASSERT(v->ne[1] == D);
  5812. GGML_ASSERT(d->ne[0] == D);
  5813. GGML_ASSERT(d->ne[1] == N);
  5814. GGML_ASSERT(k->ne[2] == kvne2);
  5815. GGML_ASSERT(k->ne[3] == ne3);
  5816. GGML_ASSERT(v->ne[2] == kvne2);
  5817. GGML_ASSERT(v->ne[3] == ne3);
  5818. GGML_ASSERT(d->ne[2] == ne2);
  5819. GGML_ASSERT(d->ne[3] == ne3);
  5820. GGML_ASSERT(ne2 % kvne2 == 0);
  5821. bool is_node = false;
  5822. if (q->grad || k->grad || v->grad) {
  5823. // when using this operation (in backwards pass) these grads are set.
  5824. // we don't want to create (big) grad of our result, so is_node is false.
  5825. is_node = false;
  5826. }
  5827. // store gradients of q, k and v as continuous tensors concatenated in result.
  5828. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5829. const int64_t elem_q = ggml_nelements(q);
  5830. const int64_t elem_k = ggml_nelements(k);
  5831. const int64_t elem_v = ggml_nelements(v);
  5832. enum ggml_type result_type = GGML_TYPE_F32;
  5833. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5834. const size_t tsize = ggml_type_size(result_type);
  5835. const size_t offs_q = 0;
  5836. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5837. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5838. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5839. const size_t nelements = (end + tsize - 1)/tsize;
  5840. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5841. int32_t masked_i = masked ? 1 : 0;
  5842. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5843. result->op = GGML_OP_FLASH_ATTN_BACK;
  5844. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5845. result->src[0] = q;
  5846. result->src[1] = k;
  5847. result->src[2] = v;
  5848. result->src[3] = d;
  5849. return result;
  5850. }
  5851. // ggml_ssm_conv
  5852. struct ggml_tensor * ggml_ssm_conv(
  5853. struct ggml_context * ctx,
  5854. struct ggml_tensor * s,
  5855. struct ggml_tensor * x,
  5856. struct ggml_tensor * c,
  5857. struct ggml_tensor * sq) {
  5858. GGML_ASSERT(ggml_is_3d(s));
  5859. GGML_ASSERT(ggml_is_matrix(x));
  5860. GGML_ASSERT(ggml_is_matrix(c));
  5861. GGML_ASSERT(ggml_is_matrix(sq));
  5862. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5863. const int64_t d_conv = c->ne[0];
  5864. const int64_t d_inner = c->ne[1];
  5865. const int64_t n_tokens = x->ne[1];
  5866. const int64_t n_kv = s->ne[2];
  5867. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5868. GGML_ASSERT( s->ne[1] == d_inner);
  5869. GGML_ASSERT( x->ne[0] == d_inner);
  5870. GGML_ASSERT(sq->ne[0] == n_kv);
  5871. GGML_ASSERT(sq->ne[1] == n_tokens);
  5872. bool is_node = false;
  5873. if (s->grad || x->grad || c->grad || sq->grad) {
  5874. GGML_ASSERT(false); // TODO: implement
  5875. is_node = true;
  5876. }
  5877. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5878. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5879. result->op = GGML_OP_SSM_CONV;
  5880. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5881. result->src[0] = s;
  5882. result->src[1] = x;
  5883. result->src[2] = c;
  5884. result->src[3] = sq;
  5885. return result;
  5886. }
  5887. // ggml_ssm_scan
  5888. struct ggml_tensor * ggml_ssm_scan(
  5889. struct ggml_context * ctx,
  5890. struct ggml_tensor * s,
  5891. struct ggml_tensor * x,
  5892. struct ggml_tensor * dt,
  5893. struct ggml_tensor * A,
  5894. struct ggml_tensor * B,
  5895. struct ggml_tensor * C,
  5896. struct ggml_tensor * sq) {
  5897. GGML_ASSERT(ggml_is_contiguous(s));
  5898. GGML_ASSERT(ggml_is_contiguous(x));
  5899. GGML_ASSERT(ggml_is_contiguous(dt));
  5900. GGML_ASSERT(ggml_is_contiguous(A));
  5901. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5902. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5903. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5904. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5905. {
  5906. const int64_t d_state = s->ne[0];
  5907. const int64_t d_inner = s->ne[1];
  5908. const int64_t n_tokens = x->ne[1];
  5909. GGML_ASSERT(x->ne[0] == d_inner);
  5910. GGML_ASSERT(A->ne[0] == d_state);
  5911. GGML_ASSERT(A->ne[1] == d_inner);
  5912. GGML_ASSERT(B->ne[0] == d_state);
  5913. GGML_ASSERT(B->ne[1] == n_tokens);
  5914. GGML_ASSERT(C->ne[0] == d_state);
  5915. GGML_ASSERT(C->ne[1] == n_tokens);
  5916. }
  5917. bool is_node = false;
  5918. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5919. GGML_ASSERT(false); // TODO: implement
  5920. is_node = true;
  5921. }
  5922. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5923. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5924. result->op = GGML_OP_SSM_SCAN;
  5925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5926. result->src[0] = s;
  5927. result->src[1] = x;
  5928. result->src[2] = dt;
  5929. result->src[3] = A;
  5930. result->src[4] = B;
  5931. result->src[5] = C;
  5932. result->src[6] = sq;
  5933. return result;
  5934. }
  5935. // ggml_win_part
  5936. struct ggml_tensor * ggml_win_part(
  5937. struct ggml_context * ctx,
  5938. struct ggml_tensor * a,
  5939. int w) {
  5940. GGML_ASSERT(a->ne[3] == 1);
  5941. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5942. bool is_node = false;
  5943. if (a->grad) {
  5944. GGML_ASSERT(false); // TODO: implement backward
  5945. is_node = true;
  5946. }
  5947. // padding
  5948. const int px = (w - a->ne[1]%w)%w;
  5949. const int py = (w - a->ne[2]%w)%w;
  5950. const int npx = (px + a->ne[1])/w;
  5951. const int npy = (py + a->ne[2])/w;
  5952. const int np = npx*npy;
  5953. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5954. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5955. int32_t params[] = { npx, npy, w };
  5956. ggml_set_op_params(result, params, sizeof(params));
  5957. result->op = GGML_OP_WIN_PART;
  5958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5959. result->src[0] = a;
  5960. return result;
  5961. }
  5962. // ggml_win_unpart
  5963. struct ggml_tensor * ggml_win_unpart(
  5964. struct ggml_context * ctx,
  5965. struct ggml_tensor * a,
  5966. int w0,
  5967. int h0,
  5968. int w) {
  5969. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5970. bool is_node = false;
  5971. if (a->grad) {
  5972. GGML_ASSERT(false); // TODO: implement backward
  5973. is_node = true;
  5974. }
  5975. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5976. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5977. int32_t params[] = { w };
  5978. ggml_set_op_params(result, params, sizeof(params));
  5979. result->op = GGML_OP_WIN_UNPART;
  5980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5981. result->src[0] = a;
  5982. return result;
  5983. }
  5984. // ggml_get_rel_pos
  5985. struct ggml_tensor * ggml_get_rel_pos(
  5986. struct ggml_context * ctx,
  5987. struct ggml_tensor * a,
  5988. int qh,
  5989. int kh) {
  5990. GGML_ASSERT(qh == kh);
  5991. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5992. bool is_node = false;
  5993. if (a->grad) {
  5994. GGML_ASSERT(false); // TODO: implement backward
  5995. is_node = true;
  5996. }
  5997. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5998. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5999. result->op = GGML_OP_GET_REL_POS;
  6000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6001. result->src[0] = a;
  6002. return result;
  6003. }
  6004. // ggml_add_rel_pos
  6005. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6006. struct ggml_context * ctx,
  6007. struct ggml_tensor * a,
  6008. struct ggml_tensor * pw,
  6009. struct ggml_tensor * ph,
  6010. bool inplace) {
  6011. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6012. GGML_ASSERT(ggml_is_contiguous(a));
  6013. GGML_ASSERT(ggml_is_contiguous(pw));
  6014. GGML_ASSERT(ggml_is_contiguous(ph));
  6015. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6016. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6017. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6018. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6019. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6020. bool is_node = false;
  6021. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6022. is_node = true;
  6023. }
  6024. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6025. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6026. result->op = GGML_OP_ADD_REL_POS;
  6027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6028. result->src[0] = a;
  6029. result->src[1] = pw;
  6030. result->src[2] = ph;
  6031. return result;
  6032. }
  6033. struct ggml_tensor * ggml_add_rel_pos(
  6034. struct ggml_context * ctx,
  6035. struct ggml_tensor * a,
  6036. struct ggml_tensor * pw,
  6037. struct ggml_tensor * ph) {
  6038. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6039. }
  6040. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6041. struct ggml_context * ctx,
  6042. struct ggml_tensor * a,
  6043. struct ggml_tensor * pw,
  6044. struct ggml_tensor * ph) {
  6045. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6046. }
  6047. // ggml_unary
  6048. static struct ggml_tensor * ggml_unary_impl(
  6049. struct ggml_context * ctx,
  6050. struct ggml_tensor * a,
  6051. enum ggml_unary_op op,
  6052. bool inplace) {
  6053. GGML_ASSERT(ggml_is_contiguous_1(a));
  6054. bool is_node = false;
  6055. if (!inplace && (a->grad)) {
  6056. is_node = true;
  6057. }
  6058. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6059. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6060. result->op = GGML_OP_UNARY;
  6061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6062. result->src[0] = a;
  6063. return result;
  6064. }
  6065. struct ggml_tensor * ggml_unary(
  6066. struct ggml_context * ctx,
  6067. struct ggml_tensor * a,
  6068. enum ggml_unary_op op) {
  6069. return ggml_unary_impl(ctx, a, op, false);
  6070. }
  6071. struct ggml_tensor * ggml_unary_inplace(
  6072. struct ggml_context * ctx,
  6073. struct ggml_tensor * a,
  6074. enum ggml_unary_op op) {
  6075. return ggml_unary_impl(ctx, a, op, true);
  6076. }
  6077. // ggml_map_unary
  6078. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6079. struct ggml_context * ctx,
  6080. struct ggml_tensor * a,
  6081. const ggml_unary_op_f32_t fun,
  6082. bool inplace) {
  6083. bool is_node = false;
  6084. if (!inplace && a->grad) {
  6085. is_node = true;
  6086. }
  6087. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6088. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6089. result->op = GGML_OP_MAP_UNARY;
  6090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6091. result->src[0] = a;
  6092. return result;
  6093. }
  6094. struct ggml_tensor * ggml_map_unary_f32(
  6095. struct ggml_context * ctx,
  6096. struct ggml_tensor * a,
  6097. const ggml_unary_op_f32_t fun) {
  6098. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6099. }
  6100. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6101. struct ggml_context * ctx,
  6102. struct ggml_tensor * a,
  6103. const ggml_unary_op_f32_t fun) {
  6104. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6105. }
  6106. // ggml_map_binary
  6107. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6108. struct ggml_context * ctx,
  6109. struct ggml_tensor * a,
  6110. struct ggml_tensor * b,
  6111. const ggml_binary_op_f32_t fun,
  6112. bool inplace) {
  6113. GGML_ASSERT(ggml_are_same_shape(a, b));
  6114. bool is_node = false;
  6115. if (!inplace && (a->grad || b->grad)) {
  6116. is_node = true;
  6117. }
  6118. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6119. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6120. result->op = GGML_OP_MAP_BINARY;
  6121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6122. result->src[0] = a;
  6123. result->src[1] = b;
  6124. return result;
  6125. }
  6126. struct ggml_tensor * ggml_map_binary_f32(
  6127. struct ggml_context * ctx,
  6128. struct ggml_tensor * a,
  6129. struct ggml_tensor * b,
  6130. const ggml_binary_op_f32_t fun) {
  6131. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6132. }
  6133. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6134. struct ggml_context * ctx,
  6135. struct ggml_tensor * a,
  6136. struct ggml_tensor * b,
  6137. const ggml_binary_op_f32_t fun) {
  6138. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6139. }
  6140. // ggml_map_custom1_f32
  6141. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6142. struct ggml_context * ctx,
  6143. struct ggml_tensor * a,
  6144. const ggml_custom1_op_f32_t fun,
  6145. bool inplace) {
  6146. bool is_node = false;
  6147. if (!inplace && a->grad) {
  6148. is_node = true;
  6149. }
  6150. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6151. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6152. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6154. result->src[0] = a;
  6155. return result;
  6156. }
  6157. struct ggml_tensor * ggml_map_custom1_f32(
  6158. struct ggml_context * ctx,
  6159. struct ggml_tensor * a,
  6160. const ggml_custom1_op_f32_t fun) {
  6161. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6162. }
  6163. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6164. struct ggml_context * ctx,
  6165. struct ggml_tensor * a,
  6166. const ggml_custom1_op_f32_t fun) {
  6167. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6168. }
  6169. // ggml_map_custom2_f32
  6170. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6171. struct ggml_context * ctx,
  6172. struct ggml_tensor * a,
  6173. struct ggml_tensor * b,
  6174. const ggml_custom2_op_f32_t fun,
  6175. bool inplace) {
  6176. bool is_node = false;
  6177. if (!inplace && (a->grad || b->grad)) {
  6178. is_node = true;
  6179. }
  6180. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6181. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6182. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6184. result->src[0] = a;
  6185. result->src[1] = b;
  6186. return result;
  6187. }
  6188. struct ggml_tensor * ggml_map_custom2_f32(
  6189. struct ggml_context * ctx,
  6190. struct ggml_tensor * a,
  6191. struct ggml_tensor * b,
  6192. const ggml_custom2_op_f32_t fun) {
  6193. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6194. }
  6195. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6196. struct ggml_context * ctx,
  6197. struct ggml_tensor * a,
  6198. struct ggml_tensor * b,
  6199. const ggml_custom2_op_f32_t fun) {
  6200. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6201. }
  6202. // ggml_map_custom3_f32
  6203. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6204. struct ggml_context * ctx,
  6205. struct ggml_tensor * a,
  6206. struct ggml_tensor * b,
  6207. struct ggml_tensor * c,
  6208. const ggml_custom3_op_f32_t fun,
  6209. bool inplace) {
  6210. bool is_node = false;
  6211. if (!inplace && (a->grad || b->grad || c->grad)) {
  6212. is_node = true;
  6213. }
  6214. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6215. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6216. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6217. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6218. result->src[0] = a;
  6219. result->src[1] = b;
  6220. result->src[2] = c;
  6221. return result;
  6222. }
  6223. struct ggml_tensor * ggml_map_custom3_f32(
  6224. struct ggml_context * ctx,
  6225. struct ggml_tensor * a,
  6226. struct ggml_tensor * b,
  6227. struct ggml_tensor * c,
  6228. const ggml_custom3_op_f32_t fun) {
  6229. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6230. }
  6231. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6232. struct ggml_context * ctx,
  6233. struct ggml_tensor * a,
  6234. struct ggml_tensor * b,
  6235. struct ggml_tensor * c,
  6236. const ggml_custom3_op_f32_t fun) {
  6237. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6238. }
  6239. // ggml_map_custom1
  6240. struct ggml_map_custom1_op_params {
  6241. ggml_custom1_op_t fun;
  6242. int n_tasks;
  6243. void * userdata;
  6244. };
  6245. static struct ggml_tensor * ggml_map_custom1_impl(
  6246. struct ggml_context * ctx,
  6247. struct ggml_tensor * a,
  6248. const ggml_custom1_op_t fun,
  6249. int n_tasks,
  6250. void * userdata,
  6251. bool inplace) {
  6252. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6253. bool is_node = false;
  6254. if (!inplace && a->grad) {
  6255. is_node = true;
  6256. }
  6257. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6258. struct ggml_map_custom1_op_params params = {
  6259. /*.fun =*/ fun,
  6260. /*.n_tasks =*/ n_tasks,
  6261. /*.userdata =*/ userdata
  6262. };
  6263. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6264. result->op = GGML_OP_MAP_CUSTOM1;
  6265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6266. result->src[0] = a;
  6267. return result;
  6268. }
  6269. struct ggml_tensor * ggml_map_custom1(
  6270. struct ggml_context * ctx,
  6271. struct ggml_tensor * a,
  6272. const ggml_custom1_op_t fun,
  6273. int n_tasks,
  6274. void * userdata) {
  6275. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6276. }
  6277. struct ggml_tensor * ggml_map_custom1_inplace(
  6278. struct ggml_context * ctx,
  6279. struct ggml_tensor * a,
  6280. const ggml_custom1_op_t fun,
  6281. int n_tasks,
  6282. void * userdata) {
  6283. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6284. }
  6285. // ggml_map_custom2
  6286. struct ggml_map_custom2_op_params {
  6287. ggml_custom2_op_t fun;
  6288. int n_tasks;
  6289. void * userdata;
  6290. };
  6291. static struct ggml_tensor * ggml_map_custom2_impl(
  6292. struct ggml_context * ctx,
  6293. struct ggml_tensor * a,
  6294. struct ggml_tensor * b,
  6295. const ggml_custom2_op_t fun,
  6296. int n_tasks,
  6297. void * userdata,
  6298. bool inplace) {
  6299. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6300. bool is_node = false;
  6301. if (!inplace && (a->grad || b->grad)) {
  6302. is_node = true;
  6303. }
  6304. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6305. struct ggml_map_custom2_op_params params = {
  6306. /*.fun =*/ fun,
  6307. /*.n_tasks =*/ n_tasks,
  6308. /*.userdata =*/ userdata
  6309. };
  6310. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6311. result->op = GGML_OP_MAP_CUSTOM2;
  6312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6313. result->src[0] = a;
  6314. result->src[1] = b;
  6315. return result;
  6316. }
  6317. struct ggml_tensor * ggml_map_custom2(
  6318. struct ggml_context * ctx,
  6319. struct ggml_tensor * a,
  6320. struct ggml_tensor * b,
  6321. const ggml_custom2_op_t fun,
  6322. int n_tasks,
  6323. void * userdata) {
  6324. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6325. }
  6326. struct ggml_tensor * ggml_map_custom2_inplace(
  6327. struct ggml_context * ctx,
  6328. struct ggml_tensor * a,
  6329. struct ggml_tensor * b,
  6330. const ggml_custom2_op_t fun,
  6331. int n_tasks,
  6332. void * userdata) {
  6333. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6334. }
  6335. // ggml_map_custom3
  6336. struct ggml_map_custom3_op_params {
  6337. ggml_custom3_op_t fun;
  6338. int n_tasks;
  6339. void * userdata;
  6340. };
  6341. static struct ggml_tensor * ggml_map_custom3_impl(
  6342. struct ggml_context * ctx,
  6343. struct ggml_tensor * a,
  6344. struct ggml_tensor * b,
  6345. struct ggml_tensor * c,
  6346. const ggml_custom3_op_t fun,
  6347. int n_tasks,
  6348. void * userdata,
  6349. bool inplace) {
  6350. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6351. bool is_node = false;
  6352. if (!inplace && (a->grad || b->grad || c->grad)) {
  6353. is_node = true;
  6354. }
  6355. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6356. struct ggml_map_custom3_op_params params = {
  6357. /*.fun =*/ fun,
  6358. /*.n_tasks =*/ n_tasks,
  6359. /*.userdata =*/ userdata
  6360. };
  6361. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6362. result->op = GGML_OP_MAP_CUSTOM3;
  6363. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6364. result->src[0] = a;
  6365. result->src[1] = b;
  6366. result->src[2] = c;
  6367. return result;
  6368. }
  6369. struct ggml_tensor * ggml_map_custom3(
  6370. struct ggml_context * ctx,
  6371. struct ggml_tensor * a,
  6372. struct ggml_tensor * b,
  6373. struct ggml_tensor * c,
  6374. const ggml_custom3_op_t fun,
  6375. int n_tasks,
  6376. void * userdata) {
  6377. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6378. }
  6379. struct ggml_tensor * ggml_map_custom3_inplace(
  6380. struct ggml_context * ctx,
  6381. struct ggml_tensor * a,
  6382. struct ggml_tensor * b,
  6383. struct ggml_tensor * c,
  6384. const ggml_custom3_op_t fun,
  6385. int n_tasks,
  6386. void * userdata) {
  6387. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6388. }
  6389. // ggml_cross_entropy_loss
  6390. struct ggml_tensor * ggml_cross_entropy_loss(
  6391. struct ggml_context * ctx,
  6392. struct ggml_tensor * a,
  6393. struct ggml_tensor * b) {
  6394. GGML_ASSERT(ggml_are_same_shape(a, b));
  6395. bool is_node = false;
  6396. if (a->grad || b->grad) {
  6397. is_node = true;
  6398. }
  6399. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6400. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6402. result->src[0] = a;
  6403. result->src[1] = b;
  6404. return result;
  6405. }
  6406. // ggml_cross_entropy_loss_back
  6407. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6408. struct ggml_context * ctx,
  6409. struct ggml_tensor * a,
  6410. struct ggml_tensor * b,
  6411. struct ggml_tensor * c) {
  6412. GGML_ASSERT(ggml_are_same_shape(a, b));
  6413. GGML_ASSERT(ggml_is_scalar(c));
  6414. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6415. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6416. result->grad = NULL;
  6417. result->src[0] = a;
  6418. result->src[1] = b;
  6419. result->src[2] = c;
  6420. return result;
  6421. }
  6422. ////////////////////////////////////////////////////////////////////////////////
  6423. void ggml_set_param(
  6424. struct ggml_context * ctx,
  6425. struct ggml_tensor * tensor) {
  6426. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6427. GGML_ASSERT(tensor->grad == NULL);
  6428. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6429. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6430. }
  6431. // ggml_compute_forward_dup
  6432. static void ggml_compute_forward_dup_same_cont(
  6433. const struct ggml_compute_params * params,
  6434. struct ggml_tensor * dst) {
  6435. const struct ggml_tensor * src0 = dst->src[0];
  6436. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6437. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6438. GGML_ASSERT(src0->type == dst->type);
  6439. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6440. return;
  6441. }
  6442. const size_t nb00 = src0->nb[0];
  6443. const size_t nb0 = dst->nb[0];
  6444. const int ith = params->ith; // thread index
  6445. const int nth = params->nth; // number of threads
  6446. // parallelize by elements
  6447. const int ne = ggml_nelements(dst);
  6448. const int dr = (ne + nth - 1) / nth;
  6449. const int ie0 = dr * ith;
  6450. const int ie1 = MIN(ie0 + dr, ne);
  6451. if (ie0 < ie1) {
  6452. memcpy(
  6453. ((char *) dst->data + ie0*nb0),
  6454. ((char *) src0->data + ie0*nb00),
  6455. (ie1 - ie0) * ggml_type_size(src0->type));
  6456. }
  6457. }
  6458. static void ggml_compute_forward_dup_f16(
  6459. const struct ggml_compute_params * params,
  6460. struct ggml_tensor * dst) {
  6461. const struct ggml_tensor * src0 = dst->src[0];
  6462. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6463. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6464. return;
  6465. }
  6466. GGML_TENSOR_UNARY_OP_LOCALS
  6467. const int ith = params->ith; // thread index
  6468. const int nth = params->nth; // number of threads
  6469. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6470. ggml_compute_forward_dup_same_cont(params, dst);
  6471. return;
  6472. }
  6473. // parallelize by rows
  6474. const int nr = ne01;
  6475. // number of rows per thread
  6476. const int dr = (nr + nth - 1) / nth;
  6477. // row range for this thread
  6478. const int ir0 = dr * ith;
  6479. const int ir1 = MIN(ir0 + dr, nr);
  6480. if (src0->type == dst->type &&
  6481. ne00 == ne0 &&
  6482. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6483. // copy by rows
  6484. const size_t rs = ne00*nb00;
  6485. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6486. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6487. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6488. memcpy(
  6489. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6490. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6491. rs);
  6492. }
  6493. }
  6494. }
  6495. return;
  6496. }
  6497. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6498. if (ggml_is_contiguous(dst)) {
  6499. if (nb00 == sizeof(ggml_fp16_t)) {
  6500. if (dst->type == GGML_TYPE_F16) {
  6501. size_t id = 0;
  6502. const size_t rs = ne00 * nb00;
  6503. char * dst_ptr = (char *) dst->data;
  6504. for (int i03 = 0; i03 < ne03; i03++) {
  6505. for (int i02 = 0; i02 < ne02; i02++) {
  6506. id += rs * ir0;
  6507. for (int i01 = ir0; i01 < ir1; i01++) {
  6508. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6509. memcpy(dst_ptr + id, src0_ptr, rs);
  6510. id += rs;
  6511. }
  6512. id += rs * (ne01 - ir1);
  6513. }
  6514. }
  6515. } else if (dst->type == GGML_TYPE_F32) {
  6516. size_t id = 0;
  6517. float * dst_ptr = (float *) dst->data;
  6518. for (int i03 = 0; i03 < ne03; i03++) {
  6519. for (int i02 = 0; i02 < ne02; i02++) {
  6520. id += ne00 * ir0;
  6521. for (int i01 = ir0; i01 < ir1; i01++) {
  6522. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6523. for (int i00 = 0; i00 < ne00; i00++) {
  6524. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6525. id++;
  6526. }
  6527. }
  6528. id += ne00 * (ne01 - ir1);
  6529. }
  6530. }
  6531. } else if (type_traits[dst->type].from_float) {
  6532. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6533. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6534. size_t id = 0;
  6535. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6536. char * dst_ptr = (char *) dst->data;
  6537. for (int i03 = 0; i03 < ne03; i03++) {
  6538. for (int i02 = 0; i02 < ne02; i02++) {
  6539. id += rs * ir0;
  6540. for (int i01 = ir0; i01 < ir1; i01++) {
  6541. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6542. for (int i00 = 0; i00 < ne00; i00++) {
  6543. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6544. }
  6545. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6546. id += rs;
  6547. }
  6548. id += rs * (ne01 - ir1);
  6549. }
  6550. }
  6551. } else {
  6552. GGML_ASSERT(false); // TODO: implement
  6553. }
  6554. } else {
  6555. //printf("%s: this is not optimal - fix me\n", __func__);
  6556. if (dst->type == GGML_TYPE_F32) {
  6557. size_t id = 0;
  6558. float * dst_ptr = (float *) dst->data;
  6559. for (int i03 = 0; i03 < ne03; i03++) {
  6560. for (int i02 = 0; i02 < ne02; i02++) {
  6561. id += ne00 * ir0;
  6562. for (int i01 = ir0; i01 < ir1; i01++) {
  6563. for (int i00 = 0; i00 < ne00; i00++) {
  6564. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6565. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6566. id++;
  6567. }
  6568. }
  6569. id += ne00 * (ne01 - ir1);
  6570. }
  6571. }
  6572. } else if (dst->type == GGML_TYPE_F16) {
  6573. size_t id = 0;
  6574. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6575. for (int i03 = 0; i03 < ne03; i03++) {
  6576. for (int i02 = 0; i02 < ne02; i02++) {
  6577. id += ne00 * ir0;
  6578. for (int i01 = ir0; i01 < ir1; i01++) {
  6579. for (int i00 = 0; i00 < ne00; i00++) {
  6580. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6581. dst_ptr[id] = *src0_ptr;
  6582. id++;
  6583. }
  6584. }
  6585. id += ne00 * (ne01 - ir1);
  6586. }
  6587. }
  6588. } else {
  6589. GGML_ASSERT(false); // TODO: implement
  6590. }
  6591. }
  6592. return;
  6593. }
  6594. // dst counters
  6595. int64_t i10 = 0;
  6596. int64_t i11 = 0;
  6597. int64_t i12 = 0;
  6598. int64_t i13 = 0;
  6599. if (dst->type == GGML_TYPE_F16) {
  6600. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6601. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6602. i10 += ne00 * ir0;
  6603. while (i10 >= ne0) {
  6604. i10 -= ne0;
  6605. if (++i11 == ne1) {
  6606. i11 = 0;
  6607. if (++i12 == ne2) {
  6608. i12 = 0;
  6609. if (++i13 == ne3) {
  6610. i13 = 0;
  6611. }
  6612. }
  6613. }
  6614. }
  6615. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6616. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6617. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6618. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6619. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6620. if (++i10 == ne00) {
  6621. i10 = 0;
  6622. if (++i11 == ne01) {
  6623. i11 = 0;
  6624. if (++i12 == ne02) {
  6625. i12 = 0;
  6626. if (++i13 == ne03) {
  6627. i13 = 0;
  6628. }
  6629. }
  6630. }
  6631. }
  6632. }
  6633. }
  6634. i10 += ne00 * (ne01 - ir1);
  6635. while (i10 >= ne0) {
  6636. i10 -= ne0;
  6637. if (++i11 == ne1) {
  6638. i11 = 0;
  6639. if (++i12 == ne2) {
  6640. i12 = 0;
  6641. if (++i13 == ne3) {
  6642. i13 = 0;
  6643. }
  6644. }
  6645. }
  6646. }
  6647. }
  6648. }
  6649. } else if (dst->type == GGML_TYPE_F32) {
  6650. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6651. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6652. i10 += ne00 * ir0;
  6653. while (i10 >= ne0) {
  6654. i10 -= ne0;
  6655. if (++i11 == ne1) {
  6656. i11 = 0;
  6657. if (++i12 == ne2) {
  6658. i12 = 0;
  6659. if (++i13 == ne3) {
  6660. i13 = 0;
  6661. }
  6662. }
  6663. }
  6664. }
  6665. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6666. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6667. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6668. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6669. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6670. if (++i10 == ne0) {
  6671. i10 = 0;
  6672. if (++i11 == ne1) {
  6673. i11 = 0;
  6674. if (++i12 == ne2) {
  6675. i12 = 0;
  6676. if (++i13 == ne3) {
  6677. i13 = 0;
  6678. }
  6679. }
  6680. }
  6681. }
  6682. }
  6683. }
  6684. i10 += ne00 * (ne01 - ir1);
  6685. while (i10 >= ne0) {
  6686. i10 -= ne0;
  6687. if (++i11 == ne1) {
  6688. i11 = 0;
  6689. if (++i12 == ne2) {
  6690. i12 = 0;
  6691. if (++i13 == ne3) {
  6692. i13 = 0;
  6693. }
  6694. }
  6695. }
  6696. }
  6697. }
  6698. }
  6699. } else {
  6700. GGML_ASSERT(false); // TODO: implement
  6701. }
  6702. }
  6703. static void ggml_compute_forward_dup_bf16(
  6704. const struct ggml_compute_params * params,
  6705. struct ggml_tensor * dst) {
  6706. const struct ggml_tensor * src0 = dst->src[0];
  6707. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6708. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6709. return;
  6710. }
  6711. GGML_TENSOR_UNARY_OP_LOCALS
  6712. const int ith = params->ith; // thread index
  6713. const int nth = params->nth; // number of threads
  6714. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6715. ggml_compute_forward_dup_same_cont(params, dst);
  6716. return;
  6717. }
  6718. // parallelize by rows
  6719. const int nr = ne01;
  6720. // number of rows per thread
  6721. const int dr = (nr + nth - 1) / nth;
  6722. // row range for this thread
  6723. const int ir0 = dr * ith;
  6724. const int ir1 = MIN(ir0 + dr, nr);
  6725. if (src0->type == dst->type &&
  6726. ne00 == ne0 &&
  6727. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6728. // copy by rows
  6729. const size_t rs = ne00*nb00;
  6730. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6731. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6732. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6733. memcpy(
  6734. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6735. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6736. rs);
  6737. }
  6738. }
  6739. }
  6740. return;
  6741. }
  6742. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6743. if (ggml_is_contiguous(dst)) {
  6744. if (nb00 == sizeof(ggml_bf16_t)) {
  6745. if (dst->type == GGML_TYPE_BF16) {
  6746. size_t id = 0;
  6747. const size_t rs = ne00 * nb00;
  6748. char * dst_ptr = (char *) dst->data;
  6749. for (int i03 = 0; i03 < ne03; i03++) {
  6750. for (int i02 = 0; i02 < ne02; i02++) {
  6751. id += rs * ir0;
  6752. for (int i01 = ir0; i01 < ir1; i01++) {
  6753. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6754. memcpy(dst_ptr + id, src0_ptr, rs);
  6755. id += rs;
  6756. }
  6757. id += rs * (ne01 - ir1);
  6758. }
  6759. }
  6760. } else if (dst->type == GGML_TYPE_F16) {
  6761. size_t id = 0;
  6762. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6763. for (int i03 = 0; i03 < ne03; i03++) {
  6764. for (int i02 = 0; i02 < ne02; i02++) {
  6765. id += ne00 * ir0;
  6766. for (int i01 = ir0; i01 < ir1; i01++) {
  6767. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6768. for (int i00 = 0; i00 < ne00; i00++) {
  6769. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6770. id++;
  6771. }
  6772. }
  6773. id += ne00 * (ne01 - ir1);
  6774. }
  6775. }
  6776. } else if (dst->type == GGML_TYPE_F32) {
  6777. size_t id = 0;
  6778. float * dst_ptr = (float *) dst->data;
  6779. for (int i03 = 0; i03 < ne03; i03++) {
  6780. for (int i02 = 0; i02 < ne02; i02++) {
  6781. id += ne00 * ir0;
  6782. for (int i01 = ir0; i01 < ir1; i01++) {
  6783. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6784. for (int i00 = 0; i00 < ne00; i00++) {
  6785. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6786. id++;
  6787. }
  6788. }
  6789. id += ne00 * (ne01 - ir1);
  6790. }
  6791. }
  6792. } else if (type_traits[dst->type].from_float) {
  6793. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6794. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6795. size_t id = 0;
  6796. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6797. char * dst_ptr = (char *) dst->data;
  6798. for (int i03 = 0; i03 < ne03; i03++) {
  6799. for (int i02 = 0; i02 < ne02; i02++) {
  6800. id += rs * ir0;
  6801. for (int i01 = ir0; i01 < ir1; i01++) {
  6802. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6803. for (int i00 = 0; i00 < ne00; i00++) {
  6804. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6805. }
  6806. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6807. id += rs;
  6808. }
  6809. id += rs * (ne01 - ir1);
  6810. }
  6811. }
  6812. } else {
  6813. GGML_ASSERT(false); // TODO: implement
  6814. }
  6815. } else {
  6816. //printf("%s: this is not optimal - fix me\n", __func__);
  6817. if (dst->type == GGML_TYPE_F32) {
  6818. size_t id = 0;
  6819. float * dst_ptr = (float *) dst->data;
  6820. for (int i03 = 0; i03 < ne03; i03++) {
  6821. for (int i02 = 0; i02 < ne02; i02++) {
  6822. id += ne00 * ir0;
  6823. for (int i01 = ir0; i01 < ir1; i01++) {
  6824. for (int i00 = 0; i00 < ne00; i00++) {
  6825. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6826. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6827. id++;
  6828. }
  6829. }
  6830. id += ne00 * (ne01 - ir1);
  6831. }
  6832. }
  6833. } else if (dst->type == GGML_TYPE_BF16) {
  6834. size_t id = 0;
  6835. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6836. for (int i03 = 0; i03 < ne03; i03++) {
  6837. for (int i02 = 0; i02 < ne02; i02++) {
  6838. id += ne00 * ir0;
  6839. for (int i01 = ir0; i01 < ir1; i01++) {
  6840. for (int i00 = 0; i00 < ne00; i00++) {
  6841. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6842. dst_ptr[id] = *src0_ptr;
  6843. id++;
  6844. }
  6845. }
  6846. id += ne00 * (ne01 - ir1);
  6847. }
  6848. }
  6849. } else if (dst->type == GGML_TYPE_F16) {
  6850. size_t id = 0;
  6851. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6852. for (int i03 = 0; i03 < ne03; i03++) {
  6853. for (int i02 = 0; i02 < ne02; i02++) {
  6854. id += ne00 * ir0;
  6855. for (int i01 = ir0; i01 < ir1; i01++) {
  6856. for (int i00 = 0; i00 < ne00; i00++) {
  6857. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6858. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6859. id++;
  6860. }
  6861. }
  6862. id += ne00 * (ne01 - ir1);
  6863. }
  6864. }
  6865. } else {
  6866. GGML_ASSERT(false); // TODO: implement
  6867. }
  6868. }
  6869. return;
  6870. }
  6871. // dst counters
  6872. int64_t i10 = 0;
  6873. int64_t i11 = 0;
  6874. int64_t i12 = 0;
  6875. int64_t i13 = 0;
  6876. if (dst->type == GGML_TYPE_BF16) {
  6877. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6878. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6879. i10 += ne00 * ir0;
  6880. while (i10 >= ne0) {
  6881. i10 -= ne0;
  6882. if (++i11 == ne1) {
  6883. i11 = 0;
  6884. if (++i12 == ne2) {
  6885. i12 = 0;
  6886. if (++i13 == ne3) {
  6887. i13 = 0;
  6888. }
  6889. }
  6890. }
  6891. }
  6892. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6893. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6894. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6895. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6896. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6897. if (++i10 == ne00) {
  6898. i10 = 0;
  6899. if (++i11 == ne01) {
  6900. i11 = 0;
  6901. if (++i12 == ne02) {
  6902. i12 = 0;
  6903. if (++i13 == ne03) {
  6904. i13 = 0;
  6905. }
  6906. }
  6907. }
  6908. }
  6909. }
  6910. }
  6911. i10 += ne00 * (ne01 - ir1);
  6912. while (i10 >= ne0) {
  6913. i10 -= ne0;
  6914. if (++i11 == ne1) {
  6915. i11 = 0;
  6916. if (++i12 == ne2) {
  6917. i12 = 0;
  6918. if (++i13 == ne3) {
  6919. i13 = 0;
  6920. }
  6921. }
  6922. }
  6923. }
  6924. }
  6925. }
  6926. } else if (dst->type == GGML_TYPE_F16) {
  6927. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6928. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6929. i10 += ne00 * ir0;
  6930. while (i10 >= ne0) {
  6931. i10 -= ne0;
  6932. if (++i11 == ne1) {
  6933. i11 = 0;
  6934. if (++i12 == ne2) {
  6935. i12 = 0;
  6936. if (++i13 == ne3) {
  6937. i13 = 0;
  6938. }
  6939. }
  6940. }
  6941. }
  6942. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6943. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6944. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6945. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6946. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6947. if (++i10 == ne0) {
  6948. i10 = 0;
  6949. if (++i11 == ne1) {
  6950. i11 = 0;
  6951. if (++i12 == ne2) {
  6952. i12 = 0;
  6953. if (++i13 == ne3) {
  6954. i13 = 0;
  6955. }
  6956. }
  6957. }
  6958. }
  6959. }
  6960. }
  6961. i10 += ne00 * (ne01 - ir1);
  6962. while (i10 >= ne0) {
  6963. i10 -= ne0;
  6964. if (++i11 == ne1) {
  6965. i11 = 0;
  6966. if (++i12 == ne2) {
  6967. i12 = 0;
  6968. if (++i13 == ne3) {
  6969. i13 = 0;
  6970. }
  6971. }
  6972. }
  6973. }
  6974. }
  6975. }
  6976. } else if (dst->type == GGML_TYPE_F32) {
  6977. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6978. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6979. i10 += ne00 * ir0;
  6980. while (i10 >= ne0) {
  6981. i10 -= ne0;
  6982. if (++i11 == ne1) {
  6983. i11 = 0;
  6984. if (++i12 == ne2) {
  6985. i12 = 0;
  6986. if (++i13 == ne3) {
  6987. i13 = 0;
  6988. }
  6989. }
  6990. }
  6991. }
  6992. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6993. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6994. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6995. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6996. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  6997. if (++i10 == ne0) {
  6998. i10 = 0;
  6999. if (++i11 == ne1) {
  7000. i11 = 0;
  7001. if (++i12 == ne2) {
  7002. i12 = 0;
  7003. if (++i13 == ne3) {
  7004. i13 = 0;
  7005. }
  7006. }
  7007. }
  7008. }
  7009. }
  7010. }
  7011. i10 += ne00 * (ne01 - ir1);
  7012. while (i10 >= ne0) {
  7013. i10 -= ne0;
  7014. if (++i11 == ne1) {
  7015. i11 = 0;
  7016. if (++i12 == ne2) {
  7017. i12 = 0;
  7018. if (++i13 == ne3) {
  7019. i13 = 0;
  7020. }
  7021. }
  7022. }
  7023. }
  7024. }
  7025. }
  7026. } else {
  7027. GGML_ASSERT(false); // TODO: implement
  7028. }
  7029. }
  7030. static void ggml_compute_forward_dup_f32(
  7031. const struct ggml_compute_params * params,
  7032. struct ggml_tensor * dst) {
  7033. const struct ggml_tensor * src0 = dst->src[0];
  7034. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7035. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7036. return;
  7037. }
  7038. GGML_TENSOR_UNARY_OP_LOCALS
  7039. const int ith = params->ith; // thread index
  7040. const int nth = params->nth; // number of threads
  7041. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7042. ggml_compute_forward_dup_same_cont(params, dst);
  7043. return;
  7044. }
  7045. // parallelize by rows
  7046. const int nr = ne01;
  7047. // number of rows per thread
  7048. const int dr = (nr + nth - 1) / nth;
  7049. // row range for this thread
  7050. const int ir0 = dr * ith;
  7051. const int ir1 = MIN(ir0 + dr, nr);
  7052. if (src0->type == dst->type &&
  7053. ne00 == ne0 &&
  7054. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7055. // copy by rows
  7056. const size_t rs = ne00*nb00;
  7057. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7058. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7059. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7060. memcpy(
  7061. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7062. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7063. rs);
  7064. }
  7065. }
  7066. }
  7067. return;
  7068. }
  7069. if (ggml_is_contiguous(dst)) {
  7070. // TODO: simplify
  7071. if (nb00 == sizeof(float)) {
  7072. if (dst->type == GGML_TYPE_F32) {
  7073. size_t id = 0;
  7074. const size_t rs = ne00 * nb00;
  7075. char * dst_ptr = (char *) dst->data;
  7076. for (int i03 = 0; i03 < ne03; i03++) {
  7077. for (int i02 = 0; i02 < ne02; i02++) {
  7078. id += rs * ir0;
  7079. for (int i01 = ir0; i01 < ir1; i01++) {
  7080. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7081. memcpy(dst_ptr + id, src0_ptr, rs);
  7082. id += rs;
  7083. }
  7084. id += rs * (ne01 - ir1);
  7085. }
  7086. }
  7087. } else if (type_traits[dst->type].from_float) {
  7088. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7089. size_t id = 0;
  7090. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7091. char * dst_ptr = (char *) dst->data;
  7092. for (int i03 = 0; i03 < ne03; i03++) {
  7093. for (int i02 = 0; i02 < ne02; i02++) {
  7094. id += rs * ir0;
  7095. for (int i01 = ir0; i01 < ir1; i01++) {
  7096. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7097. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7098. id += rs;
  7099. }
  7100. id += rs * (ne01 - ir1);
  7101. }
  7102. }
  7103. } else {
  7104. GGML_ASSERT(false); // TODO: implement
  7105. }
  7106. } else {
  7107. //printf("%s: this is not optimal - fix me\n", __func__);
  7108. if (dst->type == GGML_TYPE_F32) {
  7109. size_t id = 0;
  7110. float * dst_ptr = (float *) dst->data;
  7111. for (int i03 = 0; i03 < ne03; i03++) {
  7112. for (int i02 = 0; i02 < ne02; i02++) {
  7113. id += ne00 * ir0;
  7114. for (int i01 = ir0; i01 < ir1; i01++) {
  7115. for (int i00 = 0; i00 < ne00; i00++) {
  7116. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7117. dst_ptr[id] = *src0_ptr;
  7118. id++;
  7119. }
  7120. }
  7121. id += ne00 * (ne01 - ir1);
  7122. }
  7123. }
  7124. } else if (dst->type == GGML_TYPE_F16) {
  7125. size_t id = 0;
  7126. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7127. for (int i03 = 0; i03 < ne03; i03++) {
  7128. for (int i02 = 0; i02 < ne02; i02++) {
  7129. id += ne00 * ir0;
  7130. for (int i01 = ir0; i01 < ir1; i01++) {
  7131. for (int i00 = 0; i00 < ne00; i00++) {
  7132. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7133. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7134. id++;
  7135. }
  7136. }
  7137. id += ne00 * (ne01 - ir1);
  7138. }
  7139. }
  7140. } else if (dst->type == GGML_TYPE_BF16) {
  7141. size_t id = 0;
  7142. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7143. for (int i03 = 0; i03 < ne03; i03++) {
  7144. for (int i02 = 0; i02 < ne02; i02++) {
  7145. id += ne00 * ir0;
  7146. for (int i01 = ir0; i01 < ir1; i01++) {
  7147. for (int i00 = 0; i00 < ne00; i00++) {
  7148. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7149. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7150. id++;
  7151. }
  7152. }
  7153. id += ne00 * (ne01 - ir1);
  7154. }
  7155. }
  7156. } else {
  7157. GGML_ASSERT(false); // TODO: implement
  7158. }
  7159. }
  7160. return;
  7161. }
  7162. // dst counters
  7163. int64_t i10 = 0;
  7164. int64_t i11 = 0;
  7165. int64_t i12 = 0;
  7166. int64_t i13 = 0;
  7167. if (dst->type == GGML_TYPE_F32) {
  7168. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7169. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7170. i10 += ne00 * ir0;
  7171. while (i10 >= ne0) {
  7172. i10 -= ne0;
  7173. if (++i11 == ne1) {
  7174. i11 = 0;
  7175. if (++i12 == ne2) {
  7176. i12 = 0;
  7177. if (++i13 == ne3) {
  7178. i13 = 0;
  7179. }
  7180. }
  7181. }
  7182. }
  7183. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7184. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7185. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7186. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7187. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7188. if (++i10 == ne0) {
  7189. i10 = 0;
  7190. if (++i11 == ne1) {
  7191. i11 = 0;
  7192. if (++i12 == ne2) {
  7193. i12 = 0;
  7194. if (++i13 == ne3) {
  7195. i13 = 0;
  7196. }
  7197. }
  7198. }
  7199. }
  7200. }
  7201. }
  7202. i10 += ne00 * (ne01 - ir1);
  7203. while (i10 >= ne0) {
  7204. i10 -= ne0;
  7205. if (++i11 == ne1) {
  7206. i11 = 0;
  7207. if (++i12 == ne2) {
  7208. i12 = 0;
  7209. if (++i13 == ne3) {
  7210. i13 = 0;
  7211. }
  7212. }
  7213. }
  7214. }
  7215. }
  7216. }
  7217. } else if (dst->type == GGML_TYPE_F16) {
  7218. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7219. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7220. i10 += ne00 * ir0;
  7221. while (i10 >= ne0) {
  7222. i10 -= ne0;
  7223. if (++i11 == ne1) {
  7224. i11 = 0;
  7225. if (++i12 == ne2) {
  7226. i12 = 0;
  7227. if (++i13 == ne3) {
  7228. i13 = 0;
  7229. }
  7230. }
  7231. }
  7232. }
  7233. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7234. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7235. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7236. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7237. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7238. if (++i10 == ne0) {
  7239. i10 = 0;
  7240. if (++i11 == ne1) {
  7241. i11 = 0;
  7242. if (++i12 == ne2) {
  7243. i12 = 0;
  7244. if (++i13 == ne3) {
  7245. i13 = 0;
  7246. }
  7247. }
  7248. }
  7249. }
  7250. }
  7251. }
  7252. i10 += ne00 * (ne01 - ir1);
  7253. while (i10 >= ne0) {
  7254. i10 -= ne0;
  7255. if (++i11 == ne1) {
  7256. i11 = 0;
  7257. if (++i12 == ne2) {
  7258. i12 = 0;
  7259. if (++i13 == ne3) {
  7260. i13 = 0;
  7261. }
  7262. }
  7263. }
  7264. }
  7265. }
  7266. }
  7267. } else if (dst->type == GGML_TYPE_BF16) {
  7268. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7269. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7270. i10 += ne00 * ir0;
  7271. while (i10 >= ne0) {
  7272. i10 -= ne0;
  7273. if (++i11 == ne1) {
  7274. i11 = 0;
  7275. if (++i12 == ne2) {
  7276. i12 = 0;
  7277. if (++i13 == ne3) {
  7278. i13 = 0;
  7279. }
  7280. }
  7281. }
  7282. }
  7283. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7284. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7285. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7286. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7287. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7288. if (++i10 == ne0) {
  7289. i10 = 0;
  7290. if (++i11 == ne1) {
  7291. i11 = 0;
  7292. if (++i12 == ne2) {
  7293. i12 = 0;
  7294. if (++i13 == ne3) {
  7295. i13 = 0;
  7296. }
  7297. }
  7298. }
  7299. }
  7300. }
  7301. }
  7302. i10 += ne00 * (ne01 - ir1);
  7303. while (i10 >= ne0) {
  7304. i10 -= ne0;
  7305. if (++i11 == ne1) {
  7306. i11 = 0;
  7307. if (++i12 == ne2) {
  7308. i12 = 0;
  7309. if (++i13 == ne3) {
  7310. i13 = 0;
  7311. }
  7312. }
  7313. }
  7314. }
  7315. }
  7316. }
  7317. } else {
  7318. GGML_ASSERT(false); // TODO: implement
  7319. }
  7320. }
  7321. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7322. static void ggml_compute_forward_dup_bytes(
  7323. const struct ggml_compute_params * params,
  7324. struct ggml_tensor * dst) {
  7325. const struct ggml_tensor * src0 = dst->src[0];
  7326. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7327. GGML_ASSERT(src0->type == dst->type);
  7328. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7329. return;
  7330. }
  7331. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7332. ggml_compute_forward_dup_same_cont(params, dst);
  7333. return;
  7334. }
  7335. GGML_TENSOR_UNARY_OP_LOCALS;
  7336. const size_t type_size = ggml_type_size(src0->type);
  7337. const int ith = params->ith; // thread index
  7338. const int nth = params->nth; // number of threads
  7339. // parallelize by rows
  7340. const int nr = ne01;
  7341. // number of rows per thread
  7342. const int dr = (nr + nth - 1) / nth;
  7343. // row range for this thread
  7344. const int ir0 = dr * ith;
  7345. const int ir1 = MIN(ir0 + dr, nr);
  7346. if (src0->type == dst->type &&
  7347. ne00 == ne0 &&
  7348. nb00 == type_size && nb0 == type_size) {
  7349. // copy by rows
  7350. const size_t rs = ne00 * type_size;
  7351. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7352. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7353. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7354. memcpy(
  7355. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7356. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7357. rs);
  7358. }
  7359. }
  7360. }
  7361. return;
  7362. }
  7363. if (ggml_is_contiguous(dst)) {
  7364. size_t id = 0;
  7365. char * dst_ptr = (char *) dst->data;
  7366. const size_t rs = ne00 * type_size;
  7367. if (nb00 == type_size) {
  7368. // src0 is contigous on first dimension, copy by rows
  7369. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7370. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7371. id += rs * ir0;
  7372. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7373. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7374. memcpy(dst_ptr + id, src0_ptr, rs);
  7375. id += rs;
  7376. }
  7377. id += rs * (ne01 - ir1);
  7378. }
  7379. }
  7380. } else {
  7381. //printf("%s: this is not optimal - fix me\n", __func__);
  7382. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7383. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7384. id += rs * ir0;
  7385. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7386. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7387. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7388. memcpy(dst_ptr + id, src0_ptr, type_size);
  7389. id += type_size;
  7390. }
  7391. }
  7392. id += rs * (ne01 - ir1);
  7393. }
  7394. }
  7395. }
  7396. return;
  7397. }
  7398. // dst counters
  7399. int64_t i10 = 0;
  7400. int64_t i11 = 0;
  7401. int64_t i12 = 0;
  7402. int64_t i13 = 0;
  7403. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7404. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7405. i10 += ne00 * ir0;
  7406. while (i10 >= ne0) {
  7407. i10 -= ne0;
  7408. if (++i11 == ne1) {
  7409. i11 = 0;
  7410. if (++i12 == ne2) {
  7411. i12 = 0;
  7412. if (++i13 == ne3) {
  7413. i13 = 0;
  7414. }
  7415. }
  7416. }
  7417. }
  7418. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7419. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7420. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7421. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7422. memcpy(dst_ptr, src0_ptr, type_size);
  7423. if (++i10 == ne0) {
  7424. i10 = 0;
  7425. if (++i11 == ne1) {
  7426. i11 = 0;
  7427. if (++i12 == ne2) {
  7428. i12 = 0;
  7429. if (++i13 == ne3) {
  7430. i13 = 0;
  7431. }
  7432. }
  7433. }
  7434. }
  7435. }
  7436. }
  7437. i10 += ne00 * (ne01 - ir1);
  7438. while (i10 >= ne0) {
  7439. i10 -= ne0;
  7440. if (++i11 == ne1) {
  7441. i11 = 0;
  7442. if (++i12 == ne2) {
  7443. i12 = 0;
  7444. if (++i13 == ne3) {
  7445. i13 = 0;
  7446. }
  7447. }
  7448. }
  7449. }
  7450. }
  7451. }
  7452. }
  7453. static void ggml_compute_forward_dup(
  7454. const struct ggml_compute_params * params,
  7455. struct ggml_tensor * dst) {
  7456. const struct ggml_tensor * src0 = dst->src[0];
  7457. if (src0->type == dst->type) {
  7458. ggml_compute_forward_dup_bytes(params, dst);
  7459. return;
  7460. }
  7461. switch (src0->type) {
  7462. case GGML_TYPE_F16:
  7463. {
  7464. ggml_compute_forward_dup_f16(params, dst);
  7465. } break;
  7466. case GGML_TYPE_BF16:
  7467. {
  7468. ggml_compute_forward_dup_bf16(params, dst);
  7469. } break;
  7470. case GGML_TYPE_F32:
  7471. {
  7472. ggml_compute_forward_dup_f32(params, dst);
  7473. } break;
  7474. default:
  7475. {
  7476. GGML_ASSERT(false);
  7477. } break;
  7478. }
  7479. }
  7480. // ggml_compute_forward_add
  7481. static void ggml_compute_forward_add_f32(
  7482. const struct ggml_compute_params * params,
  7483. struct ggml_tensor * dst) {
  7484. const struct ggml_tensor * src0 = dst->src[0];
  7485. const struct ggml_tensor * src1 = dst->src[1];
  7486. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7487. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7488. return;
  7489. }
  7490. const int ith = params->ith;
  7491. const int nth = params->nth;
  7492. const int nr = ggml_nrows(src0);
  7493. GGML_TENSOR_BINARY_OP_LOCALS
  7494. GGML_ASSERT( nb0 == sizeof(float));
  7495. GGML_ASSERT(nb00 == sizeof(float));
  7496. // rows per thread
  7497. const int dr = (nr + nth - 1)/nth;
  7498. // row range for this thread
  7499. const int ir0 = dr*ith;
  7500. const int ir1 = MIN(ir0 + dr, nr);
  7501. if (nb10 == sizeof(float)) {
  7502. for (int ir = ir0; ir < ir1; ++ir) {
  7503. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7504. const int64_t i03 = ir/(ne02*ne01);
  7505. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7506. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7507. const int64_t i13 = i03 % ne13;
  7508. const int64_t i12 = i02 % ne12;
  7509. const int64_t i11 = i01 % ne11;
  7510. const int64_t nr0 = ne00 / ne10;
  7511. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7512. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7513. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7514. for (int64_t r = 0; r < nr0; ++r) {
  7515. #ifdef GGML_USE_ACCELERATE
  7516. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7517. #else
  7518. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7519. #endif
  7520. }
  7521. }
  7522. } else {
  7523. // src1 is not contiguous
  7524. for (int ir = ir0; ir < ir1; ++ir) {
  7525. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7526. const int64_t i03 = ir/(ne02*ne01);
  7527. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7528. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7529. const int64_t i13 = i03 % ne13;
  7530. const int64_t i12 = i02 % ne12;
  7531. const int64_t i11 = i01 % ne11;
  7532. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7533. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7534. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7535. const int64_t i10 = i0 % ne10;
  7536. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7537. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7538. }
  7539. }
  7540. }
  7541. }
  7542. static void ggml_compute_forward_add_f16_f32(
  7543. const struct ggml_compute_params * params,
  7544. struct ggml_tensor * dst) {
  7545. const struct ggml_tensor * src0 = dst->src[0];
  7546. const struct ggml_tensor * src1 = dst->src[1];
  7547. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7548. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7549. return;
  7550. }
  7551. const int ith = params->ith;
  7552. const int nth = params->nth;
  7553. const int nr = ggml_nrows(src0);
  7554. GGML_TENSOR_BINARY_OP_LOCALS
  7555. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7556. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7557. if (dst->type == GGML_TYPE_F32) {
  7558. GGML_ASSERT( nb0 == sizeof(float));
  7559. }
  7560. else {
  7561. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7562. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7563. }
  7564. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7565. // rows per thread
  7566. const int dr = (nr + nth - 1)/nth;
  7567. // row range for this thread
  7568. const int ir0 = dr*ith;
  7569. const int ir1 = MIN(ir0 + dr, nr);
  7570. if (nb10 == sizeof(float)) {
  7571. if (dst->type == GGML_TYPE_F16) {
  7572. for (int ir = ir0; ir < ir1; ++ir) {
  7573. // src0, src1 and dst are same shape => same indices
  7574. const int i3 = ir/(ne2*ne1);
  7575. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7576. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7577. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7578. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7579. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7580. for (int i = 0; i < ne0; i++) {
  7581. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7582. }
  7583. }
  7584. } else {
  7585. for (int ir = ir0; ir < ir1; ++ir) {
  7586. // src0, src1 and dst are same shape => same indices
  7587. const int i3 = ir/(ne2*ne1);
  7588. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7589. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7590. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7591. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7592. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7593. for (int i = 0; i < ne0; i++) {
  7594. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7595. }
  7596. }
  7597. }
  7598. }
  7599. else {
  7600. // src1 is not contiguous
  7601. GGML_ASSERT(false);
  7602. }
  7603. }
  7604. static void ggml_compute_forward_add_bf16_f32(
  7605. const struct ggml_compute_params * params,
  7606. struct ggml_tensor * dst) {
  7607. const struct ggml_tensor * src0 = dst->src[0];
  7608. const struct ggml_tensor * src1 = dst->src[1];
  7609. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7610. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7611. return;
  7612. }
  7613. const int ith = params->ith;
  7614. const int nth = params->nth;
  7615. const int nr = ggml_nrows(src0);
  7616. GGML_TENSOR_BINARY_OP_LOCALS
  7617. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7618. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7619. if (dst->type == GGML_TYPE_F32) {
  7620. GGML_ASSERT( nb0 == sizeof(float));
  7621. }
  7622. else {
  7623. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7624. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7625. }
  7626. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7627. // rows per thread
  7628. const int dr = (nr + nth - 1)/nth;
  7629. // row range for this thread
  7630. const int ir0 = dr*ith;
  7631. const int ir1 = MIN(ir0 + dr, nr);
  7632. if (nb10 == sizeof(float)) {
  7633. if (dst->type == GGML_TYPE_BF16) {
  7634. for (int ir = ir0; ir < ir1; ++ir) {
  7635. // src0, src1 and dst are same shape => same indices
  7636. const int i3 = ir/(ne2*ne1);
  7637. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7638. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7639. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7640. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7641. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7642. for (int i = 0; i < ne0; i++) {
  7643. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7644. }
  7645. }
  7646. } else {
  7647. for (int ir = ir0; ir < ir1; ++ir) {
  7648. // src0, src1 and dst are same shape => same indices
  7649. const int i3 = ir/(ne2*ne1);
  7650. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7651. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7652. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7653. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7654. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7655. for (int i = 0; i < ne0; i++) {
  7656. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7657. }
  7658. }
  7659. }
  7660. }
  7661. else {
  7662. // src1 is not contiguous
  7663. GGML_ASSERT(false);
  7664. }
  7665. }
  7666. static void ggml_compute_forward_add_f16_f16(
  7667. const struct ggml_compute_params * params,
  7668. struct ggml_tensor * dst) {
  7669. const struct ggml_tensor * src0 = dst->src[0];
  7670. const struct ggml_tensor * src1 = dst->src[1];
  7671. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7672. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7673. return;
  7674. }
  7675. const int ith = params->ith;
  7676. const int nth = params->nth;
  7677. const int nr = ggml_nrows(src0);
  7678. GGML_TENSOR_BINARY_OP_LOCALS
  7679. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7680. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7681. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7682. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7683. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7684. // rows per thread
  7685. const int dr = (nr + nth - 1)/nth;
  7686. // row range for this thread
  7687. const int ir0 = dr*ith;
  7688. const int ir1 = MIN(ir0 + dr, nr);
  7689. if (nb10 == sizeof(ggml_fp16_t)) {
  7690. for (int ir = ir0; ir < ir1; ++ir) {
  7691. // src0, src1 and dst are same shape => same indices
  7692. const int i3 = ir/(ne2*ne1);
  7693. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7694. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7695. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7696. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7697. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7698. for (int i = 0; i < ne0; i++) {
  7699. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7700. }
  7701. }
  7702. }
  7703. else {
  7704. // src1 is not contiguous
  7705. GGML_ASSERT(false);
  7706. }
  7707. }
  7708. static void ggml_compute_forward_add_bf16_bf16(
  7709. const struct ggml_compute_params * params,
  7710. struct ggml_tensor * dst) {
  7711. const struct ggml_tensor * src0 = dst->src[0];
  7712. const struct ggml_tensor * src1 = dst->src[1];
  7713. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7714. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7715. return;
  7716. }
  7717. const int ith = params->ith;
  7718. const int nth = params->nth;
  7719. const int nr = ggml_nrows(src0);
  7720. GGML_TENSOR_BINARY_OP_LOCALS
  7721. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7722. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7723. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7724. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7725. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7726. // rows per thread
  7727. const int dr = (nr + nth - 1)/nth;
  7728. // row range for this thread
  7729. const int ir0 = dr*ith;
  7730. const int ir1 = MIN(ir0 + dr, nr);
  7731. if (nb10 == sizeof(ggml_bf16_t)) {
  7732. for (int ir = ir0; ir < ir1; ++ir) {
  7733. // src0, src1 and dst are same shape => same indices
  7734. const int i3 = ir/(ne2*ne1);
  7735. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7736. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7737. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7738. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7739. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7740. for (int i = 0; i < ne0; i++) {
  7741. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7742. }
  7743. }
  7744. }
  7745. else {
  7746. // src1 is not contiguous
  7747. GGML_ASSERT(false);
  7748. }
  7749. }
  7750. static void ggml_compute_forward_add_q_f32(
  7751. const struct ggml_compute_params * params,
  7752. struct ggml_tensor * dst) {
  7753. const struct ggml_tensor * src0 = dst->src[0];
  7754. const struct ggml_tensor * src1 = dst->src[1];
  7755. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7756. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7757. return;
  7758. }
  7759. const int nr = ggml_nrows(src0);
  7760. GGML_TENSOR_BINARY_OP_LOCALS
  7761. const int ith = params->ith;
  7762. const int nth = params->nth;
  7763. const enum ggml_type type = src0->type;
  7764. const enum ggml_type dtype = dst->type;
  7765. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7766. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7767. // we don't support permuted src0 or src1
  7768. GGML_ASSERT(nb00 == ggml_type_size(type));
  7769. GGML_ASSERT(nb10 == sizeof(float));
  7770. // dst cannot be transposed or permuted
  7771. GGML_ASSERT(nb0 <= nb1);
  7772. GGML_ASSERT(nb1 <= nb2);
  7773. GGML_ASSERT(nb2 <= nb3);
  7774. GGML_ASSERT(ggml_is_quantized(src0->type));
  7775. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7776. // rows per thread
  7777. const int dr = (nr + nth - 1)/nth;
  7778. // row range for this thread
  7779. const int ir0 = dr*ith;
  7780. const int ir1 = MIN(ir0 + dr, nr);
  7781. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7782. for (int ir = ir0; ir < ir1; ++ir) {
  7783. // src0 indices
  7784. const int i03 = ir/(ne02*ne01);
  7785. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7786. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7787. // src1 and dst are same shape as src0 => same indices
  7788. const int i13 = i03;
  7789. const int i12 = i02;
  7790. const int i11 = i01;
  7791. const int i3 = i03;
  7792. const int i2 = i02;
  7793. const int i1 = i01;
  7794. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7795. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7796. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7797. assert(ne00 % 32 == 0);
  7798. // unquantize row from src0 to temp buffer
  7799. dequantize_row_q(src0_row, wdata, ne00);
  7800. // add src1
  7801. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7802. // quantize row to dst
  7803. if (quantize_row_q != NULL) {
  7804. quantize_row_q(wdata, dst_row, ne00);
  7805. } else {
  7806. memcpy(dst_row, wdata, ne0*nb0);
  7807. }
  7808. }
  7809. }
  7810. static void ggml_compute_forward_add(
  7811. const struct ggml_compute_params * params,
  7812. struct ggml_tensor * dst) {
  7813. const struct ggml_tensor * src0 = dst->src[0];
  7814. const struct ggml_tensor * src1 = dst->src[1];
  7815. switch (src0->type) {
  7816. case GGML_TYPE_F32:
  7817. {
  7818. if (src1->type == GGML_TYPE_F32) {
  7819. ggml_compute_forward_add_f32(params, dst);
  7820. }
  7821. else {
  7822. GGML_ASSERT(false);
  7823. }
  7824. } break;
  7825. case GGML_TYPE_F16:
  7826. {
  7827. if (src1->type == GGML_TYPE_F16) {
  7828. ggml_compute_forward_add_f16_f16(params, dst);
  7829. }
  7830. else if (src1->type == GGML_TYPE_F32) {
  7831. ggml_compute_forward_add_f16_f32(params, dst);
  7832. }
  7833. else {
  7834. GGML_ASSERT(false);
  7835. }
  7836. } break;
  7837. case GGML_TYPE_BF16:
  7838. {
  7839. if (src1->type == GGML_TYPE_BF16) {
  7840. ggml_compute_forward_add_bf16_bf16(params, dst);
  7841. }
  7842. else if (src1->type == GGML_TYPE_F32) {
  7843. ggml_compute_forward_add_bf16_f32(params, dst);
  7844. }
  7845. else {
  7846. GGML_ASSERT(false);
  7847. }
  7848. } break;
  7849. case GGML_TYPE_Q4_0:
  7850. case GGML_TYPE_Q4_1:
  7851. case GGML_TYPE_Q5_0:
  7852. case GGML_TYPE_Q5_1:
  7853. case GGML_TYPE_Q8_0:
  7854. case GGML_TYPE_Q2_K:
  7855. case GGML_TYPE_Q3_K:
  7856. case GGML_TYPE_Q4_K:
  7857. case GGML_TYPE_Q5_K:
  7858. case GGML_TYPE_Q6_K:
  7859. case GGML_TYPE_IQ2_XXS:
  7860. case GGML_TYPE_IQ2_XS:
  7861. case GGML_TYPE_IQ3_XXS:
  7862. case GGML_TYPE_IQ1_S:
  7863. case GGML_TYPE_IQ1_M:
  7864. case GGML_TYPE_IQ4_NL:
  7865. case GGML_TYPE_IQ4_XS:
  7866. case GGML_TYPE_IQ3_S:
  7867. case GGML_TYPE_IQ2_S:
  7868. {
  7869. ggml_compute_forward_add_q_f32(params, dst);
  7870. } break;
  7871. default:
  7872. {
  7873. GGML_ASSERT(false);
  7874. } break;
  7875. }
  7876. }
  7877. // ggml_compute_forward_add1
  7878. static void ggml_compute_forward_add1_f32(
  7879. const struct ggml_compute_params * params,
  7880. struct ggml_tensor * dst) {
  7881. const struct ggml_tensor * src0 = dst->src[0];
  7882. const struct ggml_tensor * src1 = dst->src[1];
  7883. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7884. GGML_ASSERT(ggml_is_scalar(src1));
  7885. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7886. return;
  7887. }
  7888. const int ith = params->ith;
  7889. const int nth = params->nth;
  7890. const int nr = ggml_nrows(src0);
  7891. GGML_TENSOR_UNARY_OP_LOCALS
  7892. GGML_ASSERT( nb0 == sizeof(float));
  7893. GGML_ASSERT(nb00 == sizeof(float));
  7894. // rows per thread
  7895. const int dr = (nr + nth - 1)/nth;
  7896. // row range for this thread
  7897. const int ir0 = dr*ith;
  7898. const int ir1 = MIN(ir0 + dr, nr);
  7899. for (int ir = ir0; ir < ir1; ++ir) {
  7900. // src0 and dst are same shape => same indices
  7901. const int i3 = ir/(ne2*ne1);
  7902. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7903. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7904. #ifdef GGML_USE_ACCELERATE
  7905. UNUSED(ggml_vec_add1_f32);
  7906. vDSP_vadd(
  7907. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7908. (float *) ((char *) src1->data), 0,
  7909. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7910. ne0);
  7911. #else
  7912. ggml_vec_add1_f32(ne0,
  7913. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7914. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7915. *(float *) src1->data);
  7916. #endif
  7917. }
  7918. }
  7919. static void ggml_compute_forward_add1_f16_f32(
  7920. const struct ggml_compute_params * params,
  7921. struct ggml_tensor * dst) {
  7922. const struct ggml_tensor * src0 = dst->src[0];
  7923. const struct ggml_tensor * src1 = dst->src[1];
  7924. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7925. GGML_ASSERT(ggml_is_scalar(src1));
  7926. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7927. return;
  7928. }
  7929. // scalar to add
  7930. const float v = *(float *) src1->data;
  7931. const int ith = params->ith;
  7932. const int nth = params->nth;
  7933. const int nr = ggml_nrows(src0);
  7934. GGML_TENSOR_UNARY_OP_LOCALS
  7935. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7936. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7937. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7938. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7939. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7940. // rows per thread
  7941. const int dr = (nr + nth - 1)/nth;
  7942. // row range for this thread
  7943. const int ir0 = dr*ith;
  7944. const int ir1 = MIN(ir0 + dr, nr);
  7945. for (int ir = ir0; ir < ir1; ++ir) {
  7946. // src0 and dst are same shape => same indices
  7947. const int i3 = ir/(ne2*ne1);
  7948. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7949. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7950. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7951. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7952. for (int i = 0; i < ne0; i++) {
  7953. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7954. }
  7955. }
  7956. }
  7957. static void ggml_compute_forward_add1_f16_f16(
  7958. const struct ggml_compute_params * params,
  7959. struct ggml_tensor * dst) {
  7960. const struct ggml_tensor * src0 = dst->src[0];
  7961. const struct ggml_tensor * src1 = dst->src[1];
  7962. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7963. GGML_ASSERT(ggml_is_scalar(src1));
  7964. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7965. return;
  7966. }
  7967. // scalar to add
  7968. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7969. const int ith = params->ith;
  7970. const int nth = params->nth;
  7971. const int nr = ggml_nrows(src0);
  7972. GGML_TENSOR_UNARY_OP_LOCALS
  7973. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7974. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7975. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7976. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7977. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7978. // rows per thread
  7979. const int dr = (nr + nth - 1)/nth;
  7980. // row range for this thread
  7981. const int ir0 = dr*ith;
  7982. const int ir1 = MIN(ir0 + dr, nr);
  7983. for (int ir = ir0; ir < ir1; ++ir) {
  7984. // src0 and dst are same shape => same indices
  7985. const int i3 = ir/(ne2*ne1);
  7986. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7987. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7988. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7989. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7990. for (int i = 0; i < ne0; i++) {
  7991. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7992. }
  7993. }
  7994. }
  7995. static void ggml_compute_forward_add1_q_f32(
  7996. const struct ggml_compute_params * params,
  7997. struct ggml_tensor * dst) {
  7998. const struct ggml_tensor * src0 = dst->src[0];
  7999. const struct ggml_tensor * src1 = dst->src[1];
  8000. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8001. GGML_ASSERT(ggml_is_scalar(src1));
  8002. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8003. return;
  8004. }
  8005. // scalar to add
  8006. const float v = *(float *) src1->data;
  8007. const int ith = params->ith;
  8008. const int nth = params->nth;
  8009. const int nr = ggml_nrows(src0);
  8010. GGML_TENSOR_UNARY_OP_LOCALS
  8011. const enum ggml_type type = src0->type;
  8012. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8013. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8014. // we don't support permuted src0
  8015. GGML_ASSERT(nb00 == ggml_type_size(type));
  8016. // dst cannot be transposed or permuted
  8017. GGML_ASSERT(nb0 <= nb1);
  8018. GGML_ASSERT(nb1 <= nb2);
  8019. GGML_ASSERT(nb2 <= nb3);
  8020. GGML_ASSERT(ggml_is_quantized(src0->type));
  8021. GGML_ASSERT(dst->type == src0->type);
  8022. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8023. // rows per thread
  8024. const int dr = (nr + nth - 1)/nth;
  8025. // row range for this thread
  8026. const int ir0 = dr*ith;
  8027. const int ir1 = MIN(ir0 + dr, nr);
  8028. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8029. for (int ir = ir0; ir < ir1; ++ir) {
  8030. // src0 and dst are same shape => same indices
  8031. const int i3 = ir/(ne2*ne1);
  8032. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8033. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8034. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8035. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8036. assert(ne0 % 32 == 0);
  8037. // unquantize row from src0 to temp buffer
  8038. dequantize_row_q(src0_row, wdata, ne0);
  8039. // add src1
  8040. ggml_vec_acc1_f32(ne0, wdata, v);
  8041. // quantize row to dst
  8042. quantize_row_q(wdata, dst_row, ne0);
  8043. }
  8044. }
  8045. static void ggml_compute_forward_add1_bf16_f32(
  8046. const struct ggml_compute_params * params,
  8047. struct ggml_tensor * dst) {
  8048. const struct ggml_tensor * src0 = dst->src[0];
  8049. const struct ggml_tensor * src1 = dst->src[1];
  8050. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8051. GGML_ASSERT(ggml_is_scalar(src1));
  8052. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8053. return;
  8054. }
  8055. // scalar to add
  8056. const float v = *(float *) src1->data;
  8057. const int ith = params->ith;
  8058. const int nth = params->nth;
  8059. const int nr = ggml_nrows(src0);
  8060. GGML_TENSOR_UNARY_OP_LOCALS
  8061. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8062. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8063. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8064. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8065. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8066. // rows per thread
  8067. const int dr = (nr + nth - 1)/nth;
  8068. // row range for this thread
  8069. const int ir0 = dr*ith;
  8070. const int ir1 = MIN(ir0 + dr, nr);
  8071. for (int ir = ir0; ir < ir1; ++ir) {
  8072. // src0 and dst are same shape => same indices
  8073. const int i3 = ir/(ne2*ne1);
  8074. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8075. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8076. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8077. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8078. for (int i = 0; i < ne0; i++) {
  8079. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8080. }
  8081. }
  8082. }
  8083. static void ggml_compute_forward_add1_bf16_bf16(
  8084. const struct ggml_compute_params * params,
  8085. struct ggml_tensor * dst) {
  8086. const struct ggml_tensor * src0 = dst->src[0];
  8087. const struct ggml_tensor * src1 = dst->src[1];
  8088. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8089. GGML_ASSERT(ggml_is_scalar(src1));
  8090. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8091. return;
  8092. }
  8093. // scalar to add
  8094. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8095. const int ith = params->ith;
  8096. const int nth = params->nth;
  8097. const int nr = ggml_nrows(src0);
  8098. GGML_TENSOR_UNARY_OP_LOCALS
  8099. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8100. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8101. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8102. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8103. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8104. // rows per thread
  8105. const int dr = (nr + nth - 1)/nth;
  8106. // row range for this thread
  8107. const int ir0 = dr*ith;
  8108. const int ir1 = MIN(ir0 + dr, nr);
  8109. for (int ir = ir0; ir < ir1; ++ir) {
  8110. // src0 and dst are same shape => same indices
  8111. const int i3 = ir/(ne2*ne1);
  8112. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8113. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8114. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8115. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8116. for (int i = 0; i < ne0; i++) {
  8117. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8118. }
  8119. }
  8120. }
  8121. static void ggml_compute_forward_add1(
  8122. const struct ggml_compute_params * params,
  8123. struct ggml_tensor * dst) {
  8124. const struct ggml_tensor * src0 = dst->src[0];
  8125. const struct ggml_tensor * src1 = dst->src[1];
  8126. switch (src0->type) {
  8127. case GGML_TYPE_F32:
  8128. {
  8129. ggml_compute_forward_add1_f32(params, dst);
  8130. } break;
  8131. case GGML_TYPE_F16:
  8132. {
  8133. if (src1->type == GGML_TYPE_F16) {
  8134. ggml_compute_forward_add1_f16_f16(params, dst);
  8135. }
  8136. else if (src1->type == GGML_TYPE_F32) {
  8137. ggml_compute_forward_add1_f16_f32(params, dst);
  8138. }
  8139. else {
  8140. GGML_ASSERT(false);
  8141. }
  8142. } break;
  8143. case GGML_TYPE_BF16:
  8144. {
  8145. if (src1->type == GGML_TYPE_BF16) {
  8146. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8147. }
  8148. else if (src1->type == GGML_TYPE_F32) {
  8149. ggml_compute_forward_add1_bf16_f32(params, dst);
  8150. }
  8151. else {
  8152. GGML_ASSERT(false);
  8153. }
  8154. } break;
  8155. case GGML_TYPE_Q4_0:
  8156. case GGML_TYPE_Q4_1:
  8157. case GGML_TYPE_Q5_0:
  8158. case GGML_TYPE_Q5_1:
  8159. case GGML_TYPE_Q8_0:
  8160. case GGML_TYPE_Q8_1:
  8161. case GGML_TYPE_Q2_K:
  8162. case GGML_TYPE_Q3_K:
  8163. case GGML_TYPE_Q4_K:
  8164. case GGML_TYPE_Q5_K:
  8165. case GGML_TYPE_Q6_K:
  8166. case GGML_TYPE_IQ2_XXS:
  8167. case GGML_TYPE_IQ2_XS:
  8168. case GGML_TYPE_IQ3_XXS:
  8169. case GGML_TYPE_IQ1_S:
  8170. case GGML_TYPE_IQ1_M:
  8171. case GGML_TYPE_IQ4_NL:
  8172. case GGML_TYPE_IQ4_XS:
  8173. case GGML_TYPE_IQ3_S:
  8174. case GGML_TYPE_IQ2_S:
  8175. {
  8176. ggml_compute_forward_add1_q_f32(params, dst);
  8177. } break;
  8178. default:
  8179. {
  8180. GGML_ASSERT(false);
  8181. } break;
  8182. }
  8183. }
  8184. // ggml_compute_forward_acc
  8185. static void ggml_compute_forward_acc_f32(
  8186. const struct ggml_compute_params * params,
  8187. struct ggml_tensor * dst) {
  8188. const struct ggml_tensor * src0 = dst->src[0];
  8189. const struct ggml_tensor * src1 = dst->src[1];
  8190. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8191. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8192. // view src0 and dst with these strides and data offset inbytes during acc
  8193. // nb0 is implicitly element_size because src0 and dst are contiguous
  8194. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8195. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8196. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8197. size_t offset = ((int32_t *) dst->op_params)[3];
  8198. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8199. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8200. if (params->ith != 0) {
  8201. return;
  8202. }
  8203. // memcpy needs to be synchronized across threads to avoid race conditions.
  8204. // => do it in INIT phase
  8205. memcpy(
  8206. ((char *) dst->data),
  8207. ((char *) src0->data),
  8208. ggml_nbytes(dst));
  8209. }
  8210. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8211. return;
  8212. }
  8213. const int ith = params->ith;
  8214. const int nth = params->nth;
  8215. const int nr = ggml_nrows(src1);
  8216. const int nc = src1->ne[0];
  8217. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8218. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8219. // src0 and dst as viewed during acc
  8220. const size_t nb0 = ggml_element_size(src0);
  8221. const size_t nb00 = nb0;
  8222. const size_t nb01 = nb1;
  8223. const size_t nb02 = nb2;
  8224. const size_t nb03 = nb3;
  8225. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8226. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8227. GGML_ASSERT(nb10 == sizeof(float));
  8228. // rows per thread
  8229. const int dr = (nr + nth - 1)/nth;
  8230. // row range for this thread
  8231. const int ir0 = dr*ith;
  8232. const int ir1 = MIN(ir0 + dr, nr);
  8233. for (int ir = ir0; ir < ir1; ++ir) {
  8234. // src0 and dst are viewed with shape of src1 and offset
  8235. // => same indices
  8236. const int i3 = ir/(ne12*ne11);
  8237. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8238. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8239. #ifdef GGML_USE_ACCELERATE
  8240. vDSP_vadd(
  8241. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8242. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8243. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8244. #else
  8245. ggml_vec_add_f32(nc,
  8246. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8247. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8248. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8249. #endif
  8250. }
  8251. }
  8252. static void ggml_compute_forward_acc(
  8253. const struct ggml_compute_params * params,
  8254. struct ggml_tensor * dst) {
  8255. const struct ggml_tensor * src0 = dst->src[0];
  8256. switch (src0->type) {
  8257. case GGML_TYPE_F32:
  8258. {
  8259. ggml_compute_forward_acc_f32(params, dst);
  8260. } break;
  8261. case GGML_TYPE_F16:
  8262. case GGML_TYPE_BF16:
  8263. case GGML_TYPE_Q4_0:
  8264. case GGML_TYPE_Q4_1:
  8265. case GGML_TYPE_Q5_0:
  8266. case GGML_TYPE_Q5_1:
  8267. case GGML_TYPE_Q8_0:
  8268. case GGML_TYPE_Q8_1:
  8269. case GGML_TYPE_Q2_K:
  8270. case GGML_TYPE_Q3_K:
  8271. case GGML_TYPE_Q4_K:
  8272. case GGML_TYPE_Q5_K:
  8273. case GGML_TYPE_Q6_K:
  8274. case GGML_TYPE_IQ2_XXS:
  8275. case GGML_TYPE_IQ2_XS:
  8276. case GGML_TYPE_IQ3_XXS:
  8277. case GGML_TYPE_IQ1_S:
  8278. case GGML_TYPE_IQ1_M:
  8279. case GGML_TYPE_IQ4_NL:
  8280. case GGML_TYPE_IQ4_XS:
  8281. case GGML_TYPE_IQ3_S:
  8282. case GGML_TYPE_IQ2_S:
  8283. default:
  8284. {
  8285. GGML_ASSERT(false);
  8286. } break;
  8287. }
  8288. }
  8289. // ggml_compute_forward_sub
  8290. static void ggml_compute_forward_sub_f32(
  8291. const struct ggml_compute_params * params,
  8292. struct ggml_tensor * dst) {
  8293. const struct ggml_tensor * src0 = dst->src[0];
  8294. const struct ggml_tensor * src1 = dst->src[1];
  8295. assert(params->ith == 0);
  8296. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8297. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8298. return;
  8299. }
  8300. const int nr = ggml_nrows(src0);
  8301. GGML_TENSOR_BINARY_OP_LOCALS
  8302. GGML_ASSERT( nb0 == sizeof(float));
  8303. GGML_ASSERT(nb00 == sizeof(float));
  8304. if (nb10 == sizeof(float)) {
  8305. for (int ir = 0; ir < nr; ++ir) {
  8306. // src0, src1 and dst are same shape => same indices
  8307. const int i3 = ir/(ne2*ne1);
  8308. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8309. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8310. #ifdef GGML_USE_ACCELERATE
  8311. vDSP_vsub(
  8312. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8313. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8314. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8315. ne0);
  8316. #else
  8317. ggml_vec_sub_f32(ne0,
  8318. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8319. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8320. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8321. #endif
  8322. // }
  8323. // }
  8324. }
  8325. } else {
  8326. // src1 is not contiguous
  8327. for (int ir = 0; ir < nr; ++ir) {
  8328. // src0, src1 and dst are same shape => same indices
  8329. const int i3 = ir/(ne2*ne1);
  8330. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8331. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8332. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8333. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8334. for (int i0 = 0; i0 < ne0; i0++) {
  8335. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8336. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8337. }
  8338. }
  8339. }
  8340. }
  8341. static void ggml_compute_forward_sub(
  8342. const struct ggml_compute_params * params,
  8343. struct ggml_tensor * dst) {
  8344. const struct ggml_tensor * src0 = dst->src[0];
  8345. switch (src0->type) {
  8346. case GGML_TYPE_F32:
  8347. {
  8348. ggml_compute_forward_sub_f32(params, dst);
  8349. } break;
  8350. default:
  8351. {
  8352. GGML_ASSERT(false);
  8353. } break;
  8354. }
  8355. }
  8356. // ggml_compute_forward_mul
  8357. static void ggml_compute_forward_mul_f32(
  8358. const struct ggml_compute_params * params,
  8359. struct ggml_tensor * dst) {
  8360. const struct ggml_tensor * src0 = dst->src[0];
  8361. const struct ggml_tensor * src1 = dst->src[1];
  8362. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8363. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8364. return;
  8365. }
  8366. const int ith = params->ith;
  8367. const int nth = params->nth;
  8368. const int64_t nr = ggml_nrows(src0);
  8369. GGML_TENSOR_BINARY_OP_LOCALS
  8370. GGML_ASSERT( nb0 == sizeof(float));
  8371. GGML_ASSERT(nb00 == sizeof(float));
  8372. if (nb10 == sizeof(float)) {
  8373. for (int64_t ir = ith; ir < nr; ir += nth) {
  8374. // src0 and dst are same shape => same indices
  8375. const int64_t i03 = ir/(ne02*ne01);
  8376. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8377. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8378. const int64_t i13 = i03 % ne13;
  8379. const int64_t i12 = i02 % ne12;
  8380. const int64_t i11 = i01 % ne11;
  8381. const int64_t nr0 = ne00 / ne10;
  8382. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8383. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8384. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8385. for (int64_t r = 0 ; r < nr0; ++r) {
  8386. #ifdef GGML_USE_ACCELERATE
  8387. UNUSED(ggml_vec_mul_f32);
  8388. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8389. #else
  8390. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8391. #endif
  8392. }
  8393. }
  8394. } else {
  8395. // src1 is not contiguous
  8396. for (int64_t ir = ith; ir < nr; ir += nth) {
  8397. // src0 and dst are same shape => same indices
  8398. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8399. const int64_t i03 = ir/(ne02*ne01);
  8400. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8401. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8402. const int64_t i13 = i03 % ne13;
  8403. const int64_t i12 = i02 % ne12;
  8404. const int64_t i11 = i01 % ne11;
  8405. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8406. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8407. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8408. const int64_t i10 = i0 % ne10;
  8409. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8410. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8411. }
  8412. }
  8413. }
  8414. }
  8415. static void ggml_compute_forward_mul(
  8416. const struct ggml_compute_params * params,
  8417. struct ggml_tensor * dst) {
  8418. const struct ggml_tensor * src0 = dst->src[0];
  8419. const struct ggml_tensor * src1 = dst->src[1];
  8420. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8421. switch (src0->type) {
  8422. case GGML_TYPE_F32:
  8423. {
  8424. ggml_compute_forward_mul_f32(params, dst);
  8425. } break;
  8426. default:
  8427. {
  8428. GGML_ASSERT(false);
  8429. } break;
  8430. }
  8431. }
  8432. // ggml_compute_forward_div
  8433. static void ggml_compute_forward_div_f32(
  8434. const struct ggml_compute_params * params,
  8435. struct ggml_tensor * dst) {
  8436. const struct ggml_tensor * src0 = dst->src[0];
  8437. const struct ggml_tensor * src1 = dst->src[1];
  8438. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8439. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8440. return;
  8441. }
  8442. const int ith = params->ith;
  8443. const int nth = params->nth;
  8444. const int64_t nr = ggml_nrows(src0);
  8445. GGML_TENSOR_BINARY_OP_LOCALS
  8446. GGML_ASSERT( nb0 == sizeof(float));
  8447. GGML_ASSERT(nb00 == sizeof(float));
  8448. if (nb10 == sizeof(float)) {
  8449. for (int64_t ir = ith; ir < nr; ir += nth) {
  8450. // src0 and dst are same shape => same indices
  8451. const int64_t i03 = ir/(ne02*ne01);
  8452. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8453. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8454. const int64_t i13 = i03 % ne13;
  8455. const int64_t i12 = i02 % ne12;
  8456. const int64_t i11 = i01 % ne11;
  8457. const int64_t nr0 = ne00 / ne10;
  8458. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8459. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8460. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8461. for (int64_t r = 0; r < nr0; ++r) {
  8462. #ifdef GGML_USE_ACCELERATE
  8463. UNUSED(ggml_vec_div_f32);
  8464. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8465. #else
  8466. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8467. #endif
  8468. }
  8469. }
  8470. } else {
  8471. // src1 is not contiguous
  8472. for (int64_t ir = ith; ir < nr; ir += nth) {
  8473. // src0 and dst are same shape => same indices
  8474. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8475. const int64_t i03 = ir/(ne02*ne01);
  8476. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8477. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8478. const int64_t i13 = i03 % ne13;
  8479. const int64_t i12 = i02 % ne12;
  8480. const int64_t i11 = i01 % ne11;
  8481. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8482. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8483. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8484. const int64_t i10 = i0 % ne10;
  8485. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8486. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8487. }
  8488. }
  8489. }
  8490. }
  8491. static void ggml_compute_forward_div(
  8492. const struct ggml_compute_params * params,
  8493. struct ggml_tensor * dst) {
  8494. const struct ggml_tensor * src0 = dst->src[0];
  8495. switch (src0->type) {
  8496. case GGML_TYPE_F32:
  8497. {
  8498. ggml_compute_forward_div_f32(params, dst);
  8499. } break;
  8500. default:
  8501. {
  8502. GGML_ASSERT(false);
  8503. } break;
  8504. }
  8505. }
  8506. // ggml_compute_forward_sqr
  8507. static void ggml_compute_forward_sqr_f32(
  8508. const struct ggml_compute_params * params,
  8509. struct ggml_tensor * dst) {
  8510. const struct ggml_tensor * src0 = dst->src[0];
  8511. assert(params->ith == 0);
  8512. assert(ggml_are_same_shape(src0, dst));
  8513. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8514. return;
  8515. }
  8516. const int n = ggml_nrows(src0);
  8517. const int nc = src0->ne[0];
  8518. assert( dst->nb[0] == sizeof(float));
  8519. assert(src0->nb[0] == sizeof(float));
  8520. for (int i = 0; i < n; i++) {
  8521. ggml_vec_sqr_f32(nc,
  8522. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8523. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8524. }
  8525. }
  8526. static void ggml_compute_forward_sqr(
  8527. const struct ggml_compute_params * params,
  8528. struct ggml_tensor * dst) {
  8529. const struct ggml_tensor * src0 = dst->src[0];
  8530. switch (src0->type) {
  8531. case GGML_TYPE_F32:
  8532. {
  8533. ggml_compute_forward_sqr_f32(params, dst);
  8534. } break;
  8535. default:
  8536. {
  8537. GGML_ASSERT(false);
  8538. } break;
  8539. }
  8540. }
  8541. // ggml_compute_forward_sqrt
  8542. static void ggml_compute_forward_sqrt_f32(
  8543. const struct ggml_compute_params * params,
  8544. struct ggml_tensor * dst) {
  8545. const struct ggml_tensor * src0 = dst->src[0];
  8546. assert(params->ith == 0);
  8547. assert(ggml_are_same_shape(src0, dst));
  8548. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8549. return;
  8550. }
  8551. const int n = ggml_nrows(src0);
  8552. const int nc = src0->ne[0];
  8553. assert( dst->nb[0] == sizeof(float));
  8554. assert(src0->nb[0] == sizeof(float));
  8555. for (int i = 0; i < n; i++) {
  8556. ggml_vec_sqrt_f32(nc,
  8557. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8558. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8559. }
  8560. }
  8561. static void ggml_compute_forward_sqrt(
  8562. const struct ggml_compute_params * params,
  8563. struct ggml_tensor * dst) {
  8564. const struct ggml_tensor * src0 = dst->src[0];
  8565. switch (src0->type) {
  8566. case GGML_TYPE_F32:
  8567. {
  8568. ggml_compute_forward_sqrt_f32(params, dst);
  8569. } break;
  8570. default:
  8571. {
  8572. GGML_ASSERT(false);
  8573. } break;
  8574. }
  8575. }
  8576. // ggml_compute_forward_log
  8577. static void ggml_compute_forward_log_f32(
  8578. const struct ggml_compute_params * params,
  8579. struct ggml_tensor * dst) {
  8580. const struct ggml_tensor * src0 = dst->src[0];
  8581. GGML_ASSERT(params->ith == 0);
  8582. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8583. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8584. return;
  8585. }
  8586. const int n = ggml_nrows(src0);
  8587. const int nc = src0->ne[0];
  8588. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8589. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8590. for (int i = 0; i < n; i++) {
  8591. ggml_vec_log_f32(nc,
  8592. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8593. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8594. }
  8595. }
  8596. static void ggml_compute_forward_log(
  8597. const struct ggml_compute_params * params,
  8598. struct ggml_tensor * dst) {
  8599. const struct ggml_tensor * src0 = dst->src[0];
  8600. switch (src0->type) {
  8601. case GGML_TYPE_F32:
  8602. {
  8603. ggml_compute_forward_log_f32(params, dst);
  8604. } break;
  8605. default:
  8606. {
  8607. GGML_ASSERT(false);
  8608. } break;
  8609. }
  8610. }
  8611. // ggml_compute_forward_sum
  8612. static void ggml_compute_forward_sum_f32(
  8613. const struct ggml_compute_params * params,
  8614. struct ggml_tensor * dst) {
  8615. const struct ggml_tensor * src0 = dst->src[0];
  8616. assert(params->ith == 0);
  8617. assert(ggml_is_scalar(dst));
  8618. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8619. return;
  8620. }
  8621. assert(ggml_is_scalar(dst));
  8622. assert(src0->nb[0] == sizeof(float));
  8623. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8624. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8625. ggml_float sum = 0;
  8626. ggml_float row_sum = 0;
  8627. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8628. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8629. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8630. ggml_vec_sum_f32_ggf(ne00,
  8631. &row_sum,
  8632. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8633. sum += row_sum;
  8634. }
  8635. }
  8636. }
  8637. ((float *) dst->data)[0] = sum;
  8638. }
  8639. static void ggml_compute_forward_sum_f16(
  8640. const struct ggml_compute_params * params,
  8641. struct ggml_tensor * dst) {
  8642. const struct ggml_tensor * src0 = dst->src[0];
  8643. assert(params->ith == 0);
  8644. assert(ggml_is_scalar(dst));
  8645. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8646. return;
  8647. }
  8648. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8649. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8650. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8651. float sum = 0;
  8652. float row_sum = 0;
  8653. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8654. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8655. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8656. ggml_vec_sum_f16_ggf(ne00,
  8657. &row_sum,
  8658. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8659. sum += row_sum;
  8660. }
  8661. }
  8662. }
  8663. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8664. }
  8665. static void ggml_compute_forward_sum_bf16(
  8666. const struct ggml_compute_params * params,
  8667. struct ggml_tensor * dst) {
  8668. const struct ggml_tensor * src0 = dst->src[0];
  8669. assert(params->ith == 0);
  8670. assert(ggml_is_scalar(dst));
  8671. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8672. return;
  8673. }
  8674. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8675. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8676. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8677. float sum = 0;
  8678. float row_sum = 0;
  8679. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8680. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8681. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8682. ggml_vec_sum_bf16_ggf(ne00,
  8683. &row_sum,
  8684. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8685. sum += row_sum;
  8686. }
  8687. }
  8688. }
  8689. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8690. }
  8691. static void ggml_compute_forward_sum(
  8692. const struct ggml_compute_params * params,
  8693. struct ggml_tensor * dst) {
  8694. const struct ggml_tensor * src0 = dst->src[0];
  8695. switch (src0->type) {
  8696. case GGML_TYPE_F32:
  8697. {
  8698. ggml_compute_forward_sum_f32(params, dst);
  8699. } break;
  8700. case GGML_TYPE_F16:
  8701. {
  8702. ggml_compute_forward_sum_f16(params, dst);
  8703. } break;
  8704. case GGML_TYPE_BF16:
  8705. {
  8706. ggml_compute_forward_sum_bf16(params, dst);
  8707. } break;
  8708. default:
  8709. {
  8710. GGML_ASSERT(false);
  8711. } break;
  8712. }
  8713. }
  8714. // ggml_compute_forward_sum_rows
  8715. static void ggml_compute_forward_sum_rows_f32(
  8716. const struct ggml_compute_params * params,
  8717. struct ggml_tensor * dst) {
  8718. const struct ggml_tensor * src0 = dst->src[0];
  8719. GGML_ASSERT(params->ith == 0);
  8720. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8721. return;
  8722. }
  8723. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8724. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8725. GGML_TENSOR_UNARY_OP_LOCALS
  8726. GGML_ASSERT(ne0 == 1);
  8727. GGML_ASSERT(ne1 == ne01);
  8728. GGML_ASSERT(ne2 == ne02);
  8729. GGML_ASSERT(ne3 == ne03);
  8730. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8731. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8732. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8733. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8734. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8735. float row_sum = 0;
  8736. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8737. dst_row[0] = row_sum;
  8738. }
  8739. }
  8740. }
  8741. }
  8742. static void ggml_compute_forward_sum_rows(
  8743. const struct ggml_compute_params * params,
  8744. struct ggml_tensor * dst) {
  8745. const struct ggml_tensor * src0 = dst->src[0];
  8746. switch (src0->type) {
  8747. case GGML_TYPE_F32:
  8748. {
  8749. ggml_compute_forward_sum_rows_f32(params, dst);
  8750. } break;
  8751. default:
  8752. {
  8753. GGML_ASSERT(false);
  8754. } break;
  8755. }
  8756. }
  8757. // ggml_compute_forward_mean
  8758. static void ggml_compute_forward_mean_f32(
  8759. const struct ggml_compute_params * params,
  8760. struct ggml_tensor * dst) {
  8761. const struct ggml_tensor * src0 = dst->src[0];
  8762. assert(params->ith == 0);
  8763. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8764. return;
  8765. }
  8766. assert(src0->nb[0] == sizeof(float));
  8767. GGML_TENSOR_UNARY_OP_LOCALS
  8768. assert(ne0 == 1);
  8769. assert(ne1 == ne01);
  8770. assert(ne2 == ne02);
  8771. assert(ne3 == ne03);
  8772. UNUSED(ne0);
  8773. UNUSED(ne1);
  8774. UNUSED(ne2);
  8775. UNUSED(ne3);
  8776. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8777. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8778. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8779. ggml_vec_sum_f32(ne00,
  8780. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8781. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8782. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8783. }
  8784. }
  8785. }
  8786. }
  8787. static void ggml_compute_forward_mean(
  8788. const struct ggml_compute_params * params,
  8789. struct ggml_tensor * dst) {
  8790. const struct ggml_tensor * src0 = dst->src[0];
  8791. switch (src0->type) {
  8792. case GGML_TYPE_F32:
  8793. {
  8794. ggml_compute_forward_mean_f32(params, dst);
  8795. } break;
  8796. default:
  8797. {
  8798. GGML_ASSERT(false);
  8799. } break;
  8800. }
  8801. }
  8802. // ggml_compute_forward_argmax
  8803. static void ggml_compute_forward_argmax_f32(
  8804. const struct ggml_compute_params * params,
  8805. struct ggml_tensor * dst) {
  8806. const struct ggml_tensor * src0 = dst->src[0];
  8807. assert(params->ith == 0);
  8808. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8809. return;
  8810. }
  8811. assert(src0->nb[0] == sizeof(float));
  8812. assert(dst->nb[0] == sizeof(float));
  8813. const int64_t ne00 = src0->ne[0];
  8814. const int64_t ne01 = src0->ne[1];
  8815. const size_t nb01 = src0->nb[1];
  8816. const size_t nb0 = dst->nb[0];
  8817. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8818. float * src = (float *) ((char *) src0->data + i1*nb01);
  8819. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8820. int v = 0;
  8821. ggml_vec_argmax_f32(ne00, &v, src);
  8822. dst_[0] = v;
  8823. }
  8824. }
  8825. static void ggml_compute_forward_argmax(
  8826. const struct ggml_compute_params * params,
  8827. struct ggml_tensor * dst) {
  8828. const struct ggml_tensor * src0 = dst->src[0];
  8829. switch (src0->type) {
  8830. case GGML_TYPE_F32:
  8831. {
  8832. ggml_compute_forward_argmax_f32(params, dst);
  8833. } break;
  8834. default:
  8835. {
  8836. GGML_ASSERT(false);
  8837. } break;
  8838. }
  8839. }
  8840. // ggml_compute_forward_repeat
  8841. static void ggml_compute_forward_repeat_f32(
  8842. const struct ggml_compute_params * params,
  8843. struct ggml_tensor * dst) {
  8844. const struct ggml_tensor * src0 = dst->src[0];
  8845. GGML_ASSERT(params->ith == 0);
  8846. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8847. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8848. return;
  8849. }
  8850. GGML_TENSOR_UNARY_OP_LOCALS
  8851. // guaranteed to be an integer due to the check in ggml_can_repeat
  8852. const int nr0 = (int)(ne0/ne00);
  8853. const int nr1 = (int)(ne1/ne01);
  8854. const int nr2 = (int)(ne2/ne02);
  8855. const int nr3 = (int)(ne3/ne03);
  8856. // TODO: support for transposed / permuted tensors
  8857. GGML_ASSERT(nb0 == sizeof(float));
  8858. GGML_ASSERT(nb00 == sizeof(float));
  8859. // TODO: maybe this is not optimal?
  8860. for (int i3 = 0; i3 < nr3; i3++) {
  8861. for (int k3 = 0; k3 < ne03; k3++) {
  8862. for (int i2 = 0; i2 < nr2; i2++) {
  8863. for (int k2 = 0; k2 < ne02; k2++) {
  8864. for (int i1 = 0; i1 < nr1; i1++) {
  8865. for (int k1 = 0; k1 < ne01; k1++) {
  8866. for (int i0 = 0; i0 < nr0; i0++) {
  8867. ggml_vec_cpy_f32(ne00,
  8868. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8869. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8870. }
  8871. }
  8872. }
  8873. }
  8874. }
  8875. }
  8876. }
  8877. }
  8878. static void ggml_compute_forward_repeat_f16(
  8879. const struct ggml_compute_params * params,
  8880. struct ggml_tensor * dst) {
  8881. const struct ggml_tensor * src0 = dst->src[0];
  8882. GGML_ASSERT(params->ith == 0);
  8883. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8884. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8885. return;
  8886. }
  8887. GGML_TENSOR_UNARY_OP_LOCALS
  8888. // guaranteed to be an integer due to the check in ggml_can_repeat
  8889. const int nr0 = (int)(ne0/ne00);
  8890. const int nr1 = (int)(ne1/ne01);
  8891. const int nr2 = (int)(ne2/ne02);
  8892. const int nr3 = (int)(ne3/ne03);
  8893. // TODO: support for transposed / permuted tensors
  8894. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8895. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8896. // TODO: maybe this is not optimal?
  8897. for (int i3 = 0; i3 < nr3; i3++) {
  8898. for (int k3 = 0; k3 < ne03; k3++) {
  8899. for (int i2 = 0; i2 < nr2; i2++) {
  8900. for (int k2 = 0; k2 < ne02; k2++) {
  8901. for (int i1 = 0; i1 < nr1; i1++) {
  8902. for (int k1 = 0; k1 < ne01; k1++) {
  8903. for (int i0 = 0; i0 < nr0; i0++) {
  8904. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8905. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8906. // ggml_vec_cpy_f16(ne00, y, x)
  8907. for (int i = 0; i < ne00; ++i) {
  8908. y[i] = x[i];
  8909. }
  8910. }
  8911. }
  8912. }
  8913. }
  8914. }
  8915. }
  8916. }
  8917. }
  8918. static void ggml_compute_forward_repeat(
  8919. const struct ggml_compute_params * params,
  8920. struct ggml_tensor * dst) {
  8921. const struct ggml_tensor * src0 = dst->src[0];
  8922. switch (src0->type) {
  8923. case GGML_TYPE_F16:
  8924. case GGML_TYPE_BF16:
  8925. case GGML_TYPE_I16:
  8926. {
  8927. ggml_compute_forward_repeat_f16(params, dst);
  8928. } break;
  8929. case GGML_TYPE_F32:
  8930. case GGML_TYPE_I32:
  8931. {
  8932. ggml_compute_forward_repeat_f32(params, dst);
  8933. } break;
  8934. default:
  8935. {
  8936. GGML_ASSERT(false);
  8937. } break;
  8938. }
  8939. }
  8940. // ggml_compute_forward_repeat_back
  8941. static void ggml_compute_forward_repeat_back_f32(
  8942. const struct ggml_compute_params * params,
  8943. struct ggml_tensor * dst) {
  8944. const struct ggml_tensor * src0 = dst->src[0];
  8945. GGML_ASSERT(params->ith == 0);
  8946. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8947. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8948. return;
  8949. }
  8950. GGML_TENSOR_UNARY_OP_LOCALS
  8951. // guaranteed to be an integer due to the check in ggml_can_repeat
  8952. const int nr0 = (int)(ne00/ne0);
  8953. const int nr1 = (int)(ne01/ne1);
  8954. const int nr2 = (int)(ne02/ne2);
  8955. const int nr3 = (int)(ne03/ne3);
  8956. // TODO: support for transposed / permuted tensors
  8957. GGML_ASSERT(nb0 == sizeof(float));
  8958. GGML_ASSERT(nb00 == sizeof(float));
  8959. if (ggml_is_contiguous(dst)) {
  8960. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8961. } else {
  8962. for (int k3 = 0; k3 < ne3; k3++) {
  8963. for (int k2 = 0; k2 < ne2; k2++) {
  8964. for (int k1 = 0; k1 < ne1; k1++) {
  8965. ggml_vec_set_f32(ne0,
  8966. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8967. 0);
  8968. }
  8969. }
  8970. }
  8971. }
  8972. // TODO: maybe this is not optimal?
  8973. for (int i3 = 0; i3 < nr3; i3++) {
  8974. for (int k3 = 0; k3 < ne3; k3++) {
  8975. for (int i2 = 0; i2 < nr2; i2++) {
  8976. for (int k2 = 0; k2 < ne2; k2++) {
  8977. for (int i1 = 0; i1 < nr1; i1++) {
  8978. for (int k1 = 0; k1 < ne1; k1++) {
  8979. for (int i0 = 0; i0 < nr0; i0++) {
  8980. ggml_vec_acc_f32(ne0,
  8981. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8982. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8983. }
  8984. }
  8985. }
  8986. }
  8987. }
  8988. }
  8989. }
  8990. }
  8991. static void ggml_compute_forward_repeat_back(
  8992. const struct ggml_compute_params * params,
  8993. struct ggml_tensor * dst) {
  8994. const struct ggml_tensor * src0 = dst->src[0];
  8995. switch (src0->type) {
  8996. case GGML_TYPE_F32:
  8997. {
  8998. ggml_compute_forward_repeat_back_f32(params, dst);
  8999. } break;
  9000. default:
  9001. {
  9002. GGML_ASSERT(false);
  9003. } break;
  9004. }
  9005. }
  9006. // ggml_compute_forward_concat
  9007. static void ggml_compute_forward_concat_f32(
  9008. const struct ggml_compute_params * params,
  9009. struct ggml_tensor * dst) {
  9010. const struct ggml_tensor * src0 = dst->src[0];
  9011. const struct ggml_tensor * src1 = dst->src[1];
  9012. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9013. return;
  9014. }
  9015. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9016. const int ith = params->ith;
  9017. const int nth = params->nth;
  9018. GGML_TENSOR_BINARY_OP_LOCALS
  9019. // TODO: support for transposed / permuted tensors
  9020. GGML_ASSERT(nb0 == sizeof(float));
  9021. GGML_ASSERT(nb00 == sizeof(float));
  9022. GGML_ASSERT(nb10 == sizeof(float));
  9023. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9024. GGML_ASSERT(dim >= 0 && dim < 4);
  9025. int64_t o[4] = {0, 0, 0, 0};
  9026. o[dim] = src0->ne[dim];
  9027. const float * x;
  9028. // TODO: smarter multi-theading
  9029. for (int i3 = 0; i3 < ne3; i3++) {
  9030. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9031. for (int i1 = 0; i1 < ne1; i1++) {
  9032. for (int i0 = 0; i0 < ne0; i0++) {
  9033. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9034. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9035. } else {
  9036. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9037. }
  9038. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9039. *y = *x;
  9040. }
  9041. }
  9042. }
  9043. }
  9044. }
  9045. static void ggml_compute_forward_concat(
  9046. const struct ggml_compute_params * params,
  9047. struct ggml_tensor * dst) {
  9048. const struct ggml_tensor * src0 = dst->src[0];
  9049. switch (src0->type) {
  9050. case GGML_TYPE_F32:
  9051. case GGML_TYPE_I32:
  9052. {
  9053. ggml_compute_forward_concat_f32(params, dst);
  9054. } break;
  9055. default:
  9056. {
  9057. GGML_ASSERT(false);
  9058. } break;
  9059. }
  9060. }
  9061. // ggml_compute_forward_abs
  9062. static void ggml_compute_forward_abs_f32(
  9063. const struct ggml_compute_params * params,
  9064. struct ggml_tensor * dst) {
  9065. const struct ggml_tensor * src0 = dst->src[0];
  9066. assert(params->ith == 0);
  9067. assert(ggml_is_contiguous_1(src0));
  9068. assert(ggml_is_contiguous_1(dst));
  9069. assert(ggml_are_same_shape(src0, dst));
  9070. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9071. return;
  9072. }
  9073. const int n = ggml_nrows(src0);
  9074. const int nc = src0->ne[0];
  9075. for (int i = 0; i < n; i++) {
  9076. ggml_vec_abs_f32(nc,
  9077. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9078. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9079. }
  9080. }
  9081. static void ggml_compute_forward_abs(
  9082. const struct ggml_compute_params * params,
  9083. struct ggml_tensor * dst) {
  9084. const struct ggml_tensor * src0 = dst->src[0];
  9085. switch (src0->type) {
  9086. case GGML_TYPE_F32:
  9087. {
  9088. ggml_compute_forward_abs_f32(params, dst);
  9089. } break;
  9090. default:
  9091. {
  9092. GGML_ASSERT(false);
  9093. } break;
  9094. }
  9095. }
  9096. // ggml_compute_forward_sgn
  9097. static void ggml_compute_forward_sgn_f32(
  9098. const struct ggml_compute_params * params,
  9099. struct ggml_tensor * dst) {
  9100. const struct ggml_tensor * src0 = dst->src[0];
  9101. assert(params->ith == 0);
  9102. assert(ggml_is_contiguous_1(src0));
  9103. assert(ggml_is_contiguous_1(dst));
  9104. assert(ggml_are_same_shape(src0, dst));
  9105. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9106. return;
  9107. }
  9108. const int n = ggml_nrows(src0);
  9109. const int nc = src0->ne[0];
  9110. for (int i = 0; i < n; i++) {
  9111. ggml_vec_sgn_f32(nc,
  9112. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9113. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9114. }
  9115. }
  9116. static void ggml_compute_forward_sgn(
  9117. const struct ggml_compute_params * params,
  9118. struct ggml_tensor * dst) {
  9119. const struct ggml_tensor * src0 = dst->src[0];
  9120. switch (src0->type) {
  9121. case GGML_TYPE_F32:
  9122. {
  9123. ggml_compute_forward_sgn_f32(params, dst);
  9124. } break;
  9125. default:
  9126. {
  9127. GGML_ASSERT(false);
  9128. } break;
  9129. }
  9130. }
  9131. // ggml_compute_forward_neg
  9132. static void ggml_compute_forward_neg_f32(
  9133. const struct ggml_compute_params * params,
  9134. struct ggml_tensor * dst) {
  9135. const struct ggml_tensor * src0 = dst->src[0];
  9136. assert(params->ith == 0);
  9137. assert(ggml_is_contiguous_1(src0));
  9138. assert(ggml_is_contiguous_1(dst));
  9139. assert(ggml_are_same_shape(src0, dst));
  9140. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9141. return;
  9142. }
  9143. const int n = ggml_nrows(src0);
  9144. const int nc = src0->ne[0];
  9145. for (int i = 0; i < n; i++) {
  9146. ggml_vec_neg_f32(nc,
  9147. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9148. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9149. }
  9150. }
  9151. static void ggml_compute_forward_neg(
  9152. const struct ggml_compute_params * params,
  9153. struct ggml_tensor * dst) {
  9154. const struct ggml_tensor * src0 = dst->src[0];
  9155. switch (src0->type) {
  9156. case GGML_TYPE_F32:
  9157. {
  9158. ggml_compute_forward_neg_f32(params, dst);
  9159. } break;
  9160. default:
  9161. {
  9162. GGML_ASSERT(false);
  9163. } break;
  9164. }
  9165. }
  9166. // ggml_compute_forward_step
  9167. static void ggml_compute_forward_step_f32(
  9168. const struct ggml_compute_params * params,
  9169. struct ggml_tensor * dst) {
  9170. const struct ggml_tensor * src0 = dst->src[0];
  9171. assert(params->ith == 0);
  9172. assert(ggml_is_contiguous_1(src0));
  9173. assert(ggml_is_contiguous_1(dst));
  9174. assert(ggml_are_same_shape(src0, dst));
  9175. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9176. return;
  9177. }
  9178. const int n = ggml_nrows(src0);
  9179. const int nc = src0->ne[0];
  9180. for (int i = 0; i < n; i++) {
  9181. ggml_vec_step_f32(nc,
  9182. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9183. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9184. }
  9185. }
  9186. static void ggml_compute_forward_step(
  9187. const struct ggml_compute_params * params,
  9188. struct ggml_tensor * dst) {
  9189. const struct ggml_tensor * src0 = dst->src[0];
  9190. switch (src0->type) {
  9191. case GGML_TYPE_F32:
  9192. {
  9193. ggml_compute_forward_step_f32(params, dst);
  9194. } break;
  9195. default:
  9196. {
  9197. GGML_ASSERT(false);
  9198. } break;
  9199. }
  9200. }
  9201. // ggml_compute_forward_tanh
  9202. static void ggml_compute_forward_tanh_f32(
  9203. const struct ggml_compute_params * params,
  9204. struct ggml_tensor * dst) {
  9205. const struct ggml_tensor * src0 = dst->src[0];
  9206. assert(params->ith == 0);
  9207. assert(ggml_is_contiguous_1(src0));
  9208. assert(ggml_is_contiguous_1(dst));
  9209. assert(ggml_are_same_shape(src0, dst));
  9210. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9211. return;
  9212. }
  9213. const int n = ggml_nrows(src0);
  9214. const int nc = src0->ne[0];
  9215. for (int i = 0; i < n; i++) {
  9216. ggml_vec_tanh_f32(nc,
  9217. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9218. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9219. }
  9220. }
  9221. static void ggml_compute_forward_tanh(
  9222. const struct ggml_compute_params * params,
  9223. struct ggml_tensor * dst) {
  9224. const struct ggml_tensor * src0 = dst->src[0];
  9225. switch (src0->type) {
  9226. case GGML_TYPE_F32:
  9227. {
  9228. ggml_compute_forward_tanh_f32(params, dst);
  9229. } break;
  9230. default:
  9231. {
  9232. GGML_ASSERT(false);
  9233. } break;
  9234. }
  9235. }
  9236. // ggml_compute_forward_elu
  9237. static void ggml_compute_forward_elu_f32(
  9238. const struct ggml_compute_params * params,
  9239. struct ggml_tensor * dst) {
  9240. const struct ggml_tensor * src0 = dst->src[0];
  9241. assert(params->ith == 0);
  9242. assert(ggml_is_contiguous_1(src0));
  9243. assert(ggml_is_contiguous_1(dst));
  9244. assert(ggml_are_same_shape(src0, dst));
  9245. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9246. return;
  9247. }
  9248. const int n = ggml_nrows(src0);
  9249. const int nc = src0->ne[0];
  9250. for (int i = 0; i < n; i++) {
  9251. ggml_vec_elu_f32(nc,
  9252. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9253. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9254. }
  9255. }
  9256. static void ggml_compute_forward_elu(
  9257. const struct ggml_compute_params * params,
  9258. struct ggml_tensor * dst) {
  9259. const struct ggml_tensor * src0 = dst->src[0];
  9260. switch (src0->type) {
  9261. case GGML_TYPE_F32:
  9262. {
  9263. ggml_compute_forward_elu_f32(params, dst);
  9264. } break;
  9265. default:
  9266. {
  9267. GGML_ASSERT(false);
  9268. } break;
  9269. }
  9270. }
  9271. // ggml_compute_forward_relu
  9272. static void ggml_compute_forward_relu_f32(
  9273. const struct ggml_compute_params * params,
  9274. struct ggml_tensor * dst) {
  9275. const struct ggml_tensor * src0 = dst->src[0];
  9276. assert(params->ith == 0);
  9277. assert(ggml_is_contiguous_1(src0));
  9278. assert(ggml_is_contiguous_1(dst));
  9279. assert(ggml_are_same_shape(src0, dst));
  9280. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9281. return;
  9282. }
  9283. const int n = ggml_nrows(src0);
  9284. const int nc = src0->ne[0];
  9285. for (int i = 0; i < n; i++) {
  9286. ggml_vec_relu_f32(nc,
  9287. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9288. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9289. }
  9290. }
  9291. static void ggml_compute_forward_relu(
  9292. const struct ggml_compute_params * params,
  9293. struct ggml_tensor * dst) {
  9294. const struct ggml_tensor * src0 = dst->src[0];
  9295. switch (src0->type) {
  9296. case GGML_TYPE_F32:
  9297. {
  9298. ggml_compute_forward_relu_f32(params, dst);
  9299. } break;
  9300. default:
  9301. {
  9302. GGML_ASSERT(false);
  9303. } break;
  9304. }
  9305. }
  9306. // ggml_compute_forward_sigmoid
  9307. static void ggml_compute_forward_sigmoid_f32(
  9308. const struct ggml_compute_params * params,
  9309. struct ggml_tensor * dst) {
  9310. const struct ggml_tensor * src0 = dst->src[0];
  9311. assert(params->ith == 0);
  9312. assert(ggml_is_contiguous_1(src0));
  9313. assert(ggml_is_contiguous_1(dst));
  9314. assert(ggml_are_same_shape(src0, dst));
  9315. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9316. return;
  9317. }
  9318. const int n = ggml_nrows(src0);
  9319. const int nc = src0->ne[0];
  9320. for (int i = 0; i < n; i++) {
  9321. ggml_vec_sigmoid_f32(nc,
  9322. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9323. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9324. }
  9325. }
  9326. static void ggml_compute_forward_sigmoid(
  9327. const struct ggml_compute_params * params,
  9328. struct ggml_tensor * dst) {
  9329. const struct ggml_tensor * src0 = dst->src[0];
  9330. switch (src0->type) {
  9331. case GGML_TYPE_F32:
  9332. {
  9333. ggml_compute_forward_sigmoid_f32(params, dst);
  9334. } break;
  9335. default:
  9336. {
  9337. GGML_ASSERT(false);
  9338. } break;
  9339. }
  9340. }
  9341. // ggml_compute_forward_gelu
  9342. static void ggml_compute_forward_gelu_f32(
  9343. const struct ggml_compute_params * params,
  9344. struct ggml_tensor * dst) {
  9345. const struct ggml_tensor * src0 = dst->src[0];
  9346. assert(ggml_is_contiguous_1(src0));
  9347. assert(ggml_is_contiguous_1(dst));
  9348. assert(ggml_are_same_shape(src0, dst));
  9349. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9350. return;
  9351. }
  9352. const int ith = params->ith;
  9353. const int nth = params->nth;
  9354. const int nc = src0->ne[0];
  9355. const int nr = ggml_nrows(src0);
  9356. // rows per thread
  9357. const int dr = (nr + nth - 1)/nth;
  9358. // row range for this thread
  9359. const int ir0 = dr*ith;
  9360. const int ir1 = MIN(ir0 + dr, nr);
  9361. for (int i1 = ir0; i1 < ir1; i1++) {
  9362. ggml_vec_gelu_f32(nc,
  9363. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9364. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9365. #ifndef NDEBUG
  9366. for (int k = 0; k < nc; k++) {
  9367. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9368. UNUSED(x);
  9369. assert(!isnan(x));
  9370. assert(!isinf(x));
  9371. }
  9372. #endif
  9373. }
  9374. }
  9375. static void ggml_compute_forward_gelu(
  9376. const struct ggml_compute_params * params,
  9377. struct ggml_tensor * dst) {
  9378. const struct ggml_tensor * src0 = dst->src[0];
  9379. switch (src0->type) {
  9380. case GGML_TYPE_F32:
  9381. {
  9382. ggml_compute_forward_gelu_f32(params, dst);
  9383. } break;
  9384. default:
  9385. {
  9386. GGML_ASSERT(false);
  9387. } break;
  9388. }
  9389. }
  9390. // ggml_compute_forward_gelu_quick
  9391. static void ggml_compute_forward_gelu_quick_f32(
  9392. const struct ggml_compute_params * params,
  9393. struct ggml_tensor * dst) {
  9394. const struct ggml_tensor * src0 = dst->src[0];
  9395. assert(ggml_is_contiguous_1(src0));
  9396. assert(ggml_is_contiguous_1(dst));
  9397. assert(ggml_are_same_shape(src0, dst));
  9398. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9399. return;
  9400. }
  9401. const int ith = params->ith;
  9402. const int nth = params->nth;
  9403. const int nc = src0->ne[0];
  9404. const int nr = ggml_nrows(src0);
  9405. // rows per thread
  9406. const int dr = (nr + nth - 1)/nth;
  9407. // row range for this thread
  9408. const int ir0 = dr*ith;
  9409. const int ir1 = MIN(ir0 + dr, nr);
  9410. for (int i1 = ir0; i1 < ir1; i1++) {
  9411. ggml_vec_gelu_quick_f32(nc,
  9412. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9413. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9414. #ifndef NDEBUG
  9415. for (int k = 0; k < nc; k++) {
  9416. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9417. UNUSED(x);
  9418. assert(!isnan(x));
  9419. assert(!isinf(x));
  9420. }
  9421. #endif
  9422. }
  9423. }
  9424. static void ggml_compute_forward_gelu_quick(
  9425. const struct ggml_compute_params * params,
  9426. struct ggml_tensor * dst) {
  9427. const struct ggml_tensor * src0 = dst->src[0];
  9428. switch (src0->type) {
  9429. case GGML_TYPE_F32:
  9430. {
  9431. ggml_compute_forward_gelu_quick_f32(params, dst);
  9432. } break;
  9433. default:
  9434. {
  9435. GGML_ASSERT(false);
  9436. } break;
  9437. }
  9438. }
  9439. // ggml_compute_forward_silu
  9440. static void ggml_compute_forward_silu_f32(
  9441. const struct ggml_compute_params * params,
  9442. struct ggml_tensor * dst) {
  9443. const struct ggml_tensor * src0 = dst->src[0];
  9444. assert(ggml_is_contiguous_1(src0));
  9445. assert(ggml_is_contiguous_1(dst));
  9446. assert(ggml_are_same_shape(src0, dst));
  9447. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9448. return;
  9449. }
  9450. const int ith = params->ith;
  9451. const int nth = params->nth;
  9452. const int nc = src0->ne[0];
  9453. const int nr = ggml_nrows(src0);
  9454. // rows per thread
  9455. const int dr = (nr + nth - 1)/nth;
  9456. // row range for this thread
  9457. const int ir0 = dr*ith;
  9458. const int ir1 = MIN(ir0 + dr, nr);
  9459. for (int i1 = ir0; i1 < ir1; i1++) {
  9460. ggml_vec_silu_f32(nc,
  9461. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9462. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9463. #ifndef NDEBUG
  9464. for (int k = 0; k < nc; k++) {
  9465. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9466. UNUSED(x);
  9467. assert(!isnan(x));
  9468. assert(!isinf(x));
  9469. }
  9470. #endif
  9471. }
  9472. }
  9473. static void ggml_compute_forward_silu(
  9474. const struct ggml_compute_params * params,
  9475. struct ggml_tensor * dst) {
  9476. const struct ggml_tensor * src0 = dst->src[0];
  9477. switch (src0->type) {
  9478. case GGML_TYPE_F32:
  9479. {
  9480. ggml_compute_forward_silu_f32(params, dst);
  9481. } break;
  9482. default:
  9483. {
  9484. GGML_ASSERT(false);
  9485. } break;
  9486. }
  9487. }
  9488. // ggml_compute_forward_leaky_relu
  9489. static void ggml_compute_forward_leaky_relu_f32(
  9490. const struct ggml_compute_params * params,
  9491. struct ggml_tensor * dst) {
  9492. const struct ggml_tensor * src0 = dst->src[0];
  9493. assert(params->ith == 0);
  9494. assert(ggml_is_contiguous_1(src0));
  9495. assert(ggml_is_contiguous_1(dst));
  9496. assert(ggml_are_same_shape(src0, dst));
  9497. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9498. return;
  9499. }
  9500. const int n = ggml_nrows(src0);
  9501. const int nc = src0->ne[0];
  9502. float negative_slope;
  9503. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9504. assert(dst->nb[0] == sizeof(float));
  9505. assert(src0->nb[0] == sizeof(float));
  9506. for (int i = 0; i < n; i++) {
  9507. ggml_vec_leaky_relu_f32(nc,
  9508. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9509. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9510. }
  9511. }
  9512. static void ggml_compute_forward_leaky_relu(
  9513. const struct ggml_compute_params * params,
  9514. struct ggml_tensor * dst) {
  9515. const struct ggml_tensor * src0 = dst->src[0];
  9516. switch (src0->type) {
  9517. case GGML_TYPE_F32:
  9518. {
  9519. ggml_compute_forward_leaky_relu_f32(params, dst);
  9520. } break;
  9521. default:
  9522. {
  9523. GGML_ASSERT(false);
  9524. } break;
  9525. }
  9526. }
  9527. // ggml_compute_forward_silu_back
  9528. static void ggml_compute_forward_silu_back_f32(
  9529. const struct ggml_compute_params * params,
  9530. struct ggml_tensor * dst) {
  9531. const struct ggml_tensor * src0 = dst->src[0];
  9532. const struct ggml_tensor * grad = dst->src[1];
  9533. assert(ggml_is_contiguous_1(grad));
  9534. assert(ggml_is_contiguous_1(src0));
  9535. assert(ggml_is_contiguous_1(dst));
  9536. assert(ggml_are_same_shape(src0, dst));
  9537. assert(ggml_are_same_shape(src0, grad));
  9538. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9539. return;
  9540. }
  9541. const int ith = params->ith;
  9542. const int nth = params->nth;
  9543. const int nc = src0->ne[0];
  9544. const int nr = ggml_nrows(src0);
  9545. // rows per thread
  9546. const int dr = (nr + nth - 1)/nth;
  9547. // row range for this thread
  9548. const int ir0 = dr*ith;
  9549. const int ir1 = MIN(ir0 + dr, nr);
  9550. for (int i1 = ir0; i1 < ir1; i1++) {
  9551. ggml_vec_silu_backward_f32(nc,
  9552. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9553. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9554. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9555. #ifndef NDEBUG
  9556. for (int k = 0; k < nc; k++) {
  9557. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9558. UNUSED(x);
  9559. assert(!isnan(x));
  9560. assert(!isinf(x));
  9561. }
  9562. #endif
  9563. }
  9564. }
  9565. static void ggml_compute_forward_silu_back(
  9566. const struct ggml_compute_params * params,
  9567. struct ggml_tensor * dst) {
  9568. const struct ggml_tensor * src0 = dst->src[0];
  9569. switch (src0->type) {
  9570. case GGML_TYPE_F32:
  9571. {
  9572. ggml_compute_forward_silu_back_f32(params, dst);
  9573. } break;
  9574. default:
  9575. {
  9576. GGML_ASSERT(false);
  9577. } break;
  9578. }
  9579. }
  9580. static void ggml_compute_forward_hardswish_f32(
  9581. const struct ggml_compute_params * params,
  9582. struct ggml_tensor * dst) {
  9583. const struct ggml_tensor * src0 = dst->src[0];
  9584. assert(params->ith == 0);
  9585. assert(ggml_is_contiguous_1(src0));
  9586. assert(ggml_is_contiguous_1(dst));
  9587. assert(ggml_are_same_shape(src0, dst));
  9588. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9589. return;
  9590. }
  9591. const int n = ggml_nrows(src0);
  9592. const int nc = src0->ne[0];
  9593. for (int i = 0; i < n; i++) {
  9594. ggml_vec_hardswish_f32(nc,
  9595. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9596. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9597. }
  9598. }
  9599. static void ggml_compute_forward_hardswish(
  9600. const struct ggml_compute_params * params,
  9601. struct ggml_tensor * dst) {
  9602. const struct ggml_tensor * src0 = dst->src[0];
  9603. switch (src0->type) {
  9604. case GGML_TYPE_F32:
  9605. {
  9606. ggml_compute_forward_hardswish_f32(params, dst);
  9607. } break;
  9608. default:
  9609. {
  9610. GGML_ASSERT(false);
  9611. } break;
  9612. }
  9613. }
  9614. static void ggml_compute_forward_hardsigmoid_f32(
  9615. const struct ggml_compute_params * params,
  9616. struct ggml_tensor * dst) {
  9617. const struct ggml_tensor * src0 = dst->src[0];
  9618. assert(params->ith == 0);
  9619. assert(ggml_is_contiguous_1(src0));
  9620. assert(ggml_is_contiguous_1(dst));
  9621. assert(ggml_are_same_shape(src0, dst));
  9622. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9623. return;
  9624. }
  9625. const int n = ggml_nrows(src0);
  9626. const int nc = src0->ne[0];
  9627. for (int i = 0; i < n; i++) {
  9628. ggml_vec_hardsigmoid_f32(nc,
  9629. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9630. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9631. }
  9632. }
  9633. static void ggml_compute_forward_hardsigmoid(
  9634. const struct ggml_compute_params * params,
  9635. struct ggml_tensor * dst) {
  9636. const struct ggml_tensor * src0 = dst->src[0];
  9637. switch (src0->type) {
  9638. case GGML_TYPE_F32:
  9639. {
  9640. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9641. } break;
  9642. default:
  9643. {
  9644. GGML_ASSERT(false);
  9645. } break;
  9646. }
  9647. }
  9648. // ggml_compute_forward_norm
  9649. static void ggml_compute_forward_norm_f32(
  9650. const struct ggml_compute_params * params,
  9651. struct ggml_tensor * dst) {
  9652. const struct ggml_tensor * src0 = dst->src[0];
  9653. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9654. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9655. return;
  9656. }
  9657. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9658. const int ith = params->ith;
  9659. const int nth = params->nth;
  9660. GGML_TENSOR_UNARY_OP_LOCALS
  9661. float eps;
  9662. memcpy(&eps, dst->op_params, sizeof(float));
  9663. GGML_ASSERT(eps > 0.0f);
  9664. // TODO: optimize
  9665. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9666. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9667. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9668. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9669. ggml_float sum = 0.0;
  9670. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9671. sum += (ggml_float)x[i00];
  9672. }
  9673. float mean = sum/ne00;
  9674. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9675. ggml_float sum2 = 0.0;
  9676. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9677. float v = x[i00] - mean;
  9678. y[i00] = v;
  9679. sum2 += (ggml_float)(v*v);
  9680. }
  9681. float variance = sum2/ne00;
  9682. const float scale = 1.0f/sqrtf(variance + eps);
  9683. ggml_vec_scale_f32(ne00, y, scale);
  9684. }
  9685. }
  9686. }
  9687. }
  9688. static void ggml_compute_forward_norm(
  9689. const struct ggml_compute_params * params,
  9690. struct ggml_tensor * dst) {
  9691. const struct ggml_tensor * src0 = dst->src[0];
  9692. switch (src0->type) {
  9693. case GGML_TYPE_F32:
  9694. {
  9695. ggml_compute_forward_norm_f32(params, dst);
  9696. } break;
  9697. default:
  9698. {
  9699. GGML_ASSERT(false);
  9700. } break;
  9701. }
  9702. }
  9703. // ggml_compute_forward_group_rms_norm
  9704. static void ggml_compute_forward_rms_norm_f32(
  9705. const struct ggml_compute_params * params,
  9706. struct ggml_tensor * dst) {
  9707. const struct ggml_tensor * src0 = dst->src[0];
  9708. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9709. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9710. return;
  9711. }
  9712. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9713. const int ith = params->ith;
  9714. const int nth = params->nth;
  9715. GGML_TENSOR_UNARY_OP_LOCALS
  9716. float eps;
  9717. memcpy(&eps, dst->op_params, sizeof(float));
  9718. GGML_ASSERT(eps > 0.0f);
  9719. // TODO: optimize
  9720. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9721. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9722. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9723. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9724. ggml_float sum = 0.0;
  9725. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9726. sum += (ggml_float)(x[i00] * x[i00]);
  9727. }
  9728. const float mean = sum/ne00;
  9729. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9730. memcpy(y, x, ne00 * sizeof(float));
  9731. // for (int i00 = 0; i00 < ne00; i00++) {
  9732. // y[i00] = x[i00];
  9733. // }
  9734. const float scale = 1.0f/sqrtf(mean + eps);
  9735. ggml_vec_scale_f32(ne00, y, scale);
  9736. }
  9737. }
  9738. }
  9739. }
  9740. static void ggml_compute_forward_rms_norm(
  9741. const struct ggml_compute_params * params,
  9742. struct ggml_tensor * dst) {
  9743. const struct ggml_tensor * src0 = dst->src[0];
  9744. switch (src0->type) {
  9745. case GGML_TYPE_F32:
  9746. {
  9747. ggml_compute_forward_rms_norm_f32(params, dst);
  9748. } break;
  9749. default:
  9750. {
  9751. GGML_ASSERT(false);
  9752. } break;
  9753. }
  9754. }
  9755. static void ggml_compute_forward_rms_norm_back_f32(
  9756. const struct ggml_compute_params * params,
  9757. struct ggml_tensor * dst) {
  9758. const struct ggml_tensor * src0 = dst->src[0];
  9759. const struct ggml_tensor * src1 = dst->src[1];
  9760. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9761. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9762. return;
  9763. }
  9764. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9765. const int ith = params->ith;
  9766. const int nth = params->nth;
  9767. GGML_TENSOR_BINARY_OP_LOCALS
  9768. float eps;
  9769. memcpy(&eps, dst->op_params, sizeof(float));
  9770. // TODO: optimize
  9771. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9772. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9773. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9774. // src1 is same shape as src0 => same indices
  9775. const int64_t i11 = i01;
  9776. const int64_t i12 = i02;
  9777. const int64_t i13 = i03;
  9778. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9779. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9780. ggml_float sum_xx = 0.0;
  9781. ggml_float sum_xdz = 0.0;
  9782. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9783. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9784. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9785. }
  9786. //const float mean = (float)(sum_xx)/ne00;
  9787. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9788. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9789. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9790. // we could cache rms from forward pass to improve performance.
  9791. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9792. //const float rms = sqrtf(mean_eps);
  9793. const float rrms = 1.0f / sqrtf(mean_eps);
  9794. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9795. {
  9796. // z = rms_norm(x)
  9797. //
  9798. // rms_norm(src0) =
  9799. // scale(
  9800. // src0,
  9801. // div(
  9802. // 1,
  9803. // sqrt(
  9804. // add(
  9805. // scale(
  9806. // sum(
  9807. // sqr(
  9808. // src0)),
  9809. // (1.0/N)),
  9810. // eps))));
  9811. // postorder:
  9812. // ## op args grad
  9813. // 00 param src0 grad[#00]
  9814. // 01 const 1
  9815. // 02 sqr (#00) grad[#02]
  9816. // 03 sum (#02) grad[#03]
  9817. // 04 const 1/N
  9818. // 05 scale (#03, #04) grad[#05]
  9819. // 06 const eps
  9820. // 07 add (#05, #06) grad[#07]
  9821. // 08 sqrt (#07) grad[#08]
  9822. // 09 div (#01,#08) grad[#09]
  9823. // 10 scale (#00,#09) grad[#10]
  9824. //
  9825. // backward pass, given grad[#10]
  9826. // #10: scale
  9827. // grad[#00] += scale(grad[#10],#09)
  9828. // grad[#09] += sum(mul(grad[#10],#00))
  9829. // #09: div
  9830. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9831. // #08: sqrt
  9832. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9833. // #07: add
  9834. // grad[#05] += grad[#07]
  9835. // #05: scale
  9836. // grad[#03] += scale(grad[#05],#04)
  9837. // #03: sum
  9838. // grad[#02] += repeat(grad[#03], #02)
  9839. // #02:
  9840. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9841. //
  9842. // substitute and simplify:
  9843. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9844. // grad[#02] = repeat(grad[#03], #02)
  9845. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9846. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9847. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9848. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9849. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9850. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9851. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9852. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9853. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9854. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9855. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9856. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9857. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9858. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9859. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9860. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9861. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9862. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9863. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9864. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9865. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9866. // a = b*c + d*e
  9867. // a = b*c*f/f + d*e*f/f
  9868. // a = (b*c*f + d*e*f)*(1/f)
  9869. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9870. // a = (b + d*e/c)*c
  9871. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9872. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9873. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9874. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9875. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9876. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9877. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9878. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9879. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9880. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9881. }
  9882. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9883. // post-order:
  9884. // dx := x
  9885. // dx := scale(dx,-mean_xdz/mean_eps)
  9886. // dx := add(dx, dz)
  9887. // dx := scale(dx, rrms)
  9888. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9889. ggml_vec_cpy_f32 (ne00, dx, x);
  9890. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9891. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9892. ggml_vec_acc_f32 (ne00, dx, dz);
  9893. ggml_vec_scale_f32(ne00, dx, rrms);
  9894. }
  9895. }
  9896. }
  9897. }
  9898. static void ggml_compute_forward_rms_norm_back(
  9899. const struct ggml_compute_params * params,
  9900. struct ggml_tensor * dst) {
  9901. const struct ggml_tensor * src0 = dst->src[0];
  9902. switch (src0->type) {
  9903. case GGML_TYPE_F32:
  9904. {
  9905. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9906. } break;
  9907. default:
  9908. {
  9909. GGML_ASSERT(false);
  9910. } break;
  9911. }
  9912. }
  9913. // ggml_compute_forward_group_norm
  9914. static void ggml_compute_forward_group_norm_f32(
  9915. const struct ggml_compute_params * params,
  9916. struct ggml_tensor * dst) {
  9917. const struct ggml_tensor * src0 = dst->src[0];
  9918. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9919. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9920. return;
  9921. }
  9922. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9923. const int ith = params->ith;
  9924. const int nth = params->nth;
  9925. GGML_TENSOR_UNARY_OP_LOCALS
  9926. const float eps = 1e-6f; // TODO: make this a parameter
  9927. // TODO: optimize
  9928. int n_channels = src0->ne[2];
  9929. int n_groups = dst->op_params[0];
  9930. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9931. for (int i = ith; i < n_groups; i += nth) {
  9932. int start = i * n_channels_per_group;
  9933. int end = start + n_channels_per_group;
  9934. if (end > n_channels) {
  9935. end = n_channels;
  9936. }
  9937. int step = end - start;
  9938. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9939. ggml_float sum = 0.0;
  9940. for (int64_t i02 = start; i02 < end; i02++) {
  9941. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9942. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9943. ggml_float sumr = 0.0;
  9944. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9945. sumr += (ggml_float)x[i00];
  9946. }
  9947. sum += sumr;
  9948. }
  9949. }
  9950. const float mean = sum / (ne00 * ne01 * step);
  9951. ggml_float sum2 = 0.0;
  9952. for (int64_t i02 = start; i02 < end; i02++) {
  9953. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9954. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9955. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9956. ggml_float sumr = 0.0;
  9957. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9958. float v = x[i00] - mean;
  9959. y[i00] = v;
  9960. sumr += (ggml_float)(v * v);
  9961. }
  9962. sum2 += sumr;
  9963. }
  9964. }
  9965. const float variance = sum2 / (ne00 * ne01 * step);
  9966. const float scale = 1.0f / sqrtf(variance + eps);
  9967. for (int64_t i02 = start; i02 < end; i02++) {
  9968. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9969. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9970. ggml_vec_scale_f32(ne00, y, scale);
  9971. }
  9972. }
  9973. }
  9974. }
  9975. }
  9976. static void ggml_compute_forward_group_norm(
  9977. const struct ggml_compute_params * params,
  9978. struct ggml_tensor * dst) {
  9979. const struct ggml_tensor * src0 = dst->src[0];
  9980. switch (src0->type) {
  9981. case GGML_TYPE_F32:
  9982. {
  9983. ggml_compute_forward_group_norm_f32(params, dst);
  9984. } break;
  9985. default:
  9986. {
  9987. GGML_ASSERT(false);
  9988. } break;
  9989. }
  9990. }
  9991. // ggml_compute_forward_mul_mat
  9992. static void ggml_compute_forward_mul_mat_one_chunk(
  9993. const struct ggml_compute_params * params,
  9994. struct ggml_tensor * dst,
  9995. const int64_t num_rows_per_vec_dot,
  9996. const int64_t ir0_start,
  9997. const int64_t ir0_end,
  9998. const int64_t ir1_start,
  9999. const int64_t ir1_end) {
  10000. const struct ggml_tensor * src0 = dst->src[0];
  10001. const struct ggml_tensor * src1 = dst->src[1];
  10002. GGML_TENSOR_BINARY_OP_LOCALS
  10003. const enum ggml_type type = src0->type;
  10004. const bool src1_cont = ggml_is_contiguous(src1);
  10005. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10006. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10007. // broadcast factors
  10008. const int64_t r2 = ne12 / ne02;
  10009. const int64_t r3 = ne13 / ne03;
  10010. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10011. // threads with no work simply yield (not sure if it helps)
  10012. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10013. return;
  10014. }
  10015. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10016. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10017. assert(ne12 % ne02 == 0);
  10018. assert(ne13 % ne03 == 0);
  10019. // block-tiling attempt
  10020. const int64_t blck_0 = 16;
  10021. const int64_t blck_1 = 16;
  10022. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10023. // attempt to reduce false-sharing (does not seem to make a difference)
  10024. // 16 * 2, accounting for mmla kernels
  10025. float tmp[32];
  10026. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10027. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10028. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10029. const int64_t i13 = (ir1 / (ne12 * ne1));
  10030. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10031. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10032. // broadcast src0 into src1
  10033. const int64_t i03 = i13 / r3;
  10034. const int64_t i02 = i12 / r2;
  10035. const int64_t i1 = i11;
  10036. const int64_t i2 = i12;
  10037. const int64_t i3 = i13;
  10038. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10039. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10040. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10041. // the original src1 data pointer, so we should index using the indices directly
  10042. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10043. const char * src1_col = (const char*)wdata +
  10044. (src1_cont || src1->type != vec_dot_type
  10045. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10046. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10047. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10048. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10049. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10050. //}
  10051. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10052. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10053. }
  10054. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10055. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10056. }
  10057. }
  10058. }
  10059. }
  10060. }
  10061. static void ggml_compute_forward_mul_mat(
  10062. const struct ggml_compute_params * params,
  10063. struct ggml_tensor * dst,
  10064. struct ggml_compute_state * state) {
  10065. const struct ggml_tensor * src0 = dst->src[0];
  10066. const struct ggml_tensor * src1 = dst->src[1];
  10067. int64_t t0 = ggml_perf_time_us();
  10068. UNUSED(t0);
  10069. GGML_TENSOR_BINARY_OP_LOCALS
  10070. const int ith = params->ith;
  10071. const int nth = params->nth;
  10072. const enum ggml_type type = src0->type;
  10073. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10074. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10075. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10076. GGML_ASSERT(ne0 == ne01);
  10077. GGML_ASSERT(ne1 == ne11);
  10078. GGML_ASSERT(ne2 == ne12);
  10079. GGML_ASSERT(ne3 == ne13);
  10080. // we don't support permuted src0 or src1
  10081. GGML_ASSERT(nb00 == ggml_type_size(type));
  10082. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10083. // dst cannot be transposed or permuted
  10084. GGML_ASSERT(nb0 == sizeof(float));
  10085. GGML_ASSERT(nb0 <= nb1);
  10086. GGML_ASSERT(nb1 <= nb2);
  10087. GGML_ASSERT(nb2 <= nb3);
  10088. // broadcast factors
  10089. const int64_t r2 = ne12 / ne02;
  10090. const int64_t r3 = ne13 / ne03;
  10091. UNUSED(r2);
  10092. UNUSED(r3);
  10093. // nb01 >= nb00 - src0 is not transposed
  10094. // compute by src0 rows
  10095. #if GGML_USE_LLAMAFILE
  10096. const bool src1_cont = ggml_is_contiguous(src1);
  10097. if (src1_cont) {
  10098. for (int64_t i13 = 0; i13 < ne13; i13++)
  10099. for (int64_t i12 = 0; i12 < ne12; i12++)
  10100. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10101. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10102. nb01/ggml_type_size(src0->type),
  10103. (const char *)src1->data + i12*nb12 + i13*nb13,
  10104. nb11/ggml_type_size(src1->type),
  10105. (char *)dst->data + i12*nb2 + i13*nb3,
  10106. nb1/ggml_type_size(dst->type),
  10107. ith, nth,
  10108. params->type,
  10109. src0->type,
  10110. src1->type,
  10111. dst->type))
  10112. goto UseGgmlGemm1;
  10113. return;
  10114. }
  10115. UseGgmlGemm1:;
  10116. #endif
  10117. if (params->type == GGML_TASK_TYPE_INIT) {
  10118. if (ith != 0) {
  10119. return;
  10120. }
  10121. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10122. atomic_store(&state->shared->current_chunk, nth);
  10123. if (src1->type != vec_dot_type) {
  10124. char * wdata = params->wdata;
  10125. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10126. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10127. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10128. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10129. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10130. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10131. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10132. wdata += row_size;
  10133. }
  10134. }
  10135. }
  10136. }
  10137. return;
  10138. }
  10139. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10140. return;
  10141. }
  10142. #if GGML_USE_LLAMAFILE
  10143. if (src1->type != vec_dot_type) {
  10144. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10145. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10146. for (int64_t i13 = 0; i13 < ne13; i13++)
  10147. for (int64_t i12 = 0; i12 < ne12; i12++)
  10148. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10149. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10150. nb01/ggml_type_size(src0->type),
  10151. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10152. row_size/ggml_type_size(vec_dot_type),
  10153. (char *)dst->data + i12*nb2 + i13*nb3,
  10154. nb1/ggml_type_size(dst->type),
  10155. ith, nth,
  10156. params->type,
  10157. src0->type,
  10158. vec_dot_type,
  10159. dst->type))
  10160. goto UseGgmlGemm2;
  10161. return;
  10162. }
  10163. UseGgmlGemm2:;
  10164. #endif
  10165. #ifdef GGML_PERF
  10166. int chunks_executed = 0;
  10167. UNUSED(chunks_executed);
  10168. #endif
  10169. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10170. const int64_t nr0 = ne0;
  10171. // This is the size of the rest of the dimensions of the result
  10172. const int64_t nr1 = ne1 * ne2 * ne3;
  10173. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10174. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10175. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10176. // this check can be removed once they are extended to support odd numbered rows/cols too
  10177. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10178. num_rows_per_vec_dot = 1;
  10179. }
  10180. // Now select a reasonable chunk size.
  10181. int chunk_size = 16;
  10182. // We need to step up the size if it's small
  10183. if (nr0 == 1 || nr1 == 1) {
  10184. chunk_size = 64;
  10185. }
  10186. // distribute the work across the inner or outer loop based on which one is larger
  10187. // The number of chunks in the 0/1 dim.
  10188. // CEIL(nr0/chunk_size)
  10189. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10190. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10191. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10192. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10193. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10194. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10195. // distribute the thread work across the inner or outer loop based on which one is larger
  10196. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10197. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10198. }
  10199. // The number of elements in each chunk
  10200. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10201. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10202. //if (ith == 0)
  10203. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10204. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10205. int current_chunk = ith;
  10206. while (current_chunk < nchunk0 * nchunk1) {
  10207. const int64_t ith0 = current_chunk % nchunk0;
  10208. const int64_t ith1 = current_chunk / nchunk0;
  10209. const int64_t ir0_start = dr0 * ith0;
  10210. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10211. const int64_t ir1_start = dr1 * ith1;
  10212. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10213. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10214. #ifdef GGML_PERF
  10215. chunks_executed++;
  10216. #endif
  10217. if (nth >= nchunk0 * nchunk1) {
  10218. break;
  10219. }
  10220. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10221. }
  10222. #ifdef GGML_PERF
  10223. // These numbers are useful when trying to measure how well the threading scheduling works.
  10224. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10225. //float time = (ggml_perf_time_us() - t0);
  10226. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10227. #endif
  10228. }
  10229. // ggml_compute_forward_mul_mat_id
  10230. static void ggml_compute_forward_mul_mat_id(
  10231. const struct ggml_compute_params * params,
  10232. struct ggml_tensor * dst) {
  10233. const struct ggml_tensor * src0 = dst->src[0];
  10234. const struct ggml_tensor * src1 = dst->src[1];
  10235. const struct ggml_tensor * ids = dst->src[2];
  10236. GGML_TENSOR_BINARY_OP_LOCALS
  10237. const int ith = params->ith;
  10238. const int nth = params->nth;
  10239. const enum ggml_type type = src0->type;
  10240. const bool src1_cont = ggml_is_contiguous(src1);
  10241. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10242. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10243. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10244. // we don't support permuted src0 or src1
  10245. GGML_ASSERT(nb00 == ggml_type_size(type));
  10246. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10247. // dst cannot be transposed or permuted
  10248. GGML_ASSERT(nb0 == sizeof(float));
  10249. GGML_ASSERT(nb0 <= nb1);
  10250. GGML_ASSERT(nb1 <= nb2);
  10251. GGML_ASSERT(nb2 <= nb3);
  10252. // row groups
  10253. const int n_ids = ids->ne[0]; // n_expert_used
  10254. const int n_as = ne02; // n_expert
  10255. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10256. (char *) params->wdata :
  10257. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10258. struct mmid_row_mapping {
  10259. int32_t i1;
  10260. int32_t i2;
  10261. };
  10262. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10263. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10264. if (params->type == GGML_TASK_TYPE_INIT) {
  10265. if (ith != 0) {
  10266. return;
  10267. }
  10268. char * wdata = params->wdata;
  10269. if (src1->type != vec_dot_type) {
  10270. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10271. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10272. assert(src1->type == GGML_TYPE_F32);
  10273. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10274. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10275. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10276. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10277. wdata += row_size;
  10278. }
  10279. }
  10280. }
  10281. }
  10282. // initialize matrix_row_counts
  10283. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10284. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10285. // group rows by src0 matrix
  10286. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10287. for (int id = 0; id < n_ids; ++id) {
  10288. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10289. assert(i02 >= 0 && i02 < n_as);
  10290. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10291. matrix_row_counts[i02] += 1;
  10292. }
  10293. }
  10294. return;
  10295. }
  10296. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10297. return;
  10298. }
  10299. // compute each matrix multiplication in sequence
  10300. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10301. const int64_t cne1 = matrix_row_counts[cur_a];
  10302. if (cne1 == 0) {
  10303. continue;
  10304. }
  10305. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10306. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10307. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10308. const int64_t nr0 = ne01; // src0 rows
  10309. const int64_t nr1 = cne1; // src1 rows
  10310. // distribute the thread work across the inner or outer loop based on which one is larger
  10311. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10312. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10313. const int64_t ith0 = ith % nth0;
  10314. const int64_t ith1 = ith / nth0;
  10315. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10316. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10317. const int64_t ir010 = dr0*ith0;
  10318. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10319. const int64_t ir110 = dr1*ith1;
  10320. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10321. // threads with no work simply yield (not sure if it helps)
  10322. //if (ir010 >= ir011 || ir110 >= ir111) {
  10323. // sched_yield();
  10324. // continue;
  10325. //}
  10326. // block-tiling attempt
  10327. const int64_t blck_0 = 16;
  10328. const int64_t blck_1 = 16;
  10329. // attempt to reduce false-sharing (does not seem to make a difference)
  10330. float tmp[16];
  10331. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10332. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10333. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10334. const int64_t _i12 = ir1; // logical row index for this expert
  10335. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10336. const int id = row_mapping.i1; // selected expert index
  10337. const int64_t i11 = id % ne11;
  10338. const int64_t i12 = row_mapping.i2; // row index in src1
  10339. const int64_t i1 = id; // selected expert index
  10340. const int64_t i2 = i12; // row
  10341. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10342. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10343. // the original src1 data pointer, so we should index using the indices directly
  10344. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10345. const char * src1_col = (const char *) wdata +
  10346. (src1_cont || src1->type != vec_dot_type
  10347. ? (i11 + i12*ne11)*row_size
  10348. : (i11*nb11 + i12*nb12));
  10349. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10350. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10351. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10352. //}
  10353. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10354. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10355. }
  10356. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10357. }
  10358. }
  10359. }
  10360. }
  10361. #undef MMID_MATRIX_ROW
  10362. }
  10363. // ggml_compute_forward_out_prod
  10364. static void ggml_compute_forward_out_prod_f32(
  10365. const struct ggml_compute_params * params,
  10366. struct ggml_tensor * dst) {
  10367. const struct ggml_tensor * src0 = dst->src[0];
  10368. const struct ggml_tensor * src1 = dst->src[1];
  10369. // int64_t t0 = ggml_perf_time_us();
  10370. // UNUSED(t0);
  10371. GGML_TENSOR_BINARY_OP_LOCALS
  10372. const int ith = params->ith;
  10373. const int nth = params->nth;
  10374. GGML_ASSERT(ne0 == ne00);
  10375. GGML_ASSERT(ne1 == ne10);
  10376. GGML_ASSERT(ne2 == ne02);
  10377. GGML_ASSERT(ne02 == ne12);
  10378. GGML_ASSERT(ne3 == ne13);
  10379. GGML_ASSERT(ne03 == ne13);
  10380. // we don't support permuted src0 or src1
  10381. GGML_ASSERT(nb00 == sizeof(float));
  10382. // dst cannot be transposed or permuted
  10383. GGML_ASSERT(nb0 == sizeof(float));
  10384. // GGML_ASSERT(nb0 <= nb1);
  10385. // GGML_ASSERT(nb1 <= nb2);
  10386. // GGML_ASSERT(nb2 <= nb3);
  10387. // nb01 >= nb00 - src0 is not transposed
  10388. // compute by src0 rows
  10389. if (params->type == GGML_TASK_TYPE_INIT) {
  10390. if (ith != 0) {
  10391. return;
  10392. }
  10393. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10394. return;
  10395. }
  10396. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10397. return;
  10398. }
  10399. // dst[:,:,:,:] = 0
  10400. // for i2,i3:
  10401. // for i1:
  10402. // for i01:
  10403. // for i0:
  10404. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10405. // parallelize by last three dimensions
  10406. // total rows in dst
  10407. const int64_t nr = ne1*ne2*ne3;
  10408. // rows per thread
  10409. const int64_t dr = (nr + nth - 1)/nth;
  10410. // row range for this thread
  10411. const int64_t ir0 = dr*ith;
  10412. const int64_t ir1 = MIN(ir0 + dr, nr);
  10413. // block-tiling attempt
  10414. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10415. const int64_t blck_1 = 16;
  10416. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10417. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10418. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10419. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10420. for (int64_t ir = bir; ir < bir1; ++ir) {
  10421. // dst indices
  10422. const int64_t i3 = ir/(ne2*ne1);
  10423. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10424. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10425. const int64_t i02 = i2;
  10426. const int64_t i03 = i3;
  10427. //const int64_t i10 = i1;
  10428. const int64_t i12 = i2;
  10429. const int64_t i13 = i3;
  10430. #if GGML_VEC_MAD_UNROLL > 2
  10431. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10432. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10433. const int64_t i11 = i01;
  10434. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10435. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10436. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10437. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10438. }
  10439. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10440. const int64_t i11 = i01;
  10441. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10442. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10443. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10444. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10445. }
  10446. #else
  10447. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10448. const int64_t i11 = i01;
  10449. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10450. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10451. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10452. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10453. }
  10454. #endif
  10455. }
  10456. }
  10457. }
  10458. //int64_t t1 = ggml_perf_time_us();
  10459. //static int64_t acc = 0;
  10460. //acc += t1 - t0;
  10461. //if (t1 - t0 > 10) {
  10462. // printf("\n");
  10463. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10464. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10465. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10466. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10467. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10468. //}
  10469. }
  10470. static void ggml_compute_forward_out_prod_q_f32(
  10471. const struct ggml_compute_params * params,
  10472. struct ggml_tensor * dst) {
  10473. const struct ggml_tensor * src0 = dst->src[0];
  10474. const struct ggml_tensor * src1 = dst->src[1];
  10475. // int64_t t0 = ggml_perf_time_us();
  10476. // UNUSED(t0);
  10477. GGML_TENSOR_BINARY_OP_LOCALS;
  10478. const int ith = params->ith;
  10479. const int nth = params->nth;
  10480. const enum ggml_type type = src0->type;
  10481. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10482. GGML_ASSERT(ne02 == ne12);
  10483. GGML_ASSERT(ne03 == ne13);
  10484. GGML_ASSERT(ne2 == ne12);
  10485. GGML_ASSERT(ne3 == ne13);
  10486. // we don't support permuted src0 dim0
  10487. GGML_ASSERT(nb00 == ggml_type_size(type));
  10488. // dst dim0 cannot be transposed or permuted
  10489. GGML_ASSERT(nb0 == sizeof(float));
  10490. // GGML_ASSERT(nb0 <= nb1);
  10491. // GGML_ASSERT(nb1 <= nb2);
  10492. // GGML_ASSERT(nb2 <= nb3);
  10493. GGML_ASSERT(ne0 == ne00);
  10494. GGML_ASSERT(ne1 == ne10);
  10495. GGML_ASSERT(ne2 == ne02);
  10496. GGML_ASSERT(ne3 == ne03);
  10497. // nb01 >= nb00 - src0 is not transposed
  10498. // compute by src0 rows
  10499. if (params->type == GGML_TASK_TYPE_INIT) {
  10500. if (ith != 0) {
  10501. return;
  10502. }
  10503. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10504. return;
  10505. }
  10506. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10507. return;
  10508. }
  10509. // parallelize by last three dimensions
  10510. // total rows in dst
  10511. const int64_t nr = ne1*ne2*ne3;
  10512. // rows per thread
  10513. const int64_t dr = (nr + nth - 1)/nth;
  10514. // row range for this thread
  10515. const int64_t ir0 = dr*ith;
  10516. const int64_t ir1 = MIN(ir0 + dr, nr);
  10517. // dst[:,:,:,:] = 0
  10518. // for i2,i3:
  10519. // for i1:
  10520. // for i01:
  10521. // for i0:
  10522. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10523. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10524. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10525. // dst indices
  10526. const int64_t i3 = ir/(ne2*ne1);
  10527. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10528. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10529. const int64_t i02 = i2;
  10530. const int64_t i03 = i3;
  10531. //const int64_t i10 = i1;
  10532. const int64_t i12 = i2;
  10533. const int64_t i13 = i3;
  10534. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10535. const int64_t i11 = i01;
  10536. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10537. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10538. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10539. dequantize_row_q(s0, wdata, ne0);
  10540. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10541. }
  10542. }
  10543. //int64_t t1 = ggml_perf_time_us();
  10544. //static int64_t acc = 0;
  10545. //acc += t1 - t0;
  10546. //if (t1 - t0 > 10) {
  10547. // printf("\n");
  10548. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10549. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10550. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10551. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10552. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10553. //}
  10554. }
  10555. static void ggml_compute_forward_out_prod(
  10556. const struct ggml_compute_params * params,
  10557. struct ggml_tensor * dst) {
  10558. const struct ggml_tensor * src0 = dst->src[0];
  10559. switch (src0->type) {
  10560. case GGML_TYPE_Q4_0:
  10561. case GGML_TYPE_Q4_1:
  10562. case GGML_TYPE_Q5_0:
  10563. case GGML_TYPE_Q5_1:
  10564. case GGML_TYPE_Q8_0:
  10565. case GGML_TYPE_Q2_K:
  10566. case GGML_TYPE_Q3_K:
  10567. case GGML_TYPE_Q4_K:
  10568. case GGML_TYPE_Q5_K:
  10569. case GGML_TYPE_Q6_K:
  10570. case GGML_TYPE_IQ2_XXS:
  10571. case GGML_TYPE_IQ2_XS:
  10572. case GGML_TYPE_IQ3_XXS:
  10573. case GGML_TYPE_IQ1_S:
  10574. case GGML_TYPE_IQ1_M:
  10575. case GGML_TYPE_IQ4_NL:
  10576. case GGML_TYPE_IQ4_XS:
  10577. case GGML_TYPE_IQ3_S:
  10578. case GGML_TYPE_IQ2_S:
  10579. {
  10580. ggml_compute_forward_out_prod_q_f32(params, dst);
  10581. } break;
  10582. case GGML_TYPE_F16:
  10583. {
  10584. GGML_ASSERT(false); // todo
  10585. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10586. } break;
  10587. case GGML_TYPE_F32:
  10588. {
  10589. ggml_compute_forward_out_prod_f32(params, dst);
  10590. } break;
  10591. default:
  10592. {
  10593. GGML_ASSERT(false);
  10594. } break;
  10595. }
  10596. }
  10597. // ggml_compute_forward_scale
  10598. static void ggml_compute_forward_scale_f32(
  10599. const struct ggml_compute_params * params,
  10600. struct ggml_tensor * dst) {
  10601. const struct ggml_tensor * src0 = dst->src[0];
  10602. GGML_ASSERT(ggml_is_contiguous(src0));
  10603. GGML_ASSERT(ggml_is_contiguous(dst));
  10604. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10605. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10606. return;
  10607. }
  10608. // scale factor
  10609. float v;
  10610. memcpy(&v, dst->op_params, sizeof(float));
  10611. const int ith = params->ith;
  10612. const int nth = params->nth;
  10613. const int nc = src0->ne[0];
  10614. const int nr = ggml_nrows(src0);
  10615. // rows per thread
  10616. const int dr = (nr + nth - 1)/nth;
  10617. // row range for this thread
  10618. const int ir0 = dr*ith;
  10619. const int ir1 = MIN(ir0 + dr, nr);
  10620. const size_t nb01 = src0->nb[1];
  10621. const size_t nb1 = dst->nb[1];
  10622. for (int i1 = ir0; i1 < ir1; i1++) {
  10623. if (dst->data != src0->data) {
  10624. // src0 is same shape as dst => same indices
  10625. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10626. }
  10627. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10628. }
  10629. }
  10630. static void ggml_compute_forward_scale(
  10631. const struct ggml_compute_params * params,
  10632. struct ggml_tensor * dst) {
  10633. const struct ggml_tensor * src0 = dst->src[0];
  10634. switch (src0->type) {
  10635. case GGML_TYPE_F32:
  10636. {
  10637. ggml_compute_forward_scale_f32(params, dst);
  10638. } break;
  10639. default:
  10640. {
  10641. GGML_ASSERT(false);
  10642. } break;
  10643. }
  10644. }
  10645. // ggml_compute_forward_set
  10646. static void ggml_compute_forward_set_f32(
  10647. const struct ggml_compute_params * params,
  10648. struct ggml_tensor * dst) {
  10649. const struct ggml_tensor * src0 = dst->src[0];
  10650. const struct ggml_tensor * src1 = dst->src[1];
  10651. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10652. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10653. // view src0 and dst with these strides and data offset inbytes during set
  10654. // nb0 is implicitly element_size because src0 and dst are contiguous
  10655. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10656. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10657. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10658. size_t offset = ((int32_t *) dst->op_params)[3];
  10659. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10660. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10661. if (params->ith != 0) {
  10662. return;
  10663. }
  10664. // memcpy needs to be synchronized across threads to avoid race conditions.
  10665. // => do it in INIT phase
  10666. memcpy(
  10667. ((char *) dst->data),
  10668. ((char *) src0->data),
  10669. ggml_nbytes(dst));
  10670. }
  10671. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10672. return;
  10673. }
  10674. const int ith = params->ith;
  10675. const int nth = params->nth;
  10676. const int nr = ggml_nrows(src1);
  10677. const int nc = src1->ne[0];
  10678. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10679. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10680. // src0 and dst as viewed during set
  10681. const size_t nb0 = ggml_element_size(src0);
  10682. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10683. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10684. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10685. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10686. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10687. GGML_ASSERT(nb10 == sizeof(float));
  10688. // rows per thread
  10689. const int dr = (nr + nth - 1)/nth;
  10690. // row range for this thread
  10691. const int ir0 = dr*ith;
  10692. const int ir1 = MIN(ir0 + dr, nr);
  10693. for (int ir = ir0; ir < ir1; ++ir) {
  10694. // src0 and dst are viewed with shape of src1 and offset
  10695. // => same indices
  10696. const int i3 = ir/(ne12*ne11);
  10697. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10698. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10699. ggml_vec_cpy_f32(nc,
  10700. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10701. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10702. }
  10703. }
  10704. static void ggml_compute_forward_set(
  10705. const struct ggml_compute_params * params,
  10706. struct ggml_tensor * dst) {
  10707. const struct ggml_tensor * src0 = dst->src[0];
  10708. switch (src0->type) {
  10709. case GGML_TYPE_F32:
  10710. {
  10711. ggml_compute_forward_set_f32(params, dst);
  10712. } break;
  10713. case GGML_TYPE_F16:
  10714. case GGML_TYPE_BF16:
  10715. case GGML_TYPE_Q4_0:
  10716. case GGML_TYPE_Q4_1:
  10717. case GGML_TYPE_Q5_0:
  10718. case GGML_TYPE_Q5_1:
  10719. case GGML_TYPE_Q8_0:
  10720. case GGML_TYPE_Q8_1:
  10721. case GGML_TYPE_Q2_K:
  10722. case GGML_TYPE_Q3_K:
  10723. case GGML_TYPE_Q4_K:
  10724. case GGML_TYPE_Q5_K:
  10725. case GGML_TYPE_Q6_K:
  10726. case GGML_TYPE_IQ2_XXS:
  10727. case GGML_TYPE_IQ2_XS:
  10728. case GGML_TYPE_IQ3_XXS:
  10729. case GGML_TYPE_IQ1_S:
  10730. case GGML_TYPE_IQ1_M:
  10731. case GGML_TYPE_IQ4_NL:
  10732. case GGML_TYPE_IQ4_XS:
  10733. case GGML_TYPE_IQ3_S:
  10734. case GGML_TYPE_IQ2_S:
  10735. default:
  10736. {
  10737. GGML_ASSERT(false);
  10738. } break;
  10739. }
  10740. }
  10741. // ggml_compute_forward_cpy
  10742. static void ggml_compute_forward_cpy(
  10743. const struct ggml_compute_params * params,
  10744. struct ggml_tensor * dst) {
  10745. ggml_compute_forward_dup(params, dst);
  10746. }
  10747. // ggml_compute_forward_cont
  10748. static void ggml_compute_forward_cont(
  10749. const struct ggml_compute_params * params,
  10750. struct ggml_tensor * dst) {
  10751. ggml_compute_forward_dup(params, dst);
  10752. }
  10753. // ggml_compute_forward_reshape
  10754. static void ggml_compute_forward_reshape(
  10755. const struct ggml_compute_params * params,
  10756. struct ggml_tensor * dst) {
  10757. // NOP
  10758. UNUSED(params);
  10759. UNUSED(dst);
  10760. }
  10761. // ggml_compute_forward_view
  10762. static void ggml_compute_forward_view(
  10763. const struct ggml_compute_params * params,
  10764. const struct ggml_tensor * dst) {
  10765. // NOP
  10766. UNUSED(params);
  10767. UNUSED(dst);
  10768. }
  10769. // ggml_compute_forward_permute
  10770. static void ggml_compute_forward_permute(
  10771. const struct ggml_compute_params * params,
  10772. const struct ggml_tensor * dst) {
  10773. // NOP
  10774. UNUSED(params);
  10775. UNUSED(dst);
  10776. }
  10777. // ggml_compute_forward_transpose
  10778. static void ggml_compute_forward_transpose(
  10779. const struct ggml_compute_params * params,
  10780. const struct ggml_tensor * dst) {
  10781. // NOP
  10782. UNUSED(params);
  10783. UNUSED(dst);
  10784. }
  10785. // ggml_compute_forward_get_rows
  10786. static void ggml_compute_forward_get_rows_q(
  10787. const struct ggml_compute_params * params,
  10788. struct ggml_tensor * dst) {
  10789. const struct ggml_tensor * src0 = dst->src[0];
  10790. const struct ggml_tensor * src1 = dst->src[1];
  10791. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10792. return;
  10793. }
  10794. GGML_TENSOR_BINARY_OP_LOCALS
  10795. const int64_t nc = ne00;
  10796. const int64_t nr = ggml_nelements(src1);
  10797. const enum ggml_type type = src0->type;
  10798. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10799. assert(ne0 == nc);
  10800. assert(ne02 == ne11);
  10801. assert(nb00 == ggml_type_size(type));
  10802. assert(ggml_nrows(dst) == nr);
  10803. const int ith = params->ith;
  10804. const int nth = params->nth;
  10805. // rows per thread
  10806. const int dr = (nr + nth - 1)/nth;
  10807. // row range for this thread
  10808. const int ir0 = dr*ith;
  10809. const int ir1 = MIN(ir0 + dr, nr);
  10810. for (int64_t i = ir0; i < ir1; ++i) {
  10811. const int64_t i12 = i/(ne11*ne10);
  10812. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10813. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10814. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10815. assert(i01 >= 0 && i01 < ne01);
  10816. dequantize_row_q(
  10817. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10818. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10819. }
  10820. }
  10821. static void ggml_compute_forward_get_rows_f16(
  10822. const struct ggml_compute_params * params,
  10823. struct ggml_tensor * dst) {
  10824. const struct ggml_tensor * src0 = dst->src[0];
  10825. const struct ggml_tensor * src1 = dst->src[1];
  10826. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10827. return;
  10828. }
  10829. GGML_TENSOR_BINARY_OP_LOCALS
  10830. const int64_t nc = ne00;
  10831. const int64_t nr = ggml_nelements(src1);
  10832. assert(ne0 == nc);
  10833. assert(ne02 == ne11);
  10834. assert(nb00 == sizeof(ggml_fp16_t));
  10835. assert(ggml_nrows(dst) == nr);
  10836. const int ith = params->ith;
  10837. const int nth = params->nth;
  10838. // rows per thread
  10839. const int dr = (nr + nth - 1)/nth;
  10840. // row range for this thread
  10841. const int ir0 = dr*ith;
  10842. const int ir1 = MIN(ir0 + dr, nr);
  10843. for (int64_t i = ir0; i < ir1; ++i) {
  10844. const int64_t i12 = i/(ne11*ne10);
  10845. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10846. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10847. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10848. assert(i01 >= 0 && i01 < ne01);
  10849. ggml_fp16_to_fp32_row(
  10850. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10851. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10852. }
  10853. }
  10854. static void ggml_compute_forward_get_rows_bf16(
  10855. const struct ggml_compute_params * params,
  10856. struct ggml_tensor * dst) {
  10857. const struct ggml_tensor * src0 = dst->src[0];
  10858. const struct ggml_tensor * src1 = dst->src[1];
  10859. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10860. return;
  10861. }
  10862. GGML_TENSOR_BINARY_OP_LOCALS
  10863. const int64_t nc = ne00;
  10864. const int64_t nr = ggml_nelements(src1);
  10865. assert(ne0 == nc);
  10866. assert(ne02 == ne11);
  10867. assert(nb00 == sizeof(ggml_bf16_t));
  10868. assert(ggml_nrows(dst) == nr);
  10869. const int ith = params->ith;
  10870. const int nth = params->nth;
  10871. // rows per thread
  10872. const int dr = (nr + nth - 1)/nth;
  10873. // row range for this thread
  10874. const int ir0 = dr*ith;
  10875. const int ir1 = MIN(ir0 + dr, nr);
  10876. for (int64_t i = ir0; i < ir1; ++i) {
  10877. const int64_t i12 = i/(ne11*ne10);
  10878. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10879. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10880. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10881. assert(i01 >= 0 && i01 < ne01);
  10882. ggml_bf16_to_fp32_row(
  10883. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10884. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10885. }
  10886. }
  10887. static void ggml_compute_forward_get_rows_f32(
  10888. const struct ggml_compute_params * params,
  10889. struct ggml_tensor * dst) {
  10890. const struct ggml_tensor * src0 = dst->src[0];
  10891. const struct ggml_tensor * src1 = dst->src[1];
  10892. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10893. return;
  10894. }
  10895. GGML_TENSOR_BINARY_OP_LOCALS
  10896. const int64_t nc = ne00;
  10897. const int64_t nr = ggml_nelements(src1);
  10898. assert(ne0 == nc);
  10899. assert(ne02 == ne11);
  10900. assert(nb00 == sizeof(float));
  10901. assert(ggml_nrows(dst) == nr);
  10902. const int ith = params->ith;
  10903. const int nth = params->nth;
  10904. // rows per thread
  10905. const int dr = (nr + nth - 1)/nth;
  10906. // row range for this thread
  10907. const int ir0 = dr*ith;
  10908. const int ir1 = MIN(ir0 + dr, nr);
  10909. for (int64_t i = ir0; i < ir1; ++i) {
  10910. const int64_t i12 = i/(ne11*ne10);
  10911. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10912. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10913. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10914. assert(i01 >= 0 && i01 < ne01);
  10915. ggml_vec_cpy_f32(nc,
  10916. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10917. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10918. }
  10919. }
  10920. static void ggml_compute_forward_get_rows(
  10921. const struct ggml_compute_params * params,
  10922. struct ggml_tensor * dst) {
  10923. const struct ggml_tensor * src0 = dst->src[0];
  10924. switch (src0->type) {
  10925. case GGML_TYPE_Q4_0:
  10926. case GGML_TYPE_Q4_1:
  10927. case GGML_TYPE_Q5_0:
  10928. case GGML_TYPE_Q5_1:
  10929. case GGML_TYPE_Q8_0:
  10930. case GGML_TYPE_Q8_1:
  10931. case GGML_TYPE_Q2_K:
  10932. case GGML_TYPE_Q3_K:
  10933. case GGML_TYPE_Q4_K:
  10934. case GGML_TYPE_Q5_K:
  10935. case GGML_TYPE_Q6_K:
  10936. case GGML_TYPE_IQ2_XXS:
  10937. case GGML_TYPE_IQ2_XS:
  10938. case GGML_TYPE_IQ3_XXS:
  10939. case GGML_TYPE_IQ1_S:
  10940. case GGML_TYPE_IQ1_M:
  10941. case GGML_TYPE_IQ4_NL:
  10942. case GGML_TYPE_IQ4_XS:
  10943. case GGML_TYPE_IQ3_S:
  10944. case GGML_TYPE_IQ2_S:
  10945. {
  10946. ggml_compute_forward_get_rows_q(params, dst);
  10947. } break;
  10948. case GGML_TYPE_F16:
  10949. {
  10950. ggml_compute_forward_get_rows_f16(params, dst);
  10951. } break;
  10952. case GGML_TYPE_BF16:
  10953. {
  10954. ggml_compute_forward_get_rows_bf16(params, dst);
  10955. } break;
  10956. case GGML_TYPE_F32:
  10957. case GGML_TYPE_I32:
  10958. {
  10959. ggml_compute_forward_get_rows_f32(params, dst);
  10960. } break;
  10961. default:
  10962. {
  10963. GGML_ASSERT(false);
  10964. } break;
  10965. }
  10966. //static bool first = true;
  10967. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10968. //if (first) {
  10969. // first = false;
  10970. //} else {
  10971. // for (int k = 0; k < dst->ne[1]; ++k) {
  10972. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10973. // for (int i = 0; i < 16; ++i) {
  10974. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10975. // }
  10976. // printf("\n");
  10977. // }
  10978. // printf("\n");
  10979. // }
  10980. // printf("\n");
  10981. // exit(0);
  10982. //}
  10983. }
  10984. // ggml_compute_forward_get_rows_back
  10985. static void ggml_compute_forward_get_rows_back_f32_f16(
  10986. const struct ggml_compute_params * params,
  10987. struct ggml_tensor * dst) {
  10988. const struct ggml_tensor * src0 = dst->src[0];
  10989. const struct ggml_tensor * src1 = dst->src[1];
  10990. GGML_ASSERT(params->ith == 0);
  10991. GGML_ASSERT(ggml_is_contiguous(dst));
  10992. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10993. if (params->type == GGML_TASK_TYPE_INIT) {
  10994. if (params->ith != 0) {
  10995. return;
  10996. }
  10997. memset(dst->data, 0, ggml_nbytes(dst));
  10998. }
  10999. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11000. return;
  11001. }
  11002. const int nc = src0->ne[0];
  11003. const int nr = ggml_nelements(src1);
  11004. GGML_ASSERT( dst->ne[0] == nc);
  11005. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11006. for (int i = 0; i < nr; ++i) {
  11007. const int r = ((int32_t *) src1->data)[i];
  11008. for (int j = 0; j < nc; ++j) {
  11009. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11010. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11011. }
  11012. }
  11013. }
  11014. static void ggml_compute_forward_get_rows_back_f32(
  11015. const struct ggml_compute_params * params,
  11016. struct ggml_tensor * dst) {
  11017. const struct ggml_tensor * src0 = dst->src[0];
  11018. const struct ggml_tensor * src1 = dst->src[1];
  11019. GGML_ASSERT(params->ith == 0);
  11020. GGML_ASSERT(ggml_is_contiguous(dst));
  11021. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11022. if (params->type == GGML_TASK_TYPE_INIT) {
  11023. if (params->ith != 0) {
  11024. return;
  11025. }
  11026. memset(dst->data, 0, ggml_nbytes(dst));
  11027. }
  11028. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11029. return;
  11030. }
  11031. const int nc = src0->ne[0];
  11032. const int nr = ggml_nelements(src1);
  11033. GGML_ASSERT( dst->ne[0] == nc);
  11034. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11035. for (int i = 0; i < nr; ++i) {
  11036. const int r = ((int32_t *) src1->data)[i];
  11037. ggml_vec_add_f32(nc,
  11038. (float *) ((char *) dst->data + r*dst->nb[1]),
  11039. (float *) ((char *) dst->data + r*dst->nb[1]),
  11040. (float *) ((char *) src0->data + i*src0->nb[1]));
  11041. }
  11042. }
  11043. static void ggml_compute_forward_get_rows_back(
  11044. const struct ggml_compute_params * params,
  11045. struct ggml_tensor * dst) {
  11046. const struct ggml_tensor * src0 = dst->src[0];
  11047. switch (src0->type) {
  11048. case GGML_TYPE_F16:
  11049. {
  11050. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11051. } break;
  11052. case GGML_TYPE_F32:
  11053. {
  11054. ggml_compute_forward_get_rows_back_f32(params, dst);
  11055. } break;
  11056. default:
  11057. {
  11058. GGML_ASSERT(false);
  11059. } break;
  11060. }
  11061. //static bool first = true;
  11062. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11063. //if (first) {
  11064. // first = false;
  11065. //} else {
  11066. // for (int k = 0; k < dst->ne[1]; ++k) {
  11067. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11068. // for (int i = 0; i < 16; ++i) {
  11069. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11070. // }
  11071. // printf("\n");
  11072. // }
  11073. // printf("\n");
  11074. // }
  11075. // printf("\n");
  11076. // exit(0);
  11077. //}
  11078. }
  11079. // ggml_compute_forward_diag
  11080. static void ggml_compute_forward_diag_f32(
  11081. const struct ggml_compute_params * params,
  11082. struct ggml_tensor * dst) {
  11083. const struct ggml_tensor * src0 = dst->src[0];
  11084. GGML_ASSERT(params->ith == 0);
  11085. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11086. return;
  11087. }
  11088. // TODO: handle transposed/permuted matrices
  11089. GGML_TENSOR_UNARY_OP_LOCALS
  11090. GGML_ASSERT(ne00 == ne0);
  11091. GGML_ASSERT(ne00 == ne1);
  11092. GGML_ASSERT(ne01 == 1);
  11093. GGML_ASSERT(ne02 == ne2);
  11094. GGML_ASSERT(ne03 == ne3);
  11095. GGML_ASSERT(nb00 == sizeof(float));
  11096. GGML_ASSERT(nb0 == sizeof(float));
  11097. for (int i3 = 0; i3 < ne3; i3++) {
  11098. for (int i2 = 0; i2 < ne2; i2++) {
  11099. for (int i1 = 0; i1 < ne1; i1++) {
  11100. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11101. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11102. for (int i0 = 0; i0 < i1; i0++) {
  11103. d[i0] = 0;
  11104. }
  11105. d[i1] = s[i1];
  11106. for (int i0 = i1+1; i0 < ne0; i0++) {
  11107. d[i0] = 0;
  11108. }
  11109. }
  11110. }
  11111. }
  11112. }
  11113. static void ggml_compute_forward_diag(
  11114. const struct ggml_compute_params * params,
  11115. struct ggml_tensor * dst) {
  11116. const struct ggml_tensor * src0 = dst->src[0];
  11117. switch (src0->type) {
  11118. case GGML_TYPE_F32:
  11119. {
  11120. ggml_compute_forward_diag_f32(params, dst);
  11121. } break;
  11122. default:
  11123. {
  11124. GGML_ASSERT(false);
  11125. } break;
  11126. }
  11127. }
  11128. // ggml_compute_forward_diag_mask_inf
  11129. static void ggml_compute_forward_diag_mask_f32(
  11130. const struct ggml_compute_params * params,
  11131. struct ggml_tensor * dst,
  11132. const float value) {
  11133. const struct ggml_tensor * src0 = dst->src[0];
  11134. const int ith = params->ith;
  11135. const int nth = params->nth;
  11136. const int n_past = ((int32_t *) dst->op_params)[0];
  11137. const bool inplace = src0->data == dst->data;
  11138. GGML_ASSERT(n_past >= 0);
  11139. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11140. if (ith != 0) {
  11141. return;
  11142. }
  11143. // memcpy needs to be synchronized across threads to avoid race conditions.
  11144. // => do it in INIT phase
  11145. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11146. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11147. memcpy(
  11148. ((char *) dst->data),
  11149. ((char *) src0->data),
  11150. ggml_nbytes(dst));
  11151. }
  11152. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11153. return;
  11154. }
  11155. // TODO: handle transposed/permuted matrices
  11156. const int n = ggml_nrows(src0);
  11157. const int nc = src0->ne[0];
  11158. const int nr = src0->ne[1];
  11159. const int nz = n/nr;
  11160. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11161. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11162. for (int k = 0; k < nz; k++) {
  11163. for (int j = ith; j < nr; j += nth) {
  11164. for (int i = n_past; i < nc; i++) {
  11165. if (i > n_past + j) {
  11166. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11167. }
  11168. }
  11169. }
  11170. }
  11171. }
  11172. static void ggml_compute_forward_diag_mask_inf(
  11173. const struct ggml_compute_params * params,
  11174. struct ggml_tensor * dst) {
  11175. const struct ggml_tensor * src0 = dst->src[0];
  11176. switch (src0->type) {
  11177. case GGML_TYPE_F32:
  11178. {
  11179. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11180. } break;
  11181. default:
  11182. {
  11183. GGML_ASSERT(false);
  11184. } break;
  11185. }
  11186. }
  11187. static void ggml_compute_forward_diag_mask_zero(
  11188. const struct ggml_compute_params * params,
  11189. struct ggml_tensor * dst) {
  11190. const struct ggml_tensor * src0 = dst->src[0];
  11191. switch (src0->type) {
  11192. case GGML_TYPE_F32:
  11193. {
  11194. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11195. } break;
  11196. default:
  11197. {
  11198. GGML_ASSERT(false);
  11199. } break;
  11200. }
  11201. }
  11202. // ggml_compute_forward_soft_max
  11203. static void ggml_compute_forward_soft_max_f32(
  11204. const struct ggml_compute_params * params,
  11205. struct ggml_tensor * dst) {
  11206. const struct ggml_tensor * src0 = dst->src[0];
  11207. const struct ggml_tensor * src1 = dst->src[1];
  11208. assert(ggml_is_contiguous(dst));
  11209. assert(ggml_are_same_shape(src0, dst));
  11210. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11211. return;
  11212. }
  11213. float scale = 1.0f;
  11214. float max_bias = 0.0f;
  11215. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11216. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11217. // TODO: handle transposed/permuted matrices
  11218. const int ith = params->ith;
  11219. const int nth = params->nth;
  11220. GGML_TENSOR_UNARY_OP_LOCALS
  11221. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11222. // TODO: is this supposed to be ceil instead of floor?
  11223. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11224. const uint32_t n_head = ne02;
  11225. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11226. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11227. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11228. const int nc = src0->ne[0];
  11229. const int nr = ggml_nrows(src0);
  11230. // rows per thread
  11231. const int dr = (nr + nth - 1)/nth;
  11232. // row range for this thread
  11233. const int ir0 = dr*ith;
  11234. const int ir1 = MIN(ir0 + dr, nr);
  11235. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11236. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11237. for (int i1 = ir0; i1 < ir1; i1++) {
  11238. // ALiBi
  11239. const uint32_t h = (i1/ne01)%ne02; // head
  11240. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11241. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11242. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11243. // broadcast the mask across rows
  11244. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11245. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11246. ggml_vec_cpy_f32 (nc, wp, sp);
  11247. ggml_vec_scale_f32(nc, wp, scale);
  11248. if (mp_f32) {
  11249. if (use_f16) {
  11250. for (int i = 0; i < nc; ++i) {
  11251. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11252. }
  11253. } else {
  11254. for (int i = 0; i < nc; ++i) {
  11255. wp[i] += slope*mp_f32[i];
  11256. }
  11257. }
  11258. }
  11259. #ifndef NDEBUG
  11260. for (int i = 0; i < nc; ++i) {
  11261. //printf("p[%d] = %f\n", i, p[i]);
  11262. assert(!isnan(wp[i]));
  11263. }
  11264. #endif
  11265. float max = -INFINITY;
  11266. ggml_vec_max_f32(nc, &max, wp);
  11267. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11268. assert(sum > 0.0);
  11269. sum = 1.0/sum;
  11270. ggml_vec_scale_f32(nc, dp, sum);
  11271. #ifndef NDEBUG
  11272. for (int i = 0; i < nc; ++i) {
  11273. assert(!isnan(dp[i]));
  11274. assert(!isinf(dp[i]));
  11275. }
  11276. #endif
  11277. }
  11278. }
  11279. static void ggml_compute_forward_soft_max(
  11280. const struct ggml_compute_params * params,
  11281. struct ggml_tensor * dst) {
  11282. const struct ggml_tensor * src0 = dst->src[0];
  11283. switch (src0->type) {
  11284. case GGML_TYPE_F32:
  11285. {
  11286. ggml_compute_forward_soft_max_f32(params, dst);
  11287. } break;
  11288. default:
  11289. {
  11290. GGML_ASSERT(false);
  11291. } break;
  11292. }
  11293. }
  11294. // ggml_compute_forward_soft_max_back
  11295. static void ggml_compute_forward_soft_max_back_f32(
  11296. const struct ggml_compute_params * params,
  11297. struct ggml_tensor * dst) {
  11298. const struct ggml_tensor * src0 = dst->src[0];
  11299. const struct ggml_tensor * src1 = dst->src[1];
  11300. GGML_ASSERT(ggml_is_contiguous(src0));
  11301. GGML_ASSERT(ggml_is_contiguous(src1));
  11302. GGML_ASSERT(ggml_is_contiguous(dst));
  11303. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11304. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11305. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11306. return;
  11307. }
  11308. // TODO: handle transposed/permuted matrices
  11309. const int ith = params->ith;
  11310. const int nth = params->nth;
  11311. const int nc = src0->ne[0];
  11312. const int nr = ggml_nrows(src0);
  11313. // rows per thread
  11314. const int dr = (nr + nth - 1)/nth;
  11315. // row range for this thread
  11316. const int ir0 = dr*ith;
  11317. const int ir1 = MIN(ir0 + dr, nr);
  11318. for (int i1 = ir0; i1 < ir1; i1++) {
  11319. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11320. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11321. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11322. #ifndef NDEBUG
  11323. for (int i = 0; i < nc; ++i) {
  11324. //printf("p[%d] = %f\n", i, p[i]);
  11325. assert(!isnan(dy[i]));
  11326. assert(!isnan(y[i]));
  11327. }
  11328. #endif
  11329. // Jii = yi - yi*yi
  11330. // Jij = -yi*yj
  11331. // J = diag(y)-y.T*y
  11332. // dx = J * dy
  11333. // dxk = sum_i(Jki * dyi)
  11334. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11335. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11336. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11337. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11338. // dxk = -yk * dot(y, dy) + yk*dyk
  11339. // dxk = yk * (- dot(y, dy) + dyk)
  11340. // dxk = yk * (dyk - dot(y, dy))
  11341. //
  11342. // post-order:
  11343. // dot_y_dy := dot(y, dy)
  11344. // dx := dy
  11345. // dx := dx - dot_y_dy
  11346. // dx := dx * y
  11347. // linear runtime, no additional memory
  11348. float dot_y_dy = 0;
  11349. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11350. ggml_vec_cpy_f32 (nc, dx, dy);
  11351. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11352. ggml_vec_mul_f32 (nc, dx, dx, y);
  11353. #ifndef NDEBUG
  11354. for (int i = 0; i < nc; ++i) {
  11355. assert(!isnan(dx[i]));
  11356. assert(!isinf(dx[i]));
  11357. }
  11358. #endif
  11359. }
  11360. }
  11361. static void ggml_compute_forward_soft_max_back(
  11362. const struct ggml_compute_params * params,
  11363. struct ggml_tensor * dst) {
  11364. const struct ggml_tensor * src0 = dst->src[0];
  11365. switch (src0->type) {
  11366. case GGML_TYPE_F32:
  11367. {
  11368. ggml_compute_forward_soft_max_back_f32(params, dst);
  11369. } break;
  11370. default:
  11371. {
  11372. GGML_ASSERT(false);
  11373. } break;
  11374. }
  11375. }
  11376. // ggml_compute_forward_clamp
  11377. static void ggml_compute_forward_clamp_f32(
  11378. const struct ggml_compute_params * params,
  11379. struct ggml_tensor * dst) {
  11380. const struct ggml_tensor * src0 = dst->src[0];
  11381. assert(params->ith == 0);
  11382. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11383. return;
  11384. }
  11385. float min;
  11386. float max;
  11387. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11388. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11389. const int ith = params->ith;
  11390. const int nth = params->nth;
  11391. const int n = ggml_nrows(src0);
  11392. const int nc = src0->ne[0];
  11393. const size_t nb00 = src0->nb[0];
  11394. const size_t nb01 = src0->nb[1];
  11395. const size_t nb0 = dst->nb[0];
  11396. const size_t nb1 = dst->nb[1];
  11397. GGML_ASSERT( nb0 == sizeof(float));
  11398. GGML_ASSERT(nb00 == sizeof(float));
  11399. for (int j = ith; j < n; j += nth) {
  11400. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11401. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11402. for (int i = 0; i < nc; i++) {
  11403. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11404. }
  11405. }
  11406. }
  11407. static void ggml_compute_forward_clamp(
  11408. const struct ggml_compute_params * params,
  11409. struct ggml_tensor * dst) {
  11410. const struct ggml_tensor * src0 = dst->src[0];
  11411. switch (src0->type) {
  11412. case GGML_TYPE_F32:
  11413. {
  11414. ggml_compute_forward_clamp_f32(params, dst);
  11415. } break;
  11416. case GGML_TYPE_F16:
  11417. case GGML_TYPE_BF16:
  11418. case GGML_TYPE_Q4_0:
  11419. case GGML_TYPE_Q4_1:
  11420. case GGML_TYPE_Q5_0:
  11421. case GGML_TYPE_Q5_1:
  11422. case GGML_TYPE_Q8_0:
  11423. case GGML_TYPE_Q8_1:
  11424. case GGML_TYPE_Q2_K:
  11425. case GGML_TYPE_Q3_K:
  11426. case GGML_TYPE_Q4_K:
  11427. case GGML_TYPE_Q5_K:
  11428. case GGML_TYPE_Q6_K:
  11429. case GGML_TYPE_IQ2_XXS:
  11430. case GGML_TYPE_IQ2_XS:
  11431. case GGML_TYPE_IQ3_XXS:
  11432. case GGML_TYPE_IQ1_S:
  11433. case GGML_TYPE_IQ1_M:
  11434. case GGML_TYPE_IQ4_NL:
  11435. case GGML_TYPE_IQ4_XS:
  11436. case GGML_TYPE_IQ3_S:
  11437. case GGML_TYPE_IQ2_S:
  11438. case GGML_TYPE_Q8_K:
  11439. case GGML_TYPE_I8:
  11440. case GGML_TYPE_I16:
  11441. case GGML_TYPE_I32:
  11442. case GGML_TYPE_I64:
  11443. case GGML_TYPE_F64:
  11444. case GGML_TYPE_COUNT:
  11445. {
  11446. GGML_ASSERT(false);
  11447. } break;
  11448. }
  11449. }
  11450. // ggml_compute_forward_rope
  11451. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11452. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11453. return 1 - MIN(1, MAX(0, y));
  11454. }
  11455. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11456. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11457. static void rope_yarn(
  11458. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11459. float * cos_theta, float * sin_theta) {
  11460. // Get n-d rotational scaling corrected for extrapolation
  11461. float theta_interp = freq_scale * theta_extrap;
  11462. float theta = theta_interp;
  11463. if (ext_factor != 0.0f) {
  11464. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11465. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11466. // Get n-d magnitude scaling corrected for interpolation
  11467. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11468. }
  11469. *cos_theta = cosf(theta) * mscale;
  11470. *sin_theta = sinf(theta) * mscale;
  11471. }
  11472. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11473. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11474. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11475. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11476. }
  11477. static void ggml_rope_cache_init(
  11478. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11479. float * cache, float sin_sign, float theta_scale) {
  11480. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11481. float theta = theta_base;
  11482. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11483. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11484. rope_yarn(
  11485. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11486. );
  11487. cache[i0 + 1] *= sin_sign;
  11488. theta *= theta_scale;
  11489. }
  11490. }
  11491. GGML_CALL void ggml_rope_yarn_corr_dims(
  11492. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11493. ) {
  11494. // start and end correction dims
  11495. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11496. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11497. dims[0] = MAX(0, start);
  11498. dims[1] = MIN(n_dims - 1, end);
  11499. }
  11500. static void ggml_compute_forward_rope_f32(
  11501. const struct ggml_compute_params * params,
  11502. struct ggml_tensor * dst,
  11503. const bool forward) {
  11504. const struct ggml_tensor * src0 = dst->src[0];
  11505. const struct ggml_tensor * src1 = dst->src[1];
  11506. const struct ggml_tensor * src2 = dst->src[2];
  11507. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11508. return;
  11509. }
  11510. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11511. //const int n_past = ((int32_t *) dst->op_params)[0];
  11512. const int n_dims = ((int32_t *) dst->op_params)[1];
  11513. const int mode = ((int32_t *) dst->op_params)[2];
  11514. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11515. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11516. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11517. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11518. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11519. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11520. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11521. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11522. GGML_TENSOR_UNARY_OP_LOCALS
  11523. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11524. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11525. GGML_ASSERT(nb00 == sizeof(float));
  11526. const int ith = params->ith;
  11527. const int nth = params->nth;
  11528. const int nr = ggml_nrows(dst);
  11529. GGML_ASSERT(n_dims <= ne0);
  11530. GGML_ASSERT(n_dims % 2 == 0);
  11531. // rows per thread
  11532. const int dr = (nr + nth - 1)/nth;
  11533. // row range for this thread
  11534. const int ir0 = dr*ith;
  11535. const int ir1 = MIN(ir0 + dr, nr);
  11536. // row index used to determine which thread to use
  11537. int ir = 0;
  11538. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11539. float corr_dims[2];
  11540. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11541. const bool is_neox = mode & 2;
  11542. const float * freq_factors = NULL;
  11543. if (src2 != NULL) {
  11544. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11545. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11546. freq_factors = (const float *) src2->data;
  11547. }
  11548. // backward process uses inverse rotation by cos and sin.
  11549. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11550. // this essentially just switches the sign of sin.
  11551. const float sin_sign = forward ? 1.0f : -1.0f;
  11552. const int32_t * pos = (const int32_t *) src1->data;
  11553. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11554. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11555. const int64_t p = pos[i2];
  11556. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11557. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11558. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11559. if (ir++ < ir0) continue;
  11560. if (ir > ir1) break;
  11561. if (!is_neox) {
  11562. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11563. const float cos_theta = cache[i0 + 0];
  11564. const float sin_theta = cache[i0 + 1];
  11565. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11566. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11567. const float x0 = src[0];
  11568. const float x1 = src[1];
  11569. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11570. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11571. }
  11572. } else {
  11573. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11574. const int64_t ic = i0/2;
  11575. const float cos_theta = cache[i0 + 0];
  11576. const float sin_theta = cache[i0 + 1];
  11577. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11578. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11579. const float x0 = src[0];
  11580. const float x1 = src[n_dims/2];
  11581. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11582. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11583. }
  11584. }
  11585. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11586. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11587. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11588. dst_data[0] = src[0];
  11589. dst_data[1] = src[1];
  11590. }
  11591. }
  11592. }
  11593. }
  11594. }
  11595. // TODO: deduplicate f16/f32 code
  11596. static void ggml_compute_forward_rope_f16(
  11597. const struct ggml_compute_params * params,
  11598. struct ggml_tensor * dst,
  11599. const bool forward) {
  11600. const struct ggml_tensor * src0 = dst->src[0];
  11601. const struct ggml_tensor * src1 = dst->src[1];
  11602. const struct ggml_tensor * src2 = dst->src[2];
  11603. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11604. return;
  11605. }
  11606. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11607. //const int n_past = ((int32_t *) dst->op_params)[0];
  11608. const int n_dims = ((int32_t *) dst->op_params)[1];
  11609. const int mode = ((int32_t *) dst->op_params)[2];
  11610. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11611. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11612. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11613. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11614. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11615. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11616. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11617. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11618. GGML_TENSOR_UNARY_OP_LOCALS
  11619. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11620. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11621. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11622. const int ith = params->ith;
  11623. const int nth = params->nth;
  11624. const int nr = ggml_nrows(dst);
  11625. GGML_ASSERT(n_dims <= ne0);
  11626. GGML_ASSERT(n_dims % 2 == 0);
  11627. // rows per thread
  11628. const int dr = (nr + nth - 1)/nth;
  11629. // row range for this thread
  11630. const int ir0 = dr*ith;
  11631. const int ir1 = MIN(ir0 + dr, nr);
  11632. // row index used to determine which thread to use
  11633. int ir = 0;
  11634. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11635. float corr_dims[2];
  11636. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11637. const bool is_neox = mode & 2;
  11638. const float * freq_factors = NULL;
  11639. if (src2 != NULL) {
  11640. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11641. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11642. freq_factors = (const float *) src2->data;
  11643. }
  11644. // backward process uses inverse rotation by cos and sin.
  11645. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11646. // this essentially just switches the sign of sin.
  11647. const float sin_sign = forward ? 1.0f : -1.0f;
  11648. const int32_t * pos = (const int32_t *) src1->data;
  11649. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11650. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11651. const int64_t p = pos[i2];
  11652. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11653. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11654. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11655. if (ir++ < ir0) continue;
  11656. if (ir > ir1) break;
  11657. if (!is_neox) {
  11658. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11659. const float cos_theta = cache[i0 + 0];
  11660. const float sin_theta = cache[i0 + 1];
  11661. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11662. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11663. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11664. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11665. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11666. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11667. }
  11668. } else {
  11669. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11670. const int64_t ic = i0/2;
  11671. const float cos_theta = cache[i0 + 0];
  11672. const float sin_theta = cache[i0 + 1];
  11673. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11674. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11675. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11676. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11677. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11678. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11679. }
  11680. }
  11681. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11682. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11683. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11684. dst_data[0] = src[0];
  11685. dst_data[1] = src[1];
  11686. }
  11687. }
  11688. }
  11689. }
  11690. }
  11691. static void ggml_compute_forward_rope(
  11692. const struct ggml_compute_params * params,
  11693. struct ggml_tensor * dst) {
  11694. const struct ggml_tensor * src0 = dst->src[0];
  11695. switch (src0->type) {
  11696. case GGML_TYPE_F16:
  11697. {
  11698. ggml_compute_forward_rope_f16(params, dst, true);
  11699. } break;
  11700. case GGML_TYPE_F32:
  11701. {
  11702. ggml_compute_forward_rope_f32(params, dst, true);
  11703. } break;
  11704. default:
  11705. {
  11706. GGML_ASSERT(false);
  11707. } break;
  11708. }
  11709. }
  11710. // ggml_compute_forward_rope_back
  11711. static void ggml_compute_forward_rope_back(
  11712. const struct ggml_compute_params * params,
  11713. struct ggml_tensor * dst) {
  11714. const struct ggml_tensor * src0 = dst->src[0];
  11715. switch (src0->type) {
  11716. case GGML_TYPE_F16:
  11717. {
  11718. ggml_compute_forward_rope_f16(params, dst, false);
  11719. } break;
  11720. case GGML_TYPE_F32:
  11721. {
  11722. ggml_compute_forward_rope_f32(params, dst, false);
  11723. } break;
  11724. default:
  11725. {
  11726. GGML_ASSERT(false);
  11727. } break;
  11728. }
  11729. }
  11730. // ggml_compute_forward_conv_transpose_1d
  11731. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11732. const struct ggml_compute_params * params,
  11733. struct ggml_tensor * dst) {
  11734. const struct ggml_tensor * src0 = dst->src[0];
  11735. const struct ggml_tensor * src1 = dst->src[1];
  11736. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11737. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11738. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11739. int64_t t0 = ggml_perf_time_us();
  11740. UNUSED(t0);
  11741. GGML_TENSOR_BINARY_OP_LOCALS
  11742. const int ith = params->ith;
  11743. const int nth = params->nth;
  11744. const int nk = ne00*ne01*ne02;
  11745. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11746. GGML_ASSERT(nb10 == sizeof(float));
  11747. if (params->type == GGML_TASK_TYPE_INIT) {
  11748. if (ith != 0) {
  11749. return;
  11750. }
  11751. memset(params->wdata, 0, params->wsize);
  11752. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11753. {
  11754. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11755. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11756. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11757. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11758. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11759. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11760. dst_data[i00*ne02 + i02] = src[i00];
  11761. }
  11762. }
  11763. }
  11764. }
  11765. // permute source data (src1) from (L x Cin) to (Cin x L)
  11766. {
  11767. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11768. ggml_fp16_t * dst_data = wdata;
  11769. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11770. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11771. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11772. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11773. }
  11774. }
  11775. }
  11776. // need to zero dst since we are accumulating into it
  11777. memset(dst->data, 0, ggml_nbytes(dst));
  11778. return;
  11779. }
  11780. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11781. return;
  11782. }
  11783. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11784. // total rows in dst
  11785. const int nr = ne1;
  11786. // rows per thread
  11787. const int dr = (nr + nth - 1)/nth;
  11788. // row range for this thread
  11789. const int ir0 = dr*ith;
  11790. const int ir1 = MIN(ir0 + dr, nr);
  11791. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11792. ggml_fp16_t * const wdata_src = wdata + nk;
  11793. for (int i1 = ir0; i1 < ir1; i1++) {
  11794. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11795. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11796. for (int i10 = 0; i10 < ne10; i10++) {
  11797. const int i1n = i10*ne11;
  11798. for (int i00 = 0; i00 < ne00; i00++) {
  11799. float v = 0;
  11800. ggml_vec_dot_f16(ne02, &v, 0,
  11801. (ggml_fp16_t *) wdata_src + i1n, 0,
  11802. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11803. dst_data[i10*s0 + i00] += v;
  11804. }
  11805. }
  11806. }
  11807. }
  11808. static void ggml_compute_forward_conv_transpose_1d_f32(
  11809. const struct ggml_compute_params * params,
  11810. struct ggml_tensor * dst) {
  11811. const struct ggml_tensor * src0 = dst->src[0];
  11812. const struct ggml_tensor * src1 = dst->src[1];
  11813. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11814. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11815. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11816. int64_t t0 = ggml_perf_time_us();
  11817. UNUSED(t0);
  11818. GGML_TENSOR_BINARY_OP_LOCALS
  11819. const int ith = params->ith;
  11820. const int nth = params->nth;
  11821. const int nk = ne00*ne01*ne02;
  11822. GGML_ASSERT(nb00 == sizeof(float));
  11823. GGML_ASSERT(nb10 == sizeof(float));
  11824. if (params->type == GGML_TASK_TYPE_INIT) {
  11825. if (ith != 0) {
  11826. return;
  11827. }
  11828. memset(params->wdata, 0, params->wsize);
  11829. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11830. {
  11831. float * const wdata = (float *) params->wdata + 0;
  11832. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11833. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11834. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11835. float * dst_data = wdata + i01*ne00*ne02;
  11836. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11837. dst_data[i00*ne02 + i02] = src[i00];
  11838. }
  11839. }
  11840. }
  11841. }
  11842. // prepare source data (src1)
  11843. {
  11844. float * const wdata = (float *) params->wdata + nk;
  11845. float * dst_data = wdata;
  11846. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11847. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11848. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11849. dst_data[i10*ne11 + i11] = src[i10];
  11850. }
  11851. }
  11852. }
  11853. // need to zero dst since we are accumulating into it
  11854. memset(dst->data, 0, ggml_nbytes(dst));
  11855. return;
  11856. }
  11857. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11858. return;
  11859. }
  11860. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11861. // total rows in dst
  11862. const int nr = ne1;
  11863. // rows per thread
  11864. const int dr = (nr + nth - 1)/nth;
  11865. // row range for this thread
  11866. const int ir0 = dr*ith;
  11867. const int ir1 = MIN(ir0 + dr, nr);
  11868. float * const wdata = (float *) params->wdata + 0;
  11869. float * const wdata_src = wdata + nk;
  11870. for (int i1 = ir0; i1 < ir1; i1++) {
  11871. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11872. float * wdata_kernel = wdata + i1*ne02*ne00;
  11873. for (int i10 = 0; i10 < ne10; i10++) {
  11874. const int i1n = i10*ne11;
  11875. for (int i00 = 0; i00 < ne00; i00++) {
  11876. float v = 0;
  11877. ggml_vec_dot_f32(ne02, &v, 0,
  11878. wdata_src + i1n, 0,
  11879. wdata_kernel + i00*ne02, 0, 1);
  11880. dst_data[i10*s0 + i00] += v;
  11881. }
  11882. }
  11883. }
  11884. }
  11885. static void ggml_compute_forward_conv_transpose_1d(
  11886. const struct ggml_compute_params * params,
  11887. struct ggml_tensor * dst) {
  11888. const struct ggml_tensor * src0 = dst->src[0];
  11889. switch (src0->type) {
  11890. case GGML_TYPE_F16:
  11891. {
  11892. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11893. } break;
  11894. case GGML_TYPE_F32:
  11895. {
  11896. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11897. } break;
  11898. default:
  11899. {
  11900. GGML_ASSERT(false);
  11901. } break;
  11902. }
  11903. }
  11904. // src0: kernel [OC, IC, KH, KW]
  11905. // src1: image [N, IC, IH, IW]
  11906. // dst: result [N, OH, OW, IC*KH*KW]
  11907. static void ggml_compute_forward_im2col_f32(
  11908. const struct ggml_compute_params * params,
  11909. struct ggml_tensor * dst) {
  11910. const struct ggml_tensor * src0 = dst->src[0];
  11911. const struct ggml_tensor * src1 = dst->src[1];
  11912. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11913. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11914. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11915. int64_t t0 = ggml_perf_time_us();
  11916. UNUSED(t0);
  11917. GGML_TENSOR_BINARY_OP_LOCALS;
  11918. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11919. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11920. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11921. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11922. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11923. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11924. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11925. const int ith = params->ith;
  11926. const int nth = params->nth;
  11927. const int64_t N = is_2D ? ne13 : ne12;
  11928. const int64_t IC = is_2D ? ne12 : ne11;
  11929. const int64_t IH = is_2D ? ne11 : 1;
  11930. const int64_t IW = ne10;
  11931. const int64_t KH = is_2D ? ne01 : 1;
  11932. const int64_t KW = ne00;
  11933. const int64_t OH = is_2D ? ne2 : 1;
  11934. const int64_t OW = ne1;
  11935. int ofs0 = is_2D ? nb13 : nb12;
  11936. int ofs1 = is_2D ? nb12 : nb11;
  11937. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11938. GGML_ASSERT(nb10 == sizeof(float));
  11939. if (params->type == GGML_TASK_TYPE_INIT) {
  11940. return;
  11941. }
  11942. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11943. return;
  11944. }
  11945. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11946. {
  11947. float * const wdata = (float *) dst->data;
  11948. for (int64_t in = 0; in < N; in++) {
  11949. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11950. for (int64_t iow = 0; iow < OW; iow++) {
  11951. for (int64_t iic = ith; iic < IC; iic += nth) {
  11952. // micro kernel
  11953. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11954. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11955. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11956. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11957. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11958. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11959. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11960. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11961. } else {
  11962. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11963. }
  11964. }
  11965. }
  11966. }
  11967. }
  11968. }
  11969. }
  11970. }
  11971. }
  11972. // src0: kernel [OC, IC, KH, KW]
  11973. // src1: image [N, IC, IH, IW]
  11974. // dst: result [N, OH, OW, IC*KH*KW]
  11975. static void ggml_compute_forward_im2col_f16(
  11976. const struct ggml_compute_params * params,
  11977. struct ggml_tensor * dst) {
  11978. const struct ggml_tensor * src0 = dst->src[0];
  11979. const struct ggml_tensor * src1 = dst->src[1];
  11980. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11981. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11982. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11983. int64_t t0 = ggml_perf_time_us();
  11984. UNUSED(t0);
  11985. GGML_TENSOR_BINARY_OP_LOCALS;
  11986. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11987. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11988. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11989. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11990. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11991. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11992. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11993. const int ith = params->ith;
  11994. const int nth = params->nth;
  11995. const int64_t N = is_2D ? ne13 : ne12;
  11996. const int64_t IC = is_2D ? ne12 : ne11;
  11997. const int64_t IH = is_2D ? ne11 : 1;
  11998. const int64_t IW = ne10;
  11999. const int64_t KH = is_2D ? ne01 : 1;
  12000. const int64_t KW = ne00;
  12001. const int64_t OH = is_2D ? ne2 : 1;
  12002. const int64_t OW = ne1;
  12003. int ofs0 = is_2D ? nb13 : nb12;
  12004. int ofs1 = is_2D ? nb12 : nb11;
  12005. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12006. GGML_ASSERT(nb10 == sizeof(float));
  12007. if (params->type == GGML_TASK_TYPE_INIT) {
  12008. return;
  12009. }
  12010. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12011. return;
  12012. }
  12013. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12014. {
  12015. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12016. for (int64_t in = 0; in < N; in++) {
  12017. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12018. for (int64_t iow = 0; iow < OW; iow++) {
  12019. for (int64_t iic = ith; iic < IC; iic += nth) {
  12020. // micro kernel
  12021. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12022. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12023. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12024. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12025. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12026. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12027. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12028. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12029. } else {
  12030. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12031. }
  12032. }
  12033. }
  12034. }
  12035. }
  12036. }
  12037. }
  12038. }
  12039. }
  12040. static void ggml_compute_forward_im2col(
  12041. const struct ggml_compute_params * params,
  12042. struct ggml_tensor * dst) {
  12043. switch (dst->type) {
  12044. case GGML_TYPE_F16:
  12045. {
  12046. ggml_compute_forward_im2col_f16(params, dst);
  12047. } break;
  12048. case GGML_TYPE_F32:
  12049. {
  12050. ggml_compute_forward_im2col_f32(params, dst);
  12051. } break;
  12052. default:
  12053. {
  12054. GGML_ASSERT(false);
  12055. } break;
  12056. }
  12057. }
  12058. // ggml_compute_forward_conv_transpose_2d
  12059. static void ggml_compute_forward_conv_transpose_2d(
  12060. const struct ggml_compute_params * params,
  12061. struct ggml_tensor * dst) {
  12062. const struct ggml_tensor * src0 = dst->src[0];
  12063. const struct ggml_tensor * src1 = dst->src[1];
  12064. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12065. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12066. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12067. int64_t t0 = ggml_perf_time_us();
  12068. UNUSED(t0);
  12069. GGML_TENSOR_BINARY_OP_LOCALS
  12070. const int ith = params->ith;
  12071. const int nth = params->nth;
  12072. const int nk = ne00*ne01*ne02*ne03;
  12073. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12074. GGML_ASSERT(nb10 == sizeof(float));
  12075. if (params->type == GGML_TASK_TYPE_INIT) {
  12076. if (ith != 0) {
  12077. return;
  12078. }
  12079. memset(params->wdata, 0, params->wsize);
  12080. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12081. {
  12082. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12083. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12084. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12085. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12086. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12087. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12088. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12089. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12090. }
  12091. }
  12092. }
  12093. }
  12094. }
  12095. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12096. {
  12097. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12098. for (int i12 = 0; i12 < ne12; i12++) {
  12099. for (int i11 = 0; i11 < ne11; i11++) {
  12100. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12101. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12102. for (int i10 = 0; i10 < ne10; i10++) {
  12103. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12104. }
  12105. }
  12106. }
  12107. }
  12108. memset(dst->data, 0, ggml_nbytes(dst));
  12109. return;
  12110. }
  12111. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12112. return;
  12113. }
  12114. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12115. // total patches in dst
  12116. const int np = ne2;
  12117. // patches per thread
  12118. const int dp = (np + nth - 1)/nth;
  12119. // patch range for this thread
  12120. const int ip0 = dp*ith;
  12121. const int ip1 = MIN(ip0 + dp, np);
  12122. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12123. ggml_fp16_t * const wdata_src = wdata + nk;
  12124. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12125. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12126. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12127. for (int i11 = 0; i11 < ne11; i11++) {
  12128. for (int i10 = 0; i10 < ne10; i10++) {
  12129. const int i1n = i11*ne10*ne12 + i10*ne12;
  12130. for (int i01 = 0; i01 < ne01; i01++) {
  12131. for (int i00 = 0; i00 < ne00; i00++) {
  12132. float v = 0;
  12133. ggml_vec_dot_f16(ne03, &v, 0,
  12134. wdata_src + i1n, 0,
  12135. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12136. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12137. }
  12138. }
  12139. }
  12140. }
  12141. }
  12142. }
  12143. // ggml_compute_forward_pool_1d_sk_p0
  12144. static void ggml_compute_forward_pool_1d_sk_p0(
  12145. const struct ggml_compute_params * params,
  12146. const enum ggml_op_pool op,
  12147. const int k,
  12148. struct ggml_tensor * dst) {
  12149. const struct ggml_tensor * src = dst->src[0];
  12150. assert(src->type == GGML_TYPE_F32);
  12151. assert(params->ith == 0);
  12152. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12153. return;
  12154. }
  12155. const char * cdata = (const char *)src->data;
  12156. const char * const data_end = cdata + ggml_nbytes(src);
  12157. float * drow = (float *)dst->data;
  12158. const int64_t rs = dst->ne[0];
  12159. while (cdata < data_end) {
  12160. const float * const srow = (const float *)cdata;
  12161. int j = 0;
  12162. for (int64_t i = 0; i < rs; ++i) {
  12163. switch (op) {
  12164. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12165. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12166. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12167. }
  12168. for (int ki = 0; ki < k; ++ki) {
  12169. switch (op) {
  12170. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12171. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12172. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12173. }
  12174. ++j;
  12175. }
  12176. switch (op) {
  12177. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12178. case GGML_OP_POOL_MAX: break;
  12179. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12180. }
  12181. }
  12182. cdata += src->nb[1];
  12183. drow += rs;
  12184. }
  12185. }
  12186. // ggml_compute_forward_pool_1d
  12187. static void ggml_compute_forward_pool_1d(
  12188. const struct ggml_compute_params * params,
  12189. struct ggml_tensor * dst) {
  12190. const int32_t * opts = (const int32_t *)dst->op_params;
  12191. enum ggml_op_pool op = opts[0];
  12192. const int k0 = opts[1];
  12193. const int s0 = opts[2];
  12194. const int p0 = opts[3];
  12195. GGML_ASSERT(p0 == 0); // padding not supported
  12196. GGML_ASSERT(k0 == s0); // only s = k supported
  12197. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12198. }
  12199. // ggml_compute_forward_pool_2d
  12200. static void ggml_compute_forward_pool_2d(
  12201. const struct ggml_compute_params * params,
  12202. struct ggml_tensor * dst) {
  12203. const struct ggml_tensor * src = dst->src[0];
  12204. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12205. GGML_ASSERT(params->ith == 0);
  12206. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12207. return;
  12208. }
  12209. const int32_t * opts = (const int32_t *)dst->op_params;
  12210. enum ggml_op_pool op = opts[0];
  12211. const int k0 = opts[1];
  12212. const int k1 = opts[2];
  12213. const int s0 = opts[3];
  12214. const int s1 = opts[4];
  12215. const int p0 = opts[5];
  12216. const int p1 = opts[6];
  12217. const char * cdata = (const char*)src->data;
  12218. const char * const data_end = cdata + ggml_nbytes(src);
  12219. const int64_t px = dst->ne[0];
  12220. const int64_t py = dst->ne[1];
  12221. const int64_t pa = px * py;
  12222. float * dplane = (float *)dst->data;
  12223. const int ka = k0 * k1;
  12224. const int offset0 = -p0;
  12225. const int offset1 = -p1;
  12226. while (cdata < data_end) {
  12227. for (int oy = 0; oy < py; ++oy) {
  12228. float * const drow = dplane + oy * px;
  12229. for (int ox = 0; ox < px; ++ox) {
  12230. float * const out = drow + ox;
  12231. switch (op) {
  12232. case GGML_OP_POOL_AVG: *out = 0; break;
  12233. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12234. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12235. }
  12236. const int ix = offset0 + ox * s0;
  12237. const int iy = offset1 + oy * s1;
  12238. for (int ky = 0; ky < k1; ++ky) {
  12239. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12240. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12241. for (int kx = 0; kx < k0; ++kx) {
  12242. int j = ix + kx;
  12243. if (j < 0 || j >= src->ne[0]) continue;
  12244. switch (op) {
  12245. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12246. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12247. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12248. }
  12249. }
  12250. }
  12251. switch (op) {
  12252. case GGML_OP_POOL_AVG: *out /= ka; break;
  12253. case GGML_OP_POOL_MAX: break;
  12254. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12255. }
  12256. }
  12257. }
  12258. cdata += src->nb[2];
  12259. dplane += pa;
  12260. }
  12261. }
  12262. // ggml_compute_forward_upscale
  12263. static void ggml_compute_forward_upscale_f32(
  12264. const struct ggml_compute_params * params,
  12265. struct ggml_tensor * dst) {
  12266. const struct ggml_tensor * src0 = dst->src[0];
  12267. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12268. return;
  12269. }
  12270. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12271. const int ith = params->ith;
  12272. const int nth = params->nth;
  12273. GGML_TENSOR_UNARY_OP_LOCALS
  12274. const float sf0 = (float)ne0/src0->ne[0];
  12275. const float sf1 = (float)ne1/src0->ne[1];
  12276. const float sf2 = (float)ne2/src0->ne[2];
  12277. const float sf3 = (float)ne3/src0->ne[3];
  12278. // TODO: optimize
  12279. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12280. const int64_t i03 = i3 / sf3;
  12281. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12282. const int64_t i02 = i2 / sf2;
  12283. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12284. const int64_t i01 = i1 / sf1;
  12285. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12286. const int64_t i00 = i0 / sf0;
  12287. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12288. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12289. *y = *x;
  12290. }
  12291. }
  12292. }
  12293. }
  12294. }
  12295. static void ggml_compute_forward_upscale(
  12296. const struct ggml_compute_params * params,
  12297. struct ggml_tensor * dst) {
  12298. const struct ggml_tensor * src0 = dst->src[0];
  12299. switch (src0->type) {
  12300. case GGML_TYPE_F32:
  12301. {
  12302. ggml_compute_forward_upscale_f32(params, dst);
  12303. } break;
  12304. default:
  12305. {
  12306. GGML_ASSERT(false);
  12307. } break;
  12308. }
  12309. }
  12310. // ggml_compute_forward_pad
  12311. static void ggml_compute_forward_pad_f32(
  12312. const struct ggml_compute_params * params,
  12313. struct ggml_tensor * dst) {
  12314. const struct ggml_tensor * src0 = dst->src[0];
  12315. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12316. return;
  12317. }
  12318. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12319. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12320. const int ith = params->ith;
  12321. const int nth = params->nth;
  12322. GGML_TENSOR_UNARY_OP_LOCALS
  12323. float * dst_ptr = (float *) dst->data;
  12324. // TODO: optimize
  12325. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12326. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12327. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12328. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12329. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12330. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12331. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12332. dst_ptr[dst_idx] = *src_ptr;
  12333. } else {
  12334. dst_ptr[dst_idx] = 0;
  12335. }
  12336. }
  12337. }
  12338. }
  12339. }
  12340. }
  12341. static void ggml_compute_forward_pad(
  12342. const struct ggml_compute_params * params,
  12343. struct ggml_tensor * dst) {
  12344. const struct ggml_tensor * src0 = dst->src[0];
  12345. switch (src0->type) {
  12346. case GGML_TYPE_F32:
  12347. {
  12348. ggml_compute_forward_pad_f32(params, dst);
  12349. } break;
  12350. default:
  12351. {
  12352. GGML_ASSERT(false);
  12353. } break;
  12354. }
  12355. }
  12356. // ggml_compute_forward_arange
  12357. static void ggml_compute_forward_arange_f32(
  12358. const struct ggml_compute_params * params,
  12359. struct ggml_tensor * dst) {
  12360. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12361. return;
  12362. }
  12363. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12364. const int ith = params->ith;
  12365. const int nth = params->nth;
  12366. const float start = ggml_get_op_params_f32(dst, 0);
  12367. const float stop = ggml_get_op_params_f32(dst, 1);
  12368. const float step = ggml_get_op_params_f32(dst, 2);
  12369. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12370. GGML_ASSERT(ggml_nelements(dst) == steps);
  12371. for (int64_t i = ith; i < steps; i+= nth) {
  12372. float value = start + step * i;
  12373. ((float *)dst->data)[i] = value;
  12374. }
  12375. }
  12376. static void ggml_compute_forward_arange(
  12377. const struct ggml_compute_params * params,
  12378. struct ggml_tensor * dst) {
  12379. switch (dst->type) {
  12380. case GGML_TYPE_F32:
  12381. {
  12382. ggml_compute_forward_arange_f32(params, dst);
  12383. } break;
  12384. default:
  12385. {
  12386. GGML_ASSERT(false);
  12387. } break;
  12388. }
  12389. }
  12390. static void ggml_compute_forward_timestep_embedding_f32(
  12391. const struct ggml_compute_params * params,
  12392. struct ggml_tensor * dst) {
  12393. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12394. return;
  12395. }
  12396. const struct ggml_tensor * src0 = dst->src[0];
  12397. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12398. const int ith = params->ith;
  12399. const int nth = params->nth;
  12400. GGML_TENSOR_UNARY_OP_LOCALS
  12401. const int dim = ggml_get_op_params_i32(dst, 0);
  12402. const int max_period = ggml_get_op_params_i32(dst, 1);
  12403. int half = dim / 2;
  12404. for (int64_t i = 0; i < ne00; i++) {
  12405. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12406. for (int64_t j = ith; j < half; j += nth) {
  12407. float timestep = ((float *)src0->data)[i];
  12408. float freq = (float)expf(-logf(max_period) * j / half);
  12409. float arg = timestep * freq;
  12410. embed_data[j] = cosf(arg);
  12411. embed_data[j + half] = sinf(arg);
  12412. }
  12413. if (dim % 2 != 0 && ith == 0) {
  12414. embed_data[dim] = 0.f;
  12415. }
  12416. }
  12417. }
  12418. static void ggml_compute_forward_timestep_embedding(
  12419. const struct ggml_compute_params * params,
  12420. struct ggml_tensor * dst) {
  12421. const struct ggml_tensor * src0 = dst->src[0];
  12422. switch (src0->type) {
  12423. case GGML_TYPE_F32:
  12424. {
  12425. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12426. } break;
  12427. default:
  12428. {
  12429. GGML_ASSERT(false);
  12430. } break;
  12431. }
  12432. }
  12433. // ggml_compute_forward_argsort
  12434. static void ggml_compute_forward_argsort_f32(
  12435. const struct ggml_compute_params * params,
  12436. struct ggml_tensor * dst) {
  12437. const struct ggml_tensor * src0 = dst->src[0];
  12438. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12439. return;
  12440. }
  12441. GGML_TENSOR_UNARY_OP_LOCALS
  12442. GGML_ASSERT(nb0 == sizeof(float));
  12443. const int ith = params->ith;
  12444. const int nth = params->nth;
  12445. const int64_t nr = ggml_nrows(src0);
  12446. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12447. for (int64_t i = ith; i < nr; i += nth) {
  12448. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12449. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12450. for (int64_t j = 0; j < ne0; j++) {
  12451. dst_data[j] = j;
  12452. }
  12453. // C doesn't have a functional sort, so we do a bubble sort instead
  12454. for (int64_t j = 0; j < ne0; j++) {
  12455. for (int64_t k = j + 1; k < ne0; k++) {
  12456. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12457. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12458. int32_t tmp = dst_data[j];
  12459. dst_data[j] = dst_data[k];
  12460. dst_data[k] = tmp;
  12461. }
  12462. }
  12463. }
  12464. }
  12465. }
  12466. static void ggml_compute_forward_argsort(
  12467. const struct ggml_compute_params * params,
  12468. struct ggml_tensor * dst) {
  12469. const struct ggml_tensor * src0 = dst->src[0];
  12470. switch (src0->type) {
  12471. case GGML_TYPE_F32:
  12472. {
  12473. ggml_compute_forward_argsort_f32(params, dst);
  12474. } break;
  12475. default:
  12476. {
  12477. GGML_ASSERT(false);
  12478. } break;
  12479. }
  12480. }
  12481. // ggml_compute_forward_flash_attn_ext
  12482. static void ggml_compute_forward_flash_attn_ext_f16(
  12483. const struct ggml_compute_params * params,
  12484. const struct ggml_tensor * q,
  12485. const struct ggml_tensor * k,
  12486. const struct ggml_tensor * v,
  12487. const struct ggml_tensor * mask,
  12488. struct ggml_tensor * dst) {
  12489. int64_t t0 = ggml_perf_time_us();
  12490. UNUSED(t0);
  12491. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12492. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12493. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12494. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12495. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12496. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12497. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12498. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12499. const int ith = params->ith;
  12500. const int nth = params->nth;
  12501. const int64_t D = neq0;
  12502. const int64_t N = neq1;
  12503. GGML_ASSERT(ne0 == D);
  12504. GGML_ASSERT(ne2 == N);
  12505. // input tensor rows must be contiguous
  12506. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12507. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12508. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12509. GGML_ASSERT(neq0 == D);
  12510. GGML_ASSERT(nek0 == D);
  12511. GGML_ASSERT(nev0 == D);
  12512. GGML_ASSERT(neq1 == N);
  12513. GGML_ASSERT(nev0 == D);
  12514. // dst cannot be transposed or permuted
  12515. GGML_ASSERT(nb0 == sizeof(float));
  12516. GGML_ASSERT(nb0 <= nb1);
  12517. GGML_ASSERT(nb1 <= nb2);
  12518. GGML_ASSERT(nb2 <= nb3);
  12519. // broadcast factors
  12520. const int64_t rk2 = neq2/nek2;
  12521. const int64_t rk3 = neq3/nek3;
  12522. const int64_t rv2 = neq2/nev2;
  12523. const int64_t rv3 = neq3/nev3;
  12524. if (params->type == GGML_TASK_TYPE_INIT) {
  12525. return;
  12526. }
  12527. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12528. return;
  12529. }
  12530. // parallelize by q rows using ggml_vec_dot_f32
  12531. // total rows in q
  12532. const int nr = neq1*neq2*neq3;
  12533. // rows per thread
  12534. const int dr = (nr + nth - 1)/nth;
  12535. // row range for this thread
  12536. const int ir0 = dr*ith;
  12537. const int ir1 = MIN(ir0 + dr, nr);
  12538. float scale = 1.0f;
  12539. float max_bias = 0.0f;
  12540. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12541. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12542. const uint32_t n_head = neq2;
  12543. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12544. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12545. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12546. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12547. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12548. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12549. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12550. // loop over n_batch and n_head
  12551. for (int ir = ir0; ir < ir1; ++ir) {
  12552. // q indices
  12553. const int iq3 = ir/(neq2*neq1);
  12554. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12555. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12556. const uint32_t h = iq2; // head index
  12557. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12558. float S = 0.0f; // sum
  12559. float M = -INFINITY; // maximum KQ value
  12560. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12561. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12562. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12563. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12564. if (v->type == GGML_TYPE_F16) {
  12565. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12566. } else {
  12567. memset(VKQ32, 0, D*sizeof(float));
  12568. }
  12569. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12570. // k indices
  12571. const int ik3 = iq3 / rk3;
  12572. const int ik2 = iq2 / rk2;
  12573. // v indices
  12574. const int iv3 = iq3 / rv3;
  12575. const int iv2 = iq2 / rv2;
  12576. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12577. q_to_vec_dot(pq, Q_q, D);
  12578. // online softmax / attention
  12579. // loop over n_kv and n_head_kv
  12580. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12581. for (int64_t ic = 0; ic < nek1; ++ic) {
  12582. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12583. if (mv == -INFINITY) {
  12584. continue;
  12585. }
  12586. float s; // KQ value
  12587. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12588. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12589. s = s*scale + mv; // scale KQ value and apply mask
  12590. const float Mold = M;
  12591. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12592. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12593. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12594. if (v->type== GGML_TYPE_F16) {
  12595. if (s > M) {
  12596. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12597. M = s;
  12598. ms = expf(Mold - M);
  12599. // V = V*expf(Mold - M)
  12600. ggml_vec_scale_f16(D, VKQ16, ms);
  12601. } else {
  12602. // no new maximum, ms == 1.0f, vs != 1.0f
  12603. vs = expf(s - M);
  12604. }
  12605. // V += v*expf(s - M)
  12606. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12607. } else {
  12608. if (s > M) {
  12609. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12610. M = s;
  12611. ms = expf(Mold - M);
  12612. // V = V*expf(Mold - M)
  12613. ggml_vec_scale_f32(D, VKQ32, ms);
  12614. } else {
  12615. // no new maximum, ms == 1.0f, vs != 1.0f
  12616. vs = expf(s - M);
  12617. }
  12618. v_to_float(v_data, V32, D);
  12619. // V += v*expf(s - M)
  12620. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12621. }
  12622. S = S*ms + vs; // scale and increment sum with partial sum
  12623. }
  12624. if (v->type == GGML_TYPE_F16) {
  12625. for (int64_t d = 0; d < D; ++d) {
  12626. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12627. }
  12628. }
  12629. // V /= S
  12630. const float S_inv = 1.0f/S;
  12631. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12632. // dst indices
  12633. const int i1 = iq1;
  12634. const int i2 = iq2;
  12635. const int i3 = iq3;
  12636. // original
  12637. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12638. // permute(0, 2, 1, 3)
  12639. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12640. }
  12641. }
  12642. static void ggml_compute_forward_flash_attn_ext(
  12643. const struct ggml_compute_params * params,
  12644. const struct ggml_tensor * q,
  12645. const struct ggml_tensor * k,
  12646. const struct ggml_tensor * v,
  12647. const struct ggml_tensor * mask,
  12648. struct ggml_tensor * dst) {
  12649. switch (dst->op_params[2]) {
  12650. case GGML_PREC_DEFAULT:
  12651. case GGML_PREC_F32:
  12652. {
  12653. // uses F32 accumulators
  12654. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12655. } break;
  12656. default:
  12657. {
  12658. GGML_ASSERT(false);
  12659. } break;
  12660. }
  12661. }
  12662. // ggml_compute_forward_flash_attn_back
  12663. static void ggml_compute_forward_flash_attn_back_f32(
  12664. const struct ggml_compute_params * params,
  12665. const bool masked,
  12666. struct ggml_tensor * dst) {
  12667. const struct ggml_tensor * q = dst->src[0];
  12668. const struct ggml_tensor * k = dst->src[1];
  12669. const struct ggml_tensor * v = dst->src[2];
  12670. const struct ggml_tensor * d = dst->src[3];
  12671. int64_t t0 = ggml_perf_time_us();
  12672. UNUSED(t0);
  12673. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12674. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12675. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12676. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12677. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12678. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12679. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12680. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12681. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12682. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12683. const int ith = params->ith;
  12684. const int nth = params->nth;
  12685. const int64_t D = neq0;
  12686. const int64_t N = neq1;
  12687. const int64_t P = nek1 - N;
  12688. const int64_t M = P + N;
  12689. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12690. const int mxDM = MAX(D, Mup);
  12691. // GGML_ASSERT(ne0 == D);
  12692. // GGML_ASSERT(ne1 == N);
  12693. GGML_ASSERT(P >= 0);
  12694. GGML_ASSERT(nbq0 == sizeof(float));
  12695. GGML_ASSERT(nbk0 == sizeof(float));
  12696. GGML_ASSERT(nbv0 == sizeof(float));
  12697. GGML_ASSERT(neq0 == D);
  12698. GGML_ASSERT(nek0 == D);
  12699. GGML_ASSERT(nev1 == D);
  12700. GGML_ASSERT(ned0 == D);
  12701. GGML_ASSERT(neq1 == N);
  12702. GGML_ASSERT(nek1 == N + P);
  12703. GGML_ASSERT(nev1 == D);
  12704. GGML_ASSERT(ned1 == N);
  12705. // dst cannot be transposed or permuted
  12706. GGML_ASSERT(nb0 == sizeof(float));
  12707. GGML_ASSERT(nb0 <= nb1);
  12708. GGML_ASSERT(nb1 <= nb2);
  12709. GGML_ASSERT(nb2 <= nb3);
  12710. if (params->type == GGML_TASK_TYPE_INIT) {
  12711. if (ith == 0) {
  12712. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12713. }
  12714. return;
  12715. }
  12716. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12717. return;
  12718. }
  12719. const int64_t elem_q = ggml_nelements(q);
  12720. const int64_t elem_k = ggml_nelements(k);
  12721. enum ggml_type result_type = dst->type;
  12722. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12723. const size_t tsize = ggml_type_size(result_type);
  12724. const size_t offs_q = 0;
  12725. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12726. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12727. void * grad_q = (char *) dst->data;
  12728. void * grad_k = (char *) dst->data + offs_k;
  12729. void * grad_v = (char *) dst->data + offs_v;
  12730. const size_t nbgq1 = nb0*neq0;
  12731. const size_t nbgq2 = nb0*neq0*neq1;
  12732. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12733. const size_t nbgk1 = nb0*nek0;
  12734. const size_t nbgk2 = nb0*nek0*nek1;
  12735. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12736. const size_t nbgv1 = nb0*nev0;
  12737. const size_t nbgv2 = nb0*nev0*nev1;
  12738. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12739. // parallelize by k rows using ggml_vec_dot_f32
  12740. // total rows in k
  12741. const int nr = nek2*nek3;
  12742. // rows per thread
  12743. const int dr = (nr + nth - 1)/nth;
  12744. // row range for this thread
  12745. const int ir0 = dr*ith;
  12746. const int ir1 = MIN(ir0 + dr, nr);
  12747. const float scale = 1.0f/sqrtf(D);
  12748. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12749. // how often k2 (and v2) is repeated in q2
  12750. int nrep = neq2/nek2;
  12751. for (int ir = ir0; ir < ir1; ++ir) {
  12752. // q indices
  12753. const int ik3 = ir/(nek2);
  12754. const int ik2 = ir - ik3*nek2;
  12755. const int iq3 = ik3;
  12756. const int id3 = ik3;
  12757. const int iv3 = ik3;
  12758. const int iv2 = ik2;
  12759. for (int irep = 0; irep < nrep; ++irep) {
  12760. const int iq2 = ik2 + irep*nek2;
  12761. const int id2 = iq2;
  12762. // (ik2 + irep*nek2) % nek2 == ik2
  12763. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12764. const int id1 = iq1;
  12765. // not sure about CACHE_LINE_SIZE_F32..
  12766. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12767. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12768. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12769. for (int i = M; i < Mup; ++i) {
  12770. S[i] = -INFINITY;
  12771. }
  12772. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12773. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12774. // k indices
  12775. const int ik1 = ic;
  12776. // S indices
  12777. const int i1 = ik1;
  12778. ggml_vec_dot_f32(neq0,
  12779. S + i1, 0,
  12780. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12781. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12782. }
  12783. // scale
  12784. ggml_vec_scale_f32(masked_begin, S, scale);
  12785. for (int64_t i = masked_begin; i < M; i++) {
  12786. S[i] = -INFINITY;
  12787. }
  12788. // softmax
  12789. // exclude known -INF S[..] values from max and loop
  12790. // dont forget to set their SM values to zero
  12791. {
  12792. float max = -INFINITY;
  12793. ggml_vec_max_f32(masked_begin, &max, S);
  12794. ggml_float sum = 0.0;
  12795. {
  12796. #ifdef GGML_SOFT_MAX_ACCELERATE
  12797. max = -max;
  12798. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12799. vvexpf(SM, SM, &Mup);
  12800. ggml_vec_sum_f32(Mup, &sum, SM);
  12801. #else
  12802. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  12803. #endif
  12804. }
  12805. assert(sum > 0.0);
  12806. sum = 1.0/sum;
  12807. ggml_vec_scale_f32(masked_begin, SM, sum);
  12808. }
  12809. // step-by-step explanation
  12810. {
  12811. // forward-process shape grads from backward process
  12812. // parallel_for ik2,ik3:
  12813. // for irep:
  12814. // iq2 = ik2 + irep*nek2
  12815. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12816. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12817. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12818. // for iq1:
  12819. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12820. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12821. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12822. // S0 = -Inf [D,1,1,1]
  12823. // ~S1[i] = dot(kcur[:D,i], qcur)
  12824. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12825. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12826. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12827. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12828. // ~S5[i] = dot(vcur[:,i], S4)
  12829. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12830. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12831. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12832. // dst backward-/ grad[dst] = d
  12833. //
  12834. // output gradients with their dependencies:
  12835. //
  12836. // grad[kcur] = grad[S1].T @ qcur
  12837. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12838. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12839. // grad[S4] = grad[S5] @ vcur
  12840. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12841. // grad[qcur] = grad[S1] @ kcur
  12842. // grad[vcur] = grad[S5].T @ S4
  12843. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12844. //
  12845. // in post-order:
  12846. //
  12847. // S1 = qcur @ kcur.T
  12848. // S2 = S1 * scale
  12849. // S3 = diag_mask_inf(S2, P)
  12850. // S4 = softmax(S3)
  12851. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12852. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12853. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12854. // grad[qcur] = grad[S1] @ kcur
  12855. // grad[kcur] = grad[S1].T @ qcur
  12856. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12857. //
  12858. // using less variables (SM=S4):
  12859. //
  12860. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12861. // SM = softmax(S)
  12862. // S = d[:D,iq1,iq2,iq3] @ vcur
  12863. // dot_SM_gradSM = dot(SM, S)
  12864. // S = SM * (S - dot(SM, S))
  12865. // S = diag_mask_zero(S, P) * scale
  12866. //
  12867. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12868. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12869. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12870. }
  12871. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12872. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12873. // for ic:
  12874. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12875. // exclude known future zero S[..] values from operation
  12876. ggml_vec_set_f32(masked_begin, S, 0);
  12877. for (int64_t ic = 0; ic < D; ++ic) {
  12878. ggml_vec_mad_f32(masked_begin,
  12879. S,
  12880. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12881. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12882. }
  12883. // S = SM * (S - dot(SM, S))
  12884. float dot_SM_gradSM = 0;
  12885. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12886. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12887. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12888. // S = diag_mask_zero(S, P) * scale
  12889. // already done by above ggml_vec_set_f32
  12890. // exclude known zero S[..] values from operation
  12891. ggml_vec_scale_f32(masked_begin, S, scale);
  12892. // S shape [M,1]
  12893. // SM shape [M,1]
  12894. // kcur shape [D,M]
  12895. // qcur shape [D,1]
  12896. // vcur shape [M,D]
  12897. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12898. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12899. // for ic:
  12900. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12901. // exclude known zero S[..] values from loop
  12902. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12903. ggml_vec_mad_f32(D,
  12904. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12905. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12906. S[ic]);
  12907. }
  12908. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12909. // for ic:
  12910. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12911. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12912. // exclude known zero S[..] values from loop
  12913. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12914. ggml_vec_mad_f32(D,
  12915. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12916. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12917. S[ic]);
  12918. }
  12919. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12920. // for ic:
  12921. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12922. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12923. // exclude known zero SM[..] values from mad
  12924. for (int64_t ic = 0; ic < D; ++ic) {
  12925. ggml_vec_mad_f32(masked_begin,
  12926. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12927. SM,
  12928. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12929. }
  12930. }
  12931. }
  12932. }
  12933. }
  12934. static void ggml_compute_forward_flash_attn_back(
  12935. const struct ggml_compute_params * params,
  12936. const bool masked,
  12937. struct ggml_tensor * dst) {
  12938. const struct ggml_tensor * q = dst->src[0];
  12939. switch (q->type) {
  12940. case GGML_TYPE_F32:
  12941. {
  12942. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12943. } break;
  12944. default:
  12945. {
  12946. GGML_ASSERT(false);
  12947. } break;
  12948. }
  12949. }
  12950. // ggml_compute_forward_ssm_conv
  12951. static void ggml_compute_forward_ssm_conv_f32(
  12952. const struct ggml_compute_params * params,
  12953. struct ggml_tensor * dst) {
  12954. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12955. return;
  12956. }
  12957. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12958. const struct ggml_tensor * src1 = dst->src[1]; // x
  12959. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12960. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12961. const int ith = params->ith;
  12962. const int nth = params->nth;
  12963. const int nc = src2->ne[0]; // d_conv
  12964. const int nr = src0->ne[1]; // d_inner
  12965. const int n_t = src1->ne[1]; // n_tokens
  12966. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12967. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12968. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12969. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12970. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12971. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12972. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12973. // for use with the destination state offset between sequences
  12974. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12975. // rows per thread
  12976. const int dr = (nr + nth - 1)/nth;
  12977. // row range for this thread
  12978. const int ir0 = dr*ith;
  12979. const int ir1 = MIN(ir0 + dr, nr);
  12980. const int ir = ir1 - ir0;
  12981. if (n_kv > 1) {
  12982. // multiple sequences means it's hard to know when it's the first time a state is read,
  12983. // so copy them all over to the destination, just to be sure.
  12984. for (int i3 = 0; i3 < n_kv; ++i3) {
  12985. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12986. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12987. // can't use memcpy because of d_conv vs d_conv - 1
  12988. for (int i1 = 0; i1 < ir; ++i1) {
  12989. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12990. // copy s0 to last (d_conv - 1) columns of s
  12991. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12992. }
  12993. }
  12994. }
  12995. }
  12996. for (int i2 = 0; i2 < n_t; ++i2) {
  12997. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12998. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12999. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13000. float * s0; // {d_conv - 1, d_inner, n_kv}
  13001. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13002. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13003. int ne0s0;
  13004. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13005. // avoid needing to copy the state for the first token
  13006. if (i2 == 0) {
  13007. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13008. ne0s0 = src0->ne[0];
  13009. } else {
  13010. // the source is the last (d_conv - 1) columns of the destination
  13011. s0 = s + 1;
  13012. ne0s0 = nc;
  13013. }
  13014. // d_inner
  13015. for (int i1 = 0; i1 < ir; ++i1) {
  13016. // shift state left
  13017. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13018. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13019. }
  13020. // insert x on the last column
  13021. s[(nc - 1) + i1*nc] = x0[i1];
  13022. }
  13023. // handle copies when there are multiple output states
  13024. for (int i3 = 1; i3 < n_kv; ++i3) {
  13025. int32_t seq = sq[i3];
  13026. if (0 <= seq && seq < n_kv) {
  13027. float * s1 = s + (seq - sq[0])*nc*nr;
  13028. memcpy(s1, s, nc*ir*sizeof(float));
  13029. } else {
  13030. // stop at negative or too big seq_ids
  13031. break;
  13032. }
  13033. }
  13034. // it seems a little faster when this is separate from the state shift
  13035. for (int i1 = 0; i1 < ir; ++i1) {
  13036. // rowwise dot product
  13037. float sumf = 0.0f;
  13038. for (int i0 = 0; i0 < nc; ++i0) {
  13039. int i = i0 + i1*nc;
  13040. sumf += s[i] * c[i];
  13041. }
  13042. x[i1] = sumf;
  13043. }
  13044. }
  13045. }
  13046. static void ggml_compute_forward_ssm_conv(
  13047. const struct ggml_compute_params * params,
  13048. struct ggml_tensor * dst) {
  13049. switch (dst->src[0]->type) {
  13050. case GGML_TYPE_F32:
  13051. {
  13052. ggml_compute_forward_ssm_conv_f32(params, dst);
  13053. } break;
  13054. default:
  13055. {
  13056. GGML_ASSERT(false);
  13057. } break;
  13058. }
  13059. }
  13060. // ggml_compute_forward_ssm_scan
  13061. static void ggml_compute_forward_ssm_scan_f32(
  13062. const struct ggml_compute_params * params,
  13063. struct ggml_tensor * dst) {
  13064. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13065. return;
  13066. }
  13067. const struct ggml_tensor * src0 = dst->src[0]; // s
  13068. const struct ggml_tensor * src1 = dst->src[1]; // x
  13069. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13070. const struct ggml_tensor * src3 = dst->src[3]; // A
  13071. const struct ggml_tensor * src4 = dst->src[4]; // B
  13072. const struct ggml_tensor * src5 = dst->src[5]; // C
  13073. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13074. const int ith = params->ith;
  13075. const int nth = params->nth;
  13076. const int64_t nc = src0->ne[0]; // d_state
  13077. const int64_t nr = src0->ne[1]; // d_inner
  13078. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13079. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13080. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13081. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13082. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13083. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13084. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13085. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13086. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13087. // required for the dot product between s and C, and when copying the states
  13088. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13089. // required for per-sequence offsets for states
  13090. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13091. // required to get correct offset for state destination (i.e. src1->nb[2])
  13092. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13093. // rows per thread
  13094. const int dr = (nr + nth - 1)/nth;
  13095. // row range for this thread
  13096. const int ir0 = dr*ith;
  13097. const int ir1 = MIN(ir0 + dr, nr);
  13098. const int ir = ir1 - ir0;
  13099. if (n_kv > 1) {
  13100. // it's hard to know if the source states have already been copied
  13101. // when there are multiple, so copy them already.
  13102. for (int i3 = 0; i3 < n_kv; ++i3) {
  13103. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13104. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13105. memcpy(s, s0, nc*ir*sizeof(float));
  13106. }
  13107. }
  13108. for (int i2 = 0; i2 < n_t; ++i2) {
  13109. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13110. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13111. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13112. float * s0;
  13113. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13114. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13115. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13116. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13117. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13118. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13119. // avoid needing to copy the state for the first token
  13120. if (i2 == 0) {
  13121. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13122. } else {
  13123. // otherwise the source is the same as the destination
  13124. s0 = s;
  13125. }
  13126. // d_inner
  13127. for (int i1 = 0; i1 < ir; ++i1) {
  13128. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13129. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13130. float x_dt = x[i1] * dt_soft_plus;
  13131. float sumf = 0.0f;
  13132. // d_state
  13133. for (int i0 = 0; i0 < nc; ++i0) {
  13134. int i = i0 + i1*nc;
  13135. // state = prev_state * dA + dB * x
  13136. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13137. // y = rowwise_dotprod(state, C)
  13138. sumf += state * C[i0];
  13139. s[i] = state;
  13140. }
  13141. y[i1] = sumf;
  13142. }
  13143. // handle copies when there are multiple output states
  13144. for (int i3 = 1; i3 < n_kv; ++i3) {
  13145. int32_t seq = sq[i3];
  13146. if (0 <= seq && seq < n_kv) {
  13147. float * s1 = s + (seq - sq[0])*nc*nr;
  13148. memcpy(s1, s, nc*ir*sizeof(float));
  13149. } else {
  13150. // stop at negative or too big seq_ids
  13151. break;
  13152. }
  13153. }
  13154. }
  13155. }
  13156. static void ggml_compute_forward_ssm_scan(
  13157. const struct ggml_compute_params * params,
  13158. struct ggml_tensor * dst) {
  13159. switch (dst->src[0]->type) {
  13160. case GGML_TYPE_F32:
  13161. {
  13162. ggml_compute_forward_ssm_scan_f32(params, dst);
  13163. } break;
  13164. default:
  13165. {
  13166. GGML_ASSERT(false);
  13167. } break;
  13168. }
  13169. }
  13170. // ggml_compute_forward_win_part
  13171. static void ggml_compute_forward_win_part_f32(
  13172. const struct ggml_compute_params * params,
  13173. struct ggml_tensor * dst) {
  13174. const struct ggml_tensor * src0 = dst->src[0];
  13175. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13176. return;
  13177. }
  13178. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13179. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13180. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13181. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13182. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13183. assert(ne00 == ne0);
  13184. assert(ne3 == nep0*nep1);
  13185. // TODO: optimize / multi-thread
  13186. for (int py = 0; py < nep1; ++py) {
  13187. for (int px = 0; px < nep0; ++px) {
  13188. const int64_t i3 = py*nep0 + px;
  13189. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13190. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13191. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13192. const int64_t i02 = py*w + i2;
  13193. const int64_t i01 = px*w + i1;
  13194. const int64_t i00 = i0;
  13195. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13196. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13197. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13198. ((float *) dst->data)[i] = 0.0f;
  13199. } else {
  13200. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13201. }
  13202. }
  13203. }
  13204. }
  13205. }
  13206. }
  13207. }
  13208. static void ggml_compute_forward_win_part(
  13209. const struct ggml_compute_params * params,
  13210. struct ggml_tensor * dst) {
  13211. const struct ggml_tensor * src0 = dst->src[0];
  13212. switch (src0->type) {
  13213. case GGML_TYPE_F32:
  13214. {
  13215. ggml_compute_forward_win_part_f32(params, dst);
  13216. } break;
  13217. default:
  13218. {
  13219. GGML_ASSERT(false);
  13220. } break;
  13221. }
  13222. }
  13223. // ggml_compute_forward_win_unpart
  13224. static void ggml_compute_forward_win_unpart_f32(
  13225. const struct ggml_compute_params * params,
  13226. struct ggml_tensor * dst) {
  13227. const struct ggml_tensor * src0 = dst->src[0];
  13228. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13229. return;
  13230. }
  13231. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13232. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13233. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13234. // padding
  13235. const int px = (w - ne1%w)%w;
  13236. //const int py = (w - ne2%w)%w;
  13237. const int npx = (px + ne1)/w;
  13238. //const int npy = (py + ne2)/w;
  13239. assert(ne0 == ne00);
  13240. // TODO: optimize / multi-thread
  13241. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13242. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13243. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13244. const int ip2 = i2/w;
  13245. const int ip1 = i1/w;
  13246. const int64_t i02 = i2%w;
  13247. const int64_t i01 = i1%w;
  13248. const int64_t i00 = i0;
  13249. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13250. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13251. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13252. }
  13253. }
  13254. }
  13255. }
  13256. static void ggml_compute_forward_win_unpart(
  13257. const struct ggml_compute_params * params,
  13258. struct ggml_tensor * dst) {
  13259. const struct ggml_tensor * src0 = dst->src[0];
  13260. switch (src0->type) {
  13261. case GGML_TYPE_F32:
  13262. {
  13263. ggml_compute_forward_win_unpart_f32(params, dst);
  13264. } break;
  13265. default:
  13266. {
  13267. GGML_ASSERT(false);
  13268. } break;
  13269. }
  13270. }
  13271. //gmml_compute_forward_unary
  13272. static void ggml_compute_forward_unary(
  13273. const struct ggml_compute_params * params,
  13274. struct ggml_tensor * dst) {
  13275. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13276. switch (op) {
  13277. case GGML_UNARY_OP_ABS:
  13278. {
  13279. ggml_compute_forward_abs(params, dst);
  13280. } break;
  13281. case GGML_UNARY_OP_SGN:
  13282. {
  13283. ggml_compute_forward_sgn(params, dst);
  13284. } break;
  13285. case GGML_UNARY_OP_NEG:
  13286. {
  13287. ggml_compute_forward_neg(params, dst);
  13288. } break;
  13289. case GGML_UNARY_OP_STEP:
  13290. {
  13291. ggml_compute_forward_step(params, dst);
  13292. } break;
  13293. case GGML_UNARY_OP_TANH:
  13294. {
  13295. ggml_compute_forward_tanh(params, dst);
  13296. } break;
  13297. case GGML_UNARY_OP_ELU:
  13298. {
  13299. ggml_compute_forward_elu(params, dst);
  13300. } break;
  13301. case GGML_UNARY_OP_RELU:
  13302. {
  13303. ggml_compute_forward_relu(params, dst);
  13304. } break;
  13305. case GGML_UNARY_OP_SIGMOID:
  13306. {
  13307. ggml_compute_forward_sigmoid(params, dst);
  13308. } break;
  13309. case GGML_UNARY_OP_GELU:
  13310. {
  13311. ggml_compute_forward_gelu(params, dst);
  13312. } break;
  13313. case GGML_UNARY_OP_GELU_QUICK:
  13314. {
  13315. ggml_compute_forward_gelu_quick(params, dst);
  13316. } break;
  13317. case GGML_UNARY_OP_SILU:
  13318. {
  13319. ggml_compute_forward_silu(params, dst);
  13320. } break;
  13321. case GGML_UNARY_OP_HARDSWISH:
  13322. {
  13323. ggml_compute_forward_hardswish(params, dst);
  13324. } break;
  13325. case GGML_UNARY_OP_HARDSIGMOID:
  13326. {
  13327. ggml_compute_forward_hardsigmoid(params, dst);
  13328. } break;
  13329. default:
  13330. {
  13331. GGML_ASSERT(false);
  13332. } break;
  13333. }
  13334. }
  13335. // ggml_compute_forward_get_rel_pos
  13336. static void ggml_compute_forward_get_rel_pos_f16(
  13337. const struct ggml_compute_params * params,
  13338. struct ggml_tensor * dst) {
  13339. const struct ggml_tensor * src0 = dst->src[0];
  13340. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13341. return;
  13342. }
  13343. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13344. GGML_TENSOR_UNARY_OP_LOCALS
  13345. const int64_t w = ne1;
  13346. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13347. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13348. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13349. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13350. const int64_t pos = (w - i1 - 1) + i2;
  13351. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13352. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13353. }
  13354. }
  13355. }
  13356. }
  13357. static void ggml_compute_forward_get_rel_pos(
  13358. const struct ggml_compute_params * params,
  13359. struct ggml_tensor * dst) {
  13360. const struct ggml_tensor * src0 = dst->src[0];
  13361. switch (src0->type) {
  13362. case GGML_TYPE_F16:
  13363. case GGML_TYPE_BF16:
  13364. {
  13365. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13366. } break;
  13367. default:
  13368. {
  13369. GGML_ASSERT(false);
  13370. } break;
  13371. }
  13372. }
  13373. // ggml_compute_forward_add_rel_pos
  13374. static void ggml_compute_forward_add_rel_pos_f32(
  13375. const struct ggml_compute_params * params,
  13376. struct ggml_tensor * dst) {
  13377. const struct ggml_tensor * src0 = dst->src[0];
  13378. const struct ggml_tensor * src1 = dst->src[1];
  13379. const struct ggml_tensor * src2 = dst->src[2];
  13380. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13381. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13382. if (params->ith != 0) {
  13383. return;
  13384. }
  13385. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13386. return;
  13387. }
  13388. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13389. return;
  13390. }
  13391. int64_t t0 = ggml_perf_time_us();
  13392. UNUSED(t0);
  13393. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13394. float * src1_data = (float *) src1->data;
  13395. float * src2_data = (float *) src2->data;
  13396. float * dst_data = (float *) dst->data;
  13397. const int64_t ne10 = src1->ne[0];
  13398. const int64_t ne11 = src1->ne[1];
  13399. const int64_t ne12 = src1->ne[2];
  13400. const int64_t ne13 = src1->ne[3];
  13401. const int ith = params->ith;
  13402. const int nth = params->nth;
  13403. // total patches in dst
  13404. const int np = ne13;
  13405. // patches per thread
  13406. const int dp = (np + nth - 1)/nth;
  13407. // patch range for this thread
  13408. const int ip0 = dp*ith;
  13409. const int ip1 = MIN(ip0 + dp, np);
  13410. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13411. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13412. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13413. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13414. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13415. const int64_t jp0 = jp1 + i10;
  13416. const float src1_e = src1_data[jp0];
  13417. const float src2_e = src2_data[jp0];
  13418. const int64_t jdh = jp0 * ne10;
  13419. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13420. for (int64_t j = 0; j < ne10; ++j) {
  13421. dst_data[jdh + j ] += src2_e;
  13422. dst_data[jdw + j*ne10] += src1_e;
  13423. }
  13424. }
  13425. }
  13426. }
  13427. }
  13428. }
  13429. static void ggml_compute_forward_add_rel_pos(
  13430. const struct ggml_compute_params * params,
  13431. struct ggml_tensor * dst) {
  13432. const struct ggml_tensor * src0 = dst->src[0];
  13433. switch (src0->type) {
  13434. case GGML_TYPE_F32:
  13435. {
  13436. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13437. } break;
  13438. default:
  13439. {
  13440. GGML_ASSERT(false);
  13441. } break;
  13442. }
  13443. }
  13444. // ggml_compute_forward_map_unary
  13445. static void ggml_compute_forward_map_unary_f32(
  13446. const struct ggml_compute_params * params,
  13447. struct ggml_tensor * dst,
  13448. const ggml_unary_op_f32_t fun) {
  13449. const struct ggml_tensor * src0 = dst->src[0];
  13450. assert(params->ith == 0);
  13451. assert(ggml_is_contiguous_1(src0));
  13452. assert(ggml_is_contiguous_1(dst));
  13453. assert(ggml_are_same_shape(src0, dst));
  13454. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13455. return;
  13456. }
  13457. const int n = ggml_nrows(src0);
  13458. const int nc = src0->ne[0];
  13459. for (int i = 0; i < n; i++) {
  13460. fun(nc,
  13461. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13462. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13463. }
  13464. }
  13465. static void ggml_compute_forward_map_unary(
  13466. const struct ggml_compute_params * params,
  13467. struct ggml_tensor * dst,
  13468. const ggml_unary_op_f32_t fun) {
  13469. const struct ggml_tensor * src0 = dst->src[0];
  13470. switch (src0->type) {
  13471. case GGML_TYPE_F32:
  13472. {
  13473. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13474. } break;
  13475. default:
  13476. {
  13477. GGML_ASSERT(false);
  13478. } break;
  13479. }
  13480. }
  13481. // ggml_compute_forward_map_binary
  13482. static void ggml_compute_forward_map_binary_f32(
  13483. const struct ggml_compute_params * params,
  13484. struct ggml_tensor * dst,
  13485. const ggml_binary_op_f32_t fun) {
  13486. const struct ggml_tensor * src0 = dst->src[0];
  13487. const struct ggml_tensor * src1 = dst->src[1];
  13488. assert(params->ith == 0);
  13489. assert(ggml_is_contiguous_1(src0));
  13490. assert(ggml_is_contiguous_1(src1));
  13491. assert(ggml_is_contiguous_1(dst));
  13492. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13493. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13494. return;
  13495. }
  13496. const int n = ggml_nrows(src0);
  13497. const int nc = src0->ne[0];
  13498. for (int i = 0; i < n; i++) {
  13499. fun(nc,
  13500. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13501. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13502. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13503. }
  13504. }
  13505. static void ggml_compute_forward_map_binary(
  13506. const struct ggml_compute_params * params,
  13507. struct ggml_tensor * dst,
  13508. const ggml_binary_op_f32_t fun) {
  13509. const struct ggml_tensor * src0 = dst->src[0];
  13510. switch (src0->type) {
  13511. case GGML_TYPE_F32:
  13512. {
  13513. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13514. } break;
  13515. default:
  13516. {
  13517. GGML_ASSERT(false);
  13518. } break;
  13519. }
  13520. }
  13521. // ggml_compute_forward_map_custom1
  13522. static void ggml_compute_forward_map_custom1_f32(
  13523. const struct ggml_compute_params * params,
  13524. struct ggml_tensor * dst,
  13525. const ggml_custom1_op_f32_t fun) {
  13526. const struct ggml_tensor * a = dst->src[0];
  13527. assert(params->ith == 0);
  13528. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13529. return;
  13530. }
  13531. fun(dst, a);
  13532. }
  13533. // ggml_compute_forward_map_custom2
  13534. static void ggml_compute_forward_map_custom2_f32(
  13535. const struct ggml_compute_params * params,
  13536. struct ggml_tensor * dst,
  13537. const ggml_custom2_op_f32_t fun) {
  13538. const struct ggml_tensor * a = dst->src[0];
  13539. const struct ggml_tensor * b = dst->src[1];
  13540. assert(params->ith == 0);
  13541. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13542. return;
  13543. }
  13544. fun(dst, a, b);
  13545. }
  13546. // ggml_compute_forward_map_custom3
  13547. static void ggml_compute_forward_map_custom3_f32(
  13548. const struct ggml_compute_params * params,
  13549. struct ggml_tensor * dst,
  13550. const ggml_custom3_op_f32_t fun) {
  13551. const struct ggml_tensor * a = dst->src[0];
  13552. const struct ggml_tensor * b = dst->src[1];
  13553. const struct ggml_tensor * c = dst->src[1];
  13554. assert(params->ith == 0);
  13555. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13556. return;
  13557. }
  13558. fun(dst, a, b, c);
  13559. }
  13560. // ggml_compute_forward_map_custom1
  13561. static void ggml_compute_forward_map_custom1(
  13562. const struct ggml_compute_params * params,
  13563. struct ggml_tensor * dst) {
  13564. const struct ggml_tensor * a = dst->src[0];
  13565. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13566. return;
  13567. }
  13568. struct ggml_map_custom1_op_params p;
  13569. memcpy(&p, dst->op_params, sizeof(p));
  13570. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13571. }
  13572. // ggml_compute_forward_map_custom2
  13573. static void ggml_compute_forward_map_custom2(
  13574. const struct ggml_compute_params * params,
  13575. struct ggml_tensor * dst) {
  13576. const struct ggml_tensor * a = dst->src[0];
  13577. const struct ggml_tensor * b = dst->src[1];
  13578. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13579. return;
  13580. }
  13581. struct ggml_map_custom2_op_params p;
  13582. memcpy(&p, dst->op_params, sizeof(p));
  13583. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13584. }
  13585. // ggml_compute_forward_map_custom3
  13586. static void ggml_compute_forward_map_custom3(
  13587. const struct ggml_compute_params * params,
  13588. struct ggml_tensor * dst) {
  13589. const struct ggml_tensor * a = dst->src[0];
  13590. const struct ggml_tensor * b = dst->src[1];
  13591. const struct ggml_tensor * c = dst->src[2];
  13592. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13593. return;
  13594. }
  13595. struct ggml_map_custom3_op_params p;
  13596. memcpy(&p, dst->op_params, sizeof(p));
  13597. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13598. }
  13599. // ggml_compute_forward_cross_entropy_loss
  13600. static void ggml_compute_forward_cross_entropy_loss_f32(
  13601. const struct ggml_compute_params * params,
  13602. struct ggml_tensor * dst) {
  13603. const struct ggml_tensor * src0 = dst->src[0];
  13604. const struct ggml_tensor * src1 = dst->src[1];
  13605. GGML_ASSERT(ggml_is_contiguous(src0));
  13606. GGML_ASSERT(ggml_is_contiguous(src1));
  13607. GGML_ASSERT(ggml_is_scalar(dst));
  13608. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13609. const int ith = params->ith;
  13610. const int nth = params->nth;
  13611. float * sums = (float *) params->wdata;
  13612. // TODO: handle transposed/permuted matrices
  13613. const int nc = src0->ne[0];
  13614. const int nr = ggml_nrows(src0);
  13615. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13616. if (params->type == GGML_TASK_TYPE_INIT) {
  13617. if (ith == 0) {
  13618. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13619. }
  13620. return;
  13621. }
  13622. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13623. if (ith == 0) {
  13624. float * dp = (float *) dst->data;
  13625. ggml_vec_sum_f32(nth, dp, sums);
  13626. dp[0] *= -1.0f / (float) nr;
  13627. }
  13628. return;
  13629. }
  13630. const double eps = 1e-9;
  13631. // rows per thread
  13632. const int dr = (nr + nth - 1)/nth;
  13633. // row range for this thread
  13634. const int ir0 = dr*ith;
  13635. const int ir1 = MIN(ir0 + dr, nr);
  13636. for (int i1 = ir0; i1 < ir1; i1++) {
  13637. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13638. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13639. float * st = ((float *) params->wdata) + nth + ith*nc;
  13640. #ifndef NDEBUG
  13641. for (int i = 0; i < nc; ++i) {
  13642. //printf("p[%d] = %f\n", i, p[i]);
  13643. assert(!isnan(s0[i]));
  13644. assert(!isnan(s1[i]));
  13645. }
  13646. #endif
  13647. // soft_max
  13648. float max = -INFINITY;
  13649. ggml_vec_max_f32(nc, &max, s0);
  13650. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13651. assert(sum > 0.0);
  13652. sum = (1.0 - eps) / sum;
  13653. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13654. ggml_vec_scale_f32(nc, st, sum);
  13655. ggml_vec_add1_f32(nc, st, st, eps);
  13656. ggml_vec_log_f32(nc, st, st);
  13657. ggml_vec_mul_f32(nc, st, st, s1);
  13658. float st_sum = 0;
  13659. ggml_vec_sum_f32(nc, &st_sum, st);
  13660. sums[ith] += st_sum;
  13661. #ifndef NDEBUG
  13662. for (int i = 0; i < nc; ++i) {
  13663. assert(!isnan(st[i]));
  13664. assert(!isinf(st[i]));
  13665. }
  13666. #endif
  13667. }
  13668. }
  13669. static void ggml_compute_forward_cross_entropy_loss(
  13670. const struct ggml_compute_params * params,
  13671. struct ggml_tensor * dst) {
  13672. const struct ggml_tensor * src0 = dst->src[0];
  13673. switch (src0->type) {
  13674. case GGML_TYPE_F32:
  13675. {
  13676. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13677. } break;
  13678. default:
  13679. {
  13680. GGML_ASSERT(false);
  13681. } break;
  13682. }
  13683. }
  13684. // ggml_compute_forward_cross_entropy_loss_back
  13685. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13686. const struct ggml_compute_params * params,
  13687. struct ggml_tensor * dst) {
  13688. const struct ggml_tensor * src0 = dst->src[0];
  13689. const struct ggml_tensor * src1 = dst->src[1];
  13690. const struct ggml_tensor * opt0 = dst->src[2];
  13691. GGML_ASSERT(ggml_is_contiguous(dst));
  13692. GGML_ASSERT(ggml_is_contiguous(src0));
  13693. GGML_ASSERT(ggml_is_contiguous(src1));
  13694. GGML_ASSERT(ggml_is_contiguous(opt0));
  13695. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13696. const int64_t ith = params->ith;
  13697. const int64_t nth = params->nth;
  13698. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13699. return;
  13700. }
  13701. const double eps = 1e-9;
  13702. // TODO: handle transposed/permuted matrices
  13703. const int64_t nc = src0->ne[0];
  13704. const int64_t nr = ggml_nrows(src0);
  13705. // rows per thread
  13706. const int64_t dr = (nr + nth - 1)/nth;
  13707. // row range for this thread
  13708. const int64_t ir0 = dr*ith;
  13709. const int64_t ir1 = MIN(ir0 + dr, nr);
  13710. float * d = (float *) opt0->data;
  13711. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13712. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13713. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13714. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13715. #ifndef NDEBUG
  13716. for (int i = 0; i < nc; ++i) {
  13717. //printf("p[%d] = %f\n", i, p[i]);
  13718. assert(!isnan(s0[i]));
  13719. assert(!isnan(s1[i]));
  13720. }
  13721. #endif
  13722. // soft_max
  13723. float max = -INFINITY;
  13724. ggml_vec_max_f32(nc, &max, s0);
  13725. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13726. assert(sum > 0.0);
  13727. sum = (1.0 - eps) / sum;
  13728. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13729. ggml_vec_scale_f32(nc, ds0, sum);
  13730. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13731. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13732. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13733. #ifndef NDEBUG
  13734. for (int i = 0; i < nc; ++i) {
  13735. assert(!isnan(ds0[i]));
  13736. assert(!isinf(ds0[i]));
  13737. }
  13738. #endif
  13739. }
  13740. }
  13741. static void ggml_compute_forward_cross_entropy_loss_back(
  13742. const struct ggml_compute_params * params,
  13743. struct ggml_tensor * dst) {
  13744. const struct ggml_tensor * src0 = dst->src[0];
  13745. switch (src0->type) {
  13746. case GGML_TYPE_F32:
  13747. {
  13748. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13749. } break;
  13750. default:
  13751. {
  13752. GGML_ASSERT(false);
  13753. } break;
  13754. }
  13755. }
  13756. /////////////////////////////////
  13757. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  13758. GGML_ASSERT(params);
  13759. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13760. return;
  13761. }
  13762. switch (tensor->op) {
  13763. case GGML_OP_DUP:
  13764. {
  13765. ggml_compute_forward_dup(params, tensor);
  13766. } break;
  13767. case GGML_OP_ADD:
  13768. {
  13769. ggml_compute_forward_add(params, tensor);
  13770. } break;
  13771. case GGML_OP_ADD1:
  13772. {
  13773. ggml_compute_forward_add1(params, tensor);
  13774. } break;
  13775. case GGML_OP_ACC:
  13776. {
  13777. ggml_compute_forward_acc(params, tensor);
  13778. } break;
  13779. case GGML_OP_SUB:
  13780. {
  13781. ggml_compute_forward_sub(params, tensor);
  13782. } break;
  13783. case GGML_OP_MUL:
  13784. {
  13785. ggml_compute_forward_mul(params, tensor);
  13786. } break;
  13787. case GGML_OP_DIV:
  13788. {
  13789. ggml_compute_forward_div(params, tensor);
  13790. } break;
  13791. case GGML_OP_SQR:
  13792. {
  13793. ggml_compute_forward_sqr(params, tensor);
  13794. } break;
  13795. case GGML_OP_SQRT:
  13796. {
  13797. ggml_compute_forward_sqrt(params, tensor);
  13798. } break;
  13799. case GGML_OP_LOG:
  13800. {
  13801. ggml_compute_forward_log(params, tensor);
  13802. } break;
  13803. case GGML_OP_SUM:
  13804. {
  13805. ggml_compute_forward_sum(params, tensor);
  13806. } break;
  13807. case GGML_OP_SUM_ROWS:
  13808. {
  13809. ggml_compute_forward_sum_rows(params, tensor);
  13810. } break;
  13811. case GGML_OP_MEAN:
  13812. {
  13813. ggml_compute_forward_mean(params, tensor);
  13814. } break;
  13815. case GGML_OP_ARGMAX:
  13816. {
  13817. ggml_compute_forward_argmax(params, tensor);
  13818. } break;
  13819. case GGML_OP_REPEAT:
  13820. {
  13821. ggml_compute_forward_repeat(params, tensor);
  13822. } break;
  13823. case GGML_OP_REPEAT_BACK:
  13824. {
  13825. ggml_compute_forward_repeat_back(params, tensor);
  13826. } break;
  13827. case GGML_OP_CONCAT:
  13828. {
  13829. ggml_compute_forward_concat(params, tensor);
  13830. } break;
  13831. case GGML_OP_SILU_BACK:
  13832. {
  13833. ggml_compute_forward_silu_back(params, tensor);
  13834. } break;
  13835. case GGML_OP_NORM:
  13836. {
  13837. ggml_compute_forward_norm(params, tensor);
  13838. } break;
  13839. case GGML_OP_RMS_NORM:
  13840. {
  13841. ggml_compute_forward_rms_norm(params, tensor);
  13842. } break;
  13843. case GGML_OP_RMS_NORM_BACK:
  13844. {
  13845. ggml_compute_forward_rms_norm_back(params, tensor);
  13846. } break;
  13847. case GGML_OP_GROUP_NORM:
  13848. {
  13849. ggml_compute_forward_group_norm(params, tensor);
  13850. } break;
  13851. case GGML_OP_MUL_MAT:
  13852. {
  13853. ggml_compute_forward_mul_mat(params, tensor, state);
  13854. } break;
  13855. case GGML_OP_MUL_MAT_ID:
  13856. {
  13857. ggml_compute_forward_mul_mat_id(params, tensor);
  13858. } break;
  13859. case GGML_OP_OUT_PROD:
  13860. {
  13861. ggml_compute_forward_out_prod(params, tensor);
  13862. } break;
  13863. case GGML_OP_SCALE:
  13864. {
  13865. ggml_compute_forward_scale(params, tensor);
  13866. } break;
  13867. case GGML_OP_SET:
  13868. {
  13869. ggml_compute_forward_set(params, tensor);
  13870. } break;
  13871. case GGML_OP_CPY:
  13872. {
  13873. ggml_compute_forward_cpy(params, tensor);
  13874. } break;
  13875. case GGML_OP_CONT:
  13876. {
  13877. ggml_compute_forward_cont(params, tensor);
  13878. } break;
  13879. case GGML_OP_RESHAPE:
  13880. {
  13881. ggml_compute_forward_reshape(params, tensor);
  13882. } break;
  13883. case GGML_OP_VIEW:
  13884. {
  13885. ggml_compute_forward_view(params, tensor);
  13886. } break;
  13887. case GGML_OP_PERMUTE:
  13888. {
  13889. ggml_compute_forward_permute(params, tensor);
  13890. } break;
  13891. case GGML_OP_TRANSPOSE:
  13892. {
  13893. ggml_compute_forward_transpose(params, tensor);
  13894. } break;
  13895. case GGML_OP_GET_ROWS:
  13896. {
  13897. ggml_compute_forward_get_rows(params, tensor);
  13898. } break;
  13899. case GGML_OP_GET_ROWS_BACK:
  13900. {
  13901. ggml_compute_forward_get_rows_back(params, tensor);
  13902. } break;
  13903. case GGML_OP_DIAG:
  13904. {
  13905. ggml_compute_forward_diag(params, tensor);
  13906. } break;
  13907. case GGML_OP_DIAG_MASK_INF:
  13908. {
  13909. ggml_compute_forward_diag_mask_inf(params, tensor);
  13910. } break;
  13911. case GGML_OP_DIAG_MASK_ZERO:
  13912. {
  13913. ggml_compute_forward_diag_mask_zero(params, tensor);
  13914. } break;
  13915. case GGML_OP_SOFT_MAX:
  13916. {
  13917. ggml_compute_forward_soft_max(params, tensor);
  13918. } break;
  13919. case GGML_OP_SOFT_MAX_BACK:
  13920. {
  13921. ggml_compute_forward_soft_max_back(params, tensor);
  13922. } break;
  13923. case GGML_OP_ROPE:
  13924. {
  13925. ggml_compute_forward_rope(params, tensor);
  13926. } break;
  13927. case GGML_OP_ROPE_BACK:
  13928. {
  13929. ggml_compute_forward_rope_back(params, tensor);
  13930. } break;
  13931. case GGML_OP_CLAMP:
  13932. {
  13933. ggml_compute_forward_clamp(params, tensor);
  13934. } break;
  13935. case GGML_OP_CONV_TRANSPOSE_1D:
  13936. {
  13937. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13938. } break;
  13939. case GGML_OP_IM2COL:
  13940. {
  13941. ggml_compute_forward_im2col(params, tensor);
  13942. } break;
  13943. case GGML_OP_CONV_TRANSPOSE_2D:
  13944. {
  13945. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13946. } break;
  13947. case GGML_OP_POOL_1D:
  13948. {
  13949. ggml_compute_forward_pool_1d(params, tensor);
  13950. } break;
  13951. case GGML_OP_POOL_2D:
  13952. {
  13953. ggml_compute_forward_pool_2d(params, tensor);
  13954. } break;
  13955. case GGML_OP_UPSCALE:
  13956. {
  13957. ggml_compute_forward_upscale(params, tensor);
  13958. } break;
  13959. case GGML_OP_PAD:
  13960. {
  13961. ggml_compute_forward_pad(params, tensor);
  13962. } break;
  13963. case GGML_OP_ARANGE:
  13964. {
  13965. ggml_compute_forward_arange(params, tensor);
  13966. } break;
  13967. case GGML_OP_TIMESTEP_EMBEDDING:
  13968. {
  13969. ggml_compute_forward_timestep_embedding(params, tensor);
  13970. } break;
  13971. case GGML_OP_ARGSORT:
  13972. {
  13973. ggml_compute_forward_argsort(params, tensor);
  13974. } break;
  13975. case GGML_OP_LEAKY_RELU:
  13976. {
  13977. ggml_compute_forward_leaky_relu(params, tensor);
  13978. } break;
  13979. case GGML_OP_FLASH_ATTN_EXT:
  13980. {
  13981. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  13982. } break;
  13983. case GGML_OP_FLASH_ATTN_BACK:
  13984. {
  13985. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13986. GGML_ASSERT(t == 0 || t == 1);
  13987. bool masked = t != 0;
  13988. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13989. } break;
  13990. case GGML_OP_SSM_CONV:
  13991. {
  13992. ggml_compute_forward_ssm_conv(params, tensor);
  13993. } break;
  13994. case GGML_OP_SSM_SCAN:
  13995. {
  13996. ggml_compute_forward_ssm_scan(params, tensor);
  13997. } break;
  13998. case GGML_OP_WIN_PART:
  13999. {
  14000. ggml_compute_forward_win_part(params, tensor);
  14001. } break;
  14002. case GGML_OP_WIN_UNPART:
  14003. {
  14004. ggml_compute_forward_win_unpart(params, tensor);
  14005. } break;
  14006. case GGML_OP_UNARY:
  14007. {
  14008. ggml_compute_forward_unary(params, tensor);
  14009. } break;
  14010. case GGML_OP_GET_REL_POS:
  14011. {
  14012. ggml_compute_forward_get_rel_pos(params, tensor);
  14013. } break;
  14014. case GGML_OP_ADD_REL_POS:
  14015. {
  14016. ggml_compute_forward_add_rel_pos(params, tensor);
  14017. } break;
  14018. case GGML_OP_MAP_UNARY:
  14019. {
  14020. ggml_unary_op_f32_t fun;
  14021. memcpy(&fun, tensor->op_params, sizeof(fun));
  14022. ggml_compute_forward_map_unary(params, tensor, fun);
  14023. }
  14024. break;
  14025. case GGML_OP_MAP_BINARY:
  14026. {
  14027. ggml_binary_op_f32_t fun;
  14028. memcpy(&fun, tensor->op_params, sizeof(fun));
  14029. ggml_compute_forward_map_binary(params, tensor, fun);
  14030. }
  14031. break;
  14032. case GGML_OP_MAP_CUSTOM1_F32:
  14033. {
  14034. ggml_custom1_op_f32_t fun;
  14035. memcpy(&fun, tensor->op_params, sizeof(fun));
  14036. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14037. }
  14038. break;
  14039. case GGML_OP_MAP_CUSTOM2_F32:
  14040. {
  14041. ggml_custom2_op_f32_t fun;
  14042. memcpy(&fun, tensor->op_params, sizeof(fun));
  14043. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14044. }
  14045. break;
  14046. case GGML_OP_MAP_CUSTOM3_F32:
  14047. {
  14048. ggml_custom3_op_f32_t fun;
  14049. memcpy(&fun, tensor->op_params, sizeof(fun));
  14050. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14051. }
  14052. break;
  14053. case GGML_OP_MAP_CUSTOM1:
  14054. {
  14055. ggml_compute_forward_map_custom1(params, tensor);
  14056. }
  14057. break;
  14058. case GGML_OP_MAP_CUSTOM2:
  14059. {
  14060. ggml_compute_forward_map_custom2(params, tensor);
  14061. }
  14062. break;
  14063. case GGML_OP_MAP_CUSTOM3:
  14064. {
  14065. ggml_compute_forward_map_custom3(params, tensor);
  14066. }
  14067. break;
  14068. case GGML_OP_CROSS_ENTROPY_LOSS:
  14069. {
  14070. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14071. }
  14072. break;
  14073. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14074. {
  14075. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14076. }
  14077. break;
  14078. case GGML_OP_NONE:
  14079. {
  14080. // nop
  14081. } break;
  14082. case GGML_OP_COUNT:
  14083. {
  14084. GGML_ASSERT(false);
  14085. } break;
  14086. }
  14087. }
  14088. ////////////////////////////////////////////////////////////////////////////////
  14089. static size_t ggml_hash_size(size_t min_sz) {
  14090. // next primes after powers of two
  14091. static const size_t primes[] = {
  14092. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14093. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14094. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14095. 16777259, 33554467, 67108879, 134217757, 268435459,
  14096. 536870923, 1073741827, 2147483659
  14097. };
  14098. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14099. // find the smallest prime that is larger or equal to min_sz
  14100. size_t l = 0;
  14101. size_t r = n_primes;
  14102. while (l < r) {
  14103. size_t m = (l + r)/2;
  14104. if (primes[m] < min_sz) {
  14105. l = m + 1;
  14106. } else {
  14107. r = m;
  14108. }
  14109. }
  14110. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14111. return sz;
  14112. }
  14113. static size_t ggml_hash(const void * p) {
  14114. return (size_t)p;
  14115. }
  14116. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14117. size_t h = ggml_hash(key) % hash_set.size;
  14118. // linear probing
  14119. size_t i = h;
  14120. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14121. i = (i + 1) % hash_set.size;
  14122. if (i == h) {
  14123. // visited all hash table entries -> not found
  14124. return GGML_HASHTABLE_FULL;
  14125. }
  14126. }
  14127. return i;
  14128. }
  14129. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14130. size_t i = ggml_hash_find(hash_set, key);
  14131. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14132. }
  14133. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14134. size_t i = ggml_hash_find(hash_set, key);
  14135. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14136. if (hash_set.keys[i] == key) {
  14137. return GGML_HASHTABLE_ALREADY_EXISTS;
  14138. }
  14139. // insert
  14140. GGML_ASSERT(hash_set.keys[i] == NULL);
  14141. hash_set.keys[i] = key;
  14142. return i;
  14143. }
  14144. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14145. size_t i = ggml_hash_find(hash_set, key);
  14146. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14147. hash_set.keys[i] = key;
  14148. return i;
  14149. }
  14150. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14151. size = ggml_hash_size(size);
  14152. struct ggml_hash_set result;
  14153. result.size = size;
  14154. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14155. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14156. return result;
  14157. }
  14158. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14159. GGML_FREE(hash_set.keys);
  14160. }
  14161. struct hash_map {
  14162. struct ggml_hash_set set;
  14163. struct ggml_tensor ** vals;
  14164. };
  14165. static struct hash_map * ggml_new_hash_map(size_t size) {
  14166. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14167. result->set = ggml_hash_set_new(size);
  14168. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14169. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14170. return result;
  14171. }
  14172. static void ggml_hash_map_free(struct hash_map * map) {
  14173. ggml_hash_set_free(map->set);
  14174. GGML_FREE(map->vals);
  14175. GGML_FREE(map);
  14176. }
  14177. // gradient checkpointing
  14178. static struct ggml_tensor * ggml_recompute_graph_node(
  14179. struct ggml_context * ctx,
  14180. struct ggml_cgraph * graph,
  14181. struct hash_map * replacements,
  14182. struct ggml_tensor * node) {
  14183. if (node == NULL) {
  14184. return NULL;
  14185. }
  14186. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14187. return node;
  14188. }
  14189. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14190. return node;
  14191. }
  14192. int count_children = 0;
  14193. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14194. if (node->src[k]) {
  14195. ++count_children;
  14196. }
  14197. }
  14198. if (count_children == 0) {
  14199. return node;
  14200. }
  14201. size_t i = ggml_hash_find(replacements->set, node);
  14202. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14203. if (replacements->set.keys[i] == node) {
  14204. return replacements->vals[i];
  14205. }
  14206. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14207. // insert clone into replacements
  14208. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14209. replacements->set.keys[i] = node;
  14210. replacements->vals[i] = clone;
  14211. clone->op = node->op;
  14212. clone->grad = node->grad;
  14213. clone->flags = node->flags;
  14214. clone->extra = node->extra;
  14215. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14216. clone->nb[k] = node->nb[k];
  14217. }
  14218. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14219. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14220. }
  14221. if (node->view_src != NULL) {
  14222. clone->data = (node->view_src->data == NULL)
  14223. ? NULL // view_src not yet allocated
  14224. : (char *) node->view_src->data // view_src already allocated
  14225. + node->view_offs;
  14226. clone->view_src = node->view_src;
  14227. clone->view_offs = node->view_offs;
  14228. }
  14229. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14230. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14231. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14232. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14233. return clone;
  14234. }
  14235. void ggml_build_backward_gradient_checkpointing(
  14236. struct ggml_context * ctx,
  14237. struct ggml_cgraph * gf,
  14238. struct ggml_cgraph * gb,
  14239. struct ggml_cgraph * gb_tmp,
  14240. struct ggml_tensor * * checkpoints,
  14241. int n_checkpoints) {
  14242. ggml_graph_cpy(gf, gb_tmp);
  14243. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14244. if (n_checkpoints <= 0) {
  14245. ggml_graph_cpy(gb_tmp, gb);
  14246. return;
  14247. }
  14248. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14249. // insert checkpoints in replacements
  14250. for (int i = 0; i < n_checkpoints; ++i) {
  14251. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14252. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14253. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14254. replacements->set.keys[k] = checkpoints[i];
  14255. replacements->vals[k] = checkpoints[i];
  14256. }
  14257. ggml_graph_cpy(gf, gb);
  14258. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14259. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14260. // by recomputing them from checkpoints
  14261. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14262. struct ggml_tensor * node = gb_tmp->nodes[i];
  14263. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14264. // insert new tensors recomputing src, reusing already made replacements,
  14265. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14266. // recurse for input tensors,
  14267. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14268. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14269. }
  14270. // insert rewritten backward node with replacements made into resulting backward graph gb
  14271. ggml_build_forward_expand(gb, node);
  14272. }
  14273. ggml_hash_map_free(replacements);
  14274. }
  14275. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14276. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14277. if (ggml_hash_contains(zero_table, a)) {
  14278. return b;
  14279. } else {
  14280. return ggml_add_impl(ctx, a, b, false);
  14281. }
  14282. }
  14283. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14284. if (ggml_hash_contains(zero_table, a)) {
  14285. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14286. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14287. } else {
  14288. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14289. }
  14290. }
  14291. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14292. if (ggml_hash_contains(zero_table, a)) {
  14293. return ggml_repeat(ctx, b, a);
  14294. } else {
  14295. return ggml_add1_impl(ctx, a, b, false);
  14296. }
  14297. }
  14298. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14299. if (ggml_hash_contains(zero_table, a)) {
  14300. return ggml_neg(ctx, b);
  14301. } else {
  14302. return ggml_sub_impl(ctx, a, b, false);
  14303. }
  14304. }
  14305. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14306. struct ggml_tensor * src0 = tensor->src[0];
  14307. struct ggml_tensor * src1 = tensor->src[1];
  14308. struct ggml_tensor * src2 = tensor->src[2];
  14309. switch (tensor->op) {
  14310. case GGML_OP_DUP:
  14311. {
  14312. if (src0->grad) {
  14313. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14314. }
  14315. } break;
  14316. case GGML_OP_ADD:
  14317. {
  14318. if (src0->grad) {
  14319. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14320. }
  14321. if (src1->grad) {
  14322. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14323. }
  14324. } break;
  14325. case GGML_OP_ADD1:
  14326. {
  14327. if (src0->grad) {
  14328. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14329. }
  14330. if (src1->grad) {
  14331. src1->grad = ggml_add_or_set(ctx,
  14332. src1->grad,
  14333. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14334. zero_table);
  14335. }
  14336. } break;
  14337. case GGML_OP_ACC:
  14338. {
  14339. if (src0->grad) {
  14340. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14341. }
  14342. if (src1->grad) {
  14343. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14344. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14345. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14346. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14347. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14348. tensor->grad,
  14349. src1->grad->ne[0],
  14350. src1->grad->ne[1],
  14351. src1->grad->ne[2],
  14352. src1->grad->ne[3],
  14353. nb1, nb2, nb3, offset);
  14354. src1->grad =
  14355. ggml_add_or_set(ctx,
  14356. src1->grad,
  14357. ggml_reshape(ctx,
  14358. ggml_cont(ctx, tensor_grad_view),
  14359. src1->grad),
  14360. zero_table);
  14361. }
  14362. } break;
  14363. case GGML_OP_SUB:
  14364. {
  14365. if (src0->grad) {
  14366. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14367. }
  14368. if (src1->grad) {
  14369. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14370. }
  14371. } break;
  14372. case GGML_OP_MUL:
  14373. {
  14374. if (src0->grad) {
  14375. src0->grad =
  14376. ggml_add_or_set(ctx,
  14377. src0->grad,
  14378. ggml_mul(ctx, src1, tensor->grad),
  14379. zero_table);
  14380. }
  14381. if (src1->grad) {
  14382. src1->grad =
  14383. ggml_add_or_set(ctx,
  14384. src1->grad,
  14385. ggml_mul(ctx, src0, tensor->grad),
  14386. zero_table);
  14387. }
  14388. } break;
  14389. case GGML_OP_DIV:
  14390. {
  14391. if (src0->grad) {
  14392. src0->grad =
  14393. ggml_add_or_set(ctx,
  14394. src0->grad,
  14395. ggml_div(ctx, tensor->grad, src1),
  14396. zero_table);
  14397. }
  14398. if (src1->grad) {
  14399. src1->grad =
  14400. ggml_sub_or_set(ctx,
  14401. src1->grad,
  14402. ggml_mul(ctx,
  14403. tensor->grad,
  14404. ggml_div(ctx, tensor, src1)),
  14405. zero_table);
  14406. }
  14407. } break;
  14408. case GGML_OP_SQR:
  14409. {
  14410. if (src0->grad) {
  14411. src0->grad =
  14412. ggml_add_or_set(ctx,
  14413. src0->grad,
  14414. ggml_scale(ctx,
  14415. ggml_mul(ctx, src0, tensor->grad),
  14416. 2.0f),
  14417. zero_table);
  14418. }
  14419. } break;
  14420. case GGML_OP_SQRT:
  14421. {
  14422. if (src0->grad) {
  14423. src0->grad =
  14424. ggml_add_or_set(ctx,
  14425. src0->grad,
  14426. ggml_scale(ctx,
  14427. ggml_div(ctx,
  14428. tensor->grad,
  14429. tensor),
  14430. 0.5f),
  14431. zero_table);
  14432. }
  14433. } break;
  14434. case GGML_OP_LOG:
  14435. {
  14436. if (src0->grad) {
  14437. src0->grad =
  14438. ggml_add_or_set(ctx,
  14439. src0->grad,
  14440. ggml_div(ctx,
  14441. tensor->grad,
  14442. src0),
  14443. zero_table);
  14444. }
  14445. } break;
  14446. case GGML_OP_SUM:
  14447. {
  14448. if (src0->grad) {
  14449. src0->grad =
  14450. ggml_add1_or_set(ctx,
  14451. src0->grad,
  14452. tensor->grad,
  14453. zero_table);
  14454. }
  14455. } break;
  14456. case GGML_OP_SUM_ROWS:
  14457. {
  14458. if (src0->grad) {
  14459. src0->grad =
  14460. ggml_add_or_set(ctx,
  14461. src0->grad,
  14462. ggml_repeat(ctx,
  14463. tensor->grad,
  14464. src0->grad),
  14465. zero_table);
  14466. }
  14467. } break;
  14468. case GGML_OP_MEAN:
  14469. case GGML_OP_ARGMAX:
  14470. {
  14471. GGML_ASSERT(false); // TODO: implement
  14472. } break;
  14473. case GGML_OP_REPEAT:
  14474. {
  14475. // necessary for llama
  14476. if (src0->grad) {
  14477. src0->grad = ggml_add_or_set(ctx,
  14478. src0->grad,
  14479. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14480. zero_table);
  14481. }
  14482. } break;
  14483. case GGML_OP_REPEAT_BACK:
  14484. {
  14485. if (src0->grad) {
  14486. // TODO: test this
  14487. src0->grad = ggml_add_or_set(ctx,
  14488. src0->grad,
  14489. ggml_repeat(ctx, tensor->grad, src0->grad),
  14490. zero_table);
  14491. }
  14492. } break;
  14493. case GGML_OP_CONCAT:
  14494. {
  14495. GGML_ASSERT(false); // TODO: implement
  14496. } break;
  14497. case GGML_OP_SILU_BACK:
  14498. {
  14499. GGML_ASSERT(false); // TODO: not implemented
  14500. } break;
  14501. case GGML_OP_NORM:
  14502. {
  14503. GGML_ASSERT(false); // TODO: not implemented
  14504. } break;
  14505. case GGML_OP_RMS_NORM:
  14506. {
  14507. // necessary for llama
  14508. if (src0->grad) {
  14509. float eps;
  14510. memcpy(&eps, tensor->op_params, sizeof(float));
  14511. src0->grad = ggml_add_or_set(ctx,
  14512. src0->grad,
  14513. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14514. zero_table);
  14515. }
  14516. } break;
  14517. case GGML_OP_RMS_NORM_BACK:
  14518. {
  14519. GGML_ASSERT(false); // TODO: not implemented
  14520. } break;
  14521. case GGML_OP_GROUP_NORM:
  14522. {
  14523. GGML_ASSERT(false); // TODO: not implemented
  14524. } break;
  14525. case GGML_OP_MUL_MAT:
  14526. {
  14527. // https://cs231n.github.io/optimization-2/#staged
  14528. // # forward pass
  14529. // s0 = np.random.randn(5, 10)
  14530. // s1 = np.random.randn(10, 3)
  14531. // t = s0.dot(s1)
  14532. // # now suppose we had the gradient on t from above in the circuit
  14533. // dt = np.random.randn(*t.shape) # same shape as t
  14534. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14535. // ds1 = t.T.dot(dt)
  14536. // tensor.shape [m,p,qq,rr]
  14537. // src0.shape [n,m,q1,r1]
  14538. // src1.shape [n,p,qq,rr]
  14539. // necessary for llama
  14540. if (src0->grad) {
  14541. struct ggml_tensor * s1_tg =
  14542. ggml_out_prod(ctx, // [n,m,qq,rr]
  14543. src1, // [n,p,qq,rr]
  14544. tensor->grad); // [m,p,qq,rr]
  14545. const int64_t qq = s1_tg->ne[2];
  14546. const int64_t rr = s1_tg->ne[3];
  14547. const int64_t q1 = src0->ne[2];
  14548. const int64_t r1 = src0->ne[3];
  14549. const bool ne2_broadcasted = qq > q1;
  14550. const bool ne3_broadcasted = rr > r1;
  14551. if (ne2_broadcasted || ne3_broadcasted) {
  14552. // sum broadcast repetitions of s1_tg into shape of src0
  14553. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14554. }
  14555. src0->grad =
  14556. ggml_add_or_set(ctx,
  14557. src0->grad, // [n,m,q1,r1]
  14558. s1_tg, // [n,m,q1,r1]
  14559. zero_table);
  14560. }
  14561. if (src1->grad) {
  14562. src1->grad =
  14563. ggml_add_or_set(ctx,
  14564. src1->grad, // [n,p,qq,rr]
  14565. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14566. // ggml_cont(ctx, // [m,n,q1,r1]
  14567. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14568. // tensor->grad), // [m,p,qq,rr]
  14569. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14570. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14571. // // and then use ggml_out_prod
  14572. ggml_out_prod(ctx, // [n,p,qq,rr]
  14573. src0, // [n,m,q1,r1]
  14574. ggml_transpose(ctx, // [p,m,qq,rr]
  14575. tensor->grad)), // [m,p,qq,rr]
  14576. zero_table);
  14577. }
  14578. } break;
  14579. case GGML_OP_MUL_MAT_ID:
  14580. {
  14581. GGML_ASSERT(false); // TODO: not implemented
  14582. } break;
  14583. case GGML_OP_OUT_PROD:
  14584. {
  14585. GGML_ASSERT(false); // TODO: not implemented
  14586. } break;
  14587. case GGML_OP_SCALE:
  14588. {
  14589. // necessary for llama
  14590. if (src0->grad) {
  14591. float s;
  14592. memcpy(&s, tensor->op_params, sizeof(float));
  14593. src0->grad =
  14594. ggml_add_or_set(ctx,
  14595. src0->grad,
  14596. ggml_scale_impl(ctx, tensor->grad, s, false),
  14597. zero_table);
  14598. }
  14599. } break;
  14600. case GGML_OP_SET:
  14601. {
  14602. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14603. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14604. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14605. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14606. struct ggml_tensor * tensor_grad_view = NULL;
  14607. if (src0->grad || src1->grad) {
  14608. GGML_ASSERT(src0->type == tensor->type);
  14609. GGML_ASSERT(tensor->grad->type == tensor->type);
  14610. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14611. tensor_grad_view = ggml_view_4d(ctx,
  14612. tensor->grad,
  14613. src1->grad->ne[0],
  14614. src1->grad->ne[1],
  14615. src1->grad->ne[2],
  14616. src1->grad->ne[3],
  14617. nb1, nb2, nb3, offset);
  14618. }
  14619. if (src0->grad) {
  14620. src0->grad = ggml_add_or_set(ctx,
  14621. src0->grad,
  14622. ggml_acc_impl(ctx,
  14623. tensor->grad,
  14624. ggml_neg(ctx, tensor_grad_view),
  14625. nb1, nb2, nb3, offset, false),
  14626. zero_table);
  14627. }
  14628. if (src1->grad) {
  14629. src1->grad =
  14630. ggml_add_or_set(ctx,
  14631. src1->grad,
  14632. ggml_reshape(ctx,
  14633. ggml_cont(ctx, tensor_grad_view),
  14634. src1->grad),
  14635. zero_table);
  14636. }
  14637. } break;
  14638. case GGML_OP_CPY:
  14639. {
  14640. // necessary for llama
  14641. // cpy overwrites value of src1 by src0 and returns view(src1)
  14642. // the overwriting is mathematically equivalent to:
  14643. // tensor = src0 * 1 + src1 * 0
  14644. if (src0->grad) {
  14645. // dsrc0 = dtensor * 1
  14646. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14647. }
  14648. if (src1->grad) {
  14649. // dsrc1 = dtensor * 0 -> noop
  14650. }
  14651. } break;
  14652. case GGML_OP_CONT:
  14653. {
  14654. // same as cpy
  14655. if (src0->grad) {
  14656. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14657. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14658. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14659. }
  14660. } break;
  14661. case GGML_OP_RESHAPE:
  14662. {
  14663. // necessary for llama
  14664. if (src0->grad) {
  14665. src0->grad =
  14666. ggml_add_or_set(ctx, src0->grad,
  14667. ggml_reshape(ctx,
  14668. ggml_is_contiguous(tensor->grad)
  14669. ? tensor->grad
  14670. : ggml_cont(ctx, tensor->grad),
  14671. src0->grad),
  14672. zero_table);
  14673. }
  14674. } break;
  14675. case GGML_OP_VIEW:
  14676. {
  14677. // necessary for llama
  14678. if (src0->grad) {
  14679. size_t offset;
  14680. memcpy(&offset, tensor->op_params, sizeof(offset));
  14681. size_t nb1 = tensor->nb[1];
  14682. size_t nb2 = tensor->nb[2];
  14683. size_t nb3 = tensor->nb[3];
  14684. if (src0->type != src0->grad->type) {
  14685. // gradient is typically F32, but src0 could be other type
  14686. size_t ng = ggml_element_size(src0->grad);
  14687. size_t n0 = ggml_element_size(src0);
  14688. GGML_ASSERT(offset % n0 == 0);
  14689. GGML_ASSERT(nb1 % n0 == 0);
  14690. GGML_ASSERT(nb2 % n0 == 0);
  14691. GGML_ASSERT(nb3 % n0 == 0);
  14692. offset = (offset / n0) * ng;
  14693. nb1 = (nb1 / n0) * ng;
  14694. nb2 = (nb2 / n0) * ng;
  14695. nb3 = (nb3 / n0) * ng;
  14696. }
  14697. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14698. }
  14699. } break;
  14700. case GGML_OP_PERMUTE:
  14701. {
  14702. // necessary for llama
  14703. if (src0->grad) {
  14704. int32_t * axes = (int32_t *) tensor->op_params;
  14705. int axis0 = axes[0] & 0x3;
  14706. int axis1 = axes[1] & 0x3;
  14707. int axis2 = axes[2] & 0x3;
  14708. int axis3 = axes[3] & 0x3;
  14709. int axes_backward[4] = {0,0,0,0};
  14710. axes_backward[axis0] = 0;
  14711. axes_backward[axis1] = 1;
  14712. axes_backward[axis2] = 2;
  14713. axes_backward[axis3] = 3;
  14714. src0->grad =
  14715. ggml_add_or_set(ctx, src0->grad,
  14716. ggml_permute(ctx,
  14717. tensor->grad,
  14718. axes_backward[0],
  14719. axes_backward[1],
  14720. axes_backward[2],
  14721. axes_backward[3]),
  14722. zero_table);
  14723. }
  14724. } break;
  14725. case GGML_OP_TRANSPOSE:
  14726. {
  14727. // necessary for llama
  14728. if (src0->grad) {
  14729. src0->grad =
  14730. ggml_add_or_set(ctx, src0->grad,
  14731. ggml_transpose(ctx, tensor->grad),
  14732. zero_table);
  14733. }
  14734. } break;
  14735. case GGML_OP_GET_ROWS:
  14736. {
  14737. // necessary for llama (only for tokenizer)
  14738. if (src0->grad) {
  14739. src0->grad =
  14740. ggml_add_or_set(ctx, src0->grad,
  14741. // last ggml_get_rows_back argument src0->grad is only
  14742. // necessary to setup correct output shape
  14743. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14744. zero_table);
  14745. }
  14746. if (src1->grad) {
  14747. // noop
  14748. }
  14749. } break;
  14750. case GGML_OP_GET_ROWS_BACK:
  14751. {
  14752. GGML_ASSERT(false); // TODO: not implemented
  14753. } break;
  14754. case GGML_OP_DIAG:
  14755. {
  14756. GGML_ASSERT(false); // TODO: not implemented
  14757. } break;
  14758. case GGML_OP_DIAG_MASK_INF:
  14759. {
  14760. // necessary for llama
  14761. if (src0->grad) {
  14762. const int n_past = ((int32_t *) tensor->op_params)[0];
  14763. src0->grad =
  14764. ggml_add_or_set(ctx, src0->grad,
  14765. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14766. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14767. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14768. zero_table);
  14769. }
  14770. } break;
  14771. case GGML_OP_DIAG_MASK_ZERO:
  14772. {
  14773. // necessary for llama
  14774. if (src0->grad) {
  14775. const int n_past = ((int32_t *) tensor->op_params)[0];
  14776. src0->grad =
  14777. ggml_add_or_set(ctx, src0->grad,
  14778. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14779. zero_table);
  14780. }
  14781. } break;
  14782. case GGML_OP_SOFT_MAX:
  14783. {
  14784. // necessary for llama
  14785. if (src0->grad) {
  14786. src0->grad =
  14787. ggml_add_or_set(ctx, src0->grad,
  14788. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14789. zero_table);
  14790. }
  14791. } break;
  14792. case GGML_OP_SOFT_MAX_BACK:
  14793. {
  14794. GGML_ASSERT(false); // TODO: not implemented
  14795. } break;
  14796. case GGML_OP_ROPE:
  14797. {
  14798. // necessary for llama
  14799. if (src0->grad) {
  14800. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14801. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14802. const int mode = ((int32_t *) tensor->op_params)[2];
  14803. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14804. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14805. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14806. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14807. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14808. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14809. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14810. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14811. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14812. src0->grad = ggml_add_or_set(ctx,
  14813. src0->grad,
  14814. ggml_rope_back(ctx,
  14815. tensor->grad,
  14816. src1,
  14817. src2,
  14818. n_dims,
  14819. mode,
  14820. n_ctx_orig,
  14821. freq_base,
  14822. freq_scale,
  14823. ext_factor,
  14824. attn_factor,
  14825. beta_fast,
  14826. beta_slow),
  14827. zero_table);
  14828. }
  14829. } break;
  14830. case GGML_OP_ROPE_BACK:
  14831. {
  14832. if (src0->grad) {
  14833. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14834. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14835. const int mode = ((int32_t *) tensor->op_params)[2];
  14836. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14837. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14838. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14839. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14840. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14841. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14842. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14843. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14844. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14845. src0->grad = ggml_add_or_set(ctx,
  14846. src0->grad,
  14847. ggml_rope_impl(ctx,
  14848. tensor->grad,
  14849. src1,
  14850. src2,
  14851. n_dims,
  14852. mode,
  14853. n_ctx_orig,
  14854. freq_base,
  14855. freq_scale,
  14856. ext_factor,
  14857. attn_factor,
  14858. beta_fast,
  14859. beta_slow,
  14860. false),
  14861. zero_table);
  14862. }
  14863. } break;
  14864. case GGML_OP_CLAMP:
  14865. {
  14866. GGML_ASSERT(false); // TODO: not implemented
  14867. } break;
  14868. case GGML_OP_CONV_TRANSPOSE_1D:
  14869. {
  14870. GGML_ASSERT(false); // TODO: not implemented
  14871. } break;
  14872. case GGML_OP_IM2COL:
  14873. {
  14874. GGML_ASSERT(false); // TODO: not implemented
  14875. } break;
  14876. case GGML_OP_CONV_TRANSPOSE_2D:
  14877. {
  14878. GGML_ASSERT(false); // TODO: not implemented
  14879. } break;
  14880. case GGML_OP_POOL_1D:
  14881. {
  14882. GGML_ASSERT(false); // TODO: not implemented
  14883. } break;
  14884. case GGML_OP_POOL_2D:
  14885. {
  14886. GGML_ASSERT(false); // TODO: not implemented
  14887. } break;
  14888. case GGML_OP_UPSCALE:
  14889. {
  14890. GGML_ASSERT(false); // TODO: not implemented
  14891. } break;
  14892. case GGML_OP_PAD:
  14893. {
  14894. GGML_ASSERT(false); // TODO: not implemented
  14895. } break;
  14896. case GGML_OP_ARANGE:
  14897. {
  14898. GGML_ASSERT(false); // TODO: not implemented
  14899. } break;
  14900. case GGML_OP_TIMESTEP_EMBEDDING:
  14901. {
  14902. GGML_ASSERT(false); // TODO: not implemented
  14903. } break;
  14904. case GGML_OP_ARGSORT:
  14905. {
  14906. GGML_ASSERT(false); // TODO: not implemented
  14907. } break;
  14908. case GGML_OP_LEAKY_RELU:
  14909. {
  14910. GGML_ASSERT(false); // TODO: not implemented
  14911. } break;
  14912. case GGML_OP_FLASH_ATTN_EXT:
  14913. {
  14914. struct ggml_tensor * flash_grad = NULL;
  14915. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14916. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14917. GGML_ASSERT(t == 0 || t == 1);
  14918. bool masked = t != 0;
  14919. flash_grad =
  14920. ggml_flash_attn_back(ctx,
  14921. src0,
  14922. src1,
  14923. tensor->src[2],
  14924. tensor->grad,
  14925. masked);
  14926. }
  14927. const int64_t elem_q = ggml_nelements(src0);
  14928. const int64_t elem_k = ggml_nelements(src1);
  14929. const int64_t elem_v = ggml_nelements(src2);
  14930. enum ggml_type result_type = flash_grad->type;
  14931. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14932. const size_t tsize = ggml_type_size(result_type);
  14933. const size_t offs_q = 0;
  14934. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14935. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14936. if (src0->grad) {
  14937. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14938. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14939. src0->grad = ggml_add_or_set(ctx,
  14940. src0->grad,
  14941. grad_q,
  14942. zero_table);
  14943. }
  14944. if (src1->grad) {
  14945. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14946. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14947. src1->grad = ggml_add_or_set(ctx,
  14948. src1->grad,
  14949. grad_k,
  14950. zero_table);
  14951. }
  14952. if (src2->grad) {
  14953. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14954. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14955. src2->grad = ggml_add_or_set(ctx,
  14956. src2->grad,
  14957. grad_v,
  14958. zero_table);
  14959. }
  14960. } break;
  14961. case GGML_OP_FLASH_ATTN_BACK:
  14962. {
  14963. GGML_ASSERT(false); // not supported
  14964. } break;
  14965. case GGML_OP_SSM_CONV:
  14966. case GGML_OP_SSM_SCAN:
  14967. {
  14968. GGML_ASSERT(false); // TODO: not implemented
  14969. } break;
  14970. case GGML_OP_WIN_PART:
  14971. case GGML_OP_WIN_UNPART:
  14972. case GGML_OP_UNARY:
  14973. {
  14974. switch (ggml_get_unary_op(tensor)) {
  14975. case GGML_UNARY_OP_ABS:
  14976. {
  14977. if (src0->grad) {
  14978. src0->grad =
  14979. ggml_add_or_set(ctx,
  14980. src0->grad,
  14981. ggml_mul(ctx,
  14982. ggml_sgn(ctx, src0),
  14983. tensor->grad),
  14984. zero_table);
  14985. }
  14986. } break;
  14987. case GGML_UNARY_OP_SGN:
  14988. {
  14989. if (src0->grad) {
  14990. // noop
  14991. }
  14992. } break;
  14993. case GGML_UNARY_OP_NEG:
  14994. {
  14995. if (src0->grad) {
  14996. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14997. }
  14998. } break;
  14999. case GGML_UNARY_OP_STEP:
  15000. {
  15001. if (src0->grad) {
  15002. // noop
  15003. }
  15004. } break;
  15005. case GGML_UNARY_OP_TANH:
  15006. {
  15007. GGML_ASSERT(false); // TODO: not implemented
  15008. } break;
  15009. case GGML_UNARY_OP_ELU:
  15010. {
  15011. GGML_ASSERT(false); // TODO: not implemented
  15012. } break;
  15013. case GGML_UNARY_OP_RELU:
  15014. {
  15015. if (src0->grad) {
  15016. src0->grad = ggml_add_or_set(ctx,
  15017. src0->grad,
  15018. ggml_mul(ctx,
  15019. ggml_step(ctx, src0),
  15020. tensor->grad),
  15021. zero_table);
  15022. }
  15023. } break;
  15024. case GGML_UNARY_OP_SIGMOID:
  15025. {
  15026. GGML_ASSERT(false); // TODO: not implemented
  15027. } break;
  15028. case GGML_UNARY_OP_GELU:
  15029. {
  15030. GGML_ASSERT(false); // TODO: not implemented
  15031. } break;
  15032. case GGML_UNARY_OP_GELU_QUICK:
  15033. {
  15034. GGML_ASSERT(false); // TODO: not implemented
  15035. } break;
  15036. case GGML_UNARY_OP_SILU:
  15037. {
  15038. // necessary for llama
  15039. if (src0->grad) {
  15040. src0->grad = ggml_add_or_set(ctx,
  15041. src0->grad,
  15042. ggml_silu_back(ctx, src0, tensor->grad),
  15043. zero_table);
  15044. }
  15045. } break;
  15046. default:
  15047. GGML_ASSERT(false);
  15048. }
  15049. } break;
  15050. case GGML_OP_GET_REL_POS:
  15051. case GGML_OP_ADD_REL_POS:
  15052. case GGML_OP_MAP_UNARY:
  15053. case GGML_OP_MAP_BINARY:
  15054. case GGML_OP_MAP_CUSTOM1_F32:
  15055. case GGML_OP_MAP_CUSTOM2_F32:
  15056. case GGML_OP_MAP_CUSTOM3_F32:
  15057. case GGML_OP_MAP_CUSTOM1:
  15058. case GGML_OP_MAP_CUSTOM2:
  15059. case GGML_OP_MAP_CUSTOM3:
  15060. {
  15061. GGML_ASSERT(false); // not supported
  15062. } break;
  15063. case GGML_OP_CROSS_ENTROPY_LOSS:
  15064. {
  15065. if (src0->grad) {
  15066. src0->grad = ggml_add_or_set(ctx,
  15067. src0->grad,
  15068. ggml_cross_entropy_loss_back(ctx,
  15069. src0,
  15070. src1,
  15071. tensor->grad),
  15072. zero_table);
  15073. }
  15074. } break;
  15075. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15076. {
  15077. GGML_ASSERT(false); // not supported
  15078. } break;
  15079. case GGML_OP_NONE:
  15080. {
  15081. // nop
  15082. } break;
  15083. case GGML_OP_COUNT:
  15084. {
  15085. GGML_ASSERT(false);
  15086. } break;
  15087. }
  15088. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15089. if (tensor->src[i] && tensor->src[i]->grad) {
  15090. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15091. }
  15092. }
  15093. }
  15094. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15095. if (node->grad == NULL) {
  15096. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15097. // it can also happen during forward pass, if the user performs computations with constants
  15098. if (node->op != GGML_OP_NONE) {
  15099. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15100. }
  15101. }
  15102. // check if already visited
  15103. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15104. return;
  15105. }
  15106. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15107. const int k =
  15108. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15109. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15110. /* unknown order, just fall back to using i*/ i;
  15111. if (node->src[k]) {
  15112. ggml_visit_parents(cgraph, node->src[k]);
  15113. }
  15114. }
  15115. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15116. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15117. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15118. if (strlen(node->name) == 0) {
  15119. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15120. }
  15121. cgraph->leafs[cgraph->n_leafs] = node;
  15122. cgraph->n_leafs++;
  15123. } else {
  15124. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15125. if (strlen(node->name) == 0) {
  15126. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15127. }
  15128. cgraph->nodes[cgraph->n_nodes] = node;
  15129. if (cgraph->grads) {
  15130. cgraph->grads[cgraph->n_nodes] = node->grad;
  15131. }
  15132. cgraph->n_nodes++;
  15133. }
  15134. }
  15135. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15136. if (!expand) {
  15137. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15138. ggml_graph_clear(cgraph);
  15139. }
  15140. const int n0 = cgraph->n_nodes;
  15141. UNUSED(n0);
  15142. ggml_visit_parents(cgraph, tensor);
  15143. const int n_new = cgraph->n_nodes - n0;
  15144. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15145. if (n_new > 0) {
  15146. // the last added node should always be starting point
  15147. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15148. }
  15149. }
  15150. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15151. ggml_build_forward_impl(cgraph, tensor, true);
  15152. }
  15153. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15154. GGML_ASSERT(gf->n_nodes > 0);
  15155. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15156. if (keep) {
  15157. for (int i = 0; i < gf->n_nodes; i++) {
  15158. struct ggml_tensor * node = gf->nodes[i];
  15159. if (node->grad) {
  15160. node->grad = ggml_dup_tensor(ctx, node);
  15161. gf->grads[i] = node->grad;
  15162. }
  15163. }
  15164. }
  15165. // remember original gradients which start with zero values
  15166. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15167. for (int i = 0; i < gf->n_nodes; i++) {
  15168. if (gf->grads[i]) {
  15169. ggml_hash_insert(zero_table, gf->grads[i]);
  15170. }
  15171. }
  15172. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15173. struct ggml_tensor * node = gf->nodes[i];
  15174. // inplace operations to add gradients are not created by ggml_compute_backward
  15175. // use allocator to automatically make inplace operations
  15176. if (node->grad) {
  15177. ggml_compute_backward(ctx, node, zero_table);
  15178. }
  15179. }
  15180. for (int i = 0; i < gf->n_nodes; i++) {
  15181. struct ggml_tensor * node = gf->nodes[i];
  15182. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15183. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15184. ggml_build_forward_expand(gb, node->grad);
  15185. }
  15186. }
  15187. ggml_hash_set_free(zero_table);
  15188. }
  15189. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15190. size_t nbytes = sizeof(struct ggml_cgraph);
  15191. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15192. if (grads) {
  15193. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15194. }
  15195. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15196. return nbytes;
  15197. }
  15198. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15199. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15200. }
  15201. size_t ggml_graph_overhead(void) {
  15202. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15203. }
  15204. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15205. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15206. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15207. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15208. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15209. size_t hash_size = ggml_hash_size(size * 2);
  15210. struct ggml_tensor ** nodes_ptr = data_start;
  15211. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15212. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15213. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15214. // check that we allocated the correct amount of memory
  15215. assert(obj_size == (size_t) (
  15216. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15217. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15218. *cgraph = (struct ggml_cgraph) {
  15219. /*.size =*/ size,
  15220. /*.n_nodes =*/ 0,
  15221. /*.n_leafs =*/ 0,
  15222. /*.nodes =*/ nodes_ptr,
  15223. /*.grads =*/ grads_ptr,
  15224. /*.leafs =*/ leafs_ptr,
  15225. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15226. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15227. /*.perf_runs =*/ 0,
  15228. /*.perf_cycles =*/ 0,
  15229. /*.perf_time_us =*/ 0,
  15230. };
  15231. return cgraph;
  15232. }
  15233. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15234. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15235. }
  15236. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15237. struct ggml_cgraph cgraph = {
  15238. /*.size =*/ 0,
  15239. /*.n_nodes =*/ i1 - i0,
  15240. /*.n_leafs =*/ 0,
  15241. /*.nodes =*/ cgraph0->nodes + i0,
  15242. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15243. /*.leafs =*/ NULL,
  15244. /*.hash_table =*/ { 0, NULL },
  15245. /*.order =*/ cgraph0->order,
  15246. /*.perf_runs =*/ 0,
  15247. /*.perf_cycles =*/ 0,
  15248. /*.perf_time_us =*/ 0,
  15249. };
  15250. return cgraph;
  15251. }
  15252. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15253. GGML_ASSERT(dst->size >= src->n_leafs);
  15254. GGML_ASSERT(dst->size >= src->n_nodes);
  15255. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15256. dst->n_leafs = src->n_leafs;
  15257. dst->n_nodes = src->n_nodes;
  15258. dst->order = src->order;
  15259. for (int i = 0; i < src->n_leafs; ++i) {
  15260. dst->leafs[i] = src->leafs[i];
  15261. }
  15262. for (int i = 0; i < src->n_nodes; ++i) {
  15263. dst->nodes[i] = src->nodes[i];
  15264. }
  15265. if (src->grads) {
  15266. GGML_ASSERT(dst->grads != NULL);
  15267. for (int i = 0; i < src->n_nodes; ++i) {
  15268. dst->grads[i] = src->grads[i];
  15269. }
  15270. }
  15271. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15272. if (src->visited_hash_table.keys[i]) {
  15273. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15274. }
  15275. }
  15276. }
  15277. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15278. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15279. ggml_graph_cpy(cgraph, result);
  15280. return result;
  15281. }
  15282. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15283. GGML_ASSERT(cgraph->grads != NULL);
  15284. for (int i = 0; i < cgraph->n_nodes; i++) {
  15285. struct ggml_tensor * grad = cgraph->grads[i];
  15286. if (grad) {
  15287. ggml_set_zero(grad);
  15288. }
  15289. }
  15290. }
  15291. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15292. cgraph->n_leafs = 0;
  15293. cgraph->n_nodes = 0;
  15294. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15295. }
  15296. //
  15297. // thread data
  15298. //
  15299. // synchronization is done via busy loops
  15300. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15301. //
  15302. #ifdef __APPLE__
  15303. //#include <os/lock.h>
  15304. //
  15305. //typedef os_unfair_lock ggml_lock_t;
  15306. //
  15307. //#define ggml_lock_init(x) UNUSED(x)
  15308. //#define ggml_lock_destroy(x) UNUSED(x)
  15309. //#define ggml_lock_lock os_unfair_lock_lock
  15310. //#define ggml_lock_unlock os_unfair_lock_unlock
  15311. //
  15312. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15313. typedef int ggml_lock_t;
  15314. #define ggml_lock_init(x) UNUSED(x)
  15315. #define ggml_lock_destroy(x) UNUSED(x)
  15316. #define ggml_lock_lock(x) UNUSED(x)
  15317. #define ggml_lock_unlock(x) UNUSED(x)
  15318. #define GGML_LOCK_INITIALIZER 0
  15319. #define ggml_thread_create pthread_create
  15320. #define ggml_thread_join pthread_join
  15321. #else
  15322. //typedef pthread_spinlock_t ggml_lock_t;
  15323. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15324. //#define ggml_lock_destroy pthread_spin_destroy
  15325. //#define ggml_lock_lock pthread_spin_lock
  15326. //#define ggml_lock_unlock pthread_spin_unlock
  15327. typedef int ggml_lock_t;
  15328. #define ggml_lock_init(x) UNUSED(x)
  15329. #define ggml_lock_destroy(x) UNUSED(x)
  15330. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15331. #define ggml_lock_lock(x) _mm_pause()
  15332. #else
  15333. #define ggml_lock_lock(x) UNUSED(x)
  15334. #endif
  15335. #define ggml_lock_unlock(x) UNUSED(x)
  15336. #define GGML_LOCK_INITIALIZER 0
  15337. #define ggml_thread_create pthread_create
  15338. #define ggml_thread_join pthread_join
  15339. #endif
  15340. // Android's libc implementation "bionic" does not support setting affinity
  15341. #if defined(__gnu_linux__)
  15342. static void set_numa_thread_affinity(int thread_n) {
  15343. if (!ggml_is_numa()) {
  15344. return;
  15345. }
  15346. int node_num;
  15347. int rv;
  15348. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15349. switch(g_state.numa.numa_strategy) {
  15350. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15351. // run thread on node_num thread_n / (threads per node)
  15352. node_num = thread_n % g_state.numa.n_nodes;
  15353. break;
  15354. case GGML_NUMA_STRATEGY_ISOLATE:
  15355. // run thread on current_node
  15356. node_num = g_state.numa.current_node;
  15357. break;
  15358. case GGML_NUMA_STRATEGY_NUMACTL:
  15359. // use the cpuset that numactl gave us
  15360. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15361. if (rv) {
  15362. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15363. }
  15364. return;
  15365. default:
  15366. return;
  15367. }
  15368. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15369. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15370. CPU_ZERO_S(setsize, cpus);
  15371. for (size_t i = 0; i < node->n_cpus; ++i) {
  15372. CPU_SET_S(node->cpus[i], setsize, cpus);
  15373. }
  15374. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15375. if (rv) {
  15376. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15377. }
  15378. CPU_FREE(cpus);
  15379. }
  15380. static void clear_numa_thread_affinity(void) {
  15381. if (!ggml_is_numa()) {
  15382. return;
  15383. }
  15384. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15385. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15386. CPU_ZERO_S(setsize, cpus);
  15387. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15388. CPU_SET_S(i, setsize, cpus);
  15389. }
  15390. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15391. if (rv) {
  15392. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15393. }
  15394. CPU_FREE(cpus);
  15395. }
  15396. #else
  15397. // TODO: Windows etc.
  15398. // (the linux implementation may also work on BSD, someone should test)
  15399. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15400. static void clear_numa_thread_affinity(void) {}
  15401. #endif
  15402. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15403. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15404. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15405. node->perf_runs++;
  15406. node->perf_cycles += cycles_cur;
  15407. node->perf_time_us += time_us_cur;
  15408. }
  15409. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15410. int n_tasks = 0;
  15411. if (ggml_is_empty(node)) {
  15412. // no need to multi-thread a no-op
  15413. n_tasks = 1;
  15414. return n_tasks;
  15415. }
  15416. switch (node->op) {
  15417. case GGML_OP_CPY:
  15418. case GGML_OP_DUP:
  15419. case GGML_OP_CONT:
  15420. case GGML_OP_ADD:
  15421. case GGML_OP_ADD1:
  15422. case GGML_OP_ACC:
  15423. {
  15424. n_tasks = n_threads;
  15425. } break;
  15426. case GGML_OP_SUB:
  15427. case GGML_OP_SQR:
  15428. case GGML_OP_SQRT:
  15429. case GGML_OP_LOG:
  15430. case GGML_OP_SUM:
  15431. case GGML_OP_SUM_ROWS:
  15432. case GGML_OP_MEAN:
  15433. case GGML_OP_ARGMAX:
  15434. case GGML_OP_REPEAT:
  15435. case GGML_OP_REPEAT_BACK:
  15436. case GGML_OP_LEAKY_RELU:
  15437. {
  15438. n_tasks = 1;
  15439. } break;
  15440. case GGML_OP_UNARY:
  15441. switch (ggml_get_unary_op(node)) {
  15442. case GGML_UNARY_OP_ABS:
  15443. case GGML_UNARY_OP_SGN:
  15444. case GGML_UNARY_OP_NEG:
  15445. case GGML_UNARY_OP_STEP:
  15446. case GGML_UNARY_OP_TANH:
  15447. case GGML_UNARY_OP_ELU:
  15448. case GGML_UNARY_OP_RELU:
  15449. case GGML_UNARY_OP_SIGMOID:
  15450. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15451. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15452. {
  15453. n_tasks = 1;
  15454. } break;
  15455. case GGML_UNARY_OP_GELU:
  15456. case GGML_UNARY_OP_GELU_QUICK:
  15457. case GGML_UNARY_OP_SILU:
  15458. {
  15459. n_tasks = n_threads;
  15460. } break;
  15461. default:
  15462. GGML_ASSERT(false);
  15463. }
  15464. break;
  15465. case GGML_OP_SILU_BACK:
  15466. case GGML_OP_MUL:
  15467. case GGML_OP_DIV:
  15468. case GGML_OP_NORM:
  15469. case GGML_OP_RMS_NORM:
  15470. case GGML_OP_RMS_NORM_BACK:
  15471. case GGML_OP_GROUP_NORM:
  15472. case GGML_OP_CONCAT:
  15473. {
  15474. n_tasks = n_threads;
  15475. } break;
  15476. case GGML_OP_MUL_MAT:
  15477. {
  15478. n_tasks = n_threads;
  15479. // TODO: use different scheduling for different matrix sizes
  15480. //const int nr0 = ggml_nrows(node->src[0]);
  15481. //const int nr1 = ggml_nrows(node->src[1]);
  15482. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15483. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15484. } break;
  15485. case GGML_OP_MUL_MAT_ID:
  15486. {
  15487. n_tasks = n_threads;
  15488. } break;
  15489. case GGML_OP_OUT_PROD:
  15490. {
  15491. n_tasks = n_threads;
  15492. } break;
  15493. case GGML_OP_GET_ROWS:
  15494. {
  15495. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15496. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15497. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15498. } break;
  15499. case GGML_OP_SCALE:
  15500. case GGML_OP_SET:
  15501. case GGML_OP_RESHAPE:
  15502. case GGML_OP_VIEW:
  15503. case GGML_OP_PERMUTE:
  15504. case GGML_OP_TRANSPOSE:
  15505. case GGML_OP_GET_ROWS_BACK:
  15506. case GGML_OP_DIAG:
  15507. {
  15508. n_tasks = 1;
  15509. } break;
  15510. case GGML_OP_DIAG_MASK_ZERO:
  15511. case GGML_OP_DIAG_MASK_INF:
  15512. case GGML_OP_SOFT_MAX_BACK:
  15513. case GGML_OP_ROPE:
  15514. case GGML_OP_ROPE_BACK:
  15515. case GGML_OP_ADD_REL_POS:
  15516. {
  15517. n_tasks = n_threads;
  15518. } break;
  15519. case GGML_OP_CLAMP:
  15520. {
  15521. n_tasks = 1; //TODO
  15522. } break;
  15523. case GGML_OP_SOFT_MAX:
  15524. {
  15525. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15526. } break;
  15527. case GGML_OP_CONV_TRANSPOSE_1D:
  15528. {
  15529. n_tasks = n_threads;
  15530. } break;
  15531. case GGML_OP_IM2COL:
  15532. {
  15533. n_tasks = n_threads;
  15534. } break;
  15535. case GGML_OP_CONV_TRANSPOSE_2D:
  15536. {
  15537. n_tasks = n_threads;
  15538. } break;
  15539. case GGML_OP_POOL_1D:
  15540. case GGML_OP_POOL_2D:
  15541. {
  15542. n_tasks = 1;
  15543. } break;
  15544. case GGML_OP_UPSCALE:
  15545. {
  15546. n_tasks = n_threads;
  15547. } break;
  15548. case GGML_OP_PAD:
  15549. {
  15550. n_tasks = n_threads;
  15551. } break;
  15552. case GGML_OP_ARANGE:
  15553. {
  15554. n_tasks = n_threads;
  15555. } break;
  15556. case GGML_OP_TIMESTEP_EMBEDDING:
  15557. {
  15558. n_tasks = n_threads;
  15559. } break;
  15560. case GGML_OP_ARGSORT:
  15561. {
  15562. n_tasks = n_threads;
  15563. } break;
  15564. case GGML_OP_FLASH_ATTN_EXT:
  15565. {
  15566. n_tasks = n_threads;
  15567. } break;
  15568. case GGML_OP_FLASH_ATTN_BACK:
  15569. {
  15570. n_tasks = n_threads;
  15571. } break;
  15572. case GGML_OP_SSM_CONV:
  15573. case GGML_OP_SSM_SCAN:
  15574. {
  15575. n_tasks = n_threads;
  15576. } break;
  15577. case GGML_OP_WIN_PART:
  15578. case GGML_OP_WIN_UNPART:
  15579. case GGML_OP_GET_REL_POS:
  15580. case GGML_OP_MAP_UNARY:
  15581. case GGML_OP_MAP_BINARY:
  15582. case GGML_OP_MAP_CUSTOM1_F32:
  15583. case GGML_OP_MAP_CUSTOM2_F32:
  15584. case GGML_OP_MAP_CUSTOM3_F32:
  15585. {
  15586. n_tasks = 1;
  15587. } break;
  15588. case GGML_OP_MAP_CUSTOM1:
  15589. {
  15590. struct ggml_map_custom1_op_params p;
  15591. memcpy(&p, node->op_params, sizeof(p));
  15592. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15593. n_tasks = n_threads;
  15594. } else {
  15595. n_tasks = MIN(p.n_tasks, n_threads);
  15596. }
  15597. } break;
  15598. case GGML_OP_MAP_CUSTOM2:
  15599. {
  15600. struct ggml_map_custom2_op_params p;
  15601. memcpy(&p, node->op_params, sizeof(p));
  15602. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15603. n_tasks = n_threads;
  15604. } else {
  15605. n_tasks = MIN(p.n_tasks, n_threads);
  15606. }
  15607. } break;
  15608. case GGML_OP_MAP_CUSTOM3:
  15609. {
  15610. struct ggml_map_custom3_op_params p;
  15611. memcpy(&p, node->op_params, sizeof(p));
  15612. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15613. n_tasks = n_threads;
  15614. } else {
  15615. n_tasks = MIN(p.n_tasks, n_threads);
  15616. }
  15617. } break;
  15618. case GGML_OP_CROSS_ENTROPY_LOSS:
  15619. {
  15620. n_tasks = n_threads;
  15621. } break;
  15622. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15623. {
  15624. n_tasks = n_threads;
  15625. } break;
  15626. case GGML_OP_NONE:
  15627. {
  15628. n_tasks = 1;
  15629. } break;
  15630. case GGML_OP_COUNT:
  15631. {
  15632. GGML_ASSERT(false);
  15633. } break;
  15634. default:
  15635. {
  15636. fprintf(stderr, "%s: op not implemented: ", __func__);
  15637. if (node->op < GGML_OP_COUNT) {
  15638. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15639. } else {
  15640. fprintf(stderr, "%d\n", node->op);
  15641. }
  15642. GGML_ASSERT(false);
  15643. } break;
  15644. }
  15645. assert(n_tasks > 0);
  15646. return n_tasks;
  15647. }
  15648. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15649. // wait for other threads to finish
  15650. const int last_node_n = * node_n;
  15651. while (true) {
  15652. if (do_yield) {
  15653. sched_yield();
  15654. }
  15655. *node_n = atomic_load(&state->shared->node_n);
  15656. if (*node_n != last_node_n) {
  15657. break;
  15658. }
  15659. #if defined(__SSE3__)
  15660. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15661. _mm_pause();
  15662. #endif
  15663. }
  15664. }
  15665. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15666. // wait for other threads to finish
  15667. const int last_task_phase = *task_phase;
  15668. while (true) {
  15669. if (do_yield) {
  15670. sched_yield();
  15671. }
  15672. *task_phase = atomic_load(&state->shared->node_task);
  15673. if (*task_phase != last_task_phase) {
  15674. break;
  15675. }
  15676. #if defined(__SSE3__)
  15677. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15678. _mm_pause();
  15679. #endif
  15680. }
  15681. }
  15682. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15683. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15684. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15685. const struct ggml_cplan * cplan = state->shared->cplan;
  15686. const int n_threads = state->shared->n_threads;
  15687. set_numa_thread_affinity(state->ith);
  15688. int node_n = -1;
  15689. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15690. while (true) {
  15691. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15692. state->shared->node_n += 1;
  15693. state->ec = GGML_STATUS_ABORTED;
  15694. return 0;
  15695. }
  15696. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15697. // all other threads are finished and spinning
  15698. // do finalize and init here so we don't have synchronize again
  15699. struct ggml_compute_params params = {
  15700. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15701. /*.ith =*/ 0,
  15702. /*.nth =*/ 0,
  15703. /*.wsize =*/ cplan->work_size,
  15704. /*.wdata =*/ cplan->work_data,
  15705. };
  15706. if (node_n != -1) {
  15707. /* FINALIZE */
  15708. struct ggml_tensor * node = cgraph->nodes[node_n];
  15709. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15710. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15711. ggml_compute_forward(&params, node, state);
  15712. }
  15713. ggml_graph_compute_perf_stats_node(node, state->shared);
  15714. }
  15715. // distribute new work or execute it direct if 1T
  15716. while (++node_n < cgraph->n_nodes) {
  15717. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15718. struct ggml_tensor * node = cgraph->nodes[node_n];
  15719. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15720. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15721. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15722. params.nth = n_tasks;
  15723. if (n_tasks == 1) {
  15724. /* INIT */
  15725. if (GGML_OP_HAS_INIT[node->op]) {
  15726. params.type = GGML_TASK_TYPE_INIT;
  15727. ggml_compute_forward(&params, node, state);
  15728. }
  15729. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15730. // they do something more efficient than spinning (?)
  15731. params.type = GGML_TASK_TYPE_COMPUTE;
  15732. ggml_compute_forward(&params, node, state);
  15733. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15734. params.type = GGML_TASK_TYPE_FINALIZE;
  15735. ggml_compute_forward(&params, node, state);
  15736. }
  15737. ggml_graph_compute_perf_stats_node(node, state->shared);
  15738. } else {
  15739. break;
  15740. }
  15741. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15742. break;
  15743. }
  15744. }
  15745. task_phase = GGML_TASK_TYPE_INIT;
  15746. atomic_store(&state->shared->n_active, n_threads);
  15747. atomic_store(&state->shared->node_n, node_n);
  15748. atomic_store(&state->shared->node_task, task_phase);
  15749. } else {
  15750. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15751. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15752. }
  15753. // check if we should stop
  15754. if (node_n >= cgraph->n_nodes) break;
  15755. /* INIT & COMPUTE */
  15756. struct ggml_tensor * node = cgraph->nodes[node_n];
  15757. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15758. struct ggml_compute_params params = {
  15759. /*.type =*/ GGML_TASK_TYPE_INIT,
  15760. /*.ith =*/ state->ith,
  15761. /*.nth =*/ n_tasks,
  15762. /*.wsize =*/ cplan->work_size,
  15763. /*.wdata =*/ cplan->work_data,
  15764. };
  15765. if (state->ith < n_tasks) {
  15766. if (GGML_OP_HAS_INIT[node->op]) {
  15767. ggml_compute_forward(&params, node, state);
  15768. }
  15769. }
  15770. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15771. task_phase = GGML_TASK_TYPE_COMPUTE;
  15772. atomic_store(&state->shared->n_active, n_threads);
  15773. atomic_store(&state->shared->node_task, task_phase);
  15774. }
  15775. else {
  15776. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15777. // depending on the workload and the operating system.
  15778. // since it is not clear what is the best approach, it should potentially become user-configurable
  15779. // ref: https://github.com/ggerganov/ggml/issues/291
  15780. // UPD: adding the do_yield flag seems to resolve the issue universally
  15781. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15782. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15783. }
  15784. if (state->ith < n_tasks) {
  15785. params.type = GGML_TASK_TYPE_COMPUTE;
  15786. ggml_compute_forward(&params, node, state);
  15787. }
  15788. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15789. task_phase = GGML_TASK_TYPE_FINALIZE;
  15790. atomic_store(&state->shared->n_active, n_threads);
  15791. atomic_store(&state->shared->node_task, task_phase);
  15792. }
  15793. else {
  15794. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15795. }
  15796. }
  15797. return 0;
  15798. }
  15799. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15800. if (n_threads <= 0) {
  15801. n_threads = GGML_DEFAULT_N_THREADS;
  15802. }
  15803. size_t work_size = 0;
  15804. struct ggml_cplan cplan;
  15805. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15806. int max_tasks = 1;
  15807. // thread scheduling for the different operations + work buffer size estimation
  15808. for (int i = 0; i < cgraph->n_nodes; i++) {
  15809. struct ggml_tensor * node = cgraph->nodes[i];
  15810. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15811. max_tasks = MAX(max_tasks, n_tasks);
  15812. size_t cur = 0;
  15813. switch (node->op) {
  15814. case GGML_OP_CPY:
  15815. case GGML_OP_DUP:
  15816. {
  15817. if (ggml_is_quantized(node->type) ||
  15818. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  15819. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  15820. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  15821. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15822. }
  15823. } break;
  15824. case GGML_OP_ADD:
  15825. case GGML_OP_ADD1:
  15826. {
  15827. if (ggml_is_quantized(node->src[0]->type)) {
  15828. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15829. }
  15830. } break;
  15831. case GGML_OP_ACC:
  15832. {
  15833. if (ggml_is_quantized(node->src[0]->type)) {
  15834. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15835. }
  15836. } break;
  15837. case GGML_OP_MUL_MAT:
  15838. {
  15839. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15840. if (node->src[1]->type != vec_dot_type) {
  15841. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15842. }
  15843. } break;
  15844. case GGML_OP_MUL_MAT_ID:
  15845. {
  15846. cur = 0;
  15847. const struct ggml_tensor * src0 = node->src[0];
  15848. const struct ggml_tensor * src1 = node->src[1];
  15849. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15850. if (src1->type != vec_dot_type) {
  15851. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15852. }
  15853. const int n_as = src0->ne[2];
  15854. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15855. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15856. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15857. } break;
  15858. case GGML_OP_OUT_PROD:
  15859. {
  15860. if (ggml_is_quantized(node->src[0]->type)) {
  15861. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15862. }
  15863. } break;
  15864. case GGML_OP_SOFT_MAX:
  15865. case GGML_OP_ROPE:
  15866. {
  15867. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15868. } break;
  15869. case GGML_OP_CONV_TRANSPOSE_1D:
  15870. {
  15871. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15872. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15873. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15874. const int64_t ne00 = node->src[0]->ne[0]; // K
  15875. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15876. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15877. const int64_t ne10 = node->src[1]->ne[0]; // L
  15878. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15879. if ((node->src[0]->type == GGML_TYPE_F16 ||
  15880. node->src[0]->type == GGML_TYPE_BF16) &&
  15881. node->src[1]->type == GGML_TYPE_F32) {
  15882. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15883. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15884. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15885. node->src[1]->type == GGML_TYPE_F32) {
  15886. cur += sizeof(float)*ne00*ne01*ne02;
  15887. cur += sizeof(float)*ne10*ne11;
  15888. } else {
  15889. GGML_ASSERT(false);
  15890. }
  15891. } break;
  15892. case GGML_OP_CONV_TRANSPOSE_2D:
  15893. {
  15894. const int64_t ne00 = node->src[0]->ne[0]; // W
  15895. const int64_t ne01 = node->src[0]->ne[1]; // H
  15896. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15897. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15898. const int64_t ne10 = node->src[1]->ne[0]; // W
  15899. const int64_t ne11 = node->src[1]->ne[1]; // H
  15900. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15901. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15902. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15903. } break;
  15904. case GGML_OP_FLASH_ATTN_EXT:
  15905. {
  15906. const int64_t ne00 = node->src[0]->ne[0]; // D
  15907. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  15908. } break;
  15909. case GGML_OP_FLASH_ATTN_BACK:
  15910. {
  15911. const int64_t D = node->src[0]->ne[0];
  15912. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15913. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15914. if (node->src[1]->type == GGML_TYPE_F32) {
  15915. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15916. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15917. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15918. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15919. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15920. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  15921. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15922. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15923. }
  15924. } break;
  15925. case GGML_OP_CROSS_ENTROPY_LOSS:
  15926. {
  15927. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15928. } break;
  15929. case GGML_OP_COUNT:
  15930. {
  15931. GGML_ASSERT(false);
  15932. } break;
  15933. default:
  15934. break;
  15935. }
  15936. work_size = MAX(work_size, cur);
  15937. }
  15938. if (work_size > 0) {
  15939. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15940. }
  15941. cplan.n_threads = MIN(max_tasks, n_threads);
  15942. cplan.work_size = work_size;
  15943. cplan.work_data = NULL;
  15944. return cplan;
  15945. }
  15946. static enum ggml_status ggml_graph_compute_parallel(struct ggml_compute_state * workers, int n_threads) {
  15947. enum ggml_status compute_status = GGML_STATUS_SUCCESS;
  15948. #ifdef GGML_USE_OPENMP
  15949. if (n_threads > 1) {
  15950. #pragma omp parallel num_threads(n_threads)
  15951. {
  15952. #pragma omp single
  15953. {
  15954. // update the number of threads from the actual number of threads that we got from OpenMP
  15955. n_threads = omp_get_num_threads();
  15956. workers[0].shared->n_threads = n_threads;
  15957. workers[0].shared->n_active = n_threads;
  15958. }
  15959. ggml_graph_compute_thread(&workers[omp_get_thread_num()]);
  15960. }
  15961. } else {
  15962. ggml_graph_compute_thread(&workers[0]);
  15963. }
  15964. #else
  15965. // create thread pool
  15966. if (n_threads > 1) {
  15967. for (int j = 1; j < n_threads; ++j) {
  15968. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15969. GGML_ASSERT(rc == 0);
  15970. UNUSED(rc);
  15971. }
  15972. }
  15973. // this is a work thread too
  15974. ggml_graph_compute_thread(&workers[0]);
  15975. // join or kill thread pool
  15976. if (n_threads > 1) {
  15977. for (int j = 1; j < n_threads; j++) {
  15978. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15979. GGML_ASSERT(rc == 0);
  15980. UNUSED(rc);
  15981. }
  15982. }
  15983. #endif
  15984. // don't leave affinity set on the main thread
  15985. clear_numa_thread_affinity();
  15986. for (int j = 0; j < n_threads; j++) {
  15987. if (workers[j].ec != GGML_STATUS_SUCCESS) {
  15988. compute_status = workers[j].ec;
  15989. break;
  15990. }
  15991. }
  15992. return compute_status;
  15993. }
  15994. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15995. {
  15996. GGML_ASSERT(cplan);
  15997. GGML_ASSERT(cplan->n_threads > 0);
  15998. if (cplan->work_size > 0) {
  15999. GGML_ASSERT(cplan->work_data);
  16000. }
  16001. }
  16002. int n_threads = cplan->n_threads;
  16003. #if defined(GGML_USE_OPENMP)
  16004. n_threads = MIN(n_threads, omp_get_max_threads());
  16005. #endif
  16006. struct ggml_compute_state_shared state_shared = {
  16007. /*.cgraph =*/ cgraph,
  16008. /*.cgraph_plan =*/ cplan,
  16009. /*.perf_node_start_cycles =*/ 0,
  16010. /*.perf_node_start_time_us =*/ 0,
  16011. /*.n_threads =*/ n_threads,
  16012. /*.n_active =*/ n_threads,
  16013. /*.node_n =*/ -1,
  16014. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16015. /*.abort_callback =*/ NULL,
  16016. /*.abort_callback_data =*/ NULL,
  16017. /*.current_chunk; =*/ 0,
  16018. };
  16019. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16020. const int64_t perf_start_cycles = ggml_perf_cycles();
  16021. const int64_t perf_start_time_us = ggml_perf_time_us();
  16022. for (int j = 0; j < n_threads; ++j) {
  16023. workers[j] = (struct ggml_compute_state) {
  16024. .thrd = 0,
  16025. .ith = j,
  16026. .shared = &state_shared,
  16027. .ec = GGML_STATUS_SUCCESS,
  16028. };
  16029. }
  16030. enum ggml_status compute_status = ggml_graph_compute_parallel(workers, n_threads);
  16031. // performance stats (graph)
  16032. {
  16033. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16034. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16035. cgraph->perf_runs++;
  16036. cgraph->perf_cycles += perf_cycles_cur;
  16037. cgraph->perf_time_us += perf_time_us_cur;
  16038. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16039. __func__, cgraph->perf_runs,
  16040. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16041. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16042. (double) perf_time_us_cur / 1000.0,
  16043. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16044. }
  16045. return compute_status;
  16046. }
  16047. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16048. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16049. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16050. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16051. return ggml_graph_compute(cgraph, &cplan);
  16052. }
  16053. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16054. for (int i = 0; i < cgraph->n_leafs; i++) {
  16055. struct ggml_tensor * leaf = cgraph->leafs[i];
  16056. if (strcmp(leaf->name, name) == 0) {
  16057. return leaf;
  16058. }
  16059. }
  16060. for (int i = 0; i < cgraph->n_nodes; i++) {
  16061. struct ggml_tensor * node = cgraph->nodes[i];
  16062. if (strcmp(node->name, name) == 0) {
  16063. return node;
  16064. }
  16065. }
  16066. return NULL;
  16067. }
  16068. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16069. const int64_t * ne = tensor->ne;
  16070. const size_t * nb = tensor->nb;
  16071. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16072. ggml_type_name(tensor->type),
  16073. ggml_op_name (tensor->op),
  16074. ggml_n_dims(tensor),
  16075. ne[0], ne[1], ne[2], ne[3],
  16076. nb[0], nb[1], nb[2], nb[3],
  16077. tensor->data,
  16078. tensor->name);
  16079. }
  16080. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16081. const int64_t * ne = tensor->ne;
  16082. const size_t * nb = tensor->nb;
  16083. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16084. arg,
  16085. ggml_type_name(tensor->type),
  16086. ggml_op_name (tensor->op),
  16087. ggml_n_dims(tensor),
  16088. ne[0], ne[1], ne[2], ne[3],
  16089. nb[0], nb[1], nb[2], nb[3],
  16090. tensor->data,
  16091. tensor->name);
  16092. }
  16093. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16094. uint64_t size_eval = 0;
  16095. // compute size of intermediate results
  16096. // TODO: does not take into account scratch buffers !!!!
  16097. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16098. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16099. }
  16100. // print
  16101. {
  16102. FILE * fout = stdout;
  16103. fprintf(fout, "\n");
  16104. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16105. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16106. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16107. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16108. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16109. // header
  16110. fprintf(fout, "\n");
  16111. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16112. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16113. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16114. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16115. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16116. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16117. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16118. }
  16119. // header
  16120. fprintf(fout, "\n");
  16121. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16122. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16123. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16124. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16125. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16126. if (cgraph->nodes[i]->src[j]) {
  16127. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16128. }
  16129. }
  16130. fprintf(fout, "\n");
  16131. }
  16132. fprintf(fout, "\n");
  16133. }
  16134. // write binary data
  16135. {
  16136. FILE * fout = ggml_fopen(fname, "wb");
  16137. if (!fout) {
  16138. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16139. return;
  16140. }
  16141. // header
  16142. {
  16143. const uint32_t magic = GGML_FILE_MAGIC;
  16144. const uint32_t version = GGML_FILE_VERSION;
  16145. const uint32_t n_leafs = cgraph->n_leafs;
  16146. const uint32_t n_nodes = cgraph->n_nodes;
  16147. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16148. fwrite(&version, sizeof(uint32_t), 1, fout);
  16149. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16150. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16151. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16152. }
  16153. // leafs
  16154. {
  16155. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16156. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16157. const uint32_t type = tensor->type;
  16158. const uint32_t op = tensor->op;
  16159. fwrite(&type, sizeof(uint32_t), 1, fout);
  16160. fwrite(&op, sizeof(uint32_t), 1, fout);
  16161. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16162. const uint64_t ne = tensor->ne[j];
  16163. const uint64_t nb = tensor->nb[j];
  16164. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16165. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16166. }
  16167. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16168. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16169. // dump the data
  16170. // TODO: pad this to 32 byte boundary
  16171. {
  16172. const size_t size = ggml_nbytes(tensor);
  16173. fwrite(tensor->data, sizeof(char), size, fout);
  16174. }
  16175. }
  16176. }
  16177. // nodes
  16178. {
  16179. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16180. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16181. const uint32_t type = tensor->type;
  16182. const uint32_t op = tensor->op;
  16183. fwrite(&type, sizeof(uint32_t), 1, fout);
  16184. fwrite(&op, sizeof(uint32_t), 1, fout);
  16185. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16186. const uint64_t ne = tensor->ne[j];
  16187. const uint64_t nb = tensor->nb[j];
  16188. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16189. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16190. }
  16191. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16192. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16193. // output the op arguments
  16194. {
  16195. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16196. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16197. args[j] = tensor->src[j];
  16198. }
  16199. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16200. if (args[j]) {
  16201. int32_t idx = -1;
  16202. // check if leaf
  16203. {
  16204. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16205. if (args[j] == cgraph->leafs[k]) {
  16206. idx = k;
  16207. break;
  16208. }
  16209. }
  16210. }
  16211. // check if node
  16212. if (idx == -1) {
  16213. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16214. if (args[j] == cgraph->nodes[k]) {
  16215. idx = cgraph->n_leafs + k;
  16216. break;
  16217. }
  16218. }
  16219. }
  16220. if (idx == -1) {
  16221. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16222. fclose(fout);
  16223. return;
  16224. }
  16225. fwrite(&idx, sizeof(int32_t), 1, fout);
  16226. } else {
  16227. const int32_t nul = -1;
  16228. fwrite(&nul, sizeof(int32_t), 1, fout);
  16229. }
  16230. }
  16231. }
  16232. }
  16233. }
  16234. fclose(fout);
  16235. }
  16236. }
  16237. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16238. assert(*ctx_data == NULL);
  16239. assert(*ctx_eval == NULL);
  16240. struct ggml_cgraph * result = NULL;
  16241. struct ggml_tensor * data = NULL;
  16242. // read file into data
  16243. {
  16244. FILE * fin = ggml_fopen(fname, "rb");
  16245. if (!fin) {
  16246. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16247. return result;
  16248. }
  16249. size_t fsize = 0;
  16250. fseek(fin, 0, SEEK_END);
  16251. fsize = ftell(fin);
  16252. fseek(fin, 0, SEEK_SET);
  16253. // create the data context
  16254. {
  16255. const size_t overhead = 1*ggml_tensor_overhead();
  16256. struct ggml_init_params params = {
  16257. .mem_size = fsize + overhead,
  16258. .mem_buffer = NULL,
  16259. .no_alloc = false,
  16260. };
  16261. *ctx_data = ggml_init(params);
  16262. if (!*ctx_data) {
  16263. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16264. fclose(fin);
  16265. return result;
  16266. }
  16267. }
  16268. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16269. {
  16270. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16271. if (ret != fsize) {
  16272. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16273. fclose(fin);
  16274. return result;
  16275. }
  16276. }
  16277. fclose(fin);
  16278. }
  16279. // populate result
  16280. {
  16281. char * ptr = (char *) data->data;
  16282. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16283. if (magic != GGML_FILE_MAGIC) {
  16284. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16285. return result;
  16286. }
  16287. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16288. if (version != GGML_FILE_VERSION) {
  16289. fprintf(stderr, "%s: invalid version number\n", __func__);
  16290. return result;
  16291. }
  16292. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16293. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16294. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16295. const int graph_size = MAX(n_leafs, n_nodes);
  16296. // create the data context
  16297. {
  16298. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16299. struct ggml_init_params params = {
  16300. .mem_size = size_eval + overhead,
  16301. .mem_buffer = NULL,
  16302. .no_alloc = true,
  16303. };
  16304. *ctx_eval = ggml_init(params);
  16305. if (!*ctx_eval) {
  16306. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16307. return result;
  16308. }
  16309. }
  16310. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16311. result->n_leafs = n_leafs;
  16312. result->n_nodes = n_nodes;
  16313. // leafs
  16314. {
  16315. uint32_t type;
  16316. uint32_t op;
  16317. for (uint32_t i = 0; i < n_leafs; ++i) {
  16318. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16319. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16320. int64_t ne[GGML_MAX_DIMS];
  16321. size_t nb[GGML_MAX_DIMS];
  16322. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16323. uint64_t ne_cur;
  16324. uint64_t nb_cur;
  16325. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16326. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16327. ne[j] = ne_cur;
  16328. nb[j] = nb_cur;
  16329. }
  16330. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16331. tensor->op = (enum ggml_op) op;
  16332. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16333. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16334. tensor->data = (void *) ptr;
  16335. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16336. tensor->nb[j] = nb[j];
  16337. }
  16338. result->leafs[i] = tensor;
  16339. ptr += ggml_nbytes(tensor);
  16340. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16341. }
  16342. }
  16343. ggml_set_no_alloc(*ctx_eval, false);
  16344. // nodes
  16345. {
  16346. uint32_t type;
  16347. uint32_t op;
  16348. for (uint32_t i = 0; i < n_nodes; ++i) {
  16349. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16350. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16351. enum ggml_op eop = (enum ggml_op) op;
  16352. int64_t ne[GGML_MAX_DIMS];
  16353. size_t nb[GGML_MAX_DIMS];
  16354. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16355. uint64_t ne_cur;
  16356. uint64_t nb_cur;
  16357. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16358. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16359. ne[j] = ne_cur;
  16360. nb[j] = nb_cur;
  16361. }
  16362. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16363. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16364. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16365. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16366. // parse args
  16367. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16368. const int32_t arg_idx = ptr_arg_idx[j];
  16369. if (arg_idx == -1) {
  16370. continue;
  16371. }
  16372. if (arg_idx < result->n_leafs) {
  16373. args[j] = result->leafs[arg_idx];
  16374. } else {
  16375. args[j] = result->nodes[arg_idx - result->n_leafs];
  16376. }
  16377. }
  16378. // create the tensor
  16379. // "view" operations are handled differently
  16380. // TODO: handle inplace ops - currently a copy is always made
  16381. struct ggml_tensor * tensor = NULL;
  16382. switch (eop) {
  16383. // TODO: implement other view ops
  16384. case GGML_OP_RESHAPE:
  16385. {
  16386. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16387. } break;
  16388. case GGML_OP_VIEW:
  16389. {
  16390. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16391. size_t offs;
  16392. memcpy(&offs, ptr_op_params, sizeof(offs));
  16393. tensor->data = ((char *) tensor->data) + offs;
  16394. } break;
  16395. case GGML_OP_TRANSPOSE:
  16396. {
  16397. tensor = ggml_transpose(*ctx_eval, args[0]);
  16398. } break;
  16399. case GGML_OP_PERMUTE:
  16400. {
  16401. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16402. } break;
  16403. default:
  16404. {
  16405. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16406. tensor->op = eop;
  16407. } break;
  16408. }
  16409. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16410. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16411. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16412. tensor->nb[j] = nb[j];
  16413. }
  16414. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16415. tensor->src[j] = args[j];
  16416. }
  16417. result->nodes[i] = tensor;
  16418. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16419. }
  16420. }
  16421. }
  16422. return result;
  16423. }
  16424. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16425. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16426. GGML_PRINT("=== GRAPH ===\n");
  16427. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16428. for (int i = 0; i < cgraph->n_nodes; i++) {
  16429. struct ggml_tensor * node = cgraph->nodes[i];
  16430. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16431. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16432. i,
  16433. node->ne[0], node->ne[1], node->ne[2],
  16434. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16435. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16436. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16437. (double) node->perf_time_us / 1000.0,
  16438. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16439. }
  16440. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16441. for (int i = 0; i < cgraph->n_leafs; i++) {
  16442. struct ggml_tensor * node = cgraph->leafs[i];
  16443. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16444. i,
  16445. node->ne[0], node->ne[1],
  16446. ggml_op_name(node->op),
  16447. ggml_get_name(node));
  16448. }
  16449. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16450. if (perf_total_per_op_us[i] == 0) {
  16451. continue;
  16452. }
  16453. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16454. }
  16455. GGML_PRINT("========================================\n");
  16456. }
  16457. // check if node is part of the graph
  16458. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16459. if (cgraph == NULL) {
  16460. return true;
  16461. }
  16462. for (int i = 0; i < cgraph->n_nodes; i++) {
  16463. if (cgraph->nodes[i] == node) {
  16464. return true;
  16465. }
  16466. }
  16467. return false;
  16468. }
  16469. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16470. for (int i = 0; i < cgraph->n_nodes; i++) {
  16471. struct ggml_tensor * parent = cgraph->nodes[i];
  16472. if (parent->grad == node) {
  16473. return parent;
  16474. }
  16475. }
  16476. return NULL;
  16477. }
  16478. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16479. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16480. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16481. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16482. gparent0 ? (void *) gparent0 : (void *) parent,
  16483. gparent0 ? "g" : "x",
  16484. gparent ? (void *) gparent : (void *) node,
  16485. gparent ? "g" : "x",
  16486. gparent ? "empty" : "vee",
  16487. gparent ? "dashed" : "solid",
  16488. label);
  16489. }
  16490. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16491. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16492. (void *) parent, "x",
  16493. (void *) node, "x",
  16494. label);
  16495. }
  16496. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16497. char color[16];
  16498. FILE * fp = ggml_fopen(filename, "w");
  16499. GGML_ASSERT(fp);
  16500. fprintf(fp, "digraph G {\n");
  16501. fprintf(fp, " newrank = true;\n");
  16502. fprintf(fp, " rankdir = LR;\n");
  16503. for (int i = 0; i < gb->n_nodes; i++) {
  16504. struct ggml_tensor * node = gb->nodes[i];
  16505. if (ggml_graph_get_parent(gb, node) != NULL) {
  16506. continue;
  16507. }
  16508. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16509. snprintf(color, sizeof(color), "yellow");
  16510. } else if (node->grad) {
  16511. if (ggml_graph_find(gf, node)) {
  16512. snprintf(color, sizeof(color), "green");
  16513. } else {
  16514. snprintf(color, sizeof(color), "lightblue");
  16515. }
  16516. } else {
  16517. snprintf(color, sizeof(color), "white");
  16518. }
  16519. fprintf(fp, " \"%p\" [ "
  16520. "style = filled; fillcolor = %s; shape = record; "
  16521. "label=\"",
  16522. (void *) node, color);
  16523. if (strlen(node->name) > 0) {
  16524. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16525. } else {
  16526. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16527. }
  16528. if (ggml_is_matrix(node)) {
  16529. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16530. } else {
  16531. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16532. }
  16533. if (node->grad) {
  16534. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16535. } else {
  16536. fprintf(fp, "\"; ]\n");
  16537. }
  16538. }
  16539. for (int i = 0; i < gb->n_leafs; i++) {
  16540. struct ggml_tensor * node = gb->leafs[i];
  16541. snprintf(color, sizeof(color), "pink");
  16542. fprintf(fp, " \"%p\" [ "
  16543. "style = filled; fillcolor = %s; shape = record; "
  16544. "label=\"<x>",
  16545. (void *) node, color);
  16546. if (strlen(node->name) > 0) {
  16547. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16548. } else {
  16549. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16550. }
  16551. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16552. if (ggml_nelements(node) < 5) {
  16553. fprintf(fp, " | (");
  16554. for (int j = 0; j < ggml_nelements(node); j++) {
  16555. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16556. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16557. }
  16558. else if (node->type == GGML_TYPE_F32 ||
  16559. node->type == GGML_TYPE_F16 ||
  16560. node->type == GGML_TYPE_BF16) {
  16561. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16562. }
  16563. else {
  16564. fprintf(fp, "#");
  16565. }
  16566. if (j < ggml_nelements(node) - 1) {
  16567. fprintf(fp, ", ");
  16568. }
  16569. }
  16570. fprintf(fp, ")");
  16571. }
  16572. fprintf(fp, "\"; ]\n");
  16573. }
  16574. for (int i = 0; i < gb->n_nodes; i++) {
  16575. struct ggml_tensor * node = gb->nodes[i];
  16576. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16577. if (node->src[j]) {
  16578. char label[16];
  16579. snprintf(label, sizeof(label), "src %d", j);
  16580. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16581. }
  16582. }
  16583. }
  16584. for (int i = 0; i < gb->n_leafs; i++) {
  16585. struct ggml_tensor * node = gb->leafs[i];
  16586. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16587. if (node->src[j]) {
  16588. char label[16];
  16589. snprintf(label, sizeof(label), "src %d", j);
  16590. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16591. }
  16592. }
  16593. }
  16594. fprintf(fp, "}\n");
  16595. fclose(fp);
  16596. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16597. }
  16598. ////////////////////////////////////////////////////////////////////////////////
  16599. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16600. int i = 0;
  16601. for (int p = 0; p < np; ++p) {
  16602. const int64_t ne = ggml_nelements(ps[p]) ;
  16603. // TODO: add function to set tensor from array
  16604. for (int64_t j = 0; j < ne; ++j) {
  16605. ggml_set_f32_1d(ps[p], j, x[i++]);
  16606. }
  16607. }
  16608. }
  16609. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16610. int i = 0;
  16611. for (int p = 0; p < np; ++p) {
  16612. const int64_t ne = ggml_nelements(ps[p]) ;
  16613. // TODO: add function to get all elements at once
  16614. for (int64_t j = 0; j < ne; ++j) {
  16615. x[i++] = ggml_get_f32_1d(ps[p], j);
  16616. }
  16617. }
  16618. }
  16619. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16620. int64_t i = 0;
  16621. for (int p = 0; p < np; ++p) {
  16622. const int64_t ne = ggml_nelements(ps[p]) ;
  16623. // TODO: add function to get all elements at once
  16624. for (int64_t j = 0; j < ne; ++j) {
  16625. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16626. }
  16627. }
  16628. }
  16629. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16630. int64_t i = 0;
  16631. for (int p = 0; p < np; ++p) {
  16632. const int64_t ne = ggml_nelements(ps[p]) ;
  16633. // TODO: add function to get all elements at once
  16634. for (int64_t j = 0; j < ne; ++j) {
  16635. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16636. }
  16637. }
  16638. }
  16639. //
  16640. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16641. //
  16642. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16643. //
  16644. static enum ggml_opt_result ggml_opt_adam(
  16645. struct ggml_context * ctx,
  16646. struct ggml_opt_context * opt,
  16647. struct ggml_opt_params params,
  16648. struct ggml_tensor * f,
  16649. struct ggml_cgraph * gf,
  16650. struct ggml_cgraph * gb,
  16651. ggml_opt_callback callback,
  16652. void * callback_data) {
  16653. GGML_ASSERT(ggml_is_scalar(f));
  16654. // these will store the parameters we want to optimize
  16655. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16656. int np = 0;
  16657. int64_t nx = 0;
  16658. for (int i = 0; i < gf->n_nodes; ++i) {
  16659. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16660. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16661. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16662. ps[np++] = gf->nodes[i];
  16663. nx += ggml_nelements(gf->nodes[i]);
  16664. }
  16665. }
  16666. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16667. int iter = opt->iter;
  16668. ggml_opt_init(opt->ctx, opt, params, nx);
  16669. opt->iter = iter;
  16670. }
  16671. // constants
  16672. float sched = params.adam.sched;
  16673. const float alpha = params.adam.alpha;
  16674. const float decay = params.adam.decay * alpha;
  16675. const float beta1 = params.adam.beta1;
  16676. const float beta2 = params.adam.beta2;
  16677. const float eps = params.adam.eps;
  16678. const float gclip = params.adam.gclip;
  16679. const int decay_min_ndim = params.adam.decay_min_ndim;
  16680. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16681. const float accum_norm = 1.0f / (float) n_accum;
  16682. float * g = opt->adam.g->data; // gradients
  16683. float * m = opt->adam.m->data; // first moment
  16684. float * v = opt->adam.v->data; // second moment
  16685. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16686. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16687. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16688. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16689. bool cancel = false;
  16690. // compute the function value
  16691. float fx = 0;
  16692. ggml_set_zero(opt->adam.g);
  16693. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16694. if (callback) {
  16695. callback(callback_data, accum_step, &sched, &cancel);
  16696. if (cancel) {
  16697. return GGML_OPT_RESULT_CANCEL;
  16698. }
  16699. }
  16700. // ggml_graph_reset (gf);
  16701. ggml_set_f32 (f->grad, 1.0f);
  16702. ggml_graph_compute(gb, &cplan);
  16703. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16704. fx += ggml_get_f32_1d(f, 0);
  16705. }
  16706. fx *= accum_norm;
  16707. opt->adam.fx_prev = fx;
  16708. opt->adam.fx_best = opt->adam.fx_prev;
  16709. if (pf) {
  16710. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16711. }
  16712. opt->loss_before = opt->adam.fx_prev;
  16713. opt->loss_after = opt->adam.fx_prev;
  16714. // initialize
  16715. if (opt->just_initialized) {
  16716. opt->adam.n_no_improvement = 0;
  16717. opt->just_initialized = false;
  16718. }
  16719. float * fx_best = &opt->adam.fx_best;
  16720. float * fx_prev = &opt->adam.fx_prev;
  16721. int * n_no_improvement = &opt->adam.n_no_improvement;
  16722. int iter0 = opt->iter;
  16723. // run the optimizer
  16724. for (int t = 0; t < params.adam.n_iter; ++t) {
  16725. opt->iter = iter0 + t + 1;
  16726. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16727. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16728. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16729. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16730. for (int i = 0; i < np; ++i) {
  16731. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16732. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16733. }
  16734. const int64_t t_start_wall = ggml_time_us();
  16735. const int64_t t_start_cpu = ggml_cycles();
  16736. UNUSED(t_start_wall);
  16737. UNUSED(t_start_cpu);
  16738. {
  16739. float gnorm = 1.0f;
  16740. if (gclip > 0.0f) {
  16741. // gradient clipping
  16742. ggml_float sum = 0.0;
  16743. for (int64_t i = 0; i < nx; ++i) {
  16744. sum += (ggml_float)(g[i]*g[i]);
  16745. }
  16746. ggml_float norm = sqrt(sum);
  16747. if (norm > (ggml_float) gclip) {
  16748. gnorm = (float) ((ggml_float) gclip / norm);
  16749. }
  16750. }
  16751. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16752. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16753. int64_t i = 0;
  16754. for (int p = 0; p < np; ++p) {
  16755. const int64_t ne = ggml_nelements(ps[p]);
  16756. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16757. for (int64_t j = 0; j < ne; ++j) {
  16758. float x = ggml_get_f32_1d(ps[p], j);
  16759. float g_ = g[i]*gnorm;
  16760. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16761. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16762. float mh = m[i]*beta1h;
  16763. float vh = v[i]*beta2h;
  16764. vh = sqrtf(vh) + eps;
  16765. x = x*(1.0f - p_decay) - mh/vh;
  16766. ggml_set_f32_1d(ps[p], j, x);
  16767. ++i;
  16768. }
  16769. }
  16770. }
  16771. fx = 0;
  16772. ggml_set_zero(opt->adam.g);
  16773. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16774. if (callback) {
  16775. callback(callback_data, accum_step, &sched, &cancel);
  16776. if (cancel) {
  16777. return GGML_OPT_RESULT_CANCEL;;
  16778. }
  16779. }
  16780. // ggml_graph_reset (gf);
  16781. ggml_set_f32 (f->grad, 1.0f);
  16782. ggml_graph_compute(gb, &cplan);
  16783. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16784. fx += ggml_get_f32_1d(f, 0);
  16785. }
  16786. fx *= accum_norm;
  16787. opt->loss_after = fx;
  16788. // check convergence
  16789. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16790. GGML_PRINT_DEBUG("converged\n");
  16791. return GGML_OPT_RESULT_OK;
  16792. }
  16793. // delta-based convergence test
  16794. if (pf != NULL) {
  16795. // need at least params.past iterations to start checking for convergence
  16796. if (params.past <= iter0 + t) {
  16797. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16798. if (fabsf(rate) < params.delta) {
  16799. return GGML_OPT_RESULT_OK;
  16800. }
  16801. }
  16802. pf[(iter0 + t)%params.past] = fx;
  16803. }
  16804. // check for improvement
  16805. if (params.max_no_improvement > 0) {
  16806. if (fx_best[0] > fx) {
  16807. fx_best[0] = fx;
  16808. n_no_improvement[0] = 0;
  16809. } else {
  16810. ++n_no_improvement[0];
  16811. if (n_no_improvement[0] >= params.max_no_improvement) {
  16812. return GGML_OPT_RESULT_OK;
  16813. }
  16814. }
  16815. }
  16816. fx_prev[0] = fx;
  16817. {
  16818. const int64_t t_end_cpu = ggml_cycles();
  16819. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16820. UNUSED(t_end_cpu);
  16821. const int64_t t_end_wall = ggml_time_us();
  16822. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16823. UNUSED(t_end_wall);
  16824. }
  16825. }
  16826. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16827. }
  16828. //
  16829. // L-BFGS
  16830. //
  16831. // the L-BFGS implementation below is based on the following implementation:
  16832. //
  16833. // https://github.com/chokkan/liblbfgs
  16834. //
  16835. struct ggml_lbfgs_iteration_data {
  16836. float alpha;
  16837. float ys;
  16838. float * s;
  16839. float * y;
  16840. };
  16841. static enum ggml_opt_result linesearch_backtracking(
  16842. const struct ggml_opt_params * params,
  16843. int nx,
  16844. float * x,
  16845. float * fx,
  16846. float * g,
  16847. float * d,
  16848. float * step,
  16849. const float * xp,
  16850. struct ggml_tensor * f,
  16851. struct ggml_cgraph * gb,
  16852. struct ggml_cplan * cplan,
  16853. const int np,
  16854. struct ggml_tensor * ps[],
  16855. bool * cancel,
  16856. ggml_opt_callback callback,
  16857. void * callback_data) {
  16858. int count = 0;
  16859. float width = 0.0f;
  16860. float dg = 0.0f;
  16861. float finit = 0.0f;
  16862. float dginit = 0.0f;
  16863. float dgtest = 0.0f;
  16864. const float dec = 0.5f;
  16865. const float inc = 2.1f;
  16866. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16867. const float accum_norm = 1.0f / (float) n_accum;
  16868. if (*step <= 0.f) {
  16869. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16870. }
  16871. // compute the initial gradient in the search direction
  16872. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16873. // make sure that d points to a descent direction
  16874. if (0 < dginit) {
  16875. return GGML_LINESEARCH_FAIL;
  16876. }
  16877. // initialize local variables
  16878. finit = *fx;
  16879. dgtest = params->lbfgs.ftol*dginit;
  16880. while (true) {
  16881. ggml_vec_cpy_f32(nx, x, xp);
  16882. ggml_vec_mad_f32(nx, x, d, *step);
  16883. // evaluate the function and gradient values
  16884. {
  16885. ggml_opt_set_params(np, ps, x);
  16886. *fx = 0;
  16887. memset(g, 0, sizeof(float)*nx);
  16888. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16889. if (callback) {
  16890. // LBFG-S does not support learning rate -> ignore learning schedule
  16891. float sched = 0;
  16892. callback(callback_data, accum_step, &sched, cancel);
  16893. if (*cancel) {
  16894. return GGML_OPT_RESULT_CANCEL;
  16895. }
  16896. }
  16897. // ggml_graph_reset (gf);
  16898. ggml_set_f32 (f->grad, 1.0f);
  16899. ggml_graph_compute(gb, cplan);
  16900. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16901. *fx += ggml_get_f32_1d(f, 0);
  16902. }
  16903. *fx *= accum_norm;
  16904. }
  16905. ++count;
  16906. if (*fx > finit + (*step)*dgtest) {
  16907. width = dec;
  16908. } else {
  16909. // Armijo condition is satisfied
  16910. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16911. return count;
  16912. }
  16913. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16914. // check the Wolfe condition
  16915. if (dg < params->lbfgs.wolfe * dginit) {
  16916. width = inc;
  16917. } else {
  16918. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16919. // regular Wolfe conditions
  16920. return count;
  16921. }
  16922. if(dg > -params->lbfgs.wolfe*dginit) {
  16923. width = dec;
  16924. } else {
  16925. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16926. return count;
  16927. }
  16928. }
  16929. }
  16930. if (*step < params->lbfgs.min_step) {
  16931. return GGML_LINESEARCH_MINIMUM_STEP;
  16932. }
  16933. if (*step > params->lbfgs.max_step) {
  16934. return GGML_LINESEARCH_MAXIMUM_STEP;
  16935. }
  16936. if (params->lbfgs.max_linesearch <= count) {
  16937. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16938. }
  16939. (*step) *= width;
  16940. }
  16941. GGML_ASSERT(false && "line search failed");
  16942. return GGML_LINESEARCH_FAIL;
  16943. }
  16944. static enum ggml_opt_result ggml_opt_lbfgs(
  16945. struct ggml_context * ctx,
  16946. struct ggml_opt_context * opt,
  16947. struct ggml_opt_params params,
  16948. struct ggml_tensor * f,
  16949. struct ggml_cgraph * gf,
  16950. struct ggml_cgraph * gb,
  16951. ggml_opt_callback callback,
  16952. void * callback_data) {
  16953. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16954. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16955. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16956. return GGML_OPT_RESULT_INVALID_WOLFE;
  16957. }
  16958. }
  16959. const int m = params.lbfgs.m;
  16960. // these will store the parameters we want to optimize
  16961. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16962. int np = 0;
  16963. int nx = 0;
  16964. for (int i = 0; i < gf->n_nodes; ++i) {
  16965. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16966. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16967. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16968. ps[np++] = gf->nodes[i];
  16969. nx += ggml_nelements(gf->nodes[i]);
  16970. }
  16971. }
  16972. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16973. int iter = opt->iter;
  16974. ggml_opt_init(ctx, opt, params, nx);
  16975. opt->iter = iter;
  16976. }
  16977. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16978. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16979. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16980. float * x = opt->lbfgs.x->data; // current parameters
  16981. float * xp = opt->lbfgs.xp->data; // previous parameters
  16982. float * g = opt->lbfgs.g->data; // current gradient
  16983. float * gp = opt->lbfgs.gp->data; // previous gradient
  16984. float * d = opt->lbfgs.d->data; // search direction
  16985. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16986. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16987. const float accum_norm = 1.0f / (float) n_accum;
  16988. float fx = 0.0f; // cost function value
  16989. float xnorm = 0.0f; // ||x||
  16990. float gnorm = 0.0f; // ||g||
  16991. // initialize x from the graph nodes
  16992. ggml_opt_get_params(np, ps, x);
  16993. // the L-BFGS memory
  16994. float * lm_alpha = opt->lbfgs.lmal->data;
  16995. float * lm_ys = opt->lbfgs.lmys->data;
  16996. float * lm_s = opt->lbfgs.lms->data;
  16997. float * lm_y = opt->lbfgs.lmy->data;
  16998. bool cancel = false;
  16999. // evaluate the function value and its gradient
  17000. {
  17001. ggml_opt_set_params(np, ps, x);
  17002. fx = 0;
  17003. memset(g, 0, sizeof(float)*nx);
  17004. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17005. if (callback) {
  17006. // LBFG-S does not support learning rate -> ignore learning schedule
  17007. float sched = 0;
  17008. callback(callback_data, accum_step, &sched, &cancel);
  17009. if (cancel) {
  17010. return GGML_OPT_RESULT_CANCEL;
  17011. }
  17012. }
  17013. // ggml_graph_reset (gf);
  17014. ggml_set_f32 (f->grad, 1.0f);
  17015. ggml_graph_compute(gb, &cplan);
  17016. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17017. fx += ggml_get_f32_1d(f, 0);
  17018. }
  17019. fx *= accum_norm;
  17020. opt->loss_before = fx;
  17021. opt->loss_after = fx;
  17022. }
  17023. // search direction = -gradient
  17024. ggml_vec_neg_f32(nx, d, g);
  17025. // ||x||, ||g||
  17026. ggml_vec_norm_f32(nx, &xnorm, x);
  17027. ggml_vec_norm_f32(nx, &gnorm, g);
  17028. if (xnorm < 1.0f) {
  17029. xnorm = 1.0f;
  17030. }
  17031. // already optimized
  17032. if (gnorm/xnorm <= params.lbfgs.eps) {
  17033. return GGML_OPT_RESULT_OK;
  17034. }
  17035. if (opt->just_initialized) {
  17036. if (pf) {
  17037. pf[0] = fx;
  17038. }
  17039. opt->lbfgs.fx_best = fx;
  17040. // initial step
  17041. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17042. opt->lbfgs.j = 0;
  17043. opt->lbfgs.k = 1;
  17044. opt->lbfgs.end = 0;
  17045. opt->lbfgs.n_no_improvement = 0;
  17046. opt->just_initialized = false;
  17047. }
  17048. float * fx_best = &opt->lbfgs.fx_best;
  17049. float * step = &opt->lbfgs.step;
  17050. int * j = &opt->lbfgs.j;
  17051. int * k = &opt->lbfgs.k;
  17052. int * end = &opt->lbfgs.end;
  17053. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17054. int ls = 0;
  17055. int bound = 0;
  17056. float ys = 0.0f;
  17057. float yy = 0.0f;
  17058. float beta = 0.0f;
  17059. int it = 0;
  17060. while (true) {
  17061. // store the current position and gradient vectors
  17062. ggml_vec_cpy_f32(nx, xp, x);
  17063. ggml_vec_cpy_f32(nx, gp, g);
  17064. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17065. // to determine if the optimization should be cancelled
  17066. // this is a simple change, but not doing this atm, since I don't have a nice
  17067. // way to test and don't want to break something with so many changes lined up
  17068. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17069. if (cancel) {
  17070. return GGML_OPT_RESULT_CANCEL;
  17071. }
  17072. if (ls < 0) {
  17073. // linesearch failed - go back to the previous point and return
  17074. ggml_vec_cpy_f32(nx, x, xp);
  17075. ggml_vec_cpy_f32(nx, g, gp);
  17076. return ls;
  17077. }
  17078. opt->loss_after = fx;
  17079. ggml_vec_norm_f32(nx, &xnorm, x);
  17080. ggml_vec_norm_f32(nx, &gnorm, g);
  17081. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17082. if (xnorm < 1.0f) {
  17083. xnorm = 1.0f;
  17084. }
  17085. if (gnorm/xnorm <= params.lbfgs.eps) {
  17086. // converged
  17087. return GGML_OPT_RESULT_OK;
  17088. }
  17089. // delta-based convergence test
  17090. if (pf != NULL) {
  17091. // need at least params.past iterations to start checking for convergence
  17092. if (params.past <= k[0]) {
  17093. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17094. if (fabsf(rate) < params.delta) {
  17095. return GGML_OPT_RESULT_OK;
  17096. }
  17097. }
  17098. pf[k[0]%params.past] = fx;
  17099. }
  17100. // check for improvement
  17101. if (params.max_no_improvement > 0) {
  17102. if (fx < fx_best[0]) {
  17103. fx_best[0] = fx;
  17104. n_no_improvement[0] = 0;
  17105. } else {
  17106. n_no_improvement[0]++;
  17107. if (n_no_improvement[0] >= params.max_no_improvement) {
  17108. return GGML_OPT_RESULT_OK;
  17109. }
  17110. }
  17111. }
  17112. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17113. // reached the maximum number of iterations
  17114. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17115. }
  17116. // update vectors s and y:
  17117. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17118. // y_{k+1} = g_{k+1} - g_{k}.
  17119. //
  17120. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17121. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17122. // compute scalars ys and yy:
  17123. // ys = y^t \cdot s -> 1 / \rho.
  17124. // yy = y^t \cdot y.
  17125. //
  17126. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17127. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17128. lm_ys[end[0]] = ys;
  17129. // find new search direction
  17130. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17131. bound = (m <= k[0]) ? m : k[0];
  17132. k[0]++;
  17133. it++;
  17134. end[0] = (end[0] + 1)%m;
  17135. // initialize search direction with -g
  17136. ggml_vec_neg_f32(nx, d, g);
  17137. j[0] = end[0];
  17138. for (int i = 0; i < bound; ++i) {
  17139. j[0] = (j[0] + m - 1) % m;
  17140. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17141. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17142. lm_alpha[j[0]] /= lm_ys[j[0]];
  17143. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17144. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17145. }
  17146. ggml_vec_scale_f32(nx, d, ys/yy);
  17147. for (int i = 0; i < bound; ++i) {
  17148. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17149. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17150. beta /= lm_ys[j[0]];
  17151. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17152. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17153. j[0] = (j[0] + 1)%m;
  17154. }
  17155. step[0] = 1.0;
  17156. }
  17157. GGML_ASSERT(false && "lbfgs failed");
  17158. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17159. }
  17160. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17161. struct ggml_opt_params result;
  17162. switch (type) {
  17163. case GGML_OPT_TYPE_ADAM:
  17164. {
  17165. result = (struct ggml_opt_params) {
  17166. .type = GGML_OPT_TYPE_ADAM,
  17167. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17168. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17169. .past = 0,
  17170. .delta = 1e-5f,
  17171. .max_no_improvement = 100,
  17172. .print_forward_graph = true,
  17173. .print_backward_graph = true,
  17174. .n_gradient_accumulation = 1,
  17175. .adam = {
  17176. .n_iter = 10000,
  17177. .sched = 1.000f,
  17178. .decay = 0.0f,
  17179. .decay_min_ndim = 2,
  17180. .alpha = 0.001f,
  17181. .beta1 = 0.9f,
  17182. .beta2 = 0.999f,
  17183. .eps = 1e-8f,
  17184. .eps_f = 1e-5f,
  17185. .eps_g = 1e-3f,
  17186. .gclip = 0.0f,
  17187. },
  17188. };
  17189. } break;
  17190. case GGML_OPT_TYPE_LBFGS:
  17191. {
  17192. result = (struct ggml_opt_params) {
  17193. .type = GGML_OPT_TYPE_LBFGS,
  17194. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17195. .n_threads = 1,
  17196. .past = 0,
  17197. .delta = 1e-5f,
  17198. .max_no_improvement = 0,
  17199. .print_forward_graph = true,
  17200. .print_backward_graph = true,
  17201. .n_gradient_accumulation = 1,
  17202. .lbfgs = {
  17203. .m = 6,
  17204. .n_iter = 100,
  17205. .max_linesearch = 20,
  17206. .eps = 1e-5f,
  17207. .ftol = 1e-4f,
  17208. .wolfe = 0.9f,
  17209. .min_step = 1e-20f,
  17210. .max_step = 1e+20f,
  17211. .linesearch = GGML_LINESEARCH_DEFAULT,
  17212. },
  17213. };
  17214. } break;
  17215. }
  17216. return result;
  17217. }
  17218. GGML_API void ggml_opt_init(
  17219. struct ggml_context * ctx,
  17220. struct ggml_opt_context * opt,
  17221. struct ggml_opt_params params,
  17222. int64_t nx) {
  17223. opt->ctx = ctx;
  17224. opt->params = params;
  17225. opt->iter = 0;
  17226. opt->nx = nx;
  17227. opt->just_initialized = true;
  17228. if (opt->ctx == NULL) {
  17229. struct ggml_init_params ctx_opt_params;
  17230. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17231. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17232. if (opt->params.past > 0) {
  17233. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17234. }
  17235. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17236. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17237. if (opt->params.past > 0) {
  17238. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17239. }
  17240. }
  17241. ctx_opt_params.mem_buffer = NULL;
  17242. ctx_opt_params.no_alloc = false;
  17243. opt->ctx = ggml_init(ctx_opt_params);
  17244. }
  17245. switch (opt->params.type) {
  17246. case GGML_OPT_TYPE_ADAM:
  17247. {
  17248. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17249. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17250. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17251. opt->adam.pf = params.past > 0
  17252. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17253. : NULL;
  17254. ggml_set_zero(opt->adam.m);
  17255. ggml_set_zero(opt->adam.v);
  17256. if (opt->adam.pf) {
  17257. ggml_set_zero(opt->adam.pf);
  17258. }
  17259. } break;
  17260. case GGML_OPT_TYPE_LBFGS:
  17261. {
  17262. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17263. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17264. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17265. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17266. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17267. opt->lbfgs.pf = params.past > 0
  17268. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17269. : NULL;
  17270. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17271. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17272. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17273. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17274. ggml_set_zero(opt->lbfgs.x);
  17275. ggml_set_zero(opt->lbfgs.xp);
  17276. ggml_set_zero(opt->lbfgs.g);
  17277. ggml_set_zero(opt->lbfgs.gp);
  17278. ggml_set_zero(opt->lbfgs.d);
  17279. if (opt->lbfgs.pf) {
  17280. ggml_set_zero(opt->lbfgs.pf);
  17281. }
  17282. ggml_set_zero(opt->lbfgs.lmal);
  17283. ggml_set_zero(opt->lbfgs.lmys);
  17284. ggml_set_zero(opt->lbfgs.lms);
  17285. ggml_set_zero(opt->lbfgs.lmy);
  17286. } break;
  17287. }
  17288. }
  17289. enum ggml_opt_result ggml_opt(
  17290. struct ggml_context * ctx,
  17291. struct ggml_opt_params params,
  17292. struct ggml_tensor * f) {
  17293. bool free_ctx = false;
  17294. if (ctx == NULL) {
  17295. struct ggml_init_params params_ctx = {
  17296. .mem_size = 16*1024*1024,
  17297. .mem_buffer = NULL,
  17298. .no_alloc = false,
  17299. };
  17300. ctx = ggml_init(params_ctx);
  17301. if (ctx == NULL) {
  17302. return GGML_OPT_RESULT_NO_CONTEXT;
  17303. }
  17304. free_ctx = true;
  17305. }
  17306. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17307. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17308. ggml_opt_init(ctx, opt, params, 0);
  17309. result = ggml_opt_resume(ctx, opt, f);
  17310. if (free_ctx) {
  17311. ggml_free(ctx);
  17312. }
  17313. return result;
  17314. }
  17315. enum ggml_opt_result ggml_opt_resume(
  17316. struct ggml_context * ctx,
  17317. struct ggml_opt_context * opt,
  17318. struct ggml_tensor * f) {
  17319. // build forward + backward compute graphs
  17320. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17321. ggml_build_forward_expand(gf, f);
  17322. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17323. ggml_build_backward_expand(ctx, gf, gb, true);
  17324. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17325. }
  17326. enum ggml_opt_result ggml_opt_resume_g(
  17327. struct ggml_context * ctx,
  17328. struct ggml_opt_context * opt,
  17329. struct ggml_tensor * f,
  17330. struct ggml_cgraph * gf,
  17331. struct ggml_cgraph * gb,
  17332. ggml_opt_callback callback,
  17333. void * callback_data) {
  17334. // build forward + backward compute graphs
  17335. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17336. switch (opt->params.type) {
  17337. case GGML_OPT_TYPE_ADAM:
  17338. {
  17339. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17340. } break;
  17341. case GGML_OPT_TYPE_LBFGS:
  17342. {
  17343. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17344. } break;
  17345. }
  17346. if (opt->params.print_forward_graph) {
  17347. ggml_graph_print (gf);
  17348. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17349. }
  17350. if (opt->params.print_backward_graph) {
  17351. ggml_graph_print (gb);
  17352. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17353. }
  17354. return result;
  17355. }
  17356. ////////////////////////////////////////////////////////////////////////////////
  17357. void ggml_set_input(struct ggml_tensor * tensor) {
  17358. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17359. }
  17360. void ggml_set_output(struct ggml_tensor * tensor) {
  17361. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17362. }
  17363. ////////////////////////////////////////////////////////////////////////////////
  17364. void ggml_quantize_init(enum ggml_type type) {
  17365. ggml_critical_section_start();
  17366. switch (type) {
  17367. case GGML_TYPE_IQ2_XXS:
  17368. case GGML_TYPE_IQ2_XS:
  17369. case GGML_TYPE_IQ2_S:
  17370. case GGML_TYPE_IQ1_S:
  17371. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17372. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17373. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17374. default: // nothing
  17375. break;
  17376. }
  17377. ggml_critical_section_end();
  17378. }
  17379. void ggml_quantize_free(void) {
  17380. ggml_critical_section_start();
  17381. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17382. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17383. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17384. iq3xs_free_impl(256);
  17385. ggml_critical_section_end();
  17386. }
  17387. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17388. return
  17389. type == GGML_TYPE_IQ2_XXS ||
  17390. type == GGML_TYPE_IQ2_XS ||
  17391. type == GGML_TYPE_IQ1_S;// ||
  17392. //type == GGML_TYPE_IQ1_M;
  17393. }
  17394. size_t ggml_quantize_chunk(
  17395. enum ggml_type type,
  17396. const float * src,
  17397. void * dst,
  17398. int64_t start,
  17399. int64_t nrows,
  17400. int64_t n_per_row,
  17401. const float * imatrix) {
  17402. const int64_t n = (int64_t) nrows * n_per_row;
  17403. if (ggml_quantize_requires_imatrix(type)) {
  17404. GGML_ASSERT(imatrix != NULL);
  17405. }
  17406. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17407. GGML_ASSERT(start % n_per_row == 0);
  17408. ggml_quantize_init(type); // this is noop if already initialized
  17409. const size_t start_row = start / n_per_row;
  17410. const size_t row_size = ggml_row_size(type, n_per_row);
  17411. size_t result = 0;
  17412. switch (type) {
  17413. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17414. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17415. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17416. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17417. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17418. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17419. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17420. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17421. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17422. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17423. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17424. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17425. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17426. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17427. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17428. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17429. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17430. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17431. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17432. case GGML_TYPE_F16:
  17433. {
  17434. size_t elemsize = sizeof(ggml_fp16_t);
  17435. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17436. result = n * elemsize;
  17437. } break;
  17438. case GGML_TYPE_BF16:
  17439. {
  17440. size_t elemsize = sizeof(ggml_bf16_t);
  17441. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17442. result = n * elemsize;
  17443. } break;
  17444. case GGML_TYPE_F32:
  17445. {
  17446. size_t elemsize = sizeof(float);
  17447. result = n * elemsize;
  17448. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17449. } break;
  17450. default:
  17451. assert(false);
  17452. }
  17453. GGML_ASSERT(result == nrows * row_size);
  17454. return result;
  17455. }
  17456. ////////////////////////////////////////////////////////////////////////////////
  17457. struct gguf_str {
  17458. uint64_t n; // GGUFv2
  17459. char * data;
  17460. };
  17461. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17462. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17463. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17464. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17465. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17466. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17467. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17468. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17469. [GGUF_TYPE_BOOL] = sizeof(bool),
  17470. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17471. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17472. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17473. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17474. [GGUF_TYPE_ARRAY] = 0, // undefined
  17475. };
  17476. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17477. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17478. [GGUF_TYPE_UINT8] = "u8",
  17479. [GGUF_TYPE_INT8] = "i8",
  17480. [GGUF_TYPE_UINT16] = "u16",
  17481. [GGUF_TYPE_INT16] = "i16",
  17482. [GGUF_TYPE_UINT32] = "u32",
  17483. [GGUF_TYPE_INT32] = "i32",
  17484. [GGUF_TYPE_FLOAT32] = "f32",
  17485. [GGUF_TYPE_BOOL] = "bool",
  17486. [GGUF_TYPE_STRING] = "str",
  17487. [GGUF_TYPE_ARRAY] = "arr",
  17488. [GGUF_TYPE_UINT64] = "u64",
  17489. [GGUF_TYPE_INT64] = "i64",
  17490. [GGUF_TYPE_FLOAT64] = "f64",
  17491. };
  17492. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17493. union gguf_value {
  17494. uint8_t uint8;
  17495. int8_t int8;
  17496. uint16_t uint16;
  17497. int16_t int16;
  17498. uint32_t uint32;
  17499. int32_t int32;
  17500. float float32;
  17501. uint64_t uint64;
  17502. int64_t int64;
  17503. double float64;
  17504. bool bool_;
  17505. struct gguf_str str;
  17506. struct {
  17507. enum gguf_type type;
  17508. uint64_t n; // GGUFv2
  17509. void * data;
  17510. } arr;
  17511. };
  17512. struct gguf_kv {
  17513. struct gguf_str key;
  17514. enum gguf_type type;
  17515. union gguf_value value;
  17516. };
  17517. struct gguf_header {
  17518. char magic[4];
  17519. uint32_t version;
  17520. uint64_t n_tensors; // GGUFv2
  17521. uint64_t n_kv; // GGUFv2
  17522. };
  17523. struct gguf_tensor_info {
  17524. struct gguf_str name;
  17525. uint32_t n_dims;
  17526. uint64_t ne[GGML_MAX_DIMS];
  17527. enum ggml_type type;
  17528. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17529. // for writing API
  17530. const void * data;
  17531. size_t size;
  17532. };
  17533. struct gguf_context {
  17534. struct gguf_header header;
  17535. struct gguf_kv * kv;
  17536. struct gguf_tensor_info * infos;
  17537. size_t alignment;
  17538. size_t offset; // offset of `data` from beginning of file
  17539. size_t size; // size of `data` in bytes
  17540. //uint8_t * padding;
  17541. void * data;
  17542. };
  17543. static size_t gguf_type_size(enum gguf_type type) {
  17544. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17545. return GGUF_TYPE_SIZE[type];
  17546. }
  17547. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17548. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17549. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17550. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17551. GGML_ASSERT(info->ne[i] > 0);
  17552. }
  17553. // prevent overflow for total number of elements
  17554. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17555. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17556. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17557. }
  17558. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17559. const size_t n = fread(dst, 1, size, file);
  17560. *offset += n;
  17561. return n == size;
  17562. }
  17563. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17564. p->n = 0;
  17565. p->data = NULL;
  17566. bool ok = true;
  17567. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17568. // early exit if string length is invalid, prevents from integer overflow
  17569. if (p->n == SIZE_MAX) {
  17570. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17571. return false;
  17572. }
  17573. p->data = GGML_CALLOC(p->n + 1, 1);
  17574. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17575. return ok;
  17576. }
  17577. static void gguf_free_kv(struct gguf_kv * kv) {
  17578. if (kv->key.data) {
  17579. GGML_FREE(kv->key.data);
  17580. }
  17581. if (kv->type == GGUF_TYPE_STRING) {
  17582. if (kv->value.str.data) {
  17583. GGML_FREE(kv->value.str.data);
  17584. }
  17585. }
  17586. if (kv->type == GGUF_TYPE_ARRAY) {
  17587. if (kv->value.arr.data) {
  17588. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17589. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17590. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17591. if (str->data) {
  17592. GGML_FREE(str->data);
  17593. }
  17594. }
  17595. }
  17596. GGML_FREE(kv->value.arr.data);
  17597. }
  17598. }
  17599. }
  17600. struct gguf_context * gguf_init_empty(void) {
  17601. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17602. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17603. ctx->header.version = GGUF_VERSION;
  17604. ctx->header.n_tensors = 0;
  17605. ctx->header.n_kv = 0;
  17606. ctx->kv = NULL;
  17607. ctx->infos = NULL;
  17608. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17609. ctx->offset = 0;
  17610. ctx->size = 0;
  17611. ctx->data = NULL;
  17612. return ctx;
  17613. }
  17614. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17615. FILE * file = ggml_fopen(fname, "rb");
  17616. if (!file) {
  17617. return NULL;
  17618. }
  17619. // offset from start of file
  17620. size_t offset = 0;
  17621. char magic[4];
  17622. // check the magic before making allocations
  17623. {
  17624. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17625. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17626. if (magic[i] != GGUF_MAGIC[i]) {
  17627. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17628. fclose(file);
  17629. return NULL;
  17630. }
  17631. }
  17632. }
  17633. bool ok = true;
  17634. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17635. // read the header
  17636. {
  17637. strncpy(ctx->header.magic, magic, 4);
  17638. ctx->kv = NULL;
  17639. ctx->infos = NULL;
  17640. ctx->data = NULL;
  17641. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17642. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17643. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17644. if (ctx->header.version == 1) {
  17645. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17646. fclose(file);
  17647. gguf_free(ctx);
  17648. return NULL;
  17649. }
  17650. // sanity-checks to prevent from integer/buffer overflows
  17651. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17652. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17653. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17654. if (!ok) {
  17655. fprintf(stderr, "%s: failed to read header\n", __func__);
  17656. fclose(file);
  17657. gguf_free(ctx);
  17658. return NULL;
  17659. }
  17660. }
  17661. // read the kv pairs
  17662. {
  17663. const uint64_t n_kv = ctx->header.n_kv;
  17664. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17665. ctx->header.n_kv = 0;
  17666. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17667. for (uint64_t i = 0; i < n_kv; ++i) {
  17668. struct gguf_kv * kv = &ctx->kv[i];
  17669. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17670. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17671. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17672. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17673. switch (kv->type) {
  17674. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17675. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17676. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17677. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17678. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17679. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17680. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17681. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17682. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17683. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17684. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17685. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17686. case GGUF_TYPE_ARRAY:
  17687. {
  17688. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17689. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17690. switch (kv->value.arr.type) {
  17691. case GGUF_TYPE_UINT8:
  17692. case GGUF_TYPE_INT8:
  17693. case GGUF_TYPE_UINT16:
  17694. case GGUF_TYPE_INT16:
  17695. case GGUF_TYPE_UINT32:
  17696. case GGUF_TYPE_INT32:
  17697. case GGUF_TYPE_FLOAT32:
  17698. case GGUF_TYPE_UINT64:
  17699. case GGUF_TYPE_INT64:
  17700. case GGUF_TYPE_FLOAT64:
  17701. case GGUF_TYPE_BOOL:
  17702. {
  17703. // prevent from integer overflow in the malloc below
  17704. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17705. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17706. fclose(file);
  17707. gguf_free(ctx);
  17708. return NULL;
  17709. }
  17710. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17711. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17712. } break;
  17713. case GGUF_TYPE_STRING:
  17714. {
  17715. // prevent from integer overflow in the malloc below
  17716. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17717. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17718. fclose(file);
  17719. gguf_free(ctx);
  17720. return NULL;
  17721. }
  17722. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17723. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17724. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17725. }
  17726. } break;
  17727. case GGUF_TYPE_ARRAY:
  17728. default: GGML_ASSERT(false && "invalid type"); break;
  17729. }
  17730. } break;
  17731. default: GGML_ASSERT(false && "invalid type");
  17732. }
  17733. if (!ok) {
  17734. break;
  17735. }
  17736. ctx->header.n_kv++;
  17737. }
  17738. if (!ok) {
  17739. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17740. fclose(file);
  17741. gguf_free(ctx);
  17742. return NULL;
  17743. }
  17744. }
  17745. // read the tensor infos
  17746. if (ctx->header.n_tensors > 0) {
  17747. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  17748. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17749. struct gguf_tensor_info * info = &ctx->infos[i];
  17750. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17751. info->ne[j] = 1;
  17752. }
  17753. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17754. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17755. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17756. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17757. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17758. }
  17759. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17760. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17761. // TODO: return an error instead of crashing with GGML_ASSERT
  17762. gguf_tensor_info_sanitize(info);
  17763. // make sure there is no duplicated tensor names
  17764. for (uint64_t j = 0; j < i; ++j) {
  17765. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  17766. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  17767. ok = false;
  17768. }
  17769. }
  17770. if (!ok) {
  17771. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17772. fclose(file);
  17773. gguf_free(ctx);
  17774. return NULL;
  17775. }
  17776. }
  17777. }
  17778. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17779. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17780. if (alignment_idx != -1) {
  17781. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17782. }
  17783. // we require the data section to be aligned, so take into account any padding
  17784. {
  17785. const size_t offset_pad = offset % ctx->alignment;
  17786. if (offset_pad != 0) {
  17787. offset += ctx->alignment - offset_pad;
  17788. fseek(file, offset, SEEK_SET);
  17789. }
  17790. }
  17791. // store the current file offset - this is where the data section starts
  17792. ctx->offset = offset;
  17793. // compute the total size of the data section, taking into account the alignment
  17794. {
  17795. ctx->size = 0;
  17796. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17797. struct gguf_tensor_info * info = &ctx->infos[i];
  17798. const int64_t ne =
  17799. (int64_t) info->ne[0] *
  17800. (int64_t) info->ne[1] *
  17801. (int64_t) info->ne[2] *
  17802. (int64_t) info->ne[3];
  17803. if (ne % ggml_blck_size(info->type) != 0) {
  17804. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17805. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17806. fclose(file);
  17807. gguf_free(ctx);
  17808. return NULL;
  17809. }
  17810. const size_t size_cur = ggml_row_size(info->type, ne);
  17811. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17812. }
  17813. }
  17814. // load the tensor data only if requested
  17815. if (params.ctx != NULL) {
  17816. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17817. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17818. // the ggml_tensor structs to the appropriate locations in the binary blob
  17819. // compute the exact size needed for the new ggml_context
  17820. const size_t mem_size =
  17821. params.no_alloc ?
  17822. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17823. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17824. struct ggml_init_params pdata = {
  17825. .mem_size = mem_size,
  17826. .mem_buffer = NULL,
  17827. .no_alloc = params.no_alloc,
  17828. };
  17829. *params.ctx = ggml_init(pdata);
  17830. struct ggml_context * ctx_data = *params.ctx;
  17831. struct ggml_tensor * data = NULL;
  17832. if (!params.no_alloc) {
  17833. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17834. ok = ok && data != NULL;
  17835. // read the binary blob with the tensor data
  17836. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17837. if (!ok) {
  17838. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17839. fclose(file);
  17840. ggml_free(ctx_data);
  17841. gguf_free(ctx);
  17842. return NULL;
  17843. }
  17844. ctx->data = data->data;
  17845. }
  17846. ggml_set_no_alloc(ctx_data, true);
  17847. // create the tensors
  17848. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17849. const int64_t ne[GGML_MAX_DIMS] = {
  17850. ctx->infos[i].ne[0],
  17851. ctx->infos[i].ne[1],
  17852. ctx->infos[i].ne[2],
  17853. ctx->infos[i].ne[3],
  17854. };
  17855. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17856. ok = ok && cur != NULL;
  17857. if (!ok) {
  17858. break;
  17859. }
  17860. ggml_set_name(cur, ctx->infos[i].name.data);
  17861. // point the data member to the appropriate location in the binary blob using the tensor infos
  17862. if (!params.no_alloc) {
  17863. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17864. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17865. }
  17866. }
  17867. if (!ok) {
  17868. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17869. fclose(file);
  17870. ggml_free(ctx_data);
  17871. gguf_free(ctx);
  17872. return NULL;
  17873. }
  17874. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17875. }
  17876. fclose(file);
  17877. return ctx;
  17878. }
  17879. void gguf_free(struct gguf_context * ctx) {
  17880. if (ctx == NULL) {
  17881. return;
  17882. }
  17883. if (ctx->kv) {
  17884. // free string memory - not great..
  17885. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17886. gguf_free_kv(&ctx->kv[i]);
  17887. }
  17888. GGML_FREE(ctx->kv);
  17889. }
  17890. if (ctx->infos) {
  17891. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17892. struct gguf_tensor_info * info = &ctx->infos[i];
  17893. if (info->name.data) {
  17894. GGML_FREE(info->name.data);
  17895. }
  17896. }
  17897. GGML_FREE(ctx->infos);
  17898. }
  17899. GGML_FREE(ctx);
  17900. }
  17901. const char * gguf_type_name(enum gguf_type type) {
  17902. return GGUF_TYPE_NAME[type];
  17903. }
  17904. int gguf_get_version(const struct gguf_context * ctx) {
  17905. return ctx->header.version;
  17906. }
  17907. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17908. return ctx->alignment;
  17909. }
  17910. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17911. return ctx->offset;
  17912. }
  17913. void * gguf_get_data(const struct gguf_context * ctx) {
  17914. return ctx->data;
  17915. }
  17916. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17917. return ctx->header.n_kv;
  17918. }
  17919. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17920. // return -1 if key not found
  17921. int keyfound = -1;
  17922. const int n_kv = gguf_get_n_kv(ctx);
  17923. for (int i = 0; i < n_kv; ++i) {
  17924. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17925. keyfound = i;
  17926. break;
  17927. }
  17928. }
  17929. return keyfound;
  17930. }
  17931. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17932. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17933. return ctx->kv[key_id].key.data;
  17934. }
  17935. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17936. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17937. return ctx->kv[key_id].type;
  17938. }
  17939. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17940. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17941. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17942. return ctx->kv[key_id].value.arr.type;
  17943. }
  17944. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17945. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17946. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17947. return ctx->kv[key_id].value.arr.data;
  17948. }
  17949. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17950. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17951. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17952. struct gguf_kv * kv = &ctx->kv[key_id];
  17953. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17954. return str->data;
  17955. }
  17956. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17957. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17958. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17959. return ctx->kv[key_id].value.arr.n;
  17960. }
  17961. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17962. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17963. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17964. return ctx->kv[key_id].value.uint8;
  17965. }
  17966. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17967. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17968. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17969. return ctx->kv[key_id].value.int8;
  17970. }
  17971. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17972. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17973. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17974. return ctx->kv[key_id].value.uint16;
  17975. }
  17976. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17977. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17978. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17979. return ctx->kv[key_id].value.int16;
  17980. }
  17981. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17982. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17983. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17984. return ctx->kv[key_id].value.uint32;
  17985. }
  17986. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17987. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17988. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17989. return ctx->kv[key_id].value.int32;
  17990. }
  17991. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17992. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17993. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17994. return ctx->kv[key_id].value.float32;
  17995. }
  17996. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17997. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17998. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17999. return ctx->kv[key_id].value.uint64;
  18000. }
  18001. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18002. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18003. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18004. return ctx->kv[key_id].value.int64;
  18005. }
  18006. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18007. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18008. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18009. return ctx->kv[key_id].value.float64;
  18010. }
  18011. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18012. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18013. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18014. return ctx->kv[key_id].value.bool_;
  18015. }
  18016. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18017. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18018. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18019. return ctx->kv[key_id].value.str.data;
  18020. }
  18021. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18022. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18023. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18024. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18025. return &ctx->kv[key_id].value;
  18026. }
  18027. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18028. return ctx->header.n_tensors;
  18029. }
  18030. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18031. // return -1 if tensor not found
  18032. int tensorfound = -1;
  18033. const int n_tensors = gguf_get_n_tensors(ctx);
  18034. for (int i = 0; i < n_tensors; ++i) {
  18035. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18036. tensorfound = i;
  18037. break;
  18038. }
  18039. }
  18040. return tensorfound;
  18041. }
  18042. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18043. return ctx->infos[i].offset;
  18044. }
  18045. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18046. return ctx->infos[i].name.data;
  18047. }
  18048. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18049. return ctx->infos[i].type;
  18050. }
  18051. // returns the index
  18052. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18053. const int idx = gguf_find_key(ctx, key);
  18054. if (idx >= 0) {
  18055. return idx;
  18056. }
  18057. const int n_kv = gguf_get_n_kv(ctx);
  18058. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18059. ctx->kv[n_kv].key.n = strlen(key);
  18060. ctx->kv[n_kv].key.data = strdup(key);
  18061. ctx->header.n_kv++;
  18062. return n_kv;
  18063. }
  18064. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18065. const int idx = gguf_find_key(ctx, key);
  18066. if (idx >= 0) {
  18067. const int n_kv = gguf_get_n_kv(ctx);
  18068. gguf_free_kv(&ctx->kv[idx]);
  18069. for (int i = idx; i < n_kv-1; ++i) {
  18070. ctx->kv[i] = ctx->kv[i+1];
  18071. }
  18072. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18073. ctx->header.n_kv--;
  18074. }
  18075. }
  18076. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18077. const int idx = gguf_get_or_add_key(ctx, key);
  18078. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18079. ctx->kv[idx].value.uint8 = val;
  18080. }
  18081. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18082. const int idx = gguf_get_or_add_key(ctx, key);
  18083. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18084. ctx->kv[idx].value.int8 = val;
  18085. }
  18086. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18087. const int idx = gguf_get_or_add_key(ctx, key);
  18088. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18089. ctx->kv[idx].value.uint16 = val;
  18090. }
  18091. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18092. const int idx = gguf_get_or_add_key(ctx, key);
  18093. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18094. ctx->kv[idx].value.int16 = val;
  18095. }
  18096. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18097. const int idx = gguf_get_or_add_key(ctx, key);
  18098. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18099. ctx->kv[idx].value.uint32 = val;
  18100. }
  18101. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18102. const int idx = gguf_get_or_add_key(ctx, key);
  18103. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18104. ctx->kv[idx].value.int32 = val;
  18105. }
  18106. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18107. const int idx = gguf_get_or_add_key(ctx, key);
  18108. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18109. ctx->kv[idx].value.float32 = val;
  18110. }
  18111. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18112. const int idx = gguf_get_or_add_key(ctx, key);
  18113. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18114. ctx->kv[idx].value.uint64 = val;
  18115. }
  18116. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18117. const int idx = gguf_get_or_add_key(ctx, key);
  18118. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18119. ctx->kv[idx].value.int64 = val;
  18120. }
  18121. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18122. const int idx = gguf_get_or_add_key(ctx, key);
  18123. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18124. ctx->kv[idx].value.float64 = val;
  18125. }
  18126. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18127. const int idx = gguf_get_or_add_key(ctx, key);
  18128. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18129. ctx->kv[idx].value.bool_ = val;
  18130. }
  18131. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18132. const int idx = gguf_get_or_add_key(ctx, key);
  18133. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18134. ctx->kv[idx].value.str.n = strlen(val);
  18135. ctx->kv[idx].value.str.data = strdup(val);
  18136. }
  18137. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18138. const int idx = gguf_get_or_add_key(ctx, key);
  18139. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18140. ctx->kv[idx].value.arr.type = type;
  18141. ctx->kv[idx].value.arr.n = n;
  18142. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18143. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18144. }
  18145. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18146. const int idx = gguf_get_or_add_key(ctx, key);
  18147. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18148. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18149. ctx->kv[idx].value.arr.n = n;
  18150. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18151. for (int i = 0; i < n; i++) {
  18152. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18153. str->n = strlen(data[i]);
  18154. str->data = strdup(data[i]);
  18155. }
  18156. }
  18157. // set or add KV pairs from another context
  18158. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18159. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18160. switch (src->kv[i].type) {
  18161. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18162. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18163. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18164. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18165. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18166. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18167. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18168. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18169. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18170. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18171. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18172. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18173. case GGUF_TYPE_ARRAY:
  18174. {
  18175. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18176. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18177. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18178. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18179. }
  18180. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18181. GGML_FREE((void *)data);
  18182. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18183. GGML_ASSERT(false && "nested arrays not supported");
  18184. } else {
  18185. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18186. }
  18187. } break;
  18188. default: GGML_ASSERT(false && "invalid type"); break;
  18189. }
  18190. }
  18191. }
  18192. void gguf_add_tensor(
  18193. struct gguf_context * ctx,
  18194. const struct ggml_tensor * tensor) {
  18195. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18196. GGML_ASSERT(false && "duplicated tensor name");
  18197. }
  18198. const int idx = ctx->header.n_tensors;
  18199. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18200. ctx->infos[idx].name.n = strlen(tensor->name);
  18201. ctx->infos[idx].name.data = strdup(tensor->name);
  18202. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18203. ctx->infos[idx].ne[i] = 1;
  18204. }
  18205. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18206. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18207. ctx->infos[idx].ne[i] = tensor->ne[i];
  18208. }
  18209. ctx->infos[idx].type = tensor->type;
  18210. ctx->infos[idx].offset = 0;
  18211. ctx->infos[idx].data = tensor->data;
  18212. ctx->infos[idx].size = ggml_nbytes(tensor);
  18213. if (ctx->header.n_tensors > 0) {
  18214. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18215. }
  18216. ctx->header.n_tensors++;
  18217. }
  18218. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18219. const int idx = gguf_find_tensor(ctx, name);
  18220. if (idx < 0) {
  18221. GGML_ASSERT(false && "tensor not found");
  18222. }
  18223. ctx->infos[idx].type = type;
  18224. }
  18225. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18226. const int idx = gguf_find_tensor(ctx, name);
  18227. if (idx < 0) {
  18228. GGML_ASSERT(false && "tensor not found");
  18229. }
  18230. ctx->infos[idx].data = data;
  18231. ctx->infos[idx].size = size;
  18232. // update offsets
  18233. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18234. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18235. }
  18236. }
  18237. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18238. // fwrite(&val->n, sizeof(val->n), 1, file);
  18239. // fwrite(val->data, sizeof(char), val->n, file);
  18240. //}
  18241. //
  18242. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18243. // fwrite(val, sizeof(char), size, file);
  18244. //}
  18245. struct gguf_buf {
  18246. void * data;
  18247. size_t size;
  18248. size_t offset;
  18249. };
  18250. static struct gguf_buf gguf_buf_init(size_t size) {
  18251. struct gguf_buf buf = {
  18252. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18253. /*buf.size =*/ size,
  18254. /*buf.offset =*/ 0,
  18255. };
  18256. return buf;
  18257. }
  18258. static void gguf_buf_free(struct gguf_buf buf) {
  18259. if (buf.data) {
  18260. GGML_FREE(buf.data);
  18261. }
  18262. }
  18263. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18264. if (buf->offset + size > buf->size) {
  18265. buf->size = 1.5*(buf->offset + size);
  18266. if (buf->data) {
  18267. buf->data = realloc(buf->data, buf->size);
  18268. }
  18269. }
  18270. }
  18271. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18272. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18273. if (buf->data) {
  18274. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18275. }
  18276. buf->offset += sizeof(val->n);
  18277. if (buf->data) {
  18278. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18279. }
  18280. buf->offset += val->n;
  18281. }
  18282. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18283. gguf_buf_grow(buf, el_size);
  18284. if (buf->data) {
  18285. memcpy((char *) buf->data + buf->offset, val, el_size);
  18286. }
  18287. buf->offset += el_size;
  18288. }
  18289. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18290. // write header
  18291. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18292. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18293. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18294. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18295. // write key-value pairs
  18296. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18297. struct gguf_kv * kv = &ctx->kv[i];
  18298. gguf_bwrite_str(buf, &kv->key);
  18299. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18300. switch (kv->type) {
  18301. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18302. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18303. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18304. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18305. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18306. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18307. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18308. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18309. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18310. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18311. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18312. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18313. case GGUF_TYPE_ARRAY:
  18314. {
  18315. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18316. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18317. switch (kv->value.arr.type) {
  18318. case GGUF_TYPE_UINT8:
  18319. case GGUF_TYPE_INT8:
  18320. case GGUF_TYPE_UINT16:
  18321. case GGUF_TYPE_INT16:
  18322. case GGUF_TYPE_UINT32:
  18323. case GGUF_TYPE_INT32:
  18324. case GGUF_TYPE_FLOAT32:
  18325. case GGUF_TYPE_UINT64:
  18326. case GGUF_TYPE_INT64:
  18327. case GGUF_TYPE_FLOAT64:
  18328. case GGUF_TYPE_BOOL:
  18329. {
  18330. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18331. } break;
  18332. case GGUF_TYPE_STRING:
  18333. {
  18334. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18335. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18336. }
  18337. } break;
  18338. case GGUF_TYPE_ARRAY:
  18339. default: GGML_ASSERT(false && "invalid type"); break;
  18340. }
  18341. } break;
  18342. default: GGML_ASSERT(false && "invalid type");
  18343. }
  18344. }
  18345. // write tensor infos
  18346. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18347. struct gguf_tensor_info * info = &ctx->infos[i];
  18348. gguf_bwrite_str(buf, &info->name);
  18349. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18350. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18351. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18352. }
  18353. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18354. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18355. }
  18356. // we require the data section to be aligned, so take into account any padding
  18357. {
  18358. const size_t offset = buf->offset;
  18359. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18360. if (offset_pad != offset) {
  18361. uint8_t pad = 0;
  18362. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18363. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18364. }
  18365. }
  18366. }
  18367. if (only_meta) {
  18368. return;
  18369. }
  18370. size_t offset = 0;
  18371. // write tensor data
  18372. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18373. struct gguf_tensor_info * info = &ctx->infos[i];
  18374. const size_t size = info->size;
  18375. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18376. gguf_bwrite_el(buf, info->data, size);
  18377. if (size_pad != size) {
  18378. uint8_t pad = 0;
  18379. for (size_t j = 0; j < size_pad - size; ++j) {
  18380. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18381. }
  18382. }
  18383. GGML_ASSERT(offset == info->offset);
  18384. offset += size_pad;
  18385. }
  18386. }
  18387. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18388. FILE * file = ggml_fopen(fname, "wb");
  18389. if (!file) {
  18390. GGML_ASSERT(false && "failed to open file for writing");
  18391. }
  18392. struct gguf_buf buf = gguf_buf_init(16*1024);
  18393. gguf_write_to_buf(ctx, &buf, only_meta);
  18394. fwrite(buf.data, 1, buf.offset, file);
  18395. gguf_buf_free(buf);
  18396. fclose(file);
  18397. }
  18398. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18399. // no allocs - only compute size
  18400. struct gguf_buf buf = gguf_buf_init(0);
  18401. gguf_write_to_buf(ctx, &buf, true);
  18402. return buf.offset;
  18403. }
  18404. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18405. struct gguf_buf buf = gguf_buf_init(16*1024);
  18406. gguf_write_to_buf(ctx, &buf, true);
  18407. memcpy(data, buf.data, buf.offset);
  18408. gguf_buf_free(buf);
  18409. }
  18410. ////////////////////////////////////////////////////////////////////////////////
  18411. int ggml_cpu_has_avx(void) {
  18412. #if defined(__AVX__)
  18413. return 1;
  18414. #else
  18415. return 0;
  18416. #endif
  18417. }
  18418. int ggml_cpu_has_avx_vnni(void) {
  18419. #if defined(__AVXVNNI__)
  18420. return 1;
  18421. #else
  18422. return 0;
  18423. #endif
  18424. }
  18425. int ggml_cpu_has_avx2(void) {
  18426. #if defined(__AVX2__)
  18427. return 1;
  18428. #else
  18429. return 0;
  18430. #endif
  18431. }
  18432. int ggml_cpu_has_avx512(void) {
  18433. #if defined(__AVX512F__)
  18434. return 1;
  18435. #else
  18436. return 0;
  18437. #endif
  18438. }
  18439. int ggml_cpu_has_avx512_vbmi(void) {
  18440. #if defined(__AVX512VBMI__)
  18441. return 1;
  18442. #else
  18443. return 0;
  18444. #endif
  18445. }
  18446. int ggml_cpu_has_avx512_vnni(void) {
  18447. #if defined(__AVX512VNNI__)
  18448. return 1;
  18449. #else
  18450. return 0;
  18451. #endif
  18452. }
  18453. int ggml_cpu_has_avx512_bf16(void) {
  18454. #if defined(__AVX512BF16__)
  18455. return 1;
  18456. #else
  18457. return 0;
  18458. #endif
  18459. }
  18460. int ggml_cpu_has_fma(void) {
  18461. #if defined(__FMA__)
  18462. return 1;
  18463. #else
  18464. return 0;
  18465. #endif
  18466. }
  18467. int ggml_cpu_has_neon(void) {
  18468. #if defined(__ARM_NEON)
  18469. return 1;
  18470. #else
  18471. return 0;
  18472. #endif
  18473. }
  18474. int ggml_cpu_has_sve(void) {
  18475. #if defined(__ARM_FEATURE_SVE)
  18476. // TODO: Currently, SVE 256 bit is only supported.
  18477. GGML_ASSERT(svcntb() == QK8_0);
  18478. return 1;
  18479. #else
  18480. return 0;
  18481. #endif
  18482. }
  18483. int ggml_cpu_has_arm_fma(void) {
  18484. #if defined(__ARM_FEATURE_FMA)
  18485. return 1;
  18486. #else
  18487. return 0;
  18488. #endif
  18489. }
  18490. int ggml_cpu_has_metal(void) {
  18491. #if defined(GGML_USE_METAL)
  18492. return 1;
  18493. #else
  18494. return 0;
  18495. #endif
  18496. }
  18497. int ggml_cpu_has_f16c(void) {
  18498. #if defined(__F16C__)
  18499. return 1;
  18500. #else
  18501. return 0;
  18502. #endif
  18503. }
  18504. int ggml_cpu_has_fp16_va(void) {
  18505. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18506. return 1;
  18507. #else
  18508. return 0;
  18509. #endif
  18510. }
  18511. int ggml_cpu_has_wasm_simd(void) {
  18512. #if defined(__wasm_simd128__)
  18513. return 1;
  18514. #else
  18515. return 0;
  18516. #endif
  18517. }
  18518. int ggml_cpu_has_blas(void) {
  18519. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  18520. return 1;
  18521. #else
  18522. return 0;
  18523. #endif
  18524. }
  18525. int ggml_cpu_has_cuda(void) {
  18526. #if defined(GGML_USE_CUDA)
  18527. return 1;
  18528. #else
  18529. return 0;
  18530. #endif
  18531. }
  18532. int ggml_cpu_has_vulkan(void) {
  18533. #if defined(GGML_USE_VULKAN)
  18534. return 1;
  18535. #else
  18536. return 0;
  18537. #endif
  18538. }
  18539. int ggml_cpu_has_kompute(void) {
  18540. #if defined(GGML_USE_KOMPUTE)
  18541. return 1;
  18542. #else
  18543. return 0;
  18544. #endif
  18545. }
  18546. int ggml_cpu_has_sycl(void) {
  18547. #if defined(GGML_USE_SYCL)
  18548. return 1;
  18549. #else
  18550. return 0;
  18551. #endif
  18552. }
  18553. int ggml_cpu_has_rpc(void) {
  18554. #if defined(GGML_USE_RPC)
  18555. return 1;
  18556. #else
  18557. return 0;
  18558. #endif
  18559. }
  18560. int ggml_cpu_has_gpublas(void) {
  18561. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  18562. }
  18563. int ggml_cpu_has_sse3(void) {
  18564. #if defined(__SSE3__)
  18565. return 1;
  18566. #else
  18567. return 0;
  18568. #endif
  18569. }
  18570. int ggml_cpu_has_ssse3(void) {
  18571. #if defined(__SSSE3__)
  18572. return 1;
  18573. #else
  18574. return 0;
  18575. #endif
  18576. }
  18577. int ggml_cpu_has_vsx(void) {
  18578. #if defined(__POWER9_VECTOR__)
  18579. return 1;
  18580. #else
  18581. return 0;
  18582. #endif
  18583. }
  18584. int ggml_cpu_has_matmul_int8(void) {
  18585. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18586. return 1;
  18587. #else
  18588. return 0;
  18589. #endif
  18590. }
  18591. ////////////////////////////////////////////////////////////////////////////////