llama.h 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  34. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  35. #define LLAMA_SESSION_VERSION 6
  36. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  37. #define LLAMA_STATE_SEQ_VERSION 1
  38. #ifdef __cplusplus
  39. extern "C" {
  40. #endif
  41. //
  42. // C interface
  43. //
  44. // TODO: show sample usage
  45. //
  46. struct llama_model;
  47. struct llama_context;
  48. typedef int32_t llama_pos;
  49. typedef int32_t llama_token;
  50. typedef int32_t llama_seq_id;
  51. enum llama_vocab_type {
  52. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  53. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  54. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  55. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  56. };
  57. // pre-tokenization types
  58. enum llama_vocab_pre_type {
  59. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  60. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  61. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  62. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  63. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  64. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  65. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  66. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  67. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  68. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  69. LLAMA_VOCAB_PRE_TYPE_OLMO = 10,
  70. };
  71. // note: these values should be synchronized with ggml_rope
  72. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  73. enum llama_rope_type {
  74. LLAMA_ROPE_TYPE_NONE = -1,
  75. LLAMA_ROPE_TYPE_NORM = 0,
  76. LLAMA_ROPE_TYPE_NEOX = 2,
  77. LLAMA_ROPE_TYPE_GLM = 4,
  78. };
  79. enum llama_token_type {
  80. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  81. LLAMA_TOKEN_TYPE_NORMAL = 1,
  82. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  83. LLAMA_TOKEN_TYPE_CONTROL = 3,
  84. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  85. LLAMA_TOKEN_TYPE_UNUSED = 5,
  86. LLAMA_TOKEN_TYPE_BYTE = 6,
  87. };
  88. // model file types
  89. enum llama_ftype {
  90. LLAMA_FTYPE_ALL_F32 = 0,
  91. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  92. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  93. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  94. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  95. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  96. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  97. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  98. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  99. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  100. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  101. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  102. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  103. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  104. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  105. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  106. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  107. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  108. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  109. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  110. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  111. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  112. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  113. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  114. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  115. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  116. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  117. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  118. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  119. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  120. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  121. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  122. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  123. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  124. };
  125. enum llama_rope_scaling_type {
  126. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  127. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  128. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  129. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  130. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  131. };
  132. enum llama_pooling_type {
  133. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  134. LLAMA_POOLING_TYPE_NONE = 0,
  135. LLAMA_POOLING_TYPE_MEAN = 1,
  136. LLAMA_POOLING_TYPE_CLS = 2,
  137. };
  138. enum llama_split_mode {
  139. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  140. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  141. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  142. };
  143. typedef struct llama_token_data {
  144. llama_token id; // token id
  145. float logit; // log-odds of the token
  146. float p; // probability of the token
  147. } llama_token_data;
  148. typedef struct llama_token_data_array {
  149. llama_token_data * data;
  150. size_t size;
  151. bool sorted;
  152. } llama_token_data_array;
  153. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  154. // Input data for llama_decode
  155. // A llama_batch object can contain input about one or many sequences
  156. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  157. //
  158. // - token : the token ids of the input (used when embd is NULL)
  159. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  160. // - pos : the positions of the respective token in the sequence
  161. // - seq_id : the sequence to which the respective token belongs
  162. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  163. //
  164. typedef struct llama_batch {
  165. int32_t n_tokens;
  166. llama_token * token;
  167. float * embd;
  168. llama_pos * pos;
  169. int32_t * n_seq_id;
  170. llama_seq_id ** seq_id;
  171. int8_t * logits; // TODO: rename this to "output"
  172. // NOTE: helpers for smooth API transition - can be deprecated in the future
  173. // for future-proof code, use the above fields instead and ignore everything below
  174. //
  175. // pos[i] = all_pos_0 + i*all_pos_1
  176. //
  177. llama_pos all_pos_0; // used if pos == NULL
  178. llama_pos all_pos_1; // used if pos == NULL
  179. llama_seq_id all_seq_id; // used if seq_id == NULL
  180. } llama_batch;
  181. enum llama_model_kv_override_type {
  182. LLAMA_KV_OVERRIDE_TYPE_INT,
  183. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  184. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  185. LLAMA_KV_OVERRIDE_TYPE_STR,
  186. };
  187. struct llama_model_kv_override {
  188. enum llama_model_kv_override_type tag;
  189. char key[128];
  190. union {
  191. int64_t val_i64;
  192. double val_f64;
  193. bool val_bool;
  194. char val_str[128];
  195. };
  196. };
  197. struct llama_model_params {
  198. int32_t n_gpu_layers; // number of layers to store in VRAM
  199. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  200. // main_gpu interpretation depends on split_mode:
  201. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  202. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  203. // LLAMA_SPLIT_LAYER: ignored
  204. int32_t main_gpu;
  205. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  206. const float * tensor_split;
  207. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  208. // If the provided progress_callback returns true, model loading continues.
  209. // If it returns false, model loading is immediately aborted.
  210. llama_progress_callback progress_callback;
  211. // context pointer passed to the progress callback
  212. void * progress_callback_user_data;
  213. // override key-value pairs of the model meta data
  214. const struct llama_model_kv_override * kv_overrides;
  215. // Keep the booleans together to avoid misalignment during copy-by-value.
  216. bool vocab_only; // only load the vocabulary, no weights
  217. bool use_mmap; // use mmap if possible
  218. bool use_mlock; // force system to keep model in RAM
  219. bool check_tensors; // validate model tensor data
  220. };
  221. struct llama_context_params {
  222. uint32_t seed; // RNG seed, -1 for random
  223. uint32_t n_ctx; // text context, 0 = from model
  224. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  225. uint32_t n_ubatch; // physical maximum batch size
  226. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  227. uint32_t n_threads; // number of threads to use for generation
  228. uint32_t n_threads_batch; // number of threads to use for batch processing
  229. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  230. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  231. // (ignored if no pooling layer)
  232. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  233. float rope_freq_base; // RoPE base frequency, 0 = from model
  234. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  235. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  236. float yarn_attn_factor; // YaRN magnitude scaling factor
  237. float yarn_beta_fast; // YaRN low correction dim
  238. float yarn_beta_slow; // YaRN high correction dim
  239. uint32_t yarn_orig_ctx; // YaRN original context size
  240. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  241. ggml_backend_sched_eval_callback cb_eval;
  242. void * cb_eval_user_data;
  243. enum ggml_type type_k; // data type for K cache
  244. enum ggml_type type_v; // data type for V cache
  245. // Keep the booleans together to avoid misalignment during copy-by-value.
  246. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  247. bool embeddings; // if true, extract embeddings (together with logits)
  248. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  249. bool flash_attn; // whether to use flash attention
  250. // Abort callback
  251. // if it returns true, execution of llama_decode() will be aborted
  252. // currently works only with CPU execution
  253. ggml_abort_callback abort_callback;
  254. void * abort_callback_data;
  255. };
  256. // model quantization parameters
  257. typedef struct llama_model_quantize_params {
  258. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  259. enum llama_ftype ftype; // quantize to this llama_ftype
  260. enum ggml_type output_tensor_type; // output tensor type
  261. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  262. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  263. bool quantize_output_tensor; // quantize output.weight
  264. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  265. bool pure; // quantize all tensors to the default type
  266. bool keep_split; // quantize to the same number of shards
  267. void * imatrix; // pointer to importance matrix data
  268. void * kv_overrides; // pointer to vector containing overrides
  269. } llama_model_quantize_params;
  270. // grammar types
  271. struct llama_grammar;
  272. // grammar element type
  273. enum llama_gretype {
  274. // end of rule definition
  275. LLAMA_GRETYPE_END = 0,
  276. // start of alternate definition for rule
  277. LLAMA_GRETYPE_ALT = 1,
  278. // non-terminal element: reference to rule
  279. LLAMA_GRETYPE_RULE_REF = 2,
  280. // terminal element: character (code point)
  281. LLAMA_GRETYPE_CHAR = 3,
  282. // inverse char(s) ([^a], [^a-b] [^abc])
  283. LLAMA_GRETYPE_CHAR_NOT = 4,
  284. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  285. // be an inclusive range ([a-z])
  286. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  287. // modifies a preceding LLAMA_GRETYPE_CHAR or
  288. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  289. LLAMA_GRETYPE_CHAR_ALT = 6,
  290. };
  291. typedef struct llama_grammar_element {
  292. enum llama_gretype type;
  293. uint32_t value; // Unicode code point or rule ID
  294. } llama_grammar_element;
  295. // performance timing information
  296. struct llama_timings {
  297. double t_start_ms;
  298. double t_end_ms;
  299. double t_load_ms;
  300. double t_sample_ms;
  301. double t_p_eval_ms;
  302. double t_eval_ms;
  303. int32_t n_sample;
  304. int32_t n_p_eval;
  305. int32_t n_eval;
  306. };
  307. // used in chat template
  308. typedef struct llama_chat_message {
  309. const char * role;
  310. const char * content;
  311. } llama_chat_message;
  312. // Helpers for getting default parameters
  313. LLAMA_API struct llama_model_params llama_model_default_params(void);
  314. LLAMA_API struct llama_context_params llama_context_default_params(void);
  315. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  316. // Initialize the llama + ggml backend
  317. // If numa is true, use NUMA optimizations
  318. // Call once at the start of the program
  319. LLAMA_API void llama_backend_init(void);
  320. //optional:
  321. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  322. // Call once at the end of the program - currently only used for MPI
  323. LLAMA_API void llama_backend_free(void);
  324. LLAMA_API struct llama_model * llama_load_model_from_file(
  325. const char * path_model,
  326. struct llama_model_params params);
  327. LLAMA_API void llama_free_model(struct llama_model * model);
  328. LLAMA_API struct llama_context * llama_new_context_with_model(
  329. struct llama_model * model,
  330. struct llama_context_params params);
  331. // Frees all allocated memory
  332. LLAMA_API void llama_free(struct llama_context * ctx);
  333. LLAMA_API int64_t llama_time_us(void);
  334. LLAMA_API size_t llama_max_devices(void);
  335. LLAMA_API bool llama_supports_mmap (void);
  336. LLAMA_API bool llama_supports_mlock (void);
  337. LLAMA_API bool llama_supports_gpu_offload(void);
  338. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  339. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  340. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  341. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  342. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  343. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  344. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  345. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  346. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  347. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  348. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  349. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  350. // Get the model's RoPE frequency scaling factor
  351. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  352. // Functions to access the model's GGUF metadata scalar values
  353. // - The functions return the length of the string on success, or -1 on failure
  354. // - The output string is always null-terminated and cleared on failure
  355. // - GGUF array values are not supported by these functions
  356. // Get metadata value as a string by key name
  357. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  358. // Get the number of metadata key/value pairs
  359. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  360. // Get metadata key name by index
  361. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  362. // Get metadata value as a string by index
  363. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  364. // Get a string describing the model type
  365. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  366. // Returns the total size of all the tensors in the model in bytes
  367. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  368. // Returns the total number of parameters in the model
  369. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  370. // Get a llama model tensor
  371. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  372. // Returns 0 on success
  373. LLAMA_API uint32_t llama_model_quantize(
  374. const char * fname_inp,
  375. const char * fname_out,
  376. const llama_model_quantize_params * params);
  377. // Apply a LoRA adapter to a loaded model
  378. // path_base_model is the path to a higher quality model to use as a base for
  379. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  380. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  381. // will be applied on top of the previous one
  382. // Returns 0 on success
  383. LLAMA_API int32_t llama_model_apply_lora_from_file(
  384. const struct llama_model * model,
  385. const char * path_lora,
  386. float scale,
  387. const char * path_base_model,
  388. int32_t n_threads);
  389. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  390. // the currently loaded vector.
  391. // n_embd should be the size of a single layer's control, and data should point
  392. // to an n_embd x n_layers buffer starting from layer 1.
  393. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  394. // See llama_control_vector_load in common to load a control vector.
  395. LLAMA_API int32_t llama_control_vector_apply(
  396. struct llama_context * lctx,
  397. const float * data,
  398. size_t len,
  399. int32_t n_embd,
  400. int32_t il_start,
  401. int32_t il_end);
  402. //
  403. // KV cache
  404. //
  405. // Information associated with an individual cell in the KV cache view.
  406. struct llama_kv_cache_view_cell {
  407. // The position for this cell. Takes KV cache shifts into account.
  408. // May be negative if the cell is not populated.
  409. llama_pos pos;
  410. };
  411. // An updateable view of the KV cache.
  412. struct llama_kv_cache_view {
  413. // Number of KV cache cells. This will be the same as the context size.
  414. int32_t n_cells;
  415. // Maximum number of sequences that can exist in a cell. It's not an error
  416. // if there are more sequences in a cell than this value, however they will
  417. // not be visible in the view cells_sequences.
  418. int32_t n_seq_max;
  419. // Number of tokens in the cache. For example, if there are two populated
  420. // cells, the first with 1 sequence id in it and the second with 2 sequence
  421. // ids then you'll have 3 tokens.
  422. int32_t token_count;
  423. // Number of populated cache cells.
  424. int32_t used_cells;
  425. // Maximum contiguous empty slots in the cache.
  426. int32_t max_contiguous;
  427. // Index to the start of the max_contiguous slot range. Can be negative
  428. // when cache is full.
  429. int32_t max_contiguous_idx;
  430. // Information for an individual cell.
  431. struct llama_kv_cache_view_cell * cells;
  432. // The sequences for each cell. There will be n_seq_max items per cell.
  433. llama_seq_id * cells_sequences;
  434. };
  435. // Create an empty KV cache view. (use only for debugging purposes)
  436. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  437. // Free a KV cache view. (use only for debugging purposes)
  438. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  439. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  440. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  441. // Returns the number of tokens in the KV cache (slow, use only for debug)
  442. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  443. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  444. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  445. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  446. // Clear the KV cache - both cell info is erased and KV data is zeroed
  447. LLAMA_API void llama_kv_cache_clear(
  448. struct llama_context * ctx);
  449. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  450. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  451. // seq_id < 0 : match any sequence
  452. // p0 < 0 : [0, p1]
  453. // p1 < 0 : [p0, inf)
  454. LLAMA_API bool llama_kv_cache_seq_rm(
  455. struct llama_context * ctx,
  456. llama_seq_id seq_id,
  457. llama_pos p0,
  458. llama_pos p1);
  459. // Copy all tokens that belong to the specified sequence to another sequence
  460. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  461. // p0 < 0 : [0, p1]
  462. // p1 < 0 : [p0, inf)
  463. LLAMA_API void llama_kv_cache_seq_cp(
  464. struct llama_context * ctx,
  465. llama_seq_id seq_id_src,
  466. llama_seq_id seq_id_dst,
  467. llama_pos p0,
  468. llama_pos p1);
  469. // Removes all tokens that do not belong to the specified sequence
  470. LLAMA_API void llama_kv_cache_seq_keep(
  471. struct llama_context * ctx,
  472. llama_seq_id seq_id);
  473. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  474. // If the KV cache is RoPEd, the KV data is updated accordingly:
  475. // - lazily on next llama_decode()
  476. // - explicitly with llama_kv_cache_update()
  477. // p0 < 0 : [0, p1]
  478. // p1 < 0 : [p0, inf)
  479. LLAMA_API void llama_kv_cache_seq_add(
  480. struct llama_context * ctx,
  481. llama_seq_id seq_id,
  482. llama_pos p0,
  483. llama_pos p1,
  484. llama_pos delta);
  485. // Integer division of the positions by factor of `d > 1`
  486. // If the KV cache is RoPEd, the KV data is updated accordingly:
  487. // - lazily on next llama_decode()
  488. // - explicitly with llama_kv_cache_update()
  489. // p0 < 0 : [0, p1]
  490. // p1 < 0 : [p0, inf)
  491. LLAMA_API void llama_kv_cache_seq_div(
  492. struct llama_context * ctx,
  493. llama_seq_id seq_id,
  494. llama_pos p0,
  495. llama_pos p1,
  496. int d);
  497. // Returns the largest position present in the KV cache for the specified sequence
  498. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  499. struct llama_context * ctx,
  500. llama_seq_id seq_id);
  501. // Defragment the KV cache
  502. // This will be applied:
  503. // - lazily on next llama_decode()
  504. // - explicitly with llama_kv_cache_update()
  505. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  506. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  507. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  508. //
  509. // State / sessions
  510. //
  511. // Returns the maximum size in bytes of the state (rng, logits, embedding
  512. // and kv_cache) - will often be smaller after compacting tokens
  513. LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
  514. LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
  515. "use llama_state_get_size instead");
  516. // Copies the state to the specified destination address.
  517. // Destination needs to have allocated enough memory.
  518. // Returns the number of bytes copied
  519. LLAMA_API size_t llama_state_get_data(
  520. struct llama_context * ctx,
  521. uint8_t * dst);
  522. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  523. struct llama_context * ctx,
  524. uint8_t * dst),
  525. "use llama_state_get_data instead");
  526. // Set the state reading from the specified address
  527. // Returns the number of bytes read
  528. LLAMA_API size_t llama_state_set_data(
  529. struct llama_context * ctx,
  530. const uint8_t * src);
  531. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  532. struct llama_context * ctx,
  533. const uint8_t * src),
  534. "use llama_state_set_data instead");
  535. // Save/load session file
  536. LLAMA_API bool llama_state_load_file(
  537. struct llama_context * ctx,
  538. const char * path_session,
  539. llama_token * tokens_out,
  540. size_t n_token_capacity,
  541. size_t * n_token_count_out);
  542. LLAMA_API DEPRECATED(bool llama_load_session_file(
  543. struct llama_context * ctx,
  544. const char * path_session,
  545. llama_token * tokens_out,
  546. size_t n_token_capacity,
  547. size_t * n_token_count_out),
  548. "use llama_state_load_file instead");
  549. LLAMA_API bool llama_state_save_file(
  550. struct llama_context * ctx,
  551. const char * path_session,
  552. const llama_token * tokens,
  553. size_t n_token_count);
  554. LLAMA_API DEPRECATED(bool llama_save_session_file(
  555. struct llama_context * ctx,
  556. const char * path_session,
  557. const llama_token * tokens,
  558. size_t n_token_count),
  559. "use llama_state_save_file instead");
  560. // Get the exact size needed to copy the KV cache of a single sequence
  561. LLAMA_API size_t llama_state_seq_get_size(
  562. struct llama_context * ctx,
  563. llama_seq_id seq_id);
  564. // Copy the KV cache of a single sequence into the specified buffer
  565. LLAMA_API size_t llama_state_seq_get_data(
  566. struct llama_context * ctx,
  567. uint8_t * dst,
  568. llama_seq_id seq_id);
  569. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  570. // Returns:
  571. // - Positive: Ok
  572. // - Zero: Failed to load
  573. LLAMA_API size_t llama_state_seq_set_data(
  574. struct llama_context * ctx,
  575. const uint8_t * src,
  576. llama_seq_id dest_seq_id);
  577. LLAMA_API size_t llama_state_seq_save_file(
  578. struct llama_context * ctx,
  579. const char * filepath,
  580. llama_seq_id seq_id,
  581. const llama_token * tokens,
  582. size_t n_token_count);
  583. LLAMA_API size_t llama_state_seq_load_file(
  584. struct llama_context * ctx,
  585. const char * filepath,
  586. llama_seq_id dest_seq_id,
  587. llama_token * tokens_out,
  588. size_t n_token_capacity,
  589. size_t * n_token_count_out);
  590. //
  591. // Decoding
  592. //
  593. // Return batch for single sequence of tokens starting at pos_0
  594. //
  595. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  596. //
  597. LLAMA_API struct llama_batch llama_batch_get_one(
  598. llama_token * tokens,
  599. int32_t n_tokens,
  600. llama_pos pos_0,
  601. llama_seq_id seq_id);
  602. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  603. // Each token can be assigned up to n_seq_max sequence ids
  604. // The batch has to be freed with llama_batch_free()
  605. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  606. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  607. // The rest of the llama_batch members are allocated with size n_tokens
  608. // All members are left uninitialized
  609. LLAMA_API struct llama_batch llama_batch_init(
  610. int32_t n_tokens,
  611. int32_t embd,
  612. int32_t n_seq_max);
  613. // Frees a batch of tokens allocated with llama_batch_init()
  614. LLAMA_API void llama_batch_free(struct llama_batch batch);
  615. // Positive return values does not mean a fatal error, but rather a warning.
  616. // 0 - success
  617. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  618. // < 0 - error
  619. LLAMA_API int32_t llama_decode(
  620. struct llama_context * ctx,
  621. struct llama_batch batch);
  622. // Set the number of threads used for decoding
  623. // n_threads is the number of threads used for generation (single token)
  624. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  625. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  626. // Set whether to use causal attention or not
  627. // If set to true, the model will only attend to the past tokens
  628. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  629. // Set abort callback
  630. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  631. // Wait until all computations are finished
  632. // This is automatically done when using one of the functions below to obtain the computation results
  633. // and is not necessary to call it explicitly in most cases
  634. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  635. // Token logits obtained from the last call to llama_decode()
  636. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  637. // in the order they have appeared in the batch.
  638. // Rows: number of tokens for which llama_batch.logits[i] != 0
  639. // Cols: n_vocab
  640. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  641. // Logits for the ith token. For positive indices, Equivalent to:
  642. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  643. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  644. // returns NULL for invalid ids.
  645. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  646. // Get all output token embeddings.
  647. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  648. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  649. // in the order they have appeared in the batch.
  650. // shape: [n_outputs*n_embd]
  651. // Otherwise, returns NULL.
  652. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  653. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  654. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  655. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  656. // shape: [n_embd] (1-dimensional)
  657. // returns NULL for invalid ids.
  658. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  659. // Get the embeddings for a sequence id
  660. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  661. // shape: [n_embd] (1-dimensional)
  662. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  663. //
  664. // Vocab
  665. //
  666. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  667. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  668. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  669. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  670. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  671. // Special tokens
  672. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  673. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  674. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  675. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  676. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  677. // Returns -1 if unknown, 1 for true or 0 for false.
  678. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  679. // Returns -1 if unknown, 1 for true or 0 for false.
  680. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  681. // Codellama infill tokens
  682. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  683. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  684. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  685. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  686. //
  687. // Tokenization
  688. //
  689. /// @details Convert the provided text into tokens.
  690. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  691. /// @return Returns the number of tokens on success, no more than n_tokens_max
  692. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  693. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  694. /// as plaintext. Does not insert a leading space.
  695. LLAMA_API int32_t llama_tokenize(
  696. const struct llama_model * model,
  697. const char * text,
  698. int32_t text_len,
  699. llama_token * tokens,
  700. int32_t n_tokens_max,
  701. bool add_special,
  702. bool parse_special);
  703. // Token Id -> Piece.
  704. // Uses the vocabulary in the provided context.
  705. // Does not write null terminator to the buffer.
  706. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  707. // @param special If true, special tokens are rendered in the output.
  708. LLAMA_API int32_t llama_token_to_piece(
  709. const struct llama_model * model,
  710. llama_token token,
  711. char * buf,
  712. int32_t length,
  713. bool special);
  714. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  715. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  716. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  717. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  718. /// @param chat Pointer to a list of multiple llama_chat_message
  719. /// @param n_msg Number of llama_chat_message in this chat
  720. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  721. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  722. /// @param length The size of the allocated buffer
  723. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  724. LLAMA_API int32_t llama_chat_apply_template(
  725. const struct llama_model * model,
  726. const char * tmpl,
  727. const struct llama_chat_message * chat,
  728. size_t n_msg,
  729. bool add_ass,
  730. char * buf,
  731. int32_t length);
  732. //
  733. // Grammar
  734. //
  735. LLAMA_API struct llama_grammar * llama_grammar_init(
  736. const llama_grammar_element ** rules,
  737. size_t n_rules,
  738. size_t start_rule_index);
  739. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  740. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  741. //
  742. // Sampling functions
  743. //
  744. // Sets the current rng seed.
  745. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  746. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  747. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  748. LLAMA_API void llama_sample_repetition_penalties(
  749. struct llama_context * ctx,
  750. llama_token_data_array * candidates,
  751. const llama_token * last_tokens,
  752. size_t penalty_last_n,
  753. float penalty_repeat,
  754. float penalty_freq,
  755. float penalty_present);
  756. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  757. /// @param logits Logits extracted from the original generation context.
  758. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  759. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  760. LLAMA_API void llama_sample_apply_guidance(
  761. struct llama_context * ctx,
  762. float * logits,
  763. float * logits_guidance,
  764. float scale);
  765. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  766. LLAMA_API void llama_sample_softmax(
  767. struct llama_context * ctx,
  768. llama_token_data_array * candidates);
  769. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  770. LLAMA_API void llama_sample_top_k(
  771. struct llama_context * ctx,
  772. llama_token_data_array * candidates,
  773. int32_t k,
  774. size_t min_keep);
  775. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  776. LLAMA_API void llama_sample_top_p(
  777. struct llama_context * ctx,
  778. llama_token_data_array * candidates,
  779. float p,
  780. size_t min_keep);
  781. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  782. LLAMA_API void llama_sample_min_p(
  783. struct llama_context * ctx,
  784. llama_token_data_array * candidates,
  785. float p,
  786. size_t min_keep);
  787. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  788. LLAMA_API void llama_sample_tail_free(
  789. struct llama_context * ctx,
  790. llama_token_data_array * candidates,
  791. float z,
  792. size_t min_keep);
  793. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  794. LLAMA_API void llama_sample_typical(
  795. struct llama_context * ctx,
  796. llama_token_data_array * candidates,
  797. float p,
  798. size_t min_keep);
  799. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  800. LLAMA_API void llama_sample_entropy(
  801. struct llama_context * ctx,
  802. llama_token_data_array * candidates_p,
  803. float min_temp,
  804. float max_temp,
  805. float exponent_val);
  806. LLAMA_API void llama_sample_temp(
  807. struct llama_context * ctx,
  808. llama_token_data_array * candidates,
  809. float temp);
  810. /// @details Apply constraints from grammar
  811. LLAMA_API void llama_sample_grammar(
  812. struct llama_context * ctx,
  813. llama_token_data_array * candidates,
  814. const struct llama_grammar * grammar);
  815. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  816. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  817. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  818. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  819. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  820. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  821. LLAMA_API llama_token llama_sample_token_mirostat(
  822. struct llama_context * ctx,
  823. llama_token_data_array * candidates,
  824. float tau,
  825. float eta,
  826. int32_t m,
  827. float * mu);
  828. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  829. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  830. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  831. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  832. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  833. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  834. struct llama_context * ctx,
  835. llama_token_data_array * candidates,
  836. float tau,
  837. float eta,
  838. float * mu);
  839. /// @details Selects the token with the highest probability.
  840. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  841. LLAMA_API llama_token llama_sample_token_greedy(
  842. struct llama_context * ctx,
  843. llama_token_data_array * candidates);
  844. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  845. LLAMA_API llama_token llama_sample_token(
  846. struct llama_context * ctx,
  847. llama_token_data_array * candidates);
  848. /// @details Accepts the sampled token into the grammar
  849. LLAMA_API void llama_grammar_accept_token(
  850. struct llama_context * ctx,
  851. struct llama_grammar * grammar,
  852. llama_token token);
  853. //
  854. // Beam search
  855. //
  856. struct llama_beam_view {
  857. const llama_token * tokens;
  858. size_t n_tokens;
  859. float p; // Cumulative beam probability (renormalized relative to all beams)
  860. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  861. };
  862. // Passed to beam_search_callback function.
  863. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  864. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  865. // These pointers are valid only during the synchronous callback, so should not be saved.
  866. struct llama_beams_state {
  867. struct llama_beam_view * beam_views;
  868. size_t n_beams; // Number of elements in beam_views[].
  869. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  870. bool last_call; // True iff this is the last callback invocation.
  871. };
  872. // Type of pointer to the beam_search_callback function.
  873. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  874. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  875. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  876. /// @details Deterministically returns entire sentence constructed by a beam search.
  877. /// @param ctx Pointer to the llama_context.
  878. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  879. /// @param callback_data A pointer that is simply passed back to callback.
  880. /// @param n_beams Number of beams to use.
  881. /// @param n_past Number of tokens already evaluated.
  882. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  883. LLAMA_API void llama_beam_search(
  884. struct llama_context * ctx,
  885. llama_beam_search_callback_fn_t callback,
  886. void * callback_data,
  887. size_t n_beams,
  888. int32_t n_past,
  889. int32_t n_predict);
  890. /// @details Build a split GGUF final path for this chunk.
  891. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  892. // Returns the split_path length.
  893. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  894. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  895. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  896. // Returns the split_prefix length.
  897. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  898. // Performance information
  899. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  900. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  901. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  902. // Print system information
  903. LLAMA_API const char * llama_print_system_info(void);
  904. // Set callback for all future logging events.
  905. // If this is not called, or NULL is supplied, everything is output on stderr.
  906. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  907. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  908. #ifdef __cplusplus
  909. }
  910. #endif
  911. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  912. #ifdef LLAMA_API_INTERNAL
  913. #include <random>
  914. #include <string>
  915. #include <vector>
  916. struct ggml_tensor;
  917. struct llama_partial_utf8 {
  918. uint32_t value; // bit value so far (unshifted)
  919. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  920. };
  921. struct llama_grammar {
  922. const std::vector<std::vector<llama_grammar_element>> rules;
  923. std::vector<std::vector<const llama_grammar_element *>> stacks;
  924. // buffer for partially generated UTF-8 sequence from accepted tokens
  925. llama_partial_utf8 partial_utf8;
  926. };
  927. struct llama_grammar_candidate {
  928. size_t index;
  929. const uint32_t * code_points;
  930. llama_partial_utf8 partial_utf8;
  931. };
  932. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  933. struct llama_context * ctx
  934. );
  935. void llama_grammar_accept(
  936. const std::vector<std::vector<llama_grammar_element>> & rules,
  937. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  938. const uint32_t chr,
  939. std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
  940. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  941. const std::string & src,
  942. llama_partial_utf8 partial_start);
  943. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  944. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  945. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  946. #endif // LLAMA_API_INTERNAL
  947. #endif // LLAMA_H