ggml.c 636 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnigns
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. /*#define GGML_PERF*/
  84. #define GGML_DEBUG 0
  85. #define GGML_GELU_FP16
  86. #define GGML_GELU_QUICK_FP16
  87. #define GGML_SILU_FP16
  88. // #define GGML_CROSS_ENTROPY_EXP_FP16
  89. // #define GGML_FLASH_ATTN_EXP_FP16
  90. #define GGML_SOFT_MAX_UNROLL 4
  91. #define GGML_VEC_DOT_UNROLL 2
  92. #define GGML_VEC_MAD_UNROLL 32
  93. //
  94. // logging
  95. //
  96. #if (GGML_DEBUG >= 1)
  97. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  98. #else
  99. #define GGML_PRINT_DEBUG(...)
  100. #endif
  101. #if (GGML_DEBUG >= 5)
  102. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  103. #else
  104. #define GGML_PRINT_DEBUG_5(...)
  105. #endif
  106. #if (GGML_DEBUG >= 10)
  107. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  108. #else
  109. #define GGML_PRINT_DEBUG_10(...)
  110. #endif
  111. #define GGML_PRINT(...) printf(__VA_ARGS__)
  112. //
  113. // end of logging block
  114. //
  115. #ifdef GGML_USE_ACCELERATE
  116. // uncomment to use vDSP for soft max computation
  117. // note: not sure if it is actually faster
  118. //#define GGML_SOFT_MAX_ACCELERATE
  119. #endif
  120. #if defined(_MSC_VER) || defined(__MINGW32__)
  121. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  122. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  123. #else
  124. inline static void * ggml_aligned_malloc(size_t size) {
  125. if (size == 0) {
  126. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  127. return NULL;
  128. }
  129. void * aligned_memory = NULL;
  130. #ifdef GGML_USE_CPU_HBM
  131. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  132. #elif GGML_USE_METAL
  133. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  134. #else
  135. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  136. #endif
  137. if (result != 0) {
  138. // Handle allocation failure
  139. const char *error_desc = "unknown allocation error";
  140. switch (result) {
  141. case EINVAL:
  142. error_desc = "invalid alignment value";
  143. break;
  144. case ENOMEM:
  145. error_desc = "insufficient memory";
  146. break;
  147. }
  148. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  149. return NULL;
  150. }
  151. return aligned_memory;
  152. }
  153. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  154. #ifdef GGML_USE_CPU_HBM
  155. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  156. #else
  157. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  158. #endif
  159. #endif
  160. #define UNUSED GGML_UNUSED
  161. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  162. //
  163. // tensor access macros
  164. //
  165. #define GGML_TENSOR_UNARY_OP_LOCALS \
  166. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  167. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  168. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  169. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  170. #define GGML_TENSOR_BINARY_OP_LOCALS \
  171. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  172. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  173. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  174. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  175. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  176. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  177. #if defined(GGML_USE_ACCELERATE)
  178. #include <Accelerate/Accelerate.h>
  179. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  180. #include "ggml-opencl.h"
  181. #endif
  182. #elif defined(GGML_USE_OPENBLAS)
  183. #if defined(GGML_BLAS_USE_MKL)
  184. #include <mkl.h>
  185. #else
  186. #include <cblas.h>
  187. #endif
  188. #elif defined(GGML_USE_CUBLAS)
  189. #include "ggml-cuda.h"
  190. #elif defined(GGML_USE_CLBLAST)
  191. #include "ggml-opencl.h"
  192. #endif
  193. // floating point type used to accumulate sums
  194. typedef double ggml_float;
  195. //
  196. // global data
  197. //
  198. // precomputed gelu table for f16 (128 KB)
  199. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  200. // precomputed quick gelu table for f16 (128 KB)
  201. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  202. // precomputed silu table for f16 (128 KB)
  203. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  204. // precomputed exp table for f16 (128 KB)
  205. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  206. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  207. float ggml_table_f32_f16[1 << 16];
  208. // note: do not use these inside ggml.c
  209. // these are meant to be used via the ggml.h API
  210. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  211. return (float) GGML_FP16_TO_FP32(x);
  212. }
  213. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  214. return GGML_FP32_TO_FP16(x);
  215. }
  216. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  217. for (int i = 0; i < n; i++) {
  218. y[i] = GGML_FP16_TO_FP32(x[i]);
  219. }
  220. }
  221. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  222. int i = 0;
  223. #if defined(__F16C__)
  224. for (; i + 7 < n; i += 8) {
  225. __m256 x_vec = _mm256_loadu_ps(x + i);
  226. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  227. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  228. }
  229. for(; i + 3 < n; i += 4) {
  230. __m128 x_vec = _mm_loadu_ps(x + i);
  231. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  232. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  233. }
  234. #endif
  235. for (; i < n; i++) {
  236. y[i] = GGML_FP32_TO_FP16(x[i]);
  237. }
  238. }
  239. //
  240. // timing
  241. //
  242. #if defined(_MSC_VER) || defined(__MINGW32__)
  243. static int64_t timer_freq, timer_start;
  244. void ggml_time_init(void) {
  245. LARGE_INTEGER t;
  246. QueryPerformanceFrequency(&t);
  247. timer_freq = t.QuadPart;
  248. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  249. // and the uptime is high enough.
  250. // We subtract the program start time to reduce the likelihood of that happening.
  251. QueryPerformanceCounter(&t);
  252. timer_start = t.QuadPart;
  253. }
  254. int64_t ggml_time_ms(void) {
  255. LARGE_INTEGER t;
  256. QueryPerformanceCounter(&t);
  257. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  258. }
  259. int64_t ggml_time_us(void) {
  260. LARGE_INTEGER t;
  261. QueryPerformanceCounter(&t);
  262. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  263. }
  264. #else
  265. void ggml_time_init(void) {}
  266. int64_t ggml_time_ms(void) {
  267. struct timespec ts;
  268. clock_gettime(CLOCK_MONOTONIC, &ts);
  269. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  270. }
  271. int64_t ggml_time_us(void) {
  272. struct timespec ts;
  273. clock_gettime(CLOCK_MONOTONIC, &ts);
  274. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  275. }
  276. #endif
  277. int64_t ggml_cycles(void) {
  278. return clock();
  279. }
  280. int64_t ggml_cycles_per_ms(void) {
  281. return CLOCKS_PER_SEC/1000;
  282. }
  283. #ifdef GGML_PERF
  284. #define ggml_perf_time_ms() ggml_time_ms()
  285. #define ggml_perf_time_us() ggml_time_us()
  286. #define ggml_perf_cycles() ggml_cycles()
  287. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  288. #else
  289. #define ggml_perf_time_ms() 0
  290. #define ggml_perf_time_us() 0
  291. #define ggml_perf_cycles() 0
  292. #define ggml_perf_cycles_per_ms() 0
  293. #endif
  294. //
  295. // cache line
  296. //
  297. #if defined(__cpp_lib_hardware_interference_size)
  298. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  299. #else
  300. #if defined(__POWER9_VECTOR__)
  301. #define CACHE_LINE_SIZE 128
  302. #else
  303. #define CACHE_LINE_SIZE 64
  304. #endif
  305. #endif
  306. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  307. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  308. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  309. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  310. [GGML_TYPE_I8] = {
  311. .type_name = "i8",
  312. .blck_size = 1,
  313. .type_size = sizeof(int8_t),
  314. .is_quantized = false,
  315. },
  316. [GGML_TYPE_I16] = {
  317. .type_name = "i16",
  318. .blck_size = 1,
  319. .type_size = sizeof(int16_t),
  320. .is_quantized = false,
  321. },
  322. [GGML_TYPE_I32] = {
  323. .type_name = "i32",
  324. .blck_size = 1,
  325. .type_size = sizeof(int32_t),
  326. .is_quantized = false,
  327. },
  328. [GGML_TYPE_F32] = {
  329. .type_name = "f32",
  330. .blck_size = 1,
  331. .type_size = sizeof(float),
  332. .is_quantized = false,
  333. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  334. .vec_dot_type = GGML_TYPE_F32,
  335. },
  336. [GGML_TYPE_F16] = {
  337. .type_name = "f16",
  338. .blck_size = 1,
  339. .type_size = sizeof(ggml_fp16_t),
  340. .is_quantized = false,
  341. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  342. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  343. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  344. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  345. .vec_dot_type = GGML_TYPE_F16,
  346. },
  347. [GGML_TYPE_Q4_0] = {
  348. .type_name = "q4_0",
  349. .blck_size = QK4_0,
  350. .type_size = sizeof(block_q4_0),
  351. .is_quantized = true,
  352. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  353. .from_float = quantize_row_q4_0,
  354. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  355. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  356. .vec_dot_type = GGML_TYPE_Q8_0,
  357. },
  358. [GGML_TYPE_Q4_1] = {
  359. .type_name = "q4_1",
  360. .blck_size = QK4_1,
  361. .type_size = sizeof(block_q4_1),
  362. .is_quantized = true,
  363. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  364. .from_float = quantize_row_q4_1,
  365. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  366. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  367. .vec_dot_type = GGML_TYPE_Q8_1,
  368. },
  369. [4] = { // GGML_TYPE_Q4_2
  370. .type_name = "DEPRECATED",
  371. .blck_size = 0,
  372. .type_size = 0,
  373. .is_quantized = false,
  374. .to_float = NULL,
  375. .from_float = NULL,
  376. .from_float_reference = NULL,
  377. .vec_dot = NULL,
  378. .vec_dot_type = GGML_TYPE_COUNT,
  379. },
  380. [5] = { // GGML_TYPE_Q4_3
  381. .type_name = "DEPRECATED",
  382. .blck_size = 0,
  383. .type_size = 0,
  384. .is_quantized = false,
  385. .to_float = NULL,
  386. .from_float = NULL,
  387. .from_float_reference = NULL,
  388. .vec_dot = NULL,
  389. .vec_dot_type = GGML_TYPE_COUNT,
  390. },
  391. [GGML_TYPE_Q5_0] = {
  392. .type_name = "q5_0",
  393. .blck_size = QK5_0,
  394. .type_size = sizeof(block_q5_0),
  395. .is_quantized = true,
  396. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  397. .from_float = quantize_row_q5_0,
  398. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  399. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  400. .vec_dot_type = GGML_TYPE_Q8_0,
  401. },
  402. [GGML_TYPE_Q5_1] = {
  403. .type_name = "q5_1",
  404. .blck_size = QK5_1,
  405. .type_size = sizeof(block_q5_1),
  406. .is_quantized = true,
  407. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  408. .from_float = quantize_row_q5_1,
  409. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  410. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  411. .vec_dot_type = GGML_TYPE_Q8_1,
  412. },
  413. [GGML_TYPE_Q8_0] = {
  414. .type_name = "q8_0",
  415. .blck_size = QK8_0,
  416. .type_size = sizeof(block_q8_0),
  417. .is_quantized = true,
  418. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  419. .from_float = quantize_row_q8_0,
  420. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  421. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  422. .vec_dot_type = GGML_TYPE_Q8_0,
  423. },
  424. [GGML_TYPE_Q8_1] = {
  425. .type_name = "q8_1",
  426. .blck_size = QK8_1,
  427. .type_size = sizeof(block_q8_1),
  428. .is_quantized = true,
  429. .from_float = quantize_row_q8_1,
  430. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  431. .vec_dot_type = GGML_TYPE_Q8_1,
  432. },
  433. [GGML_TYPE_Q2_K] = {
  434. .type_name = "q2_K",
  435. .blck_size = QK_K,
  436. .type_size = sizeof(block_q2_K),
  437. .is_quantized = true,
  438. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  439. .from_float = quantize_row_q2_K,
  440. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  441. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  442. .vec_dot_type = GGML_TYPE_Q8_K,
  443. },
  444. [GGML_TYPE_Q3_K] = {
  445. .type_name = "q3_K",
  446. .blck_size = QK_K,
  447. .type_size = sizeof(block_q3_K),
  448. .is_quantized = true,
  449. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  450. .from_float = quantize_row_q3_K,
  451. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  452. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  453. .vec_dot_type = GGML_TYPE_Q8_K,
  454. },
  455. [GGML_TYPE_Q4_K] = {
  456. .type_name = "q4_K",
  457. .blck_size = QK_K,
  458. .type_size = sizeof(block_q4_K),
  459. .is_quantized = true,
  460. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  461. .from_float = quantize_row_q4_K,
  462. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  463. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  464. .vec_dot_type = GGML_TYPE_Q8_K,
  465. },
  466. [GGML_TYPE_Q5_K] = {
  467. .type_name = "q5_K",
  468. .blck_size = QK_K,
  469. .type_size = sizeof(block_q5_K),
  470. .is_quantized = true,
  471. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  472. .from_float = quantize_row_q5_K,
  473. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  474. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  475. .vec_dot_type = GGML_TYPE_Q8_K,
  476. },
  477. [GGML_TYPE_Q6_K] = {
  478. .type_name = "q6_K",
  479. .blck_size = QK_K,
  480. .type_size = sizeof(block_q6_K),
  481. .is_quantized = true,
  482. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  483. .from_float = quantize_row_q6_K,
  484. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  485. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  486. .vec_dot_type = GGML_TYPE_Q8_K,
  487. },
  488. [GGML_TYPE_Q8_K] = {
  489. .type_name = "q8_K",
  490. .blck_size = QK_K,
  491. .type_size = sizeof(block_q8_K),
  492. .is_quantized = true,
  493. .from_float = quantize_row_q8_K,
  494. }
  495. };
  496. // For internal test use
  497. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  498. GGML_ASSERT(type < GGML_TYPE_COUNT);
  499. return type_traits[type];
  500. }
  501. //
  502. // simd mappings
  503. //
  504. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  505. // we then implement the fundamental computation operations below using only these macros
  506. // adding support for new architectures requires to define the corresponding SIMD macros
  507. //
  508. // GGML_F32_STEP / GGML_F16_STEP
  509. // number of elements to process in a single step
  510. //
  511. // GGML_F32_EPR / GGML_F16_EPR
  512. // number of elements to fit in a single register
  513. //
  514. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  515. #define GGML_SIMD
  516. // F32 NEON
  517. #define GGML_F32_STEP 16
  518. #define GGML_F32_EPR 4
  519. #define GGML_F32x4 float32x4_t
  520. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  521. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  522. #define GGML_F32x4_LOAD vld1q_f32
  523. #define GGML_F32x4_STORE vst1q_f32
  524. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  525. #define GGML_F32x4_ADD vaddq_f32
  526. #define GGML_F32x4_MUL vmulq_f32
  527. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  528. #define GGML_F32x4_REDUCE(res, x) \
  529. { \
  530. int offset = GGML_F32_ARR >> 1; \
  531. for (int i = 0; i < offset; ++i) { \
  532. x[i] = vaddq_f32(x[i], x[offset+i]); \
  533. } \
  534. offset >>= 1; \
  535. for (int i = 0; i < offset; ++i) { \
  536. x[i] = vaddq_f32(x[i], x[offset+i]); \
  537. } \
  538. offset >>= 1; \
  539. for (int i = 0; i < offset; ++i) { \
  540. x[i] = vaddq_f32(x[i], x[offset+i]); \
  541. } \
  542. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  543. }
  544. #define GGML_F32_VEC GGML_F32x4
  545. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  546. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  547. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  548. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  549. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  550. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  551. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  552. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  553. // F16 NEON
  554. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  555. #define GGML_F16_STEP 32
  556. #define GGML_F16_EPR 8
  557. #define GGML_F16x8 float16x8_t
  558. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  559. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  560. #define GGML_F16x8_LOAD vld1q_f16
  561. #define GGML_F16x8_STORE vst1q_f16
  562. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  563. #define GGML_F16x8_ADD vaddq_f16
  564. #define GGML_F16x8_MUL vmulq_f16
  565. #define GGML_F16x8_REDUCE(res, x) \
  566. do { \
  567. int offset = GGML_F16_ARR >> 1; \
  568. for (int i = 0; i < offset; ++i) { \
  569. x[i] = vaddq_f16(x[i], x[offset+i]); \
  570. } \
  571. offset >>= 1; \
  572. for (int i = 0; i < offset; ++i) { \
  573. x[i] = vaddq_f16(x[i], x[offset+i]); \
  574. } \
  575. offset >>= 1; \
  576. for (int i = 0; i < offset; ++i) { \
  577. x[i] = vaddq_f16(x[i], x[offset+i]); \
  578. } \
  579. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  580. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  581. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  582. } while (0)
  583. #define GGML_F16_VEC GGML_F16x8
  584. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  585. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  586. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  587. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  588. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  589. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  590. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  591. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  592. #else
  593. // if FP16 vector arithmetic is not supported, we use FP32 instead
  594. // and take advantage of the vcvt_ functions to convert to/from FP16
  595. #define GGML_F16_STEP 16
  596. #define GGML_F16_EPR 4
  597. #define GGML_F32Cx4 float32x4_t
  598. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  599. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  600. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  601. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  602. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  603. #define GGML_F32Cx4_ADD vaddq_f32
  604. #define GGML_F32Cx4_MUL vmulq_f32
  605. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  606. #define GGML_F16_VEC GGML_F32Cx4
  607. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  608. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  609. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  610. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  611. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  612. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  613. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  614. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  615. #endif
  616. #elif defined(__AVX__)
  617. #define GGML_SIMD
  618. // F32 AVX
  619. #define GGML_F32_STEP 32
  620. #define GGML_F32_EPR 8
  621. #define GGML_F32x8 __m256
  622. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  623. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  624. #define GGML_F32x8_LOAD _mm256_loadu_ps
  625. #define GGML_F32x8_STORE _mm256_storeu_ps
  626. #if defined(__FMA__)
  627. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  628. #else
  629. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  630. #endif
  631. #define GGML_F32x8_ADD _mm256_add_ps
  632. #define GGML_F32x8_MUL _mm256_mul_ps
  633. #define GGML_F32x8_REDUCE(res, x) \
  634. do { \
  635. int offset = GGML_F32_ARR >> 1; \
  636. for (int i = 0; i < offset; ++i) { \
  637. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  638. } \
  639. offset >>= 1; \
  640. for (int i = 0; i < offset; ++i) { \
  641. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  642. } \
  643. offset >>= 1; \
  644. for (int i = 0; i < offset; ++i) { \
  645. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  646. } \
  647. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  648. _mm256_extractf128_ps(x[0], 1)); \
  649. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  650. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  651. } while (0)
  652. // TODO: is this optimal ?
  653. #define GGML_F32_VEC GGML_F32x8
  654. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  655. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  656. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  657. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  658. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  659. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  660. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  661. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  662. // F16 AVX
  663. #define GGML_F16_STEP 32
  664. #define GGML_F16_EPR 8
  665. // F16 arithmetic is not supported by AVX, so we use F32 instead
  666. #define GGML_F32Cx8 __m256
  667. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  668. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  669. #if defined(__F16C__)
  670. // the _mm256_cvt intrinsics require F16C
  671. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  672. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  673. #else
  674. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  675. float tmp[8];
  676. for (int i = 0; i < 8; i++) {
  677. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  678. }
  679. return _mm256_loadu_ps(tmp);
  680. }
  681. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  682. float arr[8];
  683. _mm256_storeu_ps(arr, y);
  684. for (int i = 0; i < 8; i++)
  685. x[i] = GGML_FP32_TO_FP16(arr[i]);
  686. }
  687. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  688. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  689. #endif
  690. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  691. #define GGML_F32Cx8_ADD _mm256_add_ps
  692. #define GGML_F32Cx8_MUL _mm256_mul_ps
  693. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  694. #define GGML_F16_VEC GGML_F32Cx8
  695. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  696. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  697. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  698. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  699. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  700. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  701. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  702. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  703. #elif defined(__POWER9_VECTOR__)
  704. #define GGML_SIMD
  705. // F32 POWER9
  706. #define GGML_F32_STEP 32
  707. #define GGML_F32_EPR 4
  708. #define GGML_F32x4 vector float
  709. #define GGML_F32x4_ZERO 0.0f
  710. #define GGML_F32x4_SET1 vec_splats
  711. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  712. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  713. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  714. #define GGML_F32x4_ADD vec_add
  715. #define GGML_F32x4_MUL vec_mul
  716. #define GGML_F32x4_REDUCE(res, x) \
  717. { \
  718. int offset = GGML_F32_ARR >> 1; \
  719. for (int i = 0; i < offset; ++i) { \
  720. x[i] = vec_add(x[i], x[offset+i]); \
  721. } \
  722. offset >>= 1; \
  723. for (int i = 0; i < offset; ++i) { \
  724. x[i] = vec_add(x[i], x[offset+i]); \
  725. } \
  726. offset >>= 1; \
  727. for (int i = 0; i < offset; ++i) { \
  728. x[i] = vec_add(x[i], x[offset+i]); \
  729. } \
  730. res = vec_extract(x[0], 0) + \
  731. vec_extract(x[0], 1) + \
  732. vec_extract(x[0], 2) + \
  733. vec_extract(x[0], 3); \
  734. }
  735. #define GGML_F32_VEC GGML_F32x4
  736. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  737. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  738. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  739. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  740. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  741. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  742. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  743. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  744. // F16 POWER9
  745. #define GGML_F16_STEP GGML_F32_STEP
  746. #define GGML_F16_EPR GGML_F32_EPR
  747. #define GGML_F16_VEC GGML_F32x4
  748. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  749. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  750. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  751. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  752. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  753. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  754. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  755. vec_extract_fp32_from_shortl(vec_xl(0, p))
  756. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  757. #define GGML_F16_VEC_STORE(p, r, i) \
  758. if (i & 0x1) \
  759. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  760. r[i - GGML_ENDIAN_BYTE(0)]), \
  761. 0, p - GGML_F16_EPR)
  762. #elif defined(__wasm_simd128__)
  763. #define GGML_SIMD
  764. // F32 WASM
  765. #define GGML_F32_STEP 16
  766. #define GGML_F32_EPR 4
  767. #define GGML_F32x4 v128_t
  768. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  769. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  770. #define GGML_F32x4_LOAD wasm_v128_load
  771. #define GGML_F32x4_STORE wasm_v128_store
  772. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  773. #define GGML_F32x4_ADD wasm_f32x4_add
  774. #define GGML_F32x4_MUL wasm_f32x4_mul
  775. #define GGML_F32x4_REDUCE(res, x) \
  776. { \
  777. int offset = GGML_F32_ARR >> 1; \
  778. for (int i = 0; i < offset; ++i) { \
  779. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  780. } \
  781. offset >>= 1; \
  782. for (int i = 0; i < offset; ++i) { \
  783. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  784. } \
  785. offset >>= 1; \
  786. for (int i = 0; i < offset; ++i) { \
  787. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  788. } \
  789. res = wasm_f32x4_extract_lane(x[0], 0) + \
  790. wasm_f32x4_extract_lane(x[0], 1) + \
  791. wasm_f32x4_extract_lane(x[0], 2) + \
  792. wasm_f32x4_extract_lane(x[0], 3); \
  793. }
  794. #define GGML_F32_VEC GGML_F32x4
  795. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  796. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  797. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  798. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  799. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  800. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  801. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  802. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  803. // F16 WASM
  804. #define GGML_F16_STEP 16
  805. #define GGML_F16_EPR 4
  806. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  807. float tmp[4];
  808. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  809. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  810. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  811. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  812. return wasm_v128_load(tmp);
  813. }
  814. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  815. float tmp[4];
  816. wasm_v128_store(tmp, x);
  817. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  818. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  819. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  820. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  821. }
  822. #define GGML_F16x4 v128_t
  823. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  824. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  825. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  826. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  827. #define GGML_F16x4_FMA GGML_F32x4_FMA
  828. #define GGML_F16x4_ADD wasm_f32x4_add
  829. #define GGML_F16x4_MUL wasm_f32x4_mul
  830. #define GGML_F16x4_REDUCE(res, x) \
  831. { \
  832. int offset = GGML_F16_ARR >> 1; \
  833. for (int i = 0; i < offset; ++i) { \
  834. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  835. } \
  836. offset >>= 1; \
  837. for (int i = 0; i < offset; ++i) { \
  838. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  839. } \
  840. offset >>= 1; \
  841. for (int i = 0; i < offset; ++i) { \
  842. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  843. } \
  844. res = wasm_f32x4_extract_lane(x[0], 0) + \
  845. wasm_f32x4_extract_lane(x[0], 1) + \
  846. wasm_f32x4_extract_lane(x[0], 2) + \
  847. wasm_f32x4_extract_lane(x[0], 3); \
  848. }
  849. #define GGML_F16_VEC GGML_F16x4
  850. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  851. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  852. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  853. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  854. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  855. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  856. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  857. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  858. #elif defined(__SSE3__)
  859. #define GGML_SIMD
  860. // F32 SSE
  861. #define GGML_F32_STEP 32
  862. #define GGML_F32_EPR 4
  863. #define GGML_F32x4 __m128
  864. #define GGML_F32x4_ZERO _mm_setzero_ps()
  865. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  866. #define GGML_F32x4_LOAD _mm_loadu_ps
  867. #define GGML_F32x4_STORE _mm_storeu_ps
  868. #if defined(__FMA__)
  869. // TODO: Does this work?
  870. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  871. #else
  872. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  873. #endif
  874. #define GGML_F32x4_ADD _mm_add_ps
  875. #define GGML_F32x4_MUL _mm_mul_ps
  876. #define GGML_F32x4_REDUCE(res, x) \
  877. { \
  878. int offset = GGML_F32_ARR >> 1; \
  879. for (int i = 0; i < offset; ++i) { \
  880. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  881. } \
  882. offset >>= 1; \
  883. for (int i = 0; i < offset; ++i) { \
  884. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  885. } \
  886. offset >>= 1; \
  887. for (int i = 0; i < offset; ++i) { \
  888. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  889. } \
  890. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  891. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  892. }
  893. // TODO: is this optimal ?
  894. #define GGML_F32_VEC GGML_F32x4
  895. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  896. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  897. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  898. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  899. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  900. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  901. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  902. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  903. // F16 SSE
  904. #define GGML_F16_STEP 32
  905. #define GGML_F16_EPR 4
  906. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  907. float tmp[4];
  908. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  909. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  910. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  911. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  912. return _mm_loadu_ps(tmp);
  913. }
  914. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  915. float arr[4];
  916. _mm_storeu_ps(arr, y);
  917. x[0] = GGML_FP32_TO_FP16(arr[0]);
  918. x[1] = GGML_FP32_TO_FP16(arr[1]);
  919. x[2] = GGML_FP32_TO_FP16(arr[2]);
  920. x[3] = GGML_FP32_TO_FP16(arr[3]);
  921. }
  922. #define GGML_F32Cx4 __m128
  923. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  924. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  925. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  926. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  927. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  928. #define GGML_F32Cx4_ADD _mm_add_ps
  929. #define GGML_F32Cx4_MUL _mm_mul_ps
  930. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  931. #define GGML_F16_VEC GGML_F32Cx4
  932. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  933. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  934. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  935. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  936. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  937. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  938. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  939. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  940. #endif
  941. // GGML_F32_ARR / GGML_F16_ARR
  942. // number of registers to use per step
  943. #ifdef GGML_SIMD
  944. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  945. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  946. #endif
  947. //
  948. // fundamental operations
  949. //
  950. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  951. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  952. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  953. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  954. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  955. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  956. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  957. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  958. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  959. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  960. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  961. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  962. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  963. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  964. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  965. #ifdef GGML_SIMD
  966. float sumf = 0.0f;
  967. const int np = (n & ~(GGML_F32_STEP - 1));
  968. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  969. GGML_F32_VEC ax[GGML_F32_ARR];
  970. GGML_F32_VEC ay[GGML_F32_ARR];
  971. for (int i = 0; i < np; i += GGML_F32_STEP) {
  972. for (int j = 0; j < GGML_F32_ARR; j++) {
  973. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  974. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  975. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  976. }
  977. }
  978. // reduce sum0..sum3 to sum0
  979. GGML_F32_VEC_REDUCE(sumf, sum);
  980. // leftovers
  981. for (int i = np; i < n; ++i) {
  982. sumf += x[i]*y[i];
  983. }
  984. #else
  985. // scalar
  986. ggml_float sumf = 0.0;
  987. for (int i = 0; i < n; ++i) {
  988. sumf += (ggml_float)(x[i]*y[i]);
  989. }
  990. #endif
  991. *s = sumf;
  992. }
  993. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  994. ggml_float sumf = 0.0;
  995. #if defined(GGML_SIMD)
  996. const int np = (n & ~(GGML_F16_STEP - 1));
  997. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  998. GGML_F16_VEC ax[GGML_F16_ARR];
  999. GGML_F16_VEC ay[GGML_F16_ARR];
  1000. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1001. for (int j = 0; j < GGML_F16_ARR; j++) {
  1002. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1003. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1004. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1005. }
  1006. }
  1007. // reduce sum0..sum3 to sum0
  1008. GGML_F16_VEC_REDUCE(sumf, sum);
  1009. // leftovers
  1010. for (int i = np; i < n; ++i) {
  1011. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1012. }
  1013. #else
  1014. for (int i = 0; i < n; ++i) {
  1015. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1016. }
  1017. #endif
  1018. *s = sumf;
  1019. }
  1020. // compute GGML_VEC_DOT_UNROLL dot products at once
  1021. // xs - x row stride in bytes
  1022. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1023. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1024. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1025. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1026. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1027. }
  1028. #if defined(GGML_SIMD)
  1029. const int np = (n & ~(GGML_F16_STEP - 1));
  1030. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1031. GGML_F16_VEC ax[GGML_F16_ARR];
  1032. GGML_F16_VEC ay[GGML_F16_ARR];
  1033. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1034. for (int j = 0; j < GGML_F16_ARR; j++) {
  1035. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1036. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1037. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1038. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1039. }
  1040. }
  1041. }
  1042. // reduce sum0..sum3 to sum0
  1043. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1044. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1045. }
  1046. // leftovers
  1047. for (int i = np; i < n; ++i) {
  1048. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1049. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1050. }
  1051. }
  1052. #else
  1053. for (int i = 0; i < n; ++i) {
  1054. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1055. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1056. }
  1057. }
  1058. #endif
  1059. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1060. s[i] = sumf[i];
  1061. }
  1062. }
  1063. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1064. #if defined(GGML_SIMD)
  1065. const int np = (n & ~(GGML_F32_STEP - 1));
  1066. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1067. GGML_F32_VEC ax[GGML_F32_ARR];
  1068. GGML_F32_VEC ay[GGML_F32_ARR];
  1069. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1070. for (int j = 0; j < GGML_F32_ARR; j++) {
  1071. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1072. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1073. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1074. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1075. }
  1076. }
  1077. // leftovers
  1078. for (int i = np; i < n; ++i) {
  1079. y[i] += x[i]*v;
  1080. }
  1081. #else
  1082. // scalar
  1083. for (int i = 0; i < n; ++i) {
  1084. y[i] += x[i]*v;
  1085. }
  1086. #endif
  1087. }
  1088. // xs and vs are byte strides of x and v
  1089. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1090. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1091. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1092. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1093. x[i] = (const float *) ((const char *) xv + i*xs);
  1094. v[i] = (const float *) ((const char *) vv + i*vs);
  1095. }
  1096. #if defined(GGML_SIMD)
  1097. const int np = (n & ~(GGML_F32_STEP - 1));
  1098. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1099. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1100. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1101. }
  1102. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1103. GGML_F32_VEC ay[GGML_F32_ARR];
  1104. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1105. for (int j = 0; j < GGML_F32_ARR; j++) {
  1106. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1107. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1108. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1109. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1110. }
  1111. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1112. }
  1113. }
  1114. // leftovers
  1115. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1116. for (int i = np; i < n; ++i) {
  1117. y[i] += x[k][i]*v[k][0];
  1118. }
  1119. }
  1120. #else
  1121. // scalar
  1122. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1123. for (int i = 0; i < n; ++i) {
  1124. y[i] += x[k][i]*v[k][0];
  1125. }
  1126. }
  1127. #endif
  1128. }
  1129. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1130. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1131. #if defined(GGML_USE_ACCELERATE)
  1132. vDSP_vsmul(y, 1, &v, y, 1, n);
  1133. #elif defined(GGML_SIMD)
  1134. const int np = (n & ~(GGML_F32_STEP - 1));
  1135. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1136. GGML_F32_VEC ay[GGML_F32_ARR];
  1137. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1138. for (int j = 0; j < GGML_F32_ARR; j++) {
  1139. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1140. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1141. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1142. }
  1143. }
  1144. // leftovers
  1145. for (int i = np; i < n; ++i) {
  1146. y[i] *= v;
  1147. }
  1148. #else
  1149. // scalar
  1150. for (int i = 0; i < n; ++i) {
  1151. y[i] *= v;
  1152. }
  1153. #endif
  1154. }
  1155. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1156. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1157. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1158. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1159. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1160. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1161. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1162. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1163. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1164. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1165. static const float GELU_COEF_A = 0.044715f;
  1166. static const float GELU_QUICK_COEF = -1.702f;
  1167. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1168. inline static float ggml_gelu_f32(float x) {
  1169. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1170. }
  1171. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1172. const uint16_t * i16 = (const uint16_t *) x;
  1173. for (int i = 0; i < n; ++i) {
  1174. y[i] = ggml_table_gelu_f16[i16[i]];
  1175. }
  1176. }
  1177. #ifdef GGML_GELU_FP16
  1178. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1179. uint16_t t;
  1180. for (int i = 0; i < n; ++i) {
  1181. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1182. memcpy(&t, &fp16, sizeof(uint16_t));
  1183. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1184. }
  1185. }
  1186. #else
  1187. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1188. for (int i = 0; i < n; ++i) {
  1189. y[i] = ggml_gelu_f32(x[i]);
  1190. }
  1191. }
  1192. #endif
  1193. inline static float ggml_gelu_quick_f32(float x) {
  1194. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1195. }
  1196. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1197. // const uint16_t * i16 = (const uint16_t *) x;
  1198. // for (int i = 0; i < n; ++i) {
  1199. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1200. // }
  1201. //}
  1202. #ifdef GGML_GELU_QUICK_FP16
  1203. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1204. uint16_t t;
  1205. for (int i = 0; i < n; ++i) {
  1206. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1207. memcpy(&t, &fp16, sizeof(uint16_t));
  1208. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1209. }
  1210. }
  1211. #else
  1212. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1213. for (int i = 0; i < n; ++i) {
  1214. y[i] = ggml_gelu_quick_f32(x[i]);
  1215. }
  1216. }
  1217. #endif
  1218. // Sigmoid Linear Unit (SiLU) function
  1219. inline static float ggml_silu_f32(float x) {
  1220. return x/(1.0f + expf(-x));
  1221. }
  1222. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1223. // const uint16_t * i16 = (const uint16_t *) x;
  1224. // for (int i = 0; i < n; ++i) {
  1225. // y[i] = ggml_table_silu_f16[i16[i]];
  1226. // }
  1227. //}
  1228. #ifdef GGML_SILU_FP16
  1229. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1230. uint16_t t;
  1231. for (int i = 0; i < n; ++i) {
  1232. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1233. memcpy(&t, &fp16, sizeof(uint16_t));
  1234. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1235. }
  1236. }
  1237. #else
  1238. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1239. for (int i = 0; i < n; ++i) {
  1240. y[i] = ggml_silu_f32(x[i]);
  1241. }
  1242. }
  1243. #endif
  1244. inline static float ggml_silu_backward_f32(float x, float dy) {
  1245. const float s = 1.0f/(1.0f + expf(-x));
  1246. return dy*s*(1.0f + x*(1.0f - s));
  1247. }
  1248. #ifdef GGML_SILU_FP16
  1249. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1250. for (int i = 0; i < n; ++i) {
  1251. // we did not use x[i] to compute forward silu but its f16 equivalent
  1252. // take derivative at f16 of x[i]:
  1253. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1254. float usedx = GGML_FP16_TO_FP32(fp16);
  1255. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1256. }
  1257. }
  1258. #else
  1259. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1260. for (int i = 0; i < n; ++i) {
  1261. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1262. }
  1263. }
  1264. #endif
  1265. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1266. #ifndef GGML_USE_ACCELERATE
  1267. ggml_float sum = 0.0;
  1268. for (int i = 0; i < n; ++i) {
  1269. sum += (ggml_float)x[i];
  1270. }
  1271. *s = sum;
  1272. #else
  1273. vDSP_sve(x, 1, s, n);
  1274. #endif
  1275. }
  1276. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1277. ggml_float sum = 0.0;
  1278. for (int i = 0; i < n; ++i) {
  1279. sum += (ggml_float)x[i];
  1280. }
  1281. *s = sum;
  1282. }
  1283. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1284. float sum = 0.0f;
  1285. for (int i = 0; i < n; ++i) {
  1286. sum += GGML_FP16_TO_FP32(x[i]);
  1287. }
  1288. *s = sum;
  1289. }
  1290. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1291. #ifndef GGML_USE_ACCELERATE
  1292. float max = -INFINITY;
  1293. for (int i = 0; i < n; ++i) {
  1294. max = MAX(max, x[i]);
  1295. }
  1296. *s = max;
  1297. #else
  1298. vDSP_maxv(x, 1, s, n);
  1299. #endif
  1300. }
  1301. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1302. ggml_vec_norm_f32(n, s, x);
  1303. *s = 1.f/(*s);
  1304. }
  1305. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1306. float max = -INFINITY;
  1307. int idx = 0;
  1308. for (int i = 0; i < n; ++i) {
  1309. max = MAX(max, x[i]);
  1310. if (max == x[i]) { idx = i; }
  1311. }
  1312. *s = idx;
  1313. }
  1314. //
  1315. // data types
  1316. //
  1317. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1318. "NONE",
  1319. "DUP",
  1320. "ADD",
  1321. "ADD1",
  1322. "ACC",
  1323. "SUB",
  1324. "MUL",
  1325. "DIV",
  1326. "SQR",
  1327. "SQRT",
  1328. "LOG",
  1329. "SUM",
  1330. "SUM_ROWS",
  1331. "MEAN",
  1332. "ARGMAX",
  1333. "REPEAT",
  1334. "REPEAT_BACK",
  1335. "CONCAT",
  1336. "SILU_BACK",
  1337. "NORM",
  1338. "RMS_NORM",
  1339. "RMS_NORM_BACK",
  1340. "GROUP_NORM",
  1341. "MUL_MAT",
  1342. "OUT_PROD",
  1343. "SCALE",
  1344. "SET",
  1345. "CPY",
  1346. "CONT",
  1347. "RESHAPE",
  1348. "VIEW",
  1349. "PERMUTE",
  1350. "TRANSPOSE",
  1351. "GET_ROWS",
  1352. "GET_ROWS_BACK",
  1353. "DIAG",
  1354. "DIAG_MASK_INF",
  1355. "DIAG_MASK_ZERO",
  1356. "SOFT_MAX",
  1357. "SOFT_MAX_BACK",
  1358. "ROPE",
  1359. "ROPE_BACK",
  1360. "ALIBI",
  1361. "CLAMP",
  1362. "CONV_1D",
  1363. "CONV_1D_STAGE_0",
  1364. "CONV_1D_STAGE_1",
  1365. "CONV_TRANSPOSE_1D",
  1366. "CONV_2D",
  1367. "CONV_2D_STAGE_0",
  1368. "CONV_2D_STAGE_1",
  1369. "CONV_TRANSPOSE_2D",
  1370. "POOL_1D",
  1371. "POOL_2D",
  1372. "UPSCALE",
  1373. "FLASH_ATTN",
  1374. "FLASH_FF",
  1375. "FLASH_ATTN_BACK",
  1376. "WIN_PART",
  1377. "WIN_UNPART",
  1378. "GET_REL_POS",
  1379. "ADD_REL_POS",
  1380. "UNARY",
  1381. "MAP_UNARY",
  1382. "MAP_BINARY",
  1383. "MAP_CUSTOM1_F32",
  1384. "MAP_CUSTOM2_F32",
  1385. "MAP_CUSTOM3_F32",
  1386. "MAP_CUSTOM1",
  1387. "MAP_CUSTOM2",
  1388. "MAP_CUSTOM3",
  1389. "CROSS_ENTROPY_LOSS",
  1390. "CROSS_ENTROPY_LOSS_BACK",
  1391. };
  1392. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1393. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1394. "none",
  1395. "x",
  1396. "x+y",
  1397. "x+y",
  1398. "view(x,nb,offset)+=y->x",
  1399. "x-y",
  1400. "x*y",
  1401. "x/y",
  1402. "x^2",
  1403. "√x",
  1404. "log(x)",
  1405. "Σx",
  1406. "Σx_k",
  1407. "Σx/n",
  1408. "argmax(x)",
  1409. "repeat(x)",
  1410. "repeat_back(x)",
  1411. "concat(x, y)",
  1412. "silu_back(x)",
  1413. "norm(x)",
  1414. "rms_norm(x)",
  1415. "rms_norm_back(x)",
  1416. "group_norm(x)",
  1417. "X*Y",
  1418. "X*Y",
  1419. "x*v",
  1420. "y-\\>view(x)",
  1421. "x-\\>y",
  1422. "cont(x)",
  1423. "reshape(x)",
  1424. "view(x)",
  1425. "permute(x)",
  1426. "transpose(x)",
  1427. "get_rows(x)",
  1428. "get_rows_back(x)",
  1429. "diag(x)",
  1430. "diag_mask_inf(x)",
  1431. "diag_mask_zero(x)",
  1432. "soft_max(x)",
  1433. "soft_max_back(x)",
  1434. "rope(x)",
  1435. "rope_back(x)",
  1436. "alibi(x)",
  1437. "clamp(x)",
  1438. "conv_1d(x)",
  1439. "conv_1d_stage_0(x)",
  1440. "conv_1d_stage_1(x)",
  1441. "conv_transpose_1d(x)",
  1442. "conv_2d(x)",
  1443. "conv_2d_stage_0(x)",
  1444. "conv_2d_stage_1(x)",
  1445. "conv_transpose_2d(x)",
  1446. "pool_1d(x)",
  1447. "pool_2d(x)",
  1448. "upscale(x)",
  1449. "flash_attn(x)",
  1450. "flash_ff(x)",
  1451. "flash_attn_back(x)",
  1452. "win_part(x)",
  1453. "win_unpart(x)",
  1454. "get_rel_pos(x)",
  1455. "add_rel_pos(x)",
  1456. "unary(x)",
  1457. "f(x)",
  1458. "f(x,y)",
  1459. "custom_f32(x)",
  1460. "custom_f32(x,y)",
  1461. "custom_f32(x,y,z)",
  1462. "custom(x)",
  1463. "custom(x,y)",
  1464. "custom(x,y,z)",
  1465. "cross_entropy_loss(x,y)",
  1466. "cross_entropy_loss_back(x,y)",
  1467. };
  1468. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1469. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1470. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1471. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1472. // WARN:
  1473. // Mis-confguration can lead to problem that's hard to reason about:
  1474. // * At best it crash or talks nosense.
  1475. // * At worst it talks slightly difference but hard to perceive.
  1476. //
  1477. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1478. // Take care about compile options (e.g., GGML_USE_xxx).
  1479. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1480. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1481. static void ggml_setup_op_has_task_pass(void) {
  1482. { // INIT
  1483. bool * p = GGML_OP_HAS_INIT;
  1484. p[GGML_OP_ACC ] = true;
  1485. p[GGML_OP_MUL_MAT ] = true;
  1486. p[GGML_OP_OUT_PROD ] = true;
  1487. p[GGML_OP_SET ] = true;
  1488. p[GGML_OP_GET_ROWS_BACK ] = true;
  1489. p[GGML_OP_DIAG_MASK_INF ] = true;
  1490. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1491. p[GGML_OP_CONV_1D ] = true;
  1492. p[GGML_OP_CONV_1D_STAGE_0 ] = true;
  1493. p[GGML_OP_CONV_1D_STAGE_1 ] = true;
  1494. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1495. p[GGML_OP_CONV_2D ] = true;
  1496. p[GGML_OP_CONV_2D_STAGE_0 ] = true;
  1497. p[GGML_OP_CONV_2D_STAGE_1 ] = true;
  1498. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1499. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1500. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1501. p[GGML_OP_ADD_REL_POS ] = true;
  1502. }
  1503. { // FINALIZE
  1504. bool * p = GGML_OP_HAS_FINALIZE;
  1505. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1506. }
  1507. }
  1508. //
  1509. // ggml context
  1510. //
  1511. struct ggml_context {
  1512. size_t mem_size;
  1513. void * mem_buffer;
  1514. bool mem_buffer_owned;
  1515. bool no_alloc;
  1516. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1517. int n_objects;
  1518. struct ggml_object * objects_begin;
  1519. struct ggml_object * objects_end;
  1520. struct ggml_scratch scratch;
  1521. struct ggml_scratch scratch_save;
  1522. };
  1523. struct ggml_context_container {
  1524. bool used;
  1525. struct ggml_context context;
  1526. };
  1527. //
  1528. // NUMA support
  1529. //
  1530. #define GGML_NUMA_MAX_NODES 8
  1531. #define GGML_NUMA_MAX_CPUS 512
  1532. struct ggml_numa_node {
  1533. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1534. uint32_t n_cpus;
  1535. };
  1536. struct ggml_numa_nodes {
  1537. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1538. uint32_t n_nodes;
  1539. uint32_t total_cpus; // hardware threads on system
  1540. };
  1541. //
  1542. // ggml state
  1543. //
  1544. struct ggml_state {
  1545. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1546. struct ggml_numa_nodes numa;
  1547. };
  1548. // global state
  1549. static struct ggml_state g_state;
  1550. static atomic_int g_state_barrier = 0;
  1551. // barrier via spin lock
  1552. inline static void ggml_critical_section_start(void) {
  1553. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1554. while (processing > 0) {
  1555. // wait for other threads to finish
  1556. atomic_fetch_sub(&g_state_barrier, 1);
  1557. sched_yield(); // TODO: reconsider this
  1558. processing = atomic_fetch_add(&g_state_barrier, 1);
  1559. }
  1560. }
  1561. // TODO: make this somehow automatically executed
  1562. // some sort of "sentry" mechanism
  1563. inline static void ggml_critical_section_end(void) {
  1564. atomic_fetch_sub(&g_state_barrier, 1);
  1565. }
  1566. void ggml_numa_init(void) {
  1567. if (g_state.numa.n_nodes > 0) {
  1568. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1569. return;
  1570. }
  1571. #ifdef __linux__
  1572. struct stat st;
  1573. char path[256];
  1574. int rv;
  1575. // enumerate nodes
  1576. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1577. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1578. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1579. if (stat(path, &st) != 0) { break; }
  1580. ++g_state.numa.n_nodes;
  1581. }
  1582. // enumerate CPUs
  1583. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1584. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1585. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1586. if (stat(path, &st) != 0) { break; }
  1587. ++g_state.numa.total_cpus;
  1588. }
  1589. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1590. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1591. g_state.numa.n_nodes = 0;
  1592. return;
  1593. }
  1594. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1595. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1596. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1597. node->n_cpus = 0;
  1598. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1599. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1600. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1601. if (stat(path, &st) == 0) {
  1602. node->cpus[node->n_cpus++] = c;
  1603. GGML_PRINT_DEBUG(" %u", c);
  1604. }
  1605. }
  1606. GGML_PRINT_DEBUG("\n");
  1607. }
  1608. if (ggml_is_numa()) {
  1609. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1610. if (fptr != NULL) {
  1611. char buf[42];
  1612. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1613. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1614. }
  1615. fclose(fptr);
  1616. }
  1617. }
  1618. #else
  1619. // TODO
  1620. #endif
  1621. }
  1622. bool ggml_is_numa(void) {
  1623. return g_state.numa.n_nodes > 1;
  1624. }
  1625. ////////////////////////////////////////////////////////////////////////////////
  1626. void ggml_print_object(const struct ggml_object * obj) {
  1627. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1628. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1629. }
  1630. void ggml_print_objects(const struct ggml_context * ctx) {
  1631. struct ggml_object * obj = ctx->objects_begin;
  1632. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1633. while (obj != NULL) {
  1634. ggml_print_object(obj);
  1635. obj = obj->next;
  1636. }
  1637. GGML_PRINT("%s: --- end ---\n", __func__);
  1638. }
  1639. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1640. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1641. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1642. }
  1643. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1644. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1645. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1646. }
  1647. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1648. size_t nbytes;
  1649. size_t blck_size = ggml_blck_size(tensor->type);
  1650. if (blck_size == 1) {
  1651. nbytes = ggml_type_size(tensor->type);
  1652. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1653. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1654. }
  1655. }
  1656. else {
  1657. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1658. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1659. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1660. }
  1661. }
  1662. return nbytes;
  1663. }
  1664. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1665. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1666. }
  1667. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1668. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1669. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1670. }
  1671. int ggml_blck_size(enum ggml_type type) {
  1672. return type_traits[type].blck_size;
  1673. }
  1674. size_t ggml_type_size(enum ggml_type type) {
  1675. return type_traits[type].type_size;
  1676. }
  1677. float ggml_type_sizef(enum ggml_type type) {
  1678. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  1679. }
  1680. const char * ggml_type_name(enum ggml_type type) {
  1681. return type_traits[type].type_name;
  1682. }
  1683. bool ggml_is_quantized(enum ggml_type type) {
  1684. return type_traits[type].is_quantized;
  1685. }
  1686. const char * ggml_op_name(enum ggml_op op) {
  1687. return GGML_OP_NAME[op];
  1688. }
  1689. const char * ggml_op_symbol(enum ggml_op op) {
  1690. return GGML_OP_SYMBOL[op];
  1691. }
  1692. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1693. return ggml_type_size(tensor->type);
  1694. }
  1695. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1696. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1697. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1698. }
  1699. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1700. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1701. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1702. }
  1703. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1704. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1705. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1706. }
  1707. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1708. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1709. return (t0->ne[0] == t1->ne[0]) &&
  1710. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1711. (t1->ne[3]%t0->ne[3] == 0);
  1712. }
  1713. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1714. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1715. return (t0->ne[1] == t1->ne[1]) &&
  1716. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1717. (t1->ne[3]%t0->ne[3] == 0);
  1718. }
  1719. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1720. enum ggml_type wtype = GGML_TYPE_COUNT;
  1721. switch (ftype) {
  1722. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1723. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1724. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1725. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1726. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1727. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1728. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1729. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1730. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1731. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1732. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1733. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1734. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1735. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1736. }
  1737. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1738. return wtype;
  1739. }
  1740. size_t ggml_tensor_overhead(void) {
  1741. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1742. }
  1743. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1744. return tensor->nb[0] > tensor->nb[1];
  1745. }
  1746. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1747. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1748. return
  1749. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1750. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1751. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1752. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1753. }
  1754. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1755. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1756. return
  1757. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1758. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1759. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1760. }
  1761. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1762. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1763. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1764. }
  1765. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1766. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1767. return
  1768. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1769. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1770. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1771. }
  1772. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1773. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1774. return
  1775. (t0->ne[0] == t1->ne[0] ) &&
  1776. (t0->ne[1] == t1->ne[1] ) &&
  1777. (t0->ne[2] == t1->ne[2] ) &&
  1778. (t0->ne[3] == t1->ne[3] );
  1779. }
  1780. // check if t1 can be represented as a repeatition of t0
  1781. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1782. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1783. return
  1784. (t1->ne[0]%t0->ne[0] == 0) &&
  1785. (t1->ne[1]%t0->ne[1] == 0) &&
  1786. (t1->ne[2]%t0->ne[2] == 0) &&
  1787. (t1->ne[3]%t0->ne[3] == 0);
  1788. }
  1789. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1790. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1791. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1792. }
  1793. static inline int ggml_up32(int n) {
  1794. return (n + 31) & ~31;
  1795. }
  1796. //static inline int ggml_up64(int n) {
  1797. // return (n + 63) & ~63;
  1798. //}
  1799. static inline int ggml_up(int n, int m) {
  1800. // assert m is a power of 2
  1801. GGML_ASSERT((m & (m - 1)) == 0);
  1802. return (n + m - 1) & ~(m - 1);
  1803. }
  1804. // assert that pointer is aligned to GGML_MEM_ALIGN
  1805. #define ggml_assert_aligned(ptr) \
  1806. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1807. ////////////////////////////////////////////////////////////////////////////////
  1808. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1809. // make this function thread safe
  1810. ggml_critical_section_start();
  1811. static bool is_first_call = true;
  1812. if (is_first_call) {
  1813. // initialize time system (required on Windows)
  1814. ggml_time_init();
  1815. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1816. {
  1817. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1818. ggml_fp16_t ii;
  1819. for (int i = 0; i < (1 << 16); ++i) {
  1820. uint16_t ui = i;
  1821. memcpy(&ii, &ui, sizeof(ii));
  1822. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1823. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1824. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1825. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1826. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1827. }
  1828. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1829. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1830. }
  1831. // initialize g_state
  1832. {
  1833. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1834. g_state = (struct ggml_state) {
  1835. /*.contexts =*/ { { 0 } },
  1836. /*.numa =*/ {
  1837. .n_nodes = 0,
  1838. .total_cpus = 0,
  1839. },
  1840. };
  1841. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1842. g_state.contexts[i].used = false;
  1843. }
  1844. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1845. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1846. }
  1847. #if defined(GGML_USE_CUBLAS)
  1848. ggml_init_cublas();
  1849. #elif defined(GGML_USE_CLBLAST)
  1850. ggml_cl_init();
  1851. #endif
  1852. ggml_setup_op_has_task_pass();
  1853. is_first_call = false;
  1854. }
  1855. // find non-used context in g_state
  1856. struct ggml_context * ctx = NULL;
  1857. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1858. if (!g_state.contexts[i].used) {
  1859. g_state.contexts[i].used = true;
  1860. ctx = &g_state.contexts[i].context;
  1861. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1862. break;
  1863. }
  1864. }
  1865. if (ctx == NULL) {
  1866. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1867. ggml_critical_section_end();
  1868. return NULL;
  1869. }
  1870. // allow to call ggml_init with 0 size
  1871. if (params.mem_size == 0) {
  1872. params.mem_size = GGML_MEM_ALIGN;
  1873. }
  1874. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1875. *ctx = (struct ggml_context) {
  1876. /*.mem_size =*/ mem_size,
  1877. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1878. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1879. /*.no_alloc =*/ params.no_alloc,
  1880. /*.no_alloc_save =*/ params.no_alloc,
  1881. /*.n_objects =*/ 0,
  1882. /*.objects_begin =*/ NULL,
  1883. /*.objects_end =*/ NULL,
  1884. /*.scratch =*/ { 0, 0, NULL, },
  1885. /*.scratch_save =*/ { 0, 0, NULL, },
  1886. };
  1887. GGML_ASSERT(ctx->mem_buffer != NULL);
  1888. ggml_assert_aligned(ctx->mem_buffer);
  1889. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1890. ggml_critical_section_end();
  1891. return ctx;
  1892. }
  1893. void ggml_free(struct ggml_context * ctx) {
  1894. // make this function thread safe
  1895. ggml_critical_section_start();
  1896. bool found = false;
  1897. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1898. if (&g_state.contexts[i].context == ctx) {
  1899. g_state.contexts[i].used = false;
  1900. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1901. __func__, i, ggml_used_mem(ctx));
  1902. if (ctx->mem_buffer_owned) {
  1903. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1904. }
  1905. found = true;
  1906. break;
  1907. }
  1908. }
  1909. if (!found) {
  1910. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1911. }
  1912. ggml_critical_section_end();
  1913. }
  1914. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1915. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1916. }
  1917. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1918. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1919. ctx->scratch = scratch;
  1920. return result;
  1921. }
  1922. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1923. return ctx->no_alloc;
  1924. }
  1925. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1926. ctx->no_alloc = no_alloc;
  1927. }
  1928. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1929. return ctx->mem_buffer;
  1930. }
  1931. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1932. return ctx->mem_size;
  1933. }
  1934. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1935. size_t max_size = 0;
  1936. struct ggml_object * obj = ctx->objects_begin;
  1937. while (obj != NULL) {
  1938. if (obj->type == GGML_OBJECT_TENSOR) {
  1939. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  1940. const size_t size = ggml_nbytes(tensor);
  1941. if (max_size < size) {
  1942. max_size = size;
  1943. }
  1944. }
  1945. obj = obj->next;
  1946. }
  1947. return max_size;
  1948. }
  1949. // IMPORTANT:
  1950. // when creating "opt" tensors, always save and load the scratch buffer
  1951. // this is an error prone process, but it is necessary to support inplace
  1952. // operators when using scratch buffers
  1953. // TODO: implement a better way
  1954. static void ggml_scratch_save(struct ggml_context * ctx) {
  1955. // this is needed to allow opt tensors to store their data
  1956. // TODO: again, need to find a better way
  1957. ctx->no_alloc_save = ctx->no_alloc;
  1958. ctx->no_alloc = false;
  1959. ctx->scratch_save = ctx->scratch;
  1960. ctx->scratch.data = NULL;
  1961. }
  1962. static void ggml_scratch_load(struct ggml_context * ctx) {
  1963. ctx->no_alloc = ctx->no_alloc_save;
  1964. ctx->scratch = ctx->scratch_save;
  1965. }
  1966. ////////////////////////////////////////////////////////////////////////////////
  1967. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  1968. // always insert objects at the end of the context's memory pool
  1969. struct ggml_object * obj_cur = ctx->objects_end;
  1970. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  1971. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  1972. const size_t cur_end = cur_offs + cur_size;
  1973. // align to GGML_MEM_ALIGN
  1974. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  1975. char * const mem_buffer = ctx->mem_buffer;
  1976. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  1977. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  1978. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  1979. __func__, cur_end + size_needed, ctx->mem_size);
  1980. assert(false);
  1981. return NULL;
  1982. }
  1983. *obj_new = (struct ggml_object) {
  1984. .offs = cur_end + GGML_OBJECT_SIZE,
  1985. .size = size_needed,
  1986. .next = NULL,
  1987. .type = type,
  1988. };
  1989. ggml_assert_aligned(mem_buffer + obj_new->offs);
  1990. if (obj_cur != NULL) {
  1991. obj_cur->next = obj_new;
  1992. } else {
  1993. // this is the first object in this context
  1994. ctx->objects_begin = obj_new;
  1995. }
  1996. ctx->objects_end = obj_new;
  1997. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  1998. return obj_new;
  1999. }
  2000. static struct ggml_tensor * ggml_new_tensor_impl(
  2001. struct ggml_context * ctx,
  2002. enum ggml_type type,
  2003. int n_dims,
  2004. const int64_t * ne,
  2005. struct ggml_tensor * view_src,
  2006. size_t view_offs) {
  2007. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2008. // find the base tensor and absolute offset
  2009. if (view_src != NULL && view_src->view_src != NULL) {
  2010. view_offs += view_src->view_offs;
  2011. view_src = view_src->view_src;
  2012. }
  2013. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2014. for (int i = 1; i < n_dims; i++) {
  2015. data_size *= ne[i];
  2016. }
  2017. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2018. void * data = view_src != NULL ? view_src->data : NULL;
  2019. if (data != NULL) {
  2020. data = (char *) data + view_offs;
  2021. }
  2022. size_t obj_alloc_size = 0;
  2023. if (view_src == NULL && !ctx->no_alloc) {
  2024. if (ctx->scratch.data != NULL) {
  2025. // allocate tensor data in the scratch buffer
  2026. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2027. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2028. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2029. assert(false);
  2030. return NULL;
  2031. }
  2032. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2033. ctx->scratch.offs += data_size;
  2034. } else {
  2035. // allocate tensor data in the context's memory pool
  2036. obj_alloc_size = data_size;
  2037. }
  2038. }
  2039. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2040. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2041. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2042. *result = (struct ggml_tensor) {
  2043. /*.type =*/ type,
  2044. /*.backend =*/ GGML_BACKEND_CPU,
  2045. /*.buffer =*/ NULL,
  2046. /*.n_dims =*/ n_dims,
  2047. /*.ne =*/ { 1, 1, 1, 1 },
  2048. /*.nb =*/ { 0, 0, 0, 0 },
  2049. /*.op =*/ GGML_OP_NONE,
  2050. /*.op_params =*/ { 0 },
  2051. /*.is_param =*/ false,
  2052. /*.grad =*/ NULL,
  2053. /*.src =*/ { NULL },
  2054. /*.perf_runs =*/ 0,
  2055. /*.perf_cycles =*/ 0,
  2056. /*.perf_time_us =*/ 0,
  2057. /*.view_src =*/ view_src,
  2058. /*.view_offs =*/ view_offs,
  2059. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2060. /*.name =*/ { 0 },
  2061. /*.extra =*/ NULL,
  2062. /*.padding =*/ { 0 },
  2063. };
  2064. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2065. //ggml_assert_aligned(result->data);
  2066. for (int i = 0; i < n_dims; i++) {
  2067. result->ne[i] = ne[i];
  2068. }
  2069. result->nb[0] = ggml_type_size(type);
  2070. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2071. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2072. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2073. }
  2074. ctx->n_objects++;
  2075. return result;
  2076. }
  2077. struct ggml_tensor * ggml_new_tensor(
  2078. struct ggml_context * ctx,
  2079. enum ggml_type type,
  2080. int n_dims,
  2081. const int64_t * ne) {
  2082. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2083. }
  2084. struct ggml_tensor * ggml_new_tensor_1d(
  2085. struct ggml_context * ctx,
  2086. enum ggml_type type,
  2087. int64_t ne0) {
  2088. return ggml_new_tensor(ctx, type, 1, &ne0);
  2089. }
  2090. struct ggml_tensor * ggml_new_tensor_2d(
  2091. struct ggml_context * ctx,
  2092. enum ggml_type type,
  2093. int64_t ne0,
  2094. int64_t ne1) {
  2095. const int64_t ne[2] = { ne0, ne1 };
  2096. return ggml_new_tensor(ctx, type, 2, ne);
  2097. }
  2098. struct ggml_tensor * ggml_new_tensor_3d(
  2099. struct ggml_context * ctx,
  2100. enum ggml_type type,
  2101. int64_t ne0,
  2102. int64_t ne1,
  2103. int64_t ne2) {
  2104. const int64_t ne[3] = { ne0, ne1, ne2 };
  2105. return ggml_new_tensor(ctx, type, 3, ne);
  2106. }
  2107. struct ggml_tensor * ggml_new_tensor_4d(
  2108. struct ggml_context * ctx,
  2109. enum ggml_type type,
  2110. int64_t ne0,
  2111. int64_t ne1,
  2112. int64_t ne2,
  2113. int64_t ne3) {
  2114. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2115. return ggml_new_tensor(ctx, type, 4, ne);
  2116. }
  2117. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2118. ggml_scratch_save(ctx);
  2119. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2120. ggml_scratch_load(ctx);
  2121. ggml_set_i32(result, value);
  2122. return result;
  2123. }
  2124. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2125. ggml_scratch_save(ctx);
  2126. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2127. ggml_scratch_load(ctx);
  2128. ggml_set_f32(result, value);
  2129. return result;
  2130. }
  2131. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2132. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  2133. }
  2134. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2135. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2136. assert(params_size <= GGML_MAX_OP_PARAMS);
  2137. memcpy(tensor->op_params, params, params_size);
  2138. }
  2139. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2140. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2141. return ((const int32_t *)(tensor->op_params))[i];
  2142. }
  2143. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2144. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2145. ((int32_t *)(tensor->op_params))[i] = value;
  2146. }
  2147. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2148. memset(tensor->data, 0, ggml_nbytes(tensor));
  2149. return tensor;
  2150. }
  2151. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2152. const int n = ggml_nrows(tensor);
  2153. const int nc = tensor->ne[0];
  2154. const size_t n1 = tensor->nb[1];
  2155. char * const data = tensor->data;
  2156. switch (tensor->type) {
  2157. case GGML_TYPE_I8:
  2158. {
  2159. assert(tensor->nb[0] == sizeof(int8_t));
  2160. for (int i = 0; i < n; i++) {
  2161. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2162. }
  2163. } break;
  2164. case GGML_TYPE_I16:
  2165. {
  2166. assert(tensor->nb[0] == sizeof(int16_t));
  2167. for (int i = 0; i < n; i++) {
  2168. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2169. }
  2170. } break;
  2171. case GGML_TYPE_I32:
  2172. {
  2173. assert(tensor->nb[0] == sizeof(int32_t));
  2174. for (int i = 0; i < n; i++) {
  2175. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2176. }
  2177. } break;
  2178. case GGML_TYPE_F16:
  2179. {
  2180. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2181. for (int i = 0; i < n; i++) {
  2182. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2183. }
  2184. } break;
  2185. case GGML_TYPE_F32:
  2186. {
  2187. assert(tensor->nb[0] == sizeof(float));
  2188. for (int i = 0; i < n; i++) {
  2189. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2190. }
  2191. } break;
  2192. default:
  2193. {
  2194. GGML_ASSERT(false);
  2195. } break;
  2196. }
  2197. return tensor;
  2198. }
  2199. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2200. const int n = ggml_nrows(tensor);
  2201. const int nc = tensor->ne[0];
  2202. const size_t n1 = tensor->nb[1];
  2203. char * const data = tensor->data;
  2204. switch (tensor->type) {
  2205. case GGML_TYPE_I8:
  2206. {
  2207. assert(tensor->nb[0] == sizeof(int8_t));
  2208. for (int i = 0; i < n; i++) {
  2209. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2210. }
  2211. } break;
  2212. case GGML_TYPE_I16:
  2213. {
  2214. assert(tensor->nb[0] == sizeof(int16_t));
  2215. for (int i = 0; i < n; i++) {
  2216. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2217. }
  2218. } break;
  2219. case GGML_TYPE_I32:
  2220. {
  2221. assert(tensor->nb[0] == sizeof(int32_t));
  2222. for (int i = 0; i < n; i++) {
  2223. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2224. }
  2225. } break;
  2226. case GGML_TYPE_F16:
  2227. {
  2228. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2229. for (int i = 0; i < n; i++) {
  2230. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2231. }
  2232. } break;
  2233. case GGML_TYPE_F32:
  2234. {
  2235. assert(tensor->nb[0] == sizeof(float));
  2236. for (int i = 0; i < n; i++) {
  2237. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2238. }
  2239. } break;
  2240. default:
  2241. {
  2242. GGML_ASSERT(false);
  2243. } break;
  2244. }
  2245. return tensor;
  2246. }
  2247. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2248. const int64_t ne2 = tensor->ne[2];
  2249. const int64_t ne1 = tensor->ne[1];
  2250. const int64_t ne0 = tensor->ne[0];
  2251. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2252. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2253. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2254. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2255. if (i0) {
  2256. * i0 = i0_;
  2257. }
  2258. if (i1) {
  2259. * i1 = i1_;
  2260. }
  2261. if (i2) {
  2262. * i2 = i2_;
  2263. }
  2264. if (i3) {
  2265. * i3 = i3_;
  2266. }
  2267. }
  2268. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2269. if (!ggml_is_contiguous(tensor)) {
  2270. int64_t id[4] = { 0, 0, 0, 0 };
  2271. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2272. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2273. }
  2274. switch (tensor->type) {
  2275. case GGML_TYPE_I8:
  2276. {
  2277. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2278. return ((int8_t *)(tensor->data))[i];
  2279. }
  2280. case GGML_TYPE_I16:
  2281. {
  2282. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2283. return ((int16_t *)(tensor->data))[i];
  2284. }
  2285. case GGML_TYPE_I32:
  2286. {
  2287. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2288. return ((int32_t *)(tensor->data))[i];
  2289. }
  2290. case GGML_TYPE_F16:
  2291. {
  2292. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2293. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2294. }
  2295. case GGML_TYPE_F32:
  2296. {
  2297. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2298. return ((float *)(tensor->data))[i];
  2299. }
  2300. default:
  2301. {
  2302. GGML_ASSERT(false);
  2303. }
  2304. }
  2305. return 0.0f;
  2306. }
  2307. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2308. if (!ggml_is_contiguous(tensor)) {
  2309. int64_t id[4] = { 0, 0, 0, 0 };
  2310. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2311. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2312. return;
  2313. }
  2314. switch (tensor->type) {
  2315. case GGML_TYPE_I8:
  2316. {
  2317. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2318. ((int8_t *)(tensor->data))[i] = value;
  2319. } break;
  2320. case GGML_TYPE_I16:
  2321. {
  2322. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2323. ((int16_t *)(tensor->data))[i] = value;
  2324. } break;
  2325. case GGML_TYPE_I32:
  2326. {
  2327. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2328. ((int32_t *)(tensor->data))[i] = value;
  2329. } break;
  2330. case GGML_TYPE_F16:
  2331. {
  2332. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2333. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2334. } break;
  2335. case GGML_TYPE_F32:
  2336. {
  2337. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2338. ((float *)(tensor->data))[i] = value;
  2339. } break;
  2340. default:
  2341. {
  2342. GGML_ASSERT(false);
  2343. } break;
  2344. }
  2345. }
  2346. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2347. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2348. switch (tensor->type) {
  2349. case GGML_TYPE_I8:
  2350. return ((int8_t *) data)[0];
  2351. case GGML_TYPE_I16:
  2352. return ((int16_t *) data)[0];
  2353. case GGML_TYPE_I32:
  2354. return ((int32_t *) data)[0];
  2355. case GGML_TYPE_F16:
  2356. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2357. case GGML_TYPE_F32:
  2358. return ((float *) data)[0];
  2359. default:
  2360. GGML_ASSERT(false);
  2361. }
  2362. return 0.0f;
  2363. }
  2364. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2365. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2366. switch (tensor->type) {
  2367. case GGML_TYPE_I8:
  2368. {
  2369. ((int8_t *)(data))[0] = value;
  2370. } break;
  2371. case GGML_TYPE_I16:
  2372. {
  2373. ((int16_t *)(data))[0] = value;
  2374. } break;
  2375. case GGML_TYPE_I32:
  2376. {
  2377. ((int32_t *)(data))[0] = value;
  2378. } break;
  2379. case GGML_TYPE_F16:
  2380. {
  2381. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2382. } break;
  2383. case GGML_TYPE_F32:
  2384. {
  2385. ((float *)(data))[0] = value;
  2386. } break;
  2387. default:
  2388. {
  2389. GGML_ASSERT(false);
  2390. } break;
  2391. }
  2392. }
  2393. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2394. if (!ggml_is_contiguous(tensor)) {
  2395. int64_t id[4] = { 0, 0, 0, 0 };
  2396. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2397. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2398. }
  2399. switch (tensor->type) {
  2400. case GGML_TYPE_I8:
  2401. {
  2402. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2403. return ((int8_t *)(tensor->data))[i];
  2404. }
  2405. case GGML_TYPE_I16:
  2406. {
  2407. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2408. return ((int16_t *)(tensor->data))[i];
  2409. }
  2410. case GGML_TYPE_I32:
  2411. {
  2412. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2413. return ((int32_t *)(tensor->data))[i];
  2414. }
  2415. case GGML_TYPE_F16:
  2416. {
  2417. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2418. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2419. }
  2420. case GGML_TYPE_F32:
  2421. {
  2422. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2423. return ((float *)(tensor->data))[i];
  2424. }
  2425. default:
  2426. {
  2427. GGML_ASSERT(false);
  2428. }
  2429. }
  2430. return 0.0f;
  2431. }
  2432. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2433. if (!ggml_is_contiguous(tensor)) {
  2434. int64_t id[4] = { 0, 0, 0, 0 };
  2435. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2436. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2437. return;
  2438. }
  2439. switch (tensor->type) {
  2440. case GGML_TYPE_I8:
  2441. {
  2442. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2443. ((int8_t *)(tensor->data))[i] = value;
  2444. } break;
  2445. case GGML_TYPE_I16:
  2446. {
  2447. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2448. ((int16_t *)(tensor->data))[i] = value;
  2449. } break;
  2450. case GGML_TYPE_I32:
  2451. {
  2452. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2453. ((int32_t *)(tensor->data))[i] = value;
  2454. } break;
  2455. case GGML_TYPE_F16:
  2456. {
  2457. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2458. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2459. } break;
  2460. case GGML_TYPE_F32:
  2461. {
  2462. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2463. ((float *)(tensor->data))[i] = value;
  2464. } break;
  2465. default:
  2466. {
  2467. GGML_ASSERT(false);
  2468. } break;
  2469. }
  2470. }
  2471. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2472. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2473. switch (tensor->type) {
  2474. case GGML_TYPE_I8:
  2475. return ((int8_t *) data)[0];
  2476. case GGML_TYPE_I16:
  2477. return ((int16_t *) data)[0];
  2478. case GGML_TYPE_I32:
  2479. return ((int32_t *) data)[0];
  2480. case GGML_TYPE_F16:
  2481. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2482. case GGML_TYPE_F32:
  2483. return ((float *) data)[0];
  2484. default:
  2485. GGML_ASSERT(false);
  2486. }
  2487. return 0.0f;
  2488. }
  2489. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2490. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2491. switch (tensor->type) {
  2492. case GGML_TYPE_I8:
  2493. {
  2494. ((int8_t *)(data))[0] = value;
  2495. } break;
  2496. case GGML_TYPE_I16:
  2497. {
  2498. ((int16_t *)(data))[0] = value;
  2499. } break;
  2500. case GGML_TYPE_I32:
  2501. {
  2502. ((int32_t *)(data))[0] = value;
  2503. } break;
  2504. case GGML_TYPE_F16:
  2505. {
  2506. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2507. } break;
  2508. case GGML_TYPE_F32:
  2509. {
  2510. ((float *)(data))[0] = value;
  2511. } break;
  2512. default:
  2513. {
  2514. GGML_ASSERT(false);
  2515. } break;
  2516. }
  2517. }
  2518. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2519. return tensor->data;
  2520. }
  2521. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2522. assert(tensor->type == GGML_TYPE_F32);
  2523. return (float *)(tensor->data);
  2524. }
  2525. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2526. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2527. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2528. }
  2529. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2530. return tensor->name;
  2531. }
  2532. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2533. strncpy(tensor->name, name, sizeof(tensor->name));
  2534. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2535. return tensor;
  2536. }
  2537. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2538. va_list args;
  2539. va_start(args, fmt);
  2540. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2541. va_end(args);
  2542. return tensor;
  2543. }
  2544. struct ggml_tensor * ggml_view_tensor(
  2545. struct ggml_context * ctx,
  2546. struct ggml_tensor * src) {
  2547. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  2548. ggml_format_name(result, "%s (view)", src->name);
  2549. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2550. result->nb[i] = src->nb[i];
  2551. }
  2552. return result;
  2553. }
  2554. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2555. struct ggml_object * obj = ctx->objects_begin;
  2556. char * const mem_buffer = ctx->mem_buffer;
  2557. while (obj != NULL) {
  2558. if (obj->type == GGML_OBJECT_TENSOR) {
  2559. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2560. }
  2561. obj = obj->next;
  2562. }
  2563. return NULL;
  2564. }
  2565. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2566. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2567. obj = obj->next;
  2568. char * const mem_buffer = ctx->mem_buffer;
  2569. while (obj != NULL) {
  2570. if (obj->type == GGML_OBJECT_TENSOR) {
  2571. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2572. }
  2573. obj = obj->next;
  2574. }
  2575. return NULL;
  2576. }
  2577. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2578. struct ggml_object * obj = ctx->objects_begin;
  2579. char * const mem_buffer = ctx->mem_buffer;
  2580. while (obj != NULL) {
  2581. if (obj->type == GGML_OBJECT_TENSOR) {
  2582. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2583. if (strcmp(cur->name, name) == 0) {
  2584. return cur;
  2585. }
  2586. }
  2587. obj = obj->next;
  2588. }
  2589. return NULL;
  2590. }
  2591. ////////////////////////////////////////////////////////////////////////////////
  2592. // ggml_dup
  2593. static struct ggml_tensor * ggml_dup_impl(
  2594. struct ggml_context * ctx,
  2595. struct ggml_tensor * a,
  2596. bool inplace) {
  2597. bool is_node = false;
  2598. if (!inplace && (a->grad)) {
  2599. is_node = true;
  2600. }
  2601. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2602. result->op = GGML_OP_DUP;
  2603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2604. result->src[0] = a;
  2605. return result;
  2606. }
  2607. struct ggml_tensor * ggml_dup(
  2608. struct ggml_context * ctx,
  2609. struct ggml_tensor * a) {
  2610. return ggml_dup_impl(ctx, a, false);
  2611. }
  2612. struct ggml_tensor * ggml_dup_inplace(
  2613. struct ggml_context * ctx,
  2614. struct ggml_tensor * a) {
  2615. return ggml_dup_impl(ctx, a, true);
  2616. }
  2617. // ggml_add
  2618. static struct ggml_tensor * ggml_add_impl(
  2619. struct ggml_context * ctx,
  2620. struct ggml_tensor * a,
  2621. struct ggml_tensor * b,
  2622. bool inplace) {
  2623. // TODO: support less-strict constraint
  2624. // GGML_ASSERT(ggml_can_repeat(b, a));
  2625. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2626. bool is_node = false;
  2627. if (!inplace && (a->grad || b->grad)) {
  2628. // TODO: support backward pass for broadcasting
  2629. GGML_ASSERT(ggml_are_same_shape(a, b));
  2630. is_node = true;
  2631. }
  2632. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2633. result->op = GGML_OP_ADD;
  2634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2635. result->src[0] = a;
  2636. result->src[1] = b;
  2637. return result;
  2638. }
  2639. struct ggml_tensor * ggml_add(
  2640. struct ggml_context * ctx,
  2641. struct ggml_tensor * a,
  2642. struct ggml_tensor * b) {
  2643. return ggml_add_impl(ctx, a, b, false);
  2644. }
  2645. struct ggml_tensor * ggml_add_inplace(
  2646. struct ggml_context * ctx,
  2647. struct ggml_tensor * a,
  2648. struct ggml_tensor * b) {
  2649. return ggml_add_impl(ctx, a, b, true);
  2650. }
  2651. // ggml_add_cast
  2652. static struct ggml_tensor * ggml_add_cast_impl(
  2653. struct ggml_context * ctx,
  2654. struct ggml_tensor * a,
  2655. struct ggml_tensor * b,
  2656. enum ggml_type type) {
  2657. // TODO: support less-strict constraint
  2658. // GGML_ASSERT(ggml_can_repeat(b, a));
  2659. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2660. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2661. bool is_node = false;
  2662. if (a->grad || b->grad) {
  2663. // TODO: support backward pass for broadcasting
  2664. GGML_ASSERT(ggml_are_same_shape(a, b));
  2665. is_node = true;
  2666. }
  2667. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  2668. result->op = GGML_OP_ADD;
  2669. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  2670. result->src[0] = a;
  2671. result->src[1] = b;
  2672. return result;
  2673. }
  2674. struct ggml_tensor * ggml_add_cast(
  2675. struct ggml_context * ctx,
  2676. struct ggml_tensor * a,
  2677. struct ggml_tensor * b,
  2678. enum ggml_type type) {
  2679. return ggml_add_cast_impl(ctx, a, b, type);
  2680. }
  2681. // ggml_add1
  2682. static struct ggml_tensor * ggml_add1_impl(
  2683. struct ggml_context * ctx,
  2684. struct ggml_tensor * a,
  2685. struct ggml_tensor * b,
  2686. bool inplace) {
  2687. GGML_ASSERT(ggml_is_scalar(b));
  2688. GGML_ASSERT(ggml_is_padded_1d(a));
  2689. bool is_node = false;
  2690. if (a->grad || b->grad) {
  2691. is_node = true;
  2692. }
  2693. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2694. result->op = GGML_OP_ADD1;
  2695. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2696. result->src[0] = a;
  2697. result->src[1] = b;
  2698. return result;
  2699. }
  2700. struct ggml_tensor * ggml_add1(
  2701. struct ggml_context * ctx,
  2702. struct ggml_tensor * a,
  2703. struct ggml_tensor * b) {
  2704. return ggml_add1_impl(ctx, a, b, false);
  2705. }
  2706. struct ggml_tensor * ggml_add1_inplace(
  2707. struct ggml_context * ctx,
  2708. struct ggml_tensor * a,
  2709. struct ggml_tensor * b) {
  2710. return ggml_add1_impl(ctx, a, b, true);
  2711. }
  2712. // ggml_acc
  2713. static struct ggml_tensor * ggml_acc_impl(
  2714. struct ggml_context * ctx,
  2715. struct ggml_tensor * a,
  2716. struct ggml_tensor * b,
  2717. size_t nb1,
  2718. size_t nb2,
  2719. size_t nb3,
  2720. size_t offset,
  2721. bool inplace) {
  2722. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2723. GGML_ASSERT(ggml_is_contiguous(a));
  2724. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2725. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2726. bool is_node = false;
  2727. if (!inplace && (a->grad || b->grad)) {
  2728. is_node = true;
  2729. }
  2730. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2731. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2732. ggml_set_op_params(result, params, sizeof(params));
  2733. result->op = GGML_OP_ACC;
  2734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2735. result->src[0] = a;
  2736. result->src[1] = b;
  2737. return result;
  2738. }
  2739. struct ggml_tensor * ggml_acc(
  2740. struct ggml_context * ctx,
  2741. struct ggml_tensor * a,
  2742. struct ggml_tensor * b,
  2743. size_t nb1,
  2744. size_t nb2,
  2745. size_t nb3,
  2746. size_t offset) {
  2747. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2748. }
  2749. struct ggml_tensor * ggml_acc_inplace(
  2750. struct ggml_context * ctx,
  2751. struct ggml_tensor * a,
  2752. struct ggml_tensor * b,
  2753. size_t nb1,
  2754. size_t nb2,
  2755. size_t nb3,
  2756. size_t offset) {
  2757. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2758. }
  2759. // ggml_sub
  2760. static struct ggml_tensor * ggml_sub_impl(
  2761. struct ggml_context * ctx,
  2762. struct ggml_tensor * a,
  2763. struct ggml_tensor * b,
  2764. bool inplace) {
  2765. GGML_ASSERT(ggml_are_same_shape(a, b));
  2766. bool is_node = false;
  2767. if (!inplace && (a->grad || b->grad)) {
  2768. is_node = true;
  2769. }
  2770. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2771. result->op = GGML_OP_SUB;
  2772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2773. result->src[0] = a;
  2774. result->src[1] = b;
  2775. return result;
  2776. }
  2777. struct ggml_tensor * ggml_sub(
  2778. struct ggml_context * ctx,
  2779. struct ggml_tensor * a,
  2780. struct ggml_tensor * b) {
  2781. return ggml_sub_impl(ctx, a, b, false);
  2782. }
  2783. struct ggml_tensor * ggml_sub_inplace(
  2784. struct ggml_context * ctx,
  2785. struct ggml_tensor * a,
  2786. struct ggml_tensor * b) {
  2787. return ggml_sub_impl(ctx, a, b, true);
  2788. }
  2789. // ggml_mul
  2790. static struct ggml_tensor * ggml_mul_impl(
  2791. struct ggml_context * ctx,
  2792. struct ggml_tensor * a,
  2793. struct ggml_tensor * b,
  2794. bool inplace) {
  2795. // TODO: support less-strict constraint
  2796. // GGML_ASSERT(ggml_can_repeat(b, a));
  2797. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2798. bool is_node = false;
  2799. if (!inplace && (a->grad || b->grad)) {
  2800. // TODO: support backward pass for broadcasting
  2801. GGML_ASSERT(ggml_are_same_shape(a, b));
  2802. is_node = true;
  2803. }
  2804. if (inplace) {
  2805. GGML_ASSERT(!is_node);
  2806. }
  2807. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2808. result->op = GGML_OP_MUL;
  2809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2810. result->src[0] = a;
  2811. result->src[1] = b;
  2812. return result;
  2813. }
  2814. struct ggml_tensor * ggml_mul(
  2815. struct ggml_context * ctx,
  2816. struct ggml_tensor * a,
  2817. struct ggml_tensor * b) {
  2818. return ggml_mul_impl(ctx, a, b, false);
  2819. }
  2820. struct ggml_tensor * ggml_mul_inplace(
  2821. struct ggml_context * ctx,
  2822. struct ggml_tensor * a,
  2823. struct ggml_tensor * b) {
  2824. return ggml_mul_impl(ctx, a, b, true);
  2825. }
  2826. // ggml_div
  2827. static struct ggml_tensor * ggml_div_impl(
  2828. struct ggml_context * ctx,
  2829. struct ggml_tensor * a,
  2830. struct ggml_tensor * b,
  2831. bool inplace) {
  2832. GGML_ASSERT(ggml_are_same_shape(a, b));
  2833. bool is_node = false;
  2834. if (!inplace && (a->grad || b->grad)) {
  2835. is_node = true;
  2836. }
  2837. if (inplace) {
  2838. GGML_ASSERT(!is_node);
  2839. }
  2840. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2841. result->op = GGML_OP_DIV;
  2842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2843. result->src[0] = a;
  2844. result->src[1] = b;
  2845. return result;
  2846. }
  2847. struct ggml_tensor * ggml_div(
  2848. struct ggml_context * ctx,
  2849. struct ggml_tensor * a,
  2850. struct ggml_tensor * b) {
  2851. return ggml_div_impl(ctx, a, b, false);
  2852. }
  2853. struct ggml_tensor * ggml_div_inplace(
  2854. struct ggml_context * ctx,
  2855. struct ggml_tensor * a,
  2856. struct ggml_tensor * b) {
  2857. return ggml_div_impl(ctx, a, b, true);
  2858. }
  2859. // ggml_sqr
  2860. static struct ggml_tensor * ggml_sqr_impl(
  2861. struct ggml_context * ctx,
  2862. struct ggml_tensor * a,
  2863. bool inplace) {
  2864. bool is_node = false;
  2865. if (!inplace && (a->grad)) {
  2866. is_node = true;
  2867. }
  2868. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2869. result->op = GGML_OP_SQR;
  2870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2871. result->src[0] = a;
  2872. return result;
  2873. }
  2874. struct ggml_tensor * ggml_sqr(
  2875. struct ggml_context * ctx,
  2876. struct ggml_tensor * a) {
  2877. return ggml_sqr_impl(ctx, a, false);
  2878. }
  2879. struct ggml_tensor * ggml_sqr_inplace(
  2880. struct ggml_context * ctx,
  2881. struct ggml_tensor * a) {
  2882. return ggml_sqr_impl(ctx, a, true);
  2883. }
  2884. // ggml_sqrt
  2885. static struct ggml_tensor * ggml_sqrt_impl(
  2886. struct ggml_context * ctx,
  2887. struct ggml_tensor * a,
  2888. bool inplace) {
  2889. bool is_node = false;
  2890. if (!inplace && (a->grad)) {
  2891. is_node = true;
  2892. }
  2893. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2894. result->op = GGML_OP_SQRT;
  2895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2896. result->src[0] = a;
  2897. return result;
  2898. }
  2899. struct ggml_tensor * ggml_sqrt(
  2900. struct ggml_context * ctx,
  2901. struct ggml_tensor * a) {
  2902. return ggml_sqrt_impl(ctx, a, false);
  2903. }
  2904. struct ggml_tensor * ggml_sqrt_inplace(
  2905. struct ggml_context * ctx,
  2906. struct ggml_tensor * a) {
  2907. return ggml_sqrt_impl(ctx, a, true);
  2908. }
  2909. // ggml_log
  2910. static struct ggml_tensor * ggml_log_impl(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a,
  2913. bool inplace) {
  2914. bool is_node = false;
  2915. if (!inplace && (a->grad)) {
  2916. is_node = true;
  2917. }
  2918. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2919. result->op = GGML_OP_LOG;
  2920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2921. result->src[0] = a;
  2922. return result;
  2923. }
  2924. struct ggml_tensor * ggml_log(
  2925. struct ggml_context * ctx,
  2926. struct ggml_tensor * a) {
  2927. return ggml_log_impl(ctx, a, false);
  2928. }
  2929. struct ggml_tensor * ggml_log_inplace(
  2930. struct ggml_context * ctx,
  2931. struct ggml_tensor * a) {
  2932. return ggml_log_impl(ctx, a, true);
  2933. }
  2934. // ggml_sum
  2935. struct ggml_tensor * ggml_sum(
  2936. struct ggml_context * ctx,
  2937. struct ggml_tensor * a) {
  2938. bool is_node = false;
  2939. if (a->grad) {
  2940. is_node = true;
  2941. }
  2942. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2943. result->op = GGML_OP_SUM;
  2944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2945. result->src[0] = a;
  2946. return result;
  2947. }
  2948. // ggml_sum_rows
  2949. struct ggml_tensor * ggml_sum_rows(
  2950. struct ggml_context * ctx,
  2951. struct ggml_tensor * a) {
  2952. bool is_node = false;
  2953. if (a->grad) {
  2954. is_node = true;
  2955. }
  2956. int64_t ne[4] = {1,1,1,1};
  2957. for (int i=1; i<a->n_dims; ++i) {
  2958. ne[i] = a->ne[i];
  2959. }
  2960. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  2961. result->op = GGML_OP_SUM_ROWS;
  2962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2963. result->src[0] = a;
  2964. return result;
  2965. }
  2966. // ggml_mean
  2967. struct ggml_tensor * ggml_mean(
  2968. struct ggml_context * ctx,
  2969. struct ggml_tensor * a) {
  2970. bool is_node = false;
  2971. if (a->grad) {
  2972. GGML_ASSERT(false); // TODO: implement
  2973. is_node = true;
  2974. }
  2975. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2976. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2977. result->op = GGML_OP_MEAN;
  2978. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2979. result->src[0] = a;
  2980. return result;
  2981. }
  2982. // ggml_argmax
  2983. struct ggml_tensor * ggml_argmax(
  2984. struct ggml_context * ctx,
  2985. struct ggml_tensor * a) {
  2986. GGML_ASSERT(ggml_is_matrix(a));
  2987. bool is_node = false;
  2988. if (a->grad) {
  2989. GGML_ASSERT(false);
  2990. is_node = true;
  2991. }
  2992. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  2993. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  2994. result->op = GGML_OP_ARGMAX;
  2995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2996. result->src[0] = a;
  2997. return result;
  2998. }
  2999. // ggml_repeat
  3000. struct ggml_tensor * ggml_repeat(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a,
  3003. struct ggml_tensor * b) {
  3004. GGML_ASSERT(ggml_can_repeat(a, b));
  3005. bool is_node = false;
  3006. if (a->grad) {
  3007. is_node = true;
  3008. }
  3009. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3010. result->op = GGML_OP_REPEAT;
  3011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3012. result->src[0] = a;
  3013. return result;
  3014. }
  3015. // ggml_repeat_back
  3016. struct ggml_tensor * ggml_repeat_back(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a,
  3019. struct ggml_tensor * b) {
  3020. GGML_ASSERT(ggml_can_repeat(b, a));
  3021. bool is_node = false;
  3022. if (a->grad) {
  3023. is_node = true;
  3024. }
  3025. if (ggml_are_same_shape(a, b) && !is_node) {
  3026. return a;
  3027. }
  3028. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3029. result->op = GGML_OP_REPEAT_BACK;
  3030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3031. result->src[0] = a;
  3032. return result;
  3033. }
  3034. // ggml_concat
  3035. struct ggml_tensor * ggml_concat(
  3036. struct ggml_context* ctx,
  3037. struct ggml_tensor* a,
  3038. struct ggml_tensor* b) {
  3039. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3040. bool is_node = false;
  3041. if (a->grad || b->grad) {
  3042. is_node = true;
  3043. }
  3044. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3045. result->op = GGML_OP_CONCAT;
  3046. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3047. result->src[0] = a;
  3048. result->src[1] = b;
  3049. return result;
  3050. }
  3051. // ggml_abs
  3052. struct ggml_tensor * ggml_abs(
  3053. struct ggml_context * ctx,
  3054. struct ggml_tensor * a) {
  3055. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3056. }
  3057. struct ggml_tensor * ggml_abs_inplace(
  3058. struct ggml_context * ctx,
  3059. struct ggml_tensor * a) {
  3060. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3061. }
  3062. // ggml_sgn
  3063. struct ggml_tensor * ggml_sgn(
  3064. struct ggml_context * ctx,
  3065. struct ggml_tensor * a) {
  3066. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3067. }
  3068. struct ggml_tensor * ggml_sgn_inplace(
  3069. struct ggml_context * ctx,
  3070. struct ggml_tensor * a) {
  3071. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3072. }
  3073. // ggml_neg
  3074. struct ggml_tensor * ggml_neg(
  3075. struct ggml_context * ctx,
  3076. struct ggml_tensor * a) {
  3077. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3078. }
  3079. struct ggml_tensor * ggml_neg_inplace(
  3080. struct ggml_context * ctx,
  3081. struct ggml_tensor * a) {
  3082. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3083. }
  3084. // ggml_step
  3085. struct ggml_tensor * ggml_step(
  3086. struct ggml_context * ctx,
  3087. struct ggml_tensor * a) {
  3088. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3089. }
  3090. struct ggml_tensor * ggml_step_inplace(
  3091. struct ggml_context * ctx,
  3092. struct ggml_tensor * a) {
  3093. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3094. }
  3095. // ggml_tanh
  3096. struct ggml_tensor * ggml_tanh(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a) {
  3099. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3100. }
  3101. struct ggml_tensor * ggml_tanh_inplace(
  3102. struct ggml_context * ctx,
  3103. struct ggml_tensor * a) {
  3104. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3105. }
  3106. // ggml_elu
  3107. struct ggml_tensor * ggml_elu(
  3108. struct ggml_context * ctx,
  3109. struct ggml_tensor * a) {
  3110. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3111. }
  3112. struct ggml_tensor * ggml_elu_inplace(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a) {
  3115. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3116. }
  3117. // ggml_relu
  3118. struct ggml_tensor * ggml_relu(
  3119. struct ggml_context * ctx,
  3120. struct ggml_tensor * a) {
  3121. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3122. }
  3123. struct ggml_tensor * ggml_relu_inplace(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a) {
  3126. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3127. }
  3128. // ggml_gelu
  3129. struct ggml_tensor * ggml_gelu(
  3130. struct ggml_context * ctx,
  3131. struct ggml_tensor * a) {
  3132. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3133. }
  3134. struct ggml_tensor * ggml_gelu_inplace(
  3135. struct ggml_context * ctx,
  3136. struct ggml_tensor * a) {
  3137. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3138. }
  3139. // ggml_gelu_quick
  3140. struct ggml_tensor * ggml_gelu_quick(
  3141. struct ggml_context * ctx,
  3142. struct ggml_tensor * a) {
  3143. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3144. }
  3145. struct ggml_tensor * ggml_gelu_quick_inplace(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a) {
  3148. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3149. }
  3150. // ggml_silu
  3151. struct ggml_tensor * ggml_silu(
  3152. struct ggml_context * ctx,
  3153. struct ggml_tensor * a) {
  3154. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3155. }
  3156. struct ggml_tensor * ggml_silu_inplace(
  3157. struct ggml_context * ctx,
  3158. struct ggml_tensor * a) {
  3159. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3160. }
  3161. // ggml_silu_back
  3162. struct ggml_tensor * ggml_silu_back(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a,
  3165. struct ggml_tensor * b) {
  3166. bool is_node = false;
  3167. if (a->grad || b->grad) {
  3168. // TODO: implement backward
  3169. is_node = true;
  3170. }
  3171. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3172. result->op = GGML_OP_SILU_BACK;
  3173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3174. result->src[0] = a;
  3175. result->src[1] = b;
  3176. return result;
  3177. }
  3178. // ggml_norm
  3179. static struct ggml_tensor * ggml_norm_impl(
  3180. struct ggml_context * ctx,
  3181. struct ggml_tensor * a,
  3182. float eps,
  3183. bool inplace) {
  3184. bool is_node = false;
  3185. if (!inplace && (a->grad)) {
  3186. GGML_ASSERT(false); // TODO: implement backward
  3187. is_node = true;
  3188. }
  3189. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3190. ggml_set_op_params(result, &eps, sizeof(eps));
  3191. result->op = GGML_OP_NORM;
  3192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3193. result->src[0] = a;
  3194. return result;
  3195. }
  3196. struct ggml_tensor * ggml_norm(
  3197. struct ggml_context * ctx,
  3198. struct ggml_tensor * a,
  3199. float eps) {
  3200. return ggml_norm_impl(ctx, a, eps, false);
  3201. }
  3202. struct ggml_tensor * ggml_norm_inplace(
  3203. struct ggml_context * ctx,
  3204. struct ggml_tensor * a,
  3205. float eps) {
  3206. return ggml_norm_impl(ctx, a, eps, true);
  3207. }
  3208. // ggml_rms_norm
  3209. static struct ggml_tensor * ggml_rms_norm_impl(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a,
  3212. float eps,
  3213. bool inplace) {
  3214. bool is_node = false;
  3215. if (!inplace && (a->grad)) {
  3216. is_node = true;
  3217. }
  3218. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3219. ggml_set_op_params(result, &eps, sizeof(eps));
  3220. result->op = GGML_OP_RMS_NORM;
  3221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3222. result->src[0] = a;
  3223. return result;
  3224. }
  3225. struct ggml_tensor * ggml_rms_norm(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. float eps) {
  3229. return ggml_rms_norm_impl(ctx, a, eps, false);
  3230. }
  3231. struct ggml_tensor * ggml_rms_norm_inplace(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a,
  3234. float eps) {
  3235. return ggml_rms_norm_impl(ctx, a, eps, true);
  3236. }
  3237. // ggml_rms_norm_back
  3238. struct ggml_tensor * ggml_rms_norm_back(
  3239. struct ggml_context * ctx,
  3240. struct ggml_tensor * a,
  3241. struct ggml_tensor * b,
  3242. float eps) {
  3243. bool is_node = false;
  3244. if (a->grad) {
  3245. // TODO: implement backward
  3246. is_node = true;
  3247. }
  3248. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3249. ggml_set_op_params(result, &eps, sizeof(eps));
  3250. result->op = GGML_OP_RMS_NORM_BACK;
  3251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3252. result->src[0] = a;
  3253. result->src[1] = b;
  3254. return result;
  3255. }
  3256. // ggml_group_norm
  3257. static struct ggml_tensor * ggml_group_norm_impl(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a,
  3260. int n_groups,
  3261. bool inplace) {
  3262. bool is_node = false;
  3263. if (!inplace && (a->grad)) {
  3264. GGML_ASSERT(false); // TODO: implement backward
  3265. is_node = true;
  3266. }
  3267. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3268. result->op = GGML_OP_GROUP_NORM;
  3269. result->op_params[0] = n_groups;
  3270. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3271. result->src[0] = a;
  3272. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3273. return result;
  3274. }
  3275. struct ggml_tensor * ggml_group_norm(
  3276. struct ggml_context * ctx,
  3277. struct ggml_tensor * a,
  3278. int n_groups) {
  3279. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3280. }
  3281. struct ggml_tensor * ggml_group_norm_inplace(
  3282. struct ggml_context * ctx,
  3283. struct ggml_tensor * a,
  3284. int n_groups) {
  3285. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3286. }
  3287. // ggml_mul_mat
  3288. struct ggml_tensor * ggml_mul_mat(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. struct ggml_tensor * b) {
  3292. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3293. GGML_ASSERT(!ggml_is_transposed(a));
  3294. bool is_node = false;
  3295. if (a->grad || b->grad) {
  3296. is_node = true;
  3297. }
  3298. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3299. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3300. result->op = GGML_OP_MUL_MAT;
  3301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3302. result->src[0] = a;
  3303. result->src[1] = b;
  3304. return result;
  3305. }
  3306. // ggml_out_prod
  3307. struct ggml_tensor * ggml_out_prod(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a,
  3310. struct ggml_tensor * b) {
  3311. GGML_ASSERT(ggml_can_out_prod(a, b));
  3312. GGML_ASSERT(!ggml_is_transposed(a));
  3313. bool is_node = false;
  3314. if (a->grad || b->grad) {
  3315. is_node = true;
  3316. }
  3317. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3318. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3319. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3320. result->op = GGML_OP_OUT_PROD;
  3321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3322. result->src[0] = a;
  3323. result->src[1] = b;
  3324. return result;
  3325. }
  3326. // ggml_scale
  3327. static struct ggml_tensor * ggml_scale_impl(
  3328. struct ggml_context * ctx,
  3329. struct ggml_tensor * a,
  3330. struct ggml_tensor * b,
  3331. bool inplace) {
  3332. GGML_ASSERT(ggml_is_scalar(b));
  3333. GGML_ASSERT(ggml_is_padded_1d(a));
  3334. bool is_node = false;
  3335. if (a->grad || b->grad) {
  3336. is_node = true;
  3337. }
  3338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3339. result->op = GGML_OP_SCALE;
  3340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3341. result->src[0] = a;
  3342. result->src[1] = b;
  3343. return result;
  3344. }
  3345. struct ggml_tensor * ggml_scale(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a,
  3348. struct ggml_tensor * b) {
  3349. return ggml_scale_impl(ctx, a, b, false);
  3350. }
  3351. struct ggml_tensor * ggml_scale_inplace(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a,
  3354. struct ggml_tensor * b) {
  3355. return ggml_scale_impl(ctx, a, b, true);
  3356. }
  3357. // ggml_set
  3358. static struct ggml_tensor * ggml_set_impl(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a,
  3361. struct ggml_tensor * b,
  3362. size_t nb1,
  3363. size_t nb2,
  3364. size_t nb3,
  3365. size_t offset,
  3366. bool inplace) {
  3367. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3368. bool is_node = false;
  3369. if (a->grad || b->grad) {
  3370. is_node = true;
  3371. }
  3372. // make a view of the destination
  3373. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3374. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3375. ggml_set_op_params(result, params, sizeof(params));
  3376. result->op = GGML_OP_SET;
  3377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3378. result->src[0] = a;
  3379. result->src[1] = b;
  3380. return result;
  3381. }
  3382. struct ggml_tensor * ggml_set(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a,
  3385. struct ggml_tensor * b,
  3386. size_t nb1,
  3387. size_t nb2,
  3388. size_t nb3,
  3389. size_t offset) {
  3390. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3391. }
  3392. struct ggml_tensor * ggml_set_inplace(
  3393. struct ggml_context * ctx,
  3394. struct ggml_tensor * a,
  3395. struct ggml_tensor * b,
  3396. size_t nb1,
  3397. size_t nb2,
  3398. size_t nb3,
  3399. size_t offset) {
  3400. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3401. }
  3402. struct ggml_tensor * ggml_set_1d(
  3403. struct ggml_context * ctx,
  3404. struct ggml_tensor * a,
  3405. struct ggml_tensor * b,
  3406. size_t offset) {
  3407. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3408. }
  3409. struct ggml_tensor * ggml_set_1d_inplace(
  3410. struct ggml_context * ctx,
  3411. struct ggml_tensor * a,
  3412. struct ggml_tensor * b,
  3413. size_t offset) {
  3414. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3415. }
  3416. struct ggml_tensor * ggml_set_2d(
  3417. struct ggml_context * ctx,
  3418. struct ggml_tensor * a,
  3419. struct ggml_tensor * b,
  3420. size_t nb1,
  3421. size_t offset) {
  3422. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3423. }
  3424. struct ggml_tensor * ggml_set_2d_inplace(
  3425. struct ggml_context * ctx,
  3426. struct ggml_tensor * a,
  3427. struct ggml_tensor * b,
  3428. size_t nb1,
  3429. size_t offset) {
  3430. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3431. }
  3432. // ggml_cpy
  3433. static struct ggml_tensor * ggml_cpy_impl(
  3434. struct ggml_context * ctx,
  3435. struct ggml_tensor * a,
  3436. struct ggml_tensor * b,
  3437. bool inplace) {
  3438. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3439. bool is_node = false;
  3440. if (!inplace && (a->grad || b->grad)) {
  3441. is_node = true;
  3442. }
  3443. // make a view of the destination
  3444. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3445. if (strlen(b->name) > 0) {
  3446. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3447. } else {
  3448. ggml_format_name(result, "%s (copy)", a->name);
  3449. }
  3450. result->op = GGML_OP_CPY;
  3451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3452. result->src[0] = a;
  3453. result->src[1] = b;
  3454. return result;
  3455. }
  3456. struct ggml_tensor * ggml_cpy(
  3457. struct ggml_context * ctx,
  3458. struct ggml_tensor * a,
  3459. struct ggml_tensor * b) {
  3460. return ggml_cpy_impl(ctx, a, b, false);
  3461. }
  3462. struct ggml_tensor * ggml_cpy_inplace(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a,
  3465. struct ggml_tensor * b) {
  3466. return ggml_cpy_impl(ctx, a, b, true);
  3467. }
  3468. // ggml_cont
  3469. static struct ggml_tensor * ggml_cont_impl(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * a,
  3472. bool inplace) {
  3473. bool is_node = false;
  3474. if (!inplace && a->grad) {
  3475. is_node = true;
  3476. }
  3477. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3478. ggml_format_name(result, "%s (cont)", a->name);
  3479. result->op = GGML_OP_CONT;
  3480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3481. result->src[0] = a;
  3482. return result;
  3483. }
  3484. struct ggml_tensor * ggml_cont(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a) {
  3487. return ggml_cont_impl(ctx, a, false);
  3488. }
  3489. struct ggml_tensor * ggml_cont_inplace(
  3490. struct ggml_context * ctx,
  3491. struct ggml_tensor * a) {
  3492. return ggml_cont_impl(ctx, a, true);
  3493. }
  3494. // make contiguous, with new shape
  3495. GGML_API struct ggml_tensor * ggml_cont_1d(
  3496. struct ggml_context * ctx,
  3497. struct ggml_tensor * a,
  3498. int64_t ne0) {
  3499. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3500. }
  3501. GGML_API struct ggml_tensor * ggml_cont_2d(
  3502. struct ggml_context * ctx,
  3503. struct ggml_tensor * a,
  3504. int64_t ne0,
  3505. int64_t ne1) {
  3506. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3507. }
  3508. GGML_API struct ggml_tensor * ggml_cont_3d(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * a,
  3511. int64_t ne0,
  3512. int64_t ne1,
  3513. int64_t ne2) {
  3514. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3515. }
  3516. struct ggml_tensor * ggml_cont_4d(
  3517. struct ggml_context * ctx,
  3518. struct ggml_tensor * a,
  3519. int64_t ne0,
  3520. int64_t ne1,
  3521. int64_t ne2,
  3522. int64_t ne3) {
  3523. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3524. bool is_node = false;
  3525. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3526. ggml_format_name(result, "%s (cont)", a->name);
  3527. result->op = GGML_OP_CONT;
  3528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3529. result->src[0] = a;
  3530. return result;
  3531. }
  3532. // ggml_reshape
  3533. struct ggml_tensor * ggml_reshape(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a,
  3536. struct ggml_tensor * b) {
  3537. GGML_ASSERT(ggml_is_contiguous(a));
  3538. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3539. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3540. bool is_node = false;
  3541. if (a->grad) {
  3542. is_node = true;
  3543. }
  3544. if (b->grad) {
  3545. // gradient propagation is not supported
  3546. //GGML_ASSERT(false);
  3547. }
  3548. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  3549. ggml_format_name(result, "%s (reshaped)", a->name);
  3550. result->op = GGML_OP_RESHAPE;
  3551. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3552. result->src[0] = a;
  3553. return result;
  3554. }
  3555. struct ggml_tensor * ggml_reshape_1d(
  3556. struct ggml_context * ctx,
  3557. struct ggml_tensor * a,
  3558. int64_t ne0) {
  3559. GGML_ASSERT(ggml_is_contiguous(a));
  3560. GGML_ASSERT(ggml_nelements(a) == ne0);
  3561. bool is_node = false;
  3562. if (a->grad) {
  3563. is_node = true;
  3564. }
  3565. const int64_t ne[1] = { ne0 };
  3566. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3567. ggml_format_name(result, "%s (reshaped)", a->name);
  3568. result->op = GGML_OP_RESHAPE;
  3569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3570. result->src[0] = a;
  3571. return result;
  3572. }
  3573. struct ggml_tensor * ggml_reshape_2d(
  3574. struct ggml_context * ctx,
  3575. struct ggml_tensor * a,
  3576. int64_t ne0,
  3577. int64_t ne1) {
  3578. GGML_ASSERT(ggml_is_contiguous(a));
  3579. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3580. bool is_node = false;
  3581. if (a->grad) {
  3582. is_node = true;
  3583. }
  3584. const int64_t ne[2] = { ne0, ne1 };
  3585. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3586. ggml_format_name(result, "%s (reshaped)", a->name);
  3587. result->op = GGML_OP_RESHAPE;
  3588. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3589. result->src[0] = a;
  3590. return result;
  3591. }
  3592. struct ggml_tensor * ggml_reshape_3d(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a,
  3595. int64_t ne0,
  3596. int64_t ne1,
  3597. int64_t ne2) {
  3598. GGML_ASSERT(ggml_is_contiguous(a));
  3599. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3600. bool is_node = false;
  3601. if (a->grad) {
  3602. is_node = true;
  3603. }
  3604. const int64_t ne[3] = { ne0, ne1, ne2 };
  3605. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3606. ggml_format_name(result, "%s (reshaped)", a->name);
  3607. result->op = GGML_OP_RESHAPE;
  3608. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3609. result->src[0] = a;
  3610. return result;
  3611. }
  3612. struct ggml_tensor * ggml_reshape_4d(
  3613. struct ggml_context * ctx,
  3614. struct ggml_tensor * a,
  3615. int64_t ne0,
  3616. int64_t ne1,
  3617. int64_t ne2,
  3618. int64_t ne3) {
  3619. GGML_ASSERT(ggml_is_contiguous(a));
  3620. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3621. bool is_node = false;
  3622. if (a->grad) {
  3623. is_node = true;
  3624. }
  3625. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3626. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3627. ggml_format_name(result, "%s (reshaped)", a->name);
  3628. result->op = GGML_OP_RESHAPE;
  3629. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3630. result->src[0] = a;
  3631. return result;
  3632. }
  3633. static struct ggml_tensor * ggml_view_impl(
  3634. struct ggml_context * ctx,
  3635. struct ggml_tensor * a,
  3636. int n_dims,
  3637. const int64_t * ne,
  3638. size_t offset) {
  3639. bool is_node = false;
  3640. if (a->grad) {
  3641. is_node = true;
  3642. }
  3643. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3644. ggml_format_name(result, "%s (view)", a->name);
  3645. ggml_set_op_params(result, &offset, sizeof(offset));
  3646. result->op = GGML_OP_VIEW;
  3647. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3648. result->src[0] = a;
  3649. return result;
  3650. }
  3651. // ggml_view_1d
  3652. struct ggml_tensor * ggml_view_1d(
  3653. struct ggml_context * ctx,
  3654. struct ggml_tensor * a,
  3655. int64_t ne0,
  3656. size_t offset) {
  3657. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3658. return result;
  3659. }
  3660. // ggml_view_2d
  3661. struct ggml_tensor * ggml_view_2d(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a,
  3664. int64_t ne0,
  3665. int64_t ne1,
  3666. size_t nb1,
  3667. size_t offset) {
  3668. const int64_t ne[2] = { ne0, ne1 };
  3669. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3670. result->nb[1] = nb1;
  3671. result->nb[2] = result->nb[1]*ne1;
  3672. result->nb[3] = result->nb[2];
  3673. return result;
  3674. }
  3675. // ggml_view_3d
  3676. struct ggml_tensor * ggml_view_3d(
  3677. struct ggml_context * ctx,
  3678. struct ggml_tensor * a,
  3679. int64_t ne0,
  3680. int64_t ne1,
  3681. int64_t ne2,
  3682. size_t nb1,
  3683. size_t nb2,
  3684. size_t offset) {
  3685. const int64_t ne[3] = { ne0, ne1, ne2 };
  3686. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3687. result->nb[1] = nb1;
  3688. result->nb[2] = nb2;
  3689. result->nb[3] = result->nb[2]*ne2;
  3690. return result;
  3691. }
  3692. // ggml_view_4d
  3693. struct ggml_tensor * ggml_view_4d(
  3694. struct ggml_context * ctx,
  3695. struct ggml_tensor * a,
  3696. int64_t ne0,
  3697. int64_t ne1,
  3698. int64_t ne2,
  3699. int64_t ne3,
  3700. size_t nb1,
  3701. size_t nb2,
  3702. size_t nb3,
  3703. size_t offset) {
  3704. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3705. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3706. result->nb[1] = nb1;
  3707. result->nb[2] = nb2;
  3708. result->nb[3] = nb3;
  3709. return result;
  3710. }
  3711. // ggml_permute
  3712. struct ggml_tensor * ggml_permute(
  3713. struct ggml_context * ctx,
  3714. struct ggml_tensor * a,
  3715. int axis0,
  3716. int axis1,
  3717. int axis2,
  3718. int axis3) {
  3719. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3720. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3721. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3722. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3723. GGML_ASSERT(axis0 != axis1);
  3724. GGML_ASSERT(axis0 != axis2);
  3725. GGML_ASSERT(axis0 != axis3);
  3726. GGML_ASSERT(axis1 != axis2);
  3727. GGML_ASSERT(axis1 != axis3);
  3728. GGML_ASSERT(axis2 != axis3);
  3729. bool is_node = false;
  3730. if (a->grad) {
  3731. is_node = true;
  3732. }
  3733. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3734. ggml_format_name(result, "%s (permuted)", a->name);
  3735. int ne[GGML_MAX_DIMS];
  3736. int nb[GGML_MAX_DIMS];
  3737. ne[axis0] = a->ne[0];
  3738. ne[axis1] = a->ne[1];
  3739. ne[axis2] = a->ne[2];
  3740. ne[axis3] = a->ne[3];
  3741. nb[axis0] = a->nb[0];
  3742. nb[axis1] = a->nb[1];
  3743. nb[axis2] = a->nb[2];
  3744. nb[axis3] = a->nb[3];
  3745. result->ne[0] = ne[0];
  3746. result->ne[1] = ne[1];
  3747. result->ne[2] = ne[2];
  3748. result->ne[3] = ne[3];
  3749. result->nb[0] = nb[0];
  3750. result->nb[1] = nb[1];
  3751. result->nb[2] = nb[2];
  3752. result->nb[3] = nb[3];
  3753. result->op = GGML_OP_PERMUTE;
  3754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3755. result->src[0] = a;
  3756. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3757. ggml_set_op_params(result, params, sizeof(params));
  3758. return result;
  3759. }
  3760. // ggml_transpose
  3761. struct ggml_tensor * ggml_transpose(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a) {
  3764. bool is_node = false;
  3765. if (a->grad) {
  3766. is_node = true;
  3767. }
  3768. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3769. ggml_format_name(result, "%s (transposed)", a->name);
  3770. result->ne[0] = a->ne[1];
  3771. result->ne[1] = a->ne[0];
  3772. result->nb[0] = a->nb[1];
  3773. result->nb[1] = a->nb[0];
  3774. result->op = GGML_OP_TRANSPOSE;
  3775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3776. result->src[0] = a;
  3777. return result;
  3778. }
  3779. // ggml_get_rows
  3780. struct ggml_tensor * ggml_get_rows(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. struct ggml_tensor * b) {
  3784. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3785. bool is_node = false;
  3786. if (a->grad || b->grad) {
  3787. is_node = true;
  3788. }
  3789. // TODO: implement non F32 return
  3790. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3791. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3792. result->op = GGML_OP_GET_ROWS;
  3793. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3794. result->src[0] = a;
  3795. result->src[1] = b;
  3796. return result;
  3797. }
  3798. // ggml_get_rows_back
  3799. struct ggml_tensor * ggml_get_rows_back(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. struct ggml_tensor * b,
  3803. struct ggml_tensor * c) {
  3804. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3805. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3806. bool is_node = false;
  3807. if (a->grad || b->grad) {
  3808. is_node = true;
  3809. }
  3810. // TODO: implement non F32 return
  3811. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3812. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3813. result->op = GGML_OP_GET_ROWS_BACK;
  3814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3815. result->src[0] = a;
  3816. result->src[1] = b;
  3817. return result;
  3818. }
  3819. // ggml_diag
  3820. struct ggml_tensor * ggml_diag(
  3821. struct ggml_context * ctx,
  3822. struct ggml_tensor * a) {
  3823. GGML_ASSERT(a->ne[1] == 1);
  3824. bool is_node = false;
  3825. if (a->grad) {
  3826. is_node = true;
  3827. }
  3828. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3829. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  3830. result->op = GGML_OP_DIAG;
  3831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3832. result->src[0] = a;
  3833. return result;
  3834. }
  3835. // ggml_diag_mask_inf
  3836. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3837. struct ggml_context * ctx,
  3838. struct ggml_tensor * a,
  3839. int n_past,
  3840. bool inplace) {
  3841. bool is_node = false;
  3842. if (a->grad) {
  3843. is_node = true;
  3844. }
  3845. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3846. int32_t params[] = { n_past };
  3847. ggml_set_op_params(result, params, sizeof(params));
  3848. result->op = GGML_OP_DIAG_MASK_INF;
  3849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3850. result->src[0] = a;
  3851. return result;
  3852. }
  3853. struct ggml_tensor * ggml_diag_mask_inf(
  3854. struct ggml_context * ctx,
  3855. struct ggml_tensor * a,
  3856. int n_past) {
  3857. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3858. }
  3859. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. int n_past) {
  3863. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3864. }
  3865. // ggml_diag_mask_zero
  3866. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3867. struct ggml_context * ctx,
  3868. struct ggml_tensor * a,
  3869. int n_past,
  3870. bool inplace) {
  3871. bool is_node = false;
  3872. if (a->grad) {
  3873. is_node = true;
  3874. }
  3875. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3876. int32_t params[] = { n_past };
  3877. ggml_set_op_params(result, params, sizeof(params));
  3878. result->op = GGML_OP_DIAG_MASK_ZERO;
  3879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3880. result->src[0] = a;
  3881. return result;
  3882. }
  3883. struct ggml_tensor * ggml_diag_mask_zero(
  3884. struct ggml_context * ctx,
  3885. struct ggml_tensor * a,
  3886. int n_past) {
  3887. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3888. }
  3889. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. int n_past) {
  3893. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  3894. }
  3895. // ggml_soft_max
  3896. static struct ggml_tensor * ggml_soft_max_impl(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. bool inplace) {
  3900. bool is_node = false;
  3901. if (a->grad) {
  3902. is_node = true;
  3903. }
  3904. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3905. result->op = GGML_OP_SOFT_MAX;
  3906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3907. result->src[0] = a;
  3908. return result;
  3909. }
  3910. struct ggml_tensor * ggml_soft_max(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a) {
  3913. return ggml_soft_max_impl(ctx, a, false);
  3914. }
  3915. struct ggml_tensor * ggml_soft_max_inplace(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a) {
  3918. return ggml_soft_max_impl(ctx, a, true);
  3919. }
  3920. // ggml_soft_max_back
  3921. static struct ggml_tensor * ggml_soft_max_back_impl(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. struct ggml_tensor * b,
  3925. bool inplace) {
  3926. bool is_node = false;
  3927. if (a->grad || b->grad) {
  3928. is_node = true; // TODO : implement backward pass
  3929. }
  3930. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3931. result->op = GGML_OP_SOFT_MAX_BACK;
  3932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3933. result->src[0] = a;
  3934. result->src[1] = b;
  3935. return result;
  3936. }
  3937. struct ggml_tensor * ggml_soft_max_back(
  3938. struct ggml_context * ctx,
  3939. struct ggml_tensor * a,
  3940. struct ggml_tensor * b) {
  3941. return ggml_soft_max_back_impl(ctx, a, b, false);
  3942. }
  3943. struct ggml_tensor * ggml_soft_max_back_inplace(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. struct ggml_tensor * b) {
  3947. return ggml_soft_max_back_impl(ctx, a, b, true);
  3948. }
  3949. // ggml_rope
  3950. static struct ggml_tensor * ggml_rope_impl(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. struct ggml_tensor * b,
  3954. int n_dims,
  3955. int mode,
  3956. int n_ctx,
  3957. int n_orig_ctx,
  3958. float freq_base,
  3959. float freq_scale,
  3960. float ext_factor,
  3961. float attn_factor,
  3962. float beta_fast,
  3963. float beta_slow,
  3964. float xpos_base,
  3965. bool xpos_down,
  3966. bool inplace) {
  3967. GGML_ASSERT(ggml_is_vector(b));
  3968. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3969. GGML_ASSERT(a->ne[2] == b->ne[0]);
  3970. bool is_node = false;
  3971. if (a->grad) {
  3972. is_node = true;
  3973. }
  3974. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3975. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  3976. memcpy(params + 5, &freq_base, sizeof(float));
  3977. memcpy(params + 6, &freq_scale, sizeof(float));
  3978. memcpy(params + 7, &ext_factor, sizeof(float));
  3979. memcpy(params + 8, &attn_factor, sizeof(float));
  3980. memcpy(params + 9, &beta_fast, sizeof(float));
  3981. memcpy(params + 10, &beta_slow, sizeof(float));
  3982. memcpy(params + 11, &xpos_base, sizeof(float));
  3983. memcpy(params + 12, &xpos_down, sizeof(bool));
  3984. ggml_set_op_params(result, params, sizeof(params));
  3985. result->op = GGML_OP_ROPE;
  3986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3987. result->src[0] = a;
  3988. result->src[1] = b;
  3989. return result;
  3990. }
  3991. struct ggml_tensor * ggml_rope(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. struct ggml_tensor * b,
  3995. int n_dims,
  3996. int mode,
  3997. int n_ctx) {
  3998. return ggml_rope_impl(
  3999. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4000. );
  4001. }
  4002. struct ggml_tensor * ggml_rope_inplace(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a,
  4005. struct ggml_tensor * b,
  4006. int n_dims,
  4007. int mode,
  4008. int n_ctx) {
  4009. return ggml_rope_impl(
  4010. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4011. );
  4012. }
  4013. struct ggml_tensor * ggml_rope_custom(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a,
  4016. struct ggml_tensor * b,
  4017. int n_dims,
  4018. int mode,
  4019. int n_ctx,
  4020. int n_orig_ctx,
  4021. float freq_base,
  4022. float freq_scale,
  4023. float ext_factor,
  4024. float attn_factor,
  4025. float beta_fast,
  4026. float beta_slow) {
  4027. return ggml_rope_impl(
  4028. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4029. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4030. );
  4031. }
  4032. struct ggml_tensor * ggml_rope_custom_inplace(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a,
  4035. struct ggml_tensor * b,
  4036. int n_dims,
  4037. int mode,
  4038. int n_ctx,
  4039. int n_orig_ctx,
  4040. float freq_base,
  4041. float freq_scale,
  4042. float ext_factor,
  4043. float attn_factor,
  4044. float beta_fast,
  4045. float beta_slow) {
  4046. return ggml_rope_impl(
  4047. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4048. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4049. );
  4050. }
  4051. struct ggml_tensor * ggml_rope_xpos_inplace(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. struct ggml_tensor * b,
  4055. int n_dims,
  4056. float base,
  4057. bool down) {
  4058. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4059. }
  4060. // ggml_rope_back
  4061. struct ggml_tensor * ggml_rope_back(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a,
  4064. struct ggml_tensor * b,
  4065. int n_dims,
  4066. int mode,
  4067. int n_ctx,
  4068. float freq_base,
  4069. float freq_scale,
  4070. float xpos_base,
  4071. bool xpos_down) {
  4072. GGML_ASSERT(ggml_is_vector(b));
  4073. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4074. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4075. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4076. bool is_node = false;
  4077. if (a->grad) {
  4078. is_node = false; // TODO: implement backward
  4079. }
  4080. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4081. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  4082. memcpy(params + 4, &freq_base, sizeof(float));
  4083. memcpy(params + 5, &freq_scale, sizeof(float));
  4084. memcpy(params + 6, &xpos_base, sizeof(float));
  4085. memcpy(params + 7, &xpos_down, sizeof(bool));
  4086. ggml_set_op_params(result, params, sizeof(params));
  4087. result->op = GGML_OP_ROPE_BACK;
  4088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4089. result->src[0] = a;
  4090. result->src[1] = b;
  4091. return result;
  4092. }
  4093. // ggml_alibi
  4094. struct ggml_tensor * ggml_alibi(
  4095. struct ggml_context * ctx,
  4096. struct ggml_tensor * a,
  4097. int n_past,
  4098. int n_head,
  4099. float bias_max) {
  4100. GGML_ASSERT(n_past >= 0);
  4101. bool is_node = false;
  4102. if (a->grad) {
  4103. GGML_ASSERT(false); // TODO: implement backward
  4104. is_node = true;
  4105. }
  4106. // TODO: when implement backward, fix this:
  4107. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4108. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4109. int32_t op_params[3] = { n_past, n_head };
  4110. memcpy(op_params + 2, &bias_max, sizeof(float));
  4111. ggml_set_op_params(result, op_params, sizeof(op_params));
  4112. result->op = GGML_OP_ALIBI;
  4113. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4114. result->src[0] = a;
  4115. return result;
  4116. }
  4117. // ggml_clamp
  4118. struct ggml_tensor * ggml_clamp(
  4119. struct ggml_context * ctx,
  4120. struct ggml_tensor * a,
  4121. float min,
  4122. float max) {
  4123. bool is_node = false;
  4124. if (a->grad) {
  4125. GGML_ASSERT(false); // TODO: implement backward
  4126. is_node = true;
  4127. }
  4128. // TODO: when implement backward, fix this:
  4129. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4130. float params[] = { min, max };
  4131. ggml_set_op_params(result, params, sizeof(params));
  4132. result->op = GGML_OP_CLAMP;
  4133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4134. result->src[0] = a;
  4135. return result;
  4136. }
  4137. // ggml_conv_1d
  4138. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4139. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4140. }
  4141. // im2col: [N, IC, IL] => [N, OL, IC*K]
  4142. // a: [OC,IC, K]
  4143. // b: [N, IC, IL]
  4144. // result: [N, OL, IC*K]
  4145. static struct ggml_tensor * ggml_conv_1d_stage_0(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. struct ggml_tensor * b,
  4149. int s0,
  4150. int p0,
  4151. int d0) {
  4152. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4153. bool is_node = false;
  4154. if (a->grad || b->grad) {
  4155. GGML_ASSERT(false); // TODO: implement backward
  4156. is_node = true;
  4157. }
  4158. const int64_t OL = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4159. const int64_t ne[4] = {
  4160. a->ne[1] * a->ne[0],
  4161. OL,
  4162. b->ne[2],
  4163. 1,
  4164. };
  4165. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4166. int32_t params[] = { s0, p0, d0 };
  4167. ggml_set_op_params(result, params, sizeof(params));
  4168. result->op = GGML_OP_CONV_1D_STAGE_0;
  4169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4170. result->src[0] = a;
  4171. result->src[1] = b;
  4172. return result;
  4173. }
  4174. // ggml_conv_1d_stage_1
  4175. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  4176. // a: [OC, IC, K]
  4177. // b: [N, OL, IC * K]
  4178. // result: [N, OC, OL]
  4179. static struct ggml_tensor * ggml_conv_1d_stage_1(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a,
  4182. struct ggml_tensor * b) {
  4183. bool is_node = false;
  4184. if (a->grad || b->grad) {
  4185. GGML_ASSERT(false); // TODO: implement backward
  4186. is_node = true;
  4187. }
  4188. const int64_t ne[4] = {
  4189. b->ne[1],
  4190. a->ne[2],
  4191. b->ne[2],
  4192. 1,
  4193. };
  4194. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4195. result->op = GGML_OP_CONV_1D_STAGE_1;
  4196. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4197. result->src[0] = a;
  4198. result->src[1] = b;
  4199. return result;
  4200. }
  4201. // ggml_conv_1d
  4202. GGML_API struct ggml_tensor * ggml_conv_1d(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a,
  4205. struct ggml_tensor * b,
  4206. int s0,
  4207. int p0,
  4208. int d0) {
  4209. struct ggml_tensor * result = ggml_conv_1d_stage_0(ctx, a, b, s0, p0, d0);
  4210. result = ggml_conv_1d_stage_1(ctx, a, result);
  4211. return result;
  4212. }
  4213. // GGML_API struct ggml_tensor * ggml_conv_1d(
  4214. // struct ggml_context * ctx,
  4215. // struct ggml_tensor * a,
  4216. // struct ggml_tensor * b,
  4217. // int s0,
  4218. // int p0,
  4219. // int d0) {
  4220. // GGML_ASSERT(ggml_is_matrix(b));
  4221. // GGML_ASSERT(a->ne[1] == b->ne[1]);
  4222. // bool is_node = false;
  4223. // if (a->grad || b->grad) {
  4224. // GGML_ASSERT(false); // TODO: implement backward
  4225. // is_node = true;
  4226. // }
  4227. // const int64_t ne[4] = {
  4228. // ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  4229. // a->ne[2], 1, 1,
  4230. // };
  4231. // struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4232. // int32_t params[] = { s0, p0, d0 };
  4233. // ggml_set_op_params(result, params, sizeof(params));
  4234. // result->op = GGML_OP_CONV_1D;
  4235. // result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. // result->src[0] = a;
  4237. // result->src[1] = b;
  4238. // return result;
  4239. // }
  4240. // ggml_conv_1d_ph
  4241. struct ggml_tensor* ggml_conv_1d_ph(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a,
  4244. struct ggml_tensor * b,
  4245. int s,
  4246. int d) {
  4247. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4248. }
  4249. // ggml_conv_transpose_1d
  4250. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4251. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4252. }
  4253. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b,
  4257. int s0,
  4258. int p0,
  4259. int d0) {
  4260. GGML_ASSERT(ggml_is_matrix(b));
  4261. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4262. GGML_ASSERT(a->ne[3] == 1);
  4263. GGML_ASSERT(p0 == 0);
  4264. GGML_ASSERT(d0 == 1);
  4265. bool is_node = false;
  4266. if (a->grad || b->grad) {
  4267. GGML_ASSERT(false); // TODO: implement backward
  4268. is_node = true;
  4269. }
  4270. const int64_t ne[4] = {
  4271. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4272. a->ne[1], b->ne[2], 1,
  4273. };
  4274. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4275. int32_t params[] = { s0, p0, d0 };
  4276. ggml_set_op_params(result, params, sizeof(params));
  4277. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4279. result->src[0] = a;
  4280. result->src[1] = b;
  4281. return result;
  4282. }
  4283. // ggml_conv_2d
  4284. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4285. // a: [OC,IC, KH, KW]
  4286. // b: [N, IC, IH, IW]
  4287. // result: [N, OH, OW, IC*KH*KW]
  4288. static struct ggml_tensor * ggml_conv_2d_stage_0(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a,
  4291. struct ggml_tensor * b,
  4292. int s0,
  4293. int s1,
  4294. int p0,
  4295. int p1,
  4296. int d0,
  4297. int d1) {
  4298. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4299. bool is_node = false;
  4300. if (a->grad || b->grad) {
  4301. GGML_ASSERT(false); // TODO: implement backward
  4302. is_node = true;
  4303. }
  4304. const int64_t OH = ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1);
  4305. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4306. const int64_t ne[4] = {
  4307. a->ne[2] * a->ne[1] * a->ne[0],
  4308. OW,
  4309. OH,
  4310. b->ne[3],
  4311. };
  4312. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4313. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  4314. ggml_set_op_params(result, params, sizeof(params));
  4315. result->op = GGML_OP_CONV_2D_STAGE_0;
  4316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4317. result->src[0] = a;
  4318. result->src[1] = b;
  4319. return result;
  4320. }
  4321. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  4322. // a: [OC, IC, KH, KW]
  4323. // b: [N, OH, OW, IC * KH * KW]
  4324. // result: [N, OC, OH, OW]
  4325. static struct ggml_tensor * ggml_conv_2d_stage_1(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a,
  4328. struct ggml_tensor * b) {
  4329. bool is_node = false;
  4330. if (a->grad || b->grad) {
  4331. GGML_ASSERT(false); // TODO: implement backward
  4332. is_node = true;
  4333. }
  4334. const int64_t ne[4] = {
  4335. b->ne[1],
  4336. b->ne[2],
  4337. a->ne[3],
  4338. b->ne[3],
  4339. };
  4340. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4341. result->op = GGML_OP_CONV_2D_STAGE_1;
  4342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4343. result->src[0] = a;
  4344. result->src[1] = b;
  4345. return result;
  4346. }
  4347. // a: [OC,IC, KH, KW]
  4348. // b: [N, IC, IH, IW]
  4349. // result: [N, OC, OH, OW]
  4350. struct ggml_tensor * ggml_conv_2d(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a,
  4353. struct ggml_tensor * b,
  4354. int s0,
  4355. int s1,
  4356. int p0,
  4357. int p1,
  4358. int d0,
  4359. int d1) {
  4360. struct ggml_tensor * result = ggml_conv_2d_stage_0(ctx, a, b, s0, s1, p0, p1, d0, d1); // [N, OH, OW, IC * KH * KW]
  4361. result = ggml_conv_2d_stage_1(ctx, a, result);
  4362. return result;
  4363. }
  4364. // ggml_conv_2d_sk_p0
  4365. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4366. struct ggml_context * ctx,
  4367. struct ggml_tensor * a,
  4368. struct ggml_tensor * b) {
  4369. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4370. }
  4371. // ggml_conv_2d_s1_ph
  4372. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a,
  4375. struct ggml_tensor * b) {
  4376. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4377. }
  4378. // ggml_conv_transpose_2d_p0
  4379. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4380. return (ins - 1) * s - 2 * p + ks;
  4381. }
  4382. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. struct ggml_tensor * b,
  4386. int stride) {
  4387. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4388. bool is_node = false;
  4389. if (a->grad || b->grad) {
  4390. GGML_ASSERT(false); // TODO: implement backward
  4391. is_node = true;
  4392. }
  4393. const int64_t ne[4] = {
  4394. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4395. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4396. a->ne[2], b->ne[3],
  4397. };
  4398. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4399. ggml_set_op_params_i32(result, 0, stride);
  4400. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4402. result->src[0] = a;
  4403. result->src[1] = b;
  4404. return result;
  4405. }
  4406. // ggml_pool_*
  4407. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  4408. return (ins + 2 * p - ks) / s + 1;
  4409. }
  4410. // ggml_pool_1d
  4411. struct ggml_tensor * ggml_pool_1d(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. enum ggml_op_pool op,
  4415. int k0,
  4416. int s0,
  4417. int p0) {
  4418. bool is_node = false;
  4419. if (a->grad) {
  4420. GGML_ASSERT(false); // TODO: implement backward
  4421. is_node = true;
  4422. }
  4423. const int64_t ne[3] = {
  4424. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4425. a->ne[1],
  4426. };
  4427. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4428. int32_t params[] = { op, k0, s0, p0 };
  4429. ggml_set_op_params(result, params, sizeof(params));
  4430. result->op = GGML_OP_POOL_1D;
  4431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4432. result->src[0] = a;
  4433. return result;
  4434. }
  4435. // ggml_pool_2d
  4436. struct ggml_tensor * ggml_pool_2d(
  4437. struct ggml_context * ctx,
  4438. struct ggml_tensor * a,
  4439. enum ggml_op_pool op,
  4440. int k0,
  4441. int k1,
  4442. int s0,
  4443. int s1,
  4444. int p0,
  4445. int p1) {
  4446. bool is_node = false;
  4447. if (a->grad) {
  4448. GGML_ASSERT(false); // TODO: implement backward
  4449. is_node = true;
  4450. }
  4451. const int64_t ne[3] = {
  4452. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4453. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4454. a->ne[2],
  4455. };
  4456. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4457. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4458. ggml_set_op_params(result, params, sizeof(params));
  4459. result->op = GGML_OP_POOL_2D;
  4460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4461. result->src[0] = a;
  4462. return result;
  4463. }
  4464. // ggml_upscale
  4465. static struct ggml_tensor * ggml_upscale_impl(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a,
  4468. int scale_factor) {
  4469. bool is_node = false;
  4470. if (a->grad) {
  4471. GGML_ASSERT(false); // TODO: implement backward
  4472. is_node = true;
  4473. }
  4474. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4475. a->ne[0] * scale_factor,
  4476. a->ne[1] * scale_factor,
  4477. a->ne[2], a->ne[3]);
  4478. result->op = GGML_OP_UPSCALE;
  4479. result->op_params[0] = scale_factor;
  4480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4481. result->src[0] = a;
  4482. result->src[1] = NULL;
  4483. return result;
  4484. }
  4485. struct ggml_tensor * ggml_upscale(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. int scale_factor) {
  4489. return ggml_upscale_impl(ctx, a, scale_factor);
  4490. }
  4491. // ggml_flash_attn
  4492. struct ggml_tensor * ggml_flash_attn(
  4493. struct ggml_context * ctx,
  4494. struct ggml_tensor * q,
  4495. struct ggml_tensor * k,
  4496. struct ggml_tensor * v,
  4497. bool masked) {
  4498. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4499. // TODO: check if vT can be multiplied by (k*qT)
  4500. bool is_node = false;
  4501. if (q->grad || k->grad || v->grad) {
  4502. is_node = true;
  4503. }
  4504. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4505. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  4506. int32_t t = masked ? 1 : 0;
  4507. ggml_set_op_params(result, &t, sizeof(t));
  4508. result->op = GGML_OP_FLASH_ATTN;
  4509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4510. result->src[0] = q;
  4511. result->src[1] = k;
  4512. result->src[2] = v;
  4513. return result;
  4514. }
  4515. // ggml_flash_ff
  4516. struct ggml_tensor * ggml_flash_ff(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a,
  4519. struct ggml_tensor * b0,
  4520. struct ggml_tensor * b1,
  4521. struct ggml_tensor * c0,
  4522. struct ggml_tensor * c1) {
  4523. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4524. // TODO: more checks
  4525. bool is_node = false;
  4526. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4527. is_node = true;
  4528. }
  4529. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4530. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  4531. result->op = GGML_OP_FLASH_FF;
  4532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4533. result->src[0] = a;
  4534. result->src[1] = b0;
  4535. result->src[2] = b1;
  4536. result->src[3] = c0;
  4537. result->src[4] = c1;
  4538. return result;
  4539. }
  4540. // ggml_flash_attn_back
  4541. struct ggml_tensor * ggml_flash_attn_back(
  4542. struct ggml_context * ctx,
  4543. struct ggml_tensor * q,
  4544. struct ggml_tensor * k,
  4545. struct ggml_tensor * v,
  4546. struct ggml_tensor * d,
  4547. bool masked) {
  4548. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4549. // TODO: check if vT can be multiplied by (k*qT)
  4550. // d shape [D,N,ne2,ne3]
  4551. // q shape [D,N,ne2,ne3]
  4552. // k shape [D,M,kvne2,ne3]
  4553. // v shape [M,D,kvne2,ne3]
  4554. const int64_t D = q->ne[0];
  4555. const int64_t N = q->ne[1];
  4556. const int64_t M = k->ne[1];
  4557. const int64_t ne2 = q->ne[2];
  4558. const int64_t ne3 = q->ne[3];
  4559. const int64_t kvne2 = k->ne[2];
  4560. GGML_ASSERT(k->ne[0] == D);
  4561. GGML_ASSERT(v->ne[0] == M);
  4562. GGML_ASSERT(v->ne[1] == D);
  4563. GGML_ASSERT(d->ne[0] == D);
  4564. GGML_ASSERT(d->ne[1] == N);
  4565. GGML_ASSERT(k->ne[2] == kvne2);
  4566. GGML_ASSERT(k->ne[3] == ne3);
  4567. GGML_ASSERT(v->ne[2] == kvne2);
  4568. GGML_ASSERT(v->ne[3] == ne3);
  4569. GGML_ASSERT(d->ne[2] == ne2);
  4570. GGML_ASSERT(d->ne[3] == ne3);
  4571. GGML_ASSERT(ne2 % kvne2 == 0);
  4572. bool is_node = false;
  4573. if (q->grad || k->grad || v->grad) {
  4574. // when using this operation (in backwards pass) these grads are set.
  4575. // we don't want to create (big) grad of our result, so is_node is false.
  4576. is_node = false;
  4577. }
  4578. // store gradients of q, k and v as continuous tensors concatenated in result.
  4579. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4580. const int64_t elem_q = ggml_nelements(q);
  4581. const int64_t elem_k = ggml_nelements(k);
  4582. const int64_t elem_v = ggml_nelements(v);
  4583. enum ggml_type result_type = GGML_TYPE_F32;
  4584. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4585. const size_t tsize = ggml_type_size(result_type);
  4586. const size_t offs_q = 0;
  4587. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4588. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4589. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4590. const size_t nelements = (end + tsize - 1)/tsize;
  4591. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4592. int32_t masked_i = masked ? 1 : 0;
  4593. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4594. result->op = GGML_OP_FLASH_ATTN_BACK;
  4595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4596. result->src[0] = q;
  4597. result->src[1] = k;
  4598. result->src[2] = v;
  4599. result->src[3] = d;
  4600. return result;
  4601. }
  4602. // ggml_win_part
  4603. struct ggml_tensor * ggml_win_part(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a,
  4606. int w) {
  4607. GGML_ASSERT(a->ne[3] == 1);
  4608. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4609. bool is_node = false;
  4610. if (a->grad) {
  4611. GGML_ASSERT(false); // TODO: implement backward
  4612. is_node = true;
  4613. }
  4614. // padding
  4615. const int px = (w - a->ne[1]%w)%w;
  4616. const int py = (w - a->ne[2]%w)%w;
  4617. const int npx = (px + a->ne[1])/w;
  4618. const int npy = (py + a->ne[2])/w;
  4619. const int np = npx*npy;
  4620. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4621. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4622. int32_t params[] = { npx, npy, w };
  4623. ggml_set_op_params(result, params, sizeof(params));
  4624. result->op = GGML_OP_WIN_PART;
  4625. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4626. result->src[0] = a;
  4627. return result;
  4628. }
  4629. // ggml_win_unpart
  4630. struct ggml_tensor * ggml_win_unpart(
  4631. struct ggml_context * ctx,
  4632. struct ggml_tensor * a,
  4633. int w0,
  4634. int h0,
  4635. int w) {
  4636. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4637. bool is_node = false;
  4638. if (a->grad) {
  4639. GGML_ASSERT(false); // TODO: implement backward
  4640. is_node = true;
  4641. }
  4642. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4643. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4644. int32_t params[] = { w };
  4645. ggml_set_op_params(result, params, sizeof(params));
  4646. result->op = GGML_OP_WIN_UNPART;
  4647. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4648. result->src[0] = a;
  4649. return result;
  4650. }
  4651. // ggml_get_rel_pos
  4652. struct ggml_tensor * ggml_get_rel_pos(
  4653. struct ggml_context * ctx,
  4654. struct ggml_tensor * a,
  4655. int qh,
  4656. int kh) {
  4657. GGML_ASSERT(qh == kh);
  4658. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4659. bool is_node = false;
  4660. if (a->grad) {
  4661. GGML_ASSERT(false); // TODO: implement backward
  4662. is_node = true;
  4663. }
  4664. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4665. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4666. result->op = GGML_OP_GET_REL_POS;
  4667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4668. result->src[0] = a;
  4669. result->src[1] = NULL;
  4670. return result;
  4671. }
  4672. // ggml_add_rel_pos
  4673. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4674. struct ggml_context * ctx,
  4675. struct ggml_tensor * a,
  4676. struct ggml_tensor * pw,
  4677. struct ggml_tensor * ph,
  4678. bool inplace) {
  4679. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4680. GGML_ASSERT(ggml_is_contiguous(a));
  4681. GGML_ASSERT(ggml_is_contiguous(pw));
  4682. GGML_ASSERT(ggml_is_contiguous(ph));
  4683. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4684. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4685. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4686. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4687. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4688. bool is_node = false;
  4689. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4690. is_node = true;
  4691. }
  4692. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4693. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4694. result->op = GGML_OP_ADD_REL_POS;
  4695. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4696. result->src[0] = a;
  4697. result->src[1] = pw;
  4698. result->src[2] = ph;
  4699. return result;
  4700. }
  4701. struct ggml_tensor * ggml_add_rel_pos(
  4702. struct ggml_context * ctx,
  4703. struct ggml_tensor * a,
  4704. struct ggml_tensor * pw,
  4705. struct ggml_tensor * ph) {
  4706. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4707. }
  4708. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. struct ggml_tensor * pw,
  4712. struct ggml_tensor * ph) {
  4713. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4714. }
  4715. // gmml_unary
  4716. static struct ggml_tensor * ggml_unary_impl(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a,
  4719. enum ggml_unary_op op,
  4720. bool inplace) {
  4721. bool is_node = false;
  4722. if (!inplace && (a->grad)) {
  4723. is_node = true;
  4724. }
  4725. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4726. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4727. result->op = GGML_OP_UNARY;
  4728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4729. result->src[0] = a;
  4730. return result;
  4731. }
  4732. struct ggml_tensor * ggml_unary(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a,
  4735. enum ggml_unary_op op) {
  4736. return ggml_unary_impl(ctx, a, op, false);
  4737. }
  4738. struct ggml_tensor * ggml_unary_inplace(
  4739. struct ggml_context * ctx,
  4740. struct ggml_tensor * a,
  4741. enum ggml_unary_op op) {
  4742. return ggml_unary_impl(ctx, a, op, true);
  4743. }
  4744. // ggml_map_unary
  4745. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4746. struct ggml_context * ctx,
  4747. struct ggml_tensor * a,
  4748. const ggml_unary_op_f32_t fun,
  4749. bool inplace) {
  4750. bool is_node = false;
  4751. if (!inplace && a->grad) {
  4752. is_node = true;
  4753. }
  4754. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4755. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4756. result->op = GGML_OP_MAP_UNARY;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src[0] = a;
  4759. return result;
  4760. }
  4761. struct ggml_tensor * ggml_map_unary_f32(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a,
  4764. const ggml_unary_op_f32_t fun) {
  4765. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4766. }
  4767. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4768. struct ggml_context * ctx,
  4769. struct ggml_tensor * a,
  4770. const ggml_unary_op_f32_t fun) {
  4771. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4772. }
  4773. // ggml_map_binary
  4774. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * a,
  4777. struct ggml_tensor * b,
  4778. const ggml_binary_op_f32_t fun,
  4779. bool inplace) {
  4780. GGML_ASSERT(ggml_are_same_shape(a, b));
  4781. bool is_node = false;
  4782. if (!inplace && (a->grad || b->grad)) {
  4783. is_node = true;
  4784. }
  4785. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4786. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4787. result->op = GGML_OP_MAP_BINARY;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src[0] = a;
  4790. result->src[1] = b;
  4791. return result;
  4792. }
  4793. struct ggml_tensor * ggml_map_binary_f32(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a,
  4796. struct ggml_tensor * b,
  4797. const ggml_binary_op_f32_t fun) {
  4798. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4799. }
  4800. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. struct ggml_tensor * b,
  4804. const ggml_binary_op_f32_t fun) {
  4805. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4806. }
  4807. // ggml_map_custom1_f32
  4808. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. const ggml_custom1_op_f32_t fun,
  4812. bool inplace) {
  4813. bool is_node = false;
  4814. if (!inplace && a->grad) {
  4815. is_node = true;
  4816. }
  4817. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4818. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4819. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4821. result->src[0] = a;
  4822. return result;
  4823. }
  4824. struct ggml_tensor * ggml_map_custom1_f32(
  4825. struct ggml_context * ctx,
  4826. struct ggml_tensor * a,
  4827. const ggml_custom1_op_f32_t fun) {
  4828. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4829. }
  4830. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4831. struct ggml_context * ctx,
  4832. struct ggml_tensor * a,
  4833. const ggml_custom1_op_f32_t fun) {
  4834. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4835. }
  4836. // ggml_map_custom2_f32
  4837. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4838. struct ggml_context * ctx,
  4839. struct ggml_tensor * a,
  4840. struct ggml_tensor * b,
  4841. const ggml_custom2_op_f32_t fun,
  4842. bool inplace) {
  4843. bool is_node = false;
  4844. if (!inplace && (a->grad || b->grad)) {
  4845. is_node = true;
  4846. }
  4847. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4848. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4849. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4851. result->src[0] = a;
  4852. result->src[1] = b;
  4853. return result;
  4854. }
  4855. struct ggml_tensor * ggml_map_custom2_f32(
  4856. struct ggml_context * ctx,
  4857. struct ggml_tensor * a,
  4858. struct ggml_tensor * b,
  4859. const ggml_custom2_op_f32_t fun) {
  4860. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4861. }
  4862. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4863. struct ggml_context * ctx,
  4864. struct ggml_tensor * a,
  4865. struct ggml_tensor * b,
  4866. const ggml_custom2_op_f32_t fun) {
  4867. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4868. }
  4869. // ggml_map_custom3_f32
  4870. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. struct ggml_tensor * b,
  4874. struct ggml_tensor * c,
  4875. const ggml_custom3_op_f32_t fun,
  4876. bool inplace) {
  4877. bool is_node = false;
  4878. if (!inplace && (a->grad || b->grad || c->grad)) {
  4879. is_node = true;
  4880. }
  4881. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4882. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4883. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4884. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4885. result->src[0] = a;
  4886. result->src[1] = b;
  4887. result->src[2] = c;
  4888. return result;
  4889. }
  4890. struct ggml_tensor * ggml_map_custom3_f32(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * a,
  4893. struct ggml_tensor * b,
  4894. struct ggml_tensor * c,
  4895. const ggml_custom3_op_f32_t fun) {
  4896. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4897. }
  4898. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4899. struct ggml_context * ctx,
  4900. struct ggml_tensor * a,
  4901. struct ggml_tensor * b,
  4902. struct ggml_tensor * c,
  4903. const ggml_custom3_op_f32_t fun) {
  4904. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4905. }
  4906. // ggml_map_custom1
  4907. struct ggml_map_custom1_op_params {
  4908. ggml_custom1_op_t fun;
  4909. int n_tasks;
  4910. void * userdata;
  4911. };
  4912. static struct ggml_tensor * ggml_map_custom1_impl(
  4913. struct ggml_context * ctx,
  4914. struct ggml_tensor * a,
  4915. const ggml_custom1_op_t fun,
  4916. int n_tasks,
  4917. void * userdata,
  4918. bool inplace) {
  4919. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4920. bool is_node = false;
  4921. if (!inplace && a->grad) {
  4922. is_node = true;
  4923. }
  4924. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4925. struct ggml_map_custom1_op_params params = {
  4926. /*.fun =*/ fun,
  4927. /*.n_tasks =*/ n_tasks,
  4928. /*.userdata =*/ userdata
  4929. };
  4930. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4931. result->op = GGML_OP_MAP_CUSTOM1;
  4932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4933. result->src[0] = a;
  4934. return result;
  4935. }
  4936. struct ggml_tensor * ggml_map_custom1(
  4937. struct ggml_context * ctx,
  4938. struct ggml_tensor * a,
  4939. const ggml_custom1_op_t fun,
  4940. int n_tasks,
  4941. void * userdata) {
  4942. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  4943. }
  4944. struct ggml_tensor * ggml_map_custom1_inplace(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. const ggml_custom1_op_t fun,
  4948. int n_tasks,
  4949. void * userdata) {
  4950. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  4951. }
  4952. // ggml_map_custom2
  4953. struct ggml_map_custom2_op_params {
  4954. ggml_custom2_op_t fun;
  4955. int n_tasks;
  4956. void * userdata;
  4957. };
  4958. static struct ggml_tensor * ggml_map_custom2_impl(
  4959. struct ggml_context * ctx,
  4960. struct ggml_tensor * a,
  4961. struct ggml_tensor * b,
  4962. const ggml_custom2_op_t fun,
  4963. int n_tasks,
  4964. void * userdata,
  4965. bool inplace) {
  4966. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4967. bool is_node = false;
  4968. if (!inplace && (a->grad || b->grad)) {
  4969. is_node = true;
  4970. }
  4971. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4972. struct ggml_map_custom2_op_params params = {
  4973. /*.fun =*/ fun,
  4974. /*.n_tasks =*/ n_tasks,
  4975. /*.userdata =*/ userdata
  4976. };
  4977. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4978. result->op = GGML_OP_MAP_CUSTOM2;
  4979. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4980. result->src[0] = a;
  4981. result->src[1] = b;
  4982. return result;
  4983. }
  4984. struct ggml_tensor * ggml_map_custom2(
  4985. struct ggml_context * ctx,
  4986. struct ggml_tensor * a,
  4987. struct ggml_tensor * b,
  4988. const ggml_custom2_op_t fun,
  4989. int n_tasks,
  4990. void * userdata) {
  4991. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  4992. }
  4993. struct ggml_tensor * ggml_map_custom2_inplace(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. struct ggml_tensor * b,
  4997. const ggml_custom2_op_t fun,
  4998. int n_tasks,
  4999. void * userdata) {
  5000. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5001. }
  5002. // ggml_map_custom3
  5003. struct ggml_map_custom3_op_params {
  5004. ggml_custom3_op_t fun;
  5005. int n_tasks;
  5006. void * userdata;
  5007. };
  5008. static struct ggml_tensor * ggml_map_custom3_impl(
  5009. struct ggml_context * ctx,
  5010. struct ggml_tensor * a,
  5011. struct ggml_tensor * b,
  5012. struct ggml_tensor * c,
  5013. const ggml_custom3_op_t fun,
  5014. int n_tasks,
  5015. void * userdata,
  5016. bool inplace) {
  5017. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5018. bool is_node = false;
  5019. if (!inplace && (a->grad || b->grad || c->grad)) {
  5020. is_node = true;
  5021. }
  5022. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5023. struct ggml_map_custom3_op_params params = {
  5024. /*.fun =*/ fun,
  5025. /*.n_tasks =*/ n_tasks,
  5026. /*.userdata =*/ userdata
  5027. };
  5028. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5029. result->op = GGML_OP_MAP_CUSTOM3;
  5030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5031. result->src[0] = a;
  5032. result->src[1] = b;
  5033. result->src[2] = c;
  5034. return result;
  5035. }
  5036. struct ggml_tensor * ggml_map_custom3(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a,
  5039. struct ggml_tensor * b,
  5040. struct ggml_tensor * c,
  5041. const ggml_custom3_op_t fun,
  5042. int n_tasks,
  5043. void * userdata) {
  5044. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5045. }
  5046. struct ggml_tensor * ggml_map_custom3_inplace(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. struct ggml_tensor * b,
  5050. struct ggml_tensor * c,
  5051. const ggml_custom3_op_t fun,
  5052. int n_tasks,
  5053. void * userdata) {
  5054. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5055. }
  5056. // ggml_cross_entropy_loss
  5057. struct ggml_tensor * ggml_cross_entropy_loss(
  5058. struct ggml_context * ctx,
  5059. struct ggml_tensor * a,
  5060. struct ggml_tensor * b) {
  5061. GGML_ASSERT(ggml_are_same_shape(a, b));
  5062. bool is_node = false;
  5063. if (a->grad || b->grad) {
  5064. is_node = true;
  5065. }
  5066. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5067. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5069. result->src[0] = a;
  5070. result->src[1] = b;
  5071. return result;
  5072. }
  5073. // ggml_cross_entropy_loss_back
  5074. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. struct ggml_tensor * b,
  5078. struct ggml_tensor * c) {
  5079. GGML_ASSERT(ggml_are_same_shape(a, b));
  5080. GGML_ASSERT(ggml_is_scalar(c));
  5081. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5082. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5083. result->grad = NULL;
  5084. result->src[0] = a;
  5085. result->src[1] = b;
  5086. result->src[2] = c;
  5087. return result;
  5088. }
  5089. ////////////////////////////////////////////////////////////////////////////////
  5090. void ggml_set_param(
  5091. struct ggml_context * ctx,
  5092. struct ggml_tensor * tensor) {
  5093. tensor->is_param = true;
  5094. GGML_ASSERT(tensor->grad == NULL);
  5095. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5096. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5097. }
  5098. // ggml_compute_forward_dup
  5099. static void ggml_compute_forward_dup_same_cont(
  5100. const struct ggml_compute_params * params,
  5101. const struct ggml_tensor * src0,
  5102. struct ggml_tensor * dst) {
  5103. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5104. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5105. GGML_ASSERT(src0->type == dst->type);
  5106. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5107. return;
  5108. }
  5109. const size_t nb00 = src0->nb[0];
  5110. const size_t nb0 = dst->nb[0];
  5111. const int ith = params->ith; // thread index
  5112. const int nth = params->nth; // number of threads
  5113. // parallelize by elements
  5114. const int ne = ggml_nelements(dst);
  5115. const int dr = (ne + nth - 1) / nth;
  5116. const int ie0 = dr * ith;
  5117. const int ie1 = MIN(ie0 + dr, ne);
  5118. if (ie0 < ie1) {
  5119. memcpy(
  5120. ((char *) dst->data + ie0*nb0),
  5121. ((char *) src0->data + ie0*nb00),
  5122. (ie1 - ie0) * ggml_type_size(src0->type));
  5123. }
  5124. }
  5125. static void ggml_compute_forward_dup_f16(
  5126. const struct ggml_compute_params * params,
  5127. const struct ggml_tensor * src0,
  5128. struct ggml_tensor * dst) {
  5129. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5131. return;
  5132. }
  5133. GGML_TENSOR_UNARY_OP_LOCALS
  5134. const int ith = params->ith; // thread index
  5135. const int nth = params->nth; // number of threads
  5136. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5137. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5138. return;
  5139. }
  5140. // parallelize by rows
  5141. const int nr = ne01;
  5142. // number of rows per thread
  5143. const int dr = (nr + nth - 1) / nth;
  5144. // row range for this thread
  5145. const int ir0 = dr * ith;
  5146. const int ir1 = MIN(ir0 + dr, nr);
  5147. if (src0->type == dst->type &&
  5148. ne00 == ne0 &&
  5149. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5150. // copy by rows
  5151. const size_t rs = ne00*nb00;
  5152. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5153. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5154. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5155. memcpy(
  5156. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5157. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5158. rs);
  5159. }
  5160. }
  5161. }
  5162. return;
  5163. }
  5164. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5165. if (ggml_is_contiguous(dst)) {
  5166. if (nb00 == sizeof(ggml_fp16_t)) {
  5167. if (dst->type == GGML_TYPE_F16) {
  5168. size_t id = 0;
  5169. const size_t rs = ne00 * nb00;
  5170. char * dst_ptr = (char *) dst->data;
  5171. for (int i03 = 0; i03 < ne03; i03++) {
  5172. for (int i02 = 0; i02 < ne02; i02++) {
  5173. id += rs * ir0;
  5174. for (int i01 = ir0; i01 < ir1; i01++) {
  5175. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5176. memcpy(dst_ptr + id, src0_ptr, rs);
  5177. id += rs;
  5178. }
  5179. id += rs * (ne01 - ir1);
  5180. }
  5181. }
  5182. } else if (dst->type == GGML_TYPE_F32) {
  5183. size_t id = 0;
  5184. float * dst_ptr = (float *) dst->data;
  5185. for (int i03 = 0; i03 < ne03; i03++) {
  5186. for (int i02 = 0; i02 < ne02; i02++) {
  5187. id += ne00 * ir0;
  5188. for (int i01 = ir0; i01 < ir1; i01++) {
  5189. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5190. for (int i00 = 0; i00 < ne00; i00++) {
  5191. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5192. id++;
  5193. }
  5194. }
  5195. id += ne00 * (ne01 - ir1);
  5196. }
  5197. }
  5198. } else if (type_traits[dst->type].from_float) {
  5199. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5200. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5201. size_t id = 0;
  5202. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5203. char * dst_ptr = (char *) dst->data;
  5204. for (int i03 = 0; i03 < ne03; i03++) {
  5205. for (int i02 = 0; i02 < ne02; i02++) {
  5206. id += rs * ir0;
  5207. for (int i01 = ir0; i01 < ir1; i01++) {
  5208. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5209. for (int i00 = 0; i00 < ne00; i00++) {
  5210. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5211. }
  5212. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5213. id += rs;
  5214. }
  5215. id += rs * (ne01 - ir1);
  5216. }
  5217. }
  5218. } else {
  5219. GGML_ASSERT(false); // TODO: implement
  5220. }
  5221. } else {
  5222. //printf("%s: this is not optimal - fix me\n", __func__);
  5223. if (dst->type == GGML_TYPE_F32) {
  5224. size_t id = 0;
  5225. float * dst_ptr = (float *) dst->data;
  5226. for (int i03 = 0; i03 < ne03; i03++) {
  5227. for (int i02 = 0; i02 < ne02; i02++) {
  5228. id += ne00 * ir0;
  5229. for (int i01 = ir0; i01 < ir1; i01++) {
  5230. for (int i00 = 0; i00 < ne00; i00++) {
  5231. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5232. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5233. id++;
  5234. }
  5235. }
  5236. id += ne00 * (ne01 - ir1);
  5237. }
  5238. }
  5239. } else if (dst->type == GGML_TYPE_F16) {
  5240. size_t id = 0;
  5241. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5242. for (int i03 = 0; i03 < ne03; i03++) {
  5243. for (int i02 = 0; i02 < ne02; i02++) {
  5244. id += ne00 * ir0;
  5245. for (int i01 = ir0; i01 < ir1; i01++) {
  5246. for (int i00 = 0; i00 < ne00; i00++) {
  5247. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5248. dst_ptr[id] = *src0_ptr;
  5249. id++;
  5250. }
  5251. }
  5252. id += ne00 * (ne01 - ir1);
  5253. }
  5254. }
  5255. } else {
  5256. GGML_ASSERT(false); // TODO: implement
  5257. }
  5258. }
  5259. return;
  5260. }
  5261. // dst counters
  5262. int64_t i10 = 0;
  5263. int64_t i11 = 0;
  5264. int64_t i12 = 0;
  5265. int64_t i13 = 0;
  5266. if (dst->type == GGML_TYPE_F16) {
  5267. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5268. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5269. i10 += ne00 * ir0;
  5270. while (i10 >= ne0) {
  5271. i10 -= ne0;
  5272. if (++i11 == ne1) {
  5273. i11 = 0;
  5274. if (++i12 == ne2) {
  5275. i12 = 0;
  5276. if (++i13 == ne3) {
  5277. i13 = 0;
  5278. }
  5279. }
  5280. }
  5281. }
  5282. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5283. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5284. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5285. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5286. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5287. if (++i10 == ne00) {
  5288. i10 = 0;
  5289. if (++i11 == ne01) {
  5290. i11 = 0;
  5291. if (++i12 == ne02) {
  5292. i12 = 0;
  5293. if (++i13 == ne03) {
  5294. i13 = 0;
  5295. }
  5296. }
  5297. }
  5298. }
  5299. }
  5300. }
  5301. i10 += ne00 * (ne01 - ir1);
  5302. while (i10 >= ne0) {
  5303. i10 -= ne0;
  5304. if (++i11 == ne1) {
  5305. i11 = 0;
  5306. if (++i12 == ne2) {
  5307. i12 = 0;
  5308. if (++i13 == ne3) {
  5309. i13 = 0;
  5310. }
  5311. }
  5312. }
  5313. }
  5314. }
  5315. }
  5316. } else if (dst->type == GGML_TYPE_F32) {
  5317. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5318. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5319. i10 += ne00 * ir0;
  5320. while (i10 >= ne0) {
  5321. i10 -= ne0;
  5322. if (++i11 == ne1) {
  5323. i11 = 0;
  5324. if (++i12 == ne2) {
  5325. i12 = 0;
  5326. if (++i13 == ne3) {
  5327. i13 = 0;
  5328. }
  5329. }
  5330. }
  5331. }
  5332. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5333. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5334. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5335. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5336. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5337. if (++i10 == ne0) {
  5338. i10 = 0;
  5339. if (++i11 == ne1) {
  5340. i11 = 0;
  5341. if (++i12 == ne2) {
  5342. i12 = 0;
  5343. if (++i13 == ne3) {
  5344. i13 = 0;
  5345. }
  5346. }
  5347. }
  5348. }
  5349. }
  5350. }
  5351. i10 += ne00 * (ne01 - ir1);
  5352. while (i10 >= ne0) {
  5353. i10 -= ne0;
  5354. if (++i11 == ne1) {
  5355. i11 = 0;
  5356. if (++i12 == ne2) {
  5357. i12 = 0;
  5358. if (++i13 == ne3) {
  5359. i13 = 0;
  5360. }
  5361. }
  5362. }
  5363. }
  5364. }
  5365. }
  5366. } else {
  5367. GGML_ASSERT(false); // TODO: implement
  5368. }
  5369. }
  5370. static void ggml_compute_forward_dup_f32(
  5371. const struct ggml_compute_params * params,
  5372. const struct ggml_tensor * src0,
  5373. struct ggml_tensor * dst) {
  5374. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5376. return;
  5377. }
  5378. GGML_TENSOR_UNARY_OP_LOCALS
  5379. const int ith = params->ith; // thread index
  5380. const int nth = params->nth; // number of threads
  5381. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5382. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5383. return;
  5384. }
  5385. // parallelize by rows
  5386. const int nr = ne01;
  5387. // number of rows per thread
  5388. const int dr = (nr + nth - 1) / nth;
  5389. // row range for this thread
  5390. const int ir0 = dr * ith;
  5391. const int ir1 = MIN(ir0 + dr, nr);
  5392. if (src0->type == dst->type &&
  5393. ne00 == ne0 &&
  5394. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5395. // copy by rows
  5396. const size_t rs = ne00*nb00;
  5397. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5398. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5399. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5400. memcpy(
  5401. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5402. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5403. rs);
  5404. }
  5405. }
  5406. }
  5407. return;
  5408. }
  5409. if (ggml_is_contiguous(dst)) {
  5410. // TODO: simplify
  5411. if (nb00 == sizeof(float)) {
  5412. if (dst->type == GGML_TYPE_F32) {
  5413. size_t id = 0;
  5414. const size_t rs = ne00 * nb00;
  5415. char * dst_ptr = (char *) dst->data;
  5416. for (int i03 = 0; i03 < ne03; i03++) {
  5417. for (int i02 = 0; i02 < ne02; i02++) {
  5418. id += rs * ir0;
  5419. for (int i01 = ir0; i01 < ir1; i01++) {
  5420. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5421. memcpy(dst_ptr + id, src0_ptr, rs);
  5422. id += rs;
  5423. }
  5424. id += rs * (ne01 - ir1);
  5425. }
  5426. }
  5427. } else if (type_traits[dst->type].from_float) {
  5428. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5429. size_t id = 0;
  5430. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5431. char * dst_ptr = (char *) dst->data;
  5432. for (int i03 = 0; i03 < ne03; i03++) {
  5433. for (int i02 = 0; i02 < ne02; i02++) {
  5434. id += rs * ir0;
  5435. for (int i01 = ir0; i01 < ir1; i01++) {
  5436. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5437. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5438. id += rs;
  5439. }
  5440. id += rs * (ne01 - ir1);
  5441. }
  5442. }
  5443. } else {
  5444. GGML_ASSERT(false); // TODO: implement
  5445. }
  5446. } else {
  5447. //printf("%s: this is not optimal - fix me\n", __func__);
  5448. if (dst->type == GGML_TYPE_F32) {
  5449. size_t id = 0;
  5450. float * dst_ptr = (float *) dst->data;
  5451. for (int i03 = 0; i03 < ne03; i03++) {
  5452. for (int i02 = 0; i02 < ne02; i02++) {
  5453. id += ne00 * ir0;
  5454. for (int i01 = ir0; i01 < ir1; i01++) {
  5455. for (int i00 = 0; i00 < ne00; i00++) {
  5456. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5457. dst_ptr[id] = *src0_ptr;
  5458. id++;
  5459. }
  5460. }
  5461. id += ne00 * (ne01 - ir1);
  5462. }
  5463. }
  5464. } else if (dst->type == GGML_TYPE_F16) {
  5465. size_t id = 0;
  5466. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5467. for (int i03 = 0; i03 < ne03; i03++) {
  5468. for (int i02 = 0; i02 < ne02; i02++) {
  5469. id += ne00 * ir0;
  5470. for (int i01 = ir0; i01 < ir1; i01++) {
  5471. for (int i00 = 0; i00 < ne00; i00++) {
  5472. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5473. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5474. id++;
  5475. }
  5476. }
  5477. id += ne00 * (ne01 - ir1);
  5478. }
  5479. }
  5480. } else {
  5481. GGML_ASSERT(false); // TODO: implement
  5482. }
  5483. }
  5484. return;
  5485. }
  5486. // dst counters
  5487. int64_t i10 = 0;
  5488. int64_t i11 = 0;
  5489. int64_t i12 = 0;
  5490. int64_t i13 = 0;
  5491. if (dst->type == GGML_TYPE_F32) {
  5492. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5493. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5494. i10 += ne00 * ir0;
  5495. while (i10 >= ne0) {
  5496. i10 -= ne0;
  5497. if (++i11 == ne1) {
  5498. i11 = 0;
  5499. if (++i12 == ne2) {
  5500. i12 = 0;
  5501. if (++i13 == ne3) {
  5502. i13 = 0;
  5503. }
  5504. }
  5505. }
  5506. }
  5507. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5508. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5509. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5510. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5511. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5512. if (++i10 == ne0) {
  5513. i10 = 0;
  5514. if (++i11 == ne1) {
  5515. i11 = 0;
  5516. if (++i12 == ne2) {
  5517. i12 = 0;
  5518. if (++i13 == ne3) {
  5519. i13 = 0;
  5520. }
  5521. }
  5522. }
  5523. }
  5524. }
  5525. }
  5526. i10 += ne00 * (ne01 - ir1);
  5527. while (i10 >= ne0) {
  5528. i10 -= ne0;
  5529. if (++i11 == ne1) {
  5530. i11 = 0;
  5531. if (++i12 == ne2) {
  5532. i12 = 0;
  5533. if (++i13 == ne3) {
  5534. i13 = 0;
  5535. }
  5536. }
  5537. }
  5538. }
  5539. }
  5540. }
  5541. } else if (dst->type == GGML_TYPE_F16) {
  5542. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5543. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5544. i10 += ne00 * ir0;
  5545. while (i10 >= ne0) {
  5546. i10 -= ne0;
  5547. if (++i11 == ne1) {
  5548. i11 = 0;
  5549. if (++i12 == ne2) {
  5550. i12 = 0;
  5551. if (++i13 == ne3) {
  5552. i13 = 0;
  5553. }
  5554. }
  5555. }
  5556. }
  5557. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5558. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5559. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5560. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5561. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5562. if (++i10 == ne0) {
  5563. i10 = 0;
  5564. if (++i11 == ne1) {
  5565. i11 = 0;
  5566. if (++i12 == ne2) {
  5567. i12 = 0;
  5568. if (++i13 == ne3) {
  5569. i13 = 0;
  5570. }
  5571. }
  5572. }
  5573. }
  5574. }
  5575. }
  5576. i10 += ne00 * (ne01 - ir1);
  5577. while (i10 >= ne0) {
  5578. i10 -= ne0;
  5579. if (++i11 == ne1) {
  5580. i11 = 0;
  5581. if (++i12 == ne2) {
  5582. i12 = 0;
  5583. if (++i13 == ne3) {
  5584. i13 = 0;
  5585. }
  5586. }
  5587. }
  5588. }
  5589. }
  5590. }
  5591. } else {
  5592. GGML_ASSERT(false); // TODO: implement
  5593. }
  5594. }
  5595. static void ggml_compute_forward_dup(
  5596. const struct ggml_compute_params * params,
  5597. const struct ggml_tensor * src0,
  5598. struct ggml_tensor * dst) {
  5599. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5600. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5601. return;
  5602. }
  5603. switch (src0->type) {
  5604. case GGML_TYPE_F16:
  5605. {
  5606. ggml_compute_forward_dup_f16(params, src0, dst);
  5607. } break;
  5608. case GGML_TYPE_F32:
  5609. {
  5610. ggml_compute_forward_dup_f32(params, src0, dst);
  5611. } break;
  5612. default:
  5613. {
  5614. GGML_ASSERT(false);
  5615. } break;
  5616. }
  5617. }
  5618. // ggml_compute_forward_add
  5619. static void ggml_compute_forward_add_f32(
  5620. const struct ggml_compute_params * params,
  5621. const struct ggml_tensor * src0,
  5622. const struct ggml_tensor * src1,
  5623. struct ggml_tensor * dst) {
  5624. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  5625. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5626. return;
  5627. }
  5628. const int ith = params->ith;
  5629. const int nth = params->nth;
  5630. const int nr = ggml_nrows(src0);
  5631. GGML_TENSOR_BINARY_OP_LOCALS
  5632. GGML_ASSERT( nb0 == sizeof(float));
  5633. GGML_ASSERT(nb00 == sizeof(float));
  5634. // rows per thread
  5635. const int dr = (nr + nth - 1)/nth;
  5636. // row range for this thread
  5637. const int ir0 = dr*ith;
  5638. const int ir1 = MIN(ir0 + dr, nr);
  5639. if (nb10 == sizeof(float)) {
  5640. for (int ir = ir0; ir < ir1; ++ir) {
  5641. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5642. const int64_t i03 = ir/(ne02*ne01);
  5643. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5644. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5645. const int64_t i13 = i03 % ne13;
  5646. const int64_t i12 = i02 % ne12;
  5647. const int64_t i11 = i01 % ne11;
  5648. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5649. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5650. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5651. #ifdef GGML_USE_ACCELERATE
  5652. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  5653. #else
  5654. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  5655. #endif
  5656. }
  5657. } else {
  5658. // src1 is not contiguous
  5659. for (int ir = ir0; ir < ir1; ++ir) {
  5660. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5661. const int64_t i03 = ir/(ne02*ne01);
  5662. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5663. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5664. const int64_t i13 = i03 % ne13;
  5665. const int64_t i12 = i02 % ne12;
  5666. const int64_t i11 = i01 % ne11;
  5667. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5668. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5669. for (int i0 = 0; i0 < ne0; i0++) {
  5670. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  5671. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5672. }
  5673. }
  5674. }
  5675. }
  5676. static void ggml_compute_forward_add_f16_f32(
  5677. const struct ggml_compute_params * params,
  5678. const struct ggml_tensor * src0,
  5679. const struct ggml_tensor * src1,
  5680. struct ggml_tensor * dst) {
  5681. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5683. return;
  5684. }
  5685. const int ith = params->ith;
  5686. const int nth = params->nth;
  5687. const int nr = ggml_nrows(src0);
  5688. GGML_TENSOR_BINARY_OP_LOCALS
  5689. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5690. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5691. if (dst->type == GGML_TYPE_F32) {
  5692. GGML_ASSERT( nb0 == sizeof(float));
  5693. }
  5694. else {
  5695. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5696. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5697. }
  5698. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5699. // rows per thread
  5700. const int dr = (nr + nth - 1)/nth;
  5701. // row range for this thread
  5702. const int ir0 = dr*ith;
  5703. const int ir1 = MIN(ir0 + dr, nr);
  5704. if (nb10 == sizeof(float)) {
  5705. if (dst->type == GGML_TYPE_F16) {
  5706. for (int ir = ir0; ir < ir1; ++ir) {
  5707. // src0, src1 and dst are same shape => same indices
  5708. const int i3 = ir/(ne2*ne1);
  5709. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5710. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5711. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5712. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5713. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5714. for (int i = 0; i < ne0; i++) {
  5715. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5716. }
  5717. }
  5718. } else {
  5719. for (int ir = ir0; ir < ir1; ++ir) {
  5720. // src0, src1 and dst are same shape => same indices
  5721. const int i3 = ir/(ne2*ne1);
  5722. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5723. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5724. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5725. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5726. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5727. for (int i = 0; i < ne0; i++) {
  5728. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5729. }
  5730. }
  5731. }
  5732. }
  5733. else {
  5734. // src1 is not contiguous
  5735. GGML_ASSERT(false);
  5736. }
  5737. }
  5738. static void ggml_compute_forward_add_f16_f16(
  5739. const struct ggml_compute_params * params,
  5740. const struct ggml_tensor * src0,
  5741. const struct ggml_tensor * src1,
  5742. struct ggml_tensor * dst) {
  5743. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5744. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5745. return;
  5746. }
  5747. const int ith = params->ith;
  5748. const int nth = params->nth;
  5749. const int nr = ggml_nrows(src0);
  5750. GGML_TENSOR_BINARY_OP_LOCALS
  5751. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5752. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5753. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5754. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5755. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5756. // rows per thread
  5757. const int dr = (nr + nth - 1)/nth;
  5758. // row range for this thread
  5759. const int ir0 = dr*ith;
  5760. const int ir1 = MIN(ir0 + dr, nr);
  5761. if (nb10 == sizeof(ggml_fp16_t)) {
  5762. for (int ir = ir0; ir < ir1; ++ir) {
  5763. // src0, src1 and dst are same shape => same indices
  5764. const int i3 = ir/(ne2*ne1);
  5765. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5766. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5767. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5768. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5769. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5770. for (int i = 0; i < ne0; i++) {
  5771. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5772. }
  5773. }
  5774. }
  5775. else {
  5776. // src1 is not contiguous
  5777. GGML_ASSERT(false);
  5778. }
  5779. }
  5780. static void ggml_compute_forward_add_q_f32(
  5781. const struct ggml_compute_params * params,
  5782. const struct ggml_tensor * src0,
  5783. const struct ggml_tensor * src1,
  5784. struct ggml_tensor * dst) {
  5785. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5787. return;
  5788. }
  5789. const int nr = ggml_nrows(src0);
  5790. GGML_TENSOR_BINARY_OP_LOCALS
  5791. const int ith = params->ith;
  5792. const int nth = params->nth;
  5793. const enum ggml_type type = src0->type;
  5794. const enum ggml_type dtype = dst->type;
  5795. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5796. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5797. // we don't support permuted src0 or src1
  5798. GGML_ASSERT(nb00 == ggml_type_size(type));
  5799. GGML_ASSERT(nb10 == sizeof(float));
  5800. // dst cannot be transposed or permuted
  5801. GGML_ASSERT(nb0 <= nb1);
  5802. GGML_ASSERT(nb1 <= nb2);
  5803. GGML_ASSERT(nb2 <= nb3);
  5804. GGML_ASSERT(ggml_is_quantized(src0->type));
  5805. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5806. // rows per thread
  5807. const int dr = (nr + nth - 1)/nth;
  5808. // row range for this thread
  5809. const int ir0 = dr*ith;
  5810. const int ir1 = MIN(ir0 + dr, nr);
  5811. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5812. for (int ir = ir0; ir < ir1; ++ir) {
  5813. // src0 indices
  5814. const int i03 = ir/(ne02*ne01);
  5815. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5816. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5817. // src1 and dst are same shape as src0 => same indices
  5818. const int i13 = i03;
  5819. const int i12 = i02;
  5820. const int i11 = i01;
  5821. const int i3 = i03;
  5822. const int i2 = i02;
  5823. const int i1 = i01;
  5824. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5825. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5826. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5827. assert(ne00 % 32 == 0);
  5828. // unquantize row from src0 to temp buffer
  5829. dequantize_row_q(src0_row, wdata, ne00);
  5830. // add src1
  5831. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5832. // quantize row to dst
  5833. if (quantize_row_q != NULL) {
  5834. quantize_row_q(wdata, dst_row, ne00);
  5835. } else {
  5836. memcpy(dst_row, wdata, ne0*nb0);
  5837. }
  5838. }
  5839. }
  5840. static void ggml_compute_forward_add(
  5841. const struct ggml_compute_params * params,
  5842. const struct ggml_tensor * src0,
  5843. const struct ggml_tensor * src1,
  5844. struct ggml_tensor * dst) {
  5845. switch (src0->type) {
  5846. case GGML_TYPE_F32:
  5847. {
  5848. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5849. } break;
  5850. case GGML_TYPE_F16:
  5851. {
  5852. if (src1->type == GGML_TYPE_F16) {
  5853. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5854. }
  5855. else if (src1->type == GGML_TYPE_F32) {
  5856. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5857. }
  5858. else {
  5859. GGML_ASSERT(false);
  5860. }
  5861. } break;
  5862. case GGML_TYPE_Q4_0:
  5863. case GGML_TYPE_Q4_1:
  5864. case GGML_TYPE_Q5_0:
  5865. case GGML_TYPE_Q5_1:
  5866. case GGML_TYPE_Q8_0:
  5867. case GGML_TYPE_Q2_K:
  5868. case GGML_TYPE_Q3_K:
  5869. case GGML_TYPE_Q4_K:
  5870. case GGML_TYPE_Q5_K:
  5871. case GGML_TYPE_Q6_K:
  5872. {
  5873. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5874. } break;
  5875. default:
  5876. {
  5877. GGML_ASSERT(false);
  5878. } break;
  5879. }
  5880. }
  5881. // ggml_compute_forward_add1
  5882. static void ggml_compute_forward_add1_f32(
  5883. const struct ggml_compute_params * params,
  5884. const struct ggml_tensor * src0,
  5885. const struct ggml_tensor * src1,
  5886. struct ggml_tensor * dst) {
  5887. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5888. GGML_ASSERT(ggml_is_scalar(src1));
  5889. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5890. return;
  5891. }
  5892. const int ith = params->ith;
  5893. const int nth = params->nth;
  5894. const int nr = ggml_nrows(src0);
  5895. GGML_TENSOR_UNARY_OP_LOCALS
  5896. GGML_ASSERT( nb0 == sizeof(float));
  5897. GGML_ASSERT(nb00 == sizeof(float));
  5898. // rows per thread
  5899. const int dr = (nr + nth - 1)/nth;
  5900. // row range for this thread
  5901. const int ir0 = dr*ith;
  5902. const int ir1 = MIN(ir0 + dr, nr);
  5903. for (int ir = ir0; ir < ir1; ++ir) {
  5904. // src0 and dst are same shape => same indices
  5905. const int i3 = ir/(ne2*ne1);
  5906. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5907. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5908. #ifdef GGML_USE_ACCELERATE
  5909. UNUSED(ggml_vec_add1_f32);
  5910. vDSP_vadd(
  5911. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5912. (float *) ((char *) src1->data), 0,
  5913. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5914. ne0);
  5915. #else
  5916. ggml_vec_add1_f32(ne0,
  5917. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5918. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5919. *(float *) src1->data);
  5920. #endif
  5921. }
  5922. }
  5923. static void ggml_compute_forward_add1_f16_f32(
  5924. const struct ggml_compute_params * params,
  5925. const struct ggml_tensor * src0,
  5926. const struct ggml_tensor * src1,
  5927. struct ggml_tensor * dst) {
  5928. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5929. GGML_ASSERT(ggml_is_scalar(src1));
  5930. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5931. return;
  5932. }
  5933. // scalar to add
  5934. const float v = *(float *) src1->data;
  5935. const int ith = params->ith;
  5936. const int nth = params->nth;
  5937. const int nr = ggml_nrows(src0);
  5938. GGML_TENSOR_UNARY_OP_LOCALS
  5939. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5940. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5941. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5942. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5943. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5944. // rows per thread
  5945. const int dr = (nr + nth - 1)/nth;
  5946. // row range for this thread
  5947. const int ir0 = dr*ith;
  5948. const int ir1 = MIN(ir0 + dr, nr);
  5949. for (int ir = ir0; ir < ir1; ++ir) {
  5950. // src0 and dst are same shape => same indices
  5951. const int i3 = ir/(ne2*ne1);
  5952. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5953. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5954. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5955. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5956. for (int i = 0; i < ne0; i++) {
  5957. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5958. }
  5959. }
  5960. }
  5961. static void ggml_compute_forward_add1_f16_f16(
  5962. const struct ggml_compute_params * params,
  5963. const struct ggml_tensor * src0,
  5964. const struct ggml_tensor * src1,
  5965. struct ggml_tensor * dst) {
  5966. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5967. GGML_ASSERT(ggml_is_scalar(src1));
  5968. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5969. return;
  5970. }
  5971. // scalar to add
  5972. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  5973. const int ith = params->ith;
  5974. const int nth = params->nth;
  5975. const int nr = ggml_nrows(src0);
  5976. GGML_TENSOR_UNARY_OP_LOCALS
  5977. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5978. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5979. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5980. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5981. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5982. // rows per thread
  5983. const int dr = (nr + nth - 1)/nth;
  5984. // row range for this thread
  5985. const int ir0 = dr*ith;
  5986. const int ir1 = MIN(ir0 + dr, nr);
  5987. for (int ir = ir0; ir < ir1; ++ir) {
  5988. // src0 and dst are same shape => same indices
  5989. const int i3 = ir/(ne2*ne1);
  5990. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5991. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5992. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5993. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5994. for (int i = 0; i < ne0; i++) {
  5995. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5996. }
  5997. }
  5998. }
  5999. static void ggml_compute_forward_add1_q_f32(
  6000. const struct ggml_compute_params * params,
  6001. const struct ggml_tensor * src0,
  6002. const struct ggml_tensor * src1,
  6003. struct ggml_tensor * dst) {
  6004. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6005. GGML_ASSERT(ggml_is_scalar(src1));
  6006. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6007. return;
  6008. }
  6009. // scalar to add
  6010. const float v = *(float *) src1->data;
  6011. const int ith = params->ith;
  6012. const int nth = params->nth;
  6013. const int nr = ggml_nrows(src0);
  6014. GGML_TENSOR_UNARY_OP_LOCALS
  6015. const enum ggml_type type = src0->type;
  6016. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6017. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6018. // we don't support permuted src0
  6019. GGML_ASSERT(nb00 == ggml_type_size(type));
  6020. // dst cannot be transposed or permuted
  6021. GGML_ASSERT(nb0 <= nb1);
  6022. GGML_ASSERT(nb1 <= nb2);
  6023. GGML_ASSERT(nb2 <= nb3);
  6024. GGML_ASSERT(ggml_is_quantized(src0->type));
  6025. GGML_ASSERT(dst->type == src0->type);
  6026. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6027. // rows per thread
  6028. const int dr = (nr + nth - 1)/nth;
  6029. // row range for this thread
  6030. const int ir0 = dr*ith;
  6031. const int ir1 = MIN(ir0 + dr, nr);
  6032. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6033. for (int ir = ir0; ir < ir1; ++ir) {
  6034. // src0 and dst are same shape => same indices
  6035. const int i3 = ir/(ne2*ne1);
  6036. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6037. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6038. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6039. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6040. assert(ne0 % 32 == 0);
  6041. // unquantize row from src0 to temp buffer
  6042. dequantize_row_q(src0_row, wdata, ne0);
  6043. // add src1
  6044. ggml_vec_acc1_f32(ne0, wdata, v);
  6045. // quantize row to dst
  6046. quantize_row_q(wdata, dst_row, ne0);
  6047. }
  6048. }
  6049. static void ggml_compute_forward_add1(
  6050. const struct ggml_compute_params * params,
  6051. const struct ggml_tensor * src0,
  6052. const struct ggml_tensor * src1,
  6053. struct ggml_tensor * dst) {
  6054. switch (src0->type) {
  6055. case GGML_TYPE_F32:
  6056. {
  6057. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6058. } break;
  6059. case GGML_TYPE_F16:
  6060. {
  6061. if (src1->type == GGML_TYPE_F16) {
  6062. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6063. }
  6064. else if (src1->type == GGML_TYPE_F32) {
  6065. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6066. }
  6067. else {
  6068. GGML_ASSERT(false);
  6069. }
  6070. } break;
  6071. case GGML_TYPE_Q4_0:
  6072. case GGML_TYPE_Q4_1:
  6073. case GGML_TYPE_Q5_0:
  6074. case GGML_TYPE_Q5_1:
  6075. case GGML_TYPE_Q8_0:
  6076. case GGML_TYPE_Q8_1:
  6077. case GGML_TYPE_Q2_K:
  6078. case GGML_TYPE_Q3_K:
  6079. case GGML_TYPE_Q4_K:
  6080. case GGML_TYPE_Q5_K:
  6081. case GGML_TYPE_Q6_K:
  6082. {
  6083. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6084. } break;
  6085. default:
  6086. {
  6087. GGML_ASSERT(false);
  6088. } break;
  6089. }
  6090. }
  6091. // ggml_compute_forward_acc
  6092. static void ggml_compute_forward_acc_f32(
  6093. const struct ggml_compute_params * params,
  6094. const struct ggml_tensor * src0,
  6095. const struct ggml_tensor * src1,
  6096. struct ggml_tensor * dst) {
  6097. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6098. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6099. // view src0 and dst with these strides and data offset inbytes during acc
  6100. // nb0 is implicitely element_size because src0 and dst are contiguous
  6101. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6102. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6103. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6104. size_t offset = ((int32_t *) dst->op_params)[3];
  6105. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6106. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6107. // memcpy needs to be synchronized across threads to avoid race conditions.
  6108. // => do it in INIT phase
  6109. memcpy(
  6110. ((char *) dst->data),
  6111. ((char *) src0->data),
  6112. ggml_nbytes(dst));
  6113. }
  6114. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6115. return;
  6116. }
  6117. const int ith = params->ith;
  6118. const int nth = params->nth;
  6119. const int nr = ggml_nrows(src1);
  6120. const int nc = src1->ne[0];
  6121. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6122. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6123. // src0 and dst as viewed during acc
  6124. const size_t nb0 = ggml_element_size(src0);
  6125. const size_t nb00 = nb0;
  6126. const size_t nb01 = nb1;
  6127. const size_t nb02 = nb2;
  6128. const size_t nb03 = nb3;
  6129. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6130. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6131. GGML_ASSERT(nb10 == sizeof(float));
  6132. // rows per thread
  6133. const int dr = (nr + nth - 1)/nth;
  6134. // row range for this thread
  6135. const int ir0 = dr*ith;
  6136. const int ir1 = MIN(ir0 + dr, nr);
  6137. for (int ir = ir0; ir < ir1; ++ir) {
  6138. // src0 and dst are viewed with shape of src1 and offset
  6139. // => same indices
  6140. const int i3 = ir/(ne12*ne11);
  6141. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6142. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6143. #ifdef GGML_USE_ACCELERATE
  6144. vDSP_vadd(
  6145. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6146. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6147. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6148. #else
  6149. ggml_vec_add_f32(nc,
  6150. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6151. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6152. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6153. #endif
  6154. }
  6155. }
  6156. static void ggml_compute_forward_acc(
  6157. const struct ggml_compute_params * params,
  6158. const struct ggml_tensor * src0,
  6159. const struct ggml_tensor * src1,
  6160. struct ggml_tensor * dst) {
  6161. switch (src0->type) {
  6162. case GGML_TYPE_F32:
  6163. {
  6164. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6165. } break;
  6166. case GGML_TYPE_F16:
  6167. case GGML_TYPE_Q4_0:
  6168. case GGML_TYPE_Q4_1:
  6169. case GGML_TYPE_Q5_0:
  6170. case GGML_TYPE_Q5_1:
  6171. case GGML_TYPE_Q8_0:
  6172. case GGML_TYPE_Q8_1:
  6173. case GGML_TYPE_Q2_K:
  6174. case GGML_TYPE_Q3_K:
  6175. case GGML_TYPE_Q4_K:
  6176. case GGML_TYPE_Q5_K:
  6177. case GGML_TYPE_Q6_K:
  6178. default:
  6179. {
  6180. GGML_ASSERT(false);
  6181. } break;
  6182. }
  6183. }
  6184. // ggml_compute_forward_sub
  6185. static void ggml_compute_forward_sub_f32(
  6186. const struct ggml_compute_params * params,
  6187. const struct ggml_tensor * src0,
  6188. const struct ggml_tensor * src1,
  6189. struct ggml_tensor * dst) {
  6190. assert(params->ith == 0);
  6191. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6192. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6193. return;
  6194. }
  6195. const int nr = ggml_nrows(src0);
  6196. GGML_TENSOR_BINARY_OP_LOCALS
  6197. GGML_ASSERT( nb0 == sizeof(float));
  6198. GGML_ASSERT(nb00 == sizeof(float));
  6199. if (nb10 == sizeof(float)) {
  6200. for (int ir = 0; ir < nr; ++ir) {
  6201. // src0, src1 and dst are same shape => same indices
  6202. const int i3 = ir/(ne2*ne1);
  6203. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6204. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6205. #ifdef GGML_USE_ACCELERATE
  6206. vDSP_vsub(
  6207. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6208. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6209. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6210. ne0);
  6211. #else
  6212. ggml_vec_sub_f32(ne0,
  6213. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6214. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6215. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6216. #endif
  6217. // }
  6218. // }
  6219. }
  6220. } else {
  6221. // src1 is not contiguous
  6222. for (int ir = 0; ir < nr; ++ir) {
  6223. // src0, src1 and dst are same shape => same indices
  6224. const int i3 = ir/(ne2*ne1);
  6225. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6226. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6227. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6228. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6229. for (int i0 = 0; i0 < ne0; i0++) {
  6230. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6231. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6232. }
  6233. }
  6234. }
  6235. }
  6236. static void ggml_compute_forward_sub(
  6237. const struct ggml_compute_params * params,
  6238. const struct ggml_tensor * src0,
  6239. const struct ggml_tensor * src1,
  6240. struct ggml_tensor * dst) {
  6241. switch (src0->type) {
  6242. case GGML_TYPE_F32:
  6243. {
  6244. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6245. } break;
  6246. default:
  6247. {
  6248. GGML_ASSERT(false);
  6249. } break;
  6250. }
  6251. }
  6252. // ggml_compute_forward_mul
  6253. static void ggml_compute_forward_mul_f32(
  6254. const struct ggml_compute_params * params,
  6255. const struct ggml_tensor * src0,
  6256. const struct ggml_tensor * src1,
  6257. struct ggml_tensor * dst) {
  6258. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6259. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6260. return;
  6261. }
  6262. const int ith = params->ith;
  6263. const int nth = params->nth;
  6264. #ifdef GGML_USE_CLBLAST
  6265. if (src1->backend == GGML_BACKEND_GPU) {
  6266. if (ith == 0) {
  6267. ggml_cl_mul(src0, src1, dst);
  6268. }
  6269. return;
  6270. }
  6271. #endif
  6272. const int64_t nr = ggml_nrows(src0);
  6273. GGML_TENSOR_BINARY_OP_LOCALS
  6274. GGML_ASSERT( nb0 == sizeof(float));
  6275. GGML_ASSERT(nb00 == sizeof(float));
  6276. GGML_ASSERT(ne00 == ne10);
  6277. if (nb10 == sizeof(float)) {
  6278. for (int64_t ir = ith; ir < nr; ir += nth) {
  6279. // src0 and dst are same shape => same indices
  6280. const int64_t i03 = ir/(ne02*ne01);
  6281. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6282. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6283. const int64_t i13 = i03 % ne13;
  6284. const int64_t i12 = i02 % ne12;
  6285. const int64_t i11 = i01 % ne11;
  6286. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6287. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6288. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6289. #ifdef GGML_USE_ACCELERATE
  6290. UNUSED(ggml_vec_mul_f32);
  6291. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6292. #else
  6293. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6294. #endif
  6295. // }
  6296. // }
  6297. }
  6298. } else {
  6299. // src1 is not contiguous
  6300. for (int64_t ir = ith; ir < nr; ir += nth) {
  6301. // src0 and dst are same shape => same indices
  6302. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6303. const int64_t i03 = ir/(ne02*ne01);
  6304. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6305. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6306. const int64_t i13 = i03 % ne13;
  6307. const int64_t i12 = i02 % ne12;
  6308. const int64_t i11 = i01 % ne11;
  6309. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6310. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6311. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6312. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6313. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6314. }
  6315. }
  6316. }
  6317. }
  6318. static void ggml_compute_forward_mul(
  6319. const struct ggml_compute_params * params,
  6320. const struct ggml_tensor * src0,
  6321. const struct ggml_tensor * src1,
  6322. struct ggml_tensor * dst) {
  6323. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6324. switch (src0->type) {
  6325. case GGML_TYPE_F32:
  6326. {
  6327. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6328. } break;
  6329. default:
  6330. {
  6331. GGML_ASSERT(false);
  6332. } break;
  6333. }
  6334. }
  6335. // ggml_compute_forward_div
  6336. static void ggml_compute_forward_div_f32(
  6337. const struct ggml_compute_params * params,
  6338. const struct ggml_tensor * src0,
  6339. const struct ggml_tensor * src1,
  6340. struct ggml_tensor * dst) {
  6341. assert(params->ith == 0);
  6342. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6344. return;
  6345. }
  6346. const int nr = ggml_nrows(src0);
  6347. GGML_TENSOR_BINARY_OP_LOCALS
  6348. GGML_ASSERT( nb0 == sizeof(float));
  6349. GGML_ASSERT(nb00 == sizeof(float));
  6350. if (nb10 == sizeof(float)) {
  6351. for (int ir = 0; ir < nr; ++ir) {
  6352. // src0, src1 and dst are same shape => same indices
  6353. const int i3 = ir/(ne2*ne1);
  6354. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6355. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6356. #ifdef GGML_USE_ACCELERATE
  6357. UNUSED(ggml_vec_div_f32);
  6358. vDSP_vdiv(
  6359. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6360. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6361. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6362. ne0);
  6363. #else
  6364. ggml_vec_div_f32(ne0,
  6365. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6366. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6367. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6368. #endif
  6369. // }
  6370. // }
  6371. }
  6372. } else {
  6373. // src1 is not contiguous
  6374. for (int ir = 0; ir < nr; ++ir) {
  6375. // src0, src1 and dst are same shape => same indices
  6376. const int i3 = ir/(ne2*ne1);
  6377. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6378. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6379. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6380. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6381. for (int i0 = 0; i0 < ne0; i0++) {
  6382. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6383. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6384. }
  6385. }
  6386. }
  6387. }
  6388. static void ggml_compute_forward_div(
  6389. const struct ggml_compute_params * params,
  6390. const struct ggml_tensor * src0,
  6391. const struct ggml_tensor * src1,
  6392. struct ggml_tensor * dst) {
  6393. switch (src0->type) {
  6394. case GGML_TYPE_F32:
  6395. {
  6396. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6397. } break;
  6398. default:
  6399. {
  6400. GGML_ASSERT(false);
  6401. } break;
  6402. }
  6403. }
  6404. // ggml_compute_forward_sqr
  6405. static void ggml_compute_forward_sqr_f32(
  6406. const struct ggml_compute_params * params,
  6407. const struct ggml_tensor * src0,
  6408. struct ggml_tensor * dst) {
  6409. assert(params->ith == 0);
  6410. assert(ggml_are_same_shape(src0, dst));
  6411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6412. return;
  6413. }
  6414. const int n = ggml_nrows(src0);
  6415. const int nc = src0->ne[0];
  6416. assert( dst->nb[0] == sizeof(float));
  6417. assert(src0->nb[0] == sizeof(float));
  6418. for (int i = 0; i < n; i++) {
  6419. ggml_vec_sqr_f32(nc,
  6420. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6421. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6422. }
  6423. }
  6424. static void ggml_compute_forward_sqr(
  6425. const struct ggml_compute_params * params,
  6426. const struct ggml_tensor * src0,
  6427. struct ggml_tensor * dst) {
  6428. switch (src0->type) {
  6429. case GGML_TYPE_F32:
  6430. {
  6431. ggml_compute_forward_sqr_f32(params, src0, dst);
  6432. } break;
  6433. default:
  6434. {
  6435. GGML_ASSERT(false);
  6436. } break;
  6437. }
  6438. }
  6439. // ggml_compute_forward_sqrt
  6440. static void ggml_compute_forward_sqrt_f32(
  6441. const struct ggml_compute_params * params,
  6442. const struct ggml_tensor * src0,
  6443. struct ggml_tensor * dst) {
  6444. assert(params->ith == 0);
  6445. assert(ggml_are_same_shape(src0, dst));
  6446. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6447. return;
  6448. }
  6449. const int n = ggml_nrows(src0);
  6450. const int nc = src0->ne[0];
  6451. assert( dst->nb[0] == sizeof(float));
  6452. assert(src0->nb[0] == sizeof(float));
  6453. for (int i = 0; i < n; i++) {
  6454. ggml_vec_sqrt_f32(nc,
  6455. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6456. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6457. }
  6458. }
  6459. static void ggml_compute_forward_sqrt(
  6460. const struct ggml_compute_params * params,
  6461. const struct ggml_tensor * src0,
  6462. struct ggml_tensor * dst) {
  6463. switch (src0->type) {
  6464. case GGML_TYPE_F32:
  6465. {
  6466. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6467. } break;
  6468. default:
  6469. {
  6470. GGML_ASSERT(false);
  6471. } break;
  6472. }
  6473. }
  6474. // ggml_compute_forward_log
  6475. static void ggml_compute_forward_log_f32(
  6476. const struct ggml_compute_params * params,
  6477. const struct ggml_tensor * src0,
  6478. struct ggml_tensor * dst) {
  6479. GGML_ASSERT(params->ith == 0);
  6480. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6482. return;
  6483. }
  6484. const int n = ggml_nrows(src0);
  6485. const int nc = src0->ne[0];
  6486. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6487. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6488. for (int i = 0; i < n; i++) {
  6489. ggml_vec_log_f32(nc,
  6490. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6491. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6492. }
  6493. }
  6494. static void ggml_compute_forward_log(
  6495. const struct ggml_compute_params * params,
  6496. const struct ggml_tensor * src0,
  6497. struct ggml_tensor * dst) {
  6498. switch (src0->type) {
  6499. case GGML_TYPE_F32:
  6500. {
  6501. ggml_compute_forward_log_f32(params, src0, dst);
  6502. } break;
  6503. default:
  6504. {
  6505. GGML_ASSERT(false);
  6506. } break;
  6507. }
  6508. }
  6509. // ggml_compute_forward_sum
  6510. static void ggml_compute_forward_sum_f32(
  6511. const struct ggml_compute_params * params,
  6512. const struct ggml_tensor * src0,
  6513. struct ggml_tensor * dst) {
  6514. assert(params->ith == 0);
  6515. assert(ggml_is_scalar(dst));
  6516. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6517. return;
  6518. }
  6519. assert(ggml_is_scalar(dst));
  6520. assert(src0->nb[0] == sizeof(float));
  6521. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6522. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6523. ggml_float sum = 0;
  6524. ggml_float row_sum = 0;
  6525. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6526. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6527. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6528. ggml_vec_sum_f32_ggf(ne00,
  6529. &row_sum,
  6530. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6531. sum += row_sum;
  6532. }
  6533. }
  6534. }
  6535. ((float *) dst->data)[0] = sum;
  6536. }
  6537. static void ggml_compute_forward_sum_f16(
  6538. const struct ggml_compute_params * params,
  6539. const struct ggml_tensor * src0,
  6540. struct ggml_tensor * dst) {
  6541. assert(params->ith == 0);
  6542. assert(ggml_is_scalar(dst));
  6543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6544. return;
  6545. }
  6546. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6547. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6548. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6549. float sum = 0;
  6550. float row_sum = 0;
  6551. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6552. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6553. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6554. ggml_vec_sum_f16_ggf(ne00,
  6555. &row_sum,
  6556. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6557. sum += row_sum;
  6558. }
  6559. }
  6560. }
  6561. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6562. }
  6563. static void ggml_compute_forward_sum(
  6564. const struct ggml_compute_params * params,
  6565. const struct ggml_tensor * src0,
  6566. struct ggml_tensor * dst) {
  6567. switch (src0->type) {
  6568. case GGML_TYPE_F32:
  6569. {
  6570. ggml_compute_forward_sum_f32(params, src0, dst);
  6571. } break;
  6572. case GGML_TYPE_F16:
  6573. {
  6574. ggml_compute_forward_sum_f16(params, src0, dst);
  6575. } break;
  6576. default:
  6577. {
  6578. GGML_ASSERT(false);
  6579. } break;
  6580. }
  6581. }
  6582. // ggml_compute_forward_sum_rows
  6583. static void ggml_compute_forward_sum_rows_f32(
  6584. const struct ggml_compute_params * params,
  6585. const struct ggml_tensor * src0,
  6586. struct ggml_tensor * dst) {
  6587. GGML_ASSERT(params->ith == 0);
  6588. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6589. return;
  6590. }
  6591. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6592. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6593. GGML_TENSOR_UNARY_OP_LOCALS
  6594. GGML_ASSERT(ne0 == 1);
  6595. GGML_ASSERT(ne1 == ne01);
  6596. GGML_ASSERT(ne2 == ne02);
  6597. GGML_ASSERT(ne3 == ne03);
  6598. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6599. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6600. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6601. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6602. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6603. float row_sum = 0;
  6604. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6605. dst_row[0] = row_sum;
  6606. }
  6607. }
  6608. }
  6609. }
  6610. static void ggml_compute_forward_sum_rows(
  6611. const struct ggml_compute_params * params,
  6612. const struct ggml_tensor * src0,
  6613. struct ggml_tensor * dst) {
  6614. switch (src0->type) {
  6615. case GGML_TYPE_F32:
  6616. {
  6617. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6618. } break;
  6619. default:
  6620. {
  6621. GGML_ASSERT(false);
  6622. } break;
  6623. }
  6624. }
  6625. // ggml_compute_forward_mean
  6626. static void ggml_compute_forward_mean_f32(
  6627. const struct ggml_compute_params * params,
  6628. const struct ggml_tensor * src0,
  6629. struct ggml_tensor * dst) {
  6630. assert(params->ith == 0);
  6631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6632. return;
  6633. }
  6634. assert(src0->nb[0] == sizeof(float));
  6635. GGML_TENSOR_UNARY_OP_LOCALS
  6636. assert(ne0 == 1);
  6637. assert(ne1 == ne01);
  6638. assert(ne2 == ne02);
  6639. assert(ne3 == ne03);
  6640. UNUSED(ne0);
  6641. UNUSED(ne1);
  6642. UNUSED(ne2);
  6643. UNUSED(ne3);
  6644. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6645. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6646. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6647. ggml_vec_sum_f32(ne00,
  6648. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6649. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6650. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6651. }
  6652. }
  6653. }
  6654. }
  6655. static void ggml_compute_forward_mean(
  6656. const struct ggml_compute_params * params,
  6657. const struct ggml_tensor * src0,
  6658. struct ggml_tensor * dst) {
  6659. switch (src0->type) {
  6660. case GGML_TYPE_F32:
  6661. {
  6662. ggml_compute_forward_mean_f32(params, src0, dst);
  6663. } break;
  6664. default:
  6665. {
  6666. GGML_ASSERT(false);
  6667. } break;
  6668. }
  6669. }
  6670. // ggml_compute_forward_argmax
  6671. static void ggml_compute_forward_argmax_f32(
  6672. const struct ggml_compute_params * params,
  6673. const struct ggml_tensor * src0,
  6674. struct ggml_tensor * dst) {
  6675. assert(params->ith == 0);
  6676. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6677. return;
  6678. }
  6679. assert(src0->nb[0] == sizeof(float));
  6680. assert(dst->nb[0] == sizeof(float));
  6681. const int64_t ne00 = src0->ne[0];
  6682. const int64_t ne01 = src0->ne[1];
  6683. const size_t nb01 = src0->nb[1];
  6684. const size_t nb0 = dst->nb[0];
  6685. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6686. float * src = (float *) ((char *) src0->data + i1*nb01);
  6687. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6688. int v = 0;
  6689. ggml_vec_argmax_f32(ne00, &v, src);
  6690. dst_[0] = v;
  6691. }
  6692. }
  6693. static void ggml_compute_forward_argmax(
  6694. const struct ggml_compute_params * params,
  6695. const struct ggml_tensor * src0,
  6696. struct ggml_tensor * dst) {
  6697. switch (src0->type) {
  6698. case GGML_TYPE_F32:
  6699. {
  6700. ggml_compute_forward_argmax_f32(params, src0, dst);
  6701. } break;
  6702. default:
  6703. {
  6704. GGML_ASSERT(false);
  6705. } break;
  6706. }
  6707. }
  6708. // ggml_compute_forward_repeat
  6709. static void ggml_compute_forward_repeat_f32(
  6710. const struct ggml_compute_params * params,
  6711. const struct ggml_tensor * src0,
  6712. struct ggml_tensor * dst) {
  6713. GGML_ASSERT(params->ith == 0);
  6714. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6715. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6716. return;
  6717. }
  6718. GGML_TENSOR_UNARY_OP_LOCALS
  6719. // guaranteed to be an integer due to the check in ggml_can_repeat
  6720. const int nr0 = (int)(ne0/ne00);
  6721. const int nr1 = (int)(ne1/ne01);
  6722. const int nr2 = (int)(ne2/ne02);
  6723. const int nr3 = (int)(ne3/ne03);
  6724. // TODO: support for transposed / permuted tensors
  6725. GGML_ASSERT(nb0 == sizeof(float));
  6726. GGML_ASSERT(nb00 == sizeof(float));
  6727. // TODO: maybe this is not optimal?
  6728. for (int i3 = 0; i3 < nr3; i3++) {
  6729. for (int k3 = 0; k3 < ne03; k3++) {
  6730. for (int i2 = 0; i2 < nr2; i2++) {
  6731. for (int k2 = 0; k2 < ne02; k2++) {
  6732. for (int i1 = 0; i1 < nr1; i1++) {
  6733. for (int k1 = 0; k1 < ne01; k1++) {
  6734. for (int i0 = 0; i0 < nr0; i0++) {
  6735. ggml_vec_cpy_f32(ne00,
  6736. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6737. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6738. }
  6739. }
  6740. }
  6741. }
  6742. }
  6743. }
  6744. }
  6745. }
  6746. static void ggml_compute_forward_repeat_f16(
  6747. const struct ggml_compute_params * params,
  6748. const struct ggml_tensor * src0,
  6749. struct ggml_tensor * dst) {
  6750. GGML_ASSERT(params->ith == 0);
  6751. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6752. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6753. return;
  6754. }
  6755. GGML_TENSOR_UNARY_OP_LOCALS;
  6756. // guaranteed to be an integer due to the check in ggml_can_repeat
  6757. const int nr0 = (int)(ne0/ne00);
  6758. const int nr1 = (int)(ne1/ne01);
  6759. const int nr2 = (int)(ne2/ne02);
  6760. const int nr3 = (int)(ne3/ne03);
  6761. // TODO: support for transposed / permuted tensors
  6762. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6763. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6764. // TODO: maybe this is not optimal?
  6765. for (int i3 = 0; i3 < nr3; i3++) {
  6766. for (int k3 = 0; k3 < ne03; k3++) {
  6767. for (int i2 = 0; i2 < nr2; i2++) {
  6768. for (int k2 = 0; k2 < ne02; k2++) {
  6769. for (int i1 = 0; i1 < nr1; i1++) {
  6770. for (int k1 = 0; k1 < ne01; k1++) {
  6771. for (int i0 = 0; i0 < nr0; i0++) {
  6772. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6773. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6774. // ggml_vec_cpy_f16(ne00, y, x)
  6775. for (int i = 0; i < ne00; ++i) {
  6776. y[i] = x[i];
  6777. }
  6778. }
  6779. }
  6780. }
  6781. }
  6782. }
  6783. }
  6784. }
  6785. }
  6786. static void ggml_compute_forward_repeat(
  6787. const struct ggml_compute_params * params,
  6788. const struct ggml_tensor * src0,
  6789. struct ggml_tensor * dst) {
  6790. switch (src0->type) {
  6791. case GGML_TYPE_F16:
  6792. {
  6793. ggml_compute_forward_repeat_f16(params, src0, dst);
  6794. } break;
  6795. case GGML_TYPE_F32:
  6796. {
  6797. ggml_compute_forward_repeat_f32(params, src0, dst);
  6798. } break;
  6799. default:
  6800. {
  6801. GGML_ASSERT(false);
  6802. } break;
  6803. }
  6804. }
  6805. // ggml_compute_forward_repeat_back
  6806. static void ggml_compute_forward_repeat_back_f32(
  6807. const struct ggml_compute_params * params,
  6808. const struct ggml_tensor * src0,
  6809. struct ggml_tensor * dst) {
  6810. GGML_ASSERT(params->ith == 0);
  6811. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6813. return;
  6814. }
  6815. GGML_TENSOR_UNARY_OP_LOCALS
  6816. // guaranteed to be an integer due to the check in ggml_can_repeat
  6817. const int nr0 = (int)(ne00/ne0);
  6818. const int nr1 = (int)(ne01/ne1);
  6819. const int nr2 = (int)(ne02/ne2);
  6820. const int nr3 = (int)(ne03/ne3);
  6821. // TODO: support for transposed / permuted tensors
  6822. GGML_ASSERT(nb0 == sizeof(float));
  6823. GGML_ASSERT(nb00 == sizeof(float));
  6824. if (ggml_is_contiguous(dst)) {
  6825. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6826. } else {
  6827. for (int k3 = 0; k3 < ne3; k3++) {
  6828. for (int k2 = 0; k2 < ne2; k2++) {
  6829. for (int k1 = 0; k1 < ne1; k1++) {
  6830. ggml_vec_set_f32(ne0,
  6831. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6832. 0);
  6833. }
  6834. }
  6835. }
  6836. }
  6837. // TODO: maybe this is not optimal?
  6838. for (int i3 = 0; i3 < nr3; i3++) {
  6839. for (int k3 = 0; k3 < ne3; k3++) {
  6840. for (int i2 = 0; i2 < nr2; i2++) {
  6841. for (int k2 = 0; k2 < ne2; k2++) {
  6842. for (int i1 = 0; i1 < nr1; i1++) {
  6843. for (int k1 = 0; k1 < ne1; k1++) {
  6844. for (int i0 = 0; i0 < nr0; i0++) {
  6845. ggml_vec_acc_f32(ne0,
  6846. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6847. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6848. }
  6849. }
  6850. }
  6851. }
  6852. }
  6853. }
  6854. }
  6855. }
  6856. static void ggml_compute_forward_repeat_back(
  6857. const struct ggml_compute_params * params,
  6858. const struct ggml_tensor * src0,
  6859. struct ggml_tensor * dst) {
  6860. switch (src0->type) {
  6861. case GGML_TYPE_F32:
  6862. {
  6863. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6864. } break;
  6865. default:
  6866. {
  6867. GGML_ASSERT(false);
  6868. } break;
  6869. }
  6870. }
  6871. // ggml_compute_forward_concat
  6872. static void ggml_compute_forward_concat_f32(
  6873. const struct ggml_compute_params * params,
  6874. const struct ggml_tensor * src0,
  6875. const struct ggml_tensor * src1,
  6876. struct ggml_tensor * dst) {
  6877. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6878. return;
  6879. }
  6880. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6881. const int ith = params->ith;
  6882. GGML_TENSOR_BINARY_OP_LOCALS
  6883. // TODO: support for transposed / permuted tensors
  6884. GGML_ASSERT(nb0 == sizeof(float));
  6885. GGML_ASSERT(nb00 == sizeof(float));
  6886. GGML_ASSERT(nb10 == sizeof(float));
  6887. for (int i3 = 0; i3 < ne3; i3++) {
  6888. for (int i2 = ith; i2 < ne2; i2++) {
  6889. if (i2 < ne02) { // src0
  6890. for (int i1 = 0; i1 < ne1; i1++) {
  6891. for (int i0 = 0; i0 < ne0; i0++) {
  6892. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6893. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6894. *y = *x;
  6895. }
  6896. }
  6897. } // src1
  6898. else {
  6899. for (int i1 = 0; i1 < ne1; i1++) {
  6900. for (int i0 = 0; i0 < ne0; i0++) {
  6901. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6902. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6903. *y = *x;
  6904. }
  6905. }
  6906. }
  6907. }
  6908. }
  6909. }
  6910. static void ggml_compute_forward_concat(
  6911. const struct ggml_compute_params* params,
  6912. const struct ggml_tensor* src0,
  6913. const struct ggml_tensor* src1,
  6914. struct ggml_tensor* dst) {
  6915. switch (src0->type) {
  6916. case GGML_TYPE_F32:
  6917. {
  6918. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  6919. } break;
  6920. default:
  6921. {
  6922. GGML_ASSERT(false);
  6923. } break;
  6924. }
  6925. }
  6926. // ggml_compute_forward_abs
  6927. static void ggml_compute_forward_abs_f32(
  6928. const struct ggml_compute_params * params,
  6929. const struct ggml_tensor * src0,
  6930. struct ggml_tensor * dst) {
  6931. assert(params->ith == 0);
  6932. assert(ggml_are_same_shape(src0, dst));
  6933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6934. return;
  6935. }
  6936. const int n = ggml_nrows(src0);
  6937. const int nc = src0->ne[0];
  6938. assert(dst->nb[0] == sizeof(float));
  6939. assert(src0->nb[0] == sizeof(float));
  6940. for (int i = 0; i < n; i++) {
  6941. ggml_vec_abs_f32(nc,
  6942. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6943. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6944. }
  6945. }
  6946. static void ggml_compute_forward_abs(
  6947. const struct ggml_compute_params * params,
  6948. const struct ggml_tensor * src0,
  6949. struct ggml_tensor * dst) {
  6950. switch (src0->type) {
  6951. case GGML_TYPE_F32:
  6952. {
  6953. ggml_compute_forward_abs_f32(params, src0, dst);
  6954. } break;
  6955. default:
  6956. {
  6957. GGML_ASSERT(false);
  6958. } break;
  6959. }
  6960. }
  6961. // ggml_compute_forward_sgn
  6962. static void ggml_compute_forward_sgn_f32(
  6963. const struct ggml_compute_params * params,
  6964. const struct ggml_tensor * src0,
  6965. struct ggml_tensor * dst) {
  6966. assert(params->ith == 0);
  6967. assert(ggml_are_same_shape(src0, dst));
  6968. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6969. return;
  6970. }
  6971. const int n = ggml_nrows(src0);
  6972. const int nc = src0->ne[0];
  6973. assert(dst->nb[0] == sizeof(float));
  6974. assert(src0->nb[0] == sizeof(float));
  6975. for (int i = 0; i < n; i++) {
  6976. ggml_vec_sgn_f32(nc,
  6977. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6978. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6979. }
  6980. }
  6981. static void ggml_compute_forward_sgn(
  6982. const struct ggml_compute_params * params,
  6983. const struct ggml_tensor * src0,
  6984. struct ggml_tensor * dst) {
  6985. switch (src0->type) {
  6986. case GGML_TYPE_F32:
  6987. {
  6988. ggml_compute_forward_sgn_f32(params, src0, dst);
  6989. } break;
  6990. default:
  6991. {
  6992. GGML_ASSERT(false);
  6993. } break;
  6994. }
  6995. }
  6996. // ggml_compute_forward_neg
  6997. static void ggml_compute_forward_neg_f32(
  6998. const struct ggml_compute_params * params,
  6999. const struct ggml_tensor * src0,
  7000. struct ggml_tensor * dst) {
  7001. assert(params->ith == 0);
  7002. assert(ggml_are_same_shape(src0, dst));
  7003. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7004. return;
  7005. }
  7006. const int n = ggml_nrows(src0);
  7007. const int nc = src0->ne[0];
  7008. assert(dst->nb[0] == sizeof(float));
  7009. assert(src0->nb[0] == sizeof(float));
  7010. for (int i = 0; i < n; i++) {
  7011. ggml_vec_neg_f32(nc,
  7012. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7013. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7014. }
  7015. }
  7016. static void ggml_compute_forward_neg(
  7017. const struct ggml_compute_params * params,
  7018. const struct ggml_tensor * src0,
  7019. struct ggml_tensor * dst) {
  7020. switch (src0->type) {
  7021. case GGML_TYPE_F32:
  7022. {
  7023. ggml_compute_forward_neg_f32(params, src0, dst);
  7024. } break;
  7025. default:
  7026. {
  7027. GGML_ASSERT(false);
  7028. } break;
  7029. }
  7030. }
  7031. // ggml_compute_forward_step
  7032. static void ggml_compute_forward_step_f32(
  7033. const struct ggml_compute_params * params,
  7034. const struct ggml_tensor * src0,
  7035. struct ggml_tensor * dst) {
  7036. assert(params->ith == 0);
  7037. assert(ggml_are_same_shape(src0, dst));
  7038. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7039. return;
  7040. }
  7041. const int n = ggml_nrows(src0);
  7042. const int nc = src0->ne[0];
  7043. assert(dst->nb[0] == sizeof(float));
  7044. assert(src0->nb[0] == sizeof(float));
  7045. for (int i = 0; i < n; i++) {
  7046. ggml_vec_step_f32(nc,
  7047. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7048. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7049. }
  7050. }
  7051. static void ggml_compute_forward_step(
  7052. const struct ggml_compute_params * params,
  7053. const struct ggml_tensor * src0,
  7054. struct ggml_tensor * dst) {
  7055. switch (src0->type) {
  7056. case GGML_TYPE_F32:
  7057. {
  7058. ggml_compute_forward_step_f32(params, src0, dst);
  7059. } break;
  7060. default:
  7061. {
  7062. GGML_ASSERT(false);
  7063. } break;
  7064. }
  7065. }
  7066. // ggml_compute_forward_tanh
  7067. static void ggml_compute_forward_tanh_f32(
  7068. const struct ggml_compute_params * params,
  7069. const struct ggml_tensor * src0,
  7070. struct ggml_tensor * dst) {
  7071. assert(params->ith == 0);
  7072. assert(ggml_are_same_shape(src0, dst));
  7073. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7074. return;
  7075. }
  7076. const int n = ggml_nrows(src0);
  7077. const int nc = src0->ne[0];
  7078. assert(dst->nb[0] == sizeof(float));
  7079. assert(src0->nb[0] == sizeof(float));
  7080. for (int i = 0; i < n; i++) {
  7081. ggml_vec_tanh_f32(nc,
  7082. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7083. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7084. }
  7085. }
  7086. static void ggml_compute_forward_tanh(
  7087. const struct ggml_compute_params * params,
  7088. const struct ggml_tensor * src0,
  7089. struct ggml_tensor * dst) {
  7090. switch (src0->type) {
  7091. case GGML_TYPE_F32:
  7092. {
  7093. ggml_compute_forward_tanh_f32(params, src0, dst);
  7094. } break;
  7095. default:
  7096. {
  7097. GGML_ASSERT(false);
  7098. } break;
  7099. }
  7100. }
  7101. // ggml_compute_forward_elu
  7102. static void ggml_compute_forward_elu_f32(
  7103. const struct ggml_compute_params * params,
  7104. const struct ggml_tensor * src0,
  7105. struct ggml_tensor * dst) {
  7106. assert(params->ith == 0);
  7107. assert(ggml_are_same_shape(src0, dst));
  7108. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7109. return;
  7110. }
  7111. const int n = ggml_nrows(src0);
  7112. const int nc = src0->ne[0];
  7113. assert(dst->nb[0] == sizeof(float));
  7114. assert(src0->nb[0] == sizeof(float));
  7115. for (int i = 0; i < n; i++) {
  7116. ggml_vec_elu_f32(nc,
  7117. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7118. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7119. }
  7120. }
  7121. static void ggml_compute_forward_elu(
  7122. const struct ggml_compute_params * params,
  7123. const struct ggml_tensor * src0,
  7124. struct ggml_tensor * dst) {
  7125. switch (src0->type) {
  7126. case GGML_TYPE_F32:
  7127. {
  7128. ggml_compute_forward_elu_f32(params, src0, dst);
  7129. } break;
  7130. default:
  7131. {
  7132. GGML_ASSERT(false);
  7133. } break;
  7134. }
  7135. }
  7136. // ggml_compute_forward_relu
  7137. static void ggml_compute_forward_relu_f32(
  7138. const struct ggml_compute_params * params,
  7139. const struct ggml_tensor * src0,
  7140. struct ggml_tensor * dst) {
  7141. assert(params->ith == 0);
  7142. assert(ggml_are_same_shape(src0, dst));
  7143. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7144. return;
  7145. }
  7146. const int n = ggml_nrows(src0);
  7147. const int nc = src0->ne[0];
  7148. assert(dst->nb[0] == sizeof(float));
  7149. assert(src0->nb[0] == sizeof(float));
  7150. for (int i = 0; i < n; i++) {
  7151. ggml_vec_relu_f32(nc,
  7152. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7153. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7154. }
  7155. }
  7156. static void ggml_compute_forward_relu(
  7157. const struct ggml_compute_params * params,
  7158. const struct ggml_tensor * src0,
  7159. struct ggml_tensor * dst) {
  7160. switch (src0->type) {
  7161. case GGML_TYPE_F32:
  7162. {
  7163. ggml_compute_forward_relu_f32(params, src0, dst);
  7164. } break;
  7165. default:
  7166. {
  7167. GGML_ASSERT(false);
  7168. } break;
  7169. }
  7170. }
  7171. // ggml_compute_forward_gelu
  7172. static void ggml_compute_forward_gelu_f32(
  7173. const struct ggml_compute_params * params,
  7174. const struct ggml_tensor * src0,
  7175. struct ggml_tensor * dst) {
  7176. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7177. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7178. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7180. return;
  7181. }
  7182. const int ith = params->ith;
  7183. const int nth = params->nth;
  7184. const int nc = src0->ne[0];
  7185. const int nr = ggml_nrows(src0);
  7186. // rows per thread
  7187. const int dr = (nr + nth - 1)/nth;
  7188. // row range for this thread
  7189. const int ir0 = dr*ith;
  7190. const int ir1 = MIN(ir0 + dr, nr);
  7191. for (int i1 = ir0; i1 < ir1; i1++) {
  7192. ggml_vec_gelu_f32(nc,
  7193. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7194. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7195. #ifndef NDEBUG
  7196. for (int k = 0; k < nc; k++) {
  7197. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7198. UNUSED(x);
  7199. assert(!isnan(x));
  7200. assert(!isinf(x));
  7201. }
  7202. #endif
  7203. }
  7204. }
  7205. static void ggml_compute_forward_gelu(
  7206. const struct ggml_compute_params * params,
  7207. const struct ggml_tensor * src0,
  7208. struct ggml_tensor * dst) {
  7209. switch (src0->type) {
  7210. case GGML_TYPE_F32:
  7211. {
  7212. ggml_compute_forward_gelu_f32(params, src0, dst);
  7213. } break;
  7214. default:
  7215. {
  7216. GGML_ASSERT(false);
  7217. } break;
  7218. }
  7219. }
  7220. // ggml_compute_forward_gelu_quick
  7221. static void ggml_compute_forward_gelu_quick_f32(
  7222. const struct ggml_compute_params * params,
  7223. const struct ggml_tensor * src0,
  7224. struct ggml_tensor * dst) {
  7225. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7226. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7227. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7228. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7229. return;
  7230. }
  7231. const int ith = params->ith;
  7232. const int nth = params->nth;
  7233. const int nc = src0->ne[0];
  7234. const int nr = ggml_nrows(src0);
  7235. // rows per thread
  7236. const int dr = (nr + nth - 1)/nth;
  7237. // row range for this thread
  7238. const int ir0 = dr*ith;
  7239. const int ir1 = MIN(ir0 + dr, nr);
  7240. for (int i1 = ir0; i1 < ir1; i1++) {
  7241. ggml_vec_gelu_quick_f32(nc,
  7242. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7243. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7244. #ifndef NDEBUG
  7245. for (int k = 0; k < nc; k++) {
  7246. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7247. UNUSED(x);
  7248. assert(!isnan(x));
  7249. assert(!isinf(x));
  7250. }
  7251. #endif
  7252. }
  7253. }
  7254. static void ggml_compute_forward_gelu_quick(
  7255. const struct ggml_compute_params * params,
  7256. const struct ggml_tensor * src0,
  7257. struct ggml_tensor * dst) {
  7258. switch (src0->type) {
  7259. case GGML_TYPE_F32:
  7260. {
  7261. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7262. } break;
  7263. default:
  7264. {
  7265. GGML_ASSERT(false);
  7266. } break;
  7267. }
  7268. }
  7269. // ggml_compute_forward_silu
  7270. static void ggml_compute_forward_silu_f32(
  7271. const struct ggml_compute_params * params,
  7272. const struct ggml_tensor * src0,
  7273. struct ggml_tensor * dst) {
  7274. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7275. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7276. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7278. return;
  7279. }
  7280. const int ith = params->ith;
  7281. const int nth = params->nth;
  7282. const int nc = src0->ne[0];
  7283. const int nr = ggml_nrows(src0);
  7284. // rows per thread
  7285. const int dr = (nr + nth - 1)/nth;
  7286. // row range for this thread
  7287. const int ir0 = dr*ith;
  7288. const int ir1 = MIN(ir0 + dr, nr);
  7289. for (int i1 = ir0; i1 < ir1; i1++) {
  7290. ggml_vec_silu_f32(nc,
  7291. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7292. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7293. #ifndef NDEBUG
  7294. for (int k = 0; k < nc; k++) {
  7295. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7296. UNUSED(x);
  7297. assert(!isnan(x));
  7298. assert(!isinf(x));
  7299. }
  7300. #endif
  7301. }
  7302. }
  7303. static void ggml_compute_forward_silu(
  7304. const struct ggml_compute_params * params,
  7305. const struct ggml_tensor * src0,
  7306. struct ggml_tensor * dst) {
  7307. switch (src0->type) {
  7308. case GGML_TYPE_F32:
  7309. {
  7310. ggml_compute_forward_silu_f32(params, src0, dst);
  7311. } break;
  7312. default:
  7313. {
  7314. GGML_ASSERT(false);
  7315. } break;
  7316. }
  7317. }
  7318. // ggml_compute_forward_silu_back
  7319. static void ggml_compute_forward_silu_back_f32(
  7320. const struct ggml_compute_params * params,
  7321. const struct ggml_tensor * src0,
  7322. const struct ggml_tensor * grad,
  7323. struct ggml_tensor * dst) {
  7324. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7325. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7326. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7327. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7328. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7330. return;
  7331. }
  7332. const int ith = params->ith;
  7333. const int nth = params->nth;
  7334. const int nc = src0->ne[0];
  7335. const int nr = ggml_nrows(src0);
  7336. // rows per thread
  7337. const int dr = (nr + nth - 1)/nth;
  7338. // row range for this thread
  7339. const int ir0 = dr*ith;
  7340. const int ir1 = MIN(ir0 + dr, nr);
  7341. for (int i1 = ir0; i1 < ir1; i1++) {
  7342. ggml_vec_silu_backward_f32(nc,
  7343. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7344. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7345. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7346. #ifndef NDEBUG
  7347. for (int k = 0; k < nc; k++) {
  7348. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7349. UNUSED(x);
  7350. assert(!isnan(x));
  7351. assert(!isinf(x));
  7352. }
  7353. #endif
  7354. }
  7355. }
  7356. static void ggml_compute_forward_silu_back(
  7357. const struct ggml_compute_params * params,
  7358. const struct ggml_tensor * src0,
  7359. const struct ggml_tensor * grad,
  7360. struct ggml_tensor * dst) {
  7361. switch (src0->type) {
  7362. case GGML_TYPE_F32:
  7363. {
  7364. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7365. } break;
  7366. default:
  7367. {
  7368. GGML_ASSERT(false);
  7369. } break;
  7370. }
  7371. }
  7372. // ggml_compute_forward_norm
  7373. static void ggml_compute_forward_norm_f32(
  7374. const struct ggml_compute_params * params,
  7375. const struct ggml_tensor * src0,
  7376. struct ggml_tensor * dst) {
  7377. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7378. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7379. return;
  7380. }
  7381. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7382. const int ith = params->ith;
  7383. const int nth = params->nth;
  7384. GGML_TENSOR_UNARY_OP_LOCALS
  7385. float eps;
  7386. memcpy(&eps, dst->op_params, sizeof(float));
  7387. // TODO: optimize
  7388. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7389. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7390. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7391. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7392. ggml_float sum = 0.0;
  7393. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7394. sum += (ggml_float)x[i00];
  7395. }
  7396. float mean = sum/ne00;
  7397. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7398. ggml_float sum2 = 0.0;
  7399. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7400. float v = x[i00] - mean;
  7401. y[i00] = v;
  7402. sum2 += (ggml_float)(v*v);
  7403. }
  7404. float variance = sum2/ne00;
  7405. const float scale = 1.0f/sqrtf(variance + eps);
  7406. ggml_vec_scale_f32(ne00, y, scale);
  7407. }
  7408. }
  7409. }
  7410. }
  7411. static void ggml_compute_forward_norm(
  7412. const struct ggml_compute_params * params,
  7413. const struct ggml_tensor * src0,
  7414. struct ggml_tensor * dst) {
  7415. switch (src0->type) {
  7416. case GGML_TYPE_F32:
  7417. {
  7418. ggml_compute_forward_norm_f32(params, src0, dst);
  7419. } break;
  7420. default:
  7421. {
  7422. GGML_ASSERT(false);
  7423. } break;
  7424. }
  7425. }
  7426. // ggml_compute_forward_group_rms_norm
  7427. static void ggml_compute_forward_rms_norm_f32(
  7428. const struct ggml_compute_params * params,
  7429. const struct ggml_tensor * src0,
  7430. struct ggml_tensor * dst) {
  7431. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7432. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7433. return;
  7434. }
  7435. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7436. const int ith = params->ith;
  7437. const int nth = params->nth;
  7438. GGML_TENSOR_UNARY_OP_LOCALS
  7439. float eps;
  7440. memcpy(&eps, dst->op_params, sizeof(float));
  7441. // TODO: optimize
  7442. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7443. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7444. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7445. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7446. ggml_float sum = 0.0;
  7447. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7448. sum += (ggml_float)(x[i00] * x[i00]);
  7449. }
  7450. const float mean = sum/ne00;
  7451. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7452. memcpy(y, x, ne00 * sizeof(float));
  7453. // for (int i00 = 0; i00 < ne00; i00++) {
  7454. // y[i00] = x[i00];
  7455. // }
  7456. const float scale = 1.0f/sqrtf(mean + eps);
  7457. ggml_vec_scale_f32(ne00, y, scale);
  7458. }
  7459. }
  7460. }
  7461. }
  7462. static void ggml_compute_forward_rms_norm(
  7463. const struct ggml_compute_params * params,
  7464. const struct ggml_tensor * src0,
  7465. struct ggml_tensor * dst) {
  7466. switch (src0->type) {
  7467. case GGML_TYPE_F32:
  7468. {
  7469. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7470. } break;
  7471. default:
  7472. {
  7473. GGML_ASSERT(false);
  7474. } break;
  7475. }
  7476. }
  7477. static void ggml_compute_forward_rms_norm_back_f32(
  7478. const struct ggml_compute_params * params,
  7479. const struct ggml_tensor * src0,
  7480. const struct ggml_tensor * src1,
  7481. struct ggml_tensor * dst) {
  7482. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7484. return;
  7485. }
  7486. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7487. const int ith = params->ith;
  7488. const int nth = params->nth;
  7489. GGML_TENSOR_BINARY_OP_LOCALS
  7490. float eps;
  7491. memcpy(&eps, dst->op_params, sizeof(float));
  7492. // TODO: optimize
  7493. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7494. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7495. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7496. // src1 is same shape as src0 => same indices
  7497. const int64_t i11 = i01;
  7498. const int64_t i12 = i02;
  7499. const int64_t i13 = i03;
  7500. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7501. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7502. ggml_float sum_xx = 0.0;
  7503. ggml_float sum_xdz = 0.0;
  7504. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7505. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7506. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7507. }
  7508. //const float mean = (float)(sum_xx)/ne00;
  7509. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7510. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7511. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7512. // we could cache rms from forward pass to improve performance.
  7513. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7514. //const float rms = sqrtf(mean_eps);
  7515. const float rrms = 1.0f / sqrtf(mean_eps);
  7516. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7517. {
  7518. // z = rms_norm(x)
  7519. //
  7520. // rms_norm(src0) =
  7521. // scale(
  7522. // src0,
  7523. // div(
  7524. // 1,
  7525. // sqrt(
  7526. // add(
  7527. // scale(
  7528. // sum(
  7529. // sqr(
  7530. // src0)),
  7531. // (1.0/N)),
  7532. // eps))));
  7533. // postorder:
  7534. // ## op args grad
  7535. // 00 param src0 grad[#00]
  7536. // 01 const 1
  7537. // 02 sqr (#00) grad[#02]
  7538. // 03 sum (#02) grad[#03]
  7539. // 04 const 1/N
  7540. // 05 scale (#03, #04) grad[#05]
  7541. // 06 const eps
  7542. // 07 add (#05, #06) grad[#07]
  7543. // 08 sqrt (#07) grad[#08]
  7544. // 09 div (#01,#08) grad[#09]
  7545. // 10 scale (#00,#09) grad[#10]
  7546. //
  7547. // backward pass, given grad[#10]
  7548. // #10: scale
  7549. // grad[#00] += scale(grad[#10],#09)
  7550. // grad[#09] += sum(mul(grad[#10],#00))
  7551. // #09: div
  7552. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7553. // #08: sqrt
  7554. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7555. // #07: add
  7556. // grad[#05] += grad[#07]
  7557. // #05: scale
  7558. // grad[#03] += scale(grad[#05],#04)
  7559. // #03: sum
  7560. // grad[#02] += repeat(grad[#03], #02)
  7561. // #02:
  7562. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7563. //
  7564. // substitute and simplify:
  7565. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7566. // grad[#02] = repeat(grad[#03], #02)
  7567. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7568. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7569. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7570. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7571. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7572. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7573. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7574. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7575. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7576. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7577. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7578. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7579. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7580. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7581. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7582. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7583. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7584. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7585. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7586. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7587. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7588. // a = b*c + d*e
  7589. // a = b*c*f/f + d*e*f/f
  7590. // a = (b*c*f + d*e*f)*(1/f)
  7591. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7592. // a = (b + d*e/c)*c
  7593. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7594. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7595. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7596. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7597. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7598. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7599. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7600. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7601. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7602. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7603. }
  7604. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7605. // post-order:
  7606. // dx := x
  7607. // dx := scale(dx,-mean_xdz/mean_eps)
  7608. // dx := add(dx, dz)
  7609. // dx := scale(dx, rrms)
  7610. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7611. ggml_vec_cpy_f32 (ne00, dx, x);
  7612. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7613. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7614. ggml_vec_acc_f32 (ne00, dx, dz);
  7615. ggml_vec_scale_f32(ne00, dx, rrms);
  7616. }
  7617. }
  7618. }
  7619. }
  7620. static void ggml_compute_forward_rms_norm_back(
  7621. const struct ggml_compute_params * params,
  7622. const struct ggml_tensor * src0,
  7623. const struct ggml_tensor * src1,
  7624. struct ggml_tensor * dst) {
  7625. switch (src0->type) {
  7626. case GGML_TYPE_F32:
  7627. {
  7628. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7629. } break;
  7630. default:
  7631. {
  7632. GGML_ASSERT(false);
  7633. } break;
  7634. }
  7635. }
  7636. // ggml_compute_forward_group_norm
  7637. static void ggml_compute_forward_group_norm_f32(
  7638. const struct ggml_compute_params * params,
  7639. const struct ggml_tensor * src0,
  7640. struct ggml_tensor * dst) {
  7641. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7643. return;
  7644. }
  7645. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7646. const int ith = params->ith;
  7647. const int nth = params->nth;
  7648. GGML_TENSOR_UNARY_OP_LOCALS
  7649. const float eps = 1e-6f; // TODO: make this a parameter
  7650. // TODO: optimize
  7651. int n_channels = src0->ne[2];
  7652. int n_groups = dst->op_params[0];
  7653. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7654. for (int i = ith; i < n_groups; i+=nth) {
  7655. int start = i * n_channels_per_group;
  7656. int end = start + n_channels_per_group;
  7657. if (end > n_channels) {
  7658. end = n_channels;
  7659. }
  7660. int step = end - start;
  7661. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7662. ggml_float sum = 0.0;
  7663. for (int64_t i02 = start; i02 < end; i02++) {
  7664. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7665. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7666. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7667. sum += (ggml_float)x[i00];
  7668. }
  7669. }
  7670. }
  7671. float mean = sum / (ne00 * ne01 * step);
  7672. ggml_float sum2 = 0.0;
  7673. for (int64_t i02 = start; i02 < end; i02++) {
  7674. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7675. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7676. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7677. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7678. float v = x[i00] - mean;
  7679. y[i00] = v;
  7680. sum2 += (ggml_float)(v * v);
  7681. }
  7682. }
  7683. }
  7684. float variance = sum2 / (ne00 * ne01 * step);
  7685. const float scale = 1.0f / sqrtf(variance + eps);
  7686. for (int64_t i02 = start; i02 < end; i02++) {
  7687. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7688. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7689. ggml_vec_scale_f32(ne00, y, scale);
  7690. }
  7691. }
  7692. }
  7693. }
  7694. }
  7695. static void ggml_compute_forward_group_norm(
  7696. const struct ggml_compute_params * params,
  7697. const struct ggml_tensor * src0,
  7698. struct ggml_tensor * dst) {
  7699. switch (src0->type) {
  7700. case GGML_TYPE_F32:
  7701. {
  7702. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7703. } break;
  7704. default:
  7705. {
  7706. GGML_ASSERT(false);
  7707. } break;
  7708. }
  7709. }
  7710. // ggml_compute_forward_mul_mat
  7711. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7712. // helper function to determine if it is better to use BLAS or not
  7713. // for large matrices, BLAS is faster
  7714. static bool ggml_compute_forward_mul_mat_use_blas(
  7715. const struct ggml_tensor * src0,
  7716. const struct ggml_tensor * src1,
  7717. struct ggml_tensor * dst) {
  7718. //const int64_t ne00 = src0->ne[0];
  7719. //const int64_t ne01 = src0->ne[1];
  7720. const int64_t ne10 = src1->ne[0];
  7721. const int64_t ne0 = dst->ne[0];
  7722. const int64_t ne1 = dst->ne[1];
  7723. // TODO: find the optimal values for these
  7724. if (ggml_is_contiguous(src0) &&
  7725. ggml_is_contiguous(src1) &&
  7726. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7727. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7728. return true;
  7729. }
  7730. return false;
  7731. }
  7732. #endif
  7733. static void ggml_compute_forward_mul_mat(
  7734. const struct ggml_compute_params * params,
  7735. const struct ggml_tensor * src0,
  7736. const struct ggml_tensor * src1,
  7737. struct ggml_tensor * dst) {
  7738. int64_t t0 = ggml_perf_time_us();
  7739. UNUSED(t0);
  7740. GGML_TENSOR_BINARY_OP_LOCALS
  7741. const int ith = params->ith;
  7742. const int nth = params->nth;
  7743. const enum ggml_type type = src0->type;
  7744. const bool src1_cont = ggml_is_contiguous(src1);
  7745. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7746. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7747. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7748. GGML_ASSERT(ne0 == ne01);
  7749. GGML_ASSERT(ne1 == ne11);
  7750. GGML_ASSERT(ne2 == ne12);
  7751. GGML_ASSERT(ne3 == ne13);
  7752. // we don't support permuted src0 or src1
  7753. GGML_ASSERT(nb00 == ggml_type_size(type));
  7754. GGML_ASSERT(nb10 == sizeof(float));
  7755. // dst cannot be transposed or permuted
  7756. GGML_ASSERT(nb0 == sizeof(float));
  7757. GGML_ASSERT(nb0 <= nb1);
  7758. GGML_ASSERT(nb1 <= nb2);
  7759. GGML_ASSERT(nb2 <= nb3);
  7760. // broadcast factors
  7761. const int64_t r2 = ne12/ne02;
  7762. const int64_t r3 = ne13/ne03;
  7763. // nb01 >= nb00 - src0 is not transposed
  7764. // compute by src0 rows
  7765. #if defined(GGML_USE_CLBLAST)
  7766. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7767. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7768. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7769. }
  7770. return;
  7771. }
  7772. #endif
  7773. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7774. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7775. if (params->ith != 0) {
  7776. return;
  7777. }
  7778. if (params->type == GGML_TASK_INIT) {
  7779. return;
  7780. }
  7781. if (params->type == GGML_TASK_FINALIZE) {
  7782. return;
  7783. }
  7784. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7785. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7786. // broadcast src0 into src1 across 2nd,3rd dimension
  7787. const int64_t i03 = i13/r3;
  7788. const int64_t i02 = i12/r2;
  7789. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7790. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7791. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7792. if (type != GGML_TYPE_F32) {
  7793. float * const wdata = params->wdata;
  7794. ggml_to_float_t const to_float = type_traits[type].to_float;
  7795. size_t id = 0;
  7796. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7797. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7798. id += ne00;
  7799. }
  7800. assert(id*sizeof(float) <= params->wsize);
  7801. x = wdata;
  7802. }
  7803. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7804. ne11, ne01, ne10,
  7805. 1.0f, y, ne10,
  7806. x, ne00,
  7807. 0.0f, d, ne01);
  7808. }
  7809. }
  7810. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7811. return;
  7812. }
  7813. #endif
  7814. if (params->type == GGML_TASK_INIT) {
  7815. if (src1->type != vec_dot_type) {
  7816. char * wdata = params->wdata;
  7817. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7818. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7819. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7820. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7821. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7822. wdata += row_size;
  7823. }
  7824. }
  7825. }
  7826. }
  7827. return;
  7828. }
  7829. if (params->type == GGML_TASK_FINALIZE) {
  7830. return;
  7831. }
  7832. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7833. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7834. const int64_t nr0 = ne01; // src0 rows
  7835. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  7836. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7837. // distribute the thread work across the inner or outer loop based on which one is larger
  7838. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7839. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7840. const int64_t ith0 = ith % nth0;
  7841. const int64_t ith1 = ith / nth0;
  7842. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7843. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7844. const int64_t ir010 = dr0*ith0;
  7845. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7846. const int64_t ir110 = dr1*ith1;
  7847. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7848. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7849. // threads with no work simply yield (not sure if it helps)
  7850. if (ir010 >= ir011 || ir110 >= ir111) {
  7851. sched_yield();
  7852. return;
  7853. }
  7854. assert(ne12 % ne02 == 0);
  7855. assert(ne13 % ne03 == 0);
  7856. // block-tiling attempt
  7857. const int64_t blck_0 = 16;
  7858. const int64_t blck_1 = 16;
  7859. // attempt to reduce false-sharing (does not seem to make a difference)
  7860. float tmp[16];
  7861. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7862. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7863. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7864. const int64_t i13 = (ir1/(ne12*ne11));
  7865. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  7866. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  7867. // broadcast src0 into src1
  7868. const int64_t i03 = i13/r3;
  7869. const int64_t i02 = i12/r2;
  7870. const int64_t i1 = i11;
  7871. const int64_t i2 = i12;
  7872. const int64_t i3 = i13;
  7873. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  7874. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  7875. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  7876. // the original src1 data pointer, so we should index using the indices directly
  7877. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  7878. const char * src1_col = (const char *) wdata +
  7879. (src1_cont || src1->type != vec_dot_type
  7880. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  7881. : (i11*nb11 + i12*nb12 + i13*nb13));
  7882. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  7883. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7884. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  7885. //}
  7886. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7887. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  7888. }
  7889. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  7890. }
  7891. }
  7892. }
  7893. }
  7894. // ggml_compute_forward_out_prod
  7895. static void ggml_compute_forward_out_prod_f32(
  7896. const struct ggml_compute_params * params,
  7897. const struct ggml_tensor * src0,
  7898. const struct ggml_tensor * src1,
  7899. struct ggml_tensor * dst) {
  7900. // int64_t t0 = ggml_perf_time_us();
  7901. // UNUSED(t0);
  7902. GGML_TENSOR_BINARY_OP_LOCALS
  7903. const int ith = params->ith;
  7904. const int nth = params->nth;
  7905. GGML_ASSERT(ne02 == ne12);
  7906. GGML_ASSERT(ne03 == ne13);
  7907. GGML_ASSERT(ne2 == ne12);
  7908. GGML_ASSERT(ne3 == ne13);
  7909. // we don't support permuted src0 or src1
  7910. GGML_ASSERT(nb00 == sizeof(float));
  7911. // dst cannot be transposed or permuted
  7912. GGML_ASSERT(nb0 == sizeof(float));
  7913. // GGML_ASSERT(nb0 <= nb1);
  7914. // GGML_ASSERT(nb1 <= nb2);
  7915. // GGML_ASSERT(nb2 <= nb3);
  7916. GGML_ASSERT(ne0 == ne00);
  7917. GGML_ASSERT(ne1 == ne10);
  7918. GGML_ASSERT(ne2 == ne02);
  7919. GGML_ASSERT(ne3 == ne03);
  7920. // nb01 >= nb00 - src0 is not transposed
  7921. // compute by src0 rows
  7922. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  7923. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7924. if (params->type == GGML_TASK_INIT) {
  7925. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7926. return;
  7927. }
  7928. if (params->type == GGML_TASK_FINALIZE) {
  7929. return;
  7930. }
  7931. // dst[:,:,:,:] = 0
  7932. // for i2,i3:
  7933. // for i1:
  7934. // for i01:
  7935. // for i0:
  7936. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  7937. // parallelize by last three dimensions
  7938. // total rows in dst
  7939. const int64_t nr = ne1*ne2*ne3;
  7940. // rows per thread
  7941. const int64_t dr = (nr + nth - 1)/nth;
  7942. // row range for this thread
  7943. const int64_t ir0 = dr*ith;
  7944. const int64_t ir1 = MIN(ir0 + dr, nr);
  7945. // block-tiling attempt
  7946. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  7947. const int64_t blck_1 = 16;
  7948. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  7949. const int64_t bir1 = MIN(bir + blck_1, ir1);
  7950. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  7951. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  7952. for (int64_t ir = bir; ir < bir1; ++ir) {
  7953. // dst indices
  7954. const int64_t i3 = ir/(ne2*ne1);
  7955. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  7956. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7957. const int64_t i02 = i2;
  7958. const int64_t i03 = i3;
  7959. //const int64_t i10 = i1;
  7960. const int64_t i12 = i2;
  7961. const int64_t i13 = i3;
  7962. #if GGML_VEC_MAD_UNROLL > 2
  7963. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  7964. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  7965. const int64_t i11 = i01;
  7966. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7967. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7968. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7969. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  7970. }
  7971. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  7972. const int64_t i11 = i01;
  7973. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7974. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7975. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7976. ggml_vec_mad_f32(ne0, d, s0, *s1);
  7977. }
  7978. #else
  7979. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  7980. const int64_t i11 = i01;
  7981. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7982. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7983. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7984. ggml_vec_mad_f32(ne0, d, s0, *s1);
  7985. }
  7986. #endif
  7987. }
  7988. }
  7989. }
  7990. //int64_t t1 = ggml_perf_time_us();
  7991. //static int64_t acc = 0;
  7992. //acc += t1 - t0;
  7993. //if (t1 - t0 > 10) {
  7994. // printf("\n");
  7995. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7996. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7997. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7998. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7999. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8000. //}
  8001. }
  8002. static void ggml_compute_forward_out_prod_q_f32(
  8003. const struct ggml_compute_params * params,
  8004. const struct ggml_tensor * src0,
  8005. const struct ggml_tensor * src1,
  8006. struct ggml_tensor * dst) {
  8007. // int64_t t0 = ggml_perf_time_us();
  8008. // UNUSED(t0);
  8009. GGML_TENSOR_BINARY_OP_LOCALS;
  8010. const int ith = params->ith;
  8011. const int nth = params->nth;
  8012. const enum ggml_type type = src0->type;
  8013. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8014. GGML_ASSERT(ne02 == ne12);
  8015. GGML_ASSERT(ne03 == ne13);
  8016. GGML_ASSERT(ne2 == ne12);
  8017. GGML_ASSERT(ne3 == ne13);
  8018. // we don't support permuted src0 dim0
  8019. GGML_ASSERT(nb00 == ggml_type_size(type));
  8020. // dst dim0 cannot be transposed or permuted
  8021. GGML_ASSERT(nb0 == sizeof(float));
  8022. // GGML_ASSERT(nb0 <= nb1);
  8023. // GGML_ASSERT(nb1 <= nb2);
  8024. // GGML_ASSERT(nb2 <= nb3);
  8025. GGML_ASSERT(ne0 == ne00);
  8026. GGML_ASSERT(ne1 == ne10);
  8027. GGML_ASSERT(ne2 == ne02);
  8028. GGML_ASSERT(ne3 == ne03);
  8029. // nb01 >= nb00 - src0 is not transposed
  8030. // compute by src0 rows
  8031. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8032. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8033. if (params->type == GGML_TASK_INIT) {
  8034. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8035. return;
  8036. }
  8037. if (params->type == GGML_TASK_FINALIZE) {
  8038. return;
  8039. }
  8040. // parallelize by last three dimensions
  8041. // total rows in dst
  8042. const int64_t nr = ne1*ne2*ne3;
  8043. // rows per thread
  8044. const int64_t dr = (nr + nth - 1)/nth;
  8045. // row range for this thread
  8046. const int64_t ir0 = dr*ith;
  8047. const int64_t ir1 = MIN(ir0 + dr, nr);
  8048. // dst[:,:,:,:] = 0
  8049. // for i2,i3:
  8050. // for i1:
  8051. // for i01:
  8052. // for i0:
  8053. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8054. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8055. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8056. // dst indices
  8057. const int64_t i3 = ir/(ne2*ne1);
  8058. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8059. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8060. const int64_t i02 = i2;
  8061. const int64_t i03 = i3;
  8062. //const int64_t i10 = i1;
  8063. const int64_t i12 = i2;
  8064. const int64_t i13 = i3;
  8065. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8066. const int64_t i11 = i01;
  8067. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8068. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8069. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8070. dequantize_row_q(s0, wdata, ne0);
  8071. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8072. }
  8073. }
  8074. //int64_t t1 = ggml_perf_time_us();
  8075. //static int64_t acc = 0;
  8076. //acc += t1 - t0;
  8077. //if (t1 - t0 > 10) {
  8078. // printf("\n");
  8079. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8080. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8081. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8082. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8083. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8084. //}
  8085. }
  8086. static void ggml_compute_forward_out_prod(
  8087. const struct ggml_compute_params * params,
  8088. const struct ggml_tensor * src0,
  8089. const struct ggml_tensor * src1,
  8090. struct ggml_tensor * dst) {
  8091. switch (src0->type) {
  8092. case GGML_TYPE_Q4_0:
  8093. case GGML_TYPE_Q4_1:
  8094. case GGML_TYPE_Q5_0:
  8095. case GGML_TYPE_Q5_1:
  8096. case GGML_TYPE_Q8_0:
  8097. case GGML_TYPE_Q2_K:
  8098. case GGML_TYPE_Q3_K:
  8099. case GGML_TYPE_Q4_K:
  8100. case GGML_TYPE_Q5_K:
  8101. case GGML_TYPE_Q6_K:
  8102. {
  8103. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8104. } break;
  8105. case GGML_TYPE_F16:
  8106. {
  8107. GGML_ASSERT(false); // todo
  8108. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8109. } break;
  8110. case GGML_TYPE_F32:
  8111. {
  8112. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8113. } break;
  8114. default:
  8115. {
  8116. GGML_ASSERT(false);
  8117. } break;
  8118. }
  8119. }
  8120. // ggml_compute_forward_scale
  8121. static void ggml_compute_forward_scale_f32(
  8122. const struct ggml_compute_params * params,
  8123. const struct ggml_tensor * src0,
  8124. const struct ggml_tensor * src1,
  8125. struct ggml_tensor * dst) {
  8126. GGML_ASSERT(ggml_is_contiguous(src0));
  8127. GGML_ASSERT(ggml_is_contiguous(dst));
  8128. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8129. GGML_ASSERT(ggml_is_scalar(src1));
  8130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8131. return;
  8132. }
  8133. // scale factor
  8134. const float v = *(float *) src1->data;
  8135. const int ith = params->ith;
  8136. const int nth = params->nth;
  8137. const int nc = src0->ne[0];
  8138. const int nr = ggml_nrows(src0);
  8139. // rows per thread
  8140. const int dr = (nr + nth - 1)/nth;
  8141. // row range for this thread
  8142. const int ir0 = dr*ith;
  8143. const int ir1 = MIN(ir0 + dr, nr);
  8144. const size_t nb01 = src0->nb[1];
  8145. const size_t nb1 = dst->nb[1];
  8146. for (int i1 = ir0; i1 < ir1; i1++) {
  8147. if (dst->data != src0->data) {
  8148. // src0 is same shape as dst => same indices
  8149. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8150. }
  8151. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8152. }
  8153. }
  8154. static void ggml_compute_forward_scale(
  8155. const struct ggml_compute_params * params,
  8156. const struct ggml_tensor * src0,
  8157. const struct ggml_tensor * src1,
  8158. struct ggml_tensor * dst) {
  8159. switch (src0->type) {
  8160. case GGML_TYPE_F32:
  8161. {
  8162. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8163. } break;
  8164. default:
  8165. {
  8166. GGML_ASSERT(false);
  8167. } break;
  8168. }
  8169. }
  8170. // ggml_compute_forward_set
  8171. static void ggml_compute_forward_set_f32(
  8172. const struct ggml_compute_params * params,
  8173. const struct ggml_tensor * src0,
  8174. const struct ggml_tensor * src1,
  8175. struct ggml_tensor * dst) {
  8176. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8177. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8178. // view src0 and dst with these strides and data offset inbytes during set
  8179. // nb0 is implicitely element_size because src0 and dst are contiguous
  8180. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8181. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8182. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8183. size_t offset = ((int32_t *) dst->op_params)[3];
  8184. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8185. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8186. // memcpy needs to be synchronized across threads to avoid race conditions.
  8187. // => do it in INIT phase
  8188. memcpy(
  8189. ((char *) dst->data),
  8190. ((char *) src0->data),
  8191. ggml_nbytes(dst));
  8192. }
  8193. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8194. return;
  8195. }
  8196. const int ith = params->ith;
  8197. const int nth = params->nth;
  8198. const int nr = ggml_nrows(src1);
  8199. const int nc = src1->ne[0];
  8200. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8201. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8202. // src0 and dst as viewed during set
  8203. const size_t nb0 = ggml_element_size(src0);
  8204. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8205. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8206. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8207. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8208. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8209. GGML_ASSERT(nb10 == sizeof(float));
  8210. // rows per thread
  8211. const int dr = (nr + nth - 1)/nth;
  8212. // row range for this thread
  8213. const int ir0 = dr*ith;
  8214. const int ir1 = MIN(ir0 + dr, nr);
  8215. for (int ir = ir0; ir < ir1; ++ir) {
  8216. // src0 and dst are viewed with shape of src1 and offset
  8217. // => same indices
  8218. const int i3 = ir/(ne12*ne11);
  8219. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8220. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8221. ggml_vec_cpy_f32(nc,
  8222. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8223. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8224. }
  8225. }
  8226. static void ggml_compute_forward_set(
  8227. const struct ggml_compute_params * params,
  8228. const struct ggml_tensor * src0,
  8229. const struct ggml_tensor * src1,
  8230. struct ggml_tensor * dst) {
  8231. switch (src0->type) {
  8232. case GGML_TYPE_F32:
  8233. {
  8234. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8235. } break;
  8236. case GGML_TYPE_F16:
  8237. case GGML_TYPE_Q4_0:
  8238. case GGML_TYPE_Q4_1:
  8239. case GGML_TYPE_Q5_0:
  8240. case GGML_TYPE_Q5_1:
  8241. case GGML_TYPE_Q8_0:
  8242. case GGML_TYPE_Q8_1:
  8243. case GGML_TYPE_Q2_K:
  8244. case GGML_TYPE_Q3_K:
  8245. case GGML_TYPE_Q4_K:
  8246. case GGML_TYPE_Q5_K:
  8247. case GGML_TYPE_Q6_K:
  8248. default:
  8249. {
  8250. GGML_ASSERT(false);
  8251. } break;
  8252. }
  8253. }
  8254. // ggml_compute_forward_cpy
  8255. static void ggml_compute_forward_cpy(
  8256. const struct ggml_compute_params * params,
  8257. const struct ggml_tensor * src0,
  8258. struct ggml_tensor * dst) {
  8259. ggml_compute_forward_dup(params, src0, dst);
  8260. }
  8261. // ggml_compute_forward_cont
  8262. static void ggml_compute_forward_cont(
  8263. const struct ggml_compute_params * params,
  8264. const struct ggml_tensor * src0,
  8265. struct ggml_tensor * dst) {
  8266. ggml_compute_forward_dup(params, src0, dst);
  8267. }
  8268. // ggml_compute_forward_reshape
  8269. static void ggml_compute_forward_reshape(
  8270. const struct ggml_compute_params * params,
  8271. const struct ggml_tensor * src0,
  8272. struct ggml_tensor * dst) {
  8273. // NOP
  8274. UNUSED(params);
  8275. UNUSED(src0);
  8276. UNUSED(dst);
  8277. }
  8278. // ggml_compute_forward_view
  8279. static void ggml_compute_forward_view(
  8280. const struct ggml_compute_params * params,
  8281. const struct ggml_tensor * src0) {
  8282. // NOP
  8283. UNUSED(params);
  8284. UNUSED(src0);
  8285. }
  8286. // ggml_compute_forward_permute
  8287. static void ggml_compute_forward_permute(
  8288. const struct ggml_compute_params * params,
  8289. const struct ggml_tensor * src0) {
  8290. // NOP
  8291. UNUSED(params);
  8292. UNUSED(src0);
  8293. }
  8294. // ggml_compute_forward_transpose
  8295. static void ggml_compute_forward_transpose(
  8296. const struct ggml_compute_params * params,
  8297. const struct ggml_tensor * src0) {
  8298. // NOP
  8299. UNUSED(params);
  8300. UNUSED(src0);
  8301. }
  8302. // ggml_compute_forward_get_rows
  8303. static void ggml_compute_forward_get_rows_q(
  8304. const struct ggml_compute_params * params,
  8305. const struct ggml_tensor * src0,
  8306. const struct ggml_tensor * src1,
  8307. struct ggml_tensor * dst) {
  8308. assert(params->ith == 0);
  8309. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8310. return;
  8311. }
  8312. const int nc = src0->ne[0];
  8313. const int nr = ggml_nelements(src1);
  8314. const enum ggml_type type = src0->type;
  8315. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8316. assert( dst->ne[0] == nc);
  8317. assert( dst->ne[1] == nr);
  8318. assert(src0->nb[0] == ggml_type_size(type));
  8319. for (int i = 0; i < nr; ++i) {
  8320. const int r = ((int32_t *) src1->data)[i];
  8321. dequantize_row_q(
  8322. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8323. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8324. }
  8325. }
  8326. static void ggml_compute_forward_get_rows_f16(
  8327. const struct ggml_compute_params * params,
  8328. const struct ggml_tensor * src0,
  8329. const struct ggml_tensor * src1,
  8330. struct ggml_tensor * dst) {
  8331. assert(params->ith == 0);
  8332. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8333. return;
  8334. }
  8335. const int nc = src0->ne[0];
  8336. const int nr = ggml_nelements(src1);
  8337. assert( dst->ne[0] == nc);
  8338. assert( dst->ne[1] == nr);
  8339. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8340. for (int i = 0; i < nr; ++i) {
  8341. const int r = ((int32_t *) src1->data)[i];
  8342. for (int j = 0; j < nc; ++j) {
  8343. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8344. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8345. }
  8346. }
  8347. }
  8348. static void ggml_compute_forward_get_rows_f32(
  8349. const struct ggml_compute_params * params,
  8350. const struct ggml_tensor * src0,
  8351. const struct ggml_tensor * src1,
  8352. struct ggml_tensor * dst) {
  8353. assert(params->ith == 0);
  8354. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8355. return;
  8356. }
  8357. const int nc = src0->ne[0];
  8358. const int nr = ggml_nelements(src1);
  8359. assert( dst->ne[0] == nc);
  8360. assert( dst->ne[1] == nr);
  8361. assert(src0->nb[0] == sizeof(float));
  8362. for (int i = 0; i < nr; ++i) {
  8363. const int r = ((int32_t *) src1->data)[i];
  8364. ggml_vec_cpy_f32(nc,
  8365. (float *) ((char *) dst->data + i*dst->nb[1]),
  8366. (float *) ((char *) src0->data + r*src0->nb[1]));
  8367. }
  8368. }
  8369. static void ggml_compute_forward_get_rows(
  8370. const struct ggml_compute_params * params,
  8371. const struct ggml_tensor * src0,
  8372. const struct ggml_tensor * src1,
  8373. struct ggml_tensor * dst) {
  8374. switch (src0->type) {
  8375. case GGML_TYPE_Q4_0:
  8376. case GGML_TYPE_Q4_1:
  8377. case GGML_TYPE_Q5_0:
  8378. case GGML_TYPE_Q5_1:
  8379. case GGML_TYPE_Q8_0:
  8380. case GGML_TYPE_Q8_1:
  8381. case GGML_TYPE_Q2_K:
  8382. case GGML_TYPE_Q3_K:
  8383. case GGML_TYPE_Q4_K:
  8384. case GGML_TYPE_Q5_K:
  8385. case GGML_TYPE_Q6_K:
  8386. {
  8387. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8388. } break;
  8389. case GGML_TYPE_F16:
  8390. {
  8391. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8392. } break;
  8393. case GGML_TYPE_F32:
  8394. {
  8395. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8396. } break;
  8397. default:
  8398. {
  8399. GGML_ASSERT(false);
  8400. } break;
  8401. }
  8402. //static bool first = true;
  8403. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8404. //if (first) {
  8405. // first = false;
  8406. //} else {
  8407. // for (int k = 0; k < dst->ne[1]; ++k) {
  8408. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8409. // for (int i = 0; i < 16; ++i) {
  8410. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8411. // }
  8412. // printf("\n");
  8413. // }
  8414. // printf("\n");
  8415. // }
  8416. // printf("\n");
  8417. // exit(0);
  8418. //}
  8419. }
  8420. // ggml_compute_forward_get_rows_back
  8421. static void ggml_compute_forward_get_rows_back_f32_f16(
  8422. const struct ggml_compute_params * params,
  8423. const struct ggml_tensor * src0,
  8424. const struct ggml_tensor * src1,
  8425. struct ggml_tensor * dst) {
  8426. GGML_ASSERT(params->ith == 0);
  8427. GGML_ASSERT(ggml_is_contiguous(dst));
  8428. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8429. if (params->type == GGML_TASK_INIT) {
  8430. memset(dst->data, 0, ggml_nbytes(dst));
  8431. }
  8432. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8433. return;
  8434. }
  8435. const int nc = src0->ne[0];
  8436. const int nr = ggml_nelements(src1);
  8437. GGML_ASSERT( dst->ne[0] == nc);
  8438. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8439. for (int i = 0; i < nr; ++i) {
  8440. const int r = ((int32_t *) src1->data)[i];
  8441. for (int j = 0; j < nc; ++j) {
  8442. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8443. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8444. }
  8445. }
  8446. }
  8447. static void ggml_compute_forward_get_rows_back_f32(
  8448. const struct ggml_compute_params * params,
  8449. const struct ggml_tensor * src0,
  8450. const struct ggml_tensor * src1,
  8451. struct ggml_tensor * dst) {
  8452. GGML_ASSERT(params->ith == 0);
  8453. GGML_ASSERT(ggml_is_contiguous(dst));
  8454. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8455. if (params->type == GGML_TASK_INIT) {
  8456. memset(dst->data, 0, ggml_nbytes(dst));
  8457. }
  8458. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8459. return;
  8460. }
  8461. const int nc = src0->ne[0];
  8462. const int nr = ggml_nelements(src1);
  8463. GGML_ASSERT( dst->ne[0] == nc);
  8464. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8465. for (int i = 0; i < nr; ++i) {
  8466. const int r = ((int32_t *) src1->data)[i];
  8467. ggml_vec_add_f32(nc,
  8468. (float *) ((char *) dst->data + r*dst->nb[1]),
  8469. (float *) ((char *) dst->data + r*dst->nb[1]),
  8470. (float *) ((char *) src0->data + i*src0->nb[1]));
  8471. }
  8472. }
  8473. static void ggml_compute_forward_get_rows_back(
  8474. const struct ggml_compute_params * params,
  8475. const struct ggml_tensor * src0,
  8476. const struct ggml_tensor * src1,
  8477. struct ggml_tensor * dst) {
  8478. switch (src0->type) {
  8479. case GGML_TYPE_F16:
  8480. {
  8481. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8482. } break;
  8483. case GGML_TYPE_F32:
  8484. {
  8485. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8486. } break;
  8487. default:
  8488. {
  8489. GGML_ASSERT(false);
  8490. } break;
  8491. }
  8492. //static bool first = true;
  8493. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8494. //if (first) {
  8495. // first = false;
  8496. //} else {
  8497. // for (int k = 0; k < dst->ne[1]; ++k) {
  8498. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8499. // for (int i = 0; i < 16; ++i) {
  8500. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8501. // }
  8502. // printf("\n");
  8503. // }
  8504. // printf("\n");
  8505. // }
  8506. // printf("\n");
  8507. // exit(0);
  8508. //}
  8509. }
  8510. // ggml_compute_forward_diag
  8511. static void ggml_compute_forward_diag_f32(
  8512. const struct ggml_compute_params * params,
  8513. const struct ggml_tensor * src0,
  8514. struct ggml_tensor * dst) {
  8515. GGML_ASSERT(params->ith == 0);
  8516. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8517. return;
  8518. }
  8519. // TODO: handle transposed/permuted matrices
  8520. GGML_TENSOR_UNARY_OP_LOCALS
  8521. GGML_ASSERT(ne00 == ne0);
  8522. GGML_ASSERT(ne00 == ne1);
  8523. GGML_ASSERT(ne01 == 1);
  8524. GGML_ASSERT(ne02 == ne2);
  8525. GGML_ASSERT(ne03 == ne3);
  8526. GGML_ASSERT(nb00 == sizeof(float));
  8527. GGML_ASSERT(nb0 == sizeof(float));
  8528. for (int i3 = 0; i3 < ne3; i3++) {
  8529. for (int i2 = 0; i2 < ne2; i2++) {
  8530. for (int i1 = 0; i1 < ne1; i1++) {
  8531. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8532. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8533. for (int i0 = 0; i0 < i1; i0++) {
  8534. d[i0] = 0;
  8535. }
  8536. d[i1] = s[i1];
  8537. for (int i0 = i1+1; i0 < ne0; i0++) {
  8538. d[i0] = 0;
  8539. }
  8540. }
  8541. }
  8542. }
  8543. }
  8544. static void ggml_compute_forward_diag(
  8545. const struct ggml_compute_params * params,
  8546. const struct ggml_tensor * src0,
  8547. struct ggml_tensor * dst) {
  8548. switch (src0->type) {
  8549. case GGML_TYPE_F32:
  8550. {
  8551. ggml_compute_forward_diag_f32(params, src0, dst);
  8552. } break;
  8553. default:
  8554. {
  8555. GGML_ASSERT(false);
  8556. } break;
  8557. }
  8558. }
  8559. // ggml_compute_forward_diag_mask_inf
  8560. static void ggml_compute_forward_diag_mask_f32(
  8561. const struct ggml_compute_params * params,
  8562. const struct ggml_tensor * src0,
  8563. struct ggml_tensor * dst,
  8564. const float value) {
  8565. const int ith = params->ith;
  8566. const int nth = params->nth;
  8567. const int n_past = ((int32_t *) dst->op_params)[0];
  8568. const bool inplace = src0->data == dst->data;
  8569. GGML_ASSERT(n_past >= 0);
  8570. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8571. // memcpy needs to be synchronized across threads to avoid race conditions.
  8572. // => do it in INIT phase
  8573. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8574. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8575. memcpy(
  8576. ((char *) dst->data),
  8577. ((char *) src0->data),
  8578. ggml_nbytes(dst));
  8579. }
  8580. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8581. return;
  8582. }
  8583. // TODO: handle transposed/permuted matrices
  8584. const int n = ggml_nrows(src0);
  8585. const int nc = src0->ne[0];
  8586. const int nr = src0->ne[1];
  8587. const int nz = n/nr;
  8588. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8589. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8590. for (int k = 0; k < nz; k++) {
  8591. for (int j = ith; j < nr; j += nth) {
  8592. for (int i = n_past; i < nc; i++) {
  8593. if (i > n_past + j) {
  8594. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8595. }
  8596. }
  8597. }
  8598. }
  8599. }
  8600. static void ggml_compute_forward_diag_mask_inf(
  8601. const struct ggml_compute_params * params,
  8602. const struct ggml_tensor * src0,
  8603. struct ggml_tensor * dst) {
  8604. switch (src0->type) {
  8605. case GGML_TYPE_F32:
  8606. {
  8607. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8608. } break;
  8609. default:
  8610. {
  8611. GGML_ASSERT(false);
  8612. } break;
  8613. }
  8614. }
  8615. static void ggml_compute_forward_diag_mask_zero(
  8616. const struct ggml_compute_params * params,
  8617. const struct ggml_tensor * src0,
  8618. struct ggml_tensor * dst) {
  8619. switch (src0->type) {
  8620. case GGML_TYPE_F32:
  8621. {
  8622. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8623. } break;
  8624. default:
  8625. {
  8626. GGML_ASSERT(false);
  8627. } break;
  8628. }
  8629. }
  8630. // ggml_compute_forward_soft_max
  8631. static void ggml_compute_forward_soft_max_f32(
  8632. const struct ggml_compute_params * params,
  8633. const struct ggml_tensor * src0,
  8634. struct ggml_tensor * dst) {
  8635. GGML_ASSERT(ggml_is_contiguous(src0));
  8636. GGML_ASSERT(ggml_is_contiguous(dst));
  8637. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8638. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8639. return;
  8640. }
  8641. // TODO: handle transposed/permuted matrices
  8642. const int ith = params->ith;
  8643. const int nth = params->nth;
  8644. const int nc = src0->ne[0];
  8645. const int nr = ggml_nrows(src0);
  8646. // rows per thread
  8647. const int dr = (nr + nth - 1)/nth;
  8648. // row range for this thread
  8649. const int ir0 = dr*ith;
  8650. const int ir1 = MIN(ir0 + dr, nr);
  8651. for (int i1 = ir0; i1 < ir1; i1++) {
  8652. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8653. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8654. #ifndef NDEBUG
  8655. for (int i = 0; i < nc; ++i) {
  8656. //printf("p[%d] = %f\n", i, p[i]);
  8657. assert(!isnan(sp[i]));
  8658. }
  8659. #endif
  8660. float max = -INFINITY;
  8661. ggml_vec_max_f32(nc, &max, sp);
  8662. ggml_float sum = 0.0;
  8663. uint16_t scvt;
  8664. for (int i = 0; i < nc; i++) {
  8665. if (sp[i] == -INFINITY) {
  8666. dp[i] = 0.0f;
  8667. } else {
  8668. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8669. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8670. memcpy(&scvt, &s, sizeof(scvt));
  8671. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  8672. sum += (ggml_float)val;
  8673. dp[i] = val;
  8674. }
  8675. }
  8676. assert(sum > 0.0);
  8677. sum = 1.0/sum;
  8678. ggml_vec_scale_f32(nc, dp, sum);
  8679. #ifndef NDEBUG
  8680. for (int i = 0; i < nc; ++i) {
  8681. assert(!isnan(dp[i]));
  8682. assert(!isinf(dp[i]));
  8683. }
  8684. #endif
  8685. }
  8686. }
  8687. static void ggml_compute_forward_soft_max(
  8688. const struct ggml_compute_params * params,
  8689. const struct ggml_tensor * src0,
  8690. struct ggml_tensor * dst) {
  8691. switch (src0->type) {
  8692. case GGML_TYPE_F32:
  8693. {
  8694. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8695. } break;
  8696. default:
  8697. {
  8698. GGML_ASSERT(false);
  8699. } break;
  8700. }
  8701. }
  8702. // ggml_compute_forward_soft_max_back
  8703. static void ggml_compute_forward_soft_max_back_f32(
  8704. const struct ggml_compute_params * params,
  8705. const struct ggml_tensor * src0,
  8706. const struct ggml_tensor * src1,
  8707. struct ggml_tensor * dst) {
  8708. GGML_ASSERT(ggml_is_contiguous(src0));
  8709. GGML_ASSERT(ggml_is_contiguous(src1));
  8710. GGML_ASSERT(ggml_is_contiguous(dst));
  8711. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8712. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8713. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8714. return;
  8715. }
  8716. // TODO: handle transposed/permuted matrices
  8717. const int ith = params->ith;
  8718. const int nth = params->nth;
  8719. const int nc = src0->ne[0];
  8720. const int nr = ggml_nrows(src0);
  8721. // rows per thread
  8722. const int dr = (nr + nth - 1)/nth;
  8723. // row range for this thread
  8724. const int ir0 = dr*ith;
  8725. const int ir1 = MIN(ir0 + dr, nr);
  8726. for (int i1 = ir0; i1 < ir1; i1++) {
  8727. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8728. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8729. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8730. #ifndef NDEBUG
  8731. for (int i = 0; i < nc; ++i) {
  8732. //printf("p[%d] = %f\n", i, p[i]);
  8733. assert(!isnan(dy[i]));
  8734. assert(!isnan(y[i]));
  8735. }
  8736. #endif
  8737. // Jii = yi - yi*yi
  8738. // Jij = -yi*yj
  8739. // J = diag(y)-y.T*y
  8740. // dx = J * dy
  8741. // dxk = sum_i(Jki * dyi)
  8742. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8743. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8744. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8745. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8746. // dxk = -yk * dot(y, dy) + yk*dyk
  8747. // dxk = yk * (- dot(y, dy) + dyk)
  8748. // dxk = yk * (dyk - dot(y, dy))
  8749. //
  8750. // post-order:
  8751. // dot_y_dy := dot(y, dy)
  8752. // dx := dy
  8753. // dx := dx - dot_y_dy
  8754. // dx := dx * y
  8755. // linear runtime, no additional memory
  8756. float dot_y_dy = 0;
  8757. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  8758. ggml_vec_cpy_f32 (nc, dx, dy);
  8759. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  8760. ggml_vec_mul_f32 (nc, dx, dx, y);
  8761. #ifndef NDEBUG
  8762. for (int i = 0; i < nc; ++i) {
  8763. assert(!isnan(dx[i]));
  8764. assert(!isinf(dx[i]));
  8765. }
  8766. #endif
  8767. }
  8768. }
  8769. static void ggml_compute_forward_soft_max_back(
  8770. const struct ggml_compute_params * params,
  8771. const struct ggml_tensor * src0,
  8772. const struct ggml_tensor * src1,
  8773. struct ggml_tensor * dst) {
  8774. switch (src0->type) {
  8775. case GGML_TYPE_F32:
  8776. {
  8777. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  8778. } break;
  8779. default:
  8780. {
  8781. GGML_ASSERT(false);
  8782. } break;
  8783. }
  8784. }
  8785. // ggml_compute_forward_alibi
  8786. static void ggml_compute_forward_alibi_f32(
  8787. const struct ggml_compute_params * params,
  8788. const struct ggml_tensor * src0,
  8789. struct ggml_tensor * dst) {
  8790. assert(params->ith == 0);
  8791. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8792. return;
  8793. }
  8794. //const int n_past = ((int32_t *) dst->op_params)[0];
  8795. const int n_head = ((int32_t *) dst->op_params)[1];
  8796. float max_bias;
  8797. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8798. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8799. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  8800. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  8801. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  8802. const int64_t n = ggml_nrows(src0);
  8803. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  8804. const size_t nb0 = src0->nb[0];
  8805. const size_t nb1 = src0->nb[1];
  8806. const size_t nb2 = src0->nb[2];
  8807. //const int nb3 = src0->nb[3];
  8808. GGML_ASSERT(nb0 == sizeof(float));
  8809. GGML_ASSERT(n_head == ne2);
  8810. // add alibi to src0 (KQ_scaled)
  8811. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8812. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8813. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8814. for (int64_t i = 0; i < ne0; i++) {
  8815. for (int64_t j = 0; j < ne1; j++) {
  8816. for (int64_t k = 0; k < ne2_ne3; k++) {
  8817. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8818. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8819. // TODO: k*nb2 or k*nb3
  8820. float m_k;
  8821. if (k < n_heads_log2_floor) {
  8822. m_k = powf(m0, k + 1);
  8823. } else {
  8824. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8825. }
  8826. pdst[0] = i * m_k + src[0];
  8827. }
  8828. }
  8829. }
  8830. }
  8831. static void ggml_compute_forward_alibi_f16(
  8832. const struct ggml_compute_params * params,
  8833. const struct ggml_tensor * src0,
  8834. struct ggml_tensor * dst) {
  8835. assert(params->ith == 0);
  8836. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8837. return;
  8838. }
  8839. //const int n_past = ((int32_t *) dst->op_params)[0];
  8840. const int n_head = ((int32_t *) dst->op_params)[1];
  8841. float max_bias;
  8842. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8843. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8844. const int ne1 = src0->ne[1]; // seq_len_without_past
  8845. const int ne2 = src0->ne[2]; // n_head -> this is k
  8846. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8847. const int n = ggml_nrows(src0);
  8848. const int ne2_ne3 = n/ne1; // ne2*ne3
  8849. const int nb0 = src0->nb[0];
  8850. const int nb1 = src0->nb[1];
  8851. const int nb2 = src0->nb[2];
  8852. //const int nb3 = src0->nb[3];
  8853. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8854. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  8855. GGML_ASSERT(n_head == ne2);
  8856. // add alibi to src0 (KQ_scaled)
  8857. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8858. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8859. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8860. for (int i = 0; i < ne0; i++) {
  8861. for (int j = 0; j < ne1; j++) {
  8862. for (int k = 0; k < ne2_ne3; k++) {
  8863. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8864. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8865. // TODO: k*nb2 or k*nb3
  8866. float m_k;
  8867. if (k < n_heads_log2_floor) {
  8868. m_k = powf(m0, k + 1);
  8869. } else {
  8870. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8871. }
  8872. // we return F32
  8873. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8874. }
  8875. }
  8876. }
  8877. }
  8878. static void ggml_compute_forward_alibi(
  8879. const struct ggml_compute_params * params,
  8880. const struct ggml_tensor * src0,
  8881. struct ggml_tensor * dst) {
  8882. switch (src0->type) {
  8883. case GGML_TYPE_F16:
  8884. {
  8885. ggml_compute_forward_alibi_f16(params, src0, dst);
  8886. } break;
  8887. case GGML_TYPE_F32:
  8888. {
  8889. ggml_compute_forward_alibi_f32(params, src0, dst);
  8890. } break;
  8891. case GGML_TYPE_Q4_0:
  8892. case GGML_TYPE_Q4_1:
  8893. case GGML_TYPE_Q5_0:
  8894. case GGML_TYPE_Q5_1:
  8895. case GGML_TYPE_Q8_0:
  8896. case GGML_TYPE_Q8_1:
  8897. case GGML_TYPE_Q2_K:
  8898. case GGML_TYPE_Q3_K:
  8899. case GGML_TYPE_Q4_K:
  8900. case GGML_TYPE_Q5_K:
  8901. case GGML_TYPE_Q6_K:
  8902. case GGML_TYPE_Q8_K:
  8903. case GGML_TYPE_I8:
  8904. case GGML_TYPE_I16:
  8905. case GGML_TYPE_I32:
  8906. case GGML_TYPE_COUNT:
  8907. {
  8908. GGML_ASSERT(false);
  8909. } break;
  8910. }
  8911. }
  8912. // ggml_compute_forward_clamp
  8913. static void ggml_compute_forward_clamp_f32(
  8914. const struct ggml_compute_params * params,
  8915. const struct ggml_tensor * src0,
  8916. struct ggml_tensor * dst) {
  8917. assert(params->ith == 0);
  8918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8919. return;
  8920. }
  8921. float min;
  8922. float max;
  8923. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  8924. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  8925. const int ith = params->ith;
  8926. const int nth = params->nth;
  8927. const int n = ggml_nrows(src0);
  8928. const int nc = src0->ne[0];
  8929. const size_t nb00 = src0->nb[0];
  8930. const size_t nb01 = src0->nb[1];
  8931. const size_t nb0 = dst->nb[0];
  8932. const size_t nb1 = dst->nb[1];
  8933. GGML_ASSERT( nb0 == sizeof(float));
  8934. GGML_ASSERT(nb00 == sizeof(float));
  8935. for (int j = ith; j < n; j += nth) {
  8936. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8937. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8938. for (int i = 0; i < nc; i++) {
  8939. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8940. }
  8941. }
  8942. }
  8943. static void ggml_compute_forward_clamp(
  8944. const struct ggml_compute_params * params,
  8945. const struct ggml_tensor * src0,
  8946. struct ggml_tensor * dst) {
  8947. switch (src0->type) {
  8948. case GGML_TYPE_F32:
  8949. {
  8950. ggml_compute_forward_clamp_f32(params, src0, dst);
  8951. } break;
  8952. case GGML_TYPE_F16:
  8953. case GGML_TYPE_Q4_0:
  8954. case GGML_TYPE_Q4_1:
  8955. case GGML_TYPE_Q5_0:
  8956. case GGML_TYPE_Q5_1:
  8957. case GGML_TYPE_Q8_0:
  8958. case GGML_TYPE_Q8_1:
  8959. case GGML_TYPE_Q2_K:
  8960. case GGML_TYPE_Q3_K:
  8961. case GGML_TYPE_Q4_K:
  8962. case GGML_TYPE_Q5_K:
  8963. case GGML_TYPE_Q6_K:
  8964. case GGML_TYPE_Q8_K:
  8965. case GGML_TYPE_I8:
  8966. case GGML_TYPE_I16:
  8967. case GGML_TYPE_I32:
  8968. case GGML_TYPE_COUNT:
  8969. {
  8970. GGML_ASSERT(false);
  8971. } break;
  8972. }
  8973. }
  8974. // ggml_compute_forward_rope
  8975. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  8976. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  8977. return 1 - MIN(1, MAX(0, y));
  8978. }
  8979. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  8980. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  8981. static void rope_yarn(
  8982. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  8983. float * cos_theta, float * sin_theta
  8984. ) {
  8985. // Get n-d rotational scaling corrected for extrapolation
  8986. float theta_interp = freq_scale * theta_extrap;
  8987. float theta = theta_interp;
  8988. if (ext_factor != 0.0f) {
  8989. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  8990. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  8991. // Get n-d magnitude scaling corrected for interpolation
  8992. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  8993. }
  8994. *cos_theta = cosf(theta) * mscale;
  8995. *sin_theta = sinf(theta) * mscale;
  8996. }
  8997. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  8998. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  8999. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9000. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9001. }
  9002. void ggml_rope_yarn_corr_dims(
  9003. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9004. ) {
  9005. // start and end correction dims
  9006. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9007. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9008. }
  9009. static void ggml_compute_forward_rope_f32(
  9010. const struct ggml_compute_params * params,
  9011. const struct ggml_tensor * src0,
  9012. const struct ggml_tensor * src1,
  9013. struct ggml_tensor * dst) {
  9014. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9015. return;
  9016. }
  9017. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9018. // these two only relevant for xPos RoPE:
  9019. float xpos_base;
  9020. bool xpos_down;
  9021. //const int n_past = ((int32_t *) dst->op_params)[0];
  9022. const int n_dims = ((int32_t *) dst->op_params)[1];
  9023. const int mode = ((int32_t *) dst->op_params)[2];
  9024. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9025. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9026. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9027. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9028. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9029. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9030. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9031. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9032. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9033. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9034. GGML_TENSOR_UNARY_OP_LOCALS
  9035. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9036. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9037. GGML_ASSERT(nb00 == sizeof(float));
  9038. const int ith = params->ith;
  9039. const int nth = params->nth;
  9040. const int nr = ggml_nrows(dst);
  9041. GGML_ASSERT(n_dims <= ne0);
  9042. GGML_ASSERT(n_dims % 2 == 0);
  9043. // rows per thread
  9044. const int dr = (nr + nth - 1)/nth;
  9045. // row range for this thread
  9046. const int ir0 = dr*ith;
  9047. const int ir1 = MIN(ir0 + dr, nr);
  9048. // row index used to determine which thread to use
  9049. int ir = 0;
  9050. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9051. const float inv_ndims = -1.f/n_dims;
  9052. float corr_dims[2];
  9053. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9054. const bool is_neox = mode & 2;
  9055. const bool is_glm = mode & 4;
  9056. const int32_t * pos = (const int32_t *) src1->data;
  9057. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9058. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9059. const int64_t p = pos[i2];
  9060. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9061. if (ir++ < ir0) continue;
  9062. if (ir > ir1) break;
  9063. float theta_base = (float)p;
  9064. if (is_glm) {
  9065. theta_base = MIN(p, n_ctx - 2);
  9066. float block_theta = MAX(p - (n_ctx - 2), 0);
  9067. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9068. const float cos_theta = cosf(theta_base);
  9069. const float sin_theta = sinf(theta_base);
  9070. const float cos_block_theta = cosf(block_theta);
  9071. const float sin_block_theta = sinf(block_theta);
  9072. theta_base *= theta_scale;
  9073. block_theta *= theta_scale;
  9074. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9075. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9076. const float x0 = src[0];
  9077. const float x1 = src[n_dims/2];
  9078. const float x2 = src[n_dims];
  9079. const float x3 = src[n_dims/2*3];
  9080. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9081. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9082. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9083. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9084. }
  9085. } else if (!is_neox) {
  9086. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9087. float cos_theta, sin_theta;
  9088. rope_yarn(
  9089. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9090. );
  9091. // zeta scaling for xPos only:
  9092. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9093. if (xpos_down) zeta = 1.0f / zeta;
  9094. theta_base *= theta_scale;
  9095. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9096. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9097. const float x0 = src[0];
  9098. const float x1 = src[1];
  9099. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9100. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9101. }
  9102. } else {
  9103. // TODO: this might be wrong for ne0 != n_dims - need double check
  9104. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9105. theta_base *= freq_scale;
  9106. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9107. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9108. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9109. float cur_rot = inv_ndims * ic - ib;
  9110. float cos_theta, sin_theta;
  9111. rope_yarn(
  9112. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9113. &cos_theta, &sin_theta
  9114. );
  9115. theta_base *= theta_scale;
  9116. const int64_t i0 = ib*n_dims + ic/2;
  9117. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9118. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9119. const float x0 = src[0];
  9120. const float x1 = src[n_dims/2];
  9121. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9122. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9123. }
  9124. }
  9125. }
  9126. }
  9127. }
  9128. }
  9129. }
  9130. static void ggml_compute_forward_rope_f16(
  9131. const struct ggml_compute_params * params,
  9132. const struct ggml_tensor * src0,
  9133. const struct ggml_tensor * src1,
  9134. struct ggml_tensor * dst) {
  9135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9136. return;
  9137. }
  9138. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9139. //const int n_past = ((int32_t *) dst->op_params)[0];
  9140. const int n_dims = ((int32_t *) dst->op_params)[1];
  9141. const int mode = ((int32_t *) dst->op_params)[2];
  9142. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9143. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9144. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9145. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9146. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9147. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9148. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9149. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9150. GGML_TENSOR_UNARY_OP_LOCALS
  9151. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9152. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9153. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9154. const int ith = params->ith;
  9155. const int nth = params->nth;
  9156. const int nr = ggml_nrows(dst);
  9157. GGML_ASSERT(n_dims <= ne0);
  9158. GGML_ASSERT(n_dims % 2 == 0);
  9159. // rows per thread
  9160. const int dr = (nr + nth - 1)/nth;
  9161. // row range for this thread
  9162. const int ir0 = dr*ith;
  9163. const int ir1 = MIN(ir0 + dr, nr);
  9164. // row index used to determine which thread to use
  9165. int ir = 0;
  9166. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9167. const float inv_ndims = -1.f/n_dims;
  9168. float corr_dims[2];
  9169. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9170. const bool is_neox = mode & 2;
  9171. const bool is_glm = mode & 4;
  9172. const int32_t * pos = (const int32_t *) src1->data;
  9173. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9174. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9175. const int64_t p = pos[i2];
  9176. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9177. if (ir++ < ir0) continue;
  9178. if (ir > ir1) break;
  9179. float theta_base = (float)p;
  9180. if (is_glm) {
  9181. theta_base = MIN(p, n_ctx - 2);
  9182. float block_theta = MAX(p - (n_ctx - 2), 0);
  9183. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9184. const float cos_theta = cosf(theta_base);
  9185. const float sin_theta = sinf(theta_base);
  9186. const float cos_block_theta = cosf(block_theta);
  9187. const float sin_block_theta = sinf(block_theta);
  9188. theta_base *= theta_scale;
  9189. block_theta *= theta_scale;
  9190. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9191. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9192. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9193. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9194. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9195. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9196. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9197. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9198. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9199. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9200. }
  9201. } else if (!is_neox) {
  9202. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9203. float cos_theta, sin_theta;
  9204. rope_yarn(
  9205. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9206. );
  9207. theta_base *= theta_scale;
  9208. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9209. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9210. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9211. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9212. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9213. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9214. }
  9215. } else {
  9216. // TODO: this might be wrong for ne0 != n_dims - need double check
  9217. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9218. theta_base *= freq_scale;
  9219. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9220. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9221. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9222. float cur_rot = inv_ndims * ic - ib;
  9223. float cos_theta, sin_theta;
  9224. rope_yarn(
  9225. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9226. &cos_theta, &sin_theta
  9227. );
  9228. theta_base *= theta_scale;
  9229. const int64_t i0 = ib*n_dims + ic/2;
  9230. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9231. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9232. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9233. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9234. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9235. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9236. }
  9237. }
  9238. }
  9239. }
  9240. }
  9241. }
  9242. }
  9243. static void ggml_compute_forward_rope(
  9244. const struct ggml_compute_params * params,
  9245. const struct ggml_tensor * src0,
  9246. const struct ggml_tensor * src1,
  9247. struct ggml_tensor * dst) {
  9248. switch (src0->type) {
  9249. case GGML_TYPE_F16:
  9250. {
  9251. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9252. } break;
  9253. case GGML_TYPE_F32:
  9254. {
  9255. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9256. } break;
  9257. default:
  9258. {
  9259. GGML_ASSERT(false);
  9260. } break;
  9261. }
  9262. }
  9263. // ggml_compute_forward_rope_back
  9264. static void ggml_compute_forward_rope_back_f32(
  9265. const struct ggml_compute_params * params,
  9266. const struct ggml_tensor * src0,
  9267. const struct ggml_tensor * src1,
  9268. struct ggml_tensor * dst) {
  9269. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9270. return;
  9271. }
  9272. // y = rope(x, src1)
  9273. // dx = rope_back(dy, src1)
  9274. // src0 is dy, src1 contains options
  9275. float freq_base;
  9276. float freq_scale;
  9277. // these two only relevant for xPos RoPE:
  9278. float xpos_base;
  9279. bool xpos_down;
  9280. //const int n_past = ((int32_t *) dst->op_params)[0];
  9281. const int n_dims = ((int32_t *) dst->op_params)[1];
  9282. const int mode = ((int32_t *) dst->op_params)[2];
  9283. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  9284. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9285. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9286. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  9287. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  9288. GGML_TENSOR_UNARY_OP_LOCALS
  9289. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9290. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9291. assert(nb0 == sizeof(float));
  9292. const int ith = params->ith;
  9293. const int nth = params->nth;
  9294. const int nr = ggml_nrows(dst);
  9295. // rows per thread
  9296. const int dr = (nr + nth - 1)/nth;
  9297. // row range for this thread
  9298. const int ir0 = dr*ith;
  9299. const int ir1 = MIN(ir0 + dr, nr);
  9300. // row index used to determine which thread to use
  9301. int ir = 0;
  9302. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9303. const bool is_neox = mode & 2;
  9304. const int32_t * pos = (const int32_t *) src1->data;
  9305. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9306. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9307. const int64_t p = pos[i2];
  9308. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9309. if (ir++ < ir0) continue;
  9310. if (ir > ir1) break;
  9311. float theta_base = freq_scale * (float)p;
  9312. if (!is_neox) {
  9313. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9314. const float cos_theta = cosf(theta_base);
  9315. const float sin_theta = sinf(theta_base);
  9316. // zeta scaling for xPos only:
  9317. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9318. if (xpos_down) zeta = 1.0f / zeta;
  9319. theta_base *= theta_scale;
  9320. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9321. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9322. const float dy0 = dy[0];
  9323. const float dy1 = dy[1];
  9324. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  9325. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  9326. }
  9327. } else {
  9328. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9329. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9330. const float cos_theta = cosf(theta_base);
  9331. const float sin_theta = sinf(theta_base);
  9332. theta_base *= theta_scale;
  9333. const int64_t i0 = ib*n_dims + ic/2;
  9334. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9335. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9336. const float dy0 = dy[0];
  9337. const float dy1 = dy[n_dims/2];
  9338. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9339. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9340. }
  9341. }
  9342. }
  9343. }
  9344. }
  9345. }
  9346. }
  9347. static void ggml_compute_forward_rope_back_f16(
  9348. const struct ggml_compute_params * params,
  9349. const struct ggml_tensor * src0,
  9350. const struct ggml_tensor * src1,
  9351. struct ggml_tensor * dst) {
  9352. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9353. return;
  9354. }
  9355. // y = rope(x, src1)
  9356. // dx = rope_back(dy, src1)
  9357. // src0 is dy, src1 contains options
  9358. //const int n_past = ((int32_t *) dst->op_params)[0];
  9359. const int n_dims = ((int32_t *) dst->op_params)[1];
  9360. const int mode = ((int32_t *) dst->op_params)[2];
  9361. GGML_TENSOR_UNARY_OP_LOCALS
  9362. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9363. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9364. assert(nb0 == sizeof(ggml_fp16_t));
  9365. const int ith = params->ith;
  9366. const int nth = params->nth;
  9367. const int nr = ggml_nrows(dst);
  9368. // rows per thread
  9369. const int dr = (nr + nth - 1)/nth;
  9370. // row range for this thread
  9371. const int ir0 = dr*ith;
  9372. const int ir1 = MIN(ir0 + dr, nr);
  9373. // row index used to determine which thread to use
  9374. int ir = 0;
  9375. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9376. const bool is_neox = mode & 2;
  9377. const int32_t * pos = (const int32_t *) src1->data;
  9378. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9379. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9380. const int64_t p = pos[i2];
  9381. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9382. if (ir++ < ir0) continue;
  9383. if (ir > ir1) break;
  9384. float theta_base = (float)p;
  9385. if (!is_neox) {
  9386. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9387. const float cos_theta = cosf(theta_base);
  9388. const float sin_theta = sinf(theta_base);
  9389. theta_base *= theta_scale;
  9390. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9391. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9392. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9393. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9394. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9395. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9396. }
  9397. } else {
  9398. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9399. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9400. const float cos_theta = cosf(theta_base);
  9401. const float sin_theta = sinf(theta_base);
  9402. theta_base *= theta_scale;
  9403. const int64_t i0 = ib*n_dims + ic/2;
  9404. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9405. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9406. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9407. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9408. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9409. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9410. }
  9411. }
  9412. }
  9413. }
  9414. }
  9415. }
  9416. }
  9417. static void ggml_compute_forward_rope_back(
  9418. const struct ggml_compute_params * params,
  9419. const struct ggml_tensor * src0,
  9420. const struct ggml_tensor * src1,
  9421. struct ggml_tensor * dst) {
  9422. switch (src0->type) {
  9423. case GGML_TYPE_F16:
  9424. {
  9425. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9426. } break;
  9427. case GGML_TYPE_F32:
  9428. {
  9429. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9430. } break;
  9431. default:
  9432. {
  9433. GGML_ASSERT(false);
  9434. } break;
  9435. }
  9436. }
  9437. // ggml_compute_forward_conv_1d
  9438. static void ggml_compute_forward_conv_1d_f16_f32(
  9439. const struct ggml_compute_params * params,
  9440. const struct ggml_tensor * src0,
  9441. const struct ggml_tensor * src1,
  9442. struct ggml_tensor * dst) {
  9443. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9444. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9445. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9446. int64_t t0 = ggml_perf_time_us();
  9447. UNUSED(t0);
  9448. GGML_TENSOR_BINARY_OP_LOCALS
  9449. const int ith = params->ith;
  9450. const int nth = params->nth;
  9451. const int nk = ne00;
  9452. // size of the convolution row - the kernel size unrolled across all input channels
  9453. const int ew0 = nk*ne01;
  9454. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9455. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9456. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9457. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9458. GGML_ASSERT(nb10 == sizeof(float));
  9459. if (params->type == GGML_TASK_INIT) {
  9460. memset(params->wdata, 0, params->wsize);
  9461. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9462. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9463. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9464. ggml_fp16_t * dst_data = wdata;
  9465. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9466. for (int64_t ik = 0; ik < nk; ik++) {
  9467. const int idx0 = i0*s0 + ik*d0 - p0;
  9468. if(!(idx0 < 0 || idx0 >= ne10)) {
  9469. dst_data[i0*ew0 + i11*nk + ik] = GGML_FP32_TO_FP16(src[idx0]);
  9470. }
  9471. }
  9472. }
  9473. }
  9474. return;
  9475. }
  9476. if (params->type == GGML_TASK_FINALIZE) {
  9477. return;
  9478. }
  9479. // total rows in dst
  9480. const int nr = ne2;
  9481. // rows per thread
  9482. const int dr = (nr + nth - 1)/nth;
  9483. // row range for this thread
  9484. const int ir0 = dr*ith;
  9485. const int ir1 = MIN(ir0 + dr, nr);
  9486. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9487. for (int i2 = 0; i2 < ne2; i2++) {
  9488. for (int i1 = ir0; i1 < ir1; i1++) {
  9489. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9490. for (int i0 = 0; i0 < ne0; i0++) {
  9491. ggml_vec_dot_f16(ew0, dst_data + i0,
  9492. (ggml_fp16_t *) ((char *) src0->data + i1*nb02),
  9493. (ggml_fp16_t *) wdata + i2*nb2 + i0*ew0);
  9494. }
  9495. }
  9496. }
  9497. }
  9498. static void ggml_compute_forward_conv_1d_f32(
  9499. const struct ggml_compute_params * params,
  9500. const struct ggml_tensor * src0,
  9501. const struct ggml_tensor * src1,
  9502. struct ggml_tensor * dst) {
  9503. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9504. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9505. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9506. int64_t t0 = ggml_perf_time_us();
  9507. UNUSED(t0);
  9508. GGML_TENSOR_BINARY_OP_LOCALS
  9509. const int ith = params->ith;
  9510. const int nth = params->nth;
  9511. const int nk = ne00;
  9512. const int ew0 = nk*ne01;
  9513. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9514. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9515. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9516. GGML_ASSERT(nb00 == sizeof(float));
  9517. GGML_ASSERT(nb10 == sizeof(float));
  9518. if (params->type == GGML_TASK_INIT) {
  9519. memset(params->wdata, 0, params->wsize);
  9520. float * const wdata = (float *) params->wdata + 0;
  9521. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9522. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9523. float * dst_data = wdata;
  9524. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9525. for (int64_t ik = 0; ik < nk; ik++) {
  9526. const int idx0 = i0*s0 + ik*d0 - p0;
  9527. if(!(idx0 < 0 || idx0 >= ne10)) {
  9528. dst_data[i0*ew0 + i11*nk + ik] = src[idx0];
  9529. }
  9530. }
  9531. }
  9532. }
  9533. return;
  9534. }
  9535. if (params->type == GGML_TASK_FINALIZE) {
  9536. return;
  9537. }
  9538. // total rows in dst
  9539. const int nr = ne02;
  9540. // rows per thread
  9541. const int dr = (nr + nth - 1)/nth;
  9542. // row range for this thread
  9543. const int ir0 = dr*ith;
  9544. const int ir1 = MIN(ir0 + dr, nr);
  9545. float * const wdata = (float *) params->wdata + 0;
  9546. for (int i2 = 0; i2 < ne2; i2++) {
  9547. for (int i1 = ir0; i1 < ir1; i1++) {
  9548. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9549. for (int i0 = 0; i0 < ne0; i0++) {
  9550. ggml_vec_dot_f32(ew0, dst_data + i0,
  9551. (float *) ((char *) src0->data + i1*nb02),
  9552. (float *) wdata + i2*nb2 + i0*ew0);
  9553. }
  9554. }
  9555. }
  9556. }
  9557. // TODO: reuse ggml_mul_mat or implement ggml_im2col and remove stage_0 and stage_1
  9558. static void gemm_f16_out_f32(int64_t m, int64_t n, int64_t k,
  9559. ggml_fp16_t * A,
  9560. ggml_fp16_t * B,
  9561. float * C,
  9562. const int ith, const int nth) {
  9563. // does not seem to make a difference
  9564. int64_t m0, m1, n0, n1;
  9565. // patches per thread
  9566. if (m > n) {
  9567. n0 = 0;
  9568. n1 = n;
  9569. // total patches in dst
  9570. const int np = m;
  9571. // patches per thread
  9572. const int dp = (np + nth - 1)/nth;
  9573. // patch range for this thread
  9574. m0 = dp*ith;
  9575. m1 = MIN(m0 + dp, np);
  9576. } else {
  9577. m0 = 0;
  9578. m1 = m;
  9579. // total patches in dst
  9580. const int np = n;
  9581. // patches per thread
  9582. const int dp = (np + nth - 1)/nth;
  9583. // patch range for this thread
  9584. n0 = dp*ith;
  9585. n1 = MIN(n0 + dp, np);
  9586. }
  9587. // block-tiling attempt
  9588. int64_t blck_n = 16;
  9589. int64_t blck_m = 16;
  9590. // int64_t CACHE_SIZE = 2 * 1024 * 1024; // 2MB
  9591. // int64_t blck_size = CACHE_SIZE / (sizeof(float) + 2 * sizeof(ggml_fp16_t) * K);
  9592. // if (blck_size > 0) {
  9593. // blck_0 = 4;
  9594. // blck_1 = blck_size / blck_0;
  9595. // if (blck_1 < 0) {
  9596. // blck_1 = 1;
  9597. // }
  9598. // // blck_0 = (int64_t)sqrt(blck_size);
  9599. // // blck_1 = blck_0;
  9600. // }
  9601. // // printf("%zd %zd %zd %zd\n", blck_size, K, blck_0, blck_1);
  9602. for (int j = n0; j < n1; j+=blck_n) {
  9603. for (int i = m0; i < m1; i+=blck_m) {
  9604. // printf("i j k => %d %d %d\n", i, j, K);
  9605. for (int ii = i; ii < i + blck_m && ii < m1; ii++) {
  9606. for (int jj = j; jj < j + blck_n && jj < n1; jj++) {
  9607. ggml_vec_dot_f16(k,
  9608. C + ii*n + jj,
  9609. A + ii * k,
  9610. B + jj * k);
  9611. }
  9612. }
  9613. }
  9614. }
  9615. }
  9616. // src0: kernel [OC, IC, K]
  9617. // src1: signal [N, IC, IL]
  9618. // dst: result [N, OL, IC*K]
  9619. static void ggml_compute_forward_conv_1d_stage_0_f32(
  9620. const struct ggml_compute_params * params,
  9621. const struct ggml_tensor * src0,
  9622. const struct ggml_tensor * src1,
  9623. struct ggml_tensor * dst) {
  9624. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9625. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9626. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9627. int64_t t0 = ggml_perf_time_us();
  9628. UNUSED(t0);
  9629. GGML_TENSOR_BINARY_OP_LOCALS;
  9630. const int64_t N = ne12;
  9631. const int64_t IC = ne11;
  9632. const int64_t IL = ne10;
  9633. const int64_t K = ne00;
  9634. const int64_t OL = ne1;
  9635. const int ith = params->ith;
  9636. const int nth = params->nth;
  9637. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9638. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9639. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9640. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9641. GGML_ASSERT(nb10 == sizeof(float));
  9642. if (params->type == GGML_TASK_INIT) {
  9643. memset(dst->data, 0, ggml_nbytes(dst));
  9644. return;
  9645. }
  9646. if (params->type == GGML_TASK_FINALIZE) {
  9647. return;
  9648. }
  9649. // im2col: [N, IC, IL] => [N, OL, IC*K]
  9650. {
  9651. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9652. for (int64_t in = 0; in < N; in++) {
  9653. for (int64_t iol = 0; iol < OL; iol++) {
  9654. for (int64_t iic = ith; iic < IC; iic+=nth) {
  9655. // micro kernel
  9656. ggml_fp16_t * dst_data = wdata + (in*OL + iol)*(IC*K); // [IC, K]
  9657. const float * const src_data = (float *)((char *) src1->data + in*nb12 + iic*nb11); // [IL]
  9658. for (int64_t ik = 0; ik < K; ik++) {
  9659. const int64_t iil = iol*s0 + ik*d0 - p0;
  9660. if (!(iil < 0 || iil >= IL)) {
  9661. dst_data[iic*K + ik] = GGML_FP32_TO_FP16(src_data[iil]);
  9662. }
  9663. }
  9664. }
  9665. }
  9666. }
  9667. }
  9668. }
  9669. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9670. // src0: [OC, IC, K]
  9671. // src1: [N, OL, IC * K]
  9672. // result: [N, OC, OL]
  9673. static void ggml_compute_forward_conv_1d_stage_1_f16(
  9674. const struct ggml_compute_params * params,
  9675. const struct ggml_tensor * src0,
  9676. const struct ggml_tensor * src1,
  9677. struct ggml_tensor * dst) {
  9678. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9679. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  9680. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9681. int64_t t0 = ggml_perf_time_us();
  9682. UNUSED(t0);
  9683. if (params->type == GGML_TASK_INIT) {
  9684. return;
  9685. }
  9686. if (params->type == GGML_TASK_FINALIZE) {
  9687. return;
  9688. }
  9689. GGML_TENSOR_BINARY_OP_LOCALS;
  9690. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9691. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  9692. GGML_ASSERT(nb0 == sizeof(float));
  9693. const int N = ne12;
  9694. const int OL = ne11;
  9695. const int OC = ne02;
  9696. const int IC = ne01;
  9697. const int K = ne00;
  9698. const int ith = params->ith;
  9699. const int nth = params->nth;
  9700. int64_t m = OC;
  9701. int64_t n = OL;
  9702. int64_t k = IC * K;
  9703. // [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9704. for (int i = 0; i < N; i++) {
  9705. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  9706. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  9707. float * C = (float *)dst->data + i * m * n; // [m, n]
  9708. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  9709. }
  9710. }
  9711. static void ggml_compute_forward_conv_1d(
  9712. const struct ggml_compute_params * params,
  9713. const struct ggml_tensor * src0,
  9714. const struct ggml_tensor * src1,
  9715. struct ggml_tensor * dst) {
  9716. switch(src0->type) {
  9717. case GGML_TYPE_F16:
  9718. {
  9719. ggml_compute_forward_conv_1d_f16_f32(params, src0, src1, dst);
  9720. } break;
  9721. case GGML_TYPE_F32:
  9722. {
  9723. ggml_compute_forward_conv_1d_f32(params, src0, src1, dst);
  9724. } break;
  9725. default:
  9726. {
  9727. GGML_ASSERT(false);
  9728. } break;
  9729. }
  9730. }
  9731. static void ggml_compute_forward_conv_1d_stage_0(
  9732. const struct ggml_compute_params * params,
  9733. const struct ggml_tensor * src0,
  9734. const struct ggml_tensor * src1,
  9735. struct ggml_tensor * dst) {
  9736. switch(src0->type) {
  9737. case GGML_TYPE_F16:
  9738. {
  9739. ggml_compute_forward_conv_1d_stage_0_f32(params, src0, src1, dst);
  9740. } break;
  9741. default:
  9742. {
  9743. GGML_ASSERT(false);
  9744. } break;
  9745. }
  9746. }
  9747. static void ggml_compute_forward_conv_1d_stage_1(
  9748. const struct ggml_compute_params * params,
  9749. const struct ggml_tensor * src0,
  9750. const struct ggml_tensor * src1,
  9751. struct ggml_tensor * dst) {
  9752. switch(src0->type) {
  9753. case GGML_TYPE_F16:
  9754. {
  9755. ggml_compute_forward_conv_1d_stage_1_f16(params, src0, src1, dst);
  9756. } break;
  9757. default:
  9758. {
  9759. GGML_ASSERT(false);
  9760. } break;
  9761. }
  9762. }
  9763. // ggml_compute_forward_conv_transpose_1d
  9764. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9765. const struct ggml_compute_params * params,
  9766. const struct ggml_tensor * src0,
  9767. const struct ggml_tensor * src1,
  9768. struct ggml_tensor * dst) {
  9769. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9770. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9771. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9772. int64_t t0 = ggml_perf_time_us();
  9773. UNUSED(t0);
  9774. GGML_TENSOR_BINARY_OP_LOCALS
  9775. const int ith = params->ith;
  9776. const int nth = params->nth;
  9777. const int nk = ne00*ne01*ne02;
  9778. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9779. GGML_ASSERT(nb10 == sizeof(float));
  9780. if (params->type == GGML_TASK_INIT) {
  9781. memset(params->wdata, 0, params->wsize);
  9782. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9783. {
  9784. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9785. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9786. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9787. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9788. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9789. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9790. dst_data[i00*ne02 + i02] = src[i00];
  9791. }
  9792. }
  9793. }
  9794. }
  9795. // permute source data (src1) from (L x Cin) to (Cin x L)
  9796. {
  9797. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9798. ggml_fp16_t * dst_data = wdata;
  9799. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9800. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9801. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9802. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9803. }
  9804. }
  9805. }
  9806. // need to zero dst since we are accumulating into it
  9807. memset(dst->data, 0, ggml_nbytes(dst));
  9808. return;
  9809. }
  9810. if (params->type == GGML_TASK_FINALIZE) {
  9811. return;
  9812. }
  9813. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9814. // total rows in dst
  9815. const int nr = ne1;
  9816. // rows per thread
  9817. const int dr = (nr + nth - 1)/nth;
  9818. // row range for this thread
  9819. const int ir0 = dr*ith;
  9820. const int ir1 = MIN(ir0 + dr, nr);
  9821. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9822. ggml_fp16_t * const wdata_src = wdata + nk;
  9823. for (int i1 = ir0; i1 < ir1; i1++) {
  9824. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9825. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9826. for (int i10 = 0; i10 < ne10; i10++) {
  9827. const int i1n = i10*ne11;
  9828. for (int i00 = 0; i00 < ne00; i00++) {
  9829. float v = 0;
  9830. ggml_vec_dot_f16(ne02, &v,
  9831. (ggml_fp16_t *) wdata_src + i1n,
  9832. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9833. dst_data[i10*s0 + i00] += v;
  9834. }
  9835. }
  9836. }
  9837. }
  9838. static void ggml_compute_forward_conv_transpose_1d_f32(
  9839. const struct ggml_compute_params * params,
  9840. const struct ggml_tensor * src0,
  9841. const struct ggml_tensor * src1,
  9842. struct ggml_tensor * dst) {
  9843. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9844. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9845. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9846. int64_t t0 = ggml_perf_time_us();
  9847. UNUSED(t0);
  9848. GGML_TENSOR_BINARY_OP_LOCALS
  9849. const int ith = params->ith;
  9850. const int nth = params->nth;
  9851. const int nk = ne00*ne01*ne02;
  9852. GGML_ASSERT(nb00 == sizeof(float));
  9853. GGML_ASSERT(nb10 == sizeof(float));
  9854. if (params->type == GGML_TASK_INIT) {
  9855. memset(params->wdata, 0, params->wsize);
  9856. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9857. {
  9858. float * const wdata = (float *) params->wdata + 0;
  9859. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9860. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9861. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9862. float * dst_data = wdata + i01*ne00*ne02;
  9863. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9864. dst_data[i00*ne02 + i02] = src[i00];
  9865. }
  9866. }
  9867. }
  9868. }
  9869. // prepare source data (src1)
  9870. {
  9871. float * const wdata = (float *) params->wdata + nk;
  9872. float * dst_data = wdata;
  9873. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9874. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9875. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9876. dst_data[i10*ne11 + i11] = src[i10];
  9877. }
  9878. }
  9879. }
  9880. // need to zero dst since we are accumulating into it
  9881. memset(dst->data, 0, ggml_nbytes(dst));
  9882. return;
  9883. }
  9884. if (params->type == GGML_TASK_FINALIZE) {
  9885. return;
  9886. }
  9887. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9888. // total rows in dst
  9889. const int nr = ne1;
  9890. // rows per thread
  9891. const int dr = (nr + nth - 1)/nth;
  9892. // row range for this thread
  9893. const int ir0 = dr*ith;
  9894. const int ir1 = MIN(ir0 + dr, nr);
  9895. float * const wdata = (float *) params->wdata + 0;
  9896. float * const wdata_src = wdata + nk;
  9897. for (int i1 = ir0; i1 < ir1; i1++) {
  9898. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9899. float * wdata_kernel = wdata + i1*ne02*ne00;
  9900. for (int i10 = 0; i10 < ne10; i10++) {
  9901. const int i1n = i10*ne11;
  9902. for (int i00 = 0; i00 < ne00; i00++) {
  9903. float v = 0;
  9904. ggml_vec_dot_f32(ne02, &v,
  9905. wdata_src + i1n,
  9906. wdata_kernel + i00*ne02);
  9907. dst_data[i10*s0 + i00] += v;
  9908. }
  9909. }
  9910. }
  9911. }
  9912. static void ggml_compute_forward_conv_transpose_1d(
  9913. const struct ggml_compute_params * params,
  9914. const struct ggml_tensor * src0,
  9915. const struct ggml_tensor * src1,
  9916. struct ggml_tensor * dst) {
  9917. switch (src0->type) {
  9918. case GGML_TYPE_F16:
  9919. {
  9920. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9921. } break;
  9922. case GGML_TYPE_F32:
  9923. {
  9924. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9925. } break;
  9926. default:
  9927. {
  9928. GGML_ASSERT(false);
  9929. } break;
  9930. }
  9931. }
  9932. // ggml_compute_forward_conv_2d
  9933. // src0: kernel [OC, IC, KH, KW]
  9934. // src1: image [N, IC, IH, IW]
  9935. // dst: result [N, OH, OW, IC*KH*KW]
  9936. static void ggml_compute_forward_conv_2d_stage_0_f32(
  9937. const struct ggml_compute_params * params,
  9938. const struct ggml_tensor * src0,
  9939. const struct ggml_tensor * src1,
  9940. struct ggml_tensor * dst) {
  9941. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9942. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9943. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9944. int64_t t0 = ggml_perf_time_us();
  9945. UNUSED(t0);
  9946. GGML_TENSOR_BINARY_OP_LOCALS;
  9947. const int64_t N = ne13;
  9948. const int64_t IC = ne12;
  9949. const int64_t IH = ne11;
  9950. const int64_t IW = ne10;
  9951. // const int64_t OC = ne03;
  9952. // const int64_t IC = ne02;
  9953. const int64_t KH = ne01;
  9954. const int64_t KW = ne00;
  9955. const int64_t OH = ne2;
  9956. const int64_t OW = ne1;
  9957. const int ith = params->ith;
  9958. const int nth = params->nth;
  9959. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9960. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  9961. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  9962. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  9963. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  9964. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  9965. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9966. GGML_ASSERT(nb10 == sizeof(float));
  9967. if (params->type == GGML_TASK_INIT) {
  9968. memset(dst->data, 0, ggml_nbytes(dst));
  9969. return;
  9970. }
  9971. if (params->type == GGML_TASK_FINALIZE) {
  9972. return;
  9973. }
  9974. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9975. {
  9976. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9977. for (int64_t in = 0; in < N; in++) {
  9978. for (int64_t ioh = 0; ioh < OH; ioh++) {
  9979. for (int64_t iow = 0; iow < OW; iow++) {
  9980. for (int64_t iic = ith; iic < IC; iic+=nth) {
  9981. // micro kernel
  9982. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9983. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  9984. for (int64_t ikh = 0; ikh < KH; ikh++) {
  9985. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9986. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9987. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9988. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  9989. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9990. }
  9991. }
  9992. }
  9993. }
  9994. }
  9995. }
  9996. }
  9997. }
  9998. }
  9999. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  10000. // src0: [OC, IC, KH, KW]
  10001. // src1: [N, OH, OW, IC * KH * KW]
  10002. // result: [N, OC, OH, OW]
  10003. static void ggml_compute_forward_conv_2d_stage_1_f16(
  10004. const struct ggml_compute_params * params,
  10005. const struct ggml_tensor * src0,
  10006. const struct ggml_tensor * src1,
  10007. struct ggml_tensor * dst) {
  10008. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10009. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  10010. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10011. int64_t t0 = ggml_perf_time_us();
  10012. UNUSED(t0);
  10013. if (params->type == GGML_TASK_INIT) {
  10014. return;
  10015. }
  10016. if (params->type == GGML_TASK_FINALIZE) {
  10017. return;
  10018. }
  10019. GGML_TENSOR_BINARY_OP_LOCALS;
  10020. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10021. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  10022. GGML_ASSERT(nb0 == sizeof(float));
  10023. const int N = ne13;
  10024. const int OH = ne12;
  10025. const int OW = ne11;
  10026. const int OC = ne03;
  10027. const int IC = ne02;
  10028. const int KH = ne01;
  10029. const int KW = ne00;
  10030. const int ith = params->ith;
  10031. const int nth = params->nth;
  10032. int64_t m = OC;
  10033. int64_t n = OH * OW;
  10034. int64_t k = IC * KH * KW;
  10035. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  10036. for (int i = 0; i < N; i++) {
  10037. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  10038. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  10039. float * C = (float *)dst->data + i * m * n; // [m, n]
  10040. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  10041. }
  10042. }
  10043. static void ggml_compute_forward_conv_2d_f16_f32(
  10044. const struct ggml_compute_params * params,
  10045. const struct ggml_tensor * src0,
  10046. const struct ggml_tensor * src1,
  10047. struct ggml_tensor * dst) {
  10048. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10049. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10050. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10051. int64_t t0 = ggml_perf_time_us();
  10052. UNUSED(t0);
  10053. GGML_TENSOR_BINARY_OP_LOCALS
  10054. // src1: image [N, IC, IH, IW]
  10055. // src0: kernel [OC, IC, KH, KW]
  10056. // dst: result [N, OC, OH, OW]
  10057. // ne12: IC
  10058. // ne0: OW
  10059. // ne1: OH
  10060. // nk0: KW
  10061. // nk1: KH
  10062. // ne13: N
  10063. const int N = ne13;
  10064. const int IC = ne12;
  10065. const int IH = ne11;
  10066. const int IW = ne10;
  10067. const int OC = ne03;
  10068. // const int IC = ne02;
  10069. const int KH = ne01;
  10070. const int KW = ne00;
  10071. const int OH = ne1;
  10072. const int OW = ne0;
  10073. const int ith = params->ith;
  10074. const int nth = params->nth;
  10075. // const int nk0 = ne00;
  10076. // const int nk1 = ne01;
  10077. // size of the convolution row - the kernel size unrolled across all channels
  10078. // const int ew0 = nk0*nk1*ne02;
  10079. // ew0: IC*KH*KW
  10080. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10081. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10082. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10083. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10084. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10085. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10086. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10087. GGML_ASSERT(nb10 == sizeof(float));
  10088. if (params->type == GGML_TASK_INIT) {
  10089. memset(params->wdata, 0, params->wsize);
  10090. // prepare source data (src1)
  10091. // im2col: [N, IC, IH, IW] => [N*OH*OW, IC*KH*KW]
  10092. {
  10093. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10094. for (int in = 0; in < N; in++) {
  10095. for (int iic = 0; iic < IC; iic++) {
  10096. for (int ioh = 0; ioh < OH; ioh++) {
  10097. for (int iow = 0; iow < OW; iow++) {
  10098. // micro kernel
  10099. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10100. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  10101. for (int ikh = 0; ikh < KH; ikh++) {
  10102. for (int ikw = 0; ikw < KW; ikw++) {
  10103. const int iiw = iow*s0 + ikw*d0 - p0;
  10104. const int iih = ioh*s1 + ikh*d1 - p1;
  10105. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  10106. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10107. }
  10108. }
  10109. }
  10110. }
  10111. }
  10112. }
  10113. }
  10114. }
  10115. return;
  10116. }
  10117. if (params->type == GGML_TASK_FINALIZE) {
  10118. return;
  10119. }
  10120. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10121. // wdata: [N*OH*OW, IC*KH*KW]
  10122. // dst: result [N, OC, OH, OW]
  10123. // src0: kernel [OC, IC, KH, KW]
  10124. int64_t m = OC;
  10125. int64_t n = OH * OW;
  10126. int64_t k = IC * KH * KW;
  10127. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  10128. for (int i = 0; i < N; i++) {
  10129. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  10130. ggml_fp16_t * B = (ggml_fp16_t *)wdata + i * m * k; // [n, k]
  10131. float * C = (float *)dst->data + i * m * n; // [m * k]
  10132. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  10133. }
  10134. }
  10135. static void ggml_compute_forward_conv_2d(
  10136. const struct ggml_compute_params * params,
  10137. const struct ggml_tensor * src0,
  10138. const struct ggml_tensor * src1,
  10139. struct ggml_tensor * dst) {
  10140. switch (src0->type) {
  10141. case GGML_TYPE_F16:
  10142. {
  10143. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10144. } break;
  10145. case GGML_TYPE_F32:
  10146. {
  10147. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10148. GGML_ASSERT(false);
  10149. } break;
  10150. default:
  10151. {
  10152. GGML_ASSERT(false);
  10153. } break;
  10154. }
  10155. }
  10156. static void ggml_compute_forward_conv_2d_stage_0(
  10157. const struct ggml_compute_params * params,
  10158. const struct ggml_tensor * src0,
  10159. const struct ggml_tensor * src1,
  10160. struct ggml_tensor * dst) {
  10161. switch (src0->type) {
  10162. case GGML_TYPE_F16:
  10163. {
  10164. ggml_compute_forward_conv_2d_stage_0_f32(params, src0, src1, dst);
  10165. } break;
  10166. case GGML_TYPE_F32:
  10167. {
  10168. GGML_ASSERT(false);
  10169. } break;
  10170. default:
  10171. {
  10172. GGML_ASSERT(false);
  10173. } break;
  10174. }
  10175. }
  10176. static void ggml_compute_forward_conv_2d_stage_1(
  10177. const struct ggml_compute_params * params,
  10178. const struct ggml_tensor * src0,
  10179. const struct ggml_tensor * src1,
  10180. struct ggml_tensor * dst) {
  10181. switch (src0->type) {
  10182. case GGML_TYPE_F16:
  10183. {
  10184. ggml_compute_forward_conv_2d_stage_1_f16(params, src0, src1, dst);
  10185. } break;
  10186. case GGML_TYPE_F32:
  10187. {
  10188. GGML_ASSERT(false);
  10189. } break;
  10190. default:
  10191. {
  10192. GGML_ASSERT(false);
  10193. } break;
  10194. }
  10195. }
  10196. // ggml_compute_forward_conv_transpose_2d
  10197. static void ggml_compute_forward_conv_transpose_2d(
  10198. const struct ggml_compute_params * params,
  10199. const struct ggml_tensor * src0,
  10200. const struct ggml_tensor * src1,
  10201. struct ggml_tensor * dst) {
  10202. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10203. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10204. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10205. int64_t t0 = ggml_perf_time_us();
  10206. UNUSED(t0);
  10207. GGML_TENSOR_BINARY_OP_LOCALS
  10208. const int ith = params->ith;
  10209. const int nth = params->nth;
  10210. const int nk = ne00*ne01*ne02*ne03;
  10211. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10212. GGML_ASSERT(nb10 == sizeof(float));
  10213. if (params->type == GGML_TASK_INIT) {
  10214. memset(params->wdata, 0, params->wsize);
  10215. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10216. {
  10217. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10218. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10219. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10220. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10221. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10222. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10223. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10224. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10225. }
  10226. }
  10227. }
  10228. }
  10229. }
  10230. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10231. {
  10232. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10233. for (int i12 = 0; i12 < ne12; i12++) {
  10234. for (int i11 = 0; i11 < ne11; i11++) {
  10235. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10236. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10237. for (int i10 = 0; i10 < ne10; i10++) {
  10238. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10239. }
  10240. }
  10241. }
  10242. }
  10243. memset(dst->data, 0, ggml_nbytes(dst));
  10244. return;
  10245. }
  10246. if (params->type == GGML_TASK_FINALIZE) {
  10247. return;
  10248. }
  10249. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10250. // total patches in dst
  10251. const int np = ne2;
  10252. // patches per thread
  10253. const int dp = (np + nth - 1)/nth;
  10254. // patch range for this thread
  10255. const int ip0 = dp*ith;
  10256. const int ip1 = MIN(ip0 + dp, np);
  10257. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10258. ggml_fp16_t * const wdata_src = wdata + nk;
  10259. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10260. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10261. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10262. for (int i11 = 0; i11 < ne11; i11++) {
  10263. for (int i10 = 0; i10 < ne10; i10++) {
  10264. const int i1n = i11*ne10*ne12 + i10*ne12;
  10265. for (int i01 = 0; i01 < ne01; i01++) {
  10266. for (int i00 = 0; i00 < ne00; i00++) {
  10267. float v = 0;
  10268. ggml_vec_dot_f16(ne03, &v,
  10269. wdata_src + i1n,
  10270. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10271. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10272. }
  10273. }
  10274. }
  10275. }
  10276. }
  10277. }
  10278. // ggml_compute_forward_pool_1d_sk_p0
  10279. static void ggml_compute_forward_pool_1d_sk_p0(
  10280. const struct ggml_compute_params * params,
  10281. const enum ggml_op_pool op,
  10282. const struct ggml_tensor * src,
  10283. const int k,
  10284. struct ggml_tensor * dst) {
  10285. assert(src->type == GGML_TYPE_F32);
  10286. assert(params->ith == 0);
  10287. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10288. return;
  10289. }
  10290. const char * cdata = (const char *)src->data;
  10291. const char * const data_end = cdata + ggml_nbytes(src);
  10292. float * drow = (float *)dst->data;
  10293. const int64_t rs = dst->ne[0];
  10294. while (cdata < data_end) {
  10295. const float * const srow = (const float *)cdata;
  10296. int j = 0;
  10297. for (int64_t i = 0; i < rs; ++i) {
  10298. switch (op) {
  10299. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10300. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10301. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10302. }
  10303. for (int ki = 0; ki < k; ++ki) {
  10304. switch (op) {
  10305. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10306. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10307. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10308. }
  10309. ++j;
  10310. }
  10311. switch (op) {
  10312. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10313. case GGML_OP_POOL_MAX: break;
  10314. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10315. }
  10316. }
  10317. cdata += src->nb[1];
  10318. drow += rs;
  10319. }
  10320. }
  10321. // ggml_compute_forward_pool_1d
  10322. static void ggml_compute_forward_pool_1d(
  10323. const struct ggml_compute_params * params,
  10324. const struct ggml_tensor * src0,
  10325. struct ggml_tensor * dst) {
  10326. const int32_t * opts = (const int32_t *)dst->op_params;
  10327. enum ggml_op_pool op = opts[0];
  10328. const int k0 = opts[1];
  10329. const int s0 = opts[2];
  10330. const int p0 = opts[3];
  10331. GGML_ASSERT(p0 == 0); // padding not supported
  10332. GGML_ASSERT(k0 == s0); // only s = k supported
  10333. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10334. }
  10335. // ggml_compute_forward_pool_2d_sk_p0
  10336. static void ggml_compute_forward_pool_2d_sk_p0(
  10337. const struct ggml_compute_params * params,
  10338. const enum ggml_op_pool op,
  10339. const struct ggml_tensor * src,
  10340. const int k0,
  10341. const int k1,
  10342. struct ggml_tensor * dst) {
  10343. assert(src->type == GGML_TYPE_F32);
  10344. assert(params->ith == 0);
  10345. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10346. return;
  10347. }
  10348. const char * cdata = (const char*)src->data;
  10349. const char * const data_end = cdata + ggml_nbytes(src);
  10350. const int64_t px = dst->ne[0];
  10351. const int64_t py = dst->ne[1];
  10352. const int64_t pa = px * py;
  10353. float * dplane = (float *)dst->data;
  10354. const int ka = k0 * k1;
  10355. while (cdata < data_end) {
  10356. for (int oy = 0; oy < py; ++oy) {
  10357. float * const drow = dplane + oy * px;
  10358. for (int ox = 0; ox < px; ++ox) {
  10359. float * const out = drow + ox;
  10360. switch (op) {
  10361. case GGML_OP_POOL_AVG: *out = 0; break;
  10362. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10363. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10364. }
  10365. const int ix = ox * k0;
  10366. const int iy = oy * k1;
  10367. for (int ky = 0; ky < k1; ++ky) {
  10368. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10369. for (int kx = 0; kx < k0; ++kx) {
  10370. int j = ix + kx;
  10371. switch (op) {
  10372. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10373. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10374. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10375. }
  10376. }
  10377. }
  10378. switch (op) {
  10379. case GGML_OP_POOL_AVG: *out /= ka; break;
  10380. case GGML_OP_POOL_MAX: break;
  10381. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10382. }
  10383. }
  10384. }
  10385. cdata += src->nb[2];
  10386. dplane += pa;
  10387. }
  10388. }
  10389. // ggml_compute_forward_pool_2d
  10390. static void ggml_compute_forward_pool_2d(
  10391. const struct ggml_compute_params * params,
  10392. const struct ggml_tensor * src0,
  10393. struct ggml_tensor * dst) {
  10394. const int32_t * opts = (const int32_t *)dst->op_params;
  10395. enum ggml_op_pool op = opts[0];
  10396. const int k0 = opts[1];
  10397. const int k1 = opts[2];
  10398. const int s0 = opts[3];
  10399. const int s1 = opts[4];
  10400. const int p0 = opts[5];
  10401. const int p1 = opts[6];
  10402. GGML_ASSERT(p0 == 0);
  10403. GGML_ASSERT(p1 == 0); // padding not supported
  10404. GGML_ASSERT(k0 == s0);
  10405. GGML_ASSERT(k1 == s1); // only s = k supported
  10406. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10407. }
  10408. // ggml_compute_forward_upscale
  10409. static void ggml_compute_forward_upscale_f32(
  10410. const struct ggml_compute_params * params,
  10411. const struct ggml_tensor * src0,
  10412. struct ggml_tensor * dst) {
  10413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10414. return;
  10415. }
  10416. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10417. const int ith = params->ith;
  10418. GGML_TENSOR_UNARY_OP_LOCALS
  10419. const int scale_factor = dst->op_params[0];
  10420. // TODO: optimize
  10421. for (int i03 = 0; i03 < ne03; i03++) {
  10422. for (int i02 = ith; i02 < ne02; i02++) {
  10423. for (int m = 0; m < dst->ne[1]; m++) {
  10424. int i01 = m / scale_factor;
  10425. for (int n = 0; n < dst->ne[0]; n++) {
  10426. int i00 = n / scale_factor;
  10427. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  10428. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  10429. *y = *x;
  10430. }
  10431. }
  10432. }
  10433. }
  10434. }
  10435. static void ggml_compute_forward_upscale(
  10436. const struct ggml_compute_params * params,
  10437. const struct ggml_tensor * src0,
  10438. struct ggml_tensor * dst) {
  10439. switch (src0->type) {
  10440. case GGML_TYPE_F32:
  10441. {
  10442. ggml_compute_forward_upscale_f32(params, src0, dst);
  10443. } break;
  10444. default:
  10445. {
  10446. GGML_ASSERT(false);
  10447. } break;
  10448. }
  10449. }
  10450. // ggml_compute_forward_flash_attn
  10451. static void ggml_compute_forward_flash_attn_f32(
  10452. const struct ggml_compute_params * params,
  10453. const struct ggml_tensor * q,
  10454. const struct ggml_tensor * k,
  10455. const struct ggml_tensor * v,
  10456. const bool masked,
  10457. struct ggml_tensor * dst) {
  10458. int64_t t0 = ggml_perf_time_us();
  10459. UNUSED(t0);
  10460. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10461. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10462. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10463. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10464. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10465. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10466. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10467. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10468. const int ith = params->ith;
  10469. const int nth = params->nth;
  10470. const int64_t D = neq0;
  10471. const int64_t N = neq1;
  10472. const int64_t P = nek1 - N;
  10473. const int64_t M = P + N;
  10474. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10475. GGML_ASSERT(ne0 == D);
  10476. GGML_ASSERT(ne1 == N);
  10477. GGML_ASSERT(P >= 0);
  10478. GGML_ASSERT(nbq0 == sizeof(float));
  10479. GGML_ASSERT(nbk0 == sizeof(float));
  10480. GGML_ASSERT(nbv0 == sizeof(float));
  10481. GGML_ASSERT(neq0 == D);
  10482. GGML_ASSERT(nek0 == D);
  10483. GGML_ASSERT(nev1 == D);
  10484. GGML_ASSERT(neq1 == N);
  10485. GGML_ASSERT(nek1 == N + P);
  10486. GGML_ASSERT(nev1 == D);
  10487. // dst cannot be transposed or permuted
  10488. GGML_ASSERT(nb0 == sizeof(float));
  10489. GGML_ASSERT(nb0 <= nb1);
  10490. GGML_ASSERT(nb1 <= nb2);
  10491. GGML_ASSERT(nb2 <= nb3);
  10492. if (params->type == GGML_TASK_INIT) {
  10493. return;
  10494. }
  10495. if (params->type == GGML_TASK_FINALIZE) {
  10496. return;
  10497. }
  10498. // parallelize by q rows using ggml_vec_dot_f32
  10499. // total rows in q
  10500. const int nr = neq1*neq2*neq3;
  10501. // rows per thread
  10502. const int dr = (nr + nth - 1)/nth;
  10503. // row range for this thread
  10504. const int ir0 = dr*ith;
  10505. const int ir1 = MIN(ir0 + dr, nr);
  10506. const float scale = 1.0f/sqrtf(D);
  10507. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10508. for (int ir = ir0; ir < ir1; ++ir) {
  10509. // q indices
  10510. const int iq3 = ir/(neq2*neq1);
  10511. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10512. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10513. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10514. for (int i = M; i < Mup; ++i) {
  10515. S[i] = -INFINITY;
  10516. }
  10517. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10518. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10519. // k indices
  10520. const int ik3 = iq3;
  10521. const int ik2 = iq2 % nek2;
  10522. const int ik1 = ic;
  10523. // S indices
  10524. const int i1 = ik1;
  10525. ggml_vec_dot_f32(neq0,
  10526. S + i1,
  10527. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10528. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10529. }
  10530. // scale
  10531. ggml_vec_scale_f32(masked_begin, S, scale);
  10532. for (int64_t i = masked_begin; i < M; i++) {
  10533. S[i] = -INFINITY;
  10534. }
  10535. // softmax
  10536. // exclude known -INF S[..] values from max and loop
  10537. // dont forget to set their SW values to zero
  10538. {
  10539. float max = -INFINITY;
  10540. ggml_vec_max_f32(masked_begin, &max, S);
  10541. ggml_float sum = 0.0;
  10542. {
  10543. #ifdef GGML_SOFT_MAX_ACCELERATE
  10544. max = -max;
  10545. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10546. vvexpf(S, S, &Mup);
  10547. ggml_vec_sum_f32(Mup, &sum, S);
  10548. #else
  10549. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10550. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10551. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10552. if (i >= masked_begin) {
  10553. break;
  10554. }
  10555. float * SS = S + i;
  10556. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10557. if (i + j >= masked_begin) {
  10558. break;
  10559. } else if (SS[j] == -INFINITY) {
  10560. SS[j] = 0.0f;
  10561. } else {
  10562. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10563. const float val = expf(SS[j] - max);
  10564. #else
  10565. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10566. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10567. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10568. #endif
  10569. sump[j] += (ggml_float)val;
  10570. SS[j] = val;
  10571. }
  10572. }
  10573. }
  10574. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10575. sum += sump[i];
  10576. }
  10577. #endif
  10578. }
  10579. assert(sum > 0.0);
  10580. sum = 1.0/sum;
  10581. ggml_vec_scale_f32(masked_begin, S, sum);
  10582. #ifndef NDEBUG
  10583. for (int i = 0; i < masked_begin; ++i) {
  10584. assert(!isnan(S[i]));
  10585. assert(!isinf(S[i]));
  10586. }
  10587. #endif
  10588. }
  10589. for (int64_t ic = 0; ic < nev1; ++ic) {
  10590. // dst indices
  10591. const int i1 = iq1;
  10592. const int i2 = iq2;
  10593. const int i3 = iq3;
  10594. // v indices
  10595. const int iv2 = iq2 % nev2;
  10596. const int iv3 = iq3;
  10597. ggml_vec_dot_f32(masked_begin,
  10598. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10599. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10600. S);
  10601. }
  10602. }
  10603. }
  10604. static void ggml_compute_forward_flash_attn_f16(
  10605. const struct ggml_compute_params * params,
  10606. const struct ggml_tensor * q,
  10607. const struct ggml_tensor * k,
  10608. const struct ggml_tensor * v,
  10609. const bool masked,
  10610. struct ggml_tensor * dst) {
  10611. int64_t t0 = ggml_perf_time_us();
  10612. UNUSED(t0);
  10613. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10614. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10615. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10616. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10617. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10618. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10619. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10620. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10621. const int ith = params->ith;
  10622. const int nth = params->nth;
  10623. const int64_t D = neq0;
  10624. const int64_t N = neq1;
  10625. const int64_t P = nek1 - N;
  10626. const int64_t M = P + N;
  10627. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10628. GGML_ASSERT(ne0 == D);
  10629. GGML_ASSERT(ne1 == N);
  10630. GGML_ASSERT(P >= 0);
  10631. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10632. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10633. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10634. GGML_ASSERT(neq0 == D);
  10635. GGML_ASSERT(nek0 == D);
  10636. GGML_ASSERT(nev1 == D);
  10637. GGML_ASSERT(neq1 == N);
  10638. GGML_ASSERT(nek1 == N + P);
  10639. GGML_ASSERT(nev1 == D);
  10640. // dst cannot be transposed or permuted
  10641. GGML_ASSERT(nb0 == sizeof(float));
  10642. GGML_ASSERT(nb0 <= nb1);
  10643. GGML_ASSERT(nb1 <= nb2);
  10644. GGML_ASSERT(nb2 <= nb3);
  10645. if (params->type == GGML_TASK_INIT) {
  10646. return;
  10647. }
  10648. if (params->type == GGML_TASK_FINALIZE) {
  10649. return;
  10650. }
  10651. // parallelize by q rows using ggml_vec_dot_f32
  10652. // total rows in q
  10653. const int nr = neq1*neq2*neq3;
  10654. // rows per thread
  10655. const int dr = (nr + nth - 1)/nth;
  10656. // row range for this thread
  10657. const int ir0 = dr*ith;
  10658. const int ir1 = MIN(ir0 + dr, nr);
  10659. const float scale = 1.0f/sqrtf(D);
  10660. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10661. for (int ir = ir0; ir < ir1; ++ir) {
  10662. // q indices
  10663. const int iq3 = ir/(neq2*neq1);
  10664. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10665. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10666. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10667. for (int i = M; i < Mup; ++i) {
  10668. S[i] = -INFINITY;
  10669. }
  10670. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10671. for (int64_t ic = 0; ic < nek1; ++ic) {
  10672. // k indices
  10673. const int ik3 = iq3;
  10674. const int ik2 = iq2 % nek2;
  10675. const int ik1 = ic;
  10676. // S indices
  10677. const int i1 = ik1;
  10678. ggml_vec_dot_f16(neq0,
  10679. S + i1,
  10680. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10681. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10682. }
  10683. } else {
  10684. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10685. // k indices
  10686. const int ik3 = iq3;
  10687. const int ik2 = iq2 % nek2;
  10688. const int ik1 = ic;
  10689. // S indices
  10690. const int i1 = ik1;
  10691. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10692. S + i1,
  10693. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10694. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10695. }
  10696. }
  10697. // scale
  10698. ggml_vec_scale_f32(nek1, S, scale);
  10699. if (masked) {
  10700. for (int64_t i = P; i < M; i++) {
  10701. if (i > P + iq1) {
  10702. S[i] = -INFINITY;
  10703. }
  10704. }
  10705. }
  10706. // softmax
  10707. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10708. // dont forget to set their S values to zero
  10709. {
  10710. float max = -INFINITY;
  10711. ggml_vec_max_f32(M, &max, S);
  10712. ggml_float sum = 0.0;
  10713. {
  10714. #ifdef GGML_SOFT_MAX_ACCELERATE
  10715. max = -max;
  10716. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10717. vvexpf(S, S, &Mup);
  10718. ggml_vec_sum_f32(Mup, &sum, S);
  10719. #else
  10720. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10721. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10722. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10723. float * SS = S + i;
  10724. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10725. if (SS[j] == -INFINITY) {
  10726. SS[j] = 0.0f;
  10727. } else {
  10728. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10729. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10730. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10731. sump[j] += (ggml_float)val;
  10732. SS[j] = val;
  10733. }
  10734. }
  10735. }
  10736. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10737. sum += sump[i];
  10738. }
  10739. #endif
  10740. }
  10741. assert(sum > 0.0);
  10742. sum = 1.0/sum;
  10743. ggml_vec_scale_f32(M, S, sum);
  10744. #ifndef NDEBUG
  10745. for (int i = 0; i < M; ++i) {
  10746. assert(!isnan(S[i]));
  10747. assert(!isinf(S[i]));
  10748. }
  10749. #endif
  10750. }
  10751. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10752. for (int64_t i = 0; i < M; i++) {
  10753. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10754. }
  10755. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10756. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10757. for (int64_t ic = 0; ic < nev1; ++ic) {
  10758. // dst indices
  10759. const int i1 = iq1;
  10760. const int i2 = iq2;
  10761. const int i3 = iq3;
  10762. // v indices
  10763. const int iv2 = iq2 % nev2;
  10764. const int iv3 = iq3;
  10765. ggml_vec_dot_f16(nev0,
  10766. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10767. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10768. S16);
  10769. }
  10770. } else {
  10771. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10772. // dst indices
  10773. const int i1 = iq1;
  10774. const int i2 = iq2;
  10775. const int i3 = iq3;
  10776. // v indices
  10777. const int iv2 = iq2 % nev2;
  10778. const int iv3 = iq3;
  10779. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10780. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10781. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10782. S16);
  10783. }
  10784. }
  10785. }
  10786. }
  10787. static void ggml_compute_forward_flash_attn(
  10788. const struct ggml_compute_params * params,
  10789. const struct ggml_tensor * q,
  10790. const struct ggml_tensor * k,
  10791. const struct ggml_tensor * v,
  10792. const bool masked,
  10793. struct ggml_tensor * dst) {
  10794. switch (q->type) {
  10795. case GGML_TYPE_F16:
  10796. {
  10797. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10798. } break;
  10799. case GGML_TYPE_F32:
  10800. {
  10801. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10802. } break;
  10803. default:
  10804. {
  10805. GGML_ASSERT(false);
  10806. } break;
  10807. }
  10808. }
  10809. // ggml_compute_forward_flash_ff
  10810. static void ggml_compute_forward_flash_ff_f16(
  10811. const struct ggml_compute_params * params,
  10812. const struct ggml_tensor * a, // F16
  10813. const struct ggml_tensor * b0, // F16 fc_w
  10814. const struct ggml_tensor * b1, // F32 fc_b
  10815. const struct ggml_tensor * c0, // F16 proj_w
  10816. const struct ggml_tensor * c1, // F32 proj_b
  10817. struct ggml_tensor * dst) {
  10818. int64_t t0 = ggml_perf_time_us();
  10819. UNUSED(t0);
  10820. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10821. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10822. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10823. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10824. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10825. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10826. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10827. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10828. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10829. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10830. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10831. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10832. const int ith = params->ith;
  10833. const int nth = params->nth;
  10834. const int64_t D = nea0;
  10835. //const int64_t N = nea1;
  10836. const int64_t M = neb01;
  10837. GGML_ASSERT(ne0 == nea0);
  10838. GGML_ASSERT(ne1 == nea1);
  10839. GGML_ASSERT(ne2 == nea2);
  10840. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10841. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10842. GGML_ASSERT(nbb10 == sizeof(float));
  10843. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10844. GGML_ASSERT(nbc10 == sizeof(float));
  10845. GGML_ASSERT(neb00 == D);
  10846. GGML_ASSERT(neb01 == M);
  10847. GGML_ASSERT(neb10 == M);
  10848. GGML_ASSERT(neb11 == 1);
  10849. GGML_ASSERT(nec00 == M);
  10850. GGML_ASSERT(nec01 == D);
  10851. GGML_ASSERT(nec10 == D);
  10852. GGML_ASSERT(nec11 == 1);
  10853. // dst cannot be transposed or permuted
  10854. GGML_ASSERT(nb0 == sizeof(float));
  10855. GGML_ASSERT(nb0 <= nb1);
  10856. GGML_ASSERT(nb1 <= nb2);
  10857. GGML_ASSERT(nb2 <= nb3);
  10858. if (params->type == GGML_TASK_INIT) {
  10859. return;
  10860. }
  10861. if (params->type == GGML_TASK_FINALIZE) {
  10862. return;
  10863. }
  10864. // parallelize by a rows using ggml_vec_dot_f32
  10865. // total rows in a
  10866. const int nr = nea1*nea2*nea3;
  10867. // rows per thread
  10868. const int dr = (nr + nth - 1)/nth;
  10869. // row range for this thread
  10870. const int ir0 = dr*ith;
  10871. const int ir1 = MIN(ir0 + dr, nr);
  10872. for (int ir = ir0; ir < ir1; ++ir) {
  10873. // a indices
  10874. const int ia3 = ir/(nea2*nea1);
  10875. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10876. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10877. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10878. for (int64_t ic = 0; ic < neb01; ++ic) {
  10879. // b0 indices
  10880. const int ib03 = ia3;
  10881. const int ib02 = ia2;
  10882. const int ib01 = ic;
  10883. // S indices
  10884. const int i1 = ib01;
  10885. ggml_vec_dot_f16(nea0,
  10886. S + i1,
  10887. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10888. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10889. }
  10890. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10891. //ggml_vec_gelu_f32(neb01, S, S);
  10892. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10893. for (int64_t i = 0; i < M; i++) {
  10894. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10895. }
  10896. ggml_vec_gelu_f16(neb01, S16, S16);
  10897. {
  10898. // dst indices
  10899. const int i1 = ia1;
  10900. const int i2 = ia2;
  10901. const int i3 = ia3;
  10902. for (int64_t ic = 0; ic < nec01; ++ic) {
  10903. ggml_vec_dot_f16(neb01,
  10904. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10905. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10906. S16);
  10907. }
  10908. ggml_vec_add_f32(nec01,
  10909. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10910. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10911. (float *) c1->data);
  10912. }
  10913. }
  10914. }
  10915. static void ggml_compute_forward_flash_ff(
  10916. const struct ggml_compute_params * params,
  10917. const struct ggml_tensor * a,
  10918. const struct ggml_tensor * b0,
  10919. const struct ggml_tensor * b1,
  10920. const struct ggml_tensor * c0,
  10921. const struct ggml_tensor * c1,
  10922. struct ggml_tensor * dst) {
  10923. switch (b0->type) {
  10924. case GGML_TYPE_F16:
  10925. {
  10926. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10927. } break;
  10928. case GGML_TYPE_F32:
  10929. {
  10930. GGML_ASSERT(false); // TODO
  10931. } break;
  10932. default:
  10933. {
  10934. GGML_ASSERT(false);
  10935. } break;
  10936. }
  10937. }
  10938. // ggml_compute_forward_flash_attn_back
  10939. static void ggml_compute_forward_flash_attn_back_f32(
  10940. const struct ggml_compute_params * params,
  10941. const struct ggml_tensor * q,
  10942. const struct ggml_tensor * k,
  10943. const struct ggml_tensor * v,
  10944. const struct ggml_tensor * d,
  10945. const bool masked,
  10946. struct ggml_tensor * dst) {
  10947. int64_t t0 = ggml_perf_time_us();
  10948. UNUSED(t0);
  10949. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10950. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10951. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10952. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10953. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10954. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10955. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10956. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10957. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10958. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10959. const int ith = params->ith;
  10960. const int nth = params->nth;
  10961. const int64_t D = neq0;
  10962. const int64_t N = neq1;
  10963. const int64_t P = nek1 - N;
  10964. const int64_t M = P + N;
  10965. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10966. const int mxDM = MAX(D, Mup);
  10967. // GGML_ASSERT(ne0 == D);
  10968. // GGML_ASSERT(ne1 == N);
  10969. GGML_ASSERT(P >= 0);
  10970. GGML_ASSERT(nbq0 == sizeof(float));
  10971. GGML_ASSERT(nbk0 == sizeof(float));
  10972. GGML_ASSERT(nbv0 == sizeof(float));
  10973. GGML_ASSERT(neq0 == D);
  10974. GGML_ASSERT(nek0 == D);
  10975. GGML_ASSERT(nev1 == D);
  10976. GGML_ASSERT(ned0 == D);
  10977. GGML_ASSERT(neq1 == N);
  10978. GGML_ASSERT(nek1 == N + P);
  10979. GGML_ASSERT(nev1 == D);
  10980. GGML_ASSERT(ned1 == N);
  10981. // dst cannot be transposed or permuted
  10982. GGML_ASSERT(nb0 == sizeof(float));
  10983. GGML_ASSERT(nb0 <= nb1);
  10984. GGML_ASSERT(nb1 <= nb2);
  10985. GGML_ASSERT(nb2 <= nb3);
  10986. if (params->type == GGML_TASK_INIT) {
  10987. if (ith == 0) {
  10988. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10989. }
  10990. return;
  10991. }
  10992. if (params->type == GGML_TASK_FINALIZE) {
  10993. return;
  10994. }
  10995. const int64_t elem_q = ggml_nelements(q);
  10996. const int64_t elem_k = ggml_nelements(k);
  10997. enum ggml_type result_type = dst->type;
  10998. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10999. const size_t tsize = ggml_type_size(result_type);
  11000. const size_t offs_q = 0;
  11001. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11002. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11003. void * grad_q = (char *) dst->data;
  11004. void * grad_k = (char *) dst->data + offs_k;
  11005. void * grad_v = (char *) dst->data + offs_v;
  11006. const size_t nbgq1 = nb0*neq0;
  11007. const size_t nbgq2 = nb0*neq0*neq1;
  11008. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11009. const size_t nbgk1 = nb0*nek0;
  11010. const size_t nbgk2 = nb0*nek0*nek1;
  11011. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11012. const size_t nbgv1 = nb0*nev0;
  11013. const size_t nbgv2 = nb0*nev0*nev1;
  11014. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11015. // parallelize by k rows using ggml_vec_dot_f32
  11016. // total rows in k
  11017. const int nr = nek2*nek3;
  11018. // rows per thread
  11019. const int dr = (nr + nth - 1)/nth;
  11020. // row range for this thread
  11021. const int ir0 = dr*ith;
  11022. const int ir1 = MIN(ir0 + dr, nr);
  11023. const float scale = 1.0f/sqrtf(D);
  11024. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11025. // how often k2 (and v2) is repeated in q2
  11026. int nrep = neq2/nek2;
  11027. for (int ir = ir0; ir < ir1; ++ir) {
  11028. // q indices
  11029. const int ik3 = ir/(nek2);
  11030. const int ik2 = ir - ik3*nek2;
  11031. const int iq3 = ik3;
  11032. const int id3 = ik3;
  11033. const int iv3 = ik3;
  11034. const int iv2 = ik2;
  11035. for (int irep = 0; irep < nrep; ++irep) {
  11036. const int iq2 = ik2 + irep*nek2;
  11037. const int id2 = iq2;
  11038. // (ik2 + irep*nek2) % nek2 == ik2
  11039. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11040. const int id1 = iq1;
  11041. // not sure about CACHE_LINE_SIZE_F32..
  11042. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11043. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11044. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11045. for (int i = M; i < Mup; ++i) {
  11046. S[i] = -INFINITY;
  11047. }
  11048. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11049. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11050. // k indices
  11051. const int ik1 = ic;
  11052. // S indices
  11053. const int i1 = ik1;
  11054. ggml_vec_dot_f32(neq0,
  11055. S + i1,
  11056. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11057. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11058. }
  11059. // scale
  11060. ggml_vec_scale_f32(masked_begin, S, scale);
  11061. for (int64_t i = masked_begin; i < M; i++) {
  11062. S[i] = -INFINITY;
  11063. }
  11064. // softmax
  11065. // exclude known -INF S[..] values from max and loop
  11066. // dont forget to set their SM values to zero
  11067. {
  11068. float max = -INFINITY;
  11069. ggml_vec_max_f32(masked_begin, &max, S);
  11070. ggml_float sum = 0.0;
  11071. {
  11072. #ifdef GGML_SOFT_MAX_ACCELERATE
  11073. max = -max;
  11074. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11075. vvexpf(SM, SM, &Mup);
  11076. ggml_vec_sum_f32(Mup, &sum, SM);
  11077. #else
  11078. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11079. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11080. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11081. if (i >= masked_begin) {
  11082. break;
  11083. }
  11084. float * SR = S + i;
  11085. float * SW = SM + i;
  11086. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11087. if (i + j >= masked_begin) {
  11088. break;
  11089. } else if (SR[j] == -INFINITY) {
  11090. SW[j] = 0.0f;
  11091. } else {
  11092. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11093. const float val = expf(SR[j] - max);
  11094. #else
  11095. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11096. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11097. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11098. #endif
  11099. sump[j] += (ggml_float)val;
  11100. SW[j] = val;
  11101. }
  11102. }
  11103. }
  11104. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11105. sum += sump[i];
  11106. }
  11107. #endif
  11108. }
  11109. assert(sum > 0.0);
  11110. sum = 1.0/sum;
  11111. ggml_vec_scale_f32(masked_begin, SM, sum);
  11112. }
  11113. // step-by-step explanation
  11114. {
  11115. // forward-process shape grads from backward process
  11116. // parallel_for ik2,ik3:
  11117. // for irep:
  11118. // iq2 = ik2 + irep*nek2
  11119. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11120. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11121. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11122. // for iq1:
  11123. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11124. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11125. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11126. // S0 = -Inf [D,1,1,1]
  11127. // ~S1[i] = dot(kcur[:D,i], qcur)
  11128. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11129. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11130. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11131. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11132. // ~S5[i] = dot(vcur[:,i], S4)
  11133. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11134. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11135. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11136. // dst backward-/ grad[dst] = d
  11137. //
  11138. // output gradients with their dependencies:
  11139. //
  11140. // grad[kcur] = grad[S1].T @ qcur
  11141. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11142. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11143. // grad[S4] = grad[S5] @ vcur
  11144. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11145. // grad[qcur] = grad[S1] @ kcur
  11146. // grad[vcur] = grad[S5].T @ S4
  11147. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11148. //
  11149. // in post-order:
  11150. //
  11151. // S1 = qcur @ kcur.T
  11152. // S2 = S1 * scale
  11153. // S3 = diag_mask_inf(S2, P)
  11154. // S4 = softmax(S3)
  11155. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11156. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11157. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11158. // grad[qcur] = grad[S1] @ kcur
  11159. // grad[kcur] = grad[S1].T @ qcur
  11160. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11161. //
  11162. // using less variables (SM=S4):
  11163. //
  11164. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11165. // SM = softmax(S)
  11166. // S = d[:D,iq1,iq2,iq3] @ vcur
  11167. // dot_SM_gradSM = dot(SM, S)
  11168. // S = SM * (S - dot(SM, S))
  11169. // S = diag_mask_zero(S, P) * scale
  11170. //
  11171. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11172. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11173. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11174. }
  11175. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11176. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11177. // for ic:
  11178. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11179. // exclude known future zero S[..] values from operation
  11180. ggml_vec_set_f32(masked_begin, S, 0);
  11181. for (int64_t ic = 0; ic < D; ++ic) {
  11182. ggml_vec_mad_f32(masked_begin,
  11183. S,
  11184. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11185. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11186. }
  11187. // S = SM * (S - dot(SM, S))
  11188. float dot_SM_gradSM = 0;
  11189. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11190. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11191. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11192. // S = diag_mask_zero(S, P) * scale
  11193. // already done by above ggml_vec_set_f32
  11194. // exclude known zero S[..] values from operation
  11195. ggml_vec_scale_f32(masked_begin, S, scale);
  11196. // S shape [M,1]
  11197. // SM shape [M,1]
  11198. // kcur shape [D,M]
  11199. // qcur shape [D,1]
  11200. // vcur shape [M,D]
  11201. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11202. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11203. // for ic:
  11204. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11205. // exclude known zero S[..] values from loop
  11206. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11207. ggml_vec_mad_f32(D,
  11208. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11209. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11210. S[ic]);
  11211. }
  11212. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11213. // for ic:
  11214. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11215. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11216. // exclude known zero S[..] values from loop
  11217. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11218. ggml_vec_mad_f32(D,
  11219. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11220. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11221. S[ic]);
  11222. }
  11223. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11224. // for ic:
  11225. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11226. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11227. // exclude known zero SM[..] values from mad
  11228. for (int64_t ic = 0; ic < D; ++ic) {
  11229. ggml_vec_mad_f32(masked_begin,
  11230. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11231. SM,
  11232. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11233. }
  11234. }
  11235. }
  11236. }
  11237. }
  11238. static void ggml_compute_forward_flash_attn_back(
  11239. const struct ggml_compute_params * params,
  11240. const struct ggml_tensor * q,
  11241. const struct ggml_tensor * k,
  11242. const struct ggml_tensor * v,
  11243. const struct ggml_tensor * d,
  11244. const bool masked,
  11245. struct ggml_tensor * dst) {
  11246. switch (q->type) {
  11247. case GGML_TYPE_F32:
  11248. {
  11249. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11250. } break;
  11251. default:
  11252. {
  11253. GGML_ASSERT(false);
  11254. } break;
  11255. }
  11256. }
  11257. // ggml_compute_forward_win_part
  11258. static void ggml_compute_forward_win_part_f32(
  11259. const struct ggml_compute_params * params,
  11260. const struct ggml_tensor * src0,
  11261. struct ggml_tensor * dst) {
  11262. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11263. return;
  11264. }
  11265. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11266. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11267. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11268. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11269. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11270. assert(ne00 == ne0);
  11271. assert(ne3 == nep0*nep1);
  11272. // TODO: optimize / multi-thread
  11273. for (int py = 0; py < nep1; ++py) {
  11274. for (int px = 0; px < nep0; ++px) {
  11275. const int64_t i3 = py*nep0 + px;
  11276. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11277. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11278. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11279. const int64_t i02 = py*w + i2;
  11280. const int64_t i01 = px*w + i1;
  11281. const int64_t i00 = i0;
  11282. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11283. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11284. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11285. ((float *) dst->data)[i] = 0.0f;
  11286. } else {
  11287. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11288. }
  11289. }
  11290. }
  11291. }
  11292. }
  11293. }
  11294. }
  11295. static void ggml_compute_forward_win_part(
  11296. const struct ggml_compute_params * params,
  11297. const struct ggml_tensor * src0,
  11298. struct ggml_tensor * dst) {
  11299. switch (src0->type) {
  11300. case GGML_TYPE_F32:
  11301. {
  11302. ggml_compute_forward_win_part_f32(params, src0, dst);
  11303. } break;
  11304. default:
  11305. {
  11306. GGML_ASSERT(false);
  11307. } break;
  11308. }
  11309. }
  11310. // ggml_compute_forward_win_unpart
  11311. static void ggml_compute_forward_win_unpart_f32(
  11312. const struct ggml_compute_params * params,
  11313. const struct ggml_tensor * src0,
  11314. struct ggml_tensor * dst) {
  11315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11316. return;
  11317. }
  11318. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11319. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11320. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11321. // padding
  11322. const int px = (w - ne1%w)%w;
  11323. //const int py = (w - ne2%w)%w;
  11324. const int npx = (px + ne1)/w;
  11325. //const int npy = (py + ne2)/w;
  11326. assert(ne0 == ne00);
  11327. // TODO: optimize / multi-thread
  11328. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11329. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11330. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11331. const int ip2 = i2/w;
  11332. const int ip1 = i1/w;
  11333. const int64_t i02 = i2%w;
  11334. const int64_t i01 = i1%w;
  11335. const int64_t i00 = i0;
  11336. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11337. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11338. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11339. }
  11340. }
  11341. }
  11342. }
  11343. static void ggml_compute_forward_win_unpart(
  11344. const struct ggml_compute_params * params,
  11345. const struct ggml_tensor * src0,
  11346. struct ggml_tensor * dst) {
  11347. switch (src0->type) {
  11348. case GGML_TYPE_F32:
  11349. {
  11350. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11351. } break;
  11352. default:
  11353. {
  11354. GGML_ASSERT(false);
  11355. } break;
  11356. }
  11357. }
  11358. //gmml_compute_forward_unary
  11359. static void ggml_compute_forward_unary(
  11360. const struct ggml_compute_params * params,
  11361. const struct ggml_tensor * src0,
  11362. struct ggml_tensor * dst) {
  11363. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11364. switch (op) {
  11365. case GGML_UNARY_OP_ABS:
  11366. {
  11367. ggml_compute_forward_abs(params, src0, dst);
  11368. } break;
  11369. case GGML_UNARY_OP_SGN:
  11370. {
  11371. ggml_compute_forward_sgn(params, src0, dst);
  11372. } break;
  11373. case GGML_UNARY_OP_NEG:
  11374. {
  11375. ggml_compute_forward_neg(params, src0, dst);
  11376. } break;
  11377. case GGML_UNARY_OP_STEP:
  11378. {
  11379. ggml_compute_forward_step(params, src0, dst);
  11380. } break;
  11381. case GGML_UNARY_OP_TANH:
  11382. {
  11383. ggml_compute_forward_tanh(params, src0, dst);
  11384. } break;
  11385. case GGML_UNARY_OP_ELU:
  11386. {
  11387. ggml_compute_forward_elu(params, src0, dst);
  11388. } break;
  11389. case GGML_UNARY_OP_RELU:
  11390. {
  11391. ggml_compute_forward_relu(params, src0, dst);
  11392. } break;
  11393. case GGML_UNARY_OP_GELU:
  11394. {
  11395. ggml_compute_forward_gelu(params, src0, dst);
  11396. } break;
  11397. case GGML_UNARY_OP_GELU_QUICK:
  11398. {
  11399. ggml_compute_forward_gelu_quick(params, src0, dst);
  11400. } break;
  11401. case GGML_UNARY_OP_SILU:
  11402. {
  11403. ggml_compute_forward_silu(params, src0, dst);
  11404. } break;
  11405. default:
  11406. {
  11407. GGML_ASSERT(false);
  11408. } break;
  11409. }
  11410. }
  11411. // ggml_compute_forward_get_rel_pos
  11412. static void ggml_compute_forward_get_rel_pos_f16(
  11413. const struct ggml_compute_params * params,
  11414. const struct ggml_tensor * src0,
  11415. struct ggml_tensor * dst) {
  11416. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11417. return;
  11418. }
  11419. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11420. GGML_TENSOR_UNARY_OP_LOCALS
  11421. const int64_t w = ne1;
  11422. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11423. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11424. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11425. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11426. const int64_t pos = (w - i1 - 1) + i2;
  11427. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11428. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11429. }
  11430. }
  11431. }
  11432. }
  11433. static void ggml_compute_forward_get_rel_pos(
  11434. const struct ggml_compute_params * params,
  11435. const struct ggml_tensor * src0,
  11436. struct ggml_tensor * dst) {
  11437. switch (src0->type) {
  11438. case GGML_TYPE_F16:
  11439. {
  11440. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11441. } break;
  11442. default:
  11443. {
  11444. GGML_ASSERT(false);
  11445. } break;
  11446. }
  11447. }
  11448. // ggml_compute_forward_add_rel_pos
  11449. static void ggml_compute_forward_add_rel_pos_f32(
  11450. const struct ggml_compute_params * params,
  11451. const struct ggml_tensor * src0,
  11452. const struct ggml_tensor * src1,
  11453. const struct ggml_tensor * src2,
  11454. struct ggml_tensor * dst) {
  11455. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11456. if (!inplace && params->type == GGML_TASK_INIT) {
  11457. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11458. return;
  11459. }
  11460. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11461. return;
  11462. }
  11463. int64_t t0 = ggml_perf_time_us();
  11464. UNUSED(t0);
  11465. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11466. float * src1_data = (float *) src1->data;
  11467. float * src2_data = (float *) src2->data;
  11468. float * dst_data = (float *) dst->data;
  11469. const int64_t ne10 = src1->ne[0];
  11470. const int64_t ne11 = src1->ne[1];
  11471. const int64_t ne12 = src1->ne[2];
  11472. const int64_t ne13 = src1->ne[3];
  11473. const int ith = params->ith;
  11474. const int nth = params->nth;
  11475. // total patches in dst
  11476. const int np = ne13;
  11477. // patches per thread
  11478. const int dp = (np + nth - 1)/nth;
  11479. // patch range for this thread
  11480. const int ip0 = dp*ith;
  11481. const int ip1 = MIN(ip0 + dp, np);
  11482. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11483. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11484. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11485. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11486. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11487. const int64_t jp0 = jp1 + i10;
  11488. const float src1_e = src1_data[jp0];
  11489. const float src2_e = src2_data[jp0];
  11490. const int64_t jdh = jp0 * ne10;
  11491. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11492. for (int64_t j = 0; j < ne10; ++j) {
  11493. dst_data[jdh + j ] += src2_e;
  11494. dst_data[jdw + j*ne10] += src1_e;
  11495. }
  11496. }
  11497. }
  11498. }
  11499. }
  11500. }
  11501. static void ggml_compute_forward_add_rel_pos(
  11502. const struct ggml_compute_params * params,
  11503. const struct ggml_tensor * src0,
  11504. const struct ggml_tensor * src1,
  11505. const struct ggml_tensor * src2,
  11506. struct ggml_tensor * dst) {
  11507. switch (src0->type) {
  11508. case GGML_TYPE_F32:
  11509. {
  11510. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11511. } break;
  11512. default:
  11513. {
  11514. GGML_ASSERT(false);
  11515. } break;
  11516. }
  11517. }
  11518. // ggml_compute_forward_map_unary
  11519. static void ggml_compute_forward_map_unary_f32(
  11520. const struct ggml_compute_params * params,
  11521. const struct ggml_tensor * src0,
  11522. struct ggml_tensor * dst,
  11523. const ggml_unary_op_f32_t fun) {
  11524. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11526. return;
  11527. }
  11528. const int n = ggml_nrows(src0);
  11529. const int nc = src0->ne[0];
  11530. assert( dst->nb[0] == sizeof(float));
  11531. assert(src0->nb[0] == sizeof(float));
  11532. for (int i = 0; i < n; i++) {
  11533. fun(nc,
  11534. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11535. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11536. }
  11537. }
  11538. static void ggml_compute_forward_map_unary(
  11539. const struct ggml_compute_params * params,
  11540. const struct ggml_tensor * src0,
  11541. struct ggml_tensor * dst,
  11542. const ggml_unary_op_f32_t fun) {
  11543. switch (src0->type) {
  11544. case GGML_TYPE_F32:
  11545. {
  11546. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11547. } break;
  11548. default:
  11549. {
  11550. GGML_ASSERT(false);
  11551. } break;
  11552. }
  11553. }
  11554. // ggml_compute_forward_map_binary
  11555. static void ggml_compute_forward_map_binary_f32(
  11556. const struct ggml_compute_params * params,
  11557. const struct ggml_tensor * src0,
  11558. const struct ggml_tensor * src1,
  11559. struct ggml_tensor * dst,
  11560. const ggml_binary_op_f32_t fun) {
  11561. assert(params->ith == 0);
  11562. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11563. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11564. return;
  11565. }
  11566. const int n = ggml_nrows(src0);
  11567. const int nc = src0->ne[0];
  11568. assert( dst->nb[0] == sizeof(float));
  11569. assert(src0->nb[0] == sizeof(float));
  11570. assert(src1->nb[0] == sizeof(float));
  11571. for (int i = 0; i < n; i++) {
  11572. fun(nc,
  11573. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11574. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11575. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11576. }
  11577. }
  11578. static void ggml_compute_forward_map_binary(
  11579. const struct ggml_compute_params * params,
  11580. const struct ggml_tensor * src0,
  11581. const struct ggml_tensor * src1,
  11582. struct ggml_tensor * dst,
  11583. const ggml_binary_op_f32_t fun) {
  11584. switch (src0->type) {
  11585. case GGML_TYPE_F32:
  11586. {
  11587. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11588. } break;
  11589. default:
  11590. {
  11591. GGML_ASSERT(false);
  11592. } break;
  11593. }
  11594. }
  11595. // ggml_compute_forward_map_custom1
  11596. static void ggml_compute_forward_map_custom1_f32(
  11597. const struct ggml_compute_params * params,
  11598. const struct ggml_tensor * a,
  11599. struct ggml_tensor * dst,
  11600. const ggml_custom1_op_f32_t fun) {
  11601. assert(params->ith == 0);
  11602. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11603. return;
  11604. }
  11605. fun(dst, a);
  11606. }
  11607. // ggml_compute_forward_map_custom2
  11608. static void ggml_compute_forward_map_custom2_f32(
  11609. const struct ggml_compute_params * params,
  11610. const struct ggml_tensor * a,
  11611. const struct ggml_tensor * b,
  11612. struct ggml_tensor * dst,
  11613. const ggml_custom2_op_f32_t fun) {
  11614. assert(params->ith == 0);
  11615. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11616. return;
  11617. }
  11618. fun(dst, a, b);
  11619. }
  11620. // ggml_compute_forward_map_custom3
  11621. static void ggml_compute_forward_map_custom3_f32(
  11622. const struct ggml_compute_params * params,
  11623. const struct ggml_tensor * a,
  11624. const struct ggml_tensor * b,
  11625. const struct ggml_tensor * c,
  11626. struct ggml_tensor * dst,
  11627. const ggml_custom3_op_f32_t fun) {
  11628. assert(params->ith == 0);
  11629. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11630. return;
  11631. }
  11632. fun(dst, a, b, c);
  11633. }
  11634. // ggml_compute_forward_map_custom1
  11635. static void ggml_compute_forward_map_custom1(
  11636. const struct ggml_compute_params * params,
  11637. const struct ggml_tensor * a,
  11638. struct ggml_tensor * dst) {
  11639. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11640. return;
  11641. }
  11642. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11643. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11644. }
  11645. // ggml_compute_forward_map_custom2
  11646. static void ggml_compute_forward_map_custom2(
  11647. const struct ggml_compute_params * params,
  11648. const struct ggml_tensor * a,
  11649. const struct ggml_tensor * b,
  11650. struct ggml_tensor * dst) {
  11651. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11652. return;
  11653. }
  11654. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11655. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11656. }
  11657. // ggml_compute_forward_map_custom3
  11658. static void ggml_compute_forward_map_custom3(
  11659. const struct ggml_compute_params * params,
  11660. const struct ggml_tensor * a,
  11661. const struct ggml_tensor * b,
  11662. const struct ggml_tensor * c,
  11663. struct ggml_tensor * dst) {
  11664. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11665. return;
  11666. }
  11667. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11668. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11669. }
  11670. // ggml_compute_forward_cross_entropy_loss
  11671. static void ggml_compute_forward_cross_entropy_loss_f32(
  11672. const struct ggml_compute_params * params,
  11673. const struct ggml_tensor * src0,
  11674. const struct ggml_tensor * src1,
  11675. struct ggml_tensor * dst) {
  11676. GGML_ASSERT(ggml_is_contiguous(src0));
  11677. GGML_ASSERT(ggml_is_contiguous(src1));
  11678. GGML_ASSERT(ggml_is_scalar(dst));
  11679. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11680. const int ith = params->ith;
  11681. const int nth = params->nth;
  11682. float * sums = (float *) params->wdata;
  11683. // TODO: handle transposed/permuted matrices
  11684. const int nc = src0->ne[0];
  11685. const int nr = ggml_nrows(src0);
  11686. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11687. if (params->type == GGML_TASK_INIT) {
  11688. if (ith == 0) {
  11689. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11690. }
  11691. return;
  11692. }
  11693. if (params->type == GGML_TASK_FINALIZE) {
  11694. if (ith == 0) {
  11695. float * dp = (float *) dst->data;
  11696. ggml_vec_sum_f32(nth, dp, sums);
  11697. dp[0] *= -1.0f / (float) nr;
  11698. }
  11699. return;
  11700. }
  11701. const double eps = 1e-9;
  11702. // rows per thread
  11703. const int dr = (nr + nth - 1)/nth;
  11704. // row range for this thread
  11705. const int ir0 = dr*ith;
  11706. const int ir1 = MIN(ir0 + dr, nr);
  11707. for (int i1 = ir0; i1 < ir1; i1++) {
  11708. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11709. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11710. float * st = ((float *) params->wdata) + nth + ith*nc;
  11711. #ifndef NDEBUG
  11712. for (int i = 0; i < nc; ++i) {
  11713. //printf("p[%d] = %f\n", i, p[i]);
  11714. assert(!isnan(s0[i]));
  11715. assert(!isnan(s1[i]));
  11716. }
  11717. #endif
  11718. // soft_max
  11719. ggml_float sum = 0.0;
  11720. {
  11721. float max = -INFINITY;
  11722. ggml_vec_max_f32(nc, &max, s0);
  11723. uint16_t scvt; UNUSED(scvt);
  11724. for (int i = 0; i < nc; i++) {
  11725. if (s0[i] == -INFINITY) {
  11726. st[i] = 0.0f;
  11727. } else {
  11728. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11729. const float s = s0[i] - max;
  11730. const float val = expf(s);
  11731. #else
  11732. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11733. memcpy(&scvt, &s, sizeof(scvt));
  11734. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11735. #endif
  11736. sum += (ggml_float)val;
  11737. st[i] = val;
  11738. }
  11739. }
  11740. assert(sum > 0.0);
  11741. // sum = 1.0/sum;
  11742. }
  11743. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11744. sum = (1.0 - eps) / sum;
  11745. ggml_vec_scale_f32(nc, st, sum);
  11746. ggml_vec_add1_f32(nc, st, st, eps);
  11747. ggml_vec_log_f32(nc, st, st);
  11748. ggml_vec_mul_f32(nc, st, st, s1);
  11749. float st_sum = 0;
  11750. ggml_vec_sum_f32(nc, &st_sum, st);
  11751. sums[ith] += st_sum;
  11752. #ifndef NDEBUG
  11753. for (int i = 0; i < nc; ++i) {
  11754. assert(!isnan(st[i]));
  11755. assert(!isinf(st[i]));
  11756. }
  11757. #endif
  11758. }
  11759. }
  11760. static void ggml_compute_forward_cross_entropy_loss(
  11761. const struct ggml_compute_params * params,
  11762. const struct ggml_tensor * src0,
  11763. const struct ggml_tensor * src1,
  11764. struct ggml_tensor * dst) {
  11765. switch (src0->type) {
  11766. case GGML_TYPE_F32:
  11767. {
  11768. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11769. } break;
  11770. default:
  11771. {
  11772. GGML_ASSERT(false);
  11773. } break;
  11774. }
  11775. }
  11776. // ggml_compute_forward_cross_entropy_loss_back
  11777. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11778. const struct ggml_compute_params * params,
  11779. const struct ggml_tensor * src0,
  11780. const struct ggml_tensor * src1,
  11781. const struct ggml_tensor * opt0,
  11782. struct ggml_tensor * dst) {
  11783. GGML_ASSERT(ggml_is_contiguous(dst));
  11784. GGML_ASSERT(ggml_is_contiguous(src0));
  11785. GGML_ASSERT(ggml_is_contiguous(src1));
  11786. GGML_ASSERT(ggml_is_contiguous(opt0));
  11787. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11788. const int64_t ith = params->ith;
  11789. const int64_t nth = params->nth;
  11790. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11791. return;
  11792. }
  11793. const double eps = 1e-9;
  11794. // TODO: handle transposed/permuted matrices
  11795. const int64_t nc = src0->ne[0];
  11796. const int64_t nr = ggml_nrows(src0);
  11797. // rows per thread
  11798. const int64_t dr = (nr + nth - 1)/nth;
  11799. // row range for this thread
  11800. const int64_t ir0 = dr*ith;
  11801. const int64_t ir1 = MIN(ir0 + dr, nr);
  11802. float * d = (float *) opt0->data;
  11803. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11804. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11805. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11806. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11807. #ifndef NDEBUG
  11808. for (int i = 0; i < nc; ++i) {
  11809. //printf("p[%d] = %f\n", i, p[i]);
  11810. assert(!isnan(s0[i]));
  11811. assert(!isnan(s1[i]));
  11812. }
  11813. #endif
  11814. // soft_max
  11815. ggml_float sum = 0.0;
  11816. {
  11817. float max = -INFINITY;
  11818. ggml_vec_max_f32(nc, &max, s0);
  11819. uint16_t scvt; UNUSED(scvt);
  11820. for (int i = 0; i < nc; i++) {
  11821. if (s0[i] == -INFINITY) {
  11822. ds0[i] = 0.0f;
  11823. } else {
  11824. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11825. const float s = s0[i] - max;
  11826. const float val = expf(s);
  11827. #else
  11828. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11829. memcpy(&scvt, &s, sizeof(scvt));
  11830. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11831. #endif
  11832. sum += (ggml_float)val;
  11833. ds0[i] = val;
  11834. }
  11835. }
  11836. assert(sum > 0.0);
  11837. sum = (1.0 - eps)/sum;
  11838. }
  11839. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11840. ggml_vec_scale_f32(nc, ds0, sum);
  11841. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11842. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11843. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11844. #ifndef NDEBUG
  11845. for (int i = 0; i < nc; ++i) {
  11846. assert(!isnan(ds0[i]));
  11847. assert(!isinf(ds0[i]));
  11848. }
  11849. #endif
  11850. }
  11851. }
  11852. static void ggml_compute_forward_cross_entropy_loss_back(
  11853. const struct ggml_compute_params * params,
  11854. const struct ggml_tensor * src0,
  11855. const struct ggml_tensor * src1,
  11856. const struct ggml_tensor * opt0,
  11857. struct ggml_tensor * dst) {
  11858. switch (src0->type) {
  11859. case GGML_TYPE_F32:
  11860. {
  11861. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11862. } break;
  11863. default:
  11864. {
  11865. GGML_ASSERT(false);
  11866. } break;
  11867. }
  11868. }
  11869. /////////////////////////////////
  11870. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11871. GGML_ASSERT(params);
  11872. if (tensor->op == GGML_OP_NONE) {
  11873. return;
  11874. }
  11875. #ifdef GGML_USE_CUBLAS
  11876. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11877. if (skip_cpu) {
  11878. return;
  11879. }
  11880. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11881. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11882. #endif // GGML_USE_CUBLAS
  11883. switch (tensor->op) {
  11884. case GGML_OP_DUP:
  11885. {
  11886. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11887. } break;
  11888. case GGML_OP_ADD:
  11889. {
  11890. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11891. } break;
  11892. case GGML_OP_ADD1:
  11893. {
  11894. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11895. } break;
  11896. case GGML_OP_ACC:
  11897. {
  11898. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11899. } break;
  11900. case GGML_OP_SUB:
  11901. {
  11902. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11903. } break;
  11904. case GGML_OP_MUL:
  11905. {
  11906. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11907. } break;
  11908. case GGML_OP_DIV:
  11909. {
  11910. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11911. } break;
  11912. case GGML_OP_SQR:
  11913. {
  11914. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11915. } break;
  11916. case GGML_OP_SQRT:
  11917. {
  11918. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11919. } break;
  11920. case GGML_OP_LOG:
  11921. {
  11922. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11923. } break;
  11924. case GGML_OP_SUM:
  11925. {
  11926. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11927. } break;
  11928. case GGML_OP_SUM_ROWS:
  11929. {
  11930. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11931. } break;
  11932. case GGML_OP_MEAN:
  11933. {
  11934. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11935. } break;
  11936. case GGML_OP_ARGMAX:
  11937. {
  11938. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11939. } break;
  11940. case GGML_OP_REPEAT:
  11941. {
  11942. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11943. } break;
  11944. case GGML_OP_REPEAT_BACK:
  11945. {
  11946. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11947. } break;
  11948. case GGML_OP_CONCAT:
  11949. {
  11950. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11951. } break;
  11952. case GGML_OP_SILU_BACK:
  11953. {
  11954. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11955. } break;
  11956. case GGML_OP_NORM:
  11957. {
  11958. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11959. } break;
  11960. case GGML_OP_RMS_NORM:
  11961. {
  11962. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11963. } break;
  11964. case GGML_OP_RMS_NORM_BACK:
  11965. {
  11966. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11967. } break;
  11968. case GGML_OP_GROUP_NORM:
  11969. {
  11970. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11971. } break;
  11972. case GGML_OP_MUL_MAT:
  11973. {
  11974. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11975. } break;
  11976. case GGML_OP_OUT_PROD:
  11977. {
  11978. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11979. } break;
  11980. case GGML_OP_SCALE:
  11981. {
  11982. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11983. } break;
  11984. case GGML_OP_SET:
  11985. {
  11986. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11987. } break;
  11988. case GGML_OP_CPY:
  11989. {
  11990. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11991. } break;
  11992. case GGML_OP_CONT:
  11993. {
  11994. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11995. } break;
  11996. case GGML_OP_RESHAPE:
  11997. {
  11998. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11999. } break;
  12000. case GGML_OP_VIEW:
  12001. {
  12002. ggml_compute_forward_view(params, tensor->src[0]);
  12003. } break;
  12004. case GGML_OP_PERMUTE:
  12005. {
  12006. ggml_compute_forward_permute(params, tensor->src[0]);
  12007. } break;
  12008. case GGML_OP_TRANSPOSE:
  12009. {
  12010. ggml_compute_forward_transpose(params, tensor->src[0]);
  12011. } break;
  12012. case GGML_OP_GET_ROWS:
  12013. {
  12014. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12015. } break;
  12016. case GGML_OP_GET_ROWS_BACK:
  12017. {
  12018. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12019. } break;
  12020. case GGML_OP_DIAG:
  12021. {
  12022. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12023. } break;
  12024. case GGML_OP_DIAG_MASK_INF:
  12025. {
  12026. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12027. } break;
  12028. case GGML_OP_DIAG_MASK_ZERO:
  12029. {
  12030. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12031. } break;
  12032. case GGML_OP_SOFT_MAX:
  12033. {
  12034. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12035. } break;
  12036. case GGML_OP_SOFT_MAX_BACK:
  12037. {
  12038. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12039. } break;
  12040. case GGML_OP_ROPE:
  12041. {
  12042. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12043. } break;
  12044. case GGML_OP_ROPE_BACK:
  12045. {
  12046. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12047. } break;
  12048. case GGML_OP_ALIBI:
  12049. {
  12050. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12051. } break;
  12052. case GGML_OP_CLAMP:
  12053. {
  12054. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12055. } break;
  12056. case GGML_OP_CONV_1D:
  12057. {
  12058. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12059. } break;
  12060. case GGML_OP_CONV_1D_STAGE_0:
  12061. {
  12062. ggml_compute_forward_conv_1d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  12063. } break;
  12064. case GGML_OP_CONV_1D_STAGE_1:
  12065. {
  12066. ggml_compute_forward_conv_1d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  12067. } break;
  12068. case GGML_OP_CONV_TRANSPOSE_1D:
  12069. {
  12070. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12071. } break;
  12072. case GGML_OP_CONV_2D:
  12073. {
  12074. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12075. } break;
  12076. case GGML_OP_CONV_2D_STAGE_0:
  12077. {
  12078. ggml_compute_forward_conv_2d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  12079. } break;
  12080. case GGML_OP_CONV_2D_STAGE_1:
  12081. {
  12082. ggml_compute_forward_conv_2d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  12083. } break;
  12084. case GGML_OP_CONV_TRANSPOSE_2D:
  12085. {
  12086. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12087. } break;
  12088. case GGML_OP_POOL_1D:
  12089. {
  12090. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12091. } break;
  12092. case GGML_OP_POOL_2D:
  12093. {
  12094. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12095. } break;
  12096. case GGML_OP_UPSCALE:
  12097. {
  12098. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12099. } break;
  12100. case GGML_OP_FLASH_ATTN:
  12101. {
  12102. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12103. GGML_ASSERT(t == 0 || t == 1);
  12104. const bool masked = t != 0;
  12105. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12106. } break;
  12107. case GGML_OP_FLASH_FF:
  12108. {
  12109. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12110. } break;
  12111. case GGML_OP_FLASH_ATTN_BACK:
  12112. {
  12113. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12114. GGML_ASSERT(t == 0 || t == 1);
  12115. bool masked = t != 0;
  12116. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12117. } break;
  12118. case GGML_OP_WIN_PART:
  12119. {
  12120. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12121. } break;
  12122. case GGML_OP_WIN_UNPART:
  12123. {
  12124. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12125. } break;
  12126. case GGML_OP_UNARY:
  12127. {
  12128. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12129. } break;
  12130. case GGML_OP_GET_REL_POS:
  12131. {
  12132. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12133. } break;
  12134. case GGML_OP_ADD_REL_POS:
  12135. {
  12136. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12137. } break;
  12138. case GGML_OP_MAP_UNARY:
  12139. {
  12140. ggml_unary_op_f32_t fun;
  12141. memcpy(&fun, tensor->op_params, sizeof(fun));
  12142. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12143. }
  12144. break;
  12145. case GGML_OP_MAP_BINARY:
  12146. {
  12147. ggml_binary_op_f32_t fun;
  12148. memcpy(&fun, tensor->op_params, sizeof(fun));
  12149. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12150. }
  12151. break;
  12152. case GGML_OP_MAP_CUSTOM1_F32:
  12153. {
  12154. ggml_custom1_op_f32_t fun;
  12155. memcpy(&fun, tensor->op_params, sizeof(fun));
  12156. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12157. }
  12158. break;
  12159. case GGML_OP_MAP_CUSTOM2_F32:
  12160. {
  12161. ggml_custom2_op_f32_t fun;
  12162. memcpy(&fun, tensor->op_params, sizeof(fun));
  12163. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12164. }
  12165. break;
  12166. case GGML_OP_MAP_CUSTOM3_F32:
  12167. {
  12168. ggml_custom3_op_f32_t fun;
  12169. memcpy(&fun, tensor->op_params, sizeof(fun));
  12170. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12171. }
  12172. break;
  12173. case GGML_OP_MAP_CUSTOM1:
  12174. {
  12175. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12176. }
  12177. break;
  12178. case GGML_OP_MAP_CUSTOM2:
  12179. {
  12180. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12181. }
  12182. break;
  12183. case GGML_OP_MAP_CUSTOM3:
  12184. {
  12185. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12186. }
  12187. break;
  12188. case GGML_OP_CROSS_ENTROPY_LOSS:
  12189. {
  12190. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12191. }
  12192. break;
  12193. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12194. {
  12195. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12196. }
  12197. break;
  12198. case GGML_OP_NONE:
  12199. {
  12200. // nop
  12201. } break;
  12202. case GGML_OP_COUNT:
  12203. {
  12204. GGML_ASSERT(false);
  12205. } break;
  12206. }
  12207. }
  12208. ////////////////////////////////////////////////////////////////////////////////
  12209. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  12210. static size_t hash(void * p) {
  12211. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  12212. }
  12213. static size_t hash_find(void * hash_table[], void * p) {
  12214. size_t h = hash(p);
  12215. // linear probing
  12216. size_t i = h;
  12217. while (hash_table[i] != NULL && hash_table[i] != p) {
  12218. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  12219. if (i == h) {
  12220. // visited all hash table entries -> not found
  12221. return GGML_GRAPH_HASHTABLE_SIZE;
  12222. }
  12223. }
  12224. return i;
  12225. }
  12226. static bool hash_insert(void * hash_table[], void * p) {
  12227. size_t i = hash_find(hash_table, p);
  12228. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12229. if (hash_table[i] == p) {
  12230. return true;
  12231. }
  12232. // insert
  12233. GGML_ASSERT(hash_table[i] == NULL);
  12234. hash_table[i] = p;
  12235. return false;
  12236. }
  12237. static bool hash_contains(void * hash_table[], void * p) {
  12238. size_t i = hash_find(hash_table, p);
  12239. return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
  12240. }
  12241. struct hash_map {
  12242. void * keys[GGML_GRAPH_HASHTABLE_SIZE];
  12243. void * vals[GGML_GRAPH_HASHTABLE_SIZE];
  12244. };
  12245. static struct hash_map * new_hash_map(void) {
  12246. struct hash_map * result = malloc(sizeof(struct hash_map));
  12247. for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
  12248. result->keys[i] = NULL;
  12249. result->vals[i] = NULL;
  12250. }
  12251. return result;
  12252. }
  12253. static void free_hash_map(struct hash_map * map) {
  12254. free(map);
  12255. }
  12256. // gradient checkpointing
  12257. static struct ggml_tensor * ggml_recompute_graph_node(
  12258. struct ggml_context * ctx,
  12259. struct ggml_cgraph * graph,
  12260. struct hash_map * replacements,
  12261. struct ggml_tensor * node) {
  12262. if (node == NULL) {
  12263. return NULL;
  12264. }
  12265. if (node->is_param) {
  12266. return node;
  12267. }
  12268. if (!hash_contains(graph->visited_hash_table, node)) {
  12269. return node;
  12270. }
  12271. int count_children = 0;
  12272. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12273. if (node->src[k]) {
  12274. ++count_children;
  12275. }
  12276. }
  12277. if (count_children == 0) {
  12278. return node;
  12279. }
  12280. size_t i = hash_find(replacements->keys, node);
  12281. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12282. if (replacements->keys[i] == node) {
  12283. return (struct ggml_tensor *) replacements->vals[i];
  12284. }
  12285. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  12286. // insert clone into replacements
  12287. GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
  12288. replacements->keys[i] = node;
  12289. replacements->vals[i] = clone;
  12290. clone->op = node->op;
  12291. clone->grad = node->grad;
  12292. clone->is_param = node->is_param;
  12293. clone->extra = node->extra;
  12294. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12295. clone->nb[k] = node->nb[k];
  12296. }
  12297. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12298. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12299. }
  12300. if (node->view_src != NULL) {
  12301. clone->data = (node->view_src->data == NULL)
  12302. ? NULL // view_src not yet allocated
  12303. : (char *) node->view_src->data // view_src already allocated
  12304. + node->view_offs;
  12305. clone->view_src = node->view_src;
  12306. clone->view_offs = node->view_offs;
  12307. }
  12308. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12309. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12310. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12311. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12312. return clone;
  12313. }
  12314. void ggml_build_backward_gradient_checkpointing(
  12315. struct ggml_context * ctx,
  12316. struct ggml_cgraph * gf,
  12317. struct ggml_cgraph * gb,
  12318. struct ggml_cgraph * gb_tmp,
  12319. struct ggml_tensor * * checkpoints,
  12320. int n_checkpoints) {
  12321. *gb_tmp = *gf;
  12322. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12323. if (n_checkpoints <= 0) {
  12324. *gb = *gb_tmp;
  12325. return;
  12326. }
  12327. struct hash_map * replacements = new_hash_map();
  12328. // insert checkpoints in replacements
  12329. for (int i = 0; i < n_checkpoints; ++i) {
  12330. size_t k = hash_find(replacements->keys, checkpoints[i]);
  12331. GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  12332. GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
  12333. replacements->keys[k] = checkpoints[i];
  12334. replacements->vals[k] = checkpoints[i];
  12335. }
  12336. *gb = *gf;
  12337. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12338. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12339. // by recomputing them from checkpoints
  12340. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12341. struct ggml_tensor * node = gb_tmp->nodes[i];
  12342. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12343. // insert new tensors recomputing src, reusing already made replacements,
  12344. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12345. // recurse for input tensors,
  12346. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  12347. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12348. }
  12349. // insert rewritten backward node with replacements made into resulting backward graph gb
  12350. ggml_build_forward_expand(gb, node);
  12351. }
  12352. free_hash_map(replacements);
  12353. }
  12354. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12355. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12356. if (hash_contains(zero_table, a)) {
  12357. return b;
  12358. } else {
  12359. return ggml_add_impl(ctx, a, b, false);
  12360. }
  12361. }
  12362. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, void * zero_table[]) {
  12363. if (hash_contains(zero_table, a)) {
  12364. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  12365. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12366. } else {
  12367. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12368. }
  12369. }
  12370. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12371. if (hash_contains(zero_table, a)) {
  12372. return ggml_repeat(ctx, b, a);
  12373. } else {
  12374. return ggml_add1_impl(ctx, a, b, false);
  12375. }
  12376. }
  12377. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  12378. if (hash_contains(zero_table, a)) {
  12379. return ggml_neg(ctx, b);
  12380. } else {
  12381. return ggml_sub_impl(ctx, a, b, false);
  12382. }
  12383. }
  12384. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, void * zero_table[]) {
  12385. struct ggml_tensor * src0 = tensor->src[0];
  12386. struct ggml_tensor * src1 = tensor->src[1];
  12387. switch (tensor->op) {
  12388. case GGML_OP_DUP:
  12389. {
  12390. if (src0->grad) {
  12391. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12392. }
  12393. } break;
  12394. case GGML_OP_ADD:
  12395. {
  12396. if (src0->grad) {
  12397. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12398. }
  12399. if (src1->grad) {
  12400. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12401. }
  12402. } break;
  12403. case GGML_OP_ADD1:
  12404. {
  12405. if (src0->grad) {
  12406. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12407. }
  12408. if (src1->grad) {
  12409. src1->grad = ggml_add_or_set(ctx,
  12410. src1->grad,
  12411. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12412. zero_table);
  12413. }
  12414. } break;
  12415. case GGML_OP_ACC:
  12416. {
  12417. if (src0->grad) {
  12418. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12419. }
  12420. if (src1->grad) {
  12421. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12422. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12423. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12424. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12425. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12426. tensor->grad,
  12427. src1->grad->ne[0],
  12428. src1->grad->ne[1],
  12429. src1->grad->ne[2],
  12430. src1->grad->ne[3],
  12431. nb1, nb2, nb3, offset);
  12432. src1->grad =
  12433. ggml_add_or_set(ctx,
  12434. src1->grad,
  12435. ggml_reshape(ctx,
  12436. ggml_cont(ctx, tensor_grad_view),
  12437. src1->grad),
  12438. zero_table);
  12439. }
  12440. } break;
  12441. case GGML_OP_SUB:
  12442. {
  12443. if (src0->grad) {
  12444. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12445. }
  12446. if (src1->grad) {
  12447. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12448. }
  12449. } break;
  12450. case GGML_OP_MUL:
  12451. {
  12452. if (src0->grad) {
  12453. src0->grad =
  12454. ggml_add_or_set(ctx,
  12455. src0->grad,
  12456. ggml_mul(ctx, src1, tensor->grad),
  12457. zero_table);
  12458. }
  12459. if (src1->grad) {
  12460. src1->grad =
  12461. ggml_add_or_set(ctx,
  12462. src1->grad,
  12463. ggml_mul(ctx, src0, tensor->grad),
  12464. zero_table);
  12465. }
  12466. } break;
  12467. case GGML_OP_DIV:
  12468. {
  12469. if (src0->grad) {
  12470. src0->grad =
  12471. ggml_add_or_set(ctx,
  12472. src0->grad,
  12473. ggml_div(ctx, tensor->grad, src1),
  12474. zero_table);
  12475. }
  12476. if (src1->grad) {
  12477. src1->grad =
  12478. ggml_sub_or_set(ctx,
  12479. src1->grad,
  12480. ggml_mul(ctx,
  12481. tensor->grad,
  12482. ggml_div(ctx, tensor, src1)),
  12483. zero_table);
  12484. }
  12485. } break;
  12486. case GGML_OP_SQR:
  12487. {
  12488. if (src0->grad) {
  12489. src0->grad =
  12490. ggml_add_or_set(ctx,
  12491. src0->grad,
  12492. ggml_scale(ctx,
  12493. ggml_mul(ctx, src0, tensor->grad),
  12494. ggml_new_f32(ctx, 2.0f)),
  12495. zero_table);
  12496. }
  12497. } break;
  12498. case GGML_OP_SQRT:
  12499. {
  12500. if (src0->grad) {
  12501. src0->grad =
  12502. ggml_add_or_set(ctx,
  12503. src0->grad,
  12504. ggml_scale(ctx,
  12505. ggml_div(ctx,
  12506. tensor->grad,
  12507. tensor),
  12508. ggml_new_f32(ctx, 0.5f)),
  12509. zero_table);
  12510. }
  12511. } break;
  12512. case GGML_OP_LOG:
  12513. {
  12514. if (src0->grad) {
  12515. src0->grad =
  12516. ggml_add_or_set(ctx,
  12517. src0->grad,
  12518. ggml_div(ctx,
  12519. tensor->grad,
  12520. src0),
  12521. zero_table);
  12522. }
  12523. } break;
  12524. case GGML_OP_SUM:
  12525. {
  12526. if (src0->grad) {
  12527. src0->grad =
  12528. ggml_add1_or_set(ctx,
  12529. src0->grad,
  12530. tensor->grad,
  12531. zero_table);
  12532. }
  12533. } break;
  12534. case GGML_OP_SUM_ROWS:
  12535. {
  12536. if (src0->grad) {
  12537. src0->grad =
  12538. ggml_add_or_set(ctx,
  12539. src0->grad,
  12540. ggml_repeat(ctx,
  12541. tensor->grad,
  12542. src0->grad),
  12543. zero_table);
  12544. }
  12545. } break;
  12546. case GGML_OP_MEAN:
  12547. case GGML_OP_ARGMAX:
  12548. {
  12549. GGML_ASSERT(false); // TODO: implement
  12550. } break;
  12551. case GGML_OP_REPEAT:
  12552. {
  12553. // necessary for llama
  12554. if (src0->grad) {
  12555. src0->grad = ggml_add_or_set(ctx,
  12556. src0->grad,
  12557. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12558. zero_table);
  12559. }
  12560. } break;
  12561. case GGML_OP_REPEAT_BACK:
  12562. {
  12563. if (src0->grad) {
  12564. // TODO: test this
  12565. src0->grad = ggml_add_or_set(ctx,
  12566. src0->grad,
  12567. ggml_repeat(ctx, tensor->grad, src0->grad),
  12568. zero_table);
  12569. }
  12570. } break;
  12571. case GGML_OP_CONCAT:
  12572. {
  12573. GGML_ASSERT(false); // TODO: implement
  12574. } break;
  12575. case GGML_OP_SILU_BACK:
  12576. {
  12577. GGML_ASSERT(false); // TODO: not implemented
  12578. } break;
  12579. case GGML_OP_NORM:
  12580. {
  12581. GGML_ASSERT(false); // TODO: not implemented
  12582. } break;
  12583. case GGML_OP_RMS_NORM:
  12584. {
  12585. // necessary for llama
  12586. if (src0->grad) {
  12587. float eps;
  12588. memcpy(&eps, tensor->op_params, sizeof(float));
  12589. src0->grad = ggml_add_or_set(ctx,
  12590. src0->grad,
  12591. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12592. zero_table);
  12593. }
  12594. } break;
  12595. case GGML_OP_RMS_NORM_BACK:
  12596. {
  12597. GGML_ASSERT(false); // TODO: not implemented
  12598. } break;
  12599. case GGML_OP_GROUP_NORM:
  12600. {
  12601. GGML_ASSERT(false); // TODO: not implemented
  12602. } break;
  12603. case GGML_OP_MUL_MAT:
  12604. {
  12605. // https://cs231n.github.io/optimization-2/#staged
  12606. // # forward pass
  12607. // s0 = np.random.randn(5, 10)
  12608. // s1 = np.random.randn(10, 3)
  12609. // t = s0.dot(s1)
  12610. // # now suppose we had the gradient on t from above in the circuit
  12611. // dt = np.random.randn(*t.shape) # same shape as t
  12612. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12613. // ds1 = t.T.dot(dt)
  12614. // tensor.shape [m,p,qq,rr]
  12615. // src0.shape [n,m,q1,r1]
  12616. // src1.shape [n,p,qq,rr]
  12617. // necessary for llama
  12618. if (src0->grad) {
  12619. struct ggml_tensor * s1_tg =
  12620. ggml_out_prod(ctx, // [n,m,qq,rr]
  12621. src1, // [n,p,qq,rr]
  12622. tensor->grad); // [m,p,qq,rr]
  12623. const int64_t qq = s1_tg->ne[2];
  12624. const int64_t rr = s1_tg->ne[3];
  12625. const int64_t q1 = src0->ne[2];
  12626. const int64_t r1 = src0->ne[3];
  12627. const bool ne2_broadcasted = qq > q1;
  12628. const bool ne3_broadcasted = rr > r1;
  12629. if (ne2_broadcasted || ne3_broadcasted) {
  12630. // sum broadcast repetitions of s1_tg into shape of src0
  12631. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12632. }
  12633. src0->grad =
  12634. ggml_add_or_set(ctx,
  12635. src0->grad, // [n,m,q1,r1]
  12636. s1_tg, // [n,m,q1,r1]
  12637. zero_table);
  12638. }
  12639. if (src1->grad) {
  12640. src1->grad =
  12641. ggml_add_or_set(ctx,
  12642. src1->grad, // [n,p,qq,rr]
  12643. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12644. // ggml_cont(ctx, // [m,n,q1,r1]
  12645. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12646. // tensor->grad), // [m,p,qq,rr]
  12647. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12648. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12649. // // and then use ggml_out_prod
  12650. ggml_out_prod(ctx, // [n,p,qq,rr]
  12651. src0, // [n,m,q1,r1]
  12652. ggml_transpose(ctx, // [p,m,qq,rr]
  12653. tensor->grad)), // [m,p,qq,rr]
  12654. zero_table);
  12655. }
  12656. } break;
  12657. case GGML_OP_OUT_PROD:
  12658. {
  12659. GGML_ASSERT(false); // TODO: not implemented
  12660. } break;
  12661. case GGML_OP_SCALE:
  12662. {
  12663. // necessary for llama
  12664. if (src0->grad) {
  12665. src0->grad =
  12666. ggml_add_or_set(ctx,
  12667. src0->grad,
  12668. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12669. zero_table);
  12670. }
  12671. if (src1->grad) {
  12672. src1->grad =
  12673. ggml_add_or_set(ctx,
  12674. src1->grad,
  12675. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12676. zero_table);
  12677. }
  12678. } break;
  12679. case GGML_OP_SET:
  12680. {
  12681. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12682. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12683. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12684. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12685. struct ggml_tensor * tensor_grad_view = NULL;
  12686. if (src0->grad || src1->grad) {
  12687. GGML_ASSERT(src0->type == tensor->type);
  12688. GGML_ASSERT(tensor->grad->type == tensor->type);
  12689. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12690. tensor_grad_view = ggml_view_4d(ctx,
  12691. tensor->grad,
  12692. src1->grad->ne[0],
  12693. src1->grad->ne[1],
  12694. src1->grad->ne[2],
  12695. src1->grad->ne[3],
  12696. nb1, nb2, nb3, offset);
  12697. }
  12698. if (src0->grad) {
  12699. src0->grad = ggml_add_or_set(ctx,
  12700. src0->grad,
  12701. ggml_acc_impl(ctx,
  12702. tensor->grad,
  12703. ggml_neg(ctx, tensor_grad_view),
  12704. nb1, nb2, nb3, offset, false),
  12705. zero_table);
  12706. }
  12707. if (src1->grad) {
  12708. src1->grad =
  12709. ggml_add_or_set(ctx,
  12710. src1->grad,
  12711. ggml_reshape(ctx,
  12712. ggml_cont(ctx, tensor_grad_view),
  12713. src1->grad),
  12714. zero_table);
  12715. }
  12716. } break;
  12717. case GGML_OP_CPY:
  12718. {
  12719. // necessary for llama
  12720. // cpy overwrites value of src1 by src0 and returns view(src1)
  12721. // the overwriting is mathematically equivalent to:
  12722. // tensor = src0 * 1 + src1 * 0
  12723. if (src0->grad) {
  12724. // dsrc0 = dtensor * 1
  12725. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12726. }
  12727. if (src1->grad) {
  12728. // dsrc1 = dtensor * 0 -> noop
  12729. }
  12730. } break;
  12731. case GGML_OP_CONT:
  12732. {
  12733. // same as cpy
  12734. if (src0->grad) {
  12735. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12736. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12737. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12738. }
  12739. } break;
  12740. case GGML_OP_RESHAPE:
  12741. {
  12742. // necessary for llama
  12743. if (src0->grad) {
  12744. src0->grad =
  12745. ggml_add_or_set(ctx, src0->grad,
  12746. ggml_reshape(ctx,
  12747. ggml_is_contiguous(tensor->grad)
  12748. ? tensor->grad
  12749. : ggml_cont(ctx, tensor->grad),
  12750. src0->grad),
  12751. zero_table);
  12752. }
  12753. } break;
  12754. case GGML_OP_VIEW:
  12755. {
  12756. // necessary for llama
  12757. if (src0->grad) {
  12758. size_t offset;
  12759. memcpy(&offset, tensor->op_params, sizeof(offset));
  12760. size_t nb1 = tensor->nb[1];
  12761. size_t nb2 = tensor->nb[2];
  12762. size_t nb3 = tensor->nb[3];
  12763. if (src0->type != src0->grad->type) {
  12764. // gradient is typically F32, but src0 could be other type
  12765. size_t ng = ggml_element_size(src0->grad);
  12766. size_t n0 = ggml_element_size(src0);
  12767. GGML_ASSERT(offset % n0 == 0);
  12768. GGML_ASSERT(nb1 % n0 == 0);
  12769. GGML_ASSERT(nb2 % n0 == 0);
  12770. GGML_ASSERT(nb3 % n0 == 0);
  12771. offset = (offset / n0) * ng;
  12772. nb1 = (nb1 / n0) * ng;
  12773. nb2 = (nb2 / n0) * ng;
  12774. nb3 = (nb3 / n0) * ng;
  12775. }
  12776. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12777. }
  12778. } break;
  12779. case GGML_OP_PERMUTE:
  12780. {
  12781. // necessary for llama
  12782. if (src0->grad) {
  12783. int32_t * axes = (int32_t *) tensor->op_params;
  12784. int axis0 = axes[0] & 0x3;
  12785. int axis1 = axes[1] & 0x3;
  12786. int axis2 = axes[2] & 0x3;
  12787. int axis3 = axes[3] & 0x3;
  12788. int axes_backward[4] = {0,0,0,0};
  12789. axes_backward[axis0] = 0;
  12790. axes_backward[axis1] = 1;
  12791. axes_backward[axis2] = 2;
  12792. axes_backward[axis3] = 3;
  12793. src0->grad =
  12794. ggml_add_or_set(ctx, src0->grad,
  12795. ggml_permute(ctx,
  12796. tensor->grad,
  12797. axes_backward[0],
  12798. axes_backward[1],
  12799. axes_backward[2],
  12800. axes_backward[3]),
  12801. zero_table);
  12802. }
  12803. } break;
  12804. case GGML_OP_TRANSPOSE:
  12805. {
  12806. // necessary for llama
  12807. if (src0->grad) {
  12808. src0->grad =
  12809. ggml_add_or_set(ctx, src0->grad,
  12810. ggml_transpose(ctx, tensor->grad),
  12811. zero_table);
  12812. }
  12813. } break;
  12814. case GGML_OP_GET_ROWS:
  12815. {
  12816. // necessary for llama (only for tokenizer)
  12817. if (src0->grad) {
  12818. src0->grad =
  12819. ggml_add_or_set(ctx, src0->grad,
  12820. // last ggml_get_rows_back argument src0->grad is only
  12821. // necessary to setup correct output shape
  12822. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12823. zero_table);
  12824. }
  12825. if (src1->grad) {
  12826. // noop
  12827. }
  12828. } break;
  12829. case GGML_OP_GET_ROWS_BACK:
  12830. {
  12831. GGML_ASSERT(false); // TODO: not implemented
  12832. } break;
  12833. case GGML_OP_DIAG:
  12834. {
  12835. GGML_ASSERT(false); // TODO: not implemented
  12836. } break;
  12837. case GGML_OP_DIAG_MASK_INF:
  12838. {
  12839. // necessary for llama
  12840. if (src0->grad) {
  12841. const int n_past = ((int32_t *) tensor->op_params)[0];
  12842. src0->grad =
  12843. ggml_add_or_set(ctx, src0->grad,
  12844. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12845. zero_table);
  12846. }
  12847. } break;
  12848. case GGML_OP_DIAG_MASK_ZERO:
  12849. {
  12850. // necessary for llama
  12851. if (src0->grad) {
  12852. const int n_past = ((int32_t *) tensor->op_params)[0];
  12853. src0->grad =
  12854. ggml_add_or_set(ctx, src0->grad,
  12855. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12856. zero_table);
  12857. }
  12858. } break;
  12859. case GGML_OP_SOFT_MAX:
  12860. {
  12861. // necessary for llama
  12862. if (src0->grad) {
  12863. src0->grad =
  12864. ggml_add_or_set(ctx, src0->grad,
  12865. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12866. zero_table);
  12867. }
  12868. } break;
  12869. case GGML_OP_SOFT_MAX_BACK:
  12870. {
  12871. GGML_ASSERT(false); // TODO: not implemented
  12872. } break;
  12873. case GGML_OP_ROPE:
  12874. {
  12875. // necessary for llama
  12876. if (src0->grad) {
  12877. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12878. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12879. const int mode = ((int32_t *) tensor->op_params)[2];
  12880. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12881. float freq_base;
  12882. float freq_scale;
  12883. float xpos_base;
  12884. bool xpos_down;
  12885. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  12886. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  12887. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  12888. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  12889. src0->grad = ggml_add_or_set(ctx,
  12890. src0->grad,
  12891. ggml_rope_back(ctx,
  12892. tensor->grad,
  12893. src1,
  12894. n_dims,
  12895. mode,
  12896. n_ctx,
  12897. freq_base,
  12898. freq_scale,
  12899. xpos_base,
  12900. xpos_down),
  12901. zero_table);
  12902. }
  12903. } break;
  12904. case GGML_OP_ROPE_BACK:
  12905. {
  12906. if (src0->grad) {
  12907. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12908. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12909. const int mode = ((int32_t *) tensor->op_params)[2];
  12910. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12911. float freq_base;
  12912. float freq_scale;
  12913. float xpos_base;
  12914. bool xpos_down;
  12915. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  12916. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  12917. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  12918. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  12919. src0->grad = ggml_add_or_set(ctx,
  12920. src0->grad,
  12921. ggml_rope_impl(ctx,
  12922. tensor->grad,
  12923. src1,
  12924. n_dims,
  12925. mode,
  12926. 0,
  12927. n_ctx,
  12928. freq_base,
  12929. freq_scale,
  12930. 0.0f,
  12931. 1.0f,
  12932. 0.0f,
  12933. 0.0f,
  12934. xpos_base,
  12935. xpos_down,
  12936. false),
  12937. zero_table);
  12938. }
  12939. } break;
  12940. case GGML_OP_ALIBI:
  12941. {
  12942. GGML_ASSERT(false); // TODO: not implemented
  12943. } break;
  12944. case GGML_OP_CLAMP:
  12945. {
  12946. GGML_ASSERT(false); // TODO: not implemented
  12947. } break;
  12948. case GGML_OP_CONV_1D:
  12949. {
  12950. GGML_ASSERT(false); // TODO: not implemented
  12951. } break;
  12952. case GGML_OP_CONV_1D_STAGE_0:
  12953. {
  12954. GGML_ASSERT(false); // TODO: not implemented
  12955. } break;
  12956. case GGML_OP_CONV_1D_STAGE_1:
  12957. {
  12958. GGML_ASSERT(false); // TODO: not implemented
  12959. } break;
  12960. case GGML_OP_CONV_TRANSPOSE_1D:
  12961. {
  12962. GGML_ASSERT(false); // TODO: not implemented
  12963. } break;
  12964. case GGML_OP_CONV_2D:
  12965. {
  12966. GGML_ASSERT(false); // TODO: not implemented
  12967. } break;
  12968. case GGML_OP_CONV_2D_STAGE_0:
  12969. {
  12970. GGML_ASSERT(false); // TODO: not implemented
  12971. } break;
  12972. case GGML_OP_CONV_2D_STAGE_1:
  12973. {
  12974. GGML_ASSERT(false); // TODO: not implemented
  12975. } break;
  12976. case GGML_OP_CONV_TRANSPOSE_2D:
  12977. {
  12978. GGML_ASSERT(false); // TODO: not implemented
  12979. } break;
  12980. case GGML_OP_POOL_1D:
  12981. {
  12982. GGML_ASSERT(false); // TODO: not implemented
  12983. } break;
  12984. case GGML_OP_POOL_2D:
  12985. {
  12986. GGML_ASSERT(false); // TODO: not implemented
  12987. } break;
  12988. case GGML_OP_UPSCALE:
  12989. {
  12990. GGML_ASSERT(false); // TODO: not implemented
  12991. } break;
  12992. case GGML_OP_FLASH_ATTN:
  12993. {
  12994. struct ggml_tensor * flash_grad = NULL;
  12995. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12996. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12997. GGML_ASSERT(t == 0 || t == 1);
  12998. bool masked = t != 0;
  12999. flash_grad =
  13000. ggml_flash_attn_back(ctx,
  13001. src0,
  13002. src1,
  13003. tensor->src[2],
  13004. tensor->grad,
  13005. masked);
  13006. }
  13007. struct ggml_tensor * src2 = tensor->src[2];
  13008. const int64_t elem_q = ggml_nelements(src0);
  13009. const int64_t elem_k = ggml_nelements(src1);
  13010. const int64_t elem_v = ggml_nelements(src2);
  13011. enum ggml_type result_type = flash_grad->type;
  13012. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13013. const size_t tsize = ggml_type_size(result_type);
  13014. const size_t offs_q = 0;
  13015. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13016. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13017. if (src0->grad) {
  13018. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13019. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13020. src0->grad = ggml_add_or_set(ctx,
  13021. src0->grad,
  13022. grad_q,
  13023. zero_table);
  13024. }
  13025. if (src1->grad) {
  13026. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13027. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13028. src1->grad = ggml_add_or_set(ctx,
  13029. src1->grad,
  13030. grad_k,
  13031. zero_table);
  13032. }
  13033. if (src2->grad) {
  13034. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13035. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13036. src2->grad = ggml_add_or_set(ctx,
  13037. src2->grad,
  13038. grad_v,
  13039. zero_table);
  13040. }
  13041. } break;
  13042. case GGML_OP_FLASH_FF:
  13043. {
  13044. GGML_ASSERT(false); // not supported
  13045. } break;
  13046. case GGML_OP_FLASH_ATTN_BACK:
  13047. {
  13048. GGML_ASSERT(false); // not supported
  13049. } break;
  13050. case GGML_OP_WIN_PART:
  13051. case GGML_OP_WIN_UNPART:
  13052. case GGML_OP_UNARY:
  13053. {
  13054. switch (ggml_get_unary_op(tensor)) {
  13055. case GGML_UNARY_OP_ABS:
  13056. {
  13057. if (src0->grad) {
  13058. src0->grad =
  13059. ggml_add_or_set(ctx,
  13060. src0->grad,
  13061. ggml_mul(ctx,
  13062. ggml_sgn(ctx, src0),
  13063. tensor->grad),
  13064. zero_table);
  13065. }
  13066. } break;
  13067. case GGML_UNARY_OP_SGN:
  13068. {
  13069. if (src0->grad) {
  13070. // noop
  13071. }
  13072. } break;
  13073. case GGML_UNARY_OP_NEG:
  13074. {
  13075. if (src0->grad) {
  13076. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13077. }
  13078. } break;
  13079. case GGML_UNARY_OP_STEP:
  13080. {
  13081. if (src0->grad) {
  13082. // noop
  13083. }
  13084. } break;
  13085. case GGML_UNARY_OP_TANH:
  13086. {
  13087. GGML_ASSERT(false); // TODO: not implemented
  13088. } break;
  13089. case GGML_UNARY_OP_ELU:
  13090. {
  13091. GGML_ASSERT(false); // TODO: not implemented
  13092. } break;
  13093. case GGML_UNARY_OP_RELU:
  13094. {
  13095. if (src0->grad) {
  13096. src0->grad = ggml_add_or_set(ctx,
  13097. src0->grad,
  13098. ggml_mul(ctx,
  13099. ggml_step(ctx, src0),
  13100. tensor->grad),
  13101. zero_table);
  13102. }
  13103. } break;
  13104. case GGML_UNARY_OP_GELU:
  13105. {
  13106. GGML_ASSERT(false); // TODO: not implemented
  13107. } break;
  13108. case GGML_UNARY_OP_GELU_QUICK:
  13109. {
  13110. GGML_ASSERT(false); // TODO: not implemented
  13111. } break;
  13112. case GGML_UNARY_OP_SILU:
  13113. {
  13114. // necessary for llama
  13115. if (src0->grad) {
  13116. src0->grad = ggml_add_or_set(ctx,
  13117. src0->grad,
  13118. ggml_silu_back(ctx, src0, tensor->grad),
  13119. zero_table);
  13120. }
  13121. } break;
  13122. default:
  13123. GGML_ASSERT(false);
  13124. }
  13125. } break;
  13126. case GGML_OP_GET_REL_POS:
  13127. case GGML_OP_ADD_REL_POS:
  13128. case GGML_OP_MAP_UNARY:
  13129. case GGML_OP_MAP_BINARY:
  13130. case GGML_OP_MAP_CUSTOM1_F32:
  13131. case GGML_OP_MAP_CUSTOM2_F32:
  13132. case GGML_OP_MAP_CUSTOM3_F32:
  13133. case GGML_OP_MAP_CUSTOM1:
  13134. case GGML_OP_MAP_CUSTOM2:
  13135. case GGML_OP_MAP_CUSTOM3:
  13136. {
  13137. GGML_ASSERT(false); // not supported
  13138. } break;
  13139. case GGML_OP_CROSS_ENTROPY_LOSS:
  13140. {
  13141. if (src0->grad) {
  13142. src0->grad = ggml_add_or_set(ctx,
  13143. src0->grad,
  13144. ggml_cross_entropy_loss_back(ctx,
  13145. src0,
  13146. src1,
  13147. tensor->grad),
  13148. zero_table);
  13149. }
  13150. } break;
  13151. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13152. {
  13153. GGML_ASSERT(false); // not supported
  13154. } break;
  13155. case GGML_OP_NONE:
  13156. {
  13157. // nop
  13158. } break;
  13159. case GGML_OP_COUNT:
  13160. {
  13161. GGML_ASSERT(false);
  13162. } break;
  13163. }
  13164. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13165. if (tensor->src[i] && tensor->src[i]->grad) {
  13166. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13167. }
  13168. }
  13169. }
  13170. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13171. if (node->grad == NULL) {
  13172. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13173. // it can also happen during forward pass, if the user performs computations with constants
  13174. if (node->op != GGML_OP_NONE) {
  13175. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13176. }
  13177. }
  13178. // check if already visited
  13179. if (hash_insert(cgraph->visited_hash_table, node)) {
  13180. return;
  13181. }
  13182. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13183. const int k =
  13184. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13185. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13186. /* unknown order, just fall back to using i*/ i;
  13187. if (node->src[k]) {
  13188. ggml_visit_parents(cgraph, node->src[k]);
  13189. }
  13190. }
  13191. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13192. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13193. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13194. if (strlen(node->name) == 0) {
  13195. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13196. }
  13197. cgraph->leafs[cgraph->n_leafs] = node;
  13198. cgraph->n_leafs++;
  13199. } else {
  13200. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13201. if (strlen(node->name) == 0) {
  13202. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13203. }
  13204. cgraph->nodes[cgraph->n_nodes] = node;
  13205. cgraph->grads[cgraph->n_nodes] = node->grad;
  13206. cgraph->n_nodes++;
  13207. }
  13208. }
  13209. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13210. if (!expand) {
  13211. cgraph->n_nodes = 0;
  13212. cgraph->n_leafs = 0;
  13213. }
  13214. const int n0 = cgraph->n_nodes;
  13215. UNUSED(n0);
  13216. ggml_visit_parents(cgraph, tensor);
  13217. const int n_new = cgraph->n_nodes - n0;
  13218. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13219. if (n_new > 0) {
  13220. // the last added node should always be starting point
  13221. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13222. }
  13223. }
  13224. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13225. ggml_build_forward_impl(cgraph, tensor, true);
  13226. }
  13227. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13228. struct ggml_cgraph result = {
  13229. /*.n_nodes =*/ 0,
  13230. /*.n_leafs =*/ 0,
  13231. /*.nodes =*/ { NULL },
  13232. /*.grads =*/ { NULL },
  13233. /*.leafs =*/ { NULL },
  13234. /*.hash_table =*/ { NULL },
  13235. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13236. /*.perf_runs =*/ 0,
  13237. /*.perf_cycles =*/ 0,
  13238. /*.perf_time_us =*/ 0,
  13239. };
  13240. ggml_build_forward_impl(&result, tensor, false);
  13241. return result;
  13242. }
  13243. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13244. GGML_ASSERT(gf->n_nodes > 0);
  13245. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13246. if (keep) {
  13247. for (int i = 0; i < gf->n_nodes; i++) {
  13248. struct ggml_tensor * node = gf->nodes[i];
  13249. if (node->grad) {
  13250. node->grad = ggml_dup_tensor(ctx, node);
  13251. gf->grads[i] = node->grad;
  13252. }
  13253. }
  13254. }
  13255. // remember original gradients which start with zero values
  13256. void ** zero_table = malloc(sizeof(void *) * GGML_GRAPH_HASHTABLE_SIZE);
  13257. memset(zero_table, 0, sizeof(void*) * GGML_GRAPH_HASHTABLE_SIZE);
  13258. for (int i = 0; i < gf->n_nodes; i++) {
  13259. if (gf->grads[i]) {
  13260. hash_insert(zero_table, gf->grads[i]);
  13261. }
  13262. }
  13263. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13264. struct ggml_tensor * node = gf->nodes[i];
  13265. // inplace operations to add gradients are not created by ggml_compute_backward
  13266. // use allocator to automatically make inplace operations
  13267. if (node->grad) {
  13268. ggml_compute_backward(ctx, node, zero_table);
  13269. }
  13270. }
  13271. for (int i = 0; i < gf->n_nodes; i++) {
  13272. struct ggml_tensor * node = gf->nodes[i];
  13273. if (node->is_param) {
  13274. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13275. ggml_build_forward_expand(gb, node->grad);
  13276. }
  13277. }
  13278. free(zero_table);
  13279. }
  13280. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13281. struct ggml_cgraph result = *gf;
  13282. ggml_build_backward_expand(ctx, gf, &result, keep);
  13283. return result;
  13284. }
  13285. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13286. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13287. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13288. *cgraph = (struct ggml_cgraph) {
  13289. /*.n_nodes =*/ 0,
  13290. /*.n_leafs =*/ 0,
  13291. /*.nodes =*/ { NULL },
  13292. /*.grads =*/ { NULL },
  13293. /*.leafs =*/ { NULL },
  13294. /*.hash_table =*/ { NULL },
  13295. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13296. /*.perf_runs =*/ 0,
  13297. /*.perf_cycles =*/ 0,
  13298. /*.perf_time_us =*/ 0,
  13299. };
  13300. return cgraph;
  13301. }
  13302. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13303. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13304. ggml_build_forward_impl(cgraph, tensor, false);
  13305. return cgraph;
  13306. }
  13307. size_t ggml_graph_overhead(void) {
  13308. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13309. }
  13310. //
  13311. // thread data
  13312. //
  13313. // synchronization is done via busy loops
  13314. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13315. //
  13316. #ifdef __APPLE__
  13317. //#include <os/lock.h>
  13318. //
  13319. //typedef os_unfair_lock ggml_lock_t;
  13320. //
  13321. //#define ggml_lock_init(x) UNUSED(x)
  13322. //#define ggml_lock_destroy(x) UNUSED(x)
  13323. //#define ggml_lock_lock os_unfair_lock_lock
  13324. //#define ggml_lock_unlock os_unfair_lock_unlock
  13325. //
  13326. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13327. typedef int ggml_lock_t;
  13328. #define ggml_lock_init(x) UNUSED(x)
  13329. #define ggml_lock_destroy(x) UNUSED(x)
  13330. #define ggml_lock_lock(x) UNUSED(x)
  13331. #define ggml_lock_unlock(x) UNUSED(x)
  13332. #define GGML_LOCK_INITIALIZER 0
  13333. typedef pthread_t ggml_thread_t;
  13334. #define ggml_thread_create pthread_create
  13335. #define ggml_thread_join pthread_join
  13336. #else
  13337. //typedef pthread_spinlock_t ggml_lock_t;
  13338. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13339. //#define ggml_lock_destroy pthread_spin_destroy
  13340. //#define ggml_lock_lock pthread_spin_lock
  13341. //#define ggml_lock_unlock pthread_spin_unlock
  13342. typedef int ggml_lock_t;
  13343. #define ggml_lock_init(x) UNUSED(x)
  13344. #define ggml_lock_destroy(x) UNUSED(x)
  13345. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13346. #define ggml_lock_lock(x) _mm_pause()
  13347. #else
  13348. #define ggml_lock_lock(x) UNUSED(x)
  13349. #endif
  13350. #define ggml_lock_unlock(x) UNUSED(x)
  13351. #define GGML_LOCK_INITIALIZER 0
  13352. typedef pthread_t ggml_thread_t;
  13353. #define ggml_thread_create pthread_create
  13354. #define ggml_thread_join pthread_join
  13355. #endif
  13356. // Android's libc implementation "bionic" does not support setting affinity
  13357. #if defined(__linux__) && !defined(__BIONIC__)
  13358. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13359. if (!ggml_is_numa()) {
  13360. return;
  13361. }
  13362. // run thread on node_num thread_n / (threads per node)
  13363. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13364. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13365. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13366. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13367. CPU_ZERO_S(setsize, cpus);
  13368. for (size_t i = 0; i < node->n_cpus; ++i) {
  13369. CPU_SET_S(node->cpus[i], setsize, cpus);
  13370. }
  13371. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13372. if (rv) {
  13373. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13374. strerror(rv));
  13375. }
  13376. CPU_FREE(cpus);
  13377. }
  13378. static void clear_numa_thread_affinity(void) {
  13379. if (!ggml_is_numa()) {
  13380. return;
  13381. }
  13382. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13383. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13384. CPU_ZERO_S(setsize, cpus);
  13385. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13386. CPU_SET_S(i, setsize, cpus);
  13387. }
  13388. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13389. if (rv) {
  13390. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13391. strerror(rv));
  13392. }
  13393. CPU_FREE(cpus);
  13394. }
  13395. #else
  13396. // TODO: Windows etc.
  13397. // (the linux implementation may also work on BSD, someone should test)
  13398. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13399. static void clear_numa_thread_affinity(void) {}
  13400. #endif
  13401. struct ggml_compute_state_shared {
  13402. const struct ggml_cgraph * cgraph;
  13403. const struct ggml_cplan * cplan;
  13404. int64_t perf_node_start_cycles;
  13405. int64_t perf_node_start_time_us;
  13406. const int n_threads;
  13407. // synchronization primitives
  13408. atomic_int n_active; // num active threads
  13409. atomic_int node_n; // active graph node
  13410. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13411. void * abort_callback_data;
  13412. };
  13413. struct ggml_compute_state {
  13414. ggml_thread_t thrd;
  13415. int ith;
  13416. struct ggml_compute_state_shared * shared;
  13417. };
  13418. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13419. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13420. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13421. node->perf_runs++;
  13422. node->perf_cycles += cycles_cur;
  13423. node->perf_time_us += time_us_cur;
  13424. }
  13425. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13426. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13427. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13428. const struct ggml_cplan * cplan = state->shared->cplan;
  13429. const int * n_tasks_arr = cplan->n_tasks;
  13430. const int n_threads = state->shared->n_threads;
  13431. set_numa_thread_affinity(state->ith, n_threads);
  13432. int node_n = -1;
  13433. while (true) {
  13434. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13435. state->shared->node_n += 1;
  13436. return (thread_ret_t) GGML_EXIT_ABORTED;
  13437. }
  13438. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13439. // all other threads are finished and spinning
  13440. // do finalize and init here so we don't have synchronize again
  13441. struct ggml_compute_params params = {
  13442. /*.type =*/ GGML_TASK_FINALIZE,
  13443. /*.ith =*/ 0,
  13444. /*.nth =*/ 0,
  13445. /*.wsize =*/ cplan->work_size,
  13446. /*.wdata =*/ cplan->work_data,
  13447. };
  13448. if (node_n != -1) {
  13449. /* FINALIZE */
  13450. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13451. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13452. params.nth = n_tasks_arr[node_n];
  13453. ggml_compute_forward(&params, node);
  13454. }
  13455. ggml_graph_compute_perf_stats_node(node, state->shared);
  13456. }
  13457. // distribute new work or execute it direct if 1T
  13458. while (++node_n < cgraph->n_nodes) {
  13459. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13460. struct ggml_tensor * node = cgraph->nodes[node_n];
  13461. const int n_tasks = n_tasks_arr[node_n];
  13462. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13463. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13464. params.nth = n_tasks;
  13465. /* INIT */
  13466. if (GGML_OP_HAS_INIT[node->op]) {
  13467. params.type = GGML_TASK_INIT;
  13468. ggml_compute_forward(&params, node);
  13469. }
  13470. if (n_tasks == 1) {
  13471. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13472. // they do something more efficient than spinning (?)
  13473. params.type = GGML_TASK_COMPUTE;
  13474. ggml_compute_forward(&params, node);
  13475. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13476. params.type = GGML_TASK_FINALIZE;
  13477. ggml_compute_forward(&params, node);
  13478. }
  13479. ggml_graph_compute_perf_stats_node(node, state->shared);
  13480. } else {
  13481. break;
  13482. }
  13483. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13484. break;
  13485. }
  13486. }
  13487. atomic_store(&state->shared->n_active, n_threads);
  13488. atomic_store(&state->shared->node_n, node_n);
  13489. } else {
  13490. // wait for other threads to finish
  13491. const int last = node_n;
  13492. while (true) {
  13493. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13494. // depending on the workload and the operating system.
  13495. // since it is not clear what is the best approach, it should potentially become user-configurable
  13496. // ref: https://github.com/ggerganov/ggml/issues/291
  13497. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13498. sched_yield();
  13499. #endif
  13500. node_n = atomic_load(&state->shared->node_n);
  13501. if (node_n != last) break;
  13502. };
  13503. }
  13504. // check if we should stop
  13505. if (node_n >= cgraph->n_nodes) break;
  13506. /* COMPUTE */
  13507. struct ggml_tensor * node = cgraph->nodes[node_n];
  13508. const int n_tasks = n_tasks_arr[node_n];
  13509. struct ggml_compute_params params = {
  13510. /*.type =*/ GGML_TASK_COMPUTE,
  13511. /*.ith =*/ state->ith,
  13512. /*.nth =*/ n_tasks,
  13513. /*.wsize =*/ cplan->work_size,
  13514. /*.wdata =*/ cplan->work_data,
  13515. };
  13516. if (state->ith < n_tasks) {
  13517. ggml_compute_forward(&params, node);
  13518. }
  13519. }
  13520. return GGML_EXIT_SUCCESS;
  13521. }
  13522. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13523. if (n_threads <= 0) {
  13524. n_threads = GGML_DEFAULT_N_THREADS;
  13525. }
  13526. size_t work_size = 0;
  13527. struct ggml_cplan cplan;
  13528. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13529. // thread scheduling for the different operations + work buffer size estimation
  13530. for (int i = 0; i < cgraph->n_nodes; i++) {
  13531. int n_tasks = 1;
  13532. struct ggml_tensor * node = cgraph->nodes[i];
  13533. switch (node->op) {
  13534. case GGML_OP_CPY:
  13535. case GGML_OP_DUP:
  13536. {
  13537. n_tasks = n_threads;
  13538. size_t cur = 0;
  13539. if (ggml_is_quantized(node->type)) {
  13540. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13541. }
  13542. work_size = MAX(work_size, cur);
  13543. } break;
  13544. case GGML_OP_ADD:
  13545. case GGML_OP_ADD1:
  13546. {
  13547. n_tasks = n_threads;
  13548. size_t cur = 0;
  13549. if (ggml_is_quantized(node->src[0]->type)) {
  13550. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13551. }
  13552. work_size = MAX(work_size, cur);
  13553. } break;
  13554. case GGML_OP_ACC:
  13555. {
  13556. n_tasks = n_threads;
  13557. size_t cur = 0;
  13558. if (ggml_is_quantized(node->src[0]->type)) {
  13559. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13560. }
  13561. work_size = MAX(work_size, cur);
  13562. } break;
  13563. case GGML_OP_SUB:
  13564. case GGML_OP_DIV:
  13565. case GGML_OP_SQR:
  13566. case GGML_OP_SQRT:
  13567. case GGML_OP_LOG:
  13568. case GGML_OP_SUM:
  13569. case GGML_OP_SUM_ROWS:
  13570. case GGML_OP_MEAN:
  13571. case GGML_OP_ARGMAX:
  13572. case GGML_OP_REPEAT:
  13573. case GGML_OP_REPEAT_BACK:
  13574. {
  13575. n_tasks = 1;
  13576. } break;
  13577. case GGML_OP_UNARY:
  13578. {
  13579. switch (ggml_get_unary_op(node)) {
  13580. case GGML_UNARY_OP_ABS:
  13581. case GGML_UNARY_OP_SGN:
  13582. case GGML_UNARY_OP_NEG:
  13583. case GGML_UNARY_OP_STEP:
  13584. case GGML_UNARY_OP_TANH:
  13585. case GGML_UNARY_OP_ELU:
  13586. case GGML_UNARY_OP_RELU:
  13587. {
  13588. n_tasks = 1;
  13589. } break;
  13590. case GGML_UNARY_OP_GELU:
  13591. case GGML_UNARY_OP_GELU_QUICK:
  13592. case GGML_UNARY_OP_SILU:
  13593. {
  13594. n_tasks = n_threads;
  13595. } break;
  13596. }
  13597. } break;
  13598. case GGML_OP_SILU_BACK:
  13599. case GGML_OP_MUL:
  13600. case GGML_OP_NORM:
  13601. case GGML_OP_RMS_NORM:
  13602. case GGML_OP_RMS_NORM_BACK:
  13603. case GGML_OP_GROUP_NORM:
  13604. {
  13605. n_tasks = n_threads;
  13606. } break;
  13607. case GGML_OP_CONCAT:
  13608. case GGML_OP_MUL_MAT:
  13609. {
  13610. n_tasks = n_threads;
  13611. // TODO: use different scheduling for different matrix sizes
  13612. //const int nr0 = ggml_nrows(node->src[0]);
  13613. //const int nr1 = ggml_nrows(node->src[1]);
  13614. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13615. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13616. size_t cur = 0;
  13617. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13618. #if defined(GGML_USE_CUBLAS)
  13619. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13620. n_tasks = 1; // TODO: this actually is doing nothing
  13621. // the threads are still spinning
  13622. } else
  13623. #elif defined(GGML_USE_CLBLAST)
  13624. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13625. n_tasks = 1; // TODO: this actually is doing nothing
  13626. // the threads are still spinning
  13627. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13628. } else
  13629. #endif
  13630. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13631. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13632. n_tasks = 1; // TODO: this actually is doing nothing
  13633. // the threads are still spinning
  13634. if (node->src[0]->type != GGML_TYPE_F32) {
  13635. // here we need memory just for single 2D matrix from src0
  13636. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13637. }
  13638. } else
  13639. #endif
  13640. if (node->src[1]->type != vec_dot_type) {
  13641. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13642. } else {
  13643. cur = 0;
  13644. }
  13645. work_size = MAX(work_size, cur);
  13646. } break;
  13647. case GGML_OP_OUT_PROD:
  13648. {
  13649. n_tasks = n_threads;
  13650. size_t cur = 0;
  13651. if (ggml_is_quantized(node->src[0]->type)) {
  13652. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13653. }
  13654. work_size = MAX(work_size, cur);
  13655. } break;
  13656. case GGML_OP_SCALE:
  13657. {
  13658. n_tasks = 1;
  13659. } break;
  13660. case GGML_OP_SET:
  13661. case GGML_OP_CONT:
  13662. case GGML_OP_RESHAPE:
  13663. case GGML_OP_VIEW:
  13664. case GGML_OP_PERMUTE:
  13665. case GGML_OP_TRANSPOSE:
  13666. case GGML_OP_GET_ROWS:
  13667. case GGML_OP_GET_ROWS_BACK:
  13668. case GGML_OP_DIAG:
  13669. {
  13670. n_tasks = 1;
  13671. } break;
  13672. case GGML_OP_DIAG_MASK_ZERO:
  13673. case GGML_OP_DIAG_MASK_INF:
  13674. case GGML_OP_SOFT_MAX:
  13675. case GGML_OP_SOFT_MAX_BACK:
  13676. case GGML_OP_ROPE:
  13677. case GGML_OP_ROPE_BACK:
  13678. case GGML_OP_ADD_REL_POS:
  13679. {
  13680. n_tasks = n_threads;
  13681. } break;
  13682. case GGML_OP_ALIBI:
  13683. {
  13684. n_tasks = 1; //TODO
  13685. } break;
  13686. case GGML_OP_CLAMP:
  13687. {
  13688. n_tasks = 1; //TODO
  13689. } break;
  13690. case GGML_OP_CONV_1D:
  13691. {
  13692. n_tasks = n_threads;
  13693. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13694. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13695. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13696. const int64_t ne00 = node->src[0]->ne[0];
  13697. const int64_t ne01 = node->src[0]->ne[1];
  13698. const int64_t ne02 = node->src[0]->ne[2];
  13699. const int64_t ne10 = node->src[1]->ne[0];
  13700. const int64_t ne11 = node->src[1]->ne[1];
  13701. const int64_t ne0 = node->ne[0];
  13702. const int64_t ne1 = node->ne[1];
  13703. const int64_t nk = ne00;
  13704. const int64_t ew0 = nk * ne01;
  13705. UNUSED(ne02);
  13706. UNUSED(ne10);
  13707. UNUSED(ne11);
  13708. size_t cur = 0;
  13709. if (node->src[0]->type == GGML_TYPE_F16 &&
  13710. node->src[1]->type == GGML_TYPE_F32) {
  13711. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13712. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13713. node->src[1]->type == GGML_TYPE_F32) {
  13714. cur = sizeof(float)*(ne0*ne1*ew0);
  13715. } else {
  13716. GGML_ASSERT(false);
  13717. }
  13718. work_size = MAX(work_size, cur);
  13719. } break;
  13720. case GGML_OP_CONV_1D_STAGE_0:
  13721. {
  13722. n_tasks = n_threads;
  13723. } break;
  13724. case GGML_OP_CONV_1D_STAGE_1:
  13725. {
  13726. n_tasks = n_threads;
  13727. } break;
  13728. case GGML_OP_CONV_TRANSPOSE_1D:
  13729. {
  13730. n_tasks = n_threads;
  13731. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13732. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13733. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13734. const int64_t ne00 = node->src[0]->ne[0]; // K
  13735. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13736. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13737. const int64_t ne10 = node->src[1]->ne[0]; // L
  13738. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13739. size_t cur = 0;
  13740. if (node->src[0]->type == GGML_TYPE_F16 &&
  13741. node->src[1]->type == GGML_TYPE_F32) {
  13742. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13743. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13744. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13745. node->src[1]->type == GGML_TYPE_F32) {
  13746. cur += sizeof(float)*ne00*ne01*ne02;
  13747. cur += sizeof(float)*ne10*ne11;
  13748. } else {
  13749. GGML_ASSERT(false);
  13750. }
  13751. work_size = MAX(work_size, cur);
  13752. } break;
  13753. case GGML_OP_CONV_2D:
  13754. {
  13755. n_tasks = n_threads;
  13756. const int64_t ne00 = node->src[0]->ne[0]; // W
  13757. const int64_t ne01 = node->src[0]->ne[1]; // H
  13758. const int64_t ne02 = node->src[0]->ne[2]; // C
  13759. const int64_t ne03 = node->src[0]->ne[3]; // N
  13760. const int64_t ne10 = node->src[1]->ne[0]; // W
  13761. const int64_t ne11 = node->src[1]->ne[1]; // H
  13762. const int64_t ne12 = node->src[1]->ne[2]; // C
  13763. const int64_t ne0 = node->ne[0];
  13764. const int64_t ne1 = node->ne[1];
  13765. const int64_t ne2 = node->ne[2];
  13766. const int64_t ne3 = node->ne[3];
  13767. const int64_t nk = ne00*ne01;
  13768. const int64_t ew0 = nk * ne02;
  13769. UNUSED(ne03);
  13770. UNUSED(ne2);
  13771. size_t cur = 0;
  13772. if (node->src[0]->type == GGML_TYPE_F16 &&
  13773. node->src[1]->type == GGML_TYPE_F32) {
  13774. // im2col: [N*OH*OW, IC*KH*KW]
  13775. cur = sizeof(ggml_fp16_t)*(ne3*ne0*ne1*ew0);
  13776. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13777. node->src[1]->type == GGML_TYPE_F32) {
  13778. cur = sizeof(float)* (ne10*ne11*ne12);
  13779. } else {
  13780. GGML_ASSERT(false);
  13781. }
  13782. work_size = MAX(work_size, cur);
  13783. } break;
  13784. case GGML_OP_CONV_2D_STAGE_0:
  13785. {
  13786. n_tasks = n_threads;
  13787. } break;
  13788. case GGML_OP_CONV_2D_STAGE_1:
  13789. {
  13790. n_tasks = n_threads;
  13791. } break;
  13792. case GGML_OP_CONV_TRANSPOSE_2D:
  13793. {
  13794. n_tasks = n_threads;
  13795. const int64_t ne00 = node->src[0]->ne[0]; // W
  13796. const int64_t ne01 = node->src[0]->ne[1]; // H
  13797. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13798. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13799. const int64_t ne10 = node->src[1]->ne[0]; // W
  13800. const int64_t ne11 = node->src[1]->ne[1]; // H
  13801. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13802. size_t cur = 0;
  13803. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13804. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13805. work_size = MAX(work_size, cur);
  13806. } break;
  13807. case GGML_OP_POOL_1D:
  13808. case GGML_OP_POOL_2D:
  13809. {
  13810. n_tasks = 1;
  13811. } break;
  13812. case GGML_OP_UPSCALE:
  13813. {
  13814. n_tasks = n_threads;
  13815. } break;
  13816. case GGML_OP_FLASH_ATTN:
  13817. {
  13818. n_tasks = n_threads;
  13819. size_t cur = 0;
  13820. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13821. if (node->src[1]->type == GGML_TYPE_F32) {
  13822. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13823. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13824. }
  13825. if (node->src[1]->type == GGML_TYPE_F16) {
  13826. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13827. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13828. }
  13829. work_size = MAX(work_size, cur);
  13830. } break;
  13831. case GGML_OP_FLASH_FF:
  13832. {
  13833. n_tasks = n_threads;
  13834. size_t cur = 0;
  13835. if (node->src[1]->type == GGML_TYPE_F32) {
  13836. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13837. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13838. }
  13839. if (node->src[1]->type == GGML_TYPE_F16) {
  13840. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13841. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13842. }
  13843. work_size = MAX(work_size, cur);
  13844. } break;
  13845. case GGML_OP_FLASH_ATTN_BACK:
  13846. {
  13847. n_tasks = n_threads;
  13848. size_t cur = 0;
  13849. const int64_t D = node->src[0]->ne[0];
  13850. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13851. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13852. if (node->src[1]->type == GGML_TYPE_F32) {
  13853. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13854. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13855. }
  13856. if (node->src[1]->type == GGML_TYPE_F16) {
  13857. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13858. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13859. }
  13860. work_size = MAX(work_size, cur);
  13861. } break;
  13862. case GGML_OP_WIN_PART:
  13863. case GGML_OP_WIN_UNPART:
  13864. case GGML_OP_GET_REL_POS:
  13865. case GGML_OP_MAP_UNARY:
  13866. case GGML_OP_MAP_BINARY:
  13867. case GGML_OP_MAP_CUSTOM1_F32:
  13868. case GGML_OP_MAP_CUSTOM2_F32:
  13869. case GGML_OP_MAP_CUSTOM3_F32:
  13870. {
  13871. n_tasks = 1;
  13872. } break;
  13873. case GGML_OP_MAP_CUSTOM1:
  13874. {
  13875. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13876. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13877. n_tasks = n_threads;
  13878. } else {
  13879. n_tasks = MIN(p->n_tasks, n_threads);
  13880. }
  13881. } break;
  13882. case GGML_OP_MAP_CUSTOM2:
  13883. {
  13884. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13885. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13886. n_tasks = n_threads;
  13887. } else {
  13888. n_tasks = MIN(p->n_tasks, n_threads);
  13889. }
  13890. } break;
  13891. case GGML_OP_MAP_CUSTOM3:
  13892. {
  13893. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13894. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13895. n_tasks = n_threads;
  13896. } else {
  13897. n_tasks = MIN(p->n_tasks, n_threads);
  13898. }
  13899. } break;
  13900. case GGML_OP_CROSS_ENTROPY_LOSS:
  13901. {
  13902. n_tasks = n_threads;
  13903. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13904. work_size = MAX(work_size, cur);
  13905. } break;
  13906. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13907. {
  13908. n_tasks = n_threads;
  13909. } break;
  13910. case GGML_OP_NONE:
  13911. {
  13912. n_tasks = 1;
  13913. } break;
  13914. case GGML_OP_COUNT:
  13915. {
  13916. GGML_ASSERT(false);
  13917. } break;
  13918. }
  13919. cplan.n_tasks[i] = n_tasks;
  13920. }
  13921. if (work_size > 0) {
  13922. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13923. }
  13924. cplan.n_threads = n_threads;
  13925. cplan.work_size = work_size;
  13926. cplan.work_data = NULL;
  13927. return cplan;
  13928. }
  13929. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13930. {
  13931. GGML_ASSERT(cplan);
  13932. GGML_ASSERT(cplan->n_threads > 0);
  13933. if (cplan->work_size > 0) {
  13934. GGML_ASSERT(cplan->work_data);
  13935. }
  13936. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13937. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13938. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13939. }
  13940. }
  13941. }
  13942. const int n_threads = cplan->n_threads;
  13943. struct ggml_compute_state_shared state_shared = {
  13944. /*.cgraph =*/ cgraph,
  13945. /*.cgraph_plan =*/ cplan,
  13946. /*.perf_node_start_cycles =*/ 0,
  13947. /*.perf_node_start_time_us =*/ 0,
  13948. /*.n_threads =*/ n_threads,
  13949. /*.n_active =*/ n_threads,
  13950. /*.node_n =*/ -1,
  13951. /*.abort_callback =*/ NULL,
  13952. /*.abort_callback_data =*/ NULL,
  13953. };
  13954. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13955. // create thread pool
  13956. if (n_threads > 1) {
  13957. for (int j = 1; j < n_threads; ++j) {
  13958. workers[j] = (struct ggml_compute_state) {
  13959. .thrd = 0,
  13960. .ith = j,
  13961. .shared = &state_shared,
  13962. };
  13963. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13964. GGML_ASSERT(rc == 0);
  13965. UNUSED(rc);
  13966. }
  13967. }
  13968. workers[0].ith = 0;
  13969. workers[0].shared = &state_shared;
  13970. const int64_t perf_start_cycles = ggml_perf_cycles();
  13971. const int64_t perf_start_time_us = ggml_perf_time_us();
  13972. // this is a work thread too
  13973. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13974. // don't leave affinity set on the main thread
  13975. clear_numa_thread_affinity();
  13976. // join or kill thread pool
  13977. if (n_threads > 1) {
  13978. for (int j = 1; j < n_threads; j++) {
  13979. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13980. GGML_ASSERT(rc == 0);
  13981. }
  13982. }
  13983. // performance stats (graph)
  13984. {
  13985. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13986. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13987. cgraph->perf_runs++;
  13988. cgraph->perf_cycles += perf_cycles_cur;
  13989. cgraph->perf_time_us += perf_time_us_cur;
  13990. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13991. __func__, cgraph->perf_runs,
  13992. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13993. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13994. (double) perf_time_us_cur / 1000.0,
  13995. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13996. }
  13997. return compute_status;
  13998. }
  13999. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14000. for (int i = 0; i < cgraph->n_nodes; i++) {
  14001. struct ggml_tensor * grad = cgraph->grads[i];
  14002. if (grad) {
  14003. ggml_set_zero(grad);
  14004. }
  14005. }
  14006. }
  14007. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14008. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14009. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14010. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14011. ggml_graph_compute(cgraph, &cplan);
  14012. }
  14013. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14014. for (int i = 0; i < cgraph->n_leafs; i++) {
  14015. struct ggml_tensor * leaf = cgraph->leafs[i];
  14016. if (strcmp(leaf->name, name) == 0) {
  14017. return leaf;
  14018. }
  14019. }
  14020. for (int i = 0; i < cgraph->n_nodes; i++) {
  14021. struct ggml_tensor * node = cgraph->nodes[i];
  14022. if (strcmp(node->name, name) == 0) {
  14023. return node;
  14024. }
  14025. }
  14026. return NULL;
  14027. }
  14028. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14029. const int64_t * ne = tensor->ne;
  14030. const size_t * nb = tensor->nb;
  14031. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14032. ggml_type_name(tensor->type),
  14033. ggml_op_name (tensor->op),
  14034. tensor->n_dims,
  14035. ne[0], ne[1], ne[2], ne[3],
  14036. nb[0], nb[1], nb[2], nb[3],
  14037. tensor->data,
  14038. tensor->name);
  14039. }
  14040. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14041. const int64_t * ne = tensor->ne;
  14042. const size_t * nb = tensor->nb;
  14043. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14044. arg,
  14045. ggml_type_name(tensor->type),
  14046. ggml_op_name (tensor->op),
  14047. tensor->n_dims,
  14048. ne[0], ne[1], ne[2], ne[3],
  14049. nb[0], nb[1], nb[2], nb[3],
  14050. tensor->data,
  14051. tensor->name);
  14052. }
  14053. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14054. uint64_t size_eval = 0;
  14055. // compute size of intermediate results
  14056. // TODO: does not take into account scratch buffers !!!!
  14057. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14058. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14059. }
  14060. // print
  14061. {
  14062. FILE * fout = stdout;
  14063. fprintf(fout, "\n");
  14064. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14065. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14066. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14067. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14068. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14069. // header
  14070. fprintf(fout, "\n");
  14071. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14072. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14073. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14074. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14075. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14076. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14077. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14078. }
  14079. // header
  14080. fprintf(fout, "\n");
  14081. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14082. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14083. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14084. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14085. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14086. if (cgraph->nodes[i]->src[j]) {
  14087. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14088. }
  14089. }
  14090. fprintf(fout, "\n");
  14091. }
  14092. fprintf(fout, "\n");
  14093. }
  14094. // write binary data
  14095. {
  14096. FILE * fout = fopen(fname, "wb");
  14097. if (!fout) {
  14098. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14099. return;
  14100. }
  14101. // header
  14102. {
  14103. const uint32_t magic = GGML_FILE_MAGIC;
  14104. const uint32_t version = GGML_FILE_VERSION;
  14105. const uint32_t n_leafs = cgraph->n_leafs;
  14106. const uint32_t nodes = cgraph->n_nodes;
  14107. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14108. fwrite(&version, sizeof(uint32_t), 1, fout);
  14109. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14110. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14111. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14112. }
  14113. // leafs
  14114. {
  14115. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14116. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14117. const uint32_t type = tensor->type;
  14118. const uint32_t op = tensor->op;
  14119. const uint32_t n_dims = tensor->n_dims;
  14120. fwrite(&type, sizeof(uint32_t), 1, fout);
  14121. fwrite(&op, sizeof(uint32_t), 1, fout);
  14122. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14123. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14124. const uint64_t ne = tensor->ne[j];
  14125. const uint64_t nb = tensor->nb[j];
  14126. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14127. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14128. }
  14129. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14130. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14131. // dump the data
  14132. // TODO: pad this to 32 byte boundary
  14133. {
  14134. const size_t size = ggml_nbytes(tensor);
  14135. fwrite(tensor->data, sizeof(char), size, fout);
  14136. }
  14137. }
  14138. }
  14139. // nodes
  14140. {
  14141. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14142. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14143. const uint32_t type = tensor->type;
  14144. const uint32_t op = tensor->op;
  14145. const uint32_t n_dims = tensor->n_dims;
  14146. fwrite(&type, sizeof(uint32_t), 1, fout);
  14147. fwrite(&op, sizeof(uint32_t), 1, fout);
  14148. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14149. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14150. const uint64_t ne = tensor->ne[j];
  14151. const uint64_t nb = tensor->nb[j];
  14152. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14153. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14154. }
  14155. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14156. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14157. // output the op arguments
  14158. {
  14159. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14160. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14161. args[j] = tensor->src[j];
  14162. }
  14163. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14164. if (args[j]) {
  14165. int32_t idx = -1;
  14166. // check if leaf
  14167. {
  14168. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14169. if (args[j] == cgraph->leafs[k]) {
  14170. idx = k;
  14171. break;
  14172. }
  14173. }
  14174. }
  14175. // check if node
  14176. if (idx == -1) {
  14177. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14178. if (args[j] == cgraph->nodes[k]) {
  14179. idx = GGML_MAX_NODES + k;
  14180. break;
  14181. }
  14182. }
  14183. }
  14184. if (idx == -1) {
  14185. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14186. fclose(fout);
  14187. return;
  14188. }
  14189. fwrite(&idx, sizeof(int32_t), 1, fout);
  14190. } else {
  14191. const int32_t nul = -1;
  14192. fwrite(&nul, sizeof(int32_t), 1, fout);
  14193. }
  14194. }
  14195. }
  14196. }
  14197. }
  14198. fclose(fout);
  14199. }
  14200. }
  14201. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14202. assert(*ctx_data == NULL);
  14203. assert(*ctx_eval == NULL);
  14204. struct ggml_cgraph result = { 0 };
  14205. struct ggml_tensor * data = NULL;
  14206. // read file into data
  14207. {
  14208. FILE * fin = fopen(fname, "rb");
  14209. if (!fin) {
  14210. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14211. return result;
  14212. }
  14213. size_t fsize = 0;
  14214. fseek(fin, 0, SEEK_END);
  14215. fsize = ftell(fin);
  14216. fseek(fin, 0, SEEK_SET);
  14217. // create the data context
  14218. {
  14219. const size_t overhead = 1*ggml_tensor_overhead();
  14220. struct ggml_init_params params = {
  14221. .mem_size = fsize + overhead,
  14222. .mem_buffer = NULL,
  14223. .no_alloc = false,
  14224. };
  14225. *ctx_data = ggml_init(params);
  14226. if (!*ctx_data) {
  14227. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14228. fclose(fin);
  14229. return result;
  14230. }
  14231. }
  14232. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14233. {
  14234. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14235. if (ret != fsize) {
  14236. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14237. fclose(fin);
  14238. return result;
  14239. }
  14240. }
  14241. fclose(fin);
  14242. }
  14243. // populate result
  14244. {
  14245. char * ptr = (char *) data->data;
  14246. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14247. if (magic != GGML_FILE_MAGIC) {
  14248. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14249. return result;
  14250. }
  14251. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14252. if (version != GGML_FILE_VERSION) {
  14253. fprintf(stderr, "%s: invalid version number\n", __func__);
  14254. return result;
  14255. }
  14256. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14257. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14258. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14259. result.n_leafs = n_leafs;
  14260. result.n_nodes = n_nodes;
  14261. // create the data context
  14262. {
  14263. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14264. struct ggml_init_params params = {
  14265. .mem_size = size_eval + overhead,
  14266. .mem_buffer = NULL,
  14267. .no_alloc = true,
  14268. };
  14269. *ctx_eval = ggml_init(params);
  14270. if (!*ctx_eval) {
  14271. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14272. return result;
  14273. }
  14274. }
  14275. // leafs
  14276. {
  14277. uint32_t type;
  14278. uint32_t op;
  14279. uint32_t n_dims;
  14280. for (uint32_t i = 0; i < n_leafs; ++i) {
  14281. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14282. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14283. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14284. int64_t ne[GGML_MAX_DIMS];
  14285. size_t nb[GGML_MAX_DIMS];
  14286. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14287. uint64_t ne_cur;
  14288. uint64_t nb_cur;
  14289. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14290. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14291. ne[j] = ne_cur;
  14292. nb[j] = nb_cur;
  14293. }
  14294. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14295. tensor->op = (enum ggml_op) op;
  14296. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14297. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14298. tensor->data = (void *) ptr;
  14299. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14300. tensor->nb[j] = nb[j];
  14301. }
  14302. result.leafs[i] = tensor;
  14303. ptr += ggml_nbytes(tensor);
  14304. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14305. }
  14306. }
  14307. ggml_set_no_alloc(*ctx_eval, false);
  14308. // nodes
  14309. {
  14310. uint32_t type;
  14311. uint32_t op;
  14312. uint32_t n_dims;
  14313. for (uint32_t i = 0; i < n_nodes; ++i) {
  14314. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14315. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14316. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14317. enum ggml_op eop = (enum ggml_op) op;
  14318. int64_t ne[GGML_MAX_DIMS];
  14319. size_t nb[GGML_MAX_DIMS];
  14320. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14321. uint64_t ne_cur;
  14322. uint64_t nb_cur;
  14323. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14324. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14325. ne[j] = ne_cur;
  14326. nb[j] = nb_cur;
  14327. }
  14328. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14329. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14330. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14331. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14332. // parse args
  14333. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14334. const int32_t arg_idx = ptr_arg_idx[j];
  14335. if (arg_idx == -1) {
  14336. continue;
  14337. }
  14338. if (arg_idx < GGML_MAX_NODES) {
  14339. args[j] = result.leafs[arg_idx];
  14340. } else {
  14341. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14342. }
  14343. }
  14344. // create the tensor
  14345. // "view" operations are handled differently
  14346. // TODO: handle inplace ops - currently a copy is always made
  14347. struct ggml_tensor * tensor = NULL;
  14348. switch (eop) {
  14349. // TODO: implement other view ops
  14350. case GGML_OP_RESHAPE:
  14351. {
  14352. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14353. } break;
  14354. case GGML_OP_VIEW:
  14355. {
  14356. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14357. size_t offs;
  14358. memcpy(&offs, ptr_op_params, sizeof(offs));
  14359. tensor->data = ((char *) tensor->data) + offs;
  14360. } break;
  14361. case GGML_OP_TRANSPOSE:
  14362. {
  14363. tensor = ggml_transpose(*ctx_eval, args[0]);
  14364. } break;
  14365. case GGML_OP_PERMUTE:
  14366. {
  14367. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14368. } break;
  14369. default:
  14370. {
  14371. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14372. tensor->op = eop;
  14373. } break;
  14374. }
  14375. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14376. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14377. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14378. tensor->nb[j] = nb[j];
  14379. }
  14380. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14381. tensor->src[j] = args[j];
  14382. }
  14383. result.nodes[i] = tensor;
  14384. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14385. }
  14386. }
  14387. }
  14388. return result;
  14389. }
  14390. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14391. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14392. GGML_PRINT("=== GRAPH ===\n");
  14393. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14394. for (int i = 0; i < cgraph->n_nodes; i++) {
  14395. struct ggml_tensor * node = cgraph->nodes[i];
  14396. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14397. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14398. i,
  14399. node->ne[0], node->ne[1], node->ne[2],
  14400. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14401. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14402. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14403. (double) node->perf_time_us / 1000.0,
  14404. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14405. }
  14406. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14407. for (int i = 0; i < cgraph->n_leafs; i++) {
  14408. struct ggml_tensor * node = cgraph->leafs[i];
  14409. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14410. i,
  14411. node->ne[0], node->ne[1],
  14412. ggml_op_name(node->op),
  14413. ggml_get_name(node));
  14414. }
  14415. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14416. if (perf_total_per_op_us[i] == 0) {
  14417. continue;
  14418. }
  14419. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14420. }
  14421. GGML_PRINT("========================================\n");
  14422. }
  14423. // check if node is part of the graph
  14424. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14425. if (cgraph == NULL) {
  14426. return true;
  14427. }
  14428. for (int i = 0; i < cgraph->n_nodes; i++) {
  14429. if (cgraph->nodes[i] == node) {
  14430. return true;
  14431. }
  14432. }
  14433. return false;
  14434. }
  14435. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14436. for (int i = 0; i < cgraph->n_nodes; i++) {
  14437. struct ggml_tensor * parent = cgraph->nodes[i];
  14438. if (parent->grad == node) {
  14439. return parent;
  14440. }
  14441. }
  14442. return NULL;
  14443. }
  14444. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14445. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14446. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14447. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14448. gparent0 ? (void *) gparent0 : (void *) parent,
  14449. gparent0 ? "g" : "x",
  14450. gparent ? (void *) gparent : (void *) node,
  14451. gparent ? "g" : "x",
  14452. gparent ? "empty" : "vee",
  14453. gparent ? "dashed" : "solid",
  14454. label);
  14455. }
  14456. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14457. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14458. (void *) parent, "x",
  14459. (void *) node, "x",
  14460. label);
  14461. }
  14462. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14463. char color[16];
  14464. FILE * fp = fopen(filename, "w");
  14465. GGML_ASSERT(fp);
  14466. fprintf(fp, "digraph G {\n");
  14467. fprintf(fp, " newrank = true;\n");
  14468. fprintf(fp, " rankdir = LR;\n");
  14469. for (int i = 0; i < gb->n_nodes; i++) {
  14470. struct ggml_tensor * node = gb->nodes[i];
  14471. if (ggml_graph_get_parent(gb, node) != NULL) {
  14472. continue;
  14473. }
  14474. if (node->is_param) {
  14475. snprintf(color, sizeof(color), "yellow");
  14476. } else if (node->grad) {
  14477. if (ggml_graph_find(gf, node)) {
  14478. snprintf(color, sizeof(color), "green");
  14479. } else {
  14480. snprintf(color, sizeof(color), "lightblue");
  14481. }
  14482. } else {
  14483. snprintf(color, sizeof(color), "white");
  14484. }
  14485. fprintf(fp, " \"%p\" [ "
  14486. "style = filled; fillcolor = %s; shape = record; "
  14487. "label=\"",
  14488. (void *) node, color);
  14489. if (strlen(node->name) > 0) {
  14490. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14491. } else {
  14492. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14493. }
  14494. if (node->n_dims == 2) {
  14495. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14496. } else {
  14497. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14498. }
  14499. if (node->grad) {
  14500. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14501. } else {
  14502. fprintf(fp, "\"; ]\n");
  14503. }
  14504. }
  14505. for (int i = 0; i < gb->n_leafs; i++) {
  14506. struct ggml_tensor * node = gb->leafs[i];
  14507. snprintf(color, sizeof(color), "pink");
  14508. fprintf(fp, " \"%p\" [ "
  14509. "style = filled; fillcolor = %s; shape = record; "
  14510. "label=\"<x>",
  14511. (void *) node, color);
  14512. if (strlen(node->name) > 0) {
  14513. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14514. } else {
  14515. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14516. }
  14517. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14518. if (ggml_nelements(node) < 5) {
  14519. fprintf(fp, " | (");
  14520. for (int j = 0; j < ggml_nelements(node); j++) {
  14521. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14522. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14523. }
  14524. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14525. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14526. }
  14527. else {
  14528. fprintf(fp, "#");
  14529. }
  14530. if (j < ggml_nelements(node) - 1) {
  14531. fprintf(fp, ", ");
  14532. }
  14533. }
  14534. fprintf(fp, ")");
  14535. }
  14536. fprintf(fp, "\"; ]\n");
  14537. }
  14538. for (int i = 0; i < gb->n_nodes; i++) {
  14539. struct ggml_tensor * node = gb->nodes[i];
  14540. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14541. if (node->src[j]) {
  14542. char label[16];
  14543. snprintf(label, sizeof(label), "src %d", j);
  14544. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14545. }
  14546. }
  14547. }
  14548. for (int i = 0; i < gb->n_leafs; i++) {
  14549. struct ggml_tensor * node = gb->leafs[i];
  14550. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14551. if (node->src[j]) {
  14552. char label[16];
  14553. snprintf(label, sizeof(label), "src %d", j);
  14554. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14555. }
  14556. }
  14557. }
  14558. fprintf(fp, "}\n");
  14559. fclose(fp);
  14560. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14561. }
  14562. ////////////////////////////////////////////////////////////////////////////////
  14563. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14564. int i = 0;
  14565. for (int p = 0; p < np; ++p) {
  14566. const int64_t ne = ggml_nelements(ps[p]) ;
  14567. // TODO: add function to set tensor from array
  14568. for (int64_t j = 0; j < ne; ++j) {
  14569. ggml_set_f32_1d(ps[p], j, x[i++]);
  14570. }
  14571. }
  14572. }
  14573. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14574. int i = 0;
  14575. for (int p = 0; p < np; ++p) {
  14576. const int64_t ne = ggml_nelements(ps[p]) ;
  14577. // TODO: add function to get all elements at once
  14578. for (int64_t j = 0; j < ne; ++j) {
  14579. x[i++] = ggml_get_f32_1d(ps[p], j);
  14580. }
  14581. }
  14582. }
  14583. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14584. int64_t i = 0;
  14585. for (int p = 0; p < np; ++p) {
  14586. const int64_t ne = ggml_nelements(ps[p]) ;
  14587. // TODO: add function to get all elements at once
  14588. for (int64_t j = 0; j < ne; ++j) {
  14589. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14590. }
  14591. }
  14592. }
  14593. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14594. int64_t i = 0;
  14595. for (int p = 0; p < np; ++p) {
  14596. const int64_t ne = ggml_nelements(ps[p]) ;
  14597. // TODO: add function to get all elements at once
  14598. for (int64_t j = 0; j < ne; ++j) {
  14599. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14600. }
  14601. }
  14602. }
  14603. //
  14604. // ADAM
  14605. //
  14606. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14607. //
  14608. static enum ggml_opt_result ggml_opt_adam(
  14609. struct ggml_context * ctx,
  14610. struct ggml_opt_context * opt,
  14611. struct ggml_opt_params params,
  14612. struct ggml_tensor * f,
  14613. struct ggml_cgraph * gf,
  14614. struct ggml_cgraph * gb,
  14615. ggml_opt_callback callback,
  14616. void * callback_data) {
  14617. GGML_ASSERT(ggml_is_scalar(f));
  14618. // these will store the parameters we want to optimize
  14619. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14620. int np = 0;
  14621. int64_t nx = 0;
  14622. for (int i = 0; i < gf->n_nodes; ++i) {
  14623. if (gf->nodes[i]->is_param) {
  14624. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14625. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14626. ps[np++] = gf->nodes[i];
  14627. nx += ggml_nelements(gf->nodes[i]);
  14628. }
  14629. }
  14630. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14631. int iter = opt->iter;
  14632. ggml_opt_init(opt->ctx, opt, params, nx);
  14633. opt->iter = iter;
  14634. }
  14635. // constants
  14636. float sched = params.adam.sched;
  14637. const float alpha = params.adam.alpha;
  14638. const float decay = params.adam.decay * alpha;
  14639. const float beta1 = params.adam.beta1;
  14640. const float beta2 = params.adam.beta2;
  14641. const float eps = params.adam.eps;
  14642. const float gclip = params.adam.gclip;
  14643. const int decay_min_ndim = params.adam.decay_min_ndim;
  14644. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14645. const float accum_norm = 1.0f / (float) n_accum;
  14646. float * g = opt->adam.g->data; // gradients
  14647. float * m = opt->adam.m->data; // first moment
  14648. float * v = opt->adam.v->data; // second moment
  14649. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14650. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14651. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14652. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14653. bool cancel = false;
  14654. // compute the function value
  14655. float fx = 0;
  14656. ggml_set_zero(opt->adam.g);
  14657. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14658. if (callback) {
  14659. callback(callback_data, accum_step, &sched, &cancel);
  14660. if (cancel) {
  14661. return GGML_OPT_CANCEL;
  14662. }
  14663. }
  14664. // ggml_graph_reset (gf);
  14665. ggml_set_f32 (f->grad, 1.0f);
  14666. ggml_graph_compute(gb, &cplan);
  14667. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14668. fx += ggml_get_f32_1d(f, 0);
  14669. }
  14670. fx *= accum_norm;
  14671. opt->adam.fx_prev = fx;
  14672. opt->adam.fx_best = opt->adam.fx_prev;
  14673. if (pf) {
  14674. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14675. }
  14676. opt->loss_before = opt->adam.fx_prev;
  14677. opt->loss_after = opt->adam.fx_prev;
  14678. // initialize
  14679. if (opt->just_initialized) {
  14680. opt->adam.n_no_improvement = 0;
  14681. opt->just_initialized = false;
  14682. }
  14683. float * fx_best = &opt->adam.fx_best;
  14684. float * fx_prev = &opt->adam.fx_prev;
  14685. int * n_no_improvement = &opt->adam.n_no_improvement;
  14686. int iter0 = opt->iter;
  14687. // run the optimizer
  14688. for (int t = 0; t < params.adam.n_iter; ++t) {
  14689. opt->iter = iter0 + t + 1;
  14690. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14691. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14692. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14693. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14694. for (int i = 0; i < np; ++i) {
  14695. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14696. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14697. }
  14698. const int64_t t_start_wall = ggml_time_us();
  14699. const int64_t t_start_cpu = ggml_cycles();
  14700. UNUSED(t_start_wall);
  14701. UNUSED(t_start_cpu);
  14702. {
  14703. float gnorm = 1.0f;
  14704. if (gclip > 0.0f) {
  14705. // gradient clipping
  14706. ggml_float sum = 0.0;
  14707. for (int64_t i = 0; i < nx; ++i) {
  14708. sum += (ggml_float)(g[i]*g[i]);
  14709. }
  14710. ggml_float norm = sqrt(sum);
  14711. if (norm > (ggml_float) gclip) {
  14712. gnorm = (float) ((ggml_float) gclip / norm);
  14713. }
  14714. }
  14715. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14716. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14717. int64_t i = 0;
  14718. for (int p = 0; p < np; ++p) {
  14719. const int64_t ne = ggml_nelements(ps[p]);
  14720. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  14721. for (int64_t j = 0; j < ne; ++j) {
  14722. float x = ggml_get_f32_1d(ps[p], j);
  14723. float g_ = g[i]*gnorm;
  14724. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14725. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14726. float mh = m[i]*beta1h;
  14727. float vh = v[i]*beta2h;
  14728. vh = sqrtf(vh) + eps;
  14729. x = x*(1.0f - p_decay) - mh/vh;
  14730. ggml_set_f32_1d(ps[p], j, x);
  14731. ++i;
  14732. }
  14733. }
  14734. }
  14735. fx = 0;
  14736. ggml_set_zero(opt->adam.g);
  14737. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14738. if (callback) {
  14739. callback(callback_data, accum_step, &sched, &cancel);
  14740. if (cancel) {
  14741. return GGML_OPT_CANCEL;;
  14742. }
  14743. }
  14744. // ggml_graph_reset (gf);
  14745. ggml_set_f32 (f->grad, 1.0f);
  14746. ggml_graph_compute(gb, &cplan);
  14747. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14748. fx += ggml_get_f32_1d(f, 0);
  14749. }
  14750. fx *= accum_norm;
  14751. opt->loss_after = fx;
  14752. // check convergence
  14753. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14754. GGML_PRINT_DEBUG("converged\n");
  14755. return GGML_OPT_OK;
  14756. }
  14757. // delta-based convergence test
  14758. if (pf != NULL) {
  14759. // need at least params.past iterations to start checking for convergence
  14760. if (params.past <= iter0 + t) {
  14761. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14762. if (fabsf(rate) < params.delta) {
  14763. return GGML_OPT_OK;
  14764. }
  14765. }
  14766. pf[(iter0 + t)%params.past] = fx;
  14767. }
  14768. // check for improvement
  14769. if (params.max_no_improvement > 0) {
  14770. if (fx_best[0] > fx) {
  14771. fx_best[0] = fx;
  14772. n_no_improvement[0] = 0;
  14773. } else {
  14774. ++n_no_improvement[0];
  14775. if (n_no_improvement[0] >= params.max_no_improvement) {
  14776. return GGML_OPT_OK;
  14777. }
  14778. }
  14779. }
  14780. fx_prev[0] = fx;
  14781. {
  14782. const int64_t t_end_cpu = ggml_cycles();
  14783. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14784. UNUSED(t_end_cpu);
  14785. const int64_t t_end_wall = ggml_time_us();
  14786. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14787. UNUSED(t_end_wall);
  14788. }
  14789. }
  14790. return GGML_OPT_DID_NOT_CONVERGE;
  14791. }
  14792. //
  14793. // L-BFGS
  14794. //
  14795. // the L-BFGS implementation below is based on the following implementation:
  14796. //
  14797. // https://github.com/chokkan/liblbfgs
  14798. //
  14799. struct ggml_lbfgs_iteration_data {
  14800. float alpha;
  14801. float ys;
  14802. float * s;
  14803. float * y;
  14804. };
  14805. static enum ggml_opt_result linesearch_backtracking(
  14806. const struct ggml_opt_params * params,
  14807. int nx,
  14808. float * x,
  14809. float * fx,
  14810. float * g,
  14811. float * d,
  14812. float * step,
  14813. const float * xp,
  14814. struct ggml_tensor * f,
  14815. struct ggml_cgraph * gb,
  14816. struct ggml_cplan * cplan,
  14817. const int np,
  14818. struct ggml_tensor * ps[],
  14819. bool * cancel,
  14820. ggml_opt_callback callback,
  14821. void * callback_data) {
  14822. int count = 0;
  14823. float width = 0.0f;
  14824. float dg = 0.0f;
  14825. float finit = 0.0f;
  14826. float dginit = 0.0f;
  14827. float dgtest = 0.0f;
  14828. const float dec = 0.5f;
  14829. const float inc = 2.1f;
  14830. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14831. const float accum_norm = 1.0f / (float) n_accum;
  14832. if (*step <= 0.f) {
  14833. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14834. }
  14835. // compute the initial gradient in the search direction
  14836. ggml_vec_dot_f32(nx, &dginit, g, d);
  14837. // make sure that d points to a descent direction
  14838. if (0 < dginit) {
  14839. return GGML_LINESEARCH_FAIL;
  14840. }
  14841. // initialize local variables
  14842. finit = *fx;
  14843. dgtest = params->lbfgs.ftol*dginit;
  14844. while (true) {
  14845. ggml_vec_cpy_f32(nx, x, xp);
  14846. ggml_vec_mad_f32(nx, x, d, *step);
  14847. // evaluate the function and gradient values
  14848. {
  14849. ggml_opt_set_params(np, ps, x);
  14850. *fx = 0;
  14851. memset(g, 0, sizeof(float)*nx);
  14852. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14853. if (callback) {
  14854. // LBFG-S does not support learning rate -> ignore learning schedule
  14855. float sched = 0;
  14856. callback(callback_data, accum_step, &sched, cancel);
  14857. if (*cancel) {
  14858. return GGML_OPT_CANCEL;
  14859. }
  14860. }
  14861. // ggml_graph_reset (gf);
  14862. ggml_set_f32 (f->grad, 1.0f);
  14863. ggml_graph_compute(gb, cplan);
  14864. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14865. *fx += ggml_get_f32_1d(f, 0);
  14866. }
  14867. *fx *= accum_norm;
  14868. }
  14869. ++count;
  14870. if (*fx > finit + (*step)*dgtest) {
  14871. width = dec;
  14872. } else {
  14873. // Armijo condition is satisfied
  14874. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14875. return count;
  14876. }
  14877. ggml_vec_dot_f32(nx, &dg, g, d);
  14878. // check the Wolfe condition
  14879. if (dg < params->lbfgs.wolfe * dginit) {
  14880. width = inc;
  14881. } else {
  14882. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14883. // regular Wolfe conditions
  14884. return count;
  14885. }
  14886. if(dg > -params->lbfgs.wolfe*dginit) {
  14887. width = dec;
  14888. } else {
  14889. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14890. return count;
  14891. }
  14892. }
  14893. }
  14894. if (*step < params->lbfgs.min_step) {
  14895. return GGML_LINESEARCH_MINIMUM_STEP;
  14896. }
  14897. if (*step > params->lbfgs.max_step) {
  14898. return GGML_LINESEARCH_MAXIMUM_STEP;
  14899. }
  14900. if (params->lbfgs.max_linesearch <= count) {
  14901. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14902. }
  14903. (*step) *= width;
  14904. }
  14905. GGML_UNREACHABLE();
  14906. }
  14907. static enum ggml_opt_result ggml_opt_lbfgs(
  14908. struct ggml_context * ctx,
  14909. struct ggml_opt_context * opt,
  14910. struct ggml_opt_params params,
  14911. struct ggml_tensor * f,
  14912. struct ggml_cgraph * gf,
  14913. struct ggml_cgraph * gb,
  14914. ggml_opt_callback callback,
  14915. void * callback_data) {
  14916. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14917. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14918. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14919. return GGML_OPT_INVALID_WOLFE;
  14920. }
  14921. }
  14922. const int m = params.lbfgs.m;
  14923. // these will store the parameters we want to optimize
  14924. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14925. int np = 0;
  14926. int nx = 0;
  14927. for (int i = 0; i < gf->n_nodes; ++i) {
  14928. if (gf->nodes[i]->is_param) {
  14929. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14930. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14931. ps[np++] = gf->nodes[i];
  14932. nx += ggml_nelements(gf->nodes[i]);
  14933. }
  14934. }
  14935. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14936. int iter = opt->iter;
  14937. ggml_opt_init(ctx, opt, params, nx);
  14938. opt->iter = iter;
  14939. }
  14940. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14941. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14942. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14943. float * x = opt->lbfgs.x->data; // current parameters
  14944. float * xp = opt->lbfgs.xp->data; // previous parameters
  14945. float * g = opt->lbfgs.g->data; // current gradient
  14946. float * gp = opt->lbfgs.gp->data; // previous gradient
  14947. float * d = opt->lbfgs.d->data; // search direction
  14948. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14949. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14950. const float accum_norm = 1.0f / (float) n_accum;
  14951. float fx = 0.0f; // cost function value
  14952. float xnorm = 0.0f; // ||x||
  14953. float gnorm = 0.0f; // ||g||
  14954. // initialize x from the graph nodes
  14955. ggml_opt_get_params(np, ps, x);
  14956. // the L-BFGS memory
  14957. float * lm_alpha = opt->lbfgs.lmal->data;
  14958. float * lm_ys = opt->lbfgs.lmys->data;
  14959. float * lm_s = opt->lbfgs.lms->data;
  14960. float * lm_y = opt->lbfgs.lmy->data;
  14961. bool cancel = false;
  14962. // evaluate the function value and its gradient
  14963. {
  14964. ggml_opt_set_params(np, ps, x);
  14965. fx = 0;
  14966. memset(g, 0, sizeof(float)*nx);
  14967. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14968. if (callback) {
  14969. // LBFG-S does not support learning rate -> ignore learning schedule
  14970. float sched = 0;
  14971. callback(callback_data, accum_step, &sched, &cancel);
  14972. if (cancel) {
  14973. return GGML_OPT_CANCEL;
  14974. }
  14975. }
  14976. // ggml_graph_reset (gf);
  14977. ggml_set_f32 (f->grad, 1.0f);
  14978. ggml_graph_compute(gb, &cplan);
  14979. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14980. fx += ggml_get_f32_1d(f, 0);
  14981. }
  14982. fx *= accum_norm;
  14983. opt->loss_before = fx;
  14984. opt->loss_after = fx;
  14985. }
  14986. // search direction = -gradient
  14987. ggml_vec_neg_f32(nx, d, g);
  14988. // ||x||, ||g||
  14989. ggml_vec_norm_f32(nx, &xnorm, x);
  14990. ggml_vec_norm_f32(nx, &gnorm, g);
  14991. if (xnorm < 1.0f) {
  14992. xnorm = 1.0f;
  14993. }
  14994. // already optimized
  14995. if (gnorm/xnorm <= params.lbfgs.eps) {
  14996. return GGML_OPT_OK;
  14997. }
  14998. if (opt->just_initialized) {
  14999. if (pf) {
  15000. pf[0] = fx;
  15001. }
  15002. opt->lbfgs.fx_best = fx;
  15003. // initial step
  15004. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15005. opt->lbfgs.j = 0;
  15006. opt->lbfgs.k = 1;
  15007. opt->lbfgs.end = 0;
  15008. opt->lbfgs.n_no_improvement = 0;
  15009. opt->just_initialized = false;
  15010. }
  15011. float * fx_best = &opt->lbfgs.fx_best;
  15012. float * step = &opt->lbfgs.step;
  15013. int * j = &opt->lbfgs.j;
  15014. int * k = &opt->lbfgs.k;
  15015. int * end = &opt->lbfgs.end;
  15016. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15017. int ls = 0;
  15018. int bound = 0;
  15019. float ys = 0.0f;
  15020. float yy = 0.0f;
  15021. float beta = 0.0f;
  15022. int it = 0;
  15023. while (true) {
  15024. // store the current position and gradient vectors
  15025. ggml_vec_cpy_f32(nx, xp, x);
  15026. ggml_vec_cpy_f32(nx, gp, g);
  15027. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15028. // to determine if the optimization should be cancelled
  15029. // this is a simple change, but not doing this atm, since I don't have a nice
  15030. // way to test and don't want to break something with so many changes lined up
  15031. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15032. if (cancel) {
  15033. return GGML_OPT_CANCEL;
  15034. }
  15035. if (ls < 0) {
  15036. // linesearch failed - go back to the previous point and return
  15037. ggml_vec_cpy_f32(nx, x, xp);
  15038. ggml_vec_cpy_f32(nx, g, gp);
  15039. return ls;
  15040. }
  15041. opt->loss_after = fx;
  15042. ggml_vec_norm_f32(nx, &xnorm, x);
  15043. ggml_vec_norm_f32(nx, &gnorm, g);
  15044. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15045. if (xnorm < 1.0f) {
  15046. xnorm = 1.0f;
  15047. }
  15048. if (gnorm/xnorm <= params.lbfgs.eps) {
  15049. // converged
  15050. return GGML_OPT_OK;
  15051. }
  15052. // delta-based convergence test
  15053. if (pf != NULL) {
  15054. // need at least params.past iterations to start checking for convergence
  15055. if (params.past <= k[0]) {
  15056. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15057. if (fabsf(rate) < params.delta) {
  15058. return GGML_OPT_OK;
  15059. }
  15060. }
  15061. pf[k[0]%params.past] = fx;
  15062. }
  15063. // check for improvement
  15064. if (params.max_no_improvement > 0) {
  15065. if (fx < fx_best[0]) {
  15066. fx_best[0] = fx;
  15067. n_no_improvement[0] = 0;
  15068. } else {
  15069. n_no_improvement[0]++;
  15070. if (n_no_improvement[0] >= params.max_no_improvement) {
  15071. return GGML_OPT_OK;
  15072. }
  15073. }
  15074. }
  15075. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15076. // reached the maximum number of iterations
  15077. return GGML_OPT_DID_NOT_CONVERGE;
  15078. }
  15079. // update vectors s and y:
  15080. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15081. // y_{k+1} = g_{k+1} - g_{k}.
  15082. //
  15083. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15084. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15085. // compute scalars ys and yy:
  15086. // ys = y^t \cdot s -> 1 / \rho.
  15087. // yy = y^t \cdot y.
  15088. //
  15089. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15090. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15091. lm_ys[end[0]] = ys;
  15092. // find new search direction
  15093. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15094. bound = (m <= k[0]) ? m : k[0];
  15095. k[0]++;
  15096. it++;
  15097. end[0] = (end[0] + 1)%m;
  15098. // initialize search direction with -g
  15099. ggml_vec_neg_f32(nx, d, g);
  15100. j[0] = end[0];
  15101. for (int i = 0; i < bound; ++i) {
  15102. j[0] = (j[0] + m - 1) % m;
  15103. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15104. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15105. lm_alpha[j[0]] /= lm_ys[j[0]];
  15106. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15107. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15108. }
  15109. ggml_vec_scale_f32(nx, d, ys/yy);
  15110. for (int i = 0; i < bound; ++i) {
  15111. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15112. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15113. beta /= lm_ys[j[0]];
  15114. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15115. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15116. j[0] = (j[0] + 1)%m;
  15117. }
  15118. step[0] = 1.0;
  15119. }
  15120. GGML_UNREACHABLE();
  15121. }
  15122. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15123. struct ggml_opt_params result;
  15124. switch (type) {
  15125. case GGML_OPT_ADAM:
  15126. {
  15127. result = (struct ggml_opt_params) {
  15128. .type = GGML_OPT_ADAM,
  15129. .n_threads = 1,
  15130. .past = 0,
  15131. .delta = 1e-5f,
  15132. .max_no_improvement = 100,
  15133. .print_forward_graph = true,
  15134. .print_backward_graph = true,
  15135. .n_gradient_accumulation = 1,
  15136. .adam = {
  15137. .n_iter = 10000,
  15138. .sched = 1.000f,
  15139. .decay = 0.0f,
  15140. .decay_min_ndim = 2,
  15141. .alpha = 0.001f,
  15142. .beta1 = 0.9f,
  15143. .beta2 = 0.999f,
  15144. .eps = 1e-8f,
  15145. .eps_f = 1e-5f,
  15146. .eps_g = 1e-3f,
  15147. .gclip = 0.0f,
  15148. },
  15149. };
  15150. } break;
  15151. case GGML_OPT_LBFGS:
  15152. {
  15153. result = (struct ggml_opt_params) {
  15154. .type = GGML_OPT_LBFGS,
  15155. .n_threads = 1,
  15156. .past = 0,
  15157. .delta = 1e-5f,
  15158. .max_no_improvement = 0,
  15159. .print_forward_graph = true,
  15160. .print_backward_graph = true,
  15161. .n_gradient_accumulation = 1,
  15162. .lbfgs = {
  15163. .m = 6,
  15164. .n_iter = 100,
  15165. .max_linesearch = 20,
  15166. .eps = 1e-5f,
  15167. .ftol = 1e-4f,
  15168. .wolfe = 0.9f,
  15169. .min_step = 1e-20f,
  15170. .max_step = 1e+20f,
  15171. .linesearch = GGML_LINESEARCH_DEFAULT,
  15172. },
  15173. };
  15174. } break;
  15175. }
  15176. return result;
  15177. }
  15178. GGML_API void ggml_opt_init(
  15179. struct ggml_context * ctx,
  15180. struct ggml_opt_context * opt,
  15181. struct ggml_opt_params params,
  15182. int64_t nx) {
  15183. opt->ctx = ctx;
  15184. opt->params = params;
  15185. opt->iter = 0;
  15186. opt->nx = nx;
  15187. opt->just_initialized = true;
  15188. if (opt->ctx == NULL) {
  15189. struct ggml_init_params ctx_opt_params;
  15190. if (opt->params.type == GGML_OPT_ADAM) {
  15191. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15192. if (opt->params.past > 0) {
  15193. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15194. }
  15195. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15196. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15197. if (opt->params.past > 0) {
  15198. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15199. }
  15200. }
  15201. ctx_opt_params.mem_buffer = NULL;
  15202. ctx_opt_params.no_alloc = false;
  15203. opt->ctx = ggml_init(ctx_opt_params);
  15204. }
  15205. switch (opt->params.type) {
  15206. case GGML_OPT_ADAM:
  15207. {
  15208. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15209. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15210. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15211. opt->adam.pf = params.past > 0
  15212. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15213. : NULL;
  15214. ggml_set_zero(opt->adam.m);
  15215. ggml_set_zero(opt->adam.v);
  15216. if (opt->adam.pf) {
  15217. ggml_set_zero(opt->adam.pf);
  15218. }
  15219. } break;
  15220. case GGML_OPT_LBFGS:
  15221. {
  15222. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15223. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15224. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15225. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15226. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15227. opt->lbfgs.pf = params.past > 0
  15228. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15229. : NULL;
  15230. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15231. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15232. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15233. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15234. ggml_set_zero(opt->lbfgs.x);
  15235. ggml_set_zero(opt->lbfgs.xp);
  15236. ggml_set_zero(opt->lbfgs.g);
  15237. ggml_set_zero(opt->lbfgs.gp);
  15238. ggml_set_zero(opt->lbfgs.d);
  15239. if (opt->lbfgs.pf) {
  15240. ggml_set_zero(opt->lbfgs.pf);
  15241. }
  15242. ggml_set_zero(opt->lbfgs.lmal);
  15243. ggml_set_zero(opt->lbfgs.lmys);
  15244. ggml_set_zero(opt->lbfgs.lms);
  15245. ggml_set_zero(opt->lbfgs.lmy);
  15246. } break;
  15247. }
  15248. }
  15249. enum ggml_opt_result ggml_opt(
  15250. struct ggml_context * ctx,
  15251. struct ggml_opt_params params,
  15252. struct ggml_tensor * f) {
  15253. bool free_ctx = false;
  15254. if (ctx == NULL) {
  15255. struct ggml_init_params params_ctx = {
  15256. .mem_size = 16*1024*1024,
  15257. .mem_buffer = NULL,
  15258. .no_alloc = false,
  15259. };
  15260. ctx = ggml_init(params_ctx);
  15261. if (ctx == NULL) {
  15262. return GGML_OPT_NO_CONTEXT;
  15263. }
  15264. free_ctx = true;
  15265. }
  15266. enum ggml_opt_result result = GGML_OPT_OK;
  15267. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15268. ggml_opt_init(ctx, opt, params, 0);
  15269. result = ggml_opt_resume(ctx, opt, f);
  15270. if (free_ctx) {
  15271. ggml_free(ctx);
  15272. }
  15273. return result;
  15274. }
  15275. enum ggml_opt_result ggml_opt_resume(
  15276. struct ggml_context * ctx,
  15277. struct ggml_opt_context * opt,
  15278. struct ggml_tensor * f) {
  15279. // build forward + backward compute graphs
  15280. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15281. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15282. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15283. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15284. *gf = ggml_build_forward (f);
  15285. *gb = ggml_build_backward(ctx, gf, true);
  15286. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15287. }
  15288. enum ggml_opt_result ggml_opt_resume_g(
  15289. struct ggml_context * ctx,
  15290. struct ggml_opt_context * opt,
  15291. struct ggml_tensor * f,
  15292. struct ggml_cgraph * gf,
  15293. struct ggml_cgraph * gb,
  15294. ggml_opt_callback callback,
  15295. void * callback_data) {
  15296. // build forward + backward compute graphs
  15297. enum ggml_opt_result result = GGML_OPT_OK;
  15298. switch (opt->params.type) {
  15299. case GGML_OPT_ADAM:
  15300. {
  15301. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15302. } break;
  15303. case GGML_OPT_LBFGS:
  15304. {
  15305. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15306. } break;
  15307. }
  15308. if (opt->params.print_forward_graph) {
  15309. ggml_graph_print (gf);
  15310. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15311. }
  15312. if (opt->params.print_backward_graph) {
  15313. ggml_graph_print (gb);
  15314. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15315. }
  15316. return result;
  15317. }
  15318. ////////////////////////////////////////////////////////////////////////////////
  15319. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15320. assert(k % QK4_0 == 0);
  15321. const int nb = k / QK4_0;
  15322. for (int b = 0; b < n; b += k) {
  15323. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15324. quantize_row_q4_0_reference(src + b, y, k);
  15325. for (int i = 0; i < nb; i++) {
  15326. for (int j = 0; j < QK4_0; j += 2) {
  15327. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15328. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15329. hist[vi0]++;
  15330. hist[vi1]++;
  15331. }
  15332. }
  15333. }
  15334. return (n/QK4_0*sizeof(block_q4_0));
  15335. }
  15336. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15337. assert(k % QK4_1 == 0);
  15338. const int nb = k / QK4_1;
  15339. for (int b = 0; b < n; b += k) {
  15340. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15341. quantize_row_q4_1_reference(src + b, y, k);
  15342. for (int i = 0; i < nb; i++) {
  15343. for (int j = 0; j < QK4_1; j += 2) {
  15344. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15345. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15346. hist[vi0]++;
  15347. hist[vi1]++;
  15348. }
  15349. }
  15350. }
  15351. return (n/QK4_1*sizeof(block_q4_1));
  15352. }
  15353. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15354. assert(k % QK5_0 == 0);
  15355. const int nb = k / QK5_0;
  15356. for (int b = 0; b < n; b += k) {
  15357. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15358. quantize_row_q5_0_reference(src + b, y, k);
  15359. for (int i = 0; i < nb; i++) {
  15360. uint32_t qh;
  15361. memcpy(&qh, &y[i].qh, sizeof(qh));
  15362. for (int j = 0; j < QK5_0; j += 2) {
  15363. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15364. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15365. // cast to 16 bins
  15366. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15367. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15368. hist[vi0]++;
  15369. hist[vi1]++;
  15370. }
  15371. }
  15372. }
  15373. return (n/QK5_0*sizeof(block_q5_0));
  15374. }
  15375. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15376. assert(k % QK5_1 == 0);
  15377. const int nb = k / QK5_1;
  15378. for (int b = 0; b < n; b += k) {
  15379. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15380. quantize_row_q5_1_reference(src + b, y, k);
  15381. for (int i = 0; i < nb; i++) {
  15382. uint32_t qh;
  15383. memcpy(&qh, &y[i].qh, sizeof(qh));
  15384. for (int j = 0; j < QK5_1; j += 2) {
  15385. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15386. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15387. // cast to 16 bins
  15388. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15389. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15390. hist[vi0]++;
  15391. hist[vi1]++;
  15392. }
  15393. }
  15394. }
  15395. return (n/QK5_1*sizeof(block_q5_1));
  15396. }
  15397. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15398. assert(k % QK8_0 == 0);
  15399. const int nb = k / QK8_0;
  15400. for (int b = 0; b < n; b += k) {
  15401. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15402. quantize_row_q8_0_reference(src + b, y, k);
  15403. for (int i = 0; i < nb; i++) {
  15404. for (int j = 0; j < QK8_0; ++j) {
  15405. const int8_t vi = y[i].qs[j];
  15406. hist[vi/16 + 8]++;
  15407. }
  15408. }
  15409. }
  15410. return (n/QK8_0*sizeof(block_q8_0));
  15411. }
  15412. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15413. size_t result = 0;
  15414. switch (type) {
  15415. case GGML_TYPE_Q4_0:
  15416. {
  15417. GGML_ASSERT(start % QK4_0 == 0);
  15418. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15419. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15420. } break;
  15421. case GGML_TYPE_Q4_1:
  15422. {
  15423. GGML_ASSERT(start % QK4_1 == 0);
  15424. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15425. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15426. } break;
  15427. case GGML_TYPE_Q5_0:
  15428. {
  15429. GGML_ASSERT(start % QK5_0 == 0);
  15430. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15431. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15432. } break;
  15433. case GGML_TYPE_Q5_1:
  15434. {
  15435. GGML_ASSERT(start % QK5_1 == 0);
  15436. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15437. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15438. } break;
  15439. case GGML_TYPE_Q8_0:
  15440. {
  15441. GGML_ASSERT(start % QK8_0 == 0);
  15442. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15443. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15444. } break;
  15445. case GGML_TYPE_Q2_K:
  15446. {
  15447. GGML_ASSERT(start % QK_K == 0);
  15448. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15449. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15450. } break;
  15451. case GGML_TYPE_Q3_K:
  15452. {
  15453. GGML_ASSERT(start % QK_K == 0);
  15454. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15455. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15456. } break;
  15457. case GGML_TYPE_Q4_K:
  15458. {
  15459. GGML_ASSERT(start % QK_K == 0);
  15460. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15461. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15462. } break;
  15463. case GGML_TYPE_Q5_K:
  15464. {
  15465. GGML_ASSERT(start % QK_K == 0);
  15466. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15467. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15468. } break;
  15469. case GGML_TYPE_Q6_K:
  15470. {
  15471. GGML_ASSERT(start % QK_K == 0);
  15472. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15473. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15474. } break;
  15475. case GGML_TYPE_F16:
  15476. {
  15477. int elemsize = sizeof(ggml_fp16_t);
  15478. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15479. result = n * elemsize;
  15480. } break;
  15481. case GGML_TYPE_F32:
  15482. {
  15483. int elemsize = sizeof(float);
  15484. result = n * elemsize;
  15485. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15486. } break;
  15487. default:
  15488. assert(false);
  15489. }
  15490. return result;
  15491. }
  15492. ////////////////////////////////////////////////////////////////////////////////
  15493. struct gguf_str {
  15494. uint64_t n; // GGUFv2
  15495. char * data;
  15496. };
  15497. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15498. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15499. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15500. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15501. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15502. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15503. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15504. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15505. [GGUF_TYPE_BOOL] = sizeof(bool),
  15506. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15507. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15508. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15509. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15510. [GGUF_TYPE_ARRAY] = 0, // undefined
  15511. };
  15512. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15513. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15514. [GGUF_TYPE_UINT8] = "u8",
  15515. [GGUF_TYPE_INT8] = "i8",
  15516. [GGUF_TYPE_UINT16] = "u16",
  15517. [GGUF_TYPE_INT16] = "i16",
  15518. [GGUF_TYPE_UINT32] = "u32",
  15519. [GGUF_TYPE_INT32] = "i32",
  15520. [GGUF_TYPE_FLOAT32] = "f32",
  15521. [GGUF_TYPE_BOOL] = "bool",
  15522. [GGUF_TYPE_STRING] = "str",
  15523. [GGUF_TYPE_ARRAY] = "arr",
  15524. [GGUF_TYPE_UINT64] = "u64",
  15525. [GGUF_TYPE_INT64] = "i64",
  15526. [GGUF_TYPE_FLOAT64] = "f64",
  15527. };
  15528. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15529. union gguf_value {
  15530. uint8_t uint8;
  15531. int8_t int8;
  15532. uint16_t uint16;
  15533. int16_t int16;
  15534. uint32_t uint32;
  15535. int32_t int32;
  15536. float float32;
  15537. uint64_t uint64;
  15538. int64_t int64;
  15539. double float64;
  15540. bool bool_;
  15541. struct gguf_str str;
  15542. struct {
  15543. enum gguf_type type;
  15544. uint64_t n; // GGUFv2
  15545. void * data;
  15546. } arr;
  15547. };
  15548. struct gguf_kv {
  15549. struct gguf_str key;
  15550. enum gguf_type type;
  15551. union gguf_value value;
  15552. };
  15553. struct gguf_header {
  15554. char magic[4];
  15555. uint32_t version;
  15556. uint64_t n_tensors; // GGUFv2
  15557. uint64_t n_kv; // GGUFv2
  15558. };
  15559. struct gguf_tensor_info {
  15560. struct gguf_str name;
  15561. uint32_t n_dims;
  15562. uint64_t ne[GGML_MAX_DIMS];
  15563. enum ggml_type type;
  15564. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15565. // for writing API
  15566. const void * data;
  15567. size_t size;
  15568. };
  15569. struct gguf_context {
  15570. struct gguf_header header;
  15571. struct gguf_kv * kv;
  15572. struct gguf_tensor_info * infos;
  15573. size_t alignment;
  15574. size_t offset; // offset of `data` from beginning of file
  15575. size_t size; // size of `data` in bytes
  15576. //uint8_t * padding;
  15577. void * data;
  15578. };
  15579. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15580. const size_t n = fread(dst, 1, size, file);
  15581. *offset += n;
  15582. return n == size;
  15583. }
  15584. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15585. p->n = 0;
  15586. p->data = NULL;
  15587. bool ok = true;
  15588. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15589. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15590. return ok;
  15591. }
  15592. struct gguf_context * gguf_init_empty(void) {
  15593. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15594. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15595. ctx->header.version = GGUF_VERSION;
  15596. ctx->header.n_tensors = 0;
  15597. ctx->header.n_kv = 0;
  15598. ctx->kv = NULL;
  15599. ctx->infos = NULL;
  15600. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15601. ctx->offset = 0;
  15602. ctx->size = 0;
  15603. ctx->data = NULL;
  15604. return ctx;
  15605. }
  15606. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15607. FILE * file = fopen(fname, "rb");
  15608. if (!file) {
  15609. return NULL;
  15610. }
  15611. // offset from start of file
  15612. size_t offset = 0;
  15613. char magic[4];
  15614. // check the magic before making allocations
  15615. {
  15616. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15617. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15618. if (magic[i] != GGUF_MAGIC[i]) {
  15619. fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
  15620. fclose(file);
  15621. return NULL;
  15622. }
  15623. }
  15624. }
  15625. bool ok = true;
  15626. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15627. // read the header
  15628. {
  15629. strncpy(ctx->header.magic, magic, 4);
  15630. ctx->kv = NULL;
  15631. ctx->infos = NULL;
  15632. ctx->data = NULL;
  15633. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15634. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15635. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15636. if (ctx->header.version == 1) {
  15637. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15638. fclose(file);
  15639. gguf_free(ctx);
  15640. return NULL;
  15641. }
  15642. if (!ok) {
  15643. fprintf(stderr, "%s: failed to read header\n", __func__);
  15644. fclose(file);
  15645. gguf_free(ctx);
  15646. return NULL;
  15647. }
  15648. }
  15649. // read the kv pairs
  15650. {
  15651. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15652. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15653. struct gguf_kv * kv = &ctx->kv[i];
  15654. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15655. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15656. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15657. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15658. switch (kv->type) {
  15659. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15660. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15661. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15662. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15663. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15664. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15665. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15666. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15667. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15668. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15669. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15670. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15671. case GGUF_TYPE_ARRAY:
  15672. {
  15673. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15674. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15675. switch (kv->value.arr.type) {
  15676. case GGUF_TYPE_UINT8:
  15677. case GGUF_TYPE_INT8:
  15678. case GGUF_TYPE_UINT16:
  15679. case GGUF_TYPE_INT16:
  15680. case GGUF_TYPE_UINT32:
  15681. case GGUF_TYPE_INT32:
  15682. case GGUF_TYPE_FLOAT32:
  15683. case GGUF_TYPE_UINT64:
  15684. case GGUF_TYPE_INT64:
  15685. case GGUF_TYPE_FLOAT64:
  15686. case GGUF_TYPE_BOOL:
  15687. {
  15688. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15689. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15690. } break;
  15691. case GGUF_TYPE_STRING:
  15692. {
  15693. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15694. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15695. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15696. }
  15697. } break;
  15698. case GGUF_TYPE_ARRAY:
  15699. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15700. }
  15701. } break;
  15702. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15703. }
  15704. if (!ok) {
  15705. break;
  15706. }
  15707. }
  15708. if (!ok) {
  15709. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15710. fclose(file);
  15711. gguf_free(ctx);
  15712. return NULL;
  15713. }
  15714. }
  15715. // read the tensor infos
  15716. {
  15717. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15718. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15719. struct gguf_tensor_info * info = &ctx->infos[i];
  15720. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15721. info->ne[j] = 1;
  15722. }
  15723. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15724. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15725. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15726. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15727. }
  15728. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15729. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15730. if (!ok) {
  15731. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15732. fclose(file);
  15733. gguf_free(ctx);
  15734. return NULL;
  15735. }
  15736. }
  15737. }
  15738. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15739. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15740. if (alignment_idx != -1) {
  15741. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15742. }
  15743. // we require the data section to be aligned, so take into account any padding
  15744. {
  15745. const size_t offset_pad = offset % ctx->alignment;
  15746. if (offset_pad != 0) {
  15747. offset += ctx->alignment - offset_pad;
  15748. fseek(file, offset, SEEK_SET);
  15749. }
  15750. }
  15751. // store the current file offset - this is where the data section starts
  15752. ctx->offset = offset;
  15753. // compute the total size of the data section, taking into account the alignment
  15754. {
  15755. ctx->size = 0;
  15756. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15757. struct gguf_tensor_info * info = &ctx->infos[i];
  15758. const int64_t ne =
  15759. (int64_t) info->ne[0] *
  15760. (int64_t) info->ne[1] *
  15761. (int64_t) info->ne[2] *
  15762. (int64_t) info->ne[3];
  15763. if (ne % ggml_blck_size(info->type) != 0) {
  15764. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15765. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15766. fclose(file);
  15767. gguf_free(ctx);
  15768. return NULL;
  15769. }
  15770. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15771. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15772. }
  15773. }
  15774. // load the tensor data only if requested
  15775. if (params.ctx != NULL) {
  15776. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15777. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15778. // the ggml_tensor structs to the appropriate locations in the binary blob
  15779. // compute the exact size needed for the new ggml_context
  15780. const size_t mem_size =
  15781. params.no_alloc ?
  15782. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15783. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15784. struct ggml_init_params pdata = {
  15785. .mem_size = mem_size,
  15786. .mem_buffer = NULL,
  15787. .no_alloc = params.no_alloc,
  15788. };
  15789. *params.ctx = ggml_init(pdata);
  15790. struct ggml_context * ctx_data = *params.ctx;
  15791. struct ggml_tensor * data = NULL;
  15792. if (!params.no_alloc) {
  15793. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15794. ok = ok && data != NULL;
  15795. // read the binary blob with the tensor data
  15796. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15797. if (!ok) {
  15798. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15799. fclose(file);
  15800. ggml_free(ctx_data);
  15801. gguf_free(ctx);
  15802. return NULL;
  15803. }
  15804. ctx->data = data->data;
  15805. }
  15806. ggml_set_no_alloc(ctx_data, true);
  15807. // create the tensors
  15808. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15809. const int64_t ne[GGML_MAX_DIMS] = {
  15810. ctx->infos[i].ne[0],
  15811. ctx->infos[i].ne[1],
  15812. ctx->infos[i].ne[2],
  15813. ctx->infos[i].ne[3],
  15814. };
  15815. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15816. ok = ok && cur != NULL;
  15817. ggml_set_name(cur, ctx->infos[i].name.data);
  15818. if (!ok) {
  15819. break;
  15820. }
  15821. // point the data member to the appropriate location in the binary blob using the tensor infos
  15822. if (!params.no_alloc) {
  15823. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15824. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15825. }
  15826. }
  15827. if (!ok) {
  15828. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15829. fclose(file);
  15830. ggml_free(ctx_data);
  15831. gguf_free(ctx);
  15832. return NULL;
  15833. }
  15834. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15835. }
  15836. fclose(file);
  15837. return ctx;
  15838. }
  15839. void gguf_free(struct gguf_context * ctx) {
  15840. if (ctx == NULL) {
  15841. return;
  15842. }
  15843. if (ctx->kv) {
  15844. // free string memory - not great..
  15845. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15846. struct gguf_kv * kv = &ctx->kv[i];
  15847. if (kv->key.data) {
  15848. free(kv->key.data);
  15849. }
  15850. if (kv->type == GGUF_TYPE_STRING) {
  15851. if (kv->value.str.data) {
  15852. free(kv->value.str.data);
  15853. }
  15854. }
  15855. if (kv->type == GGUF_TYPE_ARRAY) {
  15856. if (kv->value.arr.data) {
  15857. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15858. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15859. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15860. if (str->data) {
  15861. free(str->data);
  15862. }
  15863. }
  15864. }
  15865. free(kv->value.arr.data);
  15866. }
  15867. }
  15868. }
  15869. free(ctx->kv);
  15870. }
  15871. if (ctx->infos) {
  15872. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15873. struct gguf_tensor_info * info = &ctx->infos[i];
  15874. if (info->name.data) {
  15875. free(info->name.data);
  15876. }
  15877. }
  15878. free(ctx->infos);
  15879. }
  15880. GGML_ALIGNED_FREE(ctx);
  15881. }
  15882. const char * gguf_type_name(enum gguf_type type) {
  15883. return GGUF_TYPE_NAME[type];
  15884. }
  15885. int gguf_get_version(const struct gguf_context * ctx) {
  15886. return ctx->header.version;
  15887. }
  15888. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15889. return ctx->alignment;
  15890. }
  15891. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15892. return ctx->offset;
  15893. }
  15894. void * gguf_get_data(const struct gguf_context * ctx) {
  15895. return ctx->data;
  15896. }
  15897. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15898. return ctx->header.n_kv;
  15899. }
  15900. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15901. // return -1 if key not found
  15902. int keyfound = -1;
  15903. const int n_kv = gguf_get_n_kv(ctx);
  15904. for (int i = 0; i < n_kv; ++i) {
  15905. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15906. keyfound = i;
  15907. break;
  15908. }
  15909. }
  15910. return keyfound;
  15911. }
  15912. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15913. return ctx->kv[key_id].key.data;
  15914. }
  15915. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15916. return ctx->kv[key_id].type;
  15917. }
  15918. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15919. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15920. return ctx->kv[key_id].value.arr.type;
  15921. }
  15922. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15923. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15924. return ctx->kv[key_id].value.arr.data;
  15925. }
  15926. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15927. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15928. struct gguf_kv * kv = &ctx->kv[key_id];
  15929. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15930. return str->data;
  15931. }
  15932. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15933. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15934. return ctx->kv[key_id].value.arr.n;
  15935. }
  15936. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15937. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15938. return ctx->kv[key_id].value.uint8;
  15939. }
  15940. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15941. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15942. return ctx->kv[key_id].value.int8;
  15943. }
  15944. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15945. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15946. return ctx->kv[key_id].value.uint16;
  15947. }
  15948. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15949. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15950. return ctx->kv[key_id].value.int16;
  15951. }
  15952. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15953. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15954. return ctx->kv[key_id].value.uint32;
  15955. }
  15956. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15957. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15958. return ctx->kv[key_id].value.int32;
  15959. }
  15960. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15961. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15962. return ctx->kv[key_id].value.float32;
  15963. }
  15964. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15965. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15966. return ctx->kv[key_id].value.uint64;
  15967. }
  15968. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15969. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15970. return ctx->kv[key_id].value.int64;
  15971. }
  15972. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15973. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15974. return ctx->kv[key_id].value.float64;
  15975. }
  15976. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15977. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15978. return ctx->kv[key_id].value.bool_;
  15979. }
  15980. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15981. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15982. return ctx->kv[key_id].value.str.data;
  15983. }
  15984. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15985. return ctx->header.n_tensors;
  15986. }
  15987. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15988. // return -1 if tensor not found
  15989. int tensorfound = -1;
  15990. const int n_tensors = gguf_get_n_tensors(ctx);
  15991. for (int i = 0; i < n_tensors; ++i) {
  15992. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15993. tensorfound = i;
  15994. break;
  15995. }
  15996. }
  15997. return tensorfound;
  15998. }
  15999. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16000. return ctx->infos[i].offset;
  16001. }
  16002. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16003. return ctx->infos[i].name.data;
  16004. }
  16005. // returns the index
  16006. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16007. const int idx = gguf_find_key(ctx, key);
  16008. if (idx >= 0) {
  16009. return idx;
  16010. }
  16011. const int n_kv = gguf_get_n_kv(ctx);
  16012. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16013. ctx->kv[n_kv].key.n = strlen(key);
  16014. ctx->kv[n_kv].key.data = strdup(key);
  16015. ctx->header.n_kv++;
  16016. return n_kv;
  16017. }
  16018. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16019. const int idx = gguf_get_or_add_key(ctx, key);
  16020. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16021. ctx->kv[idx].value.uint8 = val;
  16022. }
  16023. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16024. const int idx = gguf_get_or_add_key(ctx, key);
  16025. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16026. ctx->kv[idx].value.int8 = val;
  16027. }
  16028. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16029. const int idx = gguf_get_or_add_key(ctx, key);
  16030. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16031. ctx->kv[idx].value.uint16 = val;
  16032. }
  16033. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16034. const int idx = gguf_get_or_add_key(ctx, key);
  16035. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16036. ctx->kv[idx].value.int16 = val;
  16037. }
  16038. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16039. const int idx = gguf_get_or_add_key(ctx, key);
  16040. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16041. ctx->kv[idx].value.uint32 = val;
  16042. }
  16043. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16044. const int idx = gguf_get_or_add_key(ctx, key);
  16045. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16046. ctx->kv[idx].value.int32 = val;
  16047. }
  16048. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16049. const int idx = gguf_get_or_add_key(ctx, key);
  16050. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16051. ctx->kv[idx].value.float32 = val;
  16052. }
  16053. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16054. const int idx = gguf_get_or_add_key(ctx, key);
  16055. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16056. ctx->kv[idx].value.uint64 = val;
  16057. }
  16058. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16059. const int idx = gguf_get_or_add_key(ctx, key);
  16060. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16061. ctx->kv[idx].value.int64 = val;
  16062. }
  16063. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16064. const int idx = gguf_get_or_add_key(ctx, key);
  16065. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16066. ctx->kv[idx].value.float64 = val;
  16067. }
  16068. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16069. const int idx = gguf_get_or_add_key(ctx, key);
  16070. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16071. ctx->kv[idx].value.bool_ = val;
  16072. }
  16073. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16074. const int idx = gguf_get_or_add_key(ctx, key);
  16075. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16076. ctx->kv[idx].value.str.n = strlen(val);
  16077. ctx->kv[idx].value.str.data = strdup(val);
  16078. }
  16079. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16080. const int idx = gguf_get_or_add_key(ctx, key);
  16081. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16082. ctx->kv[idx].value.arr.type = type;
  16083. ctx->kv[idx].value.arr.n = n;
  16084. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16085. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16086. }
  16087. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16088. const int idx = gguf_get_or_add_key(ctx, key);
  16089. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16090. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16091. ctx->kv[idx].value.arr.n = n;
  16092. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16093. for (int i = 0; i < n; i++) {
  16094. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16095. str->n = strlen(data[i]);
  16096. str->data = strdup(data[i]);
  16097. }
  16098. }
  16099. // set or add KV pairs from another context
  16100. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16101. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16102. switch (src->kv[i].type) {
  16103. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16104. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16105. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16106. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16107. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16108. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16109. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16110. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16111. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16112. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16113. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16114. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16115. case GGUF_TYPE_ARRAY:
  16116. {
  16117. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16118. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16119. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16120. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16121. }
  16122. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16123. free(data);
  16124. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16125. GGML_ASSERT(false && "nested arrays not supported");
  16126. } else {
  16127. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16128. }
  16129. } break;
  16130. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16131. }
  16132. }
  16133. }
  16134. void gguf_add_tensor(
  16135. struct gguf_context * ctx,
  16136. const struct ggml_tensor * tensor) {
  16137. const int idx = ctx->header.n_tensors;
  16138. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16139. ctx->infos[idx].name.n = strlen(tensor->name);
  16140. ctx->infos[idx].name.data = strdup(tensor->name);
  16141. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16142. ctx->infos[idx].ne[i] = 1;
  16143. }
  16144. ctx->infos[idx].n_dims = tensor->n_dims;
  16145. for (int i = 0; i < tensor->n_dims; i++) {
  16146. ctx->infos[idx].ne[i] = tensor->ne[i];
  16147. }
  16148. ctx->infos[idx].type = tensor->type;
  16149. ctx->infos[idx].offset = 0;
  16150. ctx->infos[idx].data = tensor->data;
  16151. ctx->infos[idx].size = ggml_nbytes(tensor);
  16152. if (ctx->header.n_tensors > 0) {
  16153. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16154. }
  16155. ctx->header.n_tensors++;
  16156. }
  16157. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16158. const int idx = gguf_find_tensor(ctx, name);
  16159. if (idx < 0) {
  16160. GGML_ASSERT(false && "tensor not found");
  16161. }
  16162. ctx->infos[idx].type = type;
  16163. }
  16164. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16165. const int idx = gguf_find_tensor(ctx, name);
  16166. if (idx < 0) {
  16167. GGML_ASSERT(false && "tensor not found");
  16168. }
  16169. ctx->infos[idx].data = data;
  16170. ctx->infos[idx].size = size;
  16171. // update offsets
  16172. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16173. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16174. }
  16175. }
  16176. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16177. // fwrite(&val->n, sizeof(val->n), 1, file);
  16178. // fwrite(val->data, sizeof(char), val->n, file);
  16179. //}
  16180. //
  16181. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16182. // fwrite(val, sizeof(char), size, file);
  16183. //}
  16184. struct gguf_buf {
  16185. void * data;
  16186. size_t size;
  16187. size_t offset;
  16188. };
  16189. static struct gguf_buf gguf_buf_init(size_t size) {
  16190. struct gguf_buf buf = {
  16191. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16192. /*buf.size =*/ size,
  16193. /*buf.offset =*/ 0,
  16194. };
  16195. return buf;
  16196. }
  16197. static void gguf_buf_free(struct gguf_buf buf) {
  16198. if (buf.data) {
  16199. free(buf.data);
  16200. }
  16201. }
  16202. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16203. if (buf->offset + size > buf->size) {
  16204. buf->size = 1.5*(buf->offset + size);
  16205. if (buf->data) {
  16206. buf->data = realloc(buf->data, buf->size);
  16207. }
  16208. }
  16209. }
  16210. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16211. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16212. if (buf->data) {
  16213. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16214. }
  16215. buf->offset += sizeof(val->n);
  16216. if (buf->data) {
  16217. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16218. }
  16219. buf->offset += val->n;
  16220. }
  16221. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16222. gguf_buf_grow(buf, el_size);
  16223. if (buf->data) {
  16224. memcpy((char *) buf->data + buf->offset, val, el_size);
  16225. }
  16226. buf->offset += el_size;
  16227. }
  16228. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16229. // write header
  16230. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16231. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16232. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16233. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16234. // write key-value pairs
  16235. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16236. struct gguf_kv * kv = &ctx->kv[i];
  16237. gguf_bwrite_str(buf, &kv->key);
  16238. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16239. switch (kv->type) {
  16240. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16241. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16242. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16243. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16244. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16245. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16246. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16247. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16248. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16249. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16250. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16251. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16252. case GGUF_TYPE_ARRAY:
  16253. {
  16254. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16255. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16256. switch (kv->value.arr.type) {
  16257. case GGUF_TYPE_UINT8:
  16258. case GGUF_TYPE_INT8:
  16259. case GGUF_TYPE_UINT16:
  16260. case GGUF_TYPE_INT16:
  16261. case GGUF_TYPE_UINT32:
  16262. case GGUF_TYPE_INT32:
  16263. case GGUF_TYPE_FLOAT32:
  16264. case GGUF_TYPE_UINT64:
  16265. case GGUF_TYPE_INT64:
  16266. case GGUF_TYPE_FLOAT64:
  16267. case GGUF_TYPE_BOOL:
  16268. {
  16269. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16270. } break;
  16271. case GGUF_TYPE_STRING:
  16272. {
  16273. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16274. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16275. }
  16276. } break;
  16277. case GGUF_TYPE_ARRAY:
  16278. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16279. }
  16280. } break;
  16281. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16282. }
  16283. }
  16284. // write tensor infos
  16285. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16286. struct gguf_tensor_info * info = &ctx->infos[i];
  16287. gguf_bwrite_str(buf, &info->name);
  16288. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16289. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16290. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16291. }
  16292. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16293. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16294. }
  16295. // we require the data section to be aligned, so take into account any padding
  16296. {
  16297. const size_t offset = buf->offset;
  16298. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16299. if (offset_pad != offset) {
  16300. uint8_t pad = 0;
  16301. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16302. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16303. }
  16304. }
  16305. }
  16306. if (only_meta) {
  16307. return;
  16308. }
  16309. size_t offset = 0;
  16310. // write tensor data
  16311. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16312. struct gguf_tensor_info * info = &ctx->infos[i];
  16313. const size_t size = info->size;
  16314. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16315. gguf_bwrite_el(buf, info->data, size);
  16316. if (size_pad != size) {
  16317. uint8_t pad = 0;
  16318. for (size_t j = 0; j < size_pad - size; ++j) {
  16319. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16320. }
  16321. }
  16322. GGML_ASSERT(offset == info->offset);
  16323. offset += size_pad;
  16324. }
  16325. }
  16326. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16327. FILE * file = fopen(fname, "wb");
  16328. if (!file) {
  16329. GGML_ASSERT(false && "failed to open file for writing");
  16330. }
  16331. struct gguf_buf buf = gguf_buf_init(16*1024);
  16332. gguf_write_to_buf(ctx, &buf, only_meta);
  16333. fwrite(buf.data, 1, buf.offset, file);
  16334. gguf_buf_free(buf);
  16335. fclose(file);
  16336. }
  16337. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16338. // no allocs - only compute size
  16339. struct gguf_buf buf = gguf_buf_init(0);
  16340. gguf_write_to_buf(ctx, &buf, true);
  16341. return buf.offset;
  16342. }
  16343. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16344. struct gguf_buf buf = gguf_buf_init(16*1024);
  16345. gguf_write_to_buf(ctx, &buf, true);
  16346. memcpy(data, buf.data, buf.offset);
  16347. gguf_buf_free(buf);
  16348. }
  16349. ////////////////////////////////////////////////////////////////////////////////
  16350. int ggml_cpu_has_avx(void) {
  16351. #if defined(__AVX__)
  16352. return 1;
  16353. #else
  16354. return 0;
  16355. #endif
  16356. }
  16357. int ggml_cpu_has_avx2(void) {
  16358. #if defined(__AVX2__)
  16359. return 1;
  16360. #else
  16361. return 0;
  16362. #endif
  16363. }
  16364. int ggml_cpu_has_avx512(void) {
  16365. #if defined(__AVX512F__)
  16366. return 1;
  16367. #else
  16368. return 0;
  16369. #endif
  16370. }
  16371. int ggml_cpu_has_avx512_vbmi(void) {
  16372. #if defined(__AVX512VBMI__)
  16373. return 1;
  16374. #else
  16375. return 0;
  16376. #endif
  16377. }
  16378. int ggml_cpu_has_avx512_vnni(void) {
  16379. #if defined(__AVX512VNNI__)
  16380. return 1;
  16381. #else
  16382. return 0;
  16383. #endif
  16384. }
  16385. int ggml_cpu_has_fma(void) {
  16386. #if defined(__FMA__)
  16387. return 1;
  16388. #else
  16389. return 0;
  16390. #endif
  16391. }
  16392. int ggml_cpu_has_neon(void) {
  16393. #if defined(__ARM_NEON)
  16394. return 1;
  16395. #else
  16396. return 0;
  16397. #endif
  16398. }
  16399. int ggml_cpu_has_arm_fma(void) {
  16400. #if defined(__ARM_FEATURE_FMA)
  16401. return 1;
  16402. #else
  16403. return 0;
  16404. #endif
  16405. }
  16406. int ggml_cpu_has_metal(void) {
  16407. #if defined(GGML_USE_METAL)
  16408. return 1;
  16409. #else
  16410. return 0;
  16411. #endif
  16412. }
  16413. int ggml_cpu_has_f16c(void) {
  16414. #if defined(__F16C__)
  16415. return 1;
  16416. #else
  16417. return 0;
  16418. #endif
  16419. }
  16420. int ggml_cpu_has_fp16_va(void) {
  16421. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16422. return 1;
  16423. #else
  16424. return 0;
  16425. #endif
  16426. }
  16427. int ggml_cpu_has_wasm_simd(void) {
  16428. #if defined(__wasm_simd128__)
  16429. return 1;
  16430. #else
  16431. return 0;
  16432. #endif
  16433. }
  16434. int ggml_cpu_has_blas(void) {
  16435. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16436. return 1;
  16437. #else
  16438. return 0;
  16439. #endif
  16440. }
  16441. int ggml_cpu_has_cublas(void) {
  16442. #if defined(GGML_USE_CUBLAS)
  16443. return 1;
  16444. #else
  16445. return 0;
  16446. #endif
  16447. }
  16448. int ggml_cpu_has_clblast(void) {
  16449. #if defined(GGML_USE_CLBLAST)
  16450. return 1;
  16451. #else
  16452. return 0;
  16453. #endif
  16454. }
  16455. int ggml_cpu_has_gpublas(void) {
  16456. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16457. }
  16458. int ggml_cpu_has_sse3(void) {
  16459. #if defined(__SSE3__)
  16460. return 1;
  16461. #else
  16462. return 0;
  16463. #endif
  16464. }
  16465. int ggml_cpu_has_ssse3(void) {
  16466. #if defined(__SSSE3__)
  16467. return 1;
  16468. #else
  16469. return 0;
  16470. #endif
  16471. }
  16472. int ggml_cpu_has_vsx(void) {
  16473. #if defined(__POWER9_VECTOR__)
  16474. return 1;
  16475. #else
  16476. return 0;
  16477. #endif
  16478. }
  16479. ////////////////////////////////////////////////////////////////////////////////