clip.cpp 148 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422
  1. #include "clip.h"
  2. #include "clip-impl.h"
  3. #include "clip-model.h"
  4. #include "clip-graph.h"
  5. #include "models/models.h"
  6. #include "ggml.h"
  7. #include "ggml-cpp.h"
  8. #include "ggml-alloc.h"
  9. #include "ggml-backend.h"
  10. #include "gguf.h"
  11. #include <cassert>
  12. #include <cmath>
  13. #include <cstdlib>
  14. #include <cstring>
  15. #include <fstream>
  16. #include <map>
  17. #include <stdexcept>
  18. #include <unordered_set>
  19. #include <vector>
  20. #include <cinttypes>
  21. #include <limits>
  22. #include <array>
  23. #include <functional>
  24. struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL};
  25. //#define CLIP_DEBUG_FUNCTIONS
  26. #ifdef CLIP_DEBUG_FUNCTIONS
  27. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  28. std::ofstream file(filename, std::ios::binary);
  29. if (!file.is_open()) {
  30. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  31. return;
  32. }
  33. // PPM header: P6 format, width, height, and max color value
  34. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  35. // Write pixel data
  36. for (size_t i = 0; i < img.buf.size(); i += 3) {
  37. // PPM expects binary data in RGB format, which matches our image buffer
  38. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  39. }
  40. file.close();
  41. }
  42. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  43. std::ofstream file(filename, std::ios::binary);
  44. if (!file.is_open()) {
  45. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  46. return;
  47. }
  48. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  49. int bytesPerPixel = 3;
  50. int widthInBytes = img.nx * bytesPerPixel;
  51. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  52. int stride = widthInBytes + paddingAmount;
  53. // Bitmap file header
  54. unsigned char fileHeader[14] = {
  55. 'B','M', // Signature
  56. 0,0,0,0, // Image file size in bytes
  57. 0,0,0,0, // Reserved
  58. 54,0,0,0 // Start of pixel array
  59. };
  60. // Total file size
  61. fileSize = 54 + (stride * img.ny);
  62. fileHeader[2] = (unsigned char)(fileSize);
  63. fileHeader[3] = (unsigned char)(fileSize >> 8);
  64. fileHeader[4] = (unsigned char)(fileSize >> 16);
  65. fileHeader[5] = (unsigned char)(fileSize >> 24);
  66. // Bitmap information header (BITMAPINFOHEADER)
  67. unsigned char infoHeader[40] = {
  68. 40,0,0,0, // Size of this header (40 bytes)
  69. 0,0,0,0, // Image width
  70. 0,0,0,0, // Image height
  71. 1,0, // Number of color planes
  72. 24,0, // Bits per pixel
  73. 0,0,0,0, // No compression
  74. 0,0,0,0, // Image size (can be 0 for no compression)
  75. 0,0,0,0, // X pixels per meter (not specified)
  76. 0,0,0,0, // Y pixels per meter (not specified)
  77. 0,0,0,0, // Total colors (color table not used)
  78. 0,0,0,0 // Important colors (all are important)
  79. };
  80. // Width and height in the information header
  81. infoHeader[4] = (unsigned char)(img.nx);
  82. infoHeader[5] = (unsigned char)(img.nx >> 8);
  83. infoHeader[6] = (unsigned char)(img.nx >> 16);
  84. infoHeader[7] = (unsigned char)(img.nx >> 24);
  85. infoHeader[8] = (unsigned char)(img.ny);
  86. infoHeader[9] = (unsigned char)(img.ny >> 8);
  87. infoHeader[10] = (unsigned char)(img.ny >> 16);
  88. infoHeader[11] = (unsigned char)(img.ny >> 24);
  89. // Write file headers
  90. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  91. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  92. // Pixel data
  93. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  94. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  95. for (int x = 0; x < img.nx; ++x) {
  96. // Each pixel
  97. size_t pixelIndex = (y * img.nx + x) * 3;
  98. unsigned char pixel[3] = {
  99. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  100. img.buf[pixelIndex + 1],
  101. img.buf[pixelIndex]
  102. };
  103. file.write(reinterpret_cast<char*>(pixel), 3);
  104. }
  105. // Write padding for the row
  106. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  107. }
  108. file.close();
  109. }
  110. // debug function to convert f32 to u8
  111. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  112. dst.nx = src.nx;
  113. dst.ny = src.ny;
  114. dst.buf.resize(3 * src.nx * src.ny);
  115. for (size_t i = 0; i < src.buf.size(); ++i) {
  116. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  117. }
  118. }
  119. #endif
  120. struct clip_ctx {
  121. clip_model model;
  122. gguf_context_ptr ctx_gguf;
  123. ggml_context_ptr ctx_data;
  124. std::vector<uint8_t> buf_compute_meta;
  125. std::vector<ggml_backend_t> backend_ptrs;
  126. std::vector<ggml_backend_buffer_type_t> backend_buft;
  127. ggml_backend_t backend = nullptr;
  128. ggml_backend_t backend_cpu = nullptr;
  129. ggml_backend_buffer_ptr buf;
  130. int max_nodes = 8192;
  131. ggml_backend_sched_ptr sched;
  132. clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO;
  133. bool is_allocated = false;
  134. // for debugging
  135. bool debug_graph = false;
  136. std::vector<ggml_tensor *> debug_print_tensors;
  137. clip_ctx(clip_context_params & ctx_params) {
  138. flash_attn_type = ctx_params.flash_attn_type;
  139. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  140. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  141. if (!backend_cpu) {
  142. throw std::runtime_error("failed to initialize CPU backend");
  143. }
  144. if (ctx_params.use_gpu) {
  145. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  146. if (backend_name != nullptr) {
  147. backend = ggml_backend_init_by_name(backend_name, nullptr);
  148. if (!backend) {
  149. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  150. }
  151. }
  152. if (!backend) {
  153. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  154. backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
  155. }
  156. }
  157. if (backend) {
  158. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  159. backend_ptrs.push_back(backend);
  160. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  161. } else {
  162. backend = backend_cpu;
  163. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  164. }
  165. if (ctx_params.image_min_tokens > 0) {
  166. model.hparams.custom_image_min_tokens = ctx_params.image_min_tokens;
  167. }
  168. if (ctx_params.image_max_tokens > 0) {
  169. model.hparams.custom_image_max_tokens = ctx_params.image_max_tokens;
  170. }
  171. backend_ptrs.push_back(backend_cpu);
  172. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  173. sched.reset(
  174. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  175. );
  176. }
  177. ~clip_ctx() {
  178. ggml_backend_free(backend);
  179. if (backend != backend_cpu) {
  180. ggml_backend_free(backend_cpu);
  181. }
  182. }
  183. // this function is added so that we don't change too much of the existing code
  184. projector_type proj_type() const {
  185. return model.proj_type;
  186. }
  187. };
  188. //
  189. // clip_graph
  190. //
  191. clip_graph::clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  192. model(ctx->model),
  193. hparams(model.hparams),
  194. proj_type(ctx->proj_type()),
  195. img(img),
  196. patch_size(hparams.patch_size),
  197. n_patches_x(img.nx / patch_size),
  198. n_patches_y(img.ny / patch_size),
  199. n_patches(n_patches_x * n_patches_y),
  200. n_embd(hparams.n_embd),
  201. n_head(hparams.n_head),
  202. d_head(n_embd / n_head),
  203. n_layer(hparams.n_layer),
  204. n_mmproj_embd(clip_n_mmproj_embd(ctx)),
  205. eps(hparams.eps),
  206. kq_scale(1.0f / sqrtf((float)d_head)),
  207. flash_attn_type(ctx->flash_attn_type),
  208. debug_graph(ctx->debug_graph),
  209. debug_print_tensors(ctx->debug_print_tensors) {
  210. struct ggml_init_params params = {
  211. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  212. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  213. /*.no_alloc =*/ true,
  214. };
  215. ctx0_ptr.reset(ggml_init(params));
  216. ctx0 = ctx0_ptr.get();
  217. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  218. }
  219. void clip_graph::cb(ggml_tensor * cur0, const char * name, int il) const {
  220. if (debug_graph) {
  221. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  222. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  223. ggml_set_name(cur, cur_name.c_str());
  224. ggml_set_output(cur);
  225. ggml_build_forward_expand(gf, cur);
  226. debug_print_tensors.push_back(cur);
  227. }
  228. }
  229. // siglip2 naflex
  230. ggml_tensor * clip_graph::resize_position_embeddings() {
  231. ggml_tensor * pos_embd = model.position_embeddings;
  232. const int height = img.ny / patch_size;
  233. const int width = img.nx / patch_size;
  234. const uint32_t mode = GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS;
  235. const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
  236. GGML_ASSERT(pos_embd);
  237. if (height == n_per_side && width == n_per_side) {
  238. return pos_embd;
  239. }
  240. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
  241. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
  242. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
  243. pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
  244. pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
  245. return pos_embd;
  246. }
  247. // build vision transformer (ViT) cgraph
  248. // this function should cover most of the models
  249. // if your model has specific features, you should probably duplicate this function
  250. ggml_tensor * clip_graph::build_vit(
  251. ggml_tensor * inp,
  252. int64_t n_pos,
  253. norm_type norm_t,
  254. ffn_op_type ffn_t,
  255. ggml_tensor * learned_pos_embd,
  256. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  257. ) {
  258. if (learned_pos_embd) {
  259. inp = ggml_add(ctx0, inp, learned_pos_embd);
  260. cb(inp, "pos_embed", -1);
  261. }
  262. ggml_tensor * inpL = inp;
  263. // pre-layernorm
  264. if (model.pre_ln_w) {
  265. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  266. cb(inpL, "pre_ln", -1);
  267. }
  268. // loop over layers
  269. for (int il = 0; il < n_layer; il++) {
  270. auto & layer = model.layers[il];
  271. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  272. // layernorm1
  273. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  274. cb(cur, "layer_inp_normed", il);
  275. // self-attention
  276. {
  277. ggml_tensor * Qcur = nullptr;
  278. ggml_tensor * Kcur = nullptr;
  279. ggml_tensor * Vcur = nullptr;
  280. if (layer.qkv_w != nullptr) {
  281. // fused qkv
  282. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  283. if (layer.qkv_b != nullptr) {
  284. cur = ggml_add(ctx0, cur, layer.qkv_b);
  285. }
  286. Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  287. /* nb1 */ ggml_row_size(cur->type, d_head),
  288. /* nb2 */ cur->nb[1],
  289. /* offset */ 0);
  290. Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  291. /* nb1 */ ggml_row_size(cur->type, d_head),
  292. /* nb2 */ cur->nb[1],
  293. /* offset */ ggml_row_size(cur->type, n_embd));
  294. Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  295. /* nb1 */ ggml_row_size(cur->type, d_head),
  296. /* nb2 */ cur->nb[1],
  297. /* offset */ ggml_row_size(cur->type, 2 * n_embd));
  298. // TODO: q/k norm requires row size == n_embd, while here it's d_head
  299. // we can add support in the future if needed
  300. GGML_ASSERT(layer.q_norm == nullptr && layer.k_norm == nullptr);
  301. } else {
  302. // separate q, k, v
  303. Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  304. if (layer.q_b) {
  305. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  306. }
  307. Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  308. if (layer.k_b) {
  309. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  310. }
  311. Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  312. if (layer.v_b) {
  313. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  314. }
  315. if (layer.q_norm) {
  316. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  317. cb(Qcur, "Qcur_norm", il);
  318. }
  319. if (layer.k_norm) {
  320. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  321. cb(Kcur, "Kcur_norm", il);
  322. }
  323. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  324. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  325. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  326. }
  327. cb(Qcur, "Qcur", il);
  328. cb(Kcur, "Kcur", il);
  329. cb(Vcur, "Vcur", il);
  330. if (add_pos) {
  331. Qcur = add_pos(Qcur, layer);
  332. Kcur = add_pos(Kcur, layer);
  333. cb(Qcur, "Qcur_pos", il);
  334. cb(Kcur, "Kcur_pos", il);
  335. }
  336. cur = build_attn(layer.o_w, layer.o_b,
  337. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  338. cb(cur, "attn_out", il);
  339. }
  340. if (layer.ls_1_w) {
  341. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  342. cb(cur, "attn_out_scaled", il);
  343. }
  344. // re-add the layer input, e.g., residual
  345. cur = ggml_add(ctx0, cur, inpL);
  346. inpL = cur; // inpL = residual, cur = hidden_states
  347. cb(cur, "ffn_inp", il);
  348. // layernorm2
  349. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  350. cb(cur, "ffn_inp_normed", il);
  351. // ffn
  352. cur = build_ffn(cur,
  353. layer.ff_up_w, layer.ff_up_b,
  354. layer.ff_gate_w, layer.ff_gate_b,
  355. layer.ff_down_w, layer.ff_down_b,
  356. ffn_t, il);
  357. cb(cur, "ffn_out", il);
  358. if (layer.ls_2_w) {
  359. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  360. cb(cur, "ffn_out_scaled", il);
  361. }
  362. // residual 2
  363. cur = ggml_add(ctx0, inpL, cur);
  364. cb(cur, "layer_out", il);
  365. inpL = cur;
  366. }
  367. if (model.audio_has_avgpool()) {
  368. ggml_tensor * cur = inpL;
  369. cur = ggml_transpose(ctx0, cur);
  370. cur = ggml_cont(ctx0, cur);
  371. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  372. cur = ggml_transpose(ctx0, cur);
  373. cur = ggml_cont(ctx0, cur);
  374. inpL = cur;
  375. }
  376. // post-layernorm
  377. if (model.post_ln_w) {
  378. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  379. }
  380. return inpL;
  381. }
  382. // build the input after conv2d (inp_raw --> patches)
  383. // returns tensor with shape [n_embd, n_patches]
  384. ggml_tensor * clip_graph::build_inp() {
  385. ggml_tensor * inp_raw = build_inp_raw();
  386. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  387. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  388. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  389. if (model.patch_bias) {
  390. inp = ggml_add(ctx0, inp, model.patch_bias);
  391. cb(inp, "patch_bias", -1);
  392. }
  393. return inp;
  394. }
  395. ggml_tensor * clip_graph::build_inp_raw(int channels) {
  396. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  397. ggml_set_name(inp_raw, "inp_raw");
  398. ggml_set_input(inp_raw);
  399. return inp_raw;
  400. }
  401. ggml_tensor * clip_graph::build_norm(
  402. ggml_tensor * cur,
  403. ggml_tensor * mw,
  404. ggml_tensor * mb,
  405. norm_type type,
  406. float norm_eps,
  407. int il) const {
  408. cur = type == NORM_TYPE_RMS
  409. ? ggml_rms_norm(ctx0, cur, norm_eps)
  410. : ggml_norm(ctx0, cur, norm_eps);
  411. if (mw || mb) {
  412. cb(cur, "norm", il);
  413. }
  414. if (mw) {
  415. cur = ggml_mul(ctx0, cur, mw);
  416. if (mb) {
  417. cb(cur, "norm_w", il);
  418. }
  419. }
  420. if (mb) {
  421. cur = ggml_add(ctx0, cur, mb);
  422. }
  423. return cur;
  424. }
  425. ggml_tensor * clip_graph::build_ffn(
  426. ggml_tensor * cur,
  427. ggml_tensor * up,
  428. ggml_tensor * up_b,
  429. ggml_tensor * gate,
  430. ggml_tensor * gate_b,
  431. ggml_tensor * down,
  432. ggml_tensor * down_b,
  433. ffn_op_type type_op,
  434. int il) const {
  435. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  436. cb(tmp, "ffn_up", il);
  437. if (up_b) {
  438. tmp = ggml_add(ctx0, tmp, up_b);
  439. cb(tmp, "ffn_up_b", il);
  440. }
  441. if (gate) {
  442. cur = ggml_mul_mat(ctx0, gate, cur);
  443. cb(cur, "ffn_gate", il);
  444. if (gate_b) {
  445. cur = ggml_add(ctx0, cur, gate_b);
  446. cb(cur, "ffn_gate_b", il);
  447. }
  448. } else {
  449. cur = tmp;
  450. }
  451. // we only support parallel ffn for now
  452. switch (type_op) {
  453. case FFN_SILU:
  454. if (gate) {
  455. cur = ggml_swiglu_split(ctx0, cur, tmp);
  456. cb(cur, "ffn_swiglu", il);
  457. } else {
  458. cur = ggml_silu(ctx0, cur);
  459. cb(cur, "ffn_silu", il);
  460. } break;
  461. case FFN_GELU:
  462. if (gate) {
  463. cur = ggml_geglu_split(ctx0, cur, tmp);
  464. cb(cur, "ffn_geglu", il);
  465. } else {
  466. cur = ggml_gelu(ctx0, cur);
  467. cb(cur, "ffn_gelu", il);
  468. } break;
  469. case FFN_GELU_ERF:
  470. if (gate) {
  471. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  472. cb(cur, "ffn_geglu_erf", il);
  473. } else {
  474. cur = ggml_gelu_erf(ctx0, cur);
  475. cb(cur, "ffn_gelu_erf", il);
  476. } break;
  477. case FFN_GELU_QUICK:
  478. if (gate) {
  479. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  480. cb(cur, "ffn_geglu_quick", il);
  481. } else {
  482. cur = ggml_gelu_quick(ctx0, cur);
  483. cb(cur, "ffn_gelu_quick", il);
  484. } break;
  485. }
  486. if (down) {
  487. cur = ggml_mul_mat(ctx0, down, cur);
  488. }
  489. if (down_b) {
  490. cb(cur, "ffn_down", il);
  491. }
  492. if (down_b) {
  493. cur = ggml_add(ctx0, cur, down_b);
  494. }
  495. return cur;
  496. }
  497. ggml_tensor * clip_graph::build_attn(
  498. ggml_tensor * wo,
  499. ggml_tensor * wo_b,
  500. ggml_tensor * q_cur,
  501. ggml_tensor * k_cur,
  502. ggml_tensor * v_cur,
  503. ggml_tensor * kq_mask,
  504. float kq_scale,
  505. int il) const {
  506. // these nodes are added to the graph together so that they are not reordered
  507. // by doing so, the number of splits in the graph is reduced
  508. ggml_build_forward_expand(gf, q_cur);
  509. ggml_build_forward_expand(gf, k_cur);
  510. ggml_build_forward_expand(gf, v_cur);
  511. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  512. //cb(q, "q", il);
  513. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  514. //cb(k, "k", il);
  515. ggml_tensor * cur;
  516. if (flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  517. ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
  518. k = ggml_cast(ctx0, k, GGML_TYPE_F16);
  519. v = ggml_cast(ctx0, v, GGML_TYPE_F16);
  520. cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f);
  521. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  522. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
  523. } else {
  524. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  525. v = ggml_cont(ctx0, v);
  526. const auto n_tokens = q->ne[1];
  527. const auto n_head = q->ne[2];
  528. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  529. // F32 may not needed for vision encoders?
  530. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  531. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  532. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  533. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  534. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  535. }
  536. cb(cur, "kqv_out", il);
  537. if (wo) {
  538. cur = ggml_mul_mat(ctx0, wo, cur);
  539. }
  540. if (wo_b) {
  541. cur = ggml_add(ctx0, cur, wo_b);
  542. }
  543. return cur;
  544. }
  545. // implementation of the 2D RoPE without adding a new op in ggml
  546. // this is not efficient (use double the memory), but works on all backends
  547. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  548. ggml_tensor * clip_graph::build_rope_2d(
  549. ggml_context * ctx0,
  550. ggml_tensor * cur,
  551. ggml_tensor * pos_a, // first half
  552. ggml_tensor * pos_b, // second half
  553. const float freq_base,
  554. const bool interleave_freq
  555. ) {
  556. const int64_t n_dim = cur->ne[0];
  557. const int64_t n_head = cur->ne[1];
  558. const int64_t n_pos = cur->ne[2];
  559. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  560. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  561. // first half of cur will use 1e-0, 1e-2 (even)
  562. // second half of cur will use 1e-1, 1e-3 (odd)
  563. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  564. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  565. // then for the second half, we use freq_scale to shift the inv_freq
  566. // ^ why? replace (2i) with (2i+1) in the above equation
  567. const float freq_scale_odd = interleave_freq
  568. ? std::pow(freq_base, (float)-2/n_dim)
  569. : 1.0;
  570. // first half
  571. ggml_tensor * first;
  572. {
  573. first = ggml_view_3d(ctx0, cur,
  574. n_dim/2, n_head, n_pos,
  575. ggml_row_size(cur->type, n_dim),
  576. ggml_row_size(cur->type, n_dim*n_head),
  577. 0);
  578. first = ggml_rope_ext(
  579. ctx0,
  580. first,
  581. pos_a, // positions
  582. nullptr, // freq factors
  583. n_dim/2, // n_dims
  584. 0, 0, freq_base,
  585. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  586. );
  587. }
  588. // second half
  589. ggml_tensor * second;
  590. {
  591. second = ggml_view_3d(ctx0, cur,
  592. n_dim/2, n_head, n_pos,
  593. ggml_row_size(cur->type, n_dim),
  594. ggml_row_size(cur->type, n_dim*n_head),
  595. n_dim/2 * ggml_element_size(cur));
  596. second = ggml_rope_ext(
  597. ctx0,
  598. second,
  599. pos_b, // positions
  600. nullptr, // freq factors
  601. n_dim/2, // n_dims
  602. 0, 0, freq_base,
  603. freq_scale_odd,
  604. 0.0f, 1.0f, 0.0f, 0.0f
  605. );
  606. }
  607. cur = ggml_concat(ctx0, first, second, 0);
  608. return cur;
  609. }
  610. // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
  611. // support dynamic resolution
  612. ggml_tensor * clip_graph::build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
  613. GGML_ASSERT(scale_factor > 1);
  614. const int n_embd = cur->ne[0];
  615. int width = img.nx / patch_size;
  616. int height = img.ny / patch_size;
  617. // pad width and height to factor
  618. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  619. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  620. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  621. if (pad_width || pad_height) {
  622. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  623. width += pad_width;
  624. height += pad_height;
  625. }
  626. // unshuffle h
  627. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  628. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  629. // unshuffle w
  630. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  631. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  632. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  633. cb(cur, "pixel_shuffle", -1);
  634. return cur;
  635. }
  636. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  637. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  638. const clip_image_f32 & img = *imgs.entries[0];
  639. std::unique_ptr<clip_graph> builder;
  640. switch (ctx->proj_type()) {
  641. case PROJECTOR_TYPE_GEMMA3:
  642. case PROJECTOR_TYPE_IDEFICS3:
  643. case PROJECTOR_TYPE_LFM2:
  644. case PROJECTOR_TYPE_JANUS_PRO:
  645. {
  646. builder = std::make_unique<clip_graph_siglip>(ctx, img);
  647. } break;
  648. case PROJECTOR_TYPE_PIXTRAL:
  649. case PROJECTOR_TYPE_LIGHTONOCR:
  650. {
  651. builder = std::make_unique<clip_graph_pixtral>(ctx, img);
  652. } break;
  653. case PROJECTOR_TYPE_QWEN2VL:
  654. case PROJECTOR_TYPE_QWEN25VL:
  655. {
  656. builder = std::make_unique<clip_graph_qwen2vl>(ctx, img);
  657. } break;
  658. case PROJECTOR_TYPE_QWEN3VL:
  659. {
  660. builder = std::make_unique<clip_graph_qwen3vl>(ctx, img);
  661. } break;
  662. case PROJECTOR_TYPE_MINICPMV:
  663. {
  664. builder = std::make_unique<clip_graph_minicpmv>(ctx, img);
  665. } break;
  666. case PROJECTOR_TYPE_INTERNVL:
  667. {
  668. builder = std::make_unique<clip_graph_internvl>(ctx, img);
  669. } break;
  670. case PROJECTOR_TYPE_LLAMA4:
  671. {
  672. builder = std::make_unique<clip_graph_llama4>(ctx, img);
  673. } break;
  674. case PROJECTOR_TYPE_ULTRAVOX:
  675. case PROJECTOR_TYPE_VOXTRAL:
  676. case PROJECTOR_TYPE_QWEN2A:
  677. {
  678. builder = std::make_unique<clip_graph_whisper_enc>(ctx, img);
  679. } break;
  680. case PROJECTOR_TYPE_KIMIVL:
  681. {
  682. builder = std::make_unique<clip_graph_kimivl>(ctx, img);
  683. } break;
  684. case PROJECTOR_TYPE_COGVLM:
  685. {
  686. builder = std::make_unique<clip_graph_cogvlm>(ctx, img);
  687. } break;
  688. case PROJECTOR_TYPE_MLP:
  689. case PROJECTOR_TYPE_MLP_NORM:
  690. case PROJECTOR_TYPE_LDP:
  691. case PROJECTOR_TYPE_LDPV2:
  692. case PROJECTOR_TYPE_GLM_EDGE:
  693. {
  694. builder = std::make_unique<clip_graph_llava>(ctx, img);
  695. } break;
  696. default:
  697. GGML_ABORT("missing cgraph builder");
  698. }
  699. return builder->build();
  700. }
  701. //
  702. // clip_model_loader
  703. //
  704. struct clip_model_loader {
  705. ggml_context_ptr ctx_meta;
  706. gguf_context_ptr ctx_gguf;
  707. std::string fname;
  708. size_t model_size = 0; // in bytes
  709. bool has_vision = false;
  710. bool has_audio = false;
  711. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  712. clip_model_loader(const char * fname) : fname(fname) {
  713. struct ggml_context * meta = nullptr;
  714. struct gguf_init_params params = {
  715. /*.no_alloc = */ true,
  716. /*.ctx = */ &meta,
  717. };
  718. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  719. if (!ctx_gguf.get()) {
  720. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  721. }
  722. ctx_meta.reset(meta);
  723. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  724. // print gguf info
  725. {
  726. std::string name;
  727. get_string(KEY_NAME, name, false);
  728. std::string description;
  729. get_string(KEY_DESCRIPTION, description, false);
  730. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  731. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  732. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  733. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  734. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  735. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  736. LOG_INF("\n");
  737. }
  738. // modalities
  739. {
  740. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  741. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  742. if (has_vision) {
  743. LOG_INF("%s: has vision encoder\n", __func__);
  744. }
  745. if (has_audio) {
  746. LOG_INF("%s: has audio encoder\n", __func__);
  747. }
  748. }
  749. // tensors
  750. {
  751. for (int i = 0; i < n_tensors; ++i) {
  752. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  753. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  754. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  755. ggml_tensor * cur = ggml_get_tensor(meta, name);
  756. size_t tensor_size = ggml_nbytes(cur);
  757. model_size += tensor_size;
  758. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  759. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  760. }
  761. }
  762. }
  763. void load_hparams(clip_model & model, clip_modality modality) {
  764. auto & hparams = model.hparams;
  765. std::string log_ffn_op; // for logging
  766. // sanity check
  767. if (modality == CLIP_MODALITY_VISION) {
  768. GGML_ASSERT(has_vision);
  769. } else if (modality == CLIP_MODALITY_AUDIO) {
  770. GGML_ASSERT(has_audio);
  771. }
  772. model.modality = modality;
  773. // projector type
  774. std::string proj_type;
  775. {
  776. // default key
  777. get_string(KEY_PROJ_TYPE, proj_type, false);
  778. // for models with mixed modalities
  779. if (proj_type.empty()) {
  780. if (modality == CLIP_MODALITY_VISION) {
  781. get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
  782. } else if (modality == CLIP_MODALITY_AUDIO) {
  783. get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
  784. } else {
  785. GGML_ABORT("unknown modality");
  786. }
  787. }
  788. model.proj_type = clip_projector_type_from_string(proj_type);
  789. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  790. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  791. }
  792. // correct arch for multimodal models (legacy method)
  793. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  794. model.proj_type = modality == CLIP_MODALITY_VISION
  795. ? PROJECTOR_TYPE_QWEN25VL
  796. : PROJECTOR_TYPE_QWEN2A;
  797. }
  798. }
  799. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  800. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  801. // other hparams
  802. {
  803. const char * prefix = is_vision ? "vision" : "audio";
  804. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  805. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  806. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  807. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  808. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  809. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  810. if (is_vision) {
  811. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  812. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  813. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  814. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  815. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  816. if (hparams.minicpmv_query_num == 0) {
  817. // Fallback to hardcoded values for legacy models
  818. if (hparams.minicpmv_version == 3) {
  819. hparams.minicpmv_query_num = 64;
  820. } else if (hparams.minicpmv_version == 4) {
  821. hparams.minicpmv_query_num = 64;
  822. } else if (hparams.minicpmv_version == 5) {
  823. hparams.minicpmv_query_num = 64;
  824. } else if (hparams.minicpmv_version == 6) {
  825. hparams.minicpmv_query_num = 64;
  826. } else {
  827. hparams.minicpmv_query_num = 96;
  828. }
  829. }
  830. } else if (is_audio) {
  831. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  832. // some hparams are unused, but still need to set to avoid issues
  833. hparams.image_size = 0;
  834. hparams.patch_size = 1;
  835. } else {
  836. GGML_ASSERT(false && "unknown modality");
  837. }
  838. // for pinpoints, we need to convert it into a list of resolution candidates
  839. {
  840. std::vector<int> pinpoints;
  841. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  842. if (!pinpoints.empty()) {
  843. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  844. hparams.image_res_candidates.push_back({
  845. pinpoints[i],
  846. pinpoints[i+1],
  847. });
  848. }
  849. }
  850. }
  851. // default warmup value
  852. hparams.warmup_image_size = hparams.image_size;
  853. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  854. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  855. || model.proj_type == PROJECTOR_TYPE_LDP
  856. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  857. {
  858. bool use_gelu = false;
  859. bool use_silu = false;
  860. get_bool(KEY_USE_GELU, use_gelu, false);
  861. get_bool(KEY_USE_SILU, use_silu, false);
  862. if (use_gelu && use_silu) {
  863. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  864. }
  865. if (use_gelu) {
  866. hparams.ffn_op = FFN_GELU;
  867. log_ffn_op = "gelu";
  868. } else if (use_silu) {
  869. hparams.ffn_op = FFN_SILU;
  870. log_ffn_op = "silu";
  871. } else {
  872. hparams.ffn_op = FFN_GELU_QUICK;
  873. log_ffn_op = "gelu_quick";
  874. }
  875. }
  876. {
  877. std::string mm_patch_merge_type;
  878. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  879. if (mm_patch_merge_type == "spatial_unpad") {
  880. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  881. }
  882. }
  883. if (is_vision) {
  884. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  885. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  886. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  887. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  888. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  889. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  890. for (int i = 0; i < 3; ++i) {
  891. hparams.image_mean[i] = mean_data[i];
  892. hparams.image_std[i] = std_data[i];
  893. }
  894. }
  895. // Load the vision feature layer indices if they are explicitly provided;
  896. // if multiple vision feature layers are present, the values will be concatenated
  897. // to form the final visual features.
  898. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  899. // be non-negative, since we use -1 to mark values as unset here.
  900. std::vector<int> vision_feature_layer;
  901. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  902. // convert std::vector to std::unordered_set
  903. for (auto & layer : vision_feature_layer) {
  904. hparams.vision_feature_layer.insert(layer);
  905. }
  906. // model-specific params
  907. switch (model.proj_type) {
  908. case PROJECTOR_TYPE_MINICPMV:
  909. {
  910. if (hparams.minicpmv_version == 0) {
  911. hparams.minicpmv_version = 2; // default to 2 if not set
  912. }
  913. } break;
  914. case PROJECTOR_TYPE_INTERNVL:
  915. {
  916. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  917. } break;
  918. case PROJECTOR_TYPE_IDEFICS3:
  919. {
  920. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  921. get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false);
  922. } break;
  923. case PROJECTOR_TYPE_LFM2:
  924. {
  925. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  926. // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
  927. // config above specifies number of tokens after downsampling, while here it is before, relax lowerbound to 64
  928. hparams.set_limit_image_tokens(64, 1024);
  929. } break;
  930. case PROJECTOR_TYPE_PIXTRAL:
  931. case PROJECTOR_TYPE_LIGHTONOCR:
  932. {
  933. // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json
  934. // TODO: verify the image_min_tokens
  935. hparams.n_merge = 1; // the original pixtral does not use patch merging
  936. hparams.rope_theta = 10000.0f;
  937. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  938. hparams.set_limit_image_tokens(8, 1024);
  939. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  940. } break;
  941. case PROJECTOR_TYPE_KIMIVL:
  942. {
  943. hparams.rope_theta = 10000.0f;
  944. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  945. // TODO: check kimivl preprocessor for exact values
  946. hparams.set_limit_image_tokens(8, 1024);
  947. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  948. } break;
  949. case PROJECTOR_TYPE_GEMMA3:
  950. {
  951. // default value (used by all model sizes in gemma 3 family)
  952. // number of patches for each **side** is reduced by a factor of 4
  953. hparams.n_merge = 4;
  954. // test model (tinygemma3) has a different value, we optionally read it
  955. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  956. } break;
  957. case PROJECTOR_TYPE_QWEN2VL:
  958. case PROJECTOR_TYPE_QWEN25VL:
  959. case PROJECTOR_TYPE_QWEN3VL:
  960. {
  961. hparams.n_merge = 2; // default value for Qwen 2 and 2.5
  962. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  963. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it
  964. // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  965. hparams.set_limit_image_tokens(8, 4096);
  966. hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup
  967. const int warn_min_pixels = 1024 * hparams.n_merge * hparams.n_merge * hparams.patch_size * hparams.patch_size;
  968. if (hparams.image_min_pixels < warn_min_pixels) {
  969. LOG_WRN("%s: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks\n", __func__);
  970. LOG_WRN("%s: if you encounter problems with accuracy, try adding --image-min-tokens 1024\n", __func__);
  971. LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__);
  972. }
  973. } break;
  974. case PROJECTOR_TYPE_LLAMA4:
  975. {
  976. hparams.rope_theta = 10000.0f;
  977. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  978. set_llava_uhd_res_candidates(model, 3);
  979. } break;
  980. case PROJECTOR_TYPE_ULTRAVOX:
  981. case PROJECTOR_TYPE_QWEN2A:
  982. case PROJECTOR_TYPE_VOXTRAL:
  983. {
  984. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  985. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  986. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  987. if (hparams.n_mel_bins != 128) {
  988. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  989. }
  990. hparams.ffn_op = FFN_GELU_ERF;
  991. log_ffn_op = "gelu_erf"; // temporary solution for logging
  992. } break;
  993. default:
  994. break;
  995. }
  996. // sanity check
  997. {
  998. if (hparams.image_max_pixels < hparams.image_min_pixels) {
  999. throw std::runtime_error(string_format("%s: image_max_pixels (%d) is less than image_min_pixels (%d)\n", __func__, hparams.image_max_pixels, hparams.image_min_pixels));
  1000. }
  1001. }
  1002. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  1003. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  1004. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  1005. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  1006. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  1007. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  1008. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  1009. if (is_vision) {
  1010. LOG_INF("\n--- vision hparams ---\n");
  1011. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  1012. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  1013. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  1014. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  1015. LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge);
  1016. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  1017. if (hparams.image_min_pixels > 0) {
  1018. LOG_INF("%s: image_min_pixels: %d%s\n", __func__, hparams.image_min_pixels, hparams.custom_image_min_tokens > 0 ? " (custom value)" : "");
  1019. }
  1020. if (hparams.image_max_pixels > 0) {
  1021. LOG_INF("%s: image_max_pixels: %d%s\n", __func__, hparams.image_max_pixels, hparams.custom_image_max_tokens > 0 ? " (custom value)" : "");
  1022. }
  1023. } else if (is_audio) {
  1024. LOG_INF("\n--- audio hparams ---\n");
  1025. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  1026. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  1027. }
  1028. LOG_INF("\n");
  1029. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  1030. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  1031. }
  1032. }
  1033. void load_tensors(clip_ctx & ctx_clip) {
  1034. auto & model = ctx_clip.model;
  1035. auto & hparams = model.hparams;
  1036. std::map<std::string, size_t> tensor_offset;
  1037. std::vector<ggml_tensor *> tensors_to_load;
  1038. // TODO @ngxson : support both audio and video in the future
  1039. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  1040. // get offsets
  1041. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  1042. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1043. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  1044. }
  1045. // create data context
  1046. struct ggml_init_params params = {
  1047. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  1048. /*.mem_buffer =*/ NULL,
  1049. /*.no_alloc =*/ true,
  1050. };
  1051. ctx_clip.ctx_data.reset(ggml_init(params));
  1052. if (!ctx_clip.ctx_data) {
  1053. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  1054. }
  1055. // helper function
  1056. auto get_tensor = [&](const std::string & name, bool required = true) {
  1057. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  1058. if (!cur && required) {
  1059. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  1060. }
  1061. if (cur) {
  1062. tensors_to_load.push_back(cur);
  1063. // add tensors to context
  1064. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  1065. ggml_set_name(data_tensor, cur->name);
  1066. cur = data_tensor;
  1067. }
  1068. return cur;
  1069. };
  1070. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  1071. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  1072. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  1073. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  1074. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  1075. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  1076. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  1077. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  1078. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  1079. // layers
  1080. model.layers.resize(hparams.n_layer);
  1081. for (int il = 0; il < hparams.n_layer; ++il) {
  1082. auto & layer = model.layers[il];
  1083. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false);
  1084. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false);
  1085. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false);
  1086. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  1087. layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false);
  1088. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  1089. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  1090. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  1091. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  1092. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  1093. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  1094. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  1095. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  1096. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  1097. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  1098. layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false);
  1099. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  1100. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  1101. // ffn
  1102. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  1103. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  1104. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  1105. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  1106. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  1107. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  1108. // qwen3vl deepstack layer
  1109. layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
  1110. layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
  1111. layer.deepstack_fc1_w = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "weight"), false);
  1112. layer.deepstack_fc1_b = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "bias"), false);
  1113. layer.deepstack_fc2_w = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "weight"), false);
  1114. layer.deepstack_fc2_b = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "bias"), false);
  1115. if (layer.has_deepstack()) {
  1116. model.n_deepstack_layers++;
  1117. }
  1118. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  1119. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  1120. bool is_ffn_swapped = (
  1121. // only old models need this fix
  1122. model.proj_type == PROJECTOR_TYPE_MLP
  1123. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  1124. || model.proj_type == PROJECTOR_TYPE_LDP
  1125. || model.proj_type == PROJECTOR_TYPE_LDPV2
  1126. || model.proj_type == PROJECTOR_TYPE_QWEN2VL
  1127. || model.proj_type == PROJECTOR_TYPE_QWEN25VL
  1128. || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
  1129. || model.proj_type == PROJECTOR_TYPE_GEMMA3
  1130. || model.proj_type == PROJECTOR_TYPE_IDEFICS3
  1131. || model.proj_type == PROJECTOR_TYPE_MINICPMV
  1132. ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
  1133. if (is_ffn_swapped) {
  1134. // swap up and down weights
  1135. ggml_tensor * tmp = layer.ff_up_w;
  1136. layer.ff_up_w = layer.ff_down_w;
  1137. layer.ff_down_w = tmp;
  1138. // swap up and down biases
  1139. tmp = layer.ff_up_b;
  1140. layer.ff_up_b = layer.ff_down_b;
  1141. layer.ff_down_b = tmp;
  1142. if (il == 0) {
  1143. LOG_WRN("%s: ffn up/down are swapped\n", __func__);
  1144. }
  1145. }
  1146. }
  1147. switch (model.proj_type) {
  1148. case PROJECTOR_TYPE_MLP:
  1149. case PROJECTOR_TYPE_MLP_NORM:
  1150. {
  1151. // LLaVA projection
  1152. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  1153. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  1154. // Yi-type llava
  1155. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  1156. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  1157. // missing in Yi-type llava
  1158. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  1159. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  1160. // Yi-type llava
  1161. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  1162. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  1163. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  1164. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  1165. if (model.mm_3_w) {
  1166. // TODO: this is a hack to support Yi-type llava
  1167. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  1168. }
  1169. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  1170. } break;
  1171. case PROJECTOR_TYPE_LDP:
  1172. {
  1173. // MobileVLM projection
  1174. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1175. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1176. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1177. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1178. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  1179. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  1180. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  1181. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  1182. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  1183. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  1184. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  1185. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  1186. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  1187. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  1188. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  1189. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  1190. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  1191. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  1192. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  1193. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  1194. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  1195. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  1196. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  1197. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  1198. } break;
  1199. case PROJECTOR_TYPE_LDPV2:
  1200. {
  1201. // MobilVLM_V2 projection
  1202. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1203. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1204. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1205. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  1206. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  1207. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  1208. } break;
  1209. case PROJECTOR_TYPE_MINICPMV:
  1210. {
  1211. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  1212. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  1213. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  1214. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  1215. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  1216. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  1217. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  1218. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  1219. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  1220. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  1221. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  1222. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  1223. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  1224. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  1225. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  1226. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  1227. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  1228. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  1229. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  1230. } break;
  1231. case PROJECTOR_TYPE_GLM_EDGE:
  1232. {
  1233. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  1234. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  1235. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  1236. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  1237. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  1238. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  1239. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  1240. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  1241. model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  1242. model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  1243. } break;
  1244. case PROJECTOR_TYPE_QWEN2VL:
  1245. case PROJECTOR_TYPE_QWEN25VL:
  1246. {
  1247. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  1248. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  1249. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1250. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  1251. } break;
  1252. case PROJECTOR_TYPE_QWEN3VL:
  1253. {
  1254. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  1255. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  1256. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1257. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  1258. } break;
  1259. case PROJECTOR_TYPE_GEMMA3:
  1260. {
  1261. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  1262. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  1263. } break;
  1264. case PROJECTOR_TYPE_IDEFICS3:
  1265. {
  1266. model.projection = get_tensor(TN_MM_PROJECTOR);
  1267. } break;
  1268. case PROJECTOR_TYPE_LFM2:
  1269. case PROJECTOR_TYPE_KIMIVL:
  1270. {
  1271. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  1272. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  1273. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  1274. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  1275. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1276. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  1277. } break;
  1278. case PROJECTOR_TYPE_PIXTRAL:
  1279. {
  1280. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  1281. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  1282. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1283. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  1284. // [IMG_BREAK] token embedding
  1285. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  1286. // for mistral small 3.1
  1287. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  1288. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  1289. } break;
  1290. case PROJECTOR_TYPE_LIGHTONOCR:
  1291. {
  1292. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  1293. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  1294. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1295. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  1296. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  1297. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  1298. } break;
  1299. case PROJECTOR_TYPE_ULTRAVOX:
  1300. {
  1301. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  1302. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  1303. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  1304. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  1305. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  1306. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  1307. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  1308. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  1309. } break;
  1310. case PROJECTOR_TYPE_QWEN2A:
  1311. {
  1312. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  1313. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  1314. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  1315. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  1316. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  1317. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  1318. } break;
  1319. case PROJECTOR_TYPE_VOXTRAL:
  1320. {
  1321. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  1322. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  1323. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  1324. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  1325. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  1326. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  1327. } break;
  1328. case PROJECTOR_TYPE_INTERNVL:
  1329. {
  1330. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1331. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1332. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1333. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1334. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1335. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1336. } break;
  1337. case PROJECTOR_TYPE_LLAMA4:
  1338. {
  1339. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  1340. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1341. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1342. } break;
  1343. case PROJECTOR_TYPE_COGVLM:
  1344. {
  1345. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  1346. model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
  1347. model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
  1348. model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight"));
  1349. model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
  1350. model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight"));
  1351. model.mm_boi = get_tensor(TN_TOK_BOI);
  1352. model.mm_eoi = get_tensor(TN_TOK_EOI);
  1353. } break;
  1354. case PROJECTOR_TYPE_JANUS_PRO:
  1355. {
  1356. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  1357. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  1358. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  1359. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  1360. } break;
  1361. default:
  1362. GGML_ASSERT(false && "unknown projector type");
  1363. }
  1364. // load data
  1365. {
  1366. std::vector<uint8_t> read_buf;
  1367. auto fin = std::ifstream(fname, std::ios::binary);
  1368. if (!fin) {
  1369. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  1370. }
  1371. // alloc memory and offload data
  1372. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  1373. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  1374. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  1375. for (auto & t : tensors_to_load) {
  1376. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  1377. const size_t offset = tensor_offset[t->name];
  1378. fin.seekg(offset, std::ios::beg);
  1379. if (!fin) {
  1380. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  1381. }
  1382. size_t num_bytes = ggml_nbytes(cur);
  1383. if (ggml_backend_buft_is_host(buft)) {
  1384. // for the CPU and Metal backend, we can read directly into the tensor
  1385. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  1386. } else {
  1387. // read into a temporary buffer first, then copy to device memory
  1388. read_buf.resize(num_bytes);
  1389. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  1390. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  1391. }
  1392. }
  1393. fin.close();
  1394. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  1395. }
  1396. }
  1397. struct support_info_op {
  1398. ggml_tensor * op;
  1399. // true if the op runs on the accelerated ctx_clip.backend
  1400. bool is_accel = true;
  1401. };
  1402. struct support_info_graph {
  1403. // whether the clip_ctx.backend supports flash attention
  1404. bool fattn = true;
  1405. ggml_tensor * fattn_op = nullptr; // for debugging
  1406. std::vector<support_info_op> ops;
  1407. };
  1408. static void warmup(clip_ctx & ctx_clip) {
  1409. // create a fake batch
  1410. const auto & hparams = ctx_clip.model.hparams;
  1411. clip_image_f32_batch batch;
  1412. clip_image_f32_ptr img(clip_image_f32_init());
  1413. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  1414. img->nx = hparams.warmup_image_size;
  1415. img->ny = hparams.warmup_image_size;
  1416. LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
  1417. } else {
  1418. img->nx = hparams.warmup_audio_size;
  1419. img->ny = hparams.n_mel_bins;
  1420. LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
  1421. }
  1422. batch.entries.push_back(std::move(img));
  1423. warmup(ctx_clip, batch);
  1424. }
  1425. static void warmup(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
  1426. support_info_graph info;
  1427. if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) {
  1428. // try to enable flash attention to see if it's supported
  1429. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED;
  1430. info = alloc_compute_meta(ctx_clip, batch);
  1431. if (!info.fattn && info.fattn_op) {
  1432. auto op = info.fattn_op;
  1433. LOG_WRN("%s: *****************************************************************\n", __func__);
  1434. LOG_WRN("%s: WARNING: flash attention not supported by %s, memory usage will increase\n", __func__, ggml_backend_name(ctx_clip.backend));
  1435. LOG_WRN("%s: op params: \n", __func__);
  1436. static auto print_shape = [](const char * fn, const char * name, ggml_tensor * t) {
  1437. LOG_WRN("%s: %s: type = %s, ne = [%d %d %d %d], nb = [%d %d %d %d]\n", fn,
  1438. name, ggml_type_name(t->type),
  1439. t->ne[0], t->ne[1], t->ne[2], t->ne[3],
  1440. t->nb[0], t->nb[1], t->nb[2], t->nb[3]);
  1441. };
  1442. print_shape(__func__, " dst", op);
  1443. print_shape(__func__, "src0", op->src[0]);
  1444. print_shape(__func__, "src1", op->src[1]);
  1445. print_shape(__func__, "src2", op->src[2]);
  1446. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  1447. LOG_WRN("%s: *****************************************************************\n", __func__);
  1448. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED;
  1449. alloc_compute_meta(ctx_clip, batch);
  1450. }
  1451. } else {
  1452. info = alloc_compute_meta(ctx_clip, batch);
  1453. if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  1454. LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__);
  1455. }
  1456. }
  1457. ctx_clip.is_allocated = true; // mark buffers as allocated
  1458. LOG_INF("%s: flash attention is %s\n", __func__,
  1459. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  1460. // print ops that are not supported by the GPU backend (if there is one)
  1461. if (ctx_clip.backend && ctx_clip.backend != ctx_clip.backend_cpu) {
  1462. std::vector<support_info_op> unsupported_ops;
  1463. for (const auto & op : info.ops) {
  1464. if (!op.is_accel) {
  1465. unsupported_ops.push_back(op);
  1466. }
  1467. }
  1468. if (!unsupported_ops.empty()) {
  1469. LOG_WRN("%s: *****************************************************************\n", __func__);
  1470. LOG_WRN("%s: WARNING: the CLIP graph uses unsupported operators by the backend\n", __func__);
  1471. LOG_WRN("%s: the performance will be suboptimal \n", __func__);
  1472. LOG_WRN("%s: list of unsupported ops (backend=%s):\n", __func__, ggml_backend_name(ctx_clip.backend));
  1473. for (const auto & op : unsupported_ops) {
  1474. LOG_WRN("%s: %16s: type = %s, ne = [%d %d %d %d]\n", __func__,
  1475. ggml_op_name(op.op->op),
  1476. ggml_type_name(op.op->type),
  1477. op.op->ne[0], op.op->ne[1], op.op->ne[2], op.op->ne[3]);
  1478. }
  1479. LOG_WRN("%s: flash attention is %s\n", __func__,
  1480. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  1481. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  1482. LOG_WRN("%s: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118\n", __func__);
  1483. LOG_WRN("%s: *****************************************************************\n", __func__);
  1484. }
  1485. }
  1486. }
  1487. static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
  1488. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  1489. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  1490. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  1491. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  1492. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  1493. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  1494. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  1495. if (size > 1) {
  1496. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  1497. ggml_backend_buft_name(buft),
  1498. size / 1024.0 / 1024.0);
  1499. }
  1500. }
  1501. const int n_splits = ggml_backend_sched_get_n_splits(ctx_clip.sched.get());
  1502. const int n_nodes = ggml_graph_n_nodes(gf);
  1503. LOG_INF("%s: graph splits = %d, nodes = %d\n", __func__, n_splits, n_nodes);
  1504. support_info_graph res {
  1505. /*.fattn = */ true,
  1506. /*.fattn_op = */ nullptr,
  1507. /*.ops = */ {},
  1508. };
  1509. // check op support
  1510. for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
  1511. ggml_tensor * node = ggml_graph_node(gf, i);
  1512. res.ops.push_back({node, true});
  1513. if (!ggml_backend_supports_op(ctx_clip.backend, node)) {
  1514. res.ops.back().is_accel = false;
  1515. if (node->op == GGML_OP_FLASH_ATTN_EXT) {
  1516. res.fattn = false;
  1517. res.fattn_op = node;
  1518. }
  1519. }
  1520. }
  1521. return res;
  1522. }
  1523. void get_bool(const std::string & key, bool & output, bool required = true) const {
  1524. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1525. if (i < 0) {
  1526. if (required) {
  1527. throw std::runtime_error("Key not found: " + key);
  1528. }
  1529. return;
  1530. }
  1531. output = gguf_get_val_bool(ctx_gguf.get(), i);
  1532. }
  1533. void get_i32(const std::string & key, int & output, bool required = true) const {
  1534. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1535. if (i < 0) {
  1536. if (required) {
  1537. throw std::runtime_error("Key not found: " + key);
  1538. }
  1539. return;
  1540. }
  1541. output = gguf_get_val_i32(ctx_gguf.get(), i);
  1542. }
  1543. void get_u32(const std::string & key, int & output, bool required = true) const {
  1544. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1545. if (i < 0) {
  1546. if (required) {
  1547. throw std::runtime_error("Key not found: " + key);
  1548. }
  1549. return;
  1550. }
  1551. output = gguf_get_val_u32(ctx_gguf.get(), i);
  1552. }
  1553. void get_f32(const std::string & key, float & output, bool required = true) const {
  1554. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1555. if (i < 0) {
  1556. if (required) {
  1557. throw std::runtime_error("Key not found: " + key);
  1558. }
  1559. return;
  1560. }
  1561. output = gguf_get_val_f32(ctx_gguf.get(), i);
  1562. }
  1563. void get_string(const std::string & key, std::string & output, bool required = true) const {
  1564. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1565. if (i < 0) {
  1566. if (required) {
  1567. throw std::runtime_error("Key not found: " + key);
  1568. }
  1569. return;
  1570. }
  1571. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  1572. }
  1573. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) const {
  1574. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1575. if (i < 0) {
  1576. if (required) {
  1577. throw std::runtime_error("Key not found: " + key);
  1578. }
  1579. return;
  1580. }
  1581. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  1582. output.resize(n);
  1583. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  1584. for (int i = 0; i < n; ++i) {
  1585. output[i] = values[i];
  1586. }
  1587. }
  1588. static void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  1589. auto & hparams = model.hparams;
  1590. for (int x = 1; x <= max_patches_per_side; x++) {
  1591. for (int y = 1; y <= max_patches_per_side; y++) {
  1592. if (x == 1 && y == 1) {
  1593. continue; // skip the first point
  1594. }
  1595. hparams.image_res_candidates.push_back(clip_image_size{
  1596. x*hparams.image_size,
  1597. y*hparams.image_size,
  1598. });
  1599. }
  1600. }
  1601. }
  1602. };
  1603. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  1604. clip_ctx * ctx_vision = nullptr;
  1605. clip_ctx * ctx_audio = nullptr;
  1606. try {
  1607. clip_model_loader loader(fname);
  1608. if (loader.has_vision) {
  1609. ctx_vision = new clip_ctx(ctx_params);
  1610. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  1611. loader.load_tensors(*ctx_vision);
  1612. if (ctx_params.warmup) {
  1613. loader.warmup(*ctx_vision);
  1614. }
  1615. }
  1616. if (loader.has_audio) {
  1617. ctx_audio = new clip_ctx(ctx_params);
  1618. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  1619. loader.load_tensors(*ctx_audio);
  1620. if (ctx_params.warmup) {
  1621. loader.warmup(*ctx_audio);
  1622. }
  1623. }
  1624. } catch (const std::exception & e) {
  1625. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  1626. delete ctx_vision;
  1627. delete ctx_audio;
  1628. return {nullptr, nullptr};
  1629. }
  1630. return {ctx_vision, ctx_audio};
  1631. }
  1632. struct clip_image_size * clip_image_size_init() {
  1633. struct clip_image_size * load_image_size = new struct clip_image_size();
  1634. load_image_size->width = 448;
  1635. load_image_size->height = 448;
  1636. return load_image_size;
  1637. }
  1638. struct clip_image_u8 * clip_image_u8_init() {
  1639. return new clip_image_u8();
  1640. }
  1641. struct clip_image_f32 * clip_image_f32_init() {
  1642. return new clip_image_f32();
  1643. }
  1644. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  1645. return new clip_image_f32_batch();
  1646. }
  1647. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  1648. if (nx) *nx = img->nx;
  1649. if (ny) *ny = img->ny;
  1650. return img->buf.data();
  1651. }
  1652. void clip_image_size_free(struct clip_image_size * load_image_size) {
  1653. if (load_image_size == nullptr) {
  1654. return;
  1655. }
  1656. delete load_image_size;
  1657. }
  1658. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  1659. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  1660. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { delete batch; }
  1661. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { delete batch; }
  1662. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  1663. return batch->entries.size();
  1664. }
  1665. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  1666. if (idx < 0 || idx >= (int)batch->entries.size()) {
  1667. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  1668. return 0;
  1669. }
  1670. return batch->entries[idx]->nx;
  1671. }
  1672. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  1673. if (idx < 0 || idx >= (int)batch->entries.size()) {
  1674. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  1675. return 0;
  1676. }
  1677. return batch->entries[idx]->ny;
  1678. }
  1679. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  1680. if (idx < 0 || idx >= (int)batch->entries.size()) {
  1681. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  1682. return nullptr;
  1683. }
  1684. return batch->entries[idx].get();
  1685. }
  1686. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  1687. img->nx = nx;
  1688. img->ny = ny;
  1689. img->buf.resize(3 * nx * ny);
  1690. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  1691. }
  1692. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  1693. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  1694. dst.nx = src.nx;
  1695. dst.ny = src.ny;
  1696. dst.buf.resize(src.buf.size());
  1697. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  1698. for (size_t i = 0; i < src.buf.size(); ++i) {
  1699. int c = i % 3; // rgb
  1700. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  1701. }
  1702. }
  1703. // set of tools to manupulate images
  1704. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  1705. struct img_tool {
  1706. enum resize_algo {
  1707. RESIZE_ALGO_BILINEAR,
  1708. RESIZE_ALGO_BICUBIC,
  1709. // RESIZE_ALGO_LANCZOS, // TODO
  1710. };
  1711. static void resize(
  1712. const clip_image_u8 & src,
  1713. clip_image_u8 & dst,
  1714. const clip_image_size & target_resolution,
  1715. resize_algo algo,
  1716. bool add_padding = true, // TODO: define the behavior for add_padding = false
  1717. std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  1718. dst.nx = target_resolution.width;
  1719. dst.ny = target_resolution.height;
  1720. dst.buf.resize(3 * dst.nx * dst.ny);
  1721. if (dst.nx == src.nx && dst.ny == src.ny) {
  1722. // no resize needed, simple copy
  1723. dst.buf = src.buf;
  1724. return;
  1725. }
  1726. if (!add_padding) {
  1727. // direct resize
  1728. switch (algo) {
  1729. case RESIZE_ALGO_BILINEAR:
  1730. resize_bilinear(src, dst, target_resolution.width, target_resolution.height);
  1731. break;
  1732. case RESIZE_ALGO_BICUBIC:
  1733. resize_bicubic(src, dst, target_resolution.width, target_resolution.height);
  1734. break;
  1735. default:
  1736. throw std::runtime_error("Unsupported resize algorithm");
  1737. }
  1738. } else {
  1739. // resize with padding
  1740. clip_image_u8 resized_image;
  1741. float scale_w = static_cast<float>(target_resolution.width) / src.nx;
  1742. float scale_h = static_cast<float>(target_resolution.height) / src.ny;
  1743. float scale = std::min(scale_w, scale_h);
  1744. int new_width = std::min(static_cast<int>(std::ceil(src.nx * scale)), target_resolution.width);
  1745. int new_height = std::min(static_cast<int>(std::ceil(src.ny * scale)), target_resolution.height);
  1746. switch (algo) {
  1747. case RESIZE_ALGO_BILINEAR:
  1748. resize_bilinear(src, resized_image, new_width, new_height);
  1749. break;
  1750. case RESIZE_ALGO_BICUBIC:
  1751. resize_bicubic(src, resized_image, new_width, new_height);
  1752. break;
  1753. default:
  1754. throw std::runtime_error("Unsupported resize algorithm");
  1755. }
  1756. // fill dst with pad_color
  1757. fill(dst, pad_color);
  1758. int offset_x = (target_resolution.width - new_width) / 2;
  1759. int offset_y = (target_resolution.height - new_height) / 2;
  1760. composite(dst, resized_image, offset_x, offset_y);
  1761. }
  1762. }
  1763. static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  1764. dst.nx = w;
  1765. dst.ny = h;
  1766. dst.buf.resize(3 * w * h);
  1767. for (int i = 0; i < h; ++i) {
  1768. for (int j = 0; j < w; ++j) {
  1769. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  1770. int dst_idx = 3 * (i*w + j);
  1771. dst.buf[dst_idx] = image.buf[src_idx];
  1772. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  1773. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  1774. }
  1775. }
  1776. }
  1777. // calculate the size of the **resized** image, while preserving the aspect ratio
  1778. // the calculated size will be aligned to the nearest multiple of align_size
  1779. // if H or W size is larger than longest_edge, it will be resized to longest_edge
  1780. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) {
  1781. GGML_ASSERT(align_size > 0);
  1782. if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) {
  1783. return {0, 0};
  1784. }
  1785. float scale = std::min(static_cast<float>(longest_edge) / inp_size.width,
  1786. static_cast<float>(longest_edge) / inp_size.height);
  1787. float target_width_f = static_cast<float>(inp_size.width) * scale;
  1788. float target_height_f = static_cast<float>(inp_size.height) * scale;
  1789. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  1790. int aligned_width = ceil_by_factor(target_width_f);
  1791. int aligned_height = ceil_by_factor(target_height_f);
  1792. return {aligned_width, aligned_height};
  1793. }
  1794. // calculate the size of the **resized** image, while preserving the aspect ratio
  1795. // the calculated size will have min_pixels <= W*H <= max_pixels
  1796. // this is referred as "smart_resize" in transformers code
  1797. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) {
  1798. GGML_ASSERT(align_size > 0);
  1799. const int width = inp_size.width;
  1800. const int height = inp_size.height;
  1801. auto round_by_factor = [f = align_size](float x) { return static_cast<int>(std::round(x / static_cast<float>(f))) * f; };
  1802. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  1803. auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  1804. // always align up first
  1805. int h_bar = std::max(align_size, round_by_factor(height));
  1806. int w_bar = std::max(align_size, round_by_factor(width));
  1807. if (h_bar * w_bar > max_pixels) {
  1808. const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
  1809. h_bar = std::max(align_size, floor_by_factor(height / beta));
  1810. w_bar = std::max(align_size, floor_by_factor(width / beta));
  1811. } else if (h_bar * w_bar < min_pixels) {
  1812. const auto beta = std::sqrt(static_cast<float>(min_pixels) / (height * width));
  1813. h_bar = ceil_by_factor(height * beta);
  1814. w_bar = ceil_by_factor(width * beta);
  1815. }
  1816. return {w_bar, h_bar};
  1817. }
  1818. // draw src image into dst image at offset (offset_x, offset_y)
  1819. static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) {
  1820. for (int y = 0; y < src.ny; ++y) {
  1821. for (int x = 0; x < src.nx; ++x) {
  1822. int dx = x + offset_x;
  1823. int dy = y + offset_y;
  1824. // skip pixels that would be out of bounds in the destination
  1825. if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) {
  1826. continue;
  1827. }
  1828. size_t dst_idx = 3 * (static_cast<size_t>(dy) * dst.nx + static_cast<size_t>(dx));
  1829. size_t src_idx = 3 * (static_cast<size_t>(y) * src.nx + static_cast<size_t>(x));
  1830. dst.buf[dst_idx + 0] = src.buf[src_idx + 0];
  1831. dst.buf[dst_idx + 1] = src.buf[src_idx + 1];
  1832. dst.buf[dst_idx + 2] = src.buf[src_idx + 2];
  1833. }
  1834. }
  1835. }
  1836. // fill the image with a solid color
  1837. static void fill(clip_image_u8 & img, const std::array<uint8_t, 3> & color) {
  1838. for (size_t i = 0; i < img.buf.size(); i += 3) {
  1839. img.buf[i] = color[0];
  1840. img.buf[i + 1] = color[1];
  1841. img.buf[i + 2] = color[2];
  1842. }
  1843. }
  1844. private:
  1845. // Bilinear resize function
  1846. static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) {
  1847. dst.nx = target_width;
  1848. dst.ny = target_height;
  1849. dst.buf.resize(3 * target_width * target_height);
  1850. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  1851. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  1852. for (int y = 0; y < target_height; y++) {
  1853. for (int x = 0; x < target_width; x++) {
  1854. float px = x_ratio * x;
  1855. float py = y_ratio * y;
  1856. int x_floor = static_cast<int>(px);
  1857. int y_floor = static_cast<int>(py);
  1858. float x_lerp = px - x_floor;
  1859. float y_lerp = py - y_floor;
  1860. for (int c = 0; c < 3; c++) {
  1861. float top = lerp(
  1862. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  1863. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  1864. x_lerp
  1865. );
  1866. float bottom = lerp(
  1867. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  1868. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  1869. x_lerp
  1870. );
  1871. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  1872. }
  1873. }
  1874. }
  1875. }
  1876. // Bicubic resize function
  1877. // part of image will be cropped if the aspect ratio is different
  1878. static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  1879. const int nx = img.nx;
  1880. const int ny = img.ny;
  1881. dst.nx = target_width;
  1882. dst.ny = target_height;
  1883. dst.buf.resize(3 * target_width * target_height);
  1884. float Cc;
  1885. float C[5] = {};
  1886. float d0, d2, d3, a0, a1, a2, a3;
  1887. int i, j, k, jj;
  1888. int x, y;
  1889. float dx, dy;
  1890. float tx, ty;
  1891. tx = (float)nx / (float)target_width;
  1892. ty = (float)ny / (float)target_height;
  1893. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  1894. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  1895. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  1896. for (i = 0; i < target_height; i++) {
  1897. for (j = 0; j < target_width; j++) {
  1898. x = (int)(tx * j);
  1899. y = (int)(ty * i);
  1900. dx = tx * j - x;
  1901. dy = ty * i - y;
  1902. for (k = 0; k < 3; k++) {
  1903. for (jj = 0; jj <= 3; jj++) {
  1904. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1905. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1906. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1907. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1908. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1909. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1910. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1911. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  1912. d0 = C[0] - C[1];
  1913. d2 = C[2] - C[1];
  1914. d3 = C[3] - C[1];
  1915. a0 = C[1];
  1916. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1917. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1918. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1919. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  1920. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  1921. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  1922. }
  1923. }
  1924. }
  1925. }
  1926. return true;
  1927. }
  1928. static inline int clip(int x, int lower, int upper) {
  1929. return std::max(lower, std::min(x, upper));
  1930. }
  1931. // Linear interpolation between two points
  1932. static inline float lerp(float s, float e, float t) {
  1933. return s + (e - s) * t;
  1934. }
  1935. };
  1936. /**
  1937. * implementation of LLaVA-UHD:
  1938. * - https://arxiv.org/pdf/2403.11703
  1939. * - https://github.com/thunlp/LLaVA-UHD
  1940. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  1941. *
  1942. * overview:
  1943. * - an image always have a single overview (downscaled image)
  1944. * - an image can have 0 or multiple slices, depending on the image size
  1945. * - each slice can then be considered as a separate image
  1946. *
  1947. * for example:
  1948. *
  1949. * [overview] --> [slice 1] --> [slice 2]
  1950. * | |
  1951. * +--> [slice 3] --> [slice 4]
  1952. */
  1953. struct llava_uhd {
  1954. struct slice_coordinates {
  1955. int x;
  1956. int y;
  1957. clip_image_size size;
  1958. };
  1959. struct slice_instructions {
  1960. clip_image_size overview_size; // size of downscaled image
  1961. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  1962. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  1963. std::vector<slice_coordinates> slices;
  1964. img_tool::resize_algo interpolation_overview = img_tool::RESIZE_ALGO_BILINEAR;
  1965. bool padding_overview = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  1966. std::array<uint8_t, 3> pad_color_overview = {0, 0, 0};
  1967. img_tool::resize_algo interpolation_refined = img_tool::RESIZE_ALGO_BICUBIC;
  1968. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  1969. std::array<uint8_t, 3> pad_color_refined = {0, 0, 0};
  1970. };
  1971. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  1972. slice_instructions res;
  1973. const int patch_size = clip_get_patch_size(ctx);
  1974. const int slice_size = clip_get_image_size(ctx);
  1975. const int original_width = original_size.width;
  1976. const int original_height = original_size.height;
  1977. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  1978. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  1979. if (!has_slices) {
  1980. // skip slicing logic
  1981. res.overview_size = clip_image_size{slice_size, slice_size};
  1982. res.refined_size = clip_image_size{0, 0};
  1983. res.grid_size = clip_image_size{0, 0};
  1984. return res;
  1985. }
  1986. if (has_pinpoints) {
  1987. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  1988. auto refine_size = llava_uhd::select_best_resolution(
  1989. original_size,
  1990. ctx->model.hparams.image_res_candidates);
  1991. res.overview_size = clip_image_size{slice_size, slice_size};
  1992. res.refined_size = refine_size;
  1993. res.grid_size = clip_image_size{0, 0};
  1994. res.padding_refined = true;
  1995. res.interpolation_refined = img_tool::RESIZE_ALGO_BILINEAR; // preserve old behavior when padding
  1996. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  1997. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  1998. __func__, original_width, original_height,
  1999. res.overview_size.width, res.overview_size.height,
  2000. res.refined_size.width, res.refined_size.height);
  2001. for (int y = 0; y < refine_size.height; y += slice_size) {
  2002. for (int x = 0; x < refine_size.width; x += slice_size) {
  2003. slice_coordinates slice;
  2004. slice.x = x;
  2005. slice.y = y;
  2006. slice.size.width = std::min(slice_size, refine_size.width - x);
  2007. slice.size.height = std::min(slice_size, refine_size.height - y);
  2008. res.slices.push_back(slice);
  2009. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2010. __func__, (int)res.slices.size() - 1,
  2011. slice.x, slice.y, slice.size.width, slice.size.height);
  2012. }
  2013. }
  2014. res.grid_size.height = refine_size.height / slice_size;
  2015. res.grid_size.width = refine_size.width / slice_size;
  2016. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  2017. return res;
  2018. }
  2019. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  2020. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  2021. res.overview_size = best_size;
  2022. {
  2023. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  2024. const float log_ratio = log((float)original_width / original_height);
  2025. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  2026. const int multiple = fmin(ceil(ratio), max_slice_nums);
  2027. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  2028. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  2029. res.grid_size = best_grid;
  2030. res.refined_size = refine_size;
  2031. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  2032. __func__, original_width, original_height,
  2033. res.overview_size.width, res.overview_size.height,
  2034. res.refined_size.width, res.refined_size.height,
  2035. res.grid_size.width, res.grid_size.height);
  2036. int width = refine_size.width;
  2037. int height = refine_size.height;
  2038. int grid_x = int(width / best_grid.width);
  2039. int grid_y = int(height / best_grid.height);
  2040. for (int patches_y = 0, ic = 0;
  2041. patches_y < refine_size.height && ic < best_grid.height;
  2042. patches_y += grid_y, ic += 1) {
  2043. for (int patches_x = 0, jc = 0;
  2044. patches_x < refine_size.width && jc < best_grid.width;
  2045. patches_x += grid_x, jc += 1) {
  2046. slice_coordinates slice;
  2047. slice.x = patches_x;
  2048. slice.y = patches_y;
  2049. slice.size.width = grid_x;
  2050. slice.size.height = grid_y;
  2051. res.slices.push_back(slice);
  2052. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2053. __func__, (int)res.slices.size() - 1,
  2054. slice.x, slice.y, slice.size.width, slice.size.height);
  2055. }
  2056. }
  2057. }
  2058. return res;
  2059. }
  2060. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  2061. std::vector<clip_image_u8_ptr> output;
  2062. // resize to overview size
  2063. clip_image_u8_ptr resized_img(clip_image_u8_init());
  2064. img_tool::resize(*img, *resized_img, inst.overview_size, inst.interpolation_overview,
  2065. inst.padding_overview, inst.pad_color_overview);
  2066. output.push_back(std::move(resized_img));
  2067. if (inst.slices.empty()) {
  2068. // no slices, just return the resized image
  2069. return output;
  2070. }
  2071. // resize to refined size
  2072. clip_image_u8_ptr refined_img(clip_image_u8_init());
  2073. img_tool::resize(*img, *refined_img, inst.refined_size, inst.interpolation_refined,
  2074. inst.padding_refined, inst.pad_color_refined);
  2075. // create slices
  2076. for (const auto & slice : inst.slices) {
  2077. int x = slice.x;
  2078. int y = slice.y;
  2079. int w = slice.size.width;
  2080. int h = slice.size.height;
  2081. clip_image_u8_ptr img_slice(clip_image_u8_init());
  2082. img_tool::crop(*refined_img, *img_slice, x, y, w, h);
  2083. output.push_back(std::move(img_slice));
  2084. }
  2085. return output;
  2086. }
  2087. private:
  2088. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2089. int width = original_size.width;
  2090. int height = original_size.height;
  2091. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  2092. float r = static_cast<float>(width) / height;
  2093. height = static_cast<int>(scale_resolution / std::sqrt(r));
  2094. width = static_cast<int>(height * r);
  2095. }
  2096. clip_image_size res;
  2097. res.width = ensure_divide(width, patch_size);
  2098. res.height = ensure_divide(height, patch_size);
  2099. return res;
  2100. }
  2101. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  2102. float scale_width = static_cast<float>(target_max.width) / orig.width;
  2103. float scale_height = static_cast<float>(target_max.height) / orig.height;
  2104. float scale = std::min(scale_width, scale_height);
  2105. return clip_image_size{
  2106. static_cast<int>(orig.width * scale),
  2107. static_cast<int>(orig.height * scale),
  2108. };
  2109. }
  2110. /**
  2111. * Selects the best resolution from a list of possible resolutions based on the original size.
  2112. *
  2113. * For example, when given a list of resolutions:
  2114. * - 100x100
  2115. * - 200x100
  2116. * - 100x200
  2117. * - 200x200
  2118. *
  2119. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  2120. *
  2121. * @param original_size The original size of the image
  2122. * @param possible_resolutions A list of possible resolutions
  2123. * @return The best fit resolution
  2124. */
  2125. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  2126. clip_image_size best_fit;
  2127. int min_wasted_area = std::numeric_limits<int>::max();
  2128. int max_effective_resolution = 0;
  2129. for (const clip_image_size & candidate : possible_resolutions) {
  2130. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  2131. int effective_resolution = std::min(
  2132. target_size.width * target_size.height,
  2133. original_size.width * original_size.height);
  2134. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  2135. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  2136. max_effective_resolution = effective_resolution;
  2137. min_wasted_area = wasted_area;
  2138. best_fit = candidate;
  2139. }
  2140. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  2141. }
  2142. return best_fit;
  2143. }
  2144. static int ensure_divide(int length, int patch_size) {
  2145. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  2146. }
  2147. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2148. int width = original_size.width;
  2149. int height = original_size.height;
  2150. int grid_x = grid.width;
  2151. int grid_y = grid.height;
  2152. int refine_width = ensure_divide(width, grid_x);
  2153. int refine_height = ensure_divide(height, grid_y);
  2154. clip_image_size grid_size;
  2155. grid_size.width = refine_width / grid_x;
  2156. grid_size.height = refine_height / grid_y;
  2157. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  2158. int best_grid_width = best_grid_size.width;
  2159. int best_grid_height = best_grid_size.height;
  2160. clip_image_size refine_size;
  2161. refine_size.width = best_grid_width * grid_x;
  2162. refine_size.height = best_grid_height * grid_y;
  2163. return refine_size;
  2164. }
  2165. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  2166. std::vector<int> candidate_split_grids_nums;
  2167. for (int i : {multiple - 1, multiple, multiple + 1}) {
  2168. if (i == 1 || i > max_slice_nums) {
  2169. continue;
  2170. }
  2171. candidate_split_grids_nums.push_back(i);
  2172. }
  2173. std::vector<clip_image_size> candidate_grids;
  2174. for (int split_grids_nums : candidate_split_grids_nums) {
  2175. int m = 1;
  2176. while (m <= split_grids_nums) {
  2177. if (split_grids_nums % m == 0) {
  2178. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  2179. }
  2180. ++m;
  2181. }
  2182. }
  2183. clip_image_size best_grid{1, 1};
  2184. float min_error = std::numeric_limits<float>::infinity();
  2185. for (const auto& grid : candidate_grids) {
  2186. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  2187. if (error < min_error) {
  2188. best_grid = grid;
  2189. min_error = error;
  2190. }
  2191. }
  2192. return best_grid;
  2193. }
  2194. };
  2195. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  2196. // res_imgs memory is being allocated here, previous allocations will be freed if found
  2197. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  2198. clip_image_size original_size{img->nx, img->ny};
  2199. auto & params = ctx->model.hparams;
  2200. switch (ctx->proj_type()) {
  2201. case PROJECTOR_TYPE_MINICPMV:
  2202. {
  2203. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2204. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2205. for (size_t i = 0; i < imgs.size(); ++i) {
  2206. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2207. clip_image_f32_ptr res(clip_image_f32_init());
  2208. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2209. res_imgs->entries.push_back(std::move(res));
  2210. }
  2211. res_imgs->grid_x = inst.grid_size.width;
  2212. res_imgs->grid_y = inst.grid_size.height;
  2213. } break;
  2214. case PROJECTOR_TYPE_QWEN2VL:
  2215. case PROJECTOR_TYPE_QWEN25VL:
  2216. case PROJECTOR_TYPE_QWEN3VL:
  2217. {
  2218. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  2219. clip_image_u8 resized;
  2220. const clip_image_size new_size = img_tool::calc_size_preserved_ratio(
  2221. original_size,
  2222. params.patch_size * 2,
  2223. params.image_min_pixels,
  2224. params.image_max_pixels);
  2225. img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
  2226. // clip_image_save_to_bmp(resized, "preproc.bmp");
  2227. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2228. // clip_image_f32_ptr res(clip_image_f32_init());
  2229. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  2230. // res_imgs->data[0] = *res;
  2231. res_imgs->entries.push_back(std::move(img_f32));
  2232. } break;
  2233. case PROJECTOR_TYPE_IDEFICS3:
  2234. {
  2235. // The refined size has two steps:
  2236. // 1. Resize w/ aspect-ratio preserving such that the longer side is
  2237. // the preprocessor longest size
  2238. // 2. Resize w/out preserving aspect ratio such that both sides are
  2239. // multiples of image_size (always rounding up)
  2240. //
  2241. // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
  2242. const clip_image_size refined_size = img_tool::calc_size_preserved_ratio(
  2243. original_size, params.image_size, params.image_longest_edge);
  2244. // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
  2245. // __func__, original_size.width, original_size.height,
  2246. // refined_size.width, refined_size.height);
  2247. llava_uhd::slice_instructions instructions;
  2248. instructions.overview_size = clip_image_size{params.image_size, params.image_size};
  2249. instructions.refined_size = refined_size;
  2250. instructions.grid_size = clip_image_size{
  2251. static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
  2252. static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
  2253. };
  2254. for (int y = 0; y < refined_size.height; y += params.image_size) {
  2255. for (int x = 0; x < refined_size.width; x += params.image_size) {
  2256. // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
  2257. instructions.slices.push_back(llava_uhd::slice_coordinates{
  2258. /* x */x,
  2259. /* y */y,
  2260. /* size */clip_image_size{
  2261. std::min(params.image_size, refined_size.width - x),
  2262. std::min(params.image_size, refined_size.height - y)
  2263. }
  2264. });
  2265. }
  2266. }
  2267. auto imgs = llava_uhd::slice_image(img, instructions);
  2268. // cast and normalize to f32
  2269. for (size_t i = 0; i < imgs.size(); ++i) {
  2270. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2271. clip_image_f32_ptr res(clip_image_f32_init());
  2272. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2273. res_imgs->entries.push_back(std::move(res));
  2274. }
  2275. res_imgs->grid_x = instructions.grid_size.width;
  2276. res_imgs->grid_y = instructions.grid_size.height;
  2277. } break;
  2278. case PROJECTOR_TYPE_GLM_EDGE:
  2279. case PROJECTOR_TYPE_GEMMA3:
  2280. case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
  2281. {
  2282. clip_image_u8 resized_image;
  2283. int sz = params.image_size;
  2284. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR);
  2285. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2286. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  2287. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2288. res_imgs->entries.push_back(std::move(img_f32));
  2289. } break;
  2290. case PROJECTOR_TYPE_JANUS_PRO:
  2291. {
  2292. // Janus Pro preprocessing: pad to square with gray(127), resize to 384x384
  2293. const std::array<uint8_t, 3> pad_color = {127, 127, 127};
  2294. clip_image_u8 resized_image;
  2295. int sz = params.image_size;
  2296. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  2297. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2298. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2299. res_imgs->entries.push_back(std::move(img_f32));
  2300. } break;
  2301. case PROJECTOR_TYPE_PIXTRAL:
  2302. case PROJECTOR_TYPE_LIGHTONOCR:
  2303. {
  2304. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  2305. clip_image_u8 resized_image;
  2306. // the original pixtral model doesn't have n_merge
  2307. const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge;
  2308. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  2309. original_size,
  2310. params.patch_size * cur_merge,
  2311. params.image_min_pixels,
  2312. params.image_max_pixels);
  2313. img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR);
  2314. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2315. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2316. res_imgs->entries.push_back(std::move(img_f32));
  2317. } break;
  2318. case PROJECTOR_TYPE_LLAMA4:
  2319. {
  2320. GGML_ASSERT(!params.image_res_candidates.empty());
  2321. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2322. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2323. for (size_t i = 0; i < imgs.size(); ++i) {
  2324. clip_image_f32_ptr res(clip_image_f32_init());
  2325. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2326. res_imgs->entries.push_back(std::move(res));
  2327. }
  2328. res_imgs->grid_x = inst.grid_size.width;
  2329. res_imgs->grid_y = inst.grid_size.height;
  2330. } break;
  2331. case PROJECTOR_TYPE_LFM2:
  2332. case PROJECTOR_TYPE_KIMIVL:
  2333. {
  2334. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  2335. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  2336. original_size,
  2337. params.patch_size * params.n_merge,
  2338. params.image_min_pixels,
  2339. params.image_max_pixels);
  2340. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  2341. clip_image_u8 resized_img;
  2342. const bool pad = (ctx->proj_type() != PROJECTOR_TYPE_LFM2);
  2343. img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, pad, pad_color);
  2344. clip_image_f32_ptr res(clip_image_f32_init());
  2345. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  2346. res_imgs->entries.push_back(std::move(res));
  2347. } break;
  2348. case PROJECTOR_TYPE_MLP:
  2349. case PROJECTOR_TYPE_MLP_NORM:
  2350. case PROJECTOR_TYPE_LDP:
  2351. case PROJECTOR_TYPE_LDPV2:
  2352. case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm?
  2353. {
  2354. // TODO @ngxson : refactor the code below to avoid duplicated logic
  2355. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  2356. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2357. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  2358. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  2359. if (params.image_res_candidates.empty()) { // pad_to_square
  2360. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  2361. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2362. const int longer_side = std::max(img->nx, img->ny);
  2363. temp->nx = longer_side;
  2364. temp->ny = longer_side;
  2365. temp->buf.resize(3 * longer_side * longer_side);
  2366. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  2367. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  2368. // resize the image to the target_size
  2369. img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  2370. clip_image_f32_ptr res(clip_image_f32_init());
  2371. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  2372. res_imgs->entries.push_back(std::move(res));
  2373. } else {
  2374. // "spatial_unpad" with "anyres" processing for llava-1.6
  2375. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2376. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2377. for (size_t i = 0; i < imgs.size(); ++i) {
  2378. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2379. clip_image_f32_ptr res(clip_image_f32_init());
  2380. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2381. res_imgs->entries.push_back(std::move(res));
  2382. }
  2383. }
  2384. } break;
  2385. default:
  2386. LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type());
  2387. return false;
  2388. }
  2389. return true;
  2390. }
  2391. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  2392. return ctx->model.image_newline;
  2393. }
  2394. void clip_free(clip_ctx * ctx) {
  2395. if (ctx == nullptr) {
  2396. return;
  2397. }
  2398. delete ctx;
  2399. }
  2400. // deprecated
  2401. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  2402. const int32_t nx = ctx->model.hparams.image_size;
  2403. const int32_t ny = ctx->model.hparams.image_size;
  2404. return clip_embd_nbytes_by_img(ctx, nx, ny);
  2405. }
  2406. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  2407. clip_image_f32 img;
  2408. img.nx = img_w;
  2409. img.ny = img_h;
  2410. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2411. }
  2412. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  2413. return ctx->model.hparams.image_size;
  2414. }
  2415. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  2416. return ctx->model.hparams.patch_size;
  2417. }
  2418. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  2419. return ctx->model.hparams.n_embd;
  2420. }
  2421. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  2422. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  2423. }
  2424. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2425. const auto & params = ctx->model.hparams;
  2426. const int n_total = clip_n_output_tokens(ctx, img);
  2427. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  2428. return img->nx / (params.patch_size * 2);
  2429. }
  2430. return n_total;
  2431. }
  2432. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2433. const auto & params = ctx->model.hparams;
  2434. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  2435. return img->ny / (params.patch_size * 2);
  2436. }
  2437. return 1;
  2438. }
  2439. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2440. const auto & params = ctx->model.hparams;
  2441. // for models with fixed size image, the input image is already pre-processed and resized to square
  2442. int patch_size = params.patch_size;
  2443. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  2444. projector_type proj = ctx->proj_type();
  2445. switch (proj) {
  2446. case PROJECTOR_TYPE_MLP:
  2447. case PROJECTOR_TYPE_MLP_NORM:
  2448. case PROJECTOR_TYPE_JANUS_PRO:
  2449. {
  2450. // do nothing
  2451. } break;
  2452. case PROJECTOR_TYPE_LDP:
  2453. case PROJECTOR_TYPE_LDPV2:
  2454. case PROJECTOR_TYPE_GLM_EDGE:
  2455. {
  2456. n_patches /= 4;
  2457. if (ctx->model.mm_boi) {
  2458. n_patches += 2; // for BOI and EOI token embeddings
  2459. }
  2460. } break;
  2461. case PROJECTOR_TYPE_MINICPMV:
  2462. {
  2463. // Use actual config value if available, otherwise fall back to hardcoded values
  2464. if (params.minicpmv_query_num > 0) {
  2465. n_patches = params.minicpmv_query_num;
  2466. } else {
  2467. // Fallback to hardcoded values for legacy models
  2468. if (params.minicpmv_version == 2) {
  2469. n_patches = 96;
  2470. } else if (params.minicpmv_version == 3) {
  2471. n_patches = 64;
  2472. } else if (params.minicpmv_version == 4) {
  2473. n_patches = 64;
  2474. } else if (params.minicpmv_version == 5) {
  2475. // MiniCPM-V 4.0
  2476. n_patches = 64;
  2477. } else if (params.minicpmv_version == 6) {
  2478. // MiniCPM-V 4.5
  2479. n_patches = 64;
  2480. } else {
  2481. GGML_ABORT("Unknown minicpmv version");
  2482. }
  2483. }
  2484. } break;
  2485. case PROJECTOR_TYPE_QWEN2VL:
  2486. case PROJECTOR_TYPE_QWEN25VL:
  2487. case PROJECTOR_TYPE_QWEN3VL:
  2488. {
  2489. // dynamic size (2 conv, so double patch size)
  2490. int x_patch = img->nx / (params.patch_size * 2);
  2491. int y_patch = img->ny / (params.patch_size * 2);
  2492. n_patches = x_patch * y_patch;
  2493. } break;
  2494. case PROJECTOR_TYPE_GEMMA3:
  2495. case PROJECTOR_TYPE_IDEFICS3:
  2496. case PROJECTOR_TYPE_INTERNVL:
  2497. case PROJECTOR_TYPE_LLAMA4:
  2498. {
  2499. // both X and Y are downscaled by the scale factor
  2500. int scale_factor = ctx->model.hparams.n_merge;
  2501. n_patches /= (scale_factor * scale_factor);
  2502. } break;
  2503. case PROJECTOR_TYPE_LFM2:
  2504. case PROJECTOR_TYPE_KIMIVL:
  2505. {
  2506. // dynamic size
  2507. int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
  2508. int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
  2509. int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
  2510. n_patches = x_patch * y_patch;
  2511. } break;
  2512. case PROJECTOR_TYPE_PIXTRAL:
  2513. case PROJECTOR_TYPE_LIGHTONOCR:
  2514. {
  2515. // dynamic size
  2516. int n_merge = ctx->model.hparams.n_merge;
  2517. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  2518. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  2519. if (ctx->model.token_embd_img_break) {
  2520. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  2521. } else {
  2522. n_patches = n_patches_y * n_patches_x;
  2523. }
  2524. } break;
  2525. case PROJECTOR_TYPE_VOXTRAL:
  2526. case PROJECTOR_TYPE_ULTRAVOX:
  2527. case PROJECTOR_TYPE_QWEN2A:
  2528. {
  2529. n_patches = img->nx;
  2530. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  2531. if (ctx->model.audio_has_stack_frames()) {
  2532. GGML_ASSERT(proj_stack_factor > 0);
  2533. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  2534. n_patches = n_len / proj_stack_factor;
  2535. }
  2536. // whisper downscales input token by half after conv1d
  2537. n_patches /= 2;
  2538. if (ctx->model.audio_has_avgpool()) {
  2539. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  2540. n_patches /= 2;
  2541. }
  2542. } break;
  2543. case PROJECTOR_TYPE_COGVLM:
  2544. {
  2545. n_patches += 2; // for BOI and EOI token embeddings
  2546. } break;
  2547. default:
  2548. GGML_ABORT("unsupported projector type");
  2549. }
  2550. return n_patches;
  2551. }
  2552. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  2553. clip_image_f32_batch imgs;
  2554. clip_image_f32_ptr img_copy(clip_image_f32_init());
  2555. *img_copy = *img;
  2556. imgs.entries.push_back(std::move(img_copy));
  2557. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  2558. }
  2559. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  2560. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  2561. int batch_size = imgs.entries.size();
  2562. // TODO @ngxson : implement batch size > 1 as a loop
  2563. // we don't need true batching support because the cgraph will gonna be big anyway
  2564. if (batch_size != 1) {
  2565. return false; // only support batch size of 1
  2566. }
  2567. // if buffers are not allocated, we need to do a warmup run to allocate them
  2568. if (!ctx->is_allocated) {
  2569. clip_model_loader::warmup(*ctx, *imgs_c_ptr);
  2570. }
  2571. // build the inference graph
  2572. ctx->debug_print_tensors.clear();
  2573. ggml_backend_sched_reset(ctx->sched.get());
  2574. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  2575. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  2576. // set inputs
  2577. const auto & model = ctx->model;
  2578. const auto & hparams = model.hparams;
  2579. const int image_size_width = imgs.entries[0]->nx;
  2580. const int image_size_height = imgs.entries[0]->ny;
  2581. const int patch_size = hparams.patch_size;
  2582. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  2583. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  2584. const int pos_w = image_size_width / patch_size;
  2585. const int pos_h = image_size_height / patch_size;
  2586. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  2587. auto get_inp_tensor = [&gf](const char * name) {
  2588. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  2589. if (inp == nullptr) {
  2590. GGML_ABORT("Failed to get tensor %s", name);
  2591. }
  2592. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  2593. GGML_ABORT("Tensor %s is not an input tensor", name);
  2594. }
  2595. return inp;
  2596. };
  2597. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  2598. ggml_tensor * cur = get_inp_tensor(name);
  2599. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  2600. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  2601. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  2602. };
  2603. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  2604. ggml_tensor * cur = get_inp_tensor(name);
  2605. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  2606. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  2607. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  2608. };
  2609. // set input pixel values
  2610. if (!imgs.is_audio) {
  2611. size_t nelem = 0;
  2612. for (const auto & img : imgs.entries) {
  2613. nelem += img->nx * img->ny * 3;
  2614. }
  2615. std::vector<float> inp_raw(nelem);
  2616. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  2617. //
  2618. // ┌──W──┐
  2619. // │ H │ channel = R
  2620. // ├─────┤ │
  2621. // │ H │ channel = G
  2622. // ├─────┤ │
  2623. // │ H │ channel = B
  2624. // └─────┘ │
  2625. // ──────┘ x B
  2626. for (size_t i = 0; i < imgs.entries.size(); i++) {
  2627. const int nx = imgs.entries[i]->nx;
  2628. const int ny = imgs.entries[i]->ny;
  2629. const int n = nx * ny;
  2630. for (int b = 0; b < batch_size; b++) {
  2631. float * batch_entry = inp_raw.data() + b * (3*n);
  2632. for (int y = 0; y < ny; y++) {
  2633. for (int x = 0; x < nx; x++) {
  2634. size_t base_src = 3*(y * nx + x); // idx of the first channel
  2635. size_t base_dst = y * nx + x; // idx of the first channel
  2636. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  2637. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  2638. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  2639. }
  2640. }
  2641. }
  2642. }
  2643. set_input_f32("inp_raw", inp_raw);
  2644. } else {
  2645. // audio input
  2646. GGML_ASSERT(imgs.entries.size() == 1);
  2647. const auto & mel_inp = imgs.entries[0];
  2648. const int n_step = mel_inp->nx;
  2649. const int n_mel = mel_inp->ny;
  2650. std::vector<float> inp_raw(n_step * n_mel);
  2651. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  2652. set_input_f32("inp_raw", inp_raw);
  2653. }
  2654. // set input per projector
  2655. switch (ctx->model.proj_type) {
  2656. case PROJECTOR_TYPE_MINICPMV:
  2657. {
  2658. // inspired from siglip:
  2659. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  2660. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  2661. std::vector<int32_t> positions(pos_h * pos_w);
  2662. int bucket_coords_h[1024];
  2663. int bucket_coords_w[1024];
  2664. for (int i = 0; i < pos_h; i++){
  2665. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  2666. }
  2667. for (int i = 0; i < pos_w; i++){
  2668. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  2669. }
  2670. for (int i = 0, id = 0; i < pos_h; i++){
  2671. for (int j = 0; j < pos_w; j++){
  2672. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  2673. }
  2674. }
  2675. set_input_i32("positions", positions);
  2676. // inputs for resampler projector
  2677. // set the 2D positions (using float for sinusoidal embedding)
  2678. int n_patches_per_col = image_size_width / patch_size;
  2679. std::vector<float> pos_data(n_pos);
  2680. // dimension H
  2681. for (int i = 0; i < n_pos; i++) {
  2682. pos_data[i] = static_cast<float>(i / n_patches_per_col);
  2683. }
  2684. set_input_f32("pos_h", pos_data);
  2685. // dimension W
  2686. for (int i = 0; i < n_pos; i++) {
  2687. pos_data[i] = static_cast<float>(i % n_patches_per_col);
  2688. }
  2689. set_input_f32("pos_w", pos_data);
  2690. // base frequency omega
  2691. const float base_freq = 10000.0f;
  2692. const int n_embd_proj = clip_n_mmproj_embd(ctx);
  2693. std::vector<float> omega(n_embd_proj / 4);
  2694. for (int i = 0; i < n_embd_proj / 4; ++i) {
  2695. omega[i] = 1.0f / std::pow(base_freq, static_cast<float>(i) / (n_embd_proj / 4));
  2696. }
  2697. set_input_f32("omega", omega);
  2698. } break;
  2699. case PROJECTOR_TYPE_QWEN2VL:
  2700. case PROJECTOR_TYPE_QWEN3VL:
  2701. {
  2702. const int merge_ratio = hparams.n_merge;
  2703. const int pw = image_size_width / patch_size;
  2704. const int ph = image_size_height / patch_size;
  2705. std::vector<int> positions(n_pos * 4);
  2706. int ptr = 0;
  2707. for (int y = 0; y < ph; y += merge_ratio) {
  2708. for (int x = 0; x < pw; x += merge_ratio) {
  2709. for (int dy = 0; dy < 2; dy++) {
  2710. for (int dx = 0; dx < 2; dx++) {
  2711. positions[ ptr] = y + dy;
  2712. positions[ num_patches + ptr] = x + dx;
  2713. positions[2 * num_patches + ptr] = y + dy;
  2714. positions[3 * num_patches + ptr] = x + dx;
  2715. ptr++;
  2716. }
  2717. }
  2718. }
  2719. }
  2720. set_input_i32("positions", positions);
  2721. } break;
  2722. case PROJECTOR_TYPE_QWEN25VL:
  2723. {
  2724. // pw * ph = number of tokens output by ViT after apply patch merger
  2725. // ipw * ipw = number of vision token been processed inside ViT
  2726. const int merge_ratio = 2;
  2727. const int pw = image_size_width / patch_size / merge_ratio;
  2728. const int ph = image_size_height / patch_size / merge_ratio;
  2729. const int ipw = image_size_width / patch_size;
  2730. const int iph = image_size_height / patch_size;
  2731. std::vector<int> idx (ph * pw);
  2732. std::vector<int> inv_idx(ph * pw);
  2733. if (use_window_attn) {
  2734. const int attn_window_size = 112;
  2735. const int grid_window = attn_window_size / patch_size / merge_ratio;
  2736. int dst = 0;
  2737. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  2738. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  2739. int mask_row = 0;
  2740. for (int y = 0; y < ph; y += grid_window) {
  2741. for (int x = 0; x < pw; x += grid_window) {
  2742. const int win_h = std::min(grid_window, ph - y);
  2743. const int win_w = std::min(grid_window, pw - x);
  2744. const int dst_0 = dst;
  2745. // group all tokens belong to the same window togather (to a continue range)
  2746. for (int dy = 0; dy < win_h; dy++) {
  2747. for (int dx = 0; dx < win_w; dx++) {
  2748. const int src = (y + dy) * pw + (x + dx);
  2749. GGML_ASSERT(src < (int)idx.size());
  2750. GGML_ASSERT(dst < (int)inv_idx.size());
  2751. idx [src] = dst;
  2752. inv_idx[dst] = src;
  2753. dst++;
  2754. }
  2755. }
  2756. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  2757. int row_offset = mask_row * (ipw * iph);
  2758. std::fill(
  2759. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  2760. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  2761. 0.0);
  2762. mask_row++;
  2763. }
  2764. }
  2765. }
  2766. set_input_i32("window_idx", idx);
  2767. set_input_i32("inv_window_idx", inv_idx);
  2768. set_input_f32("window_mask", mask);
  2769. } else {
  2770. for (int i = 0; i < ph * pw; i++) {
  2771. idx[i] = i;
  2772. }
  2773. }
  2774. const int mpow = merge_ratio * merge_ratio;
  2775. std::vector<int> positions(n_pos * 4);
  2776. int ptr = 0;
  2777. for (int y = 0; y < iph; y += merge_ratio) {
  2778. for (int x = 0; x < ipw; x += merge_ratio) {
  2779. for (int dy = 0; dy < 2; dy++) {
  2780. for (int dx = 0; dx < 2; dx++) {
  2781. auto remap = idx[ptr / mpow];
  2782. remap = (remap * mpow) + (ptr % mpow);
  2783. positions[ remap] = y + dy;
  2784. positions[ num_patches + remap] = x + dx;
  2785. positions[2 * num_patches + remap] = y + dy;
  2786. positions[3 * num_patches + remap] = x + dx;
  2787. ptr++;
  2788. }
  2789. }
  2790. }
  2791. }
  2792. set_input_i32("positions", positions);
  2793. } break;
  2794. case PROJECTOR_TYPE_PIXTRAL:
  2795. case PROJECTOR_TYPE_KIMIVL:
  2796. case PROJECTOR_TYPE_LIGHTONOCR:
  2797. {
  2798. // set the 2D positions
  2799. int n_patches_per_col = image_size_width / patch_size;
  2800. std::vector<int> pos_data(n_pos);
  2801. // dimension H
  2802. for (int i = 0; i < n_pos; i++) {
  2803. pos_data[i] = i / n_patches_per_col;
  2804. }
  2805. set_input_i32("pos_h", pos_data);
  2806. // dimension W
  2807. for (int i = 0; i < n_pos; i++) {
  2808. pos_data[i] = i % n_patches_per_col;
  2809. }
  2810. set_input_i32("pos_w", pos_data);
  2811. } break;
  2812. case PROJECTOR_TYPE_GLM_EDGE:
  2813. {
  2814. // llava and other models
  2815. std::vector<int32_t> positions(n_pos);
  2816. for (int i = 0; i < n_pos; i++) {
  2817. positions[i] = i;
  2818. }
  2819. set_input_i32("positions", positions);
  2820. } break;
  2821. case PROJECTOR_TYPE_MLP:
  2822. case PROJECTOR_TYPE_MLP_NORM:
  2823. case PROJECTOR_TYPE_LDP:
  2824. case PROJECTOR_TYPE_LDPV2:
  2825. {
  2826. // llava and other models
  2827. std::vector<int32_t> positions(n_pos);
  2828. for (int i = 0; i < n_pos; i++) {
  2829. positions[i] = i;
  2830. }
  2831. set_input_i32("positions", positions);
  2832. // The patches vector is used to get rows to index into the embeds with;
  2833. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  2834. // when retrieving the rows.
  2835. int patch_offset = model.class_embedding ? 1 : 0;
  2836. std::vector<int32_t> patches(num_patches);
  2837. for (int i = 0; i < num_patches; i++) {
  2838. patches[i] = i + patch_offset;
  2839. }
  2840. set_input_i32("patches", patches);
  2841. } break;
  2842. case PROJECTOR_TYPE_GEMMA3:
  2843. case PROJECTOR_TYPE_IDEFICS3:
  2844. case PROJECTOR_TYPE_INTERNVL:
  2845. case PROJECTOR_TYPE_QWEN2A:
  2846. case PROJECTOR_TYPE_ULTRAVOX:
  2847. case PROJECTOR_TYPE_LFM2:
  2848. case PROJECTOR_TYPE_VOXTRAL:
  2849. case PROJECTOR_TYPE_JANUS_PRO:
  2850. case PROJECTOR_TYPE_COGVLM:
  2851. {
  2852. // do nothing
  2853. } break;
  2854. case PROJECTOR_TYPE_LLAMA4:
  2855. {
  2856. // set the 2D positions
  2857. int n_patches_per_col = image_size_width / patch_size;
  2858. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  2859. // last pos is always kept 0, it's for CLS
  2860. // dimension H
  2861. for (int i = 0; i < num_patches; i++) {
  2862. pos_data[i] = (i / n_patches_per_col) + 1;
  2863. }
  2864. set_input_i32("pos_h", pos_data);
  2865. // dimension W
  2866. for (int i = 0; i < num_patches; i++) {
  2867. pos_data[i] = (i % n_patches_per_col) + 1;
  2868. }
  2869. set_input_i32("pos_w", pos_data);
  2870. } break;
  2871. default:
  2872. GGML_ABORT("Unknown projector type");
  2873. }
  2874. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  2875. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  2876. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  2877. if (reg) {
  2878. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  2879. if (ggml_backend_set_n_threads_fn) {
  2880. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  2881. }
  2882. }
  2883. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  2884. if (status != GGML_STATUS_SUCCESS) {
  2885. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  2886. return false;
  2887. }
  2888. // print debug nodes
  2889. if (ctx->debug_graph) {
  2890. LOG_INF("\n\n---\n\n");
  2891. LOG_INF("\n\nDebug graph:\n\n");
  2892. for (ggml_tensor * t : ctx->debug_print_tensors) {
  2893. std::vector<uint8_t> data(ggml_nbytes(t));
  2894. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  2895. print_tensor_shape(t);
  2896. print_tensor_data(t, data.data(), 3);
  2897. }
  2898. }
  2899. // the last node is the embedding tensor
  2900. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  2901. // sanity check (only support batch size of 1 for now)
  2902. const int n_tokens_out = embeddings->ne[1];
  2903. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  2904. if (n_tokens_out != expected_n_tokens_out) {
  2905. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  2906. GGML_ABORT("Invalid number of output tokens");
  2907. }
  2908. // copy the embeddings to the location passed by the user
  2909. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  2910. return true;
  2911. }
  2912. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  2913. switch (ctx->model.proj_type) {
  2914. case PROJECTOR_TYPE_LDP:
  2915. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  2916. case PROJECTOR_TYPE_LDPV2:
  2917. return ctx->model.mm_model_peg_0_b->ne[0];
  2918. case PROJECTOR_TYPE_MLP:
  2919. case PROJECTOR_TYPE_PIXTRAL:
  2920. case PROJECTOR_TYPE_LIGHTONOCR:
  2921. return ctx->model.mm_2_w->ne[1];
  2922. case PROJECTOR_TYPE_MLP_NORM:
  2923. return ctx->model.mm_3_b->ne[0];
  2924. case PROJECTOR_TYPE_MINICPMV:
  2925. return ctx->model.mm_model_proj->ne[0];
  2926. case PROJECTOR_TYPE_GLM_EDGE:
  2927. return ctx->model.mm_model_mlp_3_w->ne[1];
  2928. case PROJECTOR_TYPE_QWEN2VL:
  2929. case PROJECTOR_TYPE_QWEN25VL:
  2930. case PROJECTOR_TYPE_JANUS_PRO:
  2931. return ctx->model.mm_1_b->ne[0];
  2932. case PROJECTOR_TYPE_QWEN3VL:
  2933. // main path + deepstack paths
  2934. return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
  2935. case PROJECTOR_TYPE_GEMMA3:
  2936. return ctx->model.mm_input_proj_w->ne[0];
  2937. case PROJECTOR_TYPE_IDEFICS3:
  2938. return ctx->model.projection->ne[1];
  2939. case PROJECTOR_TYPE_ULTRAVOX:
  2940. case PROJECTOR_TYPE_VOXTRAL:
  2941. return ctx->model.mm_2_w->ne[1];
  2942. case PROJECTOR_TYPE_INTERNVL:
  2943. return ctx->model.mm_3_w->ne[1];
  2944. case PROJECTOR_TYPE_LLAMA4:
  2945. return ctx->model.mm_model_proj->ne[1];
  2946. case PROJECTOR_TYPE_QWEN2A:
  2947. return ctx->model.mm_fc_w->ne[1];
  2948. case PROJECTOR_TYPE_LFM2:
  2949. case PROJECTOR_TYPE_KIMIVL:
  2950. return ctx->model.mm_2_w->ne[1];
  2951. case PROJECTOR_TYPE_COGVLM:
  2952. return ctx->model.mm_4h_to_h_w->ne[1];
  2953. default:
  2954. GGML_ABORT("Unknown projector type");
  2955. }
  2956. }
  2957. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  2958. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  2959. return ctx->model.hparams.minicpmv_version;
  2960. }
  2961. return 0;
  2962. }
  2963. bool clip_is_glm(const struct clip_ctx * ctx) {
  2964. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  2965. }
  2966. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  2967. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  2968. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  2969. || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
  2970. }
  2971. bool clip_is_llava(const struct clip_ctx * ctx) {
  2972. return ctx->model.hparams.has_llava_projector;
  2973. }
  2974. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  2975. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  2976. }
  2977. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  2978. return ctx->model.modality == CLIP_MODALITY_VISION;
  2979. }
  2980. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  2981. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  2982. }
  2983. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  2984. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  2985. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  2986. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  2987. }
  2988. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  2989. clip_image_f32 clip_img;
  2990. clip_img.buf.resize(h * w * 3);
  2991. for (int i = 0; i < h*w*3; i++)
  2992. {
  2993. clip_img.buf[i] = img[i];
  2994. }
  2995. clip_img.nx = w;
  2996. clip_img.ny = h;
  2997. clip_image_encode(ctx, n_threads, &clip_img, vec);
  2998. return true;
  2999. }
  3000. //
  3001. // API used internally with mtmd
  3002. //
  3003. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  3004. return ctx->proj_type();
  3005. }
  3006. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  3007. clip_image_f32 * audio = new clip_image_f32;
  3008. audio->nx = n_frames;
  3009. audio->ny = n_mel;
  3010. audio->buf.resize(n_frames * n_mel);
  3011. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  3012. batch->entries.push_back(clip_image_f32_ptr(audio));
  3013. batch->is_audio = true;
  3014. }