ggml-opencl.cpp 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899
  1. #include "ggml-opencl.h"
  2. #include <array>
  3. #include <atomic>
  4. #include <sstream>
  5. #include <vector>
  6. #include <limits>
  7. #define CL_TARGET_OPENCL_VERSION 110
  8. #include <clblast.h>
  9. #include <stdlib.h>
  10. #include <stdio.h>
  11. #include <string.h>
  12. #include "ggml.h"
  13. #if defined(_MSC_VER)
  14. #pragma warning(disable: 4244 4267) // possible loss of data
  15. #endif
  16. #define CL_DMMV_LOCAL_SIZE 32
  17. #ifndef K_QUANTS_PER_ITERATION
  18. #define K_QUANTS_PER_ITERATION 1
  19. #else
  20. static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
  21. #endif
  22. #define MULTILINE_QUOTE(...) #__VA_ARGS__
  23. static std::string program_source = MULTILINE_QUOTE(
  24. typedef char int8_t;
  25. typedef uchar uint8_t;
  26. typedef short int16_t;
  27. typedef ushort uint16_t;
  28. typedef int int32_t;
  29. typedef uint uint32_t;
  30. struct __attribute__ ((packed)) block_q4_0
  31. {
  32. half d;
  33. uint8_t qs[QK4_0 / 2];
  34. };
  35. struct __attribute__ ((packed)) block_q4_1
  36. {
  37. half d;
  38. half m;
  39. uint8_t qs[QK4_1 / 2];
  40. };
  41. struct __attribute__ ((packed)) block_q5_0
  42. {
  43. half d;
  44. uint32_t qh;
  45. uint8_t qs[QK5_0 / 2];
  46. };
  47. struct __attribute__ ((packed)) block_q5_1
  48. {
  49. half d;
  50. half m;
  51. uint32_t qh;
  52. uint8_t qs[QK5_1 / 2];
  53. };
  54. struct __attribute__ ((packed)) block_q8_0
  55. {
  56. half d;
  57. int8_t qs[QK8_0];
  58. };
  59. struct __attribute__((packed)) block_q2_K
  60. {
  61. uint8_t scales[16];
  62. uint8_t qs[64];
  63. half d;
  64. half dmin;
  65. };
  66. struct __attribute__((packed)) block_q3_K
  67. {
  68. uint8_t hmask[32];
  69. uint8_t qs[64];
  70. uint8_t scales[12];
  71. half d;
  72. };
  73. struct __attribute__((packed)) block_q4_K
  74. {
  75. half d;
  76. half dmin;
  77. uint8_t scales[12];
  78. uint8_t qs[128];
  79. };
  80. struct __attribute__((packed)) block_q5_K
  81. {
  82. half d;
  83. half dmin;
  84. uint8_t scales[12];
  85. uint8_t qh[32];
  86. uint8_t qs[128];
  87. };
  88. struct __attribute__((packed)) block_q6_K
  89. {
  90. uint8_t ql[128];
  91. uint8_t qh[64];
  92. int8_t scales[16];
  93. half d;
  94. };
  95. __kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
  96. const uint i = get_global_id(0);
  97. y[i] = vload_half(0, &x[i]);
  98. }
  99. void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
  100. const float d = vload_half(0, &x[ib].d);
  101. const uint8_t vui = x[ib].qs[iqs];
  102. const int8_t vi0 = vui & 0xF;
  103. const int8_t vi1 = vui >> 4;
  104. *v0 = (vi0 - 8)*d;
  105. *v1 = (vi1 - 8)*d;
  106. }
  107. void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
  108. const float d = vload_half(0, &x[ib].d);
  109. const float m = vload_half(0, &x[ib].m);
  110. const uint8_t vui = x[ib].qs[iqs];
  111. const int8_t vi0 = vui & 0xF;
  112. const int8_t vi1 = vui >> 4;
  113. *v0 = vi0*d + m;
  114. *v1 = vi1*d + m;
  115. }
  116. void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
  117. const float d = vload_half(0, &x[ib].d);
  118. uint32_t qh = x[ib].qh;
  119. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  120. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  121. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
  122. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
  123. *v0 = x0*d;
  124. *v1 = x1*d;
  125. }
  126. void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
  127. const float d = vload_half(0, &x[ib].d);
  128. const float m = vload_half(0, &x[ib].m);
  129. uint32_t qh = x[ib].qh;
  130. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  131. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  132. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
  133. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
  134. *v0 = x0*d + m;
  135. *v1 = x1*d + m;
  136. }
  137. void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
  138. const float d = vload_half(0, &x[ib].d);
  139. const int8_t vi0 = x[ib].qs[iqs + 0];
  140. const int8_t vi1 = x[ib].qs[iqs + 1];
  141. *v0 = vi0*d;
  142. *v1 = vi1*d;
  143. }
  144. void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
  145. *v0 = vload_half(0, &x[ib + 0]);
  146. *v1 = vload_half(0, &x[ib + 1]);
  147. }
  148. );
  149. static std::string k_quants_source = MULTILINE_QUOTE(
  150. inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m)
  151. {
  152. if (j < 4)
  153. {
  154. *d = q[j] & 63;
  155. *m = q[j + 4] & 63;
  156. }
  157. else
  158. {
  159. *d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4);
  160. *m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4);
  161. }
  162. }
  163. __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
  164. {
  165. const int i = get_group_id(0) + get_global_offset(0);
  166. const int tid = get_local_id(0);
  167. const int n = tid / 32;
  168. const int l = tid - 32 * n;
  169. const int is = 8 * n + l / 16;
  170. const uint8_t q = x[i].qs[32 * n + l];
  171. __global float *y = yy + get_group_id(0) * QK_K + 128 * n;
  172. const float dall = vload_half(0, &x[i].d);
  173. const float dmin = vload_half(0, &x[i].dmin);
  174. y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4);
  175. y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4);
  176. y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4);
  177. y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4);
  178. }
  179. __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
  180. {
  181. int r = get_local_id(0) / 4;
  182. int i = get_group_id(0) + get_global_offset(0);
  183. int tid = r / 2;
  184. int is0 = r % 2;
  185. int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
  186. int n = tid / 4;
  187. int j = tid - 4 * n;
  188. uint8_t m = 1 << (4 * n + j);
  189. int is = 8 * n + 2 * j + is0;
  190. int shift = 2 * j;
  191. int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4)
  192. : is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4)
  193. : is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4)
  194. : (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4);
  195. float d_all = vload_half(0, &x[i].d);
  196. float dl = d_all * (us - 32);
  197. __global float *y = yy + get_group_id(0) * QK_K + 128 * n + 32 * j;
  198. const __global uint8_t *q = x[i].qs + 32 * n;
  199. const __global uint8_t *hm = x[i].hmask;
  200. for (int l = l0; l < l0 + 4; ++l)
  201. y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
  202. }
  203. __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
  204. {
  205. const int i = get_group_id(0) + get_global_offset(0);
  206. const int tid = get_local_id(0);
  207. const int il = tid / 8;
  208. const int ir = tid % 8;
  209. const int is = 2 * il;
  210. const int n = 4;
  211. __global float *y = yy + get_group_id(0) * QK_K + 64 * il + n * ir;
  212. const float dall = vload_half(0, &x[i].d);
  213. const float dmin = vload_half(0, &x[i].dmin);
  214. __global const uint8_t *q = x[i].qs + 32 * il + n * ir;
  215. uint8_t sc, m;
  216. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  217. float d1 = dall * sc;
  218. float m1 = dmin * m;
  219. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  220. float d2 = dall * sc;
  221. float m2 = dmin * m;
  222. for (int l = 0; l < n; ++l)
  223. {
  224. y[l + 0] = d1 * (q[l] & 0xF) - m1;
  225. y[l + 32] = d2 * (q[l] >> 4) - m2;
  226. }
  227. }
  228. __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
  229. {
  230. const int i = get_group_id(0) + get_global_offset(0);
  231. const int tid = get_local_id(0);
  232. const int il = tid / 16;
  233. const int ir = tid % 16;
  234. const int is = 2 * il;
  235. __global float *y = yy + get_group_id(0) * QK_K + 64 * il + 2 * ir;
  236. const float dall = vload_half(0, &x[i].d);
  237. const float dmin = vload_half(0, &x[i].dmin);
  238. __global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir;
  239. __global const uint8_t *qh = x[i].qh + 2 * ir;
  240. uint8_t sc, m;
  241. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  242. const float d1 = dall * sc;
  243. const float m1 = dmin * m;
  244. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  245. const float d2 = dall * sc;
  246. const float m2 = dmin * m;
  247. uint8_t hm = 1 << (2 * il);
  248. y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1;
  249. y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1;
  250. hm <<= 1;
  251. y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2;
  252. y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2;
  253. }
  254. __kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
  255. {
  256. const int i = get_group_id(0) + get_global_offset(0);
  257. const int tid = get_local_id(0);
  258. const int ip = tid / 32;
  259. const int il = tid - 32 * ip;
  260. const int is = 8 * ip + il / 16;
  261. __global float *y = yy + get_group_id(0) * QK_K + 128 * ip + il;
  262. const float d = vload_half(0, &x[i].d);
  263. __global const uint8_t *ql = x[i].ql + 64 * ip + il;
  264. const uint8_t qh = x[i].qh[32 * ip + il];
  265. __global const int8_t *sc = x[i].scales + is;
  266. y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
  267. y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
  268. y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
  269. y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
  270. }
  271. __kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
  272. const int row = get_group_id(0);
  273. const int num_blocks_per_row = ncols / QK_K;
  274. const int ib0 = row*num_blocks_per_row + get_global_offset(0);
  275. __global const struct block_q2_K * x = xx + ib0;
  276. const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
  277. const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1
  278. const int step = 16/K_QUANTS_PER_ITERATION;
  279. const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
  280. const int in = tid - step*im; // 0...15 or 0...7
  281. const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
  282. const int q_offset = 32*im + l0;
  283. const int s_offset = 8*im;
  284. const int y_offset = 128*im + l0;
  285. tmp[16 * ix + tid] = 0;
  286. uint32_t aux[4];
  287. const uint8_t * d = (const uint8_t *)aux;
  288. const uint8_t * m = (const uint8_t *)(aux + 2);
  289. for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  290. __global const float * y = yy + i * QK_K + y_offset;
  291. __global const uint8_t * q = x[i].qs + q_offset;
  292. const float dall = vload_half(0, &x[i].d);
  293. const float dmin = vload_half(0, &x[i].dmin);
  294. __global const uint32_t * a = (__global const uint32_t *)(x[i].scales + s_offset);
  295. aux[0] = a[0] & 0x0f0f0f0f;
  296. aux[1] = a[1] & 0x0f0f0f0f;
  297. aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
  298. aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
  299. float sum1 = 0, sum2 = 0;
  300. for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
  301. sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
  302. + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
  303. + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
  304. + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
  305. + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
  306. + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
  307. + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
  308. +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
  309. sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
  310. + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
  311. }
  312. tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
  313. }
  314. // sum up partial sums and write back result
  315. barrier(CLK_LOCAL_MEM_FENCE);
  316. for (int s=16; s>0; s>>=1) {
  317. if (tid < s) {
  318. tmp[tid] += tmp[tid + s];
  319. }
  320. barrier(CLK_LOCAL_MEM_FENCE);
  321. }
  322. if (tid == 0) {
  323. dst[row] = tmp[0];
  324. }
  325. }
  326. __kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
  327. const uint16_t kmask1 = 0x0303;
  328. const uint16_t kmask2 = 0x0f0f;
  329. const int row = get_group_id(0);
  330. const int num_blocks_per_row = ncols / QK_K;
  331. const int ib0 = row*num_blocks_per_row + get_global_offset(0);
  332. __global const struct block_q3_K * x = xx + ib0;
  333. const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
  334. const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1
  335. const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
  336. const int step = 16/K_QUANTS_PER_ITERATION;
  337. const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
  338. const int in = tid - step*im; // 0....15 or 0...7
  339. const uint8_t m = 1 << (4*im);
  340. const int l0 = n*in; // 0...15 or 0...14 in steps of 2
  341. const int q_offset = 32*im + l0;
  342. const int y_offset = 128*im + l0;
  343. uint16_t utmp[4];
  344. const int8_t * s = (const int8_t *)utmp;
  345. const uint16_t s_shift = 4*im;
  346. tmp[16 * ix + tid] = 0;
  347. for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  348. __global const float * y = yy + i * QK_K + y_offset;
  349. __global const uint8_t * q = x[i].qs + q_offset;
  350. __global const uint8_t * h = x[i].hmask + l0;
  351. __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
  352. utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
  353. utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
  354. utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
  355. utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
  356. const float d = vload_half(0, &x[i].d);
  357. float sum = 0;
  358. for (int l = 0; l < n; ++l) {
  359. sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
  360. + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
  361. + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
  362. + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
  363. sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
  364. + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
  365. + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
  366. + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
  367. }
  368. tmp[16 * ix + tid] += d * sum;
  369. }
  370. // sum up partial sums and write back result
  371. barrier(CLK_LOCAL_MEM_FENCE);
  372. for (int s=16; s>0; s>>=1) {
  373. if (tid < s) {
  374. tmp[tid] += tmp[tid + s];
  375. }
  376. barrier(CLK_LOCAL_MEM_FENCE);
  377. }
  378. if (tid == 0) {
  379. dst[row] = tmp[0];
  380. }
  381. }
  382. __kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
  383. //to rename it later, just to test now
  384. const uint16_t kmask1 = 0x3f3f;
  385. const uint16_t kmask2 = 0x0f0f;
  386. const uint16_t kmask3 = 0xc0c0;
  387. const int row = get_group_id(0);
  388. const int num_blocks_per_row = ncols / QK_K;
  389. const int ib0 = row*num_blocks_per_row + get_global_offset(0);
  390. const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15
  391. const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION;
  392. const int step = 8/K_QUANTS_PER_ITERATION;
  393. const int il = tid/step; // 0...3
  394. const int ir = tid - step*il;// 0...3
  395. const int n = 2*K_QUANTS_PER_ITERATION;
  396. const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
  397. const int in = il%2;
  398. const int l0 = n*(2*ir + in);
  399. const int q_offset = 32*im + l0;
  400. const int y_offset = 64*im + l0;
  401. uint16_t aux[4];
  402. const uint8_t * sc = (const uint8_t *)aux;
  403. __global const struct block_q4_K * x = xx + ib0;
  404. tmp[16 * ix + tid] = 0;
  405. for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  406. __global const uint8_t * q1 = x[i].qs + q_offset;
  407. __global const uint8_t * q2 = q1 + 64;
  408. __global const float * y1 = yy + i*QK_K + y_offset;
  409. __global const float * y2 = y1 + 128;
  410. const float dall = vload_half(0, &x[i].d);
  411. const float dmin = vload_half(0, &x[i].dmin);
  412. __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
  413. aux[0] = a[im+0] & kmask1;
  414. aux[1] = a[im+2] & kmask1;
  415. aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
  416. aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
  417. float4 s = (float4)(0.f);
  418. float smin = 0;
  419. for (int l = 0; l < n; ++l) {
  420. s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
  421. s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
  422. smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
  423. }
  424. tmp[16 * ix + tid] += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;
  425. }
  426. // sum up partial sums and write back result
  427. barrier(CLK_LOCAL_MEM_FENCE);
  428. for (int s=16; s>0; s>>=1) {
  429. if (tid < s) {
  430. tmp[tid] += tmp[tid + s];
  431. }
  432. barrier(CLK_LOCAL_MEM_FENCE);
  433. }
  434. if (tid == 0) {
  435. dst[row] = tmp[0];
  436. }
  437. }
  438. __kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
  439. const uint16_t kmask1 = 0x3f3f;
  440. const uint16_t kmask2 = 0x0f0f;
  441. const uint16_t kmask3 = 0xc0c0;
  442. const int row = get_group_id(0);
  443. const int num_blocks_per_row = ncols / QK_K;
  444. const int ib0 = row*num_blocks_per_row + get_global_offset(0);
  445. const int tid = get_local_id(0)/2; // 0...15
  446. const int ix = get_local_id(0)%2;
  447. const int il = tid/4; // 0...3
  448. const int ir = tid - 4*il;// 0...3
  449. const int n = 2;
  450. const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
  451. const int in = il%2;
  452. const int l0 = n*(2*ir + in);
  453. const int q_offset = 32*im + l0;
  454. const int y_offset = 64*im + l0;
  455. const uint8_t hm1 = 1 << (2*im);
  456. const uint8_t hm2 = hm1 << 4;
  457. uint16_t aux[4];
  458. const uint8_t * sc = (const uint8_t *)aux;
  459. __global const struct block_q5_K * x = xx + ib0;
  460. tmp[16 * ix + tid] = 0;
  461. for (int i = ix; i < num_blocks_per_row; i += 2) {
  462. __global const uint8_t * ql1 = x[i].qs + q_offset;
  463. __global const uint8_t * ql2 = ql1 + 64;
  464. __global const uint8_t * qh = x[i].qh + l0;
  465. __global const float * y1 = yy + i*QK_K + y_offset;
  466. __global const float * y2 = y1 + 128;
  467. const float dall = vload_half(0, &x[i].d);
  468. const float dmin = vload_half(0, &x[i].dmin);
  469. __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
  470. aux[0] = a[im+0] & kmask1;
  471. aux[1] = a[im+2] & kmask1;
  472. aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
  473. aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
  474. float4 sum = (float4)(0.f);
  475. float smin = 0;
  476. for (int l = 0; l < n; ++l) {
  477. sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
  478. + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
  479. sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
  480. + y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
  481. sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
  482. + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
  483. sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
  484. + y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
  485. smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
  486. + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
  487. }
  488. tmp[16 * ix + tid] += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
  489. }
  490. // sum up partial sums and write back result
  491. barrier(CLK_LOCAL_MEM_FENCE);
  492. for (int s=16; s>0; s>>=1) {
  493. if (tid < s) {
  494. tmp[tid] += tmp[tid + s];
  495. }
  496. barrier(CLK_LOCAL_MEM_FENCE);
  497. }
  498. if (tid == 0) {
  499. dst[row] = tmp[0];
  500. }
  501. }
  502. __kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx, __local float* tmp, __global const float * yy, __global float * dst, const int ncols) {
  503. const int row = get_group_id(0);
  504. const int num_blocks_per_row = ncols / QK_K;
  505. const int ib0 = row*num_blocks_per_row + get_global_offset(0);
  506. __global const struct block_q6_K * x = xx + ib0;
  507. const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
  508. const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0, 1
  509. const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
  510. const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
  511. const int in = tid - step*im; // 0...15 or 0...7
  512. \n#if K_QUANTS_PER_ITERATION == 1\n
  513. const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
  514. const int is = 0;
  515. \n#else\n
  516. const int l0 = 4 * in; // 0, 4, 8, ..., 28
  517. const int is = in / 4;
  518. \n#endif\n
  519. const int ql_offset = 64*im + l0;
  520. const int qh_offset = 32*im + l0;
  521. const int s_offset = 8*im + is;
  522. const int y_offset = 128*im + l0;
  523. tmp[16 * ix + tid] = 0; // partial sum for thread in warp
  524. for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  525. __global const float * y = yy + i * QK_K + y_offset;
  526. __global const uint8_t * ql = x[i].ql + ql_offset;
  527. __global const uint8_t * qh = x[i].qh + qh_offset;
  528. __global const int8_t * s = x[i].scales + s_offset;
  529. const float d = vload_half(0, &x[i].d);
  530. \n#if K_QUANTS_PER_ITERATION == 1\n
  531. float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
  532. + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
  533. + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
  534. + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
  535. + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
  536. + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
  537. + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
  538. +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
  539. tmp[16 * ix + tid] += sum;
  540. \n#else\n
  541. float sum = 0;
  542. for (int l = 0; l < 4; ++l) {
  543. sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
  544. + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
  545. + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
  546. + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
  547. }
  548. tmp[16 * ix + tid] += sum;
  549. \n#endif\n
  550. }
  551. // sum up partial sums and write back result
  552. barrier(CLK_LOCAL_MEM_FENCE);
  553. for (int s=16; s>0; s>>=1) {
  554. if (tid < s) {
  555. tmp[tid] += tmp[tid + s];
  556. }
  557. barrier(CLK_LOCAL_MEM_FENCE);
  558. }
  559. if (tid == 0) {
  560. dst[row] = tmp[0];
  561. }
  562. }
  563. );
  564. std::string dequant_template = MULTILINE_QUOTE(
  565. __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
  566. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
  567. if (i >= get_global_size(0)) {
  568. return;
  569. }
  570. const uint qk = QUANT_K;
  571. const uint qr = QUANT_R;
  572. const int ib = i/qk + get_global_offset(0); // block index
  573. const int iqs = (i%qk)/qr; // quant index
  574. const int iybs = i - i%qk; // y block start index
  575. const int y_offset = qr == 1 ? 1 : qk/2;
  576. // dequantize
  577. float v0, v1;
  578. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  579. y[iybs + iqs + 0] = v0;
  580. y[iybs + iqs + y_offset] = v1;
  581. }
  582. );
  583. std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
  584. __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
  585. const int local_size = get_local_size(0);
  586. const int row = get_group_id(0);
  587. const int tid = get_local_id(0);
  588. const uint qk = QUANT_K;
  589. const uint qr = QUANT_R;
  590. const int col_step = local_size * 2;
  591. const int y_offset = qr == 1 ? 1 : qk/2;
  592. x += get_global_offset(0);
  593. tmp[tid] = 0;
  594. for (int col = tid*2; col < ncols; col += col_step) {
  595. const int ib = (row*ncols + col)/qk; // block index
  596. const int iqs = (col%qk)/qr; // quant index
  597. const int iybs = col - col%qk; // y block start index
  598. // dequantize
  599. float v0, v1;
  600. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  601. // matrix multiplication
  602. tmp[tid] += v0 * y[iybs + iqs + 0];
  603. tmp[tid] += v1 * y[iybs + iqs + y_offset];
  604. }
  605. // sum up partial sums and write back result
  606. barrier(CLK_LOCAL_MEM_FENCE);
  607. for (int s=local_size/2; s>0; s>>=1) {
  608. if (tid < s) {
  609. tmp[tid] += tmp[tid + s];
  610. }
  611. barrier(CLK_LOCAL_MEM_FENCE);
  612. }
  613. if (tid == 0) {
  614. dst[row] = tmp[0];
  615. }
  616. }
  617. );
  618. std::string mul_template = MULTILINE_QUOTE(
  619. __kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
  620. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
  621. if (i >= get_global_size(0)) {
  622. return;
  623. }
  624. dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
  625. }
  626. );
  627. #define CL_CHECK(err) \
  628. do { \
  629. cl_int err_ = (err); \
  630. if (err_ != CL_SUCCESS) { \
  631. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  632. #err, err_, __FILE__, __LINE__); \
  633. exit(1); \
  634. } \
  635. } while (0)
  636. #define CLBLAST_CHECK(err) \
  637. do { \
  638. CLBlastStatusCode err_ = (err); \
  639. if (err_ != CLBlastSuccess) { \
  640. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  641. #err, err_, __FILE__, __LINE__); \
  642. exit(1); \
  643. } \
  644. } while (0)
  645. std::array<std::string, 5> dequant_str_keys = {
  646. "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
  647. };
  648. std::array<std::string, 30> dequant_str_values = {
  649. "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  650. "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  651. "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  652. "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  653. "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  654. "convert_row_f16", "half", "1", "1", "convert_f16"
  655. };
  656. std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
  657. "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  658. "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  659. "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  660. "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  661. "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  662. "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
  663. };
  664. std::array<std::string, 2> mul_str_keys = {
  665. "KERNEL_NAME", "TYPE"
  666. };
  667. std::array<std::string, 2> mul_str_values = {
  668. "mul_f32", "float"
  669. };
  670. static std::string& replace(std::string& s, const std::string& from, const std::string& to) {
  671. size_t pos = 0;
  672. while ((pos = s.find(from, pos)) != std::string::npos) {
  673. s.replace(pos, from.length(), to);
  674. pos += to.length();
  675. }
  676. return s;
  677. }
  678. static std::string generate_kernels() {
  679. std::stringstream src;
  680. src << program_source << '\n';
  681. src << k_quants_source << '\n';
  682. for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
  683. std::string dequant_kernel = dequant_template;
  684. std::string dmmv_kernel = dequant_mul_mat_vec_template;
  685. for (size_t j = 0; j < dequant_str_keys.size(); j++) {
  686. replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
  687. replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
  688. }
  689. src << dequant_kernel << '\n';
  690. src << dmmv_kernel << '\n';
  691. }
  692. for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
  693. std::string mul_kernel = mul_template;
  694. for (size_t j = 0; j < mul_str_keys.size(); j++) {
  695. replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
  696. }
  697. src << mul_kernel << '\n';
  698. }
  699. return src.str();
  700. }
  701. static cl_platform_id platform;
  702. static cl_device_id device;
  703. static cl_context context;
  704. static cl_command_queue queue;
  705. static cl_program program;
  706. static cl_kernel convert_row_f16_cl;
  707. static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
  708. static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
  709. static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl;
  710. static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl;
  711. static cl_kernel mul_f32_cl;
  712. static bool fp16_support;
  713. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
  714. cl_program p;
  715. char *program_log;
  716. size_t program_size;
  717. size_t log_size;
  718. int err;
  719. program_size = strlen(program_buffer);
  720. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  721. if(err < 0) {
  722. fprintf(stderr, "OpenCL error creating program");
  723. exit(1);
  724. }
  725. std::string compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
  726. "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1 "
  727. "-DQK_K=256 -DK_QUANTS_PER_ITERATION=" + std::to_string(K_QUANTS_PER_ITERATION);
  728. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  729. if(err < 0) {
  730. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  731. program_log = (char*) malloc(log_size + 1);
  732. program_log[log_size] = '\0';
  733. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  734. fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  735. free(program_log);
  736. exit(1);
  737. }
  738. return p;
  739. }
  740. void ggml_cl_init(void) {
  741. cl_int err;
  742. struct cl_device;
  743. struct cl_platform {
  744. cl_platform_id id;
  745. unsigned number;
  746. char name[128];
  747. char vendor[128];
  748. struct cl_device * devices;
  749. unsigned n_devices;
  750. struct cl_device * default_device;
  751. };
  752. struct cl_device {
  753. struct cl_platform * platform;
  754. cl_device_id id;
  755. unsigned number;
  756. cl_device_type type;
  757. char name[128];
  758. };
  759. enum { NPLAT = 16, NDEV = 16 };
  760. struct cl_platform platforms[NPLAT];
  761. unsigned n_platforms = 0;
  762. struct cl_device devices[NDEV];
  763. unsigned n_devices = 0;
  764. struct cl_device * default_device = NULL;
  765. platform = NULL;
  766. device = NULL;
  767. cl_platform_id platform_ids[NPLAT];
  768. CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
  769. for (unsigned i = 0; i < n_platforms; i++) {
  770. struct cl_platform * p = &platforms[i];
  771. p->number = i;
  772. p->id = platform_ids[i];
  773. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  774. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  775. cl_device_id device_ids[NDEV];
  776. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  777. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  778. p->n_devices = 0;
  779. } else {
  780. CL_CHECK(clGetDeviceIDsError);
  781. }
  782. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  783. p->default_device = NULL;
  784. for (unsigned j = 0; j < p->n_devices; j++) {
  785. struct cl_device * d = &devices[n_devices];
  786. d->number = n_devices++;
  787. d->id = device_ids[j];
  788. d->platform = p;
  789. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  790. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  791. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  792. p->default_device = d;
  793. }
  794. }
  795. if (default_device == NULL && p->default_device != NULL) {
  796. default_device = p->default_device;
  797. }
  798. }
  799. if (n_devices == 0) {
  800. fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
  801. exit(1);
  802. }
  803. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  804. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  805. int user_platform_number = -1;
  806. int user_device_number = -1;
  807. unsigned n;
  808. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  809. user_platform_number = (int)n;
  810. }
  811. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  812. user_device_number = (int)n;
  813. }
  814. if (user_platform_number != -1 && user_device_number != -1) {
  815. cl_platform* platform = &platforms[user_platform_number];
  816. if ((unsigned)user_device_number >= platform->n_devices) {
  817. fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
  818. exit(1);
  819. }
  820. default_device = &platform->devices[user_device_number];
  821. } else {
  822. struct cl_device * selected_devices = devices;
  823. unsigned n_selected_devices = n_devices;
  824. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  825. for (unsigned i = 0; i < n_platforms; i++) {
  826. struct cl_platform * p = &platforms[i];
  827. if (strstr(p->name, user_platform_string) != NULL ||
  828. strstr(p->vendor, user_platform_string) != NULL) {
  829. user_platform_number = (int)i;
  830. break;
  831. }
  832. }
  833. if (user_platform_number == -1) {
  834. fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  835. exit(1);
  836. }
  837. }
  838. if (user_platform_number != -1) {
  839. struct cl_platform * p = &platforms[user_platform_number];
  840. selected_devices = p->devices;
  841. n_selected_devices = p->n_devices;
  842. default_device = p->default_device;
  843. if (n_selected_devices == 0) {
  844. fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  845. exit(1);
  846. }
  847. }
  848. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  849. for (unsigned i = 0; i < n_selected_devices; i++) {
  850. struct cl_device * d = &selected_devices[i];
  851. if (strstr(d->name, user_device_string) != NULL) {
  852. user_device_number = d->number;
  853. break;
  854. }
  855. }
  856. if (user_device_number == -1) {
  857. fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  858. exit(1);
  859. }
  860. }
  861. if (user_device_number != -1) {
  862. selected_devices = &devices[user_device_number];
  863. n_selected_devices = 1;
  864. default_device = &selected_devices[0];
  865. }
  866. GGML_ASSERT(n_selected_devices > 0);
  867. if (default_device == NULL) {
  868. default_device = &selected_devices[0];
  869. }
  870. }
  871. fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
  872. fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
  873. if (default_device->type != CL_DEVICE_TYPE_GPU) {
  874. fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
  875. }
  876. platform = default_device->platform->id;
  877. device = default_device->id;
  878. size_t ext_str_size;
  879. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  880. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  881. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  882. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  883. // Check if ext_buffer contains cl_khr_fp16
  884. fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  885. fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
  886. cl_context_properties properties[] = {
  887. (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
  888. };
  889. CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
  890. CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  891. (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  892. (queue = clCreateCommandQueue(context, device, 0, &err), err)
  893. )));
  894. const std::string kernel_src = generate_kernels();
  895. program = build_program_from_source(context, device, kernel_src.c_str());
  896. // FP16 to FP32 kernel
  897. CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
  898. // Dequantize kernels
  899. CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
  900. CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
  901. CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
  902. CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
  903. CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
  904. CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
  905. CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err));
  906. CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err));
  907. CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err));
  908. CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err));
  909. CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err));
  910. // dequant mul mat kernel
  911. CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
  912. CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
  913. CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
  914. CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
  915. CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
  916. CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
  917. CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err));
  918. CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err));
  919. CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err));
  920. CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err));
  921. CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err));
  922. // mul kernel
  923. CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
  924. }
  925. static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
  926. switch (type) {
  927. case GGML_TYPE_Q4_0:
  928. return &dequantize_row_q4_0_cl;
  929. case GGML_TYPE_Q4_1:
  930. return &dequantize_row_q4_1_cl;
  931. case GGML_TYPE_Q5_0:
  932. return &dequantize_row_q5_0_cl;
  933. case GGML_TYPE_Q5_1:
  934. return &dequantize_row_q5_1_cl;
  935. case GGML_TYPE_Q8_0:
  936. return &dequantize_row_q8_0_cl;
  937. case GGML_TYPE_Q2_K:
  938. return &dequantize_block_q2_k_cl;
  939. case GGML_TYPE_Q3_K:
  940. return &dequantize_block_q3_k_cl;
  941. case GGML_TYPE_Q4_K:
  942. return &dequantize_block_q4_k_cl;
  943. case GGML_TYPE_Q5_K:
  944. return &dequantize_block_q5_k_cl;
  945. case GGML_TYPE_Q6_K:
  946. return &dequantize_block_q6_k_cl;
  947. case GGML_TYPE_F16:
  948. return &convert_row_f16_cl;
  949. default:
  950. return nullptr;
  951. }
  952. }
  953. static size_t ggml_cl_global_denom(ggml_type type) {
  954. switch (type) {
  955. case GGML_TYPE_Q4_0:
  956. case GGML_TYPE_Q4_1:
  957. case GGML_TYPE_Q5_0:
  958. case GGML_TYPE_Q5_1:
  959. case GGML_TYPE_Q8_0:
  960. return 1;
  961. case GGML_TYPE_Q2_K:
  962. case GGML_TYPE_Q3_K:
  963. return 4;
  964. case GGML_TYPE_Q4_K:
  965. return 8;
  966. case GGML_TYPE_Q5_K:
  967. case GGML_TYPE_Q6_K:
  968. return 4;
  969. case GGML_TYPE_F16:
  970. default:
  971. return 1;
  972. }
  973. }
  974. static size_t ggml_cl_local_size(ggml_type type) {
  975. switch (type) {
  976. case GGML_TYPE_Q4_0:
  977. case GGML_TYPE_Q4_1:
  978. case GGML_TYPE_Q5_0:
  979. case GGML_TYPE_Q5_1:
  980. case GGML_TYPE_Q8_0:
  981. return 0;
  982. case GGML_TYPE_Q2_K:
  983. case GGML_TYPE_Q3_K:
  984. return 64;
  985. case GGML_TYPE_Q4_K:
  986. return 32;
  987. case GGML_TYPE_Q5_K:
  988. case GGML_TYPE_Q6_K:
  989. return 64;
  990. case GGML_TYPE_F16:
  991. default:
  992. return 0;
  993. }
  994. }
  995. static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
  996. switch (type) {
  997. case GGML_TYPE_Q4_0:
  998. return &dequantize_mul_mat_vec_q4_0_cl;
  999. case GGML_TYPE_Q4_1:
  1000. return &dequantize_mul_mat_vec_q4_1_cl;
  1001. case GGML_TYPE_Q5_0:
  1002. return &dequantize_mul_mat_vec_q5_0_cl;
  1003. case GGML_TYPE_Q5_1:
  1004. return &dequantize_mul_mat_vec_q5_1_cl;
  1005. case GGML_TYPE_Q8_0:
  1006. return &dequantize_mul_mat_vec_q8_0_cl;
  1007. case GGML_TYPE_F16:
  1008. return &convert_mul_mat_vec_f16_cl;
  1009. case GGML_TYPE_Q2_K:
  1010. return &dequantize_mul_mat_vec_q2_K_cl;
  1011. case GGML_TYPE_Q3_K:
  1012. return &dequantize_mul_mat_vec_q3_K_cl;
  1013. case GGML_TYPE_Q4_K:
  1014. return &dequantize_mul_mat_vec_q4_K_cl;
  1015. case GGML_TYPE_Q5_K:
  1016. return &dequantize_mul_mat_vec_q5_K_cl;
  1017. case GGML_TYPE_Q6_K:
  1018. return &dequantize_mul_mat_vec_q6_K_cl;
  1019. default:
  1020. return nullptr;
  1021. }
  1022. }
  1023. // buffer pool for cl
  1024. #define MAX_CL_BUFFERS 256
  1025. struct scoped_spin_lock {
  1026. std::atomic_flag& lock;
  1027. scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
  1028. while (lock.test_and_set(std::memory_order_acquire)) {
  1029. ; // spin
  1030. }
  1031. }
  1032. ~scoped_spin_lock() {
  1033. lock.clear(std::memory_order_release);
  1034. }
  1035. scoped_spin_lock(const scoped_spin_lock&) = delete;
  1036. scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
  1037. };
  1038. struct cl_buffer {
  1039. cl_mem mem;
  1040. size_t size = 0;
  1041. };
  1042. static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
  1043. static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
  1044. static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) {
  1045. scoped_spin_lock lock(g_cl_pool_lock);
  1046. cl_int err;
  1047. int best_i = -1;
  1048. size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
  1049. int worst_i = -1;
  1050. size_t worst_size = 0; //largest unused buffer seen so far
  1051. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  1052. cl_buffer &b = g_cl_buffer_pool[i];
  1053. if (b.size > 0 && b.size >= size && b.size < best_size)
  1054. {
  1055. best_i = i;
  1056. best_size = b.size;
  1057. }
  1058. if (b.size > 0 && b.size > worst_size)
  1059. {
  1060. worst_i = i;
  1061. worst_size = b.size;
  1062. }
  1063. }
  1064. if(best_i!=-1) //found the smallest buffer that fits our needs
  1065. {
  1066. cl_buffer& b = g_cl_buffer_pool[best_i];
  1067. cl_mem mem = b.mem;
  1068. *actual_size = b.size;
  1069. b.size = 0;
  1070. return mem;
  1071. }
  1072. if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory
  1073. {
  1074. cl_buffer& b = g_cl_buffer_pool[worst_i];
  1075. cl_mem mem = b.mem;
  1076. b.size = 0;
  1077. clReleaseMemObject(mem);
  1078. }
  1079. cl_mem mem;
  1080. CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err));
  1081. *actual_size = size;
  1082. return mem;
  1083. }
  1084. static void ggml_cl_pool_free(cl_mem mem, size_t size) {
  1085. scoped_spin_lock lock(g_cl_pool_lock);
  1086. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  1087. cl_buffer& b = g_cl_buffer_pool[i];
  1088. if (b.size == 0) {
  1089. b.mem = mem;
  1090. b.size = size;
  1091. return;
  1092. }
  1093. }
  1094. fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
  1095. clReleaseMemObject(mem);
  1096. }
  1097. void ggml_cl_free_data(const struct ggml_tensor* tensor) {
  1098. if (tensor->backend != GGML_BACKEND_GPU) {
  1099. return;
  1100. }
  1101. cl_mem mem = (cl_mem)tensor->extra;
  1102. clReleaseMemObject(mem);
  1103. }
  1104. static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
  1105. cl_int err;
  1106. const uint64_t ne0 = src->ne[0];
  1107. const uint64_t ne1 = src->ne[1];
  1108. const uint64_t nb0 = src->nb[0];
  1109. const uint64_t nb1 = src->nb[1];
  1110. const uint64_t nb2 = src->nb[2];
  1111. const uint64_t nb3 = src->nb[3];
  1112. const enum ggml_type type = src->type;
  1113. const size_t ts = ggml_type_size(type);
  1114. const size_t bs = ggml_blck_size(type);
  1115. const uint64_t row_size = ts*ne0/bs;
  1116. const char * x = (const char *) src->data + i2*nb2 + i3*nb3;
  1117. if (nb0 == ts && nb1 == row_size) {
  1118. return clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*row_size, x, 0, NULL, ev);
  1119. }
  1120. if (nb0 == ts) {
  1121. const size_t buffer_origin[3] = { offset, 0, 0 };
  1122. const size_t host_origin[3] = { 0, 0, 0 };
  1123. const size_t region[3] = { row_size, ne1, 1 };
  1124. return clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, row_size, 0, nb1, 0, x, 0, NULL, ev);
  1125. }
  1126. std::vector<cl_event> events;
  1127. if (ev && ne1>1) events.reserve(ne1-1);
  1128. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  1129. // pretend the row is a matrix with cols=1
  1130. const size_t buffer_origin[3] = { offset + i1*row_size, 0, 0 };
  1131. const size_t host_origin[3] = { 0, 0, 0 };
  1132. const size_t region[3] = { ts, ne0/bs, 1 };
  1133. // if an event is requested, make the last write wait for all previous writes to complete
  1134. if (ev && i1) {
  1135. events.push_back(*ev);
  1136. }
  1137. cl_uint nevents = i1 == ne1-1 ? events.size() : 0U;
  1138. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts, 0, nb0, 0, x + i1*nb1, nevents, nevents ? events.data() : nullptr, ev);
  1139. if (err != CL_SUCCESS) {
  1140. for (auto event : events) {
  1141. clReleaseEvent(event);
  1142. }
  1143. return err;
  1144. }
  1145. }
  1146. for (auto event : events) {
  1147. CL_CHECK(clReleaseEvent(event));
  1148. }
  1149. return CL_SUCCESS;
  1150. }
  1151. static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1152. GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
  1153. const int64_t ne00 = src0->ne[0];
  1154. const int64_t ne01 = src0->ne[1];
  1155. const int64_t ne02 = src0->ne[2];
  1156. const int64_t ne03 = src0->ne[3];
  1157. const int64_t ne10 = src1->ne[0];
  1158. const int64_t ne11 = src1->ne[1];
  1159. const int64_t ne12 = src1->ne[2];
  1160. const int64_t ne13 = src1->ne[3];
  1161. const int nb2 = dst->nb[2];
  1162. const int nb3 = dst->nb[3];
  1163. size_t x_size;
  1164. size_t d_size;
  1165. cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0
  1166. cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
  1167. cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst
  1168. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1169. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1170. cl_event ev;
  1171. // copy src0 to device
  1172. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev));
  1173. const int64_t i13 = i03%ne13;
  1174. const int64_t i12 = i02%ne12;
  1175. const int i1 = i13*ne12*ne11 + i12*ne11;
  1176. cl_int x_offset = 0;
  1177. cl_int y_offset = i1*ne10;
  1178. cl_int d_offset = 0;
  1179. size_t global = ne00 * ne01;
  1180. cl_int ky = ne10 * ne11;
  1181. CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
  1182. CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
  1183. CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
  1184. CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
  1185. CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
  1186. CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
  1187. CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
  1188. CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
  1189. CL_CHECK(clReleaseEvent(ev));
  1190. CL_CHECK(clFinish(queue));
  1191. // copy dst to host
  1192. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1193. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
  1194. }
  1195. }
  1196. ggml_cl_pool_free(d_X, x_size);
  1197. ggml_cl_pool_free(d_D, d_size);
  1198. }
  1199. void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1200. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
  1201. ggml_cl_mul_f32(src0, src1, dst);
  1202. }
  1203. static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1204. const int64_t ne00 = src0->ne[0];
  1205. const int64_t ne01 = src0->ne[1];
  1206. const int64_t ne02 = src0->ne[2];
  1207. const int64_t ne03 = src0->ne[3];
  1208. const int64_t ne10 = src1->ne[0];
  1209. const int64_t ne11 = src1->ne[1];
  1210. const int64_t ne12 = src1->ne[2];
  1211. const int64_t ne13 = src1->ne[3];
  1212. const int nb2 = dst->nb[2];
  1213. const int nb3 = dst->nb[3];
  1214. const int64_t r2 = ne12 / ne02;
  1215. const int64_t r3 = ne13 / ne03;
  1216. const float alpha = 1.0f;
  1217. const float beta = 0.0f;
  1218. const int x_ne = ne01 * ne00;
  1219. const int y_ne = ne11 * ne10;
  1220. const int d_ne = ne11 * ne01;
  1221. size_t x_size;
  1222. size_t y_size;
  1223. size_t d_size;
  1224. cl_mem d_X;
  1225. if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
  1226. d_X = (cl_mem) src0->extra;
  1227. } else {
  1228. d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
  1229. }
  1230. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
  1231. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
  1232. size_t x_offset = 0;
  1233. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1234. // TODO: copy src0 here when r3>1
  1235. for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
  1236. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1237. if (src0->backend == GGML_BACKEND_GPU) {
  1238. x_offset = (i03 * ne02 + i02) * x_ne;
  1239. } else {
  1240. // copy src0 to device
  1241. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  1242. }
  1243. for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
  1244. // copy src1 to device
  1245. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
  1246. CL_CHECK(clFinish(queue));
  1247. // compute
  1248. cl_event ev_sgemm;
  1249. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  1250. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1251. ne01, ne11, ne10,
  1252. alpha,
  1253. d_X, x_offset, ne00,
  1254. d_Y, 0, ne10,
  1255. beta,
  1256. d_D, 0, ne01,
  1257. &queue, &ev_sgemm);
  1258. if (status != clblast::StatusCode::kSuccess) {
  1259. GGML_ASSERT(false);
  1260. }
  1261. // copy dst to host
  1262. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  1263. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
  1264. }
  1265. }
  1266. }
  1267. }
  1268. if (src0->backend != GGML_BACKEND_GPU) {
  1269. ggml_cl_pool_free(d_X, x_size);
  1270. }
  1271. ggml_cl_pool_free(d_Y, y_size);
  1272. ggml_cl_pool_free(d_D, d_size);
  1273. }
  1274. static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
  1275. GGML_ASSERT(fp16_support);
  1276. const int64_t ne00 = src0->ne[0];
  1277. const int64_t ne01 = src0->ne[1];
  1278. const int64_t ne02 = src0->ne[2];
  1279. const int64_t ne03 = src0->ne[3];
  1280. const int64_t ne10 = src1->ne[0];
  1281. const int64_t ne11 = src1->ne[1];
  1282. const int64_t ne12 = src1->ne[2];
  1283. const int64_t ne13 = src1->ne[3];
  1284. const int nb10 = src1->nb[0];
  1285. const int nb11 = src1->nb[1];
  1286. const int nb12 = src1->nb[2];
  1287. const int nb13 = src1->nb[3];
  1288. const int nb2 = dst->nb[2];
  1289. const int nb3 = dst->nb[3];
  1290. const int64_t r2 = ne12 / ne02;
  1291. const int64_t r3 = ne13 / ne03;
  1292. const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
  1293. const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
  1294. const int x_ne = ne01 * ne00;
  1295. const int y_ne = ne11 * ne10;
  1296. const int d_ne = ne11 * ne01;
  1297. GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * y_ne);
  1298. GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * d_ne);
  1299. ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata;
  1300. size_t x_size;
  1301. size_t y_size;
  1302. size_t d_size;
  1303. cl_mem d_X;
  1304. if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
  1305. d_X = (cl_mem) src0->extra;
  1306. } else {
  1307. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
  1308. }
  1309. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size);
  1310. cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size);
  1311. bool src1_cont_rows = nb10 == sizeof(float);
  1312. bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
  1313. size_t x_offset = 0;
  1314. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1315. // TODO: copy src0 here when r3>1
  1316. for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
  1317. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1318. if (src0->backend == GGML_BACKEND_GPU) {
  1319. x_offset = (i03 * ne02 + i02) * x_ne;
  1320. } else {
  1321. // copy src0 to device
  1322. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  1323. }
  1324. for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
  1325. // convert src1 to fp16
  1326. // TODO: use multiple threads
  1327. char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
  1328. if (src1_cont_rows) {
  1329. if (src1_cont_cols) {
  1330. ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
  1331. }
  1332. else {
  1333. for (int64_t i11 = 0; i11 < ne11; i11++) {
  1334. ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10);
  1335. }
  1336. }
  1337. }
  1338. else {
  1339. for (int64_t i11 = 0; i11 < ne11; i11++) {
  1340. for (int64_t i10 = 0; i10 < ne10; i10++) {
  1341. // very slow due to no inlining
  1342. tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10));
  1343. }
  1344. }
  1345. }
  1346. // copy src1 to device
  1347. CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
  1348. CL_CHECK(clFinish(queue));
  1349. // compute
  1350. cl_event ev_sgemm;
  1351. clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
  1352. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1353. ne01, ne11, ne10,
  1354. alpha,
  1355. d_X, x_offset, ne00,
  1356. d_Y, 0, ne10,
  1357. beta,
  1358. d_D, 0, ne01,
  1359. &queue, &ev_sgemm);
  1360. if (status != clblast::StatusCode::kSuccess) {
  1361. GGML_ASSERT(false);
  1362. }
  1363. // copy dst to host, then convert to float
  1364. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
  1365. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  1366. ggml_fp16_to_fp32_row(tmp, d, d_ne);
  1367. }
  1368. }
  1369. }
  1370. }
  1371. if (src0->backend != GGML_BACKEND_GPU) {
  1372. ggml_cl_pool_free(d_X, x_size);
  1373. }
  1374. ggml_cl_pool_free(d_Y, y_size);
  1375. ggml_cl_pool_free(d_D, d_size);
  1376. }
  1377. static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1378. const int64_t ne00 = src0->ne[0];
  1379. const int64_t ne01 = src0->ne[1];
  1380. const int64_t ne02 = src0->ne[2];
  1381. const int64_t ne03 = src0->ne[3];
  1382. const int64_t ne10 = src1->ne[0];
  1383. const int64_t ne11 = src1->ne[1];
  1384. const int64_t ne12 = src1->ne[2];
  1385. const int64_t ne13 = src1->ne[3];
  1386. const int nb2 = dst->nb[2];
  1387. const int nb3 = dst->nb[3];
  1388. const ggml_type type = src0->type;
  1389. const bool mul_mat_vec = ne11 == 1 && ne00%2 == 0;
  1390. const int64_t r2 = ne12 / ne02;
  1391. const int64_t r3 = ne13 / ne03;
  1392. const float alpha = 1.0f;
  1393. const float beta = 0.0f;
  1394. const int x_ne = ne01 * ne00;
  1395. const int y_ne = ne11 * ne10;
  1396. const int d_ne = ne11 * ne01;
  1397. const int x_bps = x_ne / ggml_blck_size(type); // blocks per 2D slice
  1398. const size_t q_sz = ggml_type_size(type) * x_bps;
  1399. size_t x_size;
  1400. size_t y_size;
  1401. size_t d_size;
  1402. size_t q_size;
  1403. cl_mem d_X;
  1404. if (!mul_mat_vec) {
  1405. d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
  1406. }
  1407. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
  1408. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
  1409. cl_mem d_Q;
  1410. if (src0->backend == GGML_BACKEND_CPU) {
  1411. d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
  1412. }
  1413. cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
  1414. cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
  1415. GGML_ASSERT(to_fp32_cl != nullptr);
  1416. const size_t global_denom = ggml_cl_global_denom(type);
  1417. const size_t local = mul_mat_vec ? CL_DMMV_LOCAL_SIZE : ggml_cl_local_size(type);
  1418. size_t ev_idx = 0;
  1419. std::vector<cl_event> events;
  1420. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1421. // TODO: copy and dequantize src0 here when r3>1
  1422. for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
  1423. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1424. // copy src0 to device if necessary
  1425. if (src0->backend == GGML_BACKEND_CPU) {
  1426. events.emplace_back();
  1427. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
  1428. } else if (src0->backend == GGML_BACKEND_GPU) {
  1429. d_Q = (cl_mem) src0->extra;
  1430. } else {
  1431. GGML_ASSERT(false);
  1432. }
  1433. if (!mul_mat_vec) {
  1434. // convert src0 to fp32 on device
  1435. const size_t global = x_ne / global_denom;
  1436. const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
  1437. CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
  1438. CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
  1439. CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
  1440. }
  1441. for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
  1442. if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
  1443. // copy src1 to device
  1444. events.emplace_back();
  1445. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
  1446. // compute
  1447. const size_t global = ne01 * local;
  1448. const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
  1449. const cl_int ncols = ne00;
  1450. events.emplace_back();
  1451. CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
  1452. CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
  1453. CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
  1454. CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
  1455. CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
  1456. CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
  1457. } else { // CLBlast matrix matrix multiplication
  1458. // copy src1 to device
  1459. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
  1460. // wait for conversion
  1461. CL_CHECK(clFinish(queue));
  1462. // compute
  1463. events.emplace_back();
  1464. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  1465. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1466. ne01, ne11, ne10,
  1467. alpha,
  1468. d_X, 0, ne00,
  1469. d_Y, 0, ne10,
  1470. beta,
  1471. d_D, 0, ne01,
  1472. &queue, events.data() + ev_idx++);
  1473. if (status != clblast::StatusCode::kSuccess) {
  1474. GGML_ASSERT(false);
  1475. }
  1476. }
  1477. // copy dst to host
  1478. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  1479. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
  1480. for (auto *event : events) {
  1481. clReleaseEvent(event);
  1482. }
  1483. ev_idx = 0;
  1484. events.clear();
  1485. }
  1486. }
  1487. }
  1488. }
  1489. if (!mul_mat_vec) {
  1490. ggml_cl_pool_free(d_X, x_size);
  1491. }
  1492. ggml_cl_pool_free(d_Y, y_size);
  1493. ggml_cl_pool_free(d_D, d_size);
  1494. if (src0->backend == GGML_BACKEND_CPU) {
  1495. ggml_cl_pool_free(d_Q, q_size);
  1496. }
  1497. }
  1498. bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1499. const int64_t ne10 = src1->ne[0];
  1500. const int64_t ne0 = dst->ne[0];
  1501. const int64_t ne1 = dst->ne[1];
  1502. // TODO: find the optimal values for these
  1503. if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  1504. src1->type == GGML_TYPE_F32 &&
  1505. dst->type == GGML_TYPE_F32 &&
  1506. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
  1507. return true;
  1508. }
  1509. return false;
  1510. }
  1511. static bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
  1512. // If device doesn't support FP16
  1513. if (!fp16_support) {
  1514. return false;
  1515. }
  1516. size_t src0_sz = ggml_nbytes(src0);
  1517. size_t src1_sz = ggml_nbytes(src1);
  1518. // mul_mat_q: src0 is converted to fp32 on device
  1519. size_t mul_mat_q_transfer = src0_sz + src1_sz;
  1520. // mul_mat_f16: src1 is converted to fp16 on cpu
  1521. size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
  1522. // choose the smaller one to transfer to the device
  1523. // TODO: this is not always the best choice due to the overhead of converting to fp16
  1524. return mul_mat_f16_transfer < mul_mat_q_transfer;
  1525. }
  1526. void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
  1527. GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
  1528. if (src0->type == GGML_TYPE_F32) {
  1529. ggml_cl_mul_mat_f32(src0, src1, dst);
  1530. }
  1531. else if (src0->type == GGML_TYPE_F16) {
  1532. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  1533. ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
  1534. }
  1535. else {
  1536. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  1537. }
  1538. }
  1539. else if (ggml_is_quantized(src0->type)) {
  1540. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  1541. }
  1542. else {
  1543. GGML_ASSERT(false);
  1544. }
  1545. }
  1546. size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1547. if (src0->type == GGML_TYPE_F16 && ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  1548. return sizeof(ggml_fp16_t) * std::max(src1->ne[0] * src1->ne[1], dst->ne[0] * dst->ne[1]);
  1549. }
  1550. return 0;
  1551. }
  1552. void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
  1553. const int64_t ne0 = tensor->ne[0];
  1554. const int64_t ne1 = tensor->ne[1];
  1555. const int64_t ne2 = tensor->ne[2];
  1556. const int64_t ne3 = tensor->ne[3];
  1557. const ggml_type type = tensor->type;
  1558. const size_t s_sz = ggml_type_size(type) * (size_t) (ne0 * ne1 / ggml_blck_size(type));
  1559. const size_t q_sz = s_sz * (size_t) (ne2 * ne3);
  1560. size_t q_size;
  1561. cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
  1562. tensor->data = data;
  1563. // copy tensor to device
  1564. size_t offset = 0;
  1565. for (int64_t i3 = 0; i3 < ne3; i3++) {
  1566. for (int64_t i2 = 0; i2 < ne2; i2++) {
  1567. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, offset, tensor, i3, i2, NULL));
  1568. offset += s_sz;
  1569. }
  1570. }
  1571. CL_CHECK(clFinish(queue));
  1572. tensor->extra = dst;
  1573. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  1574. }