test-backend-ops.cpp 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312
  1. #include <ggml.h>
  2. #include <ggml-alloc.h>
  3. #include <ggml-backend.h>
  4. #include <ggml-backend-impl.h>
  5. #include <algorithm>
  6. #include <array>
  7. #include <cfloat>
  8. #include <cstring>
  9. #include <functional>
  10. #include <memory>
  11. #include <random>
  12. #include <stdio.h>
  13. #include <stdlib.h>
  14. #include <string>
  15. #include <thread>
  16. #include <vector>
  17. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  18. // static RNG initialization (revisit if n_threads stops being constant)
  19. static const size_t n_threads = std::thread::hardware_concurrency();
  20. static std::vector<std::default_random_engine> generators = []() {
  21. std::random_device rd;
  22. std::vector<std::default_random_engine> vec;
  23. vec.reserve(n_threads);
  24. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  25. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  26. return vec;
  27. }();
  28. size_t size = ggml_nelements(tensor);
  29. std::vector<float> data(size);
  30. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  31. std::uniform_real_distribution<float> distribution(min, max);
  32. for (size_t i = start; i < end; i++) {
  33. data[i] = distribution(generators[ith]);
  34. }
  35. };
  36. std::vector<std::thread> threads;
  37. threads.reserve(n_threads);
  38. for (size_t i = 0; i < n_threads; i++) {
  39. size_t start = i*size/n_threads;
  40. size_t end = (i+1)*size/n_threads;
  41. threads.emplace_back(init_thread, i, start, end);
  42. }
  43. for (auto & t : threads) {
  44. t.join();
  45. }
  46. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  47. ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
  48. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  49. GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
  50. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
  51. std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
  52. const float * im = imatrix.data();
  53. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  54. // when the imatrix is optional, we want to test both quantization with and without imatrix
  55. // use one of the random numbers to decide
  56. if (data[0] > 0.5f*(min + max)) {
  57. im = nullptr;
  58. }
  59. }
  60. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im);
  61. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  62. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  63. // This is going to create some weird integers though.
  64. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  65. } else {
  66. GGML_ASSERT(false);
  67. }
  68. }
  69. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  70. std::vector<float> tv;
  71. tv.reserve(ggml_nelements(t));
  72. std::vector<uint8_t> buf(ggml_nbytes(t));
  73. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  74. ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
  75. size_t bs = ggml_blck_size(t->type);
  76. std::vector<float> vq(ggml_blck_size(t->type));
  77. bool quantized = ggml_is_quantized(t->type);
  78. // access elements by index to avoid gaps in views
  79. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  80. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  81. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  82. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  83. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  84. if (t->type == GGML_TYPE_F16) {
  85. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  86. } else if (t->type == GGML_TYPE_BF16) {
  87. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  88. } else if (t->type == GGML_TYPE_F32) {
  89. tv.push_back(*(float *) &buf[i]);
  90. } else if (t->type == GGML_TYPE_I32) {
  91. tv.push_back((float)*(int32_t *) &buf[i]);
  92. } else if (t->type == GGML_TYPE_I16) {
  93. tv.push_back((float)*(int16_t *) &buf[i]);
  94. } else if (t->type == GGML_TYPE_I8) {
  95. tv.push_back((float)*(int8_t *) &buf[i]);
  96. } else if (quantized) {
  97. tt.to_float(&buf[i], vq.data(), bs);
  98. tv.insert(tv.end(), vq.begin(), vq.end());
  99. } else {
  100. GGML_ASSERT(false);
  101. }
  102. }
  103. }
  104. }
  105. }
  106. return tv;
  107. }
  108. /*
  109. static double cosine_similarity(const float * v1, const float * v2, size_t n) {
  110. double dot = 0.0;
  111. double mag1 = 0.0;
  112. double mag2 = 0.0;
  113. for (size_t i = 0; i < n; i++) {
  114. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  115. return -1.0f;
  116. }
  117. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  118. continue;
  119. }
  120. dot += v1[i]*v2[i];
  121. mag1 += v1[i]*v1[i];
  122. mag2 += v2[i]*v2[i];
  123. }
  124. return dot/sqrt(mag1*mag2);
  125. }
  126. static float distance(const float * v1, const float * v2, size_t n) {
  127. double d = 0.0;
  128. for (size_t i = 0; i < n; i++) {
  129. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  130. return INFINITY;
  131. }
  132. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  133. continue;
  134. }
  135. d += (v1[i] - v2[i])*(v1[i] - v2[i]);
  136. }
  137. return sqrt(d);
  138. }
  139. static float vec_len(const float * v, size_t n) {
  140. double d = 0.0;
  141. for (size_t i = 0; i < n; i++) {
  142. if (std::isnan(v[i])) {
  143. return INFINITY;
  144. }
  145. if (std::isinf(v[i])) {
  146. continue;
  147. }
  148. d += v[i]*v[i];
  149. }
  150. return sqrt(d);
  151. }
  152. */
  153. // normalized mean squared error = mse(a, b) / mse(a, 0)
  154. static double nmse(const float * a, const float * b, size_t n) {
  155. double mse_a_b = 0.0;
  156. double mse_a_0 = 0.0;
  157. for (size_t i = 0; i < n; i++) {
  158. float a_i = a[i];
  159. float b_i = b[i];
  160. mse_a_b += (a_i - b_i) * (a_i - b_i);
  161. mse_a_0 += a_i * a_i;
  162. }
  163. return mse_a_b / mse_a_0;
  164. }
  165. // utils for printing the variables of the test cases
  166. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  167. template<typename T>
  168. static std::string var_to_str(const T & x) {
  169. return std::to_string(x);
  170. }
  171. template<typename T, size_t N>
  172. static std::string var_to_str(const T (&x)[N]) {
  173. std::string s = "[";
  174. for (size_t i = 0; i < N; i++) {
  175. if (i > 0) {
  176. s += ",";
  177. }
  178. s += var_to_str(x[i]);
  179. }
  180. s += "]";
  181. return s;
  182. }
  183. template<typename T, size_t N>
  184. static std::string var_to_str(const std::array<T, N> & x) {
  185. std::string s = "[";
  186. for (size_t i = 0; i < N; i++) {
  187. if (i > 0) {
  188. s += ",";
  189. }
  190. s += var_to_str(x[i]);
  191. }
  192. s += "]";
  193. return s;
  194. }
  195. //static std::string var_to_str(ggml_unary_op unary_op) {
  196. // return ggml_unary_op_name(unary_op);
  197. //}
  198. static std::string var_to_str(ggml_type type) {
  199. return ggml_type_name(type);
  200. }
  201. static std::string var_to_str(ggml_op_pool pool) {
  202. switch (pool) {
  203. case GGML_OP_POOL_AVG: return "avg";
  204. case GGML_OP_POOL_MAX: return "max";
  205. default: return std::to_string(pool);
  206. }
  207. }
  208. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  209. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  210. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  211. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  212. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  213. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  214. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  215. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  216. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  217. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  218. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  219. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  220. #ifdef GGML_USE_SYCL
  221. static bool inline _isinf(float f) {
  222. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  223. }
  224. #else
  225. static bool inline _isinf(float f) { return std::isinf(f); }
  226. #endif
  227. // accept FLT_MAX as infinity
  228. static bool isinf_or_max(float f) {
  229. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  230. }
  231. static bool ggml_is_view_op(enum ggml_op op) {
  232. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  233. }
  234. enum test_mode {
  235. MODE_TEST,
  236. MODE_PERF,
  237. };
  238. struct test_case {
  239. virtual ~test_case() {}
  240. virtual std::string op_desc(ggml_tensor * t) {
  241. return ggml_op_desc(t);
  242. }
  243. virtual std::string vars() {
  244. return "";
  245. }
  246. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  247. virtual double max_nmse_err() {
  248. return 1e-7;
  249. }
  250. virtual void initialize_tensors(ggml_context * ctx) {
  251. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  252. init_tensor_uniform(t);
  253. }
  254. }
  255. virtual size_t op_size(ggml_tensor * t) {
  256. size_t size = ggml_nbytes(t);
  257. // add source tensors
  258. for (int i = 0; i < GGML_MAX_SRC; i++) {
  259. if (t->src[i] != NULL) {
  260. size += ggml_nbytes(t->src[i]);
  261. }
  262. }
  263. return size;
  264. }
  265. ggml_cgraph * gf = nullptr;
  266. static const int sentinel_size = 1024;
  267. test_mode mode;
  268. std::vector<ggml_tensor *> sentinels;
  269. void add_sentinel(ggml_context * ctx) {
  270. if (mode == MODE_PERF) {
  271. return;
  272. }
  273. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  274. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  275. sentinels.push_back(sentinel);
  276. }
  277. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  278. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  279. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  280. add_sentinel(ctx);
  281. return t;
  282. }
  283. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  284. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  285. add_sentinel(ctx);
  286. return t;
  287. }
  288. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  289. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  290. add_sentinel(ctx);
  291. return t;
  292. }
  293. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  294. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  295. add_sentinel(ctx);
  296. return t;
  297. }
  298. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  299. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  300. add_sentinel(ctx);
  301. return t;
  302. }
  303. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  304. mode = MODE_TEST;
  305. ggml_init_params params = {
  306. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  307. /* .mem_base = */ NULL,
  308. /* .no_alloc = */ true,
  309. };
  310. ggml_context * ctx = ggml_init(params);
  311. gf = ggml_new_graph(ctx);
  312. // pre-graph sentinel
  313. add_sentinel(ctx);
  314. ggml_tensor * out = build_graph(ctx);
  315. if (op_name != nullptr && op_desc(out) != op_name) {
  316. //printf(" %s: skipping\n", op_desc(out).c_str());
  317. ggml_free(ctx);
  318. return true;
  319. }
  320. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  321. fflush(stdout);
  322. // check if the backends support the ops
  323. bool supported = true;
  324. for (ggml_backend_t backend : {backend1, backend2}) {
  325. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  326. if (!ggml_backend_supports_op(backend, t)) {
  327. printf("not supported [%s] ", ggml_backend_name(backend));
  328. supported = false;
  329. break;
  330. }
  331. }
  332. }
  333. if (!supported) {
  334. printf("\n");
  335. ggml_free(ctx);
  336. return true;
  337. }
  338. // post-graph sentinel
  339. add_sentinel(ctx);
  340. // allocate
  341. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  342. if (buf == NULL) {
  343. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  344. ggml_free(ctx);
  345. return false;
  346. }
  347. // build graph
  348. ggml_build_forward_expand(gf, out);
  349. // add sentinels as graph nodes so that they are checked in the callback
  350. for (ggml_tensor * sentinel : sentinels) {
  351. gf->nodes[gf->n_nodes++] = sentinel;
  352. }
  353. // randomize tensors
  354. initialize_tensors(ctx);
  355. // compare
  356. struct callback_userdata {
  357. bool ok;
  358. double max_err;
  359. ggml_backend_t backend1;
  360. ggml_backend_t backend2;
  361. };
  362. callback_userdata ud {
  363. true,
  364. max_nmse_err(),
  365. backend1,
  366. backend2
  367. };
  368. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  369. callback_userdata * ud = (callback_userdata *) user_data;
  370. const char * bn1 = ggml_backend_name(ud->backend1);
  371. const char * bn2 = ggml_backend_name(ud->backend2);
  372. if (t1->op == GGML_OP_NONE) {
  373. // sentinels must be unchanged
  374. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  375. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  376. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  377. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  378. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  379. printf("sentinel mismatch: %s ", t1->name);
  380. ud->ok = false;
  381. return true;
  382. }
  383. }
  384. std::vector<float> f1 = tensor_to_float(t1);
  385. std::vector<float> f2 = tensor_to_float(t2);
  386. for (size_t i = 0; i < f1.size(); i++) {
  387. // check for nans
  388. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  389. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  390. ud->ok = false;
  391. return true;
  392. }
  393. // check for infs: both must be inf of the same sign, or both must be finite
  394. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  395. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  396. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  397. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  398. ud->ok = false;
  399. return true;
  400. }
  401. } else {
  402. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  403. ud->ok = false;
  404. return true;
  405. }
  406. }
  407. }
  408. double err = nmse(f1.data(), f2.data(), f1.size());
  409. if (err > ud->max_err) {
  410. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  411. //for (int i = 0; i < (int) f1.size(); i++) {
  412. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  413. //}
  414. //printf("\n");
  415. //exit(1);
  416. ud->ok = false;
  417. }
  418. return true;
  419. GGML_UNUSED(index);
  420. };
  421. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  422. if (!cmp_ok) {
  423. printf("compare failed ");
  424. }
  425. ggml_backend_buffer_free(buf);
  426. ggml_free(ctx);
  427. if (ud.ok && cmp_ok) {
  428. printf("\033[1;32mOK\033[0m\n");
  429. return true;
  430. }
  431. printf("\033[1;31mFAIL\033[0m\n");
  432. return false;
  433. }
  434. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  435. mode = MODE_PERF;
  436. static const size_t graph_nodes = 8192;
  437. ggml_init_params params = {
  438. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  439. /* .mem_base = */ NULL,
  440. /* .no_alloc = */ true,
  441. };
  442. ggml_context * ctx = ggml_init(params);
  443. ggml_tensor * out = build_graph(ctx);
  444. if (op_name != nullptr && op_desc(out) != op_name) {
  445. //printf(" %s: skipping\n", op_desc(out).c_str());
  446. ggml_free(ctx);
  447. return true;
  448. }
  449. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  450. fflush(stdout);
  451. // check if backends support op
  452. if (!ggml_backend_supports_op(backend, out)) {
  453. printf("not supported\n");
  454. ggml_free(ctx);
  455. return true;
  456. }
  457. // align while also leaving some margin for variations in parameters
  458. int align = 20;
  459. int last = (len + align - 1) / align * align;
  460. if (last - len < 5) {
  461. last += align;
  462. }
  463. last = std::max(last, 60);
  464. printf("%*s", last - len, "");
  465. // allocate
  466. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
  467. if (buf == NULL) {
  468. printf("failed to allocate tensors\n");
  469. ggml_free(ctx);
  470. return false;
  471. }
  472. // randomize tensors
  473. initialize_tensors(ctx);
  474. // build graph
  475. ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
  476. ggml_build_forward_expand(gf, out);
  477. // warmup run
  478. ggml_backend_graph_compute(backend, gf);
  479. // duplicate the op
  480. size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
  481. int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
  482. for (int i = 1; i < n_runs; i++) {
  483. gf->nodes[gf->n_nodes++] = out;
  484. }
  485. // calculate memory
  486. size_t mem = n_runs * op_size(out);
  487. auto tensor_op_size = [](ggml_tensor * t) {
  488. size_t size = ggml_nbytes(t);
  489. // add source tensors
  490. for (int i = 0; i < GGML_MAX_SRC; i++) {
  491. if (t->src[i] != NULL) {
  492. size += ggml_nbytes(t->src[i]);
  493. }
  494. }
  495. return size;
  496. };
  497. for (int i = 0; i < gf->n_nodes; i++) {
  498. if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
  499. continue;
  500. }
  501. mem += tensor_op_size(gf->nodes[i]);
  502. }
  503. // run
  504. ggml_backend_synchronize(backend);
  505. int64_t start_time = ggml_time_us();
  506. ggml_backend_graph_compute(backend, gf);
  507. ggml_backend_synchronize(backend);
  508. int64_t end_time = ggml_time_us();
  509. double time_us = end_time - start_time;
  510. printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
  511. n_runs,
  512. time_us / n_runs,
  513. op_size(out) / 1024,
  514. mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
  515. ggml_backend_buffer_free(buf);
  516. ggml_free(ctx);
  517. return true;
  518. }
  519. };
  520. // GGML_OP_UNARY
  521. struct test_unary : public test_case {
  522. const ggml_unary_op op;
  523. const ggml_type type;
  524. const std::array<int64_t, 4> ne;
  525. std::string vars() override {
  526. return VARS_TO_STR2(type, ne);
  527. }
  528. test_unary(ggml_unary_op op,
  529. ggml_type type = GGML_TYPE_F32,
  530. std::array<int64_t, 4> ne = {128, 10, 10, 10})
  531. : op(op), type(type), ne(ne) {}
  532. ggml_tensor * build_graph(ggml_context * ctx) override {
  533. ggml_tensor * in = ggml_new_tensor(ctx, type, 4, ne.data());
  534. ggml_tensor * out = ggml_unary(ctx, in, op);
  535. return out;
  536. }
  537. void initialize_tensors(ggml_context * ctx) override {
  538. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  539. // test extended range of values to check for NaNs in GELU
  540. init_tensor_uniform(t, -150.f, 150.f);
  541. }
  542. }
  543. };
  544. // GGML_OP_GET_ROWS
  545. struct test_get_rows : public test_case {
  546. const ggml_type type;
  547. const int n; // cols
  548. const int m; // rows
  549. const int r; // rows to get
  550. const int b; // batch size
  551. const bool v; // view (non-contiguous src1)
  552. std::string vars() override {
  553. return VARS_TO_STR6(type, n, m, r, b, v);
  554. }
  555. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  556. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  557. ggml_tensor * build_graph(ggml_context * ctx) override {
  558. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  559. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  560. if (v) {
  561. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  562. }
  563. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  564. return out;
  565. }
  566. void initialize_tensors(ggml_context * ctx) override {
  567. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  568. if (t->type == GGML_TYPE_I32) {
  569. if (ggml_is_view_op(t->op)) { continue; }
  570. // rows
  571. std::vector<int> data(r*b);
  572. for (int i = 0; i < r*b; i++) {
  573. data[i] = rand() % m;
  574. }
  575. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  576. } else {
  577. init_tensor_uniform(t);
  578. }
  579. }
  580. }
  581. };
  582. // GGML_OP_REPEAT
  583. struct test_repeat : public test_case {
  584. const ggml_type type;
  585. const std::array<int64_t, 4> ne;
  586. const std::array<int, 4> nr;
  587. std::string vars() override {
  588. return VARS_TO_STR3(type, ne, nr);
  589. }
  590. size_t op_size(ggml_tensor * t) override {
  591. return ggml_nbytes(t) * 2;
  592. }
  593. test_repeat(ggml_type type = GGML_TYPE_F32,
  594. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  595. std::array<int, 4> nr = {2, 2, 2, 2})
  596. : type(type), ne(ne), nr(nr) {}
  597. ggml_tensor * build_graph(ggml_context * ctx) override {
  598. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  599. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  600. ggml_tensor * out = ggml_repeat(ctx, src, target);
  601. return out;
  602. }
  603. };
  604. // GGML_OP_DUP
  605. struct test_dup : public test_case {
  606. const ggml_type type;
  607. const std::array<int64_t, 4> ne;
  608. const std::array<int64_t, 4> permute;
  609. bool _use_permute;
  610. std::string vars() override {
  611. std::string v = VARS_TO_STR2(type, ne);
  612. if (_use_permute) v += "," + VAR_TO_STR(permute);
  613. return v;
  614. }
  615. test_dup(ggml_type type = GGML_TYPE_F32,
  616. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  617. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  618. : type(type), ne(ne), permute(permute),
  619. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  620. ggml_tensor * build_graph(ggml_context * ctx) override {
  621. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  622. if (_use_permute) {
  623. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  624. }
  625. ggml_tensor * out = ggml_dup(ctx, src);
  626. return out;
  627. }
  628. };
  629. // GGML_OP_CPY
  630. struct test_cpy : public test_case {
  631. const ggml_type type_src;
  632. const ggml_type type_dst;
  633. const std::array<int64_t, 4> ne;
  634. std::string vars() override {
  635. return VARS_TO_STR3(type_src, type_dst, ne);
  636. }
  637. size_t op_size(ggml_tensor * t) override {
  638. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  639. }
  640. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  641. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  642. : type_src(type_src), type_dst(type_dst), ne(ne) {}
  643. ggml_tensor * build_graph(ggml_context * ctx) override {
  644. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  645. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data());
  646. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  647. return out;
  648. }
  649. };
  650. // GGML_OP_CONT
  651. struct test_cont : public test_case {
  652. const ggml_type type;
  653. const std::array<int64_t, 4> ne;
  654. std::string vars() override {
  655. return VARS_TO_STR2(type, ne);
  656. }
  657. test_cont(ggml_type type = GGML_TYPE_F32,
  658. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  659. : type(type), ne(ne) {}
  660. ggml_tensor * build_graph(ggml_context * ctx) override {
  661. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  662. src = ggml_transpose(ctx, src);
  663. ggml_tensor * out = ggml_cont(ctx, src);
  664. return out;
  665. }
  666. };
  667. // GGML_OP_ADD
  668. // GGML_OP_MUL
  669. // GGML_OP_DIV
  670. struct test_bin_bcast : public test_case {
  671. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  672. op_t op;
  673. const ggml_type type;
  674. const std::array<int64_t, 4> ne;
  675. const std::array<int, 4> nr;
  676. std::string vars() override {
  677. return VARS_TO_STR3(type, ne, nr);
  678. }
  679. size_t op_size(ggml_tensor * t) override {
  680. return ggml_nbytes(t) * 3;
  681. }
  682. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  683. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  684. std::array<int, 4> nr = {1, 2, 1, 1})
  685. : op(op), type(type), ne(ne), nr(nr) {}
  686. ggml_tensor * build_graph(ggml_context * ctx) override {
  687. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  688. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  689. ggml_tensor * out = op(ctx, a, b);
  690. return out;
  691. }
  692. void initialize_tensors(ggml_context * ctx) override {
  693. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  694. if (op == ggml_div) {
  695. // avoid division by zero
  696. init_tensor_uniform(t, 1.0f, 2.0f);
  697. } else {
  698. init_tensor_uniform(t);
  699. }
  700. }
  701. }
  702. };
  703. // GGML_OP_SCALE
  704. struct test_scale : public test_case {
  705. const ggml_type type;
  706. const std::array<int64_t, 4> ne;
  707. float scale;
  708. std::string vars() override {
  709. return VARS_TO_STR3(type, ne, scale);
  710. }
  711. test_scale(ggml_type type = GGML_TYPE_F32,
  712. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  713. float scale = 2.0f)
  714. : type(type), ne(ne), scale(scale) {}
  715. ggml_tensor * build_graph(ggml_context * ctx) override {
  716. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  717. ggml_tensor * out = ggml_scale(ctx, a, scale);
  718. return out;
  719. }
  720. };
  721. // GGML_OP_NORM
  722. struct test_norm : public test_case {
  723. const ggml_type type;
  724. const std::array<int64_t, 4> ne;
  725. float eps;
  726. std::string vars() override {
  727. return VARS_TO_STR3(type, ne, eps);
  728. }
  729. test_norm(ggml_type type = GGML_TYPE_F32,
  730. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  731. float eps = 1e-6f)
  732. : type(type), ne(ne), eps(eps) {}
  733. ggml_tensor * build_graph(ggml_context * ctx) override {
  734. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  735. ggml_tensor * out = ggml_norm(ctx, a, eps);
  736. return out;
  737. }
  738. };
  739. // GGML_OP_RMS_NORM
  740. struct test_rms_norm : public test_case {
  741. const ggml_type type;
  742. const std::array<int64_t, 4> ne;
  743. float eps;
  744. std::string vars() override {
  745. return VARS_TO_STR3(type, ne, eps);
  746. }
  747. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  748. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  749. float eps = 1e-6f)
  750. : type(type), ne(ne), eps(eps) {}
  751. ggml_tensor * build_graph(ggml_context * ctx) override {
  752. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  753. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  754. return out;
  755. }
  756. };
  757. // GGML_OP_MUL_MAT
  758. struct test_mul_mat : public test_case {
  759. const ggml_type type_a;
  760. const ggml_type type_b;
  761. const int64_t m;
  762. const int64_t n;
  763. const int64_t k;
  764. const std::array<int64_t, 2> bs; // dims 3 and 4
  765. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  766. std::string vars() override {
  767. return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
  768. }
  769. double max_nmse_err() override {
  770. return 5e-4;
  771. }
  772. size_t op_size(ggml_tensor * t) override {
  773. size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
  774. size_t b = ggml_nbytes(t->src[1]) * m;
  775. size_t c = ggml_nbytes(t);
  776. return a + b + c;
  777. GGML_UNUSED(t);
  778. }
  779. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  780. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  781. std::array<int64_t, 2> bs = {10, 10},
  782. std::array<int64_t, 2> nr = {2, 2})
  783. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}
  784. ggml_tensor * build_graph(ggml_context * ctx) override {
  785. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  786. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]);
  787. ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  788. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  789. return out;
  790. }
  791. };
  792. // GGML_OP_MUL_MAT_ID
  793. struct test_mul_mat_id : public test_case {
  794. const ggml_type type_a;
  795. const ggml_type type_b;
  796. const int n_mats;
  797. const int n_used;
  798. const bool b; // brodcast b matrix
  799. const int64_t m;
  800. const int64_t n;
  801. const int64_t k;
  802. std::string vars() override {
  803. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  804. }
  805. double max_nmse_err() override {
  806. return 5e-4;
  807. }
  808. size_t op_size(ggml_tensor * t) override {
  809. size_t a = ggml_nbytes(t->src[2]) * n;
  810. size_t b = ggml_nbytes(t->src[1]) * m;
  811. size_t c = ggml_nbytes(t);
  812. return a + b + c;
  813. GGML_UNUSED(t);
  814. }
  815. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  816. int n_mats = 8, int n_used = 2, bool b = false,
  817. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  818. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  819. m(m), n(n), k(k) {
  820. GGML_ASSERT(n_used <= n_mats);
  821. }
  822. ggml_tensor * build_graph(ggml_context * ctx) override {
  823. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  824. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  825. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  826. if (n_used != n_mats) {
  827. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  828. }
  829. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  830. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  831. return out;
  832. }
  833. void initialize_tensors(ggml_context * ctx) override {
  834. std::random_device rd;
  835. std::default_random_engine rng(rd());
  836. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  837. if (t->type == GGML_TYPE_I32) {
  838. if (ggml_is_view_op(t->op)) { continue; }
  839. // ids
  840. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  841. std::vector<int32_t> data(t->ne[0]);
  842. for (int i = 0; i < t->ne[0]; i++) {
  843. data[i] = i % n_mats;
  844. }
  845. std::shuffle(data.begin(), data.end(), rng);
  846. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  847. }
  848. } else {
  849. init_tensor_uniform(t);
  850. }
  851. }
  852. }
  853. };
  854. // GGML_OP_SQR
  855. struct test_sqr : public test_case {
  856. const ggml_type type;
  857. const std::array<int64_t, 4> ne;
  858. std::string vars() override {
  859. return VARS_TO_STR2(type, ne);
  860. }
  861. test_sqr(ggml_type type = GGML_TYPE_F32,
  862. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  863. : type(type), ne(ne) {}
  864. ggml_tensor * build_graph(ggml_context * ctx) override {
  865. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  866. ggml_tensor * out = ggml_sqr(ctx, a);
  867. return out;
  868. }
  869. };
  870. // GGML_OP_CLAMP
  871. struct test_clamp : public test_case {
  872. const ggml_type type;
  873. const std::array<int64_t, 4> ne;
  874. float min;
  875. float max;
  876. std::string vars() override {
  877. return VARS_TO_STR4(type, ne, min, max);
  878. }
  879. test_clamp(ggml_type type = GGML_TYPE_F32,
  880. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  881. float min = -0.5f, float max = 0.5f)
  882. : type(type), ne(ne), min(min), max(max) {}
  883. ggml_tensor * build_graph(ggml_context * ctx) override {
  884. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  885. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  886. return out;
  887. }
  888. };
  889. // GGML_OP_DIAG_MASK_INF
  890. struct test_diag_mask_inf : public test_case {
  891. const ggml_type type;
  892. const std::array<int64_t, 4> ne;
  893. const int n_past;
  894. std::string vars() override {
  895. return VARS_TO_STR3(type, ne, n_past);
  896. }
  897. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  898. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  899. int n_past = 5)
  900. : type(type), ne(ne), n_past(n_past) {}
  901. ggml_tensor * build_graph(ggml_context * ctx) override {
  902. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  903. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  904. return out;
  905. }
  906. };
  907. // GGML_OP_SOFT_MAX
  908. struct test_soft_max : public test_case {
  909. const ggml_type type;
  910. const std::array<int64_t, 4> ne;
  911. const bool mask;
  912. const float scale;
  913. const float max_bias;
  914. std::string vars() override {
  915. return VARS_TO_STR5(type, ne, mask, scale, max_bias);
  916. }
  917. // the 1024 test with bias occasionally fails:
  918. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  919. virtual double max_nmse_err() override {
  920. return 1e-6;
  921. }
  922. test_soft_max(ggml_type type = GGML_TYPE_F32,
  923. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  924. bool mask = false,
  925. float scale = 1.0f,
  926. float max_bias = 0.0f)
  927. : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
  928. ggml_tensor * build_graph(ggml_context * ctx) override {
  929. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  930. ggml_tensor * mask = nullptr;
  931. if (this->mask) {
  932. mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
  933. }
  934. ggml_tensor * pos = nullptr;
  935. if (max_bias > 0.0f) {
  936. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[0]);
  937. }
  938. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, pos, scale, max_bias);
  939. return out;
  940. }
  941. };
  942. // GGML_OP_ROPE
  943. struct test_rope : public test_case {
  944. const ggml_type type;
  945. const std::array<int64_t, 4> ne;
  946. int n_dims;
  947. int mode;
  948. int n_ctx;
  949. std::string vars() override {
  950. return VARS_TO_STR5(type, ne, n_dims, mode, n_ctx);
  951. }
  952. test_rope(ggml_type type = GGML_TYPE_F32,
  953. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  954. int n_dims = 10, int mode = 0, int n_ctx = 512)
  955. : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx) {}
  956. ggml_tensor * build_graph(ggml_context * ctx) override {
  957. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  958. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  959. ggml_tensor * out = ggml_rope(ctx, a, pos, n_dims, mode, n_ctx);
  960. return out;
  961. }
  962. void initialize_tensors(ggml_context * ctx) override {
  963. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  964. if (t->type == GGML_TYPE_I32) {
  965. // pos
  966. std::vector<int> data(ne[2]);
  967. for (int i = 0; i < ne[2]; i++) {
  968. data[i] = rand() % n_ctx;
  969. }
  970. ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int));
  971. } else {
  972. init_tensor_uniform(t);
  973. }
  974. }
  975. }
  976. };
  977. // GGML_OP_POOL2D
  978. struct test_pool2d : public test_case {
  979. enum ggml_op_pool pool_type;
  980. const ggml_type type_input;
  981. const std::array<int64_t, 4> ne_input;
  982. // kernel size
  983. const int k0;
  984. const int k1;
  985. // stride
  986. const int s0;
  987. const int s1;
  988. // padding
  989. const int p0;
  990. const int p1;
  991. std::string vars() override {
  992. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  993. }
  994. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  995. ggml_type type_input = GGML_TYPE_F32,
  996. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  997. int k0 = 3, int k1 = 3,
  998. int s0 = 1, int s1 = 1,
  999. int p0 = 1, int p1 = 1)
  1000. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  1001. ggml_tensor * build_graph(ggml_context * ctx) override {
  1002. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  1003. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  1004. return out;
  1005. }
  1006. };
  1007. // GGML_OP_IM2COL
  1008. struct test_im2col : public test_case {
  1009. const ggml_type type_input;
  1010. const ggml_type type_kernel;
  1011. const ggml_type dst_type;
  1012. const std::array<int64_t, 4> ne_input;
  1013. const std::array<int64_t, 4> ne_kernel;
  1014. // stride
  1015. const int s0;
  1016. const int s1;
  1017. // padding
  1018. const int p0;
  1019. const int p1;
  1020. // dilatation
  1021. const int d0;
  1022. const int d1;
  1023. // mode
  1024. const bool is_2D;
  1025. std::string vars() override {
  1026. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  1027. }
  1028. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  1029. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  1030. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  1031. int s0 = 1, int s1 = 1,
  1032. int p0 = 1, int p1 = 1,
  1033. int d0 = 1, int d1 = 1,
  1034. bool is_2D = true)
  1035. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  1036. ggml_tensor * build_graph(ggml_context * ctx) override {
  1037. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  1038. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  1039. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  1040. return out;
  1041. }
  1042. };
  1043. // GGML_OP_CONCAT
  1044. struct test_concat : public test_case {
  1045. const ggml_type type;
  1046. const std::array<int64_t, 4> ne;
  1047. const int64_t b_ne2;
  1048. std::string vars() override {
  1049. return VARS_TO_STR3(type, ne, b_ne2);
  1050. }
  1051. test_concat(ggml_type type = GGML_TYPE_F32,
  1052. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1053. int64_t b_ne2 = 10)
  1054. : type(type), ne(ne), b_ne2(b_ne2) {}
  1055. ggml_tensor * build_graph(ggml_context * ctx) override {
  1056. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1057. ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]);
  1058. ggml_tensor * out = ggml_concat(ctx, a, b);
  1059. return out;
  1060. }
  1061. };
  1062. // GGML_OP_ARGSORT
  1063. struct test_argsort : public test_case {
  1064. const ggml_type type;
  1065. const std::array<int64_t, 4> ne;
  1066. ggml_sort_order order;
  1067. std::string vars() override {
  1068. return VARS_TO_STR3(type, ne, order);
  1069. }
  1070. test_argsort(ggml_type type = GGML_TYPE_F32,
  1071. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  1072. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  1073. : type(type), ne(ne), order(order) {}
  1074. ggml_tensor * build_graph(ggml_context * ctx) override {
  1075. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1076. ggml_tensor * out = ggml_argsort(ctx, a, order);
  1077. return out;
  1078. }
  1079. void initialize_tensors(ggml_context * ctx) override {
  1080. std::random_device rd;
  1081. std::default_random_engine rng(rd());
  1082. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1083. if (t->type == GGML_TYPE_I32) {
  1084. // indices
  1085. std::vector<int> data(ggml_nelements(t));
  1086. for (int i = 0; i < ggml_nelements(t); i++) {
  1087. data[i] = rand();
  1088. }
  1089. std::shuffle(data.begin(), data.end(), rng);
  1090. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  1091. } else if (t->type == GGML_TYPE_F32) {
  1092. // initialize with unique values to avoid ties
  1093. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1094. std::vector<float> data(t->ne[0]);
  1095. for (int i = 0; i < t->ne[0]; i++) {
  1096. data[i] = i;
  1097. }
  1098. std::shuffle(data.begin(), data.end(), rng);
  1099. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1100. }
  1101. } else {
  1102. GGML_ASSERT(false);
  1103. }
  1104. }
  1105. }
  1106. };
  1107. // GGML_OP_SUM_ROWS
  1108. struct test_sum_rows : public test_case {
  1109. const ggml_type type;
  1110. const std::array<int64_t, 4> ne;
  1111. std::string vars() override {
  1112. return VARS_TO_STR2(type, ne);
  1113. }
  1114. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  1115. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  1116. : type(type), ne(ne) {}
  1117. ggml_tensor * build_graph(ggml_context * ctx) override {
  1118. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1119. ggml_tensor * out = ggml_sum_rows(ctx, a);
  1120. return out;
  1121. }
  1122. };
  1123. // GGML_OP_UPSCALE
  1124. struct test_upscale : public test_case {
  1125. const ggml_type type;
  1126. const std::array<int64_t, 4> ne;
  1127. const int32_t scale_factor;
  1128. std::string vars() override {
  1129. return VARS_TO_STR3(type, ne, scale_factor);
  1130. }
  1131. test_upscale(ggml_type type = GGML_TYPE_F32,
  1132. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  1133. int32_t scale_factor = 2)
  1134. : type(type), ne(ne), scale_factor(scale_factor) {}
  1135. ggml_tensor * build_graph(ggml_context * ctx) override {
  1136. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1137. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  1138. return out;
  1139. }
  1140. };
  1141. // GGML_OP_GROUP_NORM
  1142. struct test_group_norm : public test_case {
  1143. const ggml_type type;
  1144. const std::array<int64_t, 4> ne;
  1145. const int32_t num_groups;
  1146. std::string vars() override {
  1147. return VARS_TO_STR3(type, ne, num_groups);
  1148. }
  1149. test_group_norm(ggml_type type = GGML_TYPE_F32,
  1150. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  1151. int32_t num_groups = 32)
  1152. : type(type), ne(ne), num_groups(num_groups) {}
  1153. ggml_tensor * build_graph(ggml_context * ctx) override {
  1154. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1155. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups);
  1156. return out;
  1157. }
  1158. };
  1159. // GGML_OP_ACC
  1160. struct test_acc : public test_case {
  1161. const ggml_type type;
  1162. const std::array<int64_t, 4> ne_a;
  1163. const std::array<int64_t, 4> ne_b;
  1164. std::string vars() override {
  1165. return VARS_TO_STR3(type, ne_a, ne_b);
  1166. }
  1167. test_acc(ggml_type type = GGML_TYPE_F32,
  1168. std::array<int64_t, 4> ne_a = {1024, 577, 1, 1},
  1169. std::array<int64_t, 4> ne_b = {1024, 576, 1, 1})
  1170. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1171. ggml_tensor * build_graph(ggml_context * ctx) override {
  1172. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1173. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1174. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  1175. return out;
  1176. }
  1177. };
  1178. // GGML_OP_PAD
  1179. struct test_pad : public test_case {
  1180. const ggml_type type;
  1181. const std::array<int64_t, 4> ne_a;
  1182. const int pad_0;
  1183. const int pad_1;
  1184. std::string vars() override {
  1185. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  1186. }
  1187. test_pad(ggml_type type = GGML_TYPE_F32,
  1188. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  1189. int pad_0 = 1, int pad_1 = 1)
  1190. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  1191. ggml_tensor * build_graph(ggml_context * ctx) override {
  1192. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1193. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  1194. return out;
  1195. }
  1196. };
  1197. // GGML_OP_ARANGE
  1198. struct test_arange : public test_case {
  1199. const ggml_type type;
  1200. const float start;
  1201. const float stop;
  1202. const float step;
  1203. std::string vars() override {
  1204. return VARS_TO_STR4(type, start, stop, step);
  1205. }
  1206. test_arange(ggml_type type = GGML_TYPE_F32,
  1207. float start = 0.f, float stop = 10.f, float step = 1.f)
  1208. : type(type), start(start), stop(stop), step(step) {}
  1209. ggml_tensor * build_graph(ggml_context * ctx) override {
  1210. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  1211. return out;
  1212. }
  1213. };
  1214. // GGML_OP_TIMESTEP_EMBEDDING
  1215. struct test_timestep_embedding : public test_case {
  1216. const ggml_type type;
  1217. const std::array<int64_t, 4> ne_a;
  1218. const int dim;
  1219. const int max_period;
  1220. std::string vars() override {
  1221. return VARS_TO_STR4(type, ne_a, dim, max_period);
  1222. }
  1223. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  1224. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  1225. int dim = 320, int max_period=10000)
  1226. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  1227. ggml_tensor * build_graph(ggml_context * ctx) override {
  1228. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1229. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  1230. return out;
  1231. }
  1232. };
  1233. // GGML_OP_LEAKY_RELU
  1234. struct test_leaky_relu : public test_case {
  1235. const ggml_type type;
  1236. const std::array<int64_t, 4> ne_a;
  1237. const float negative_slope;
  1238. std::string vars() override {
  1239. return VARS_TO_STR3(type, ne_a, negative_slope);
  1240. }
  1241. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  1242. std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
  1243. float negative_slope = 0.1f)
  1244. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  1245. ggml_tensor * build_graph(ggml_context * ctx) override {
  1246. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1247. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  1248. return out;
  1249. }
  1250. };
  1251. // GGML_OP_FLASH_ATTN_EXT
  1252. struct test_flash_attn_ext : public test_case {
  1253. const int64_t hs; // head size
  1254. const int64_t nh; // num heads
  1255. const int64_t kv; // kv size
  1256. const int64_t nb; // batch size
  1257. std::string vars() override {
  1258. return VARS_TO_STR4(hs, nh, kv, nb);
  1259. }
  1260. double max_nmse_err() override {
  1261. return 5e-4;
  1262. }
  1263. test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8)
  1264. : hs(hs), nh(nh), kv(kv), nb(nb) {}
  1265. ggml_tensor * build_graph(ggml_context * ctx) override {
  1266. ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1);
  1267. ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
  1268. ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
  1269. ggml_tensor * mask = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
  1270. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, mask, 1.0f/sqrtf(hs));
  1271. return out;
  1272. }
  1273. };
  1274. enum llm_norm_type {
  1275. LLM_NORM,
  1276. LLM_NORM_RMS,
  1277. };
  1278. struct llama_hparams {
  1279. uint32_t n_vocab;
  1280. uint32_t n_embd;
  1281. uint32_t n_head;
  1282. uint32_t n_head_kv;
  1283. static constexpr uint32_t n_layer = 1;
  1284. uint32_t n_rot;
  1285. uint32_t n_embd_head; // dimension of values (d_v)
  1286. uint32_t n_ff;
  1287. float f_norm_eps;
  1288. float f_norm_rms_eps;
  1289. // cparams
  1290. static constexpr uint32_t n_ctx = 512; // user-specified context size
  1291. static constexpr uint32_t n_orig_ctx = n_ctx;
  1292. // batch
  1293. int32_t n_tokens;
  1294. // llm_build_context
  1295. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  1296. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  1297. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  1298. return n_embd_head * n_head_kv;
  1299. }
  1300. };
  1301. // LLM base class
  1302. struct test_llm : public test_case {
  1303. llama_hparams hp;
  1304. protected:
  1305. test_llm(llama_hparams hp)
  1306. : hp(std::move(hp)) {
  1307. }
  1308. public:
  1309. struct ggml_tensor * llm_build_norm(
  1310. struct ggml_context * ctx,
  1311. struct ggml_tensor * cur,
  1312. struct ggml_tensor * mw,
  1313. struct ggml_tensor * mb,
  1314. llm_norm_type type) {
  1315. switch (type) {
  1316. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  1317. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  1318. }
  1319. cur = ggml_mul(ctx, cur, mw);
  1320. if (mb) {
  1321. cur = ggml_add(ctx, cur, mb);
  1322. }
  1323. return cur;
  1324. }
  1325. void llm_build_kv_store(
  1326. struct ggml_context * ctx,
  1327. struct ggml_tensor * k_l,
  1328. struct ggml_tensor * v_l,
  1329. struct ggml_tensor * k_cur,
  1330. struct ggml_tensor * v_cur) {
  1331. // compute the transposed [n_tokens, n_embd] V matrix
  1332. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  1333. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  1334. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  1335. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  1336. ( hp.n_ctx)*ggml_element_size(v_l),
  1337. (hp.kv_head)*ggml_element_size(v_l));
  1338. // important: storing RoPE-ed version of K in the KV cache!
  1339. ggml_cpy(ctx, k_cur, k_cache_view);
  1340. ggml_cpy(ctx, v_cur_t, v_cache_view);
  1341. }
  1342. struct ggml_tensor * llm_build_kqv(
  1343. struct ggml_context * ctx,
  1344. struct ggml_tensor * k_l,
  1345. struct ggml_tensor * v_l,
  1346. struct ggml_tensor * q_cur,
  1347. struct ggml_tensor * kq_mask,
  1348. float kq_scale) {
  1349. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  1350. struct ggml_tensor * k =
  1351. ggml_view_3d(ctx, k_l,
  1352. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  1353. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  1354. ggml_row_size(k_l->type, hp.n_embd_head),
  1355. 0);
  1356. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  1357. kq = ggml_soft_max_ext(ctx, kq, kq_mask, nullptr, kq_scale, 0.0f);
  1358. // split cached v into n_head heads
  1359. struct ggml_tensor * v =
  1360. ggml_view_3d(ctx, v_l,
  1361. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  1362. ggml_element_size(v_l)*hp.n_ctx,
  1363. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  1364. 0);
  1365. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  1366. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  1367. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  1368. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  1369. cur = ggml_mul_mat(ctx, wo, cur);
  1370. return cur;
  1371. }
  1372. void initialize_tensors(ggml_context * ctx) override {
  1373. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1374. if (t->type == GGML_TYPE_I32) {
  1375. // pos
  1376. std::vector<int> data(hp.n_tokens);
  1377. for (int i = 0; i < hp.n_tokens; i++) {
  1378. data[i] = rand() % hp.n_ctx;
  1379. }
  1380. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  1381. } else {
  1382. init_tensor_uniform(t);
  1383. }
  1384. }
  1385. }
  1386. };
  1387. // Llama
  1388. struct test_llama : public test_llm {
  1389. static constexpr float freq_base = 10000.0f;
  1390. static constexpr float freq_scale = 1.0f;
  1391. static constexpr float ext_factor = 0.0f;
  1392. static constexpr float attn_factor = 1.0f;
  1393. static constexpr float beta_fast = 32.0f;
  1394. static constexpr float beta_slow = 1.0f;
  1395. std::string op_desc(ggml_tensor * t) override {
  1396. GGML_UNUSED(t);
  1397. return "LLAMA";
  1398. }
  1399. std::string vars() override {
  1400. auto n_tokens = hp.n_tokens;
  1401. return VARS_TO_STR1(n_tokens);
  1402. }
  1403. double max_nmse_err() override {
  1404. return 2e-3;
  1405. }
  1406. test_llama(int n_tokens = 1)
  1407. : test_llm({
  1408. /*n_vocab =*/ 32000,
  1409. /*n_embd =*/ 3200,
  1410. /*n_head =*/ 32,
  1411. /*n_head_kv =*/ 32,
  1412. /*n_rot =*/ 100,
  1413. /*n_embd_head =*/ 100,
  1414. /*n_ff =*/ 8640,
  1415. /*f_norm_eps =*/ 0.f,
  1416. /*f_norm_rms_eps =*/ 1e-5f,
  1417. /*n_tokens =*/ n_tokens,
  1418. }) {
  1419. }
  1420. ggml_tensor * build_graph(ggml_context * ctx) override {
  1421. struct ggml_tensor * cur;
  1422. struct ggml_tensor * inpL;
  1423. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  1424. // inp_pos - contains the positions
  1425. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  1426. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  1427. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  1428. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1429. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1430. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  1431. struct ggml_tensor * inpSA = inpL;
  1432. // norm
  1433. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1434. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  1435. // self-attention
  1436. {
  1437. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  1438. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  1439. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  1440. // compute Q and K and RoPE them
  1441. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  1442. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  1443. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  1444. Qcur = ggml_rope_custom(
  1445. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos,
  1446. hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
  1447. ext_factor, attn_factor, beta_fast, beta_slow
  1448. );
  1449. Kcur = ggml_rope_custom(
  1450. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos,
  1451. hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
  1452. ext_factor, attn_factor, beta_fast, beta_slow
  1453. );
  1454. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  1455. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  1456. }
  1457. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  1458. // feed-forward network
  1459. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1460. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  1461. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1462. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  1463. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1464. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  1465. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  1466. cur = ggml_silu(ctx, cur);
  1467. cur = ggml_mul(ctx, cur, tmp);
  1468. cur = ggml_mul_mat(ctx, ffn_down, cur);
  1469. cur = ggml_add(ctx, cur, ffn_inp);
  1470. // input for next layer
  1471. inpL = cur;
  1472. }
  1473. cur = inpL;
  1474. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1475. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  1476. // lm_head
  1477. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  1478. cur = ggml_mul_mat(ctx, output, cur);
  1479. return cur;
  1480. }
  1481. };
  1482. // Falcon
  1483. struct test_falcon : public test_llm {
  1484. static constexpr float freq_base = 10000.0f;
  1485. static constexpr float freq_scale = 1.0f;
  1486. static constexpr float ext_factor = 0.0f;
  1487. static constexpr float attn_factor = 1.0f;
  1488. static constexpr float beta_fast = 32.0f;
  1489. static constexpr float beta_slow = 1.0f;
  1490. std::string op_desc(ggml_tensor * t) override {
  1491. GGML_UNUSED(t);
  1492. return "FALCON";
  1493. }
  1494. std::string vars() override {
  1495. auto n_tokens = hp.n_tokens;
  1496. return VARS_TO_STR1(n_tokens);
  1497. }
  1498. double max_nmse_err() override {
  1499. return 2e-3;
  1500. }
  1501. test_falcon(int n_tokens = 1)
  1502. : test_llm({
  1503. /*n_vocab =*/ 32000,
  1504. /*n_embd =*/ 3200,
  1505. /*n_head =*/ 50,
  1506. /*n_head_kv =*/ 1,
  1507. /*n_rot =*/ 64,
  1508. /*n_embd_head =*/ 64,
  1509. /*n_ff =*/ 8640,
  1510. /*f_norm_eps =*/ 1e-5f,
  1511. /*f_norm_rms_eps =*/ 0.f,
  1512. /*n_tokens =*/ n_tokens,
  1513. }) {
  1514. }
  1515. ggml_tensor * build_graph(ggml_context * ctx) override {
  1516. struct ggml_tensor * cur;
  1517. struct ggml_tensor * inpL;
  1518. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  1519. // inp_pos - contains the positions
  1520. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  1521. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  1522. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  1523. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1524. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1525. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  1526. // norm
  1527. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1528. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1529. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  1530. // self-attention
  1531. {
  1532. cur = attn_norm;
  1533. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  1534. cur = ggml_mul_mat(ctx, wqkv, cur);
  1535. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  1536. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  1537. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  1538. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  1539. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  1540. // using mode = 2 for neox mode
  1541. Qcur = ggml_rope_custom(
  1542. ctx, Qcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
  1543. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  1544. );
  1545. Kcur = ggml_rope_custom(
  1546. ctx, Kcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
  1547. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  1548. );
  1549. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  1550. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  1551. }
  1552. struct ggml_tensor * ffn_inp = cur;
  1553. // feed forward
  1554. {
  1555. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1556. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  1557. cur = attn_norm;
  1558. cur = ggml_mul_mat(ctx, ffn_up, cur);
  1559. cur = ggml_gelu(ctx, cur);
  1560. cur = ggml_mul_mat(ctx, ffn_down, cur);
  1561. }
  1562. cur = ggml_add(ctx, cur, ffn_inp);
  1563. cur = ggml_add(ctx, cur, inpL);
  1564. // input for next layer
  1565. inpL = cur;
  1566. }
  1567. cur = inpL;
  1568. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1569. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1570. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  1571. // lm_head
  1572. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  1573. cur = ggml_mul_mat(ctx, output, cur);
  1574. return cur;
  1575. }
  1576. };
  1577. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
  1578. std::vector<std::unique_ptr<test_case>> test_cases;
  1579. std::default_random_engine rng(0);
  1580. const ggml_type all_types[] = {
  1581. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  1582. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  1583. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  1584. GGML_TYPE_Q8_0,
  1585. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  1586. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  1587. GGML_TYPE_Q6_K,
  1588. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  1589. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  1590. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  1591. };
  1592. const ggml_type base_types[] = {
  1593. GGML_TYPE_F32, GGML_TYPE_F16,
  1594. GGML_TYPE_Q4_0,
  1595. GGML_TYPE_Q4_K,
  1596. GGML_TYPE_IQ2_XXS
  1597. };
  1598. const ggml_type other_types[] = {
  1599. GGML_TYPE_Q4_1,
  1600. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  1601. GGML_TYPE_Q8_0,
  1602. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  1603. GGML_TYPE_Q5_K,
  1604. GGML_TYPE_Q6_K,
  1605. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  1606. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  1607. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  1608. };
  1609. // unary ops
  1610. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  1611. test_cases.emplace_back(new test_unary((ggml_unary_op) op));
  1612. test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 7, 13, 19, 23 }));
  1613. }
  1614. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  1615. for (ggml_type type : all_types) {
  1616. for (int b : {1, 7}) {
  1617. for (bool v : {false, true}) {
  1618. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  1619. }
  1620. }
  1621. }
  1622. for (int b : {1, 7}) {
  1623. for (bool v : {false, true}) {
  1624. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  1625. }
  1626. }
  1627. for (ggml_type type_input : {GGML_TYPE_F32}) {
  1628. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  1629. for (int k0 : {1, 3}) {
  1630. for (int k1 : {1, 3}) {
  1631. for (int s0 : {1, 2}) {
  1632. for (int s1 : {1, 2}) {
  1633. for (int p0 : {0, 1}) {
  1634. for (int p1 : {0, 1}) {
  1635. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  1636. }
  1637. }
  1638. }
  1639. }
  1640. }
  1641. }
  1642. }
  1643. }
  1644. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  1645. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  1646. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
  1647. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
  1648. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
  1649. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
  1650. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
  1651. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 10, 10, 10}, {2, 1, 1, 1}));
  1652. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 10, 10, 10}, {1, 1, 1, 2}));
  1653. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  1654. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  1655. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  1656. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  1657. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  1658. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  1659. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  1660. for (ggml_type type_dst : all_types) {
  1661. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  1662. }
  1663. }
  1664. test_cases.emplace_back(new test_cont());
  1665. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  1666. for (auto op : {ggml_add, ggml_mul, ggml_div}) {
  1667. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  1668. }
  1669. };
  1670. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
  1671. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
  1672. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
  1673. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
  1674. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
  1675. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1});
  1676. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1});
  1677. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1});
  1678. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1});
  1679. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2});
  1680. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2});
  1681. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2});
  1682. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2});
  1683. // stable diffusion
  1684. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
  1685. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
  1686. add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
  1687. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
  1688. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
  1689. add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
  1690. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
  1691. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
  1692. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
  1693. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
  1694. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
  1695. add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
  1696. add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
  1697. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  1698. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  1699. test_cases.emplace_back(new test_scale());
  1700. for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
  1701. test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  1702. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  1703. }
  1704. for (ggml_type type_a : base_types) {
  1705. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  1706. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
  1707. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
  1708. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
  1709. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
  1710. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
  1711. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
  1712. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
  1713. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
  1714. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
  1715. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
  1716. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
  1717. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
  1718. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
  1719. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
  1720. }
  1721. }
  1722. for (ggml_type type_a : other_types) {
  1723. for (ggml_type type_b : {GGML_TYPE_F32}) {
  1724. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
  1725. }
  1726. }
  1727. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  1728. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  1729. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  1730. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  1731. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  1732. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  1733. for (ggml_type type_a : base_types) {
  1734. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  1735. for (int n_mats : {4, 8}) {
  1736. for (int n_used : {1, 2, 4}) {
  1737. for (bool b : {false, true}) {
  1738. for (int n : {1, 32}) {
  1739. int m = 512;
  1740. int k = 256;
  1741. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  1742. }
  1743. }
  1744. }
  1745. }
  1746. }
  1747. }
  1748. for (ggml_type type_a : other_types) {
  1749. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  1750. for (int n_mats : {4}) {
  1751. for (int n_used : {2}) {
  1752. for (bool b : {false}) {
  1753. for (int n : {1}) {
  1754. int m = 512;
  1755. int k = 256;
  1756. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  1757. }
  1758. }
  1759. }
  1760. }
  1761. }
  1762. }
  1763. test_cases.emplace_back(new test_sqr());
  1764. test_cases.emplace_back(new test_clamp());
  1765. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  1766. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5));
  1767. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));
  1768. #if 0
  1769. std::uniform_int_distribution<> dist_ne1(1, 50);
  1770. int exponent = 1;
  1771. while (exponent < (1 << 17)) {
  1772. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  1773. for (int n = 0; n < 10; ++n) {
  1774. int64_t ne0 = dist_ne0(rng);
  1775. int64_t ne1 = dist_ne1(rng);
  1776. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  1777. }
  1778. exponent <<= 1;
  1779. }
  1780. #endif
  1781. for (bool mask : {false, true}) {
  1782. for (float max_bias : {0.0f, 8.0f}) {
  1783. for (float scale : {1.0f, 0.1f}) {
  1784. for (int64_t ne0 : {16, 1024}) {
  1785. for (int64_t ne1 : {16, 1024}) {
  1786. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
  1787. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
  1788. }
  1789. }
  1790. }
  1791. }
  1792. }
  1793. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
  1794. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
  1795. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 8.0f));
  1796. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
  1797. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  1798. test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B
  1799. test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B
  1800. test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512)); // llama 30B
  1801. test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512)); // llama 65B
  1802. test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
  1803. test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
  1804. test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
  1805. test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
  1806. test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512)); // neox (stablelm)
  1807. test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512)); // neox (phi-2)
  1808. }
  1809. test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
  1810. test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
  1811. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  1812. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  1813. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  1814. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  1815. }
  1816. test_cases.emplace_back(new test_sum_rows());
  1817. test_cases.emplace_back(new test_upscale());
  1818. test_cases.emplace_back(new test_group_norm());
  1819. test_cases.emplace_back(new test_acc());
  1820. test_cases.emplace_back(new test_pad());
  1821. test_cases.emplace_back(new test_arange());
  1822. test_cases.emplace_back(new test_timestep_embedding());
  1823. test_cases.emplace_back(new test_leaky_relu());
  1824. for (int hs : { 64, 80, 128, 256, }) {
  1825. for (int nh : { 32, }) {
  1826. for (int kv : { 512, 1024, }) {
  1827. for (int nb : { 1, 2, 4, 8, }) {
  1828. test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb));
  1829. }
  1830. }
  1831. }
  1832. }
  1833. // these tests are disabled to save execution time, but they can be handy for debugging
  1834. #if 0
  1835. test_cases.emplace_back(new test_llama(1));
  1836. test_cases.emplace_back(new test_llama(2));
  1837. test_cases.emplace_back(new test_falcon(1));
  1838. test_cases.emplace_back(new test_falcon(2));
  1839. #endif
  1840. // run tests
  1841. if (mode == MODE_TEST) {
  1842. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  1843. size_t n_ok = 0;
  1844. for (auto & test : test_cases) {
  1845. if (test->eval(backend, backend_cpu, op_name)) {
  1846. n_ok++;
  1847. }
  1848. }
  1849. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  1850. ggml_backend_free(backend_cpu);
  1851. return n_ok == test_cases.size();
  1852. }
  1853. if (mode == MODE_PERF) {
  1854. for (auto & test : test_cases) {
  1855. test->eval_perf(backend, op_name);
  1856. }
  1857. return true;
  1858. }
  1859. GGML_ASSERT(false);
  1860. return false;
  1861. }
  1862. static void usage(char ** argv) {
  1863. printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
  1864. printf(" valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n");
  1865. printf(" op names are as given by ggml_op_desc()\n");
  1866. }
  1867. int main(int argc, char ** argv) {
  1868. test_mode mode = MODE_TEST;
  1869. const char * op_name_filter = NULL;
  1870. const char * backend_filter = NULL;
  1871. for (int i = 1; i < argc; i++) {
  1872. if (strcmp(argv[i], "test") == 0) {
  1873. mode = MODE_TEST;
  1874. } else if (strcmp(argv[i], "perf") == 0) {
  1875. mode = MODE_PERF;
  1876. } else if (strcmp(argv[i], "-o") == 0) {
  1877. if (i + 1 < argc) {
  1878. op_name_filter = argv[++i];
  1879. } else {
  1880. usage(argv);
  1881. return 1;
  1882. }
  1883. } else if (strcmp(argv[i], "-b") == 0) {
  1884. if (i + 1 < argc) {
  1885. backend_filter = argv[++i];
  1886. } else {
  1887. usage(argv);
  1888. return 1;
  1889. }
  1890. } else {
  1891. usage(argv);
  1892. return 1;
  1893. }
  1894. }
  1895. // enumerate backends
  1896. printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
  1897. size_t n_ok = 0;
  1898. for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
  1899. printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
  1900. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) {
  1901. printf(" Skipping\n");
  1902. n_ok++;
  1903. continue;
  1904. }
  1905. ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
  1906. GGML_ASSERT(backend != NULL);
  1907. if (backend_filter == NULL && ggml_backend_is_cpu(backend)) {
  1908. printf(" Skipping CPU backend\n");
  1909. ggml_backend_free(backend);
  1910. n_ok++;
  1911. continue;
  1912. }
  1913. printf(" Backend name: %s\n", ggml_backend_name(backend));
  1914. bool ok = test_backend(backend, mode, op_name_filter);
  1915. printf(" Backend %s: ", ggml_backend_name(backend));
  1916. if (ok) {
  1917. printf("\033[1;32mOK\033[0m\n");
  1918. n_ok++;
  1919. } else {
  1920. printf("\033[1;31mFAIL\033[0m\n");
  1921. }
  1922. printf("\n");
  1923. ggml_backend_free(backend);
  1924. }
  1925. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
  1926. if (n_ok != ggml_backend_reg_get_count()) {
  1927. printf("\033[1;31mFAIL\033[0m\n");
  1928. return 1;
  1929. }
  1930. ggml_quantize_free();
  1931. printf("\033[1;32mOK\033[0m\n");
  1932. return 0;
  1933. }