ops.cpp 365 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965
  1. #include "ops.h"
  2. #include "ggml-cpu.h"
  3. #include "ggml-impl.h"
  4. #include "binary-ops.h"
  5. #include "ggml.h"
  6. #include "unary-ops.h"
  7. #include "vec.h"
  8. #include <float.h>
  9. #include <algorithm>
  10. // ggml_compute_forward_dup
  11. static void ggml_compute_forward_dup_same_cont(
  12. const ggml_compute_params * params,
  13. ggml_tensor * dst) {
  14. const ggml_tensor * src0 = dst->src[0];
  15. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  16. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  17. GGML_ASSERT(src0->type == dst->type);
  18. const size_t nb0 = ggml_type_size(src0->type);
  19. const int ith = params->ith; // thread index
  20. const int nth = params->nth; // number of threads
  21. // parallelize by blocks
  22. const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type);
  23. const int dr = (nk + nth - 1) / nth;
  24. const int k0 = dr * ith;
  25. const int k1 = MIN(k0 + dr, nk);
  26. if (k0 < k1) {
  27. memcpy(
  28. ((char *) dst->data + k0*nb0),
  29. ((char *) src0->data + k0*nb0),
  30. (k1 - k0) * nb0);
  31. }
  32. }
  33. static void ggml_compute_forward_dup_f16(
  34. const ggml_compute_params * params,
  35. ggml_tensor * dst) {
  36. const ggml_tensor * src0 = dst->src[0];
  37. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  38. GGML_TENSOR_UNARY_OP_LOCALS
  39. const int ith = params->ith; // thread index
  40. const int nth = params->nth; // number of threads
  41. // parallelize by rows
  42. const int nr = ne01;
  43. // number of rows per thread
  44. const int dr = (nr + nth - 1) / nth;
  45. // row range for this thread
  46. const int ir0 = dr * ith;
  47. const int ir1 = MIN(ir0 + dr, nr);
  48. if (src0->type == dst->type &&
  49. ne00 == ne0 &&
  50. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  51. // copy by rows
  52. const size_t rs = ne00*nb00;
  53. for (int64_t i03 = 0; i03 < ne03; i03++) {
  54. for (int64_t i02 = 0; i02 < ne02; i02++) {
  55. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  56. memcpy(
  57. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  58. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  59. rs);
  60. }
  61. }
  62. }
  63. return;
  64. }
  65. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  66. if (ggml_is_contiguous(dst)) {
  67. if (nb00 == sizeof(ggml_fp16_t)) {
  68. if (dst->type == GGML_TYPE_F16) {
  69. size_t id = 0;
  70. const size_t rs = ne00 * nb00;
  71. char * dst_ptr = (char *) dst->data;
  72. for (int i03 = 0; i03 < ne03; i03++) {
  73. for (int i02 = 0; i02 < ne02; i02++) {
  74. id += rs * ir0;
  75. for (int i01 = ir0; i01 < ir1; i01++) {
  76. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  77. memcpy(dst_ptr + id, src0_ptr, rs);
  78. id += rs;
  79. }
  80. id += rs * (ne01 - ir1);
  81. }
  82. }
  83. } else if (dst->type == GGML_TYPE_F32) {
  84. size_t id = 0;
  85. float * dst_ptr = (float *) dst->data;
  86. for (int i03 = 0; i03 < ne03; i03++) {
  87. for (int i02 = 0; i02 < ne02; i02++) {
  88. id += ne00 * ir0;
  89. for (int i01 = ir0; i01 < ir1; i01++) {
  90. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  91. for (int i00 = 0; i00 < ne00; i00++) {
  92. dst_ptr[id] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
  93. id++;
  94. }
  95. }
  96. id += ne00 * (ne01 - ir1);
  97. }
  98. }
  99. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  100. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  101. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  102. size_t id = 0;
  103. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  104. char * dst_ptr = (char *) dst->data;
  105. for (int i03 = 0; i03 < ne03; i03++) {
  106. for (int i02 = 0; i02 < ne02; i02++) {
  107. id += rs * ir0;
  108. for (int i01 = ir0; i01 < ir1; i01++) {
  109. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  110. for (int i00 = 0; i00 < ne00; i00++) {
  111. src0_f32[i00] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
  112. }
  113. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  114. id += rs;
  115. }
  116. id += rs * (ne01 - ir1);
  117. }
  118. }
  119. } else {
  120. GGML_ABORT("fatal error"); // TODO: implement
  121. }
  122. } else {
  123. //printf("%s: this is not optimal - fix me\n", __func__);
  124. if (dst->type == GGML_TYPE_F32) {
  125. size_t id = 0;
  126. float * dst_ptr = (float *) dst->data;
  127. for (int i03 = 0; i03 < ne03; i03++) {
  128. for (int i02 = 0; i02 < ne02; i02++) {
  129. id += ne00 * ir0;
  130. for (int i01 = ir0; i01 < ir1; i01++) {
  131. for (int i00 = 0; i00 < ne00; i00++) {
  132. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  133. dst_ptr[id] = GGML_CPU_FP16_TO_FP32(*src0_ptr);
  134. id++;
  135. }
  136. }
  137. id += ne00 * (ne01 - ir1);
  138. }
  139. }
  140. } else if (dst->type == GGML_TYPE_F16) {
  141. size_t id = 0;
  142. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  143. for (int i03 = 0; i03 < ne03; i03++) {
  144. for (int i02 = 0; i02 < ne02; i02++) {
  145. id += ne00 * ir0;
  146. for (int i01 = ir0; i01 < ir1; i01++) {
  147. for (int i00 = 0; i00 < ne00; i00++) {
  148. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  149. dst_ptr[id] = *src0_ptr;
  150. id++;
  151. }
  152. }
  153. id += ne00 * (ne01 - ir1);
  154. }
  155. }
  156. } else {
  157. GGML_ABORT("fatal error"); // TODO: implement
  158. }
  159. }
  160. return;
  161. }
  162. // dst counters
  163. int64_t i10 = 0;
  164. int64_t i11 = 0;
  165. int64_t i12 = 0;
  166. int64_t i13 = 0;
  167. if (dst->type == GGML_TYPE_F16) {
  168. for (int64_t i03 = 0; i03 < ne03; i03++) {
  169. for (int64_t i02 = 0; i02 < ne02; i02++) {
  170. i10 += ne00 * ir0;
  171. while (i10 >= ne0) {
  172. i10 -= ne0;
  173. if (++i11 == ne1) {
  174. i11 = 0;
  175. if (++i12 == ne2) {
  176. i12 = 0;
  177. if (++i13 == ne3) {
  178. i13 = 0;
  179. }
  180. }
  181. }
  182. }
  183. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  184. for (int64_t i00 = 0; i00 < ne00; i00++) {
  185. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  186. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  187. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  188. if (++i10 == ne00) {
  189. i10 = 0;
  190. if (++i11 == ne01) {
  191. i11 = 0;
  192. if (++i12 == ne02) {
  193. i12 = 0;
  194. if (++i13 == ne03) {
  195. i13 = 0;
  196. }
  197. }
  198. }
  199. }
  200. }
  201. }
  202. i10 += ne00 * (ne01 - ir1);
  203. while (i10 >= ne0) {
  204. i10 -= ne0;
  205. if (++i11 == ne1) {
  206. i11 = 0;
  207. if (++i12 == ne2) {
  208. i12 = 0;
  209. if (++i13 == ne3) {
  210. i13 = 0;
  211. }
  212. }
  213. }
  214. }
  215. }
  216. }
  217. } else if (dst->type == GGML_TYPE_F32) {
  218. for (int64_t i03 = 0; i03 < ne03; i03++) {
  219. for (int64_t i02 = 0; i02 < ne02; i02++) {
  220. i10 += ne00 * ir0;
  221. while (i10 >= ne0) {
  222. i10 -= ne0;
  223. if (++i11 == ne1) {
  224. i11 = 0;
  225. if (++i12 == ne2) {
  226. i12 = 0;
  227. if (++i13 == ne3) {
  228. i13 = 0;
  229. }
  230. }
  231. }
  232. }
  233. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  234. for (int64_t i00 = 0; i00 < ne00; i00++) {
  235. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  236. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  237. *(float *) dst_ptr = GGML_CPU_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  238. if (++i10 == ne0) {
  239. i10 = 0;
  240. if (++i11 == ne1) {
  241. i11 = 0;
  242. if (++i12 == ne2) {
  243. i12 = 0;
  244. if (++i13 == ne3) {
  245. i13 = 0;
  246. }
  247. }
  248. }
  249. }
  250. }
  251. }
  252. i10 += ne00 * (ne01 - ir1);
  253. while (i10 >= ne0) {
  254. i10 -= ne0;
  255. if (++i11 == ne1) {
  256. i11 = 0;
  257. if (++i12 == ne2) {
  258. i12 = 0;
  259. if (++i13 == ne3) {
  260. i13 = 0;
  261. }
  262. }
  263. }
  264. }
  265. }
  266. }
  267. } else {
  268. GGML_ABORT("fatal error"); // TODO: implement
  269. }
  270. }
  271. static void ggml_compute_forward_dup_bf16(
  272. const ggml_compute_params * params,
  273. ggml_tensor * dst) {
  274. const ggml_tensor * src0 = dst->src[0];
  275. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  276. GGML_TENSOR_UNARY_OP_LOCALS
  277. const int ith = params->ith; // thread index
  278. const int nth = params->nth; // number of threads
  279. // parallelize by rows
  280. const int nr = ne01;
  281. // number of rows per thread
  282. const int dr = (nr + nth - 1) / nth;
  283. // row range for this thread
  284. const int ir0 = dr * ith;
  285. const int ir1 = MIN(ir0 + dr, nr);
  286. if (src0->type == dst->type &&
  287. ne00 == ne0 &&
  288. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  289. // copy by rows
  290. const size_t rs = ne00*nb00;
  291. for (int64_t i03 = 0; i03 < ne03; i03++) {
  292. for (int64_t i02 = 0; i02 < ne02; i02++) {
  293. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  294. memcpy(
  295. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  296. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  297. rs);
  298. }
  299. }
  300. }
  301. return;
  302. }
  303. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  304. if (ggml_is_contiguous(dst)) {
  305. if (nb00 == sizeof(ggml_bf16_t)) {
  306. if (dst->type == GGML_TYPE_BF16) {
  307. size_t id = 0;
  308. const size_t rs = ne00 * nb00;
  309. char * dst_ptr = (char *) dst->data;
  310. for (int i03 = 0; i03 < ne03; i03++) {
  311. for (int i02 = 0; i02 < ne02; i02++) {
  312. id += rs * ir0;
  313. for (int i01 = ir0; i01 < ir1; i01++) {
  314. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  315. memcpy(dst_ptr + id, src0_ptr, rs);
  316. id += rs;
  317. }
  318. id += rs * (ne01 - ir1);
  319. }
  320. }
  321. } else if (dst->type == GGML_TYPE_F16) {
  322. size_t id = 0;
  323. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  324. for (int i03 = 0; i03 < ne03; i03++) {
  325. for (int i02 = 0; i02 < ne02; i02++) {
  326. id += ne00 * ir0;
  327. for (int i01 = ir0; i01 < ir1; i01++) {
  328. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  329. for (int i00 = 0; i00 < ne00; i00++) {
  330. dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  331. id++;
  332. }
  333. }
  334. id += ne00 * (ne01 - ir1);
  335. }
  336. }
  337. } else if (dst->type == GGML_TYPE_F32) {
  338. size_t id = 0;
  339. float * dst_ptr = (float *) dst->data;
  340. for (int i03 = 0; i03 < ne03; i03++) {
  341. for (int i02 = 0; i02 < ne02; i02++) {
  342. id += ne00 * ir0;
  343. for (int i01 = ir0; i01 < ir1; i01++) {
  344. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  345. for (int i00 = 0; i00 < ne00; i00++) {
  346. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  347. id++;
  348. }
  349. }
  350. id += ne00 * (ne01 - ir1);
  351. }
  352. }
  353. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  354. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  355. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  356. size_t id = 0;
  357. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  358. char * dst_ptr = (char *) dst->data;
  359. for (int i03 = 0; i03 < ne03; i03++) {
  360. for (int i02 = 0; i02 < ne02; i02++) {
  361. id += rs * ir0;
  362. for (int i01 = ir0; i01 < ir1; i01++) {
  363. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  364. for (int i00 = 0; i00 < ne00; i00++) {
  365. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  366. }
  367. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  368. id += rs;
  369. }
  370. id += rs * (ne01 - ir1);
  371. }
  372. }
  373. } else {
  374. GGML_ABORT("fatal error"); // TODO: implement
  375. }
  376. } else {
  377. //printf("%s: this is not optimal - fix me\n", __func__);
  378. if (dst->type == GGML_TYPE_F32) {
  379. size_t id = 0;
  380. float * dst_ptr = (float *) dst->data;
  381. for (int i03 = 0; i03 < ne03; i03++) {
  382. for (int i02 = 0; i02 < ne02; i02++) {
  383. id += ne00 * ir0;
  384. for (int i01 = ir0; i01 < ir1; i01++) {
  385. for (int i00 = 0; i00 < ne00; i00++) {
  386. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  387. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  388. id++;
  389. }
  390. }
  391. id += ne00 * (ne01 - ir1);
  392. }
  393. }
  394. } else if (dst->type == GGML_TYPE_BF16) {
  395. size_t id = 0;
  396. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  397. for (int i03 = 0; i03 < ne03; i03++) {
  398. for (int i02 = 0; i02 < ne02; i02++) {
  399. id += ne00 * ir0;
  400. for (int i01 = ir0; i01 < ir1; i01++) {
  401. for (int i00 = 0; i00 < ne00; i00++) {
  402. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  403. dst_ptr[id] = *src0_ptr;
  404. id++;
  405. }
  406. }
  407. id += ne00 * (ne01 - ir1);
  408. }
  409. }
  410. } else if (dst->type == GGML_TYPE_F16) {
  411. size_t id = 0;
  412. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  413. for (int i03 = 0; i03 < ne03; i03++) {
  414. for (int i02 = 0; i02 < ne02; i02++) {
  415. id += ne00 * ir0;
  416. for (int i01 = ir0; i01 < ir1; i01++) {
  417. for (int i00 = 0; i00 < ne00; i00++) {
  418. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  419. dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  420. id++;
  421. }
  422. }
  423. id += ne00 * (ne01 - ir1);
  424. }
  425. }
  426. } else {
  427. GGML_ABORT("fatal error"); // TODO: implement
  428. }
  429. }
  430. return;
  431. }
  432. // dst counters
  433. int64_t i10 = 0;
  434. int64_t i11 = 0;
  435. int64_t i12 = 0;
  436. int64_t i13 = 0;
  437. if (dst->type == GGML_TYPE_BF16) {
  438. for (int64_t i03 = 0; i03 < ne03; i03++) {
  439. for (int64_t i02 = 0; i02 < ne02; i02++) {
  440. i10 += ne00 * ir0;
  441. while (i10 >= ne0) {
  442. i10 -= ne0;
  443. if (++i11 == ne1) {
  444. i11 = 0;
  445. if (++i12 == ne2) {
  446. i12 = 0;
  447. if (++i13 == ne3) {
  448. i13 = 0;
  449. }
  450. }
  451. }
  452. }
  453. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  454. for (int64_t i00 = 0; i00 < ne00; i00++) {
  455. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  456. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  457. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  458. if (++i10 == ne00) {
  459. i10 = 0;
  460. if (++i11 == ne01) {
  461. i11 = 0;
  462. if (++i12 == ne02) {
  463. i12 = 0;
  464. if (++i13 == ne03) {
  465. i13 = 0;
  466. }
  467. }
  468. }
  469. }
  470. }
  471. }
  472. i10 += ne00 * (ne01 - ir1);
  473. while (i10 >= ne0) {
  474. i10 -= ne0;
  475. if (++i11 == ne1) {
  476. i11 = 0;
  477. if (++i12 == ne2) {
  478. i12 = 0;
  479. if (++i13 == ne3) {
  480. i13 = 0;
  481. }
  482. }
  483. }
  484. }
  485. }
  486. }
  487. } else if (dst->type == GGML_TYPE_F16) {
  488. for (int64_t i03 = 0; i03 < ne03; i03++) {
  489. for (int64_t i02 = 0; i02 < ne02; i02++) {
  490. i10 += ne00 * ir0;
  491. while (i10 >= ne0) {
  492. i10 -= ne0;
  493. if (++i11 == ne1) {
  494. i11 = 0;
  495. if (++i12 == ne2) {
  496. i12 = 0;
  497. if (++i13 == ne3) {
  498. i13 = 0;
  499. }
  500. }
  501. }
  502. }
  503. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  504. for (int64_t i00 = 0; i00 < ne00; i00++) {
  505. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  506. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  507. *(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  508. if (++i10 == ne0) {
  509. i10 = 0;
  510. if (++i11 == ne1) {
  511. i11 = 0;
  512. if (++i12 == ne2) {
  513. i12 = 0;
  514. if (++i13 == ne3) {
  515. i13 = 0;
  516. }
  517. }
  518. }
  519. }
  520. }
  521. }
  522. i10 += ne00 * (ne01 - ir1);
  523. while (i10 >= ne0) {
  524. i10 -= ne0;
  525. if (++i11 == ne1) {
  526. i11 = 0;
  527. if (++i12 == ne2) {
  528. i12 = 0;
  529. if (++i13 == ne3) {
  530. i13 = 0;
  531. }
  532. }
  533. }
  534. }
  535. }
  536. }
  537. } else if (dst->type == GGML_TYPE_F32) {
  538. for (int64_t i03 = 0; i03 < ne03; i03++) {
  539. for (int64_t i02 = 0; i02 < ne02; i02++) {
  540. i10 += ne00 * ir0;
  541. while (i10 >= ne0) {
  542. i10 -= ne0;
  543. if (++i11 == ne1) {
  544. i11 = 0;
  545. if (++i12 == ne2) {
  546. i12 = 0;
  547. if (++i13 == ne3) {
  548. i13 = 0;
  549. }
  550. }
  551. }
  552. }
  553. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  554. for (int64_t i00 = 0; i00 < ne00; i00++) {
  555. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  556. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  557. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  558. if (++i10 == ne0) {
  559. i10 = 0;
  560. if (++i11 == ne1) {
  561. i11 = 0;
  562. if (++i12 == ne2) {
  563. i12 = 0;
  564. if (++i13 == ne3) {
  565. i13 = 0;
  566. }
  567. }
  568. }
  569. }
  570. }
  571. }
  572. i10 += ne00 * (ne01 - ir1);
  573. while (i10 >= ne0) {
  574. i10 -= ne0;
  575. if (++i11 == ne1) {
  576. i11 = 0;
  577. if (++i12 == ne2) {
  578. i12 = 0;
  579. if (++i13 == ne3) {
  580. i13 = 0;
  581. }
  582. }
  583. }
  584. }
  585. }
  586. }
  587. } else {
  588. GGML_ABORT("fatal error"); // TODO: implement
  589. }
  590. }
  591. static void ggml_compute_forward_dup_f32(
  592. const ggml_compute_params * params,
  593. ggml_tensor * dst) {
  594. const ggml_tensor * src0 = dst->src[0];
  595. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  596. GGML_TENSOR_UNARY_OP_LOCALS
  597. const int ith = params->ith; // thread index
  598. const int nth = params->nth; // number of threads
  599. // parallelize by rows
  600. const int nr = ne01;
  601. // number of rows per thread
  602. const int dr = (nr + nth - 1) / nth;
  603. // row range for this thread
  604. const int ir0 = dr * ith;
  605. const int ir1 = MIN(ir0 + dr, nr);
  606. if (src0->type == dst->type &&
  607. ne00 == ne0 &&
  608. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  609. // copy by rows
  610. const size_t rs = ne00*nb00;
  611. for (int64_t i03 = 0; i03 < ne03; i03++) {
  612. for (int64_t i02 = 0; i02 < ne02; i02++) {
  613. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  614. memcpy(
  615. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  616. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  617. rs);
  618. }
  619. }
  620. }
  621. return;
  622. }
  623. if (ggml_is_contiguous(dst)) {
  624. // TODO: simplify
  625. if (nb00 == sizeof(float)) {
  626. if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  627. ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
  628. size_t id = 0;
  629. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  630. char * dst_ptr = (char *) dst->data;
  631. for (int i03 = 0; i03 < ne03; i03++) {
  632. for (int i02 = 0; i02 < ne02; i02++) {
  633. id += rs * ir0;
  634. for (int i01 = ir0; i01 < ir1; i01++) {
  635. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  636. from_float(src0_ptr, dst_ptr + id, ne00);
  637. id += rs;
  638. }
  639. id += rs * (ne01 - ir1);
  640. }
  641. }
  642. } else {
  643. GGML_ABORT("fatal error"); // TODO: implement
  644. }
  645. } else {
  646. //printf("%s: this is not optimal - fix me\n", __func__);
  647. if (dst->type == GGML_TYPE_F32) {
  648. size_t id = 0;
  649. float * dst_ptr = (float *) dst->data;
  650. for (int i03 = 0; i03 < ne03; i03++) {
  651. for (int i02 = 0; i02 < ne02; i02++) {
  652. id += ne00 * ir0;
  653. for (int i01 = ir0; i01 < ir1; i01++) {
  654. for (int i00 = 0; i00 < ne00; i00++) {
  655. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  656. dst_ptr[id] = *src0_ptr;
  657. id++;
  658. }
  659. }
  660. id += ne00 * (ne01 - ir1);
  661. }
  662. }
  663. } else if (dst->type == GGML_TYPE_F16) {
  664. size_t id = 0;
  665. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  666. for (int i03 = 0; i03 < ne03; i03++) {
  667. for (int i02 = 0; i02 < ne02; i02++) {
  668. id += ne00 * ir0;
  669. for (int i01 = ir0; i01 < ir1; i01++) {
  670. for (int i00 = 0; i00 < ne00; i00++) {
  671. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  672. dst_ptr[id] = GGML_CPU_FP32_TO_FP16(*src0_ptr);
  673. id++;
  674. }
  675. }
  676. id += ne00 * (ne01 - ir1);
  677. }
  678. }
  679. } else if (dst->type == GGML_TYPE_BF16) {
  680. size_t id = 0;
  681. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  682. for (int i03 = 0; i03 < ne03; i03++) {
  683. for (int i02 = 0; i02 < ne02; i02++) {
  684. id += ne00 * ir0;
  685. for (int i01 = ir0; i01 < ir1; i01++) {
  686. for (int i00 = 0; i00 < ne00; i00++) {
  687. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  688. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  689. id++;
  690. }
  691. }
  692. id += ne00 * (ne01 - ir1);
  693. }
  694. }
  695. } else if (dst->type == GGML_TYPE_I32) {
  696. size_t id = 0;
  697. int32_t * dst_ptr = (int32_t *) dst->data;
  698. for (int i03 = 0; i03 < ne03; i03++) {
  699. for (int i02 = 0; i02 < ne02; i02++) {
  700. id += ne00 * ir0;
  701. for (int i01 = ir0; i01 < ir1; i01++) {
  702. for (int i00 = 0; i00 < ne00; i00++) {
  703. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  704. dst_ptr[id] = *src0_ptr;
  705. id++;
  706. }
  707. }
  708. id += ne00 * (ne01 - ir1);
  709. }
  710. }
  711. } else {
  712. GGML_ABORT("fatal error"); // TODO: implement
  713. }
  714. }
  715. return;
  716. }
  717. // dst counters
  718. int64_t i10 = 0;
  719. int64_t i11 = 0;
  720. int64_t i12 = 0;
  721. int64_t i13 = 0;
  722. if (dst->type == GGML_TYPE_F32) {
  723. for (int64_t i03 = 0; i03 < ne03; i03++) {
  724. for (int64_t i02 = 0; i02 < ne02; i02++) {
  725. i10 += ne00 * ir0;
  726. while (i10 >= ne0) {
  727. i10 -= ne0;
  728. if (++i11 == ne1) {
  729. i11 = 0;
  730. if (++i12 == ne2) {
  731. i12 = 0;
  732. if (++i13 == ne3) {
  733. i13 = 0;
  734. }
  735. }
  736. }
  737. }
  738. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  739. for (int64_t i00 = 0; i00 < ne00; i00++) {
  740. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  741. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  742. memcpy(dst_ptr, src0_ptr, sizeof(float));
  743. if (++i10 == ne0) {
  744. i10 = 0;
  745. if (++i11 == ne1) {
  746. i11 = 0;
  747. if (++i12 == ne2) {
  748. i12 = 0;
  749. if (++i13 == ne3) {
  750. i13 = 0;
  751. }
  752. }
  753. }
  754. }
  755. }
  756. }
  757. i10 += ne00 * (ne01 - ir1);
  758. while (i10 >= ne0) {
  759. i10 -= ne0;
  760. if (++i11 == ne1) {
  761. i11 = 0;
  762. if (++i12 == ne2) {
  763. i12 = 0;
  764. if (++i13 == ne3) {
  765. i13 = 0;
  766. }
  767. }
  768. }
  769. }
  770. }
  771. }
  772. } else if (dst->type == GGML_TYPE_F16) {
  773. for (int64_t i03 = 0; i03 < ne03; i03++) {
  774. for (int64_t i02 = 0; i02 < ne02; i02++) {
  775. i10 += ne00 * ir0;
  776. while (i10 >= ne0) {
  777. i10 -= ne0;
  778. if (++i11 == ne1) {
  779. i11 = 0;
  780. if (++i12 == ne2) {
  781. i12 = 0;
  782. if (++i13 == ne3) {
  783. i13 = 0;
  784. }
  785. }
  786. }
  787. }
  788. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  789. for (int64_t i00 = 0; i00 < ne00; i00++) {
  790. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  791. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  792. *(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(*(const float *) src0_ptr);
  793. if (++i10 == ne0) {
  794. i10 = 0;
  795. if (++i11 == ne1) {
  796. i11 = 0;
  797. if (++i12 == ne2) {
  798. i12 = 0;
  799. if (++i13 == ne3) {
  800. i13 = 0;
  801. }
  802. }
  803. }
  804. }
  805. }
  806. }
  807. i10 += ne00 * (ne01 - ir1);
  808. while (i10 >= ne0) {
  809. i10 -= ne0;
  810. if (++i11 == ne1) {
  811. i11 = 0;
  812. if (++i12 == ne2) {
  813. i12 = 0;
  814. if (++i13 == ne3) {
  815. i13 = 0;
  816. }
  817. }
  818. }
  819. }
  820. }
  821. }
  822. } else if (dst->type == GGML_TYPE_BF16) {
  823. for (int64_t i03 = 0; i03 < ne03; i03++) {
  824. for (int64_t i02 = 0; i02 < ne02; i02++) {
  825. i10 += ne00 * ir0;
  826. while (i10 >= ne0) {
  827. i10 -= ne0;
  828. if (++i11 == ne1) {
  829. i11 = 0;
  830. if (++i12 == ne2) {
  831. i12 = 0;
  832. if (++i13 == ne3) {
  833. i13 = 0;
  834. }
  835. }
  836. }
  837. }
  838. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  839. for (int64_t i00 = 0; i00 < ne00; i00++) {
  840. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  841. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  842. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  843. if (++i10 == ne0) {
  844. i10 = 0;
  845. if (++i11 == ne1) {
  846. i11 = 0;
  847. if (++i12 == ne2) {
  848. i12 = 0;
  849. if (++i13 == ne3) {
  850. i13 = 0;
  851. }
  852. }
  853. }
  854. }
  855. }
  856. }
  857. i10 += ne00 * (ne01 - ir1);
  858. while (i10 >= ne0) {
  859. i10 -= ne0;
  860. if (++i11 == ne1) {
  861. i11 = 0;
  862. if (++i12 == ne2) {
  863. i12 = 0;
  864. if (++i13 == ne3) {
  865. i13 = 0;
  866. }
  867. }
  868. }
  869. }
  870. }
  871. }
  872. } else if (dst->type == GGML_TYPE_I32) {
  873. for (int64_t i03 = 0; i03 < ne03; i03++) {
  874. for (int64_t i02 = 0; i02 < ne02; i02++) {
  875. i10 += ne00 * ir0;
  876. while (i10 >= ne0) {
  877. i10 -= ne0;
  878. if (++i11 == ne1) {
  879. i11 = 0;
  880. if (++i12 == ne2) {
  881. i12 = 0;
  882. if (++i13 == ne3) {
  883. i13 = 0;
  884. }
  885. }
  886. }
  887. }
  888. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  889. for (int64_t i00 = 0; i00 < ne00; i00++) {
  890. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  891. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  892. *(int32_t *) dst_ptr = *(const float *) src0_ptr;
  893. if (++i10 == ne0) {
  894. i10 = 0;
  895. if (++i11 == ne1) {
  896. i11 = 0;
  897. if (++i12 == ne2) {
  898. i12 = 0;
  899. if (++i13 == ne3) {
  900. i13 = 0;
  901. }
  902. }
  903. }
  904. }
  905. }
  906. }
  907. i10 += ne00 * (ne01 - ir1);
  908. while (i10 >= ne0) {
  909. i10 -= ne0;
  910. if (++i11 == ne1) {
  911. i11 = 0;
  912. if (++i12 == ne2) {
  913. i12 = 0;
  914. if (++i13 == ne3) {
  915. i13 = 0;
  916. }
  917. }
  918. }
  919. }
  920. }
  921. }
  922. } else {
  923. GGML_ABORT("fatal error"); // TODO: implement
  924. }
  925. }
  926. static void ggml_compute_forward_dup_i32(
  927. const ggml_compute_params * params,
  928. ggml_tensor * dst) {
  929. const ggml_tensor * src0 = dst->src[0];
  930. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  931. GGML_TENSOR_UNARY_OP_LOCALS
  932. const int ith = params->ith; // thread index
  933. const int nth = params->nth; // number of threads
  934. // parallelize by rows
  935. const int nr = ne01;
  936. // number of rows per thread
  937. const int dr = (nr + nth - 1) / nth;
  938. // row range for this thread
  939. const int ir0 = dr * ith;
  940. const int ir1 = MIN(ir0 + dr, nr);
  941. // dst counters
  942. int64_t i10 = 0;
  943. int64_t i11 = 0;
  944. int64_t i12 = 0;
  945. int64_t i13 = 0;
  946. // TODO: not optimal, but works
  947. if (dst->type == GGML_TYPE_F32) {
  948. for (int64_t i03 = 0; i03 < ne03; i03++) {
  949. for (int64_t i02 = 0; i02 < ne02; i02++) {
  950. i10 += ne00 * ir0;
  951. while (i10 >= ne0) {
  952. i10 -= ne0;
  953. if (++i11 == ne1) {
  954. i11 = 0;
  955. if (++i12 == ne2) {
  956. i12 = 0;
  957. if (++i13 == ne3) {
  958. i13 = 0;
  959. }
  960. }
  961. }
  962. }
  963. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  964. for (int64_t i00 = 0; i00 < ne00; i00++) {
  965. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  966. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  967. *(float *) dst_ptr = *(const int32_t *) src0_ptr;
  968. if (++i10 == ne0) {
  969. i10 = 0;
  970. if (++i11 == ne1) {
  971. i11 = 0;
  972. if (++i12 == ne2) {
  973. i12 = 0;
  974. if (++i13 == ne3) {
  975. i13 = 0;
  976. }
  977. }
  978. }
  979. }
  980. }
  981. }
  982. i10 += ne00 * (ne01 - ir1);
  983. while (i10 >= ne0) {
  984. i10 -= ne0;
  985. if (++i11 == ne1) {
  986. i11 = 0;
  987. if (++i12 == ne2) {
  988. i12 = 0;
  989. if (++i13 == ne3) {
  990. i13 = 0;
  991. }
  992. }
  993. }
  994. }
  995. }
  996. }
  997. } else {
  998. GGML_ABORT("fatal error"); // TODO: implement
  999. }
  1000. }
  1001. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  1002. static void ggml_compute_forward_dup_bytes(
  1003. const ggml_compute_params * params,
  1004. ggml_tensor * dst) {
  1005. const ggml_tensor * src0 = dst->src[0];
  1006. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  1007. GGML_ASSERT(src0->type == dst->type);
  1008. GGML_TENSOR_UNARY_OP_LOCALS;
  1009. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  1010. ggml_compute_forward_dup_same_cont(params, dst);
  1011. return;
  1012. }
  1013. const size_t type_size = ggml_type_size(src0->type);
  1014. const int ith = params->ith; // thread index
  1015. const int nth = params->nth; // number of threads
  1016. // parallelize by rows
  1017. const int nr = ne01;
  1018. // number of rows per thread
  1019. const int dr = (nr + nth - 1) / nth;
  1020. // row range for this thread
  1021. const int ir0 = dr * ith;
  1022. const int ir1 = MIN(ir0 + dr, nr);
  1023. if (src0->type == dst->type &&
  1024. ggml_are_same_shape(src0, dst) &&
  1025. nb00 == type_size && nb0 == type_size) {
  1026. // copy by rows
  1027. const size_t rs = ggml_row_size(src0->type, ne00);
  1028. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1029. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1030. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  1031. memcpy(
  1032. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  1033. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  1034. rs);
  1035. }
  1036. }
  1037. }
  1038. return;
  1039. }
  1040. if (ggml_is_contiguous(dst)) {
  1041. size_t id = 0;
  1042. char * dst_ptr = (char *) dst->data;
  1043. const size_t rs = ne00 * type_size;
  1044. if (nb00 == type_size) {
  1045. // src0 is contigous on first dimension, copy by rows
  1046. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1047. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1048. id += rs * ir0;
  1049. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  1050. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  1051. memcpy(dst_ptr + id, src0_ptr, rs);
  1052. id += rs;
  1053. }
  1054. id += rs * (ne01 - ir1);
  1055. }
  1056. }
  1057. } else {
  1058. //printf("%s: this is not optimal - fix me\n", __func__);
  1059. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1060. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1061. id += rs * ir0;
  1062. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  1063. for (int64_t i00 = 0; i00 < ne00; i00++) {
  1064. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  1065. memcpy(dst_ptr + id, src0_ptr, type_size);
  1066. id += type_size;
  1067. }
  1068. }
  1069. id += rs * (ne01 - ir1);
  1070. }
  1071. }
  1072. }
  1073. return;
  1074. }
  1075. // dst counters
  1076. int64_t k10 = 0;
  1077. int64_t i11 = 0;
  1078. int64_t i12 = 0;
  1079. int64_t i13 = 0;
  1080. // number of blocks in a row
  1081. const int64_t nk00 = ne00 / ggml_blck_size(src0->type);
  1082. const int64_t nk0 = ne0 / ggml_blck_size(dst->type);
  1083. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1084. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1085. k10 += nk00 * ir0;
  1086. while (k10 >= nk0) {
  1087. k10 -= nk0;
  1088. if (++i11 == ne1) {
  1089. i11 = 0;
  1090. if (++i12 == ne2) {
  1091. i12 = 0;
  1092. if (++i13 == ne3) {
  1093. i13 = 0;
  1094. }
  1095. }
  1096. }
  1097. }
  1098. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  1099. for (int64_t k00 = 0; k00 < nk00; k00++) {
  1100. const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  1101. char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  1102. memcpy(dst_ptr, src0_ptr, type_size);
  1103. if (++k10 == nk0) {
  1104. k10 = 0;
  1105. if (++i11 == ne1) {
  1106. i11 = 0;
  1107. if (++i12 == ne2) {
  1108. i12 = 0;
  1109. if (++i13 == ne3) {
  1110. i13 = 0;
  1111. }
  1112. }
  1113. }
  1114. }
  1115. }
  1116. }
  1117. k10 += nk00 * (ne01 - ir1);
  1118. while (k10 >= nk0) {
  1119. k10 -= nk0;
  1120. if (++i11 == ne1) {
  1121. i11 = 0;
  1122. if (++i12 == ne2) {
  1123. i12 = 0;
  1124. if (++i13 == ne3) {
  1125. i13 = 0;
  1126. }
  1127. }
  1128. }
  1129. }
  1130. }
  1131. }
  1132. }
  1133. static void ggml_compute_forward_dup_q(
  1134. const ggml_compute_params * params,
  1135. ggml_tensor * dst) {
  1136. const ggml_tensor * src0 = dst->src[0];
  1137. const ggml_tensor * src1 = dst->src[1];
  1138. GGML_TENSOR_BINARY_OP_LOCALS
  1139. const ggml_type type = src0->type;
  1140. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  1141. size_t qk = ggml_blck_size(type);
  1142. const int64_t nr = ggml_nelements(src1) / qk;
  1143. // destination must be contiguous in the first dimension
  1144. GGML_ASSERT(nb10 == ggml_type_size(dst->type));
  1145. // must either have first dimension large enough to hold a row, or fully contiguous
  1146. GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
  1147. const int ith = params->ith;
  1148. const int nth = params->nth;
  1149. const int dr = (nr + nth - 1)/nth;
  1150. // row range for this thread
  1151. const int ir0 = dr*ith;
  1152. const int ir1 = MIN(ir0 + dr, nr);
  1153. for (int64_t ir = ir0; ir < ir1; ++ir) {
  1154. uint32_t i = ir * qk;
  1155. const int64_t i03 = i/(ne00 * ne01 * ne02);
  1156. const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
  1157. const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
  1158. const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
  1159. const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
  1160. const int64_t i13 = i/(ne10 * ne11 * ne12);
  1161. const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
  1162. const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
  1163. const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
  1164. const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
  1165. dequantize_row_q(
  1166. (const void *) ((char *) src0->data + x_offset),
  1167. (float *) ((char *) dst->data + dst_offset), qk);
  1168. }
  1169. }
  1170. void ggml_compute_forward_dup(
  1171. const ggml_compute_params * params,
  1172. ggml_tensor * dst) {
  1173. const ggml_tensor * src0 = dst->src[0];
  1174. if (src0->type == dst->type) {
  1175. ggml_compute_forward_dup_bytes(params, dst);
  1176. return;
  1177. }
  1178. switch (src0->type) {
  1179. case GGML_TYPE_F16:
  1180. {
  1181. ggml_compute_forward_dup_f16(params, dst);
  1182. } break;
  1183. case GGML_TYPE_BF16:
  1184. {
  1185. ggml_compute_forward_dup_bf16(params, dst);
  1186. } break;
  1187. case GGML_TYPE_F32:
  1188. {
  1189. ggml_compute_forward_dup_f32(params, dst);
  1190. } break;
  1191. case GGML_TYPE_I32:
  1192. {
  1193. ggml_compute_forward_dup_i32(params, dst);
  1194. } break;
  1195. default:
  1196. {
  1197. if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
  1198. ggml_compute_forward_dup_q(params, dst);
  1199. break;
  1200. }
  1201. GGML_ABORT("fatal error");
  1202. }
  1203. }
  1204. }
  1205. // ggml_compute_forward_add
  1206. static void ggml_compute_forward_add_q_f32(
  1207. const ggml_compute_params * params,
  1208. ggml_tensor * dst) {
  1209. const ggml_tensor * src0 = dst->src[0];
  1210. const ggml_tensor * src1 = dst->src[1];
  1211. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  1212. const int nr = ggml_nrows(src0);
  1213. GGML_TENSOR_BINARY_OP_LOCALS
  1214. const int ith = params->ith;
  1215. const int nth = params->nth;
  1216. const ggml_type type = src0->type;
  1217. const ggml_type dtype = dst->type;
  1218. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  1219. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
  1220. // we don't support permuted src0 or src1
  1221. GGML_ASSERT(nb00 == ggml_type_size(type));
  1222. GGML_ASSERT(nb10 == sizeof(float));
  1223. // dst cannot be transposed or permuted
  1224. GGML_ASSERT(nb0 <= nb1);
  1225. GGML_ASSERT(nb1 <= nb2);
  1226. GGML_ASSERT(nb2 <= nb3);
  1227. GGML_ASSERT(ggml_is_quantized(src0->type));
  1228. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1229. // rows per thread
  1230. const int dr = (nr + nth - 1)/nth;
  1231. // row range for this thread
  1232. const int ir0 = dr*ith;
  1233. const int ir1 = MIN(ir0 + dr, nr);
  1234. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  1235. for (int ir = ir0; ir < ir1; ++ir) {
  1236. // src0 indices
  1237. const int i03 = ir/(ne02*ne01);
  1238. const int i02 = (ir - i03*ne02*ne01)/ne01;
  1239. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  1240. // src1 and dst are same shape as src0 => same indices
  1241. const int i13 = i03;
  1242. const int i12 = i02;
  1243. const int i11 = i01;
  1244. const int i3 = i03;
  1245. const int i2 = i02;
  1246. const int i1 = i01;
  1247. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  1248. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  1249. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  1250. assert(ne00 % 32 == 0);
  1251. // unquantize row from src0 to temp buffer
  1252. dequantize_row_q(src0_row, wdata, ne00);
  1253. // add src1
  1254. ggml_vec_acc_f32(ne00, wdata, src1_row);
  1255. // quantize row to dst
  1256. if (quantize_row_q != NULL) {
  1257. quantize_row_q(wdata, dst_row, ne00);
  1258. } else {
  1259. memcpy(dst_row, wdata, ne0*nb0);
  1260. }
  1261. }
  1262. }
  1263. void ggml_compute_forward_add(
  1264. const ggml_compute_params * params,
  1265. ggml_tensor * dst) {
  1266. const ggml_tensor * src0 = dst->src[0];
  1267. switch (src0->type) {
  1268. case GGML_TYPE_F32:
  1269. case GGML_TYPE_F16:
  1270. case GGML_TYPE_BF16:
  1271. {
  1272. ggml_compute_forward_add_non_quantized(params, dst);
  1273. } break;
  1274. case GGML_TYPE_Q4_0:
  1275. case GGML_TYPE_Q4_1:
  1276. case GGML_TYPE_Q5_0:
  1277. case GGML_TYPE_Q5_1:
  1278. case GGML_TYPE_Q8_0:
  1279. case GGML_TYPE_MXFP4:
  1280. case GGML_TYPE_Q2_K:
  1281. case GGML_TYPE_Q3_K:
  1282. case GGML_TYPE_Q4_K:
  1283. case GGML_TYPE_Q5_K:
  1284. case GGML_TYPE_Q6_K:
  1285. case GGML_TYPE_TQ1_0:
  1286. case GGML_TYPE_TQ2_0:
  1287. case GGML_TYPE_IQ2_XXS:
  1288. case GGML_TYPE_IQ2_XS:
  1289. case GGML_TYPE_IQ3_XXS:
  1290. case GGML_TYPE_IQ1_S:
  1291. case GGML_TYPE_IQ1_M:
  1292. case GGML_TYPE_IQ4_NL:
  1293. case GGML_TYPE_IQ4_XS:
  1294. case GGML_TYPE_IQ3_S:
  1295. case GGML_TYPE_IQ2_S:
  1296. {
  1297. ggml_compute_forward_add_q_f32(params, dst);
  1298. } break;
  1299. default:
  1300. {
  1301. GGML_ABORT("fatal error");
  1302. }
  1303. }
  1304. }
  1305. // ggml_compute_forward_add_id
  1306. static void ggml_compute_forward_add_id_f32(
  1307. const ggml_compute_params * params,
  1308. ggml_tensor * dst) {
  1309. const ggml_tensor * src0 = dst->src[0];
  1310. const ggml_tensor * src1 = dst->src[1];
  1311. const ggml_tensor * src2 = dst->src[2];
  1312. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  1313. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  1314. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1315. GGML_ASSERT(src2->type == GGML_TYPE_I32);
  1316. GGML_ASSERT(src0->nb[0] == sizeof(float));
  1317. GGML_ASSERT(src1->nb[0] == sizeof(float));
  1318. const int ith = params->ith;
  1319. const int nth = params->nth;
  1320. const int nr = ggml_nrows(src0);
  1321. GGML_TENSOR_TERNARY_OP_LOCALS
  1322. GGML_ASSERT( nb0 == sizeof(float));
  1323. GGML_ASSERT(nb10 == sizeof(float));
  1324. // rows per thread
  1325. const int dr = (nr + nth - 1)/nth;
  1326. // row range for this thread
  1327. const int ir0 = dr*ith;
  1328. const int ir1 = MIN(ir0 + dr, nr);
  1329. for (int ir = ir0; ir < ir1; ++ir) {
  1330. // src0 indices
  1331. const int i3 = ir/(ne2*ne1);
  1332. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1333. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1334. // src1 indices
  1335. const int i11 = *(int32_t *) ((char *) src2->data + i1*nb20 + i2*nb21);
  1336. GGML_ASSERT(i11 >= 0 && i11 < ne11);
  1337. ggml_vec_add_f32(ne0,
  1338. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  1339. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  1340. (float *) ((char *) src1->data + i11*nb11));
  1341. }
  1342. }
  1343. void ggml_compute_forward_add_id(
  1344. const ggml_compute_params * params,
  1345. ggml_tensor * dst) {
  1346. const ggml_tensor * src0 = dst->src[0];
  1347. switch (src0->type) {
  1348. case GGML_TYPE_F32:
  1349. {
  1350. ggml_compute_forward_add_id_f32(params, dst);
  1351. } break;
  1352. default:
  1353. {
  1354. GGML_ABORT("unsupported type for ggml_compute_forward_add_id: %s", ggml_type_name(src0->type));
  1355. }
  1356. }
  1357. }
  1358. // ggml_compute_forward_add1
  1359. static void ggml_compute_forward_add1_f32(
  1360. const ggml_compute_params * params,
  1361. ggml_tensor * dst) {
  1362. const ggml_tensor * src0 = dst->src[0];
  1363. const ggml_tensor * src1 = dst->src[1];
  1364. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1365. GGML_ASSERT(ggml_is_scalar(src1));
  1366. const int ith = params->ith;
  1367. const int nth = params->nth;
  1368. const int nr = ggml_nrows(src0);
  1369. GGML_TENSOR_UNARY_OP_LOCALS
  1370. GGML_ASSERT( nb0 == sizeof(float));
  1371. GGML_ASSERT(nb00 == sizeof(float));
  1372. // rows per thread
  1373. const int dr = (nr + nth - 1)/nth;
  1374. // row range for this thread
  1375. const int ir0 = dr*ith;
  1376. const int ir1 = MIN(ir0 + dr, nr);
  1377. for (int ir = ir0; ir < ir1; ++ir) {
  1378. // src0 and dst are same shape => same indices
  1379. const int i3 = ir/(ne2*ne1);
  1380. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1381. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1382. #ifdef GGML_USE_ACCELERATE
  1383. GGML_UNUSED(ggml_vec_add1_f32);
  1384. vDSP_vadd(
  1385. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  1386. (float *) ((char *) src1->data), 0,
  1387. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  1388. ne0);
  1389. #else
  1390. ggml_vec_add1_f32(ne0,
  1391. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  1392. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  1393. *(float *) src1->data);
  1394. #endif
  1395. }
  1396. }
  1397. static void ggml_compute_forward_add1_f16_f32(
  1398. const ggml_compute_params * params,
  1399. ggml_tensor * dst) {
  1400. const ggml_tensor * src0 = dst->src[0];
  1401. const ggml_tensor * src1 = dst->src[1];
  1402. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1403. GGML_ASSERT(ggml_is_scalar(src1));
  1404. // scalar to add
  1405. const float v = *(float *) src1->data;
  1406. const int ith = params->ith;
  1407. const int nth = params->nth;
  1408. const int nr = ggml_nrows(src0);
  1409. GGML_TENSOR_UNARY_OP_LOCALS
  1410. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1411. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1412. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  1413. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  1414. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  1415. // rows per thread
  1416. const int dr = (nr + nth - 1)/nth;
  1417. // row range for this thread
  1418. const int ir0 = dr*ith;
  1419. const int ir1 = MIN(ir0 + dr, nr);
  1420. for (int ir = ir0; ir < ir1; ++ir) {
  1421. // src0 and dst are same shape => same indices
  1422. const int i3 = ir/(ne2*ne1);
  1423. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1424. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1425. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1426. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1427. for (int i = 0; i < ne0; i++) {
  1428. dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
  1429. }
  1430. }
  1431. }
  1432. static void ggml_compute_forward_add1_f16_f16(
  1433. const ggml_compute_params * params,
  1434. ggml_tensor * dst) {
  1435. const ggml_tensor * src0 = dst->src[0];
  1436. const ggml_tensor * src1 = dst->src[1];
  1437. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1438. GGML_ASSERT(ggml_is_scalar(src1));
  1439. // scalar to add
  1440. const float v = GGML_CPU_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  1441. const int ith = params->ith;
  1442. const int nth = params->nth;
  1443. const int nr = ggml_nrows(src0);
  1444. GGML_TENSOR_UNARY_OP_LOCALS
  1445. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1446. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  1447. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  1448. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  1449. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  1450. // rows per thread
  1451. const int dr = (nr + nth - 1)/nth;
  1452. // row range for this thread
  1453. const int ir0 = dr*ith;
  1454. const int ir1 = MIN(ir0 + dr, nr);
  1455. for (int ir = ir0; ir < ir1; ++ir) {
  1456. // src0 and dst are same shape => same indices
  1457. const int i3 = ir/(ne2*ne1);
  1458. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1459. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1460. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1461. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1462. for (int i = 0; i < ne0; i++) {
  1463. dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
  1464. }
  1465. }
  1466. }
  1467. static void ggml_compute_forward_add1_q_f32(
  1468. const ggml_compute_params * params,
  1469. ggml_tensor * dst) {
  1470. const ggml_tensor * src0 = dst->src[0];
  1471. const ggml_tensor * src1 = dst->src[1];
  1472. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1473. GGML_ASSERT(ggml_is_scalar(src1));
  1474. // scalar to add
  1475. const float v = *(float *) src1->data;
  1476. const int ith = params->ith;
  1477. const int nth = params->nth;
  1478. const int nr = ggml_nrows(src0);
  1479. GGML_TENSOR_UNARY_OP_LOCALS
  1480. const ggml_type type = src0->type;
  1481. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  1482. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
  1483. // we don't support permuted src0
  1484. GGML_ASSERT(nb00 == ggml_type_size(type));
  1485. // dst cannot be transposed or permuted
  1486. GGML_ASSERT(nb0 <= nb1);
  1487. GGML_ASSERT(nb1 <= nb2);
  1488. GGML_ASSERT(nb2 <= nb3);
  1489. GGML_ASSERT(ggml_is_quantized(src0->type));
  1490. GGML_ASSERT(dst->type == src0->type);
  1491. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1492. // rows per thread
  1493. const int dr = (nr + nth - 1)/nth;
  1494. // row range for this thread
  1495. const int ir0 = dr*ith;
  1496. const int ir1 = MIN(ir0 + dr, nr);
  1497. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  1498. for (int ir = ir0; ir < ir1; ++ir) {
  1499. // src0 and dst are same shape => same indices
  1500. const int i3 = ir/(ne2*ne1);
  1501. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1502. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1503. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  1504. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  1505. assert(ne0 % 32 == 0);
  1506. // unquantize row from src0 to temp buffer
  1507. dequantize_row_q(src0_row, wdata, ne0);
  1508. // add src1
  1509. ggml_vec_acc1_f32(ne0, wdata, v);
  1510. // quantize row to dst
  1511. quantize_row_q(wdata, dst_row, ne0);
  1512. }
  1513. }
  1514. static void ggml_compute_forward_add1_bf16_f32(
  1515. const ggml_compute_params * params,
  1516. ggml_tensor * dst) {
  1517. const ggml_tensor * src0 = dst->src[0];
  1518. const ggml_tensor * src1 = dst->src[1];
  1519. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1520. GGML_ASSERT(ggml_is_scalar(src1));
  1521. // scalar to add
  1522. const float v = *(float *) src1->data;
  1523. const int ith = params->ith;
  1524. const int nth = params->nth;
  1525. const int nr = ggml_nrows(src0);
  1526. GGML_TENSOR_UNARY_OP_LOCALS
  1527. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  1528. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1529. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  1530. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  1531. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  1532. // rows per thread
  1533. const int dr = (nr + nth - 1)/nth;
  1534. // row range for this thread
  1535. const int ir0 = dr*ith;
  1536. const int ir1 = MIN(ir0 + dr, nr);
  1537. for (int ir = ir0; ir < ir1; ++ir) {
  1538. // src0 and dst are same shape => same indices
  1539. const int i3 = ir/(ne2*ne1);
  1540. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1541. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1542. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1543. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1544. for (int i = 0; i < ne0; i++) {
  1545. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  1546. }
  1547. }
  1548. }
  1549. static void ggml_compute_forward_add1_bf16_bf16(
  1550. const ggml_compute_params * params,
  1551. ggml_tensor * dst) {
  1552. const ggml_tensor * src0 = dst->src[0];
  1553. const ggml_tensor * src1 = dst->src[1];
  1554. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1555. GGML_ASSERT(ggml_is_scalar(src1));
  1556. // scalar to add
  1557. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  1558. const int ith = params->ith;
  1559. const int nth = params->nth;
  1560. const int nr = ggml_nrows(src0);
  1561. GGML_TENSOR_UNARY_OP_LOCALS
  1562. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  1563. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  1564. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  1565. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  1566. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  1567. // rows per thread
  1568. const int dr = (nr + nth - 1)/nth;
  1569. // row range for this thread
  1570. const int ir0 = dr*ith;
  1571. const int ir1 = MIN(ir0 + dr, nr);
  1572. for (int ir = ir0; ir < ir1; ++ir) {
  1573. // src0 and dst are same shape => same indices
  1574. const int i3 = ir/(ne2*ne1);
  1575. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1576. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1577. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1578. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1579. for (int i = 0; i < ne0; i++) {
  1580. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  1581. }
  1582. }
  1583. }
  1584. void ggml_compute_forward_add1(
  1585. const ggml_compute_params * params,
  1586. ggml_tensor * dst) {
  1587. const ggml_tensor * src0 = dst->src[0];
  1588. const ggml_tensor * src1 = dst->src[1];
  1589. switch (src0->type) {
  1590. case GGML_TYPE_F32:
  1591. {
  1592. ggml_compute_forward_add1_f32(params, dst);
  1593. } break;
  1594. case GGML_TYPE_F16:
  1595. {
  1596. if (src1->type == GGML_TYPE_F16) {
  1597. ggml_compute_forward_add1_f16_f16(params, dst);
  1598. }
  1599. else if (src1->type == GGML_TYPE_F32) {
  1600. ggml_compute_forward_add1_f16_f32(params, dst);
  1601. }
  1602. else {
  1603. GGML_ABORT("fatal error");
  1604. }
  1605. } break;
  1606. case GGML_TYPE_BF16:
  1607. {
  1608. if (src1->type == GGML_TYPE_BF16) {
  1609. ggml_compute_forward_add1_bf16_bf16(params, dst);
  1610. }
  1611. else if (src1->type == GGML_TYPE_F32) {
  1612. ggml_compute_forward_add1_bf16_f32(params, dst);
  1613. }
  1614. else {
  1615. GGML_ABORT("fatal error");
  1616. }
  1617. } break;
  1618. case GGML_TYPE_Q4_0:
  1619. case GGML_TYPE_Q4_1:
  1620. case GGML_TYPE_Q5_0:
  1621. case GGML_TYPE_Q5_1:
  1622. case GGML_TYPE_Q8_0:
  1623. case GGML_TYPE_Q8_1:
  1624. case GGML_TYPE_MXFP4:
  1625. case GGML_TYPE_Q2_K:
  1626. case GGML_TYPE_Q3_K:
  1627. case GGML_TYPE_Q4_K:
  1628. case GGML_TYPE_Q5_K:
  1629. case GGML_TYPE_Q6_K:
  1630. case GGML_TYPE_TQ1_0:
  1631. case GGML_TYPE_TQ2_0:
  1632. case GGML_TYPE_IQ2_XXS:
  1633. case GGML_TYPE_IQ2_XS:
  1634. case GGML_TYPE_IQ3_XXS:
  1635. case GGML_TYPE_IQ1_S:
  1636. case GGML_TYPE_IQ1_M:
  1637. case GGML_TYPE_IQ4_NL:
  1638. case GGML_TYPE_IQ4_XS:
  1639. case GGML_TYPE_IQ3_S:
  1640. case GGML_TYPE_IQ2_S:
  1641. {
  1642. ggml_compute_forward_add1_q_f32(params, dst);
  1643. } break;
  1644. default:
  1645. {
  1646. GGML_ABORT("fatal error");
  1647. }
  1648. }
  1649. }
  1650. // ggml_compute_forward_acc
  1651. static void ggml_compute_forward_acc_f32(
  1652. const ggml_compute_params * params,
  1653. ggml_tensor * dst) {
  1654. const ggml_tensor * src0 = dst->src[0];
  1655. const ggml_tensor * src1 = dst->src[1];
  1656. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1657. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  1658. // view src0 and dst with these strides and data offset inbytes during acc
  1659. // nb0 is implicitly element_size because src0 and dst are contiguous
  1660. size_t nb1 = ((int32_t *) dst->op_params)[0];
  1661. size_t nb2 = ((int32_t *) dst->op_params)[1];
  1662. size_t nb3 = ((int32_t *) dst->op_params)[2];
  1663. size_t offset = ((int32_t *) dst->op_params)[3];
  1664. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  1665. if (!inplace) {
  1666. if (params->ith == 0) {
  1667. // memcpy needs to be synchronized across threads to avoid race conditions.
  1668. // => do it in INIT phase
  1669. memcpy(
  1670. ((char *) dst->data),
  1671. ((char *) src0->data),
  1672. ggml_nbytes(dst));
  1673. }
  1674. ggml_barrier(params->threadpool);
  1675. }
  1676. const int ith = params->ith;
  1677. const int nth = params->nth;
  1678. const int nr = ggml_nrows(src1);
  1679. const int nc = src1->ne[0];
  1680. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  1681. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  1682. // src0 and dst as viewed during acc
  1683. const size_t nb0 = ggml_element_size(src0);
  1684. const size_t nb00 = nb0;
  1685. const size_t nb01 = nb1;
  1686. const size_t nb02 = nb2;
  1687. const size_t nb03 = nb3;
  1688. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  1689. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  1690. GGML_ASSERT(nb10 == sizeof(float));
  1691. // rows per thread
  1692. const int dr = (nr + nth - 1)/nth;
  1693. // row range for this thread
  1694. const int ir0 = dr*ith;
  1695. const int ir1 = MIN(ir0 + dr, nr);
  1696. for (int ir = ir0; ir < ir1; ++ir) {
  1697. // src0 and dst are viewed with shape of src1 and offset
  1698. // => same indices
  1699. const int i3 = ir/(ne12*ne11);
  1700. const int i2 = (ir - i3*ne12*ne11)/ne11;
  1701. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  1702. #ifdef GGML_USE_ACCELERATE
  1703. vDSP_vadd(
  1704. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  1705. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  1706. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  1707. #else
  1708. ggml_vec_add_f32(nc,
  1709. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  1710. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  1711. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  1712. #endif
  1713. }
  1714. }
  1715. void ggml_compute_forward_acc(
  1716. const ggml_compute_params * params,
  1717. ggml_tensor * dst) {
  1718. const ggml_tensor * src0 = dst->src[0];
  1719. switch (src0->type) {
  1720. case GGML_TYPE_F32:
  1721. {
  1722. ggml_compute_forward_acc_f32(params, dst);
  1723. } break;
  1724. case GGML_TYPE_F16:
  1725. case GGML_TYPE_BF16:
  1726. case GGML_TYPE_Q4_0:
  1727. case GGML_TYPE_Q4_1:
  1728. case GGML_TYPE_Q5_0:
  1729. case GGML_TYPE_Q5_1:
  1730. case GGML_TYPE_Q8_0:
  1731. case GGML_TYPE_Q8_1:
  1732. case GGML_TYPE_MXFP4:
  1733. case GGML_TYPE_Q2_K:
  1734. case GGML_TYPE_Q3_K:
  1735. case GGML_TYPE_Q4_K:
  1736. case GGML_TYPE_Q5_K:
  1737. case GGML_TYPE_Q6_K:
  1738. case GGML_TYPE_TQ1_0:
  1739. case GGML_TYPE_TQ2_0:
  1740. case GGML_TYPE_IQ2_XXS:
  1741. case GGML_TYPE_IQ2_XS:
  1742. case GGML_TYPE_IQ3_XXS:
  1743. case GGML_TYPE_IQ1_S:
  1744. case GGML_TYPE_IQ1_M:
  1745. case GGML_TYPE_IQ4_NL:
  1746. case GGML_TYPE_IQ4_XS:
  1747. case GGML_TYPE_IQ3_S:
  1748. case GGML_TYPE_IQ2_S:
  1749. default:
  1750. {
  1751. GGML_ABORT("fatal error");
  1752. }
  1753. }
  1754. }
  1755. // ggml_compute_forward_sum
  1756. static void ggml_compute_forward_sum_f32(
  1757. const ggml_compute_params * params,
  1758. ggml_tensor * dst) {
  1759. const ggml_tensor * src0 = dst->src[0];
  1760. if (params->ith != 0) {
  1761. return;
  1762. }
  1763. assert(ggml_is_scalar(dst));
  1764. assert(src0->nb[0] == sizeof(float));
  1765. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  1766. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  1767. ggml_float sum = 0;
  1768. ggml_float row_sum = 0;
  1769. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1770. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1771. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1772. ggml_vec_sum_f32_ggf(ne00,
  1773. &row_sum,
  1774. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  1775. sum += row_sum;
  1776. }
  1777. }
  1778. }
  1779. ((float *) dst->data)[0] = sum;
  1780. }
  1781. static void ggml_compute_forward_sum_f16(
  1782. const ggml_compute_params * params,
  1783. ggml_tensor * dst) {
  1784. const ggml_tensor * src0 = dst->src[0];
  1785. if (params->ith != 0) {
  1786. return;
  1787. }
  1788. assert(ggml_is_scalar(dst));
  1789. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  1790. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  1791. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  1792. float sum = 0;
  1793. float row_sum = 0;
  1794. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1795. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1796. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1797. ggml_vec_sum_f16_ggf(ne00,
  1798. &row_sum,
  1799. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  1800. sum += row_sum;
  1801. }
  1802. }
  1803. }
  1804. ((ggml_fp16_t *) dst->data)[0] = GGML_CPU_FP32_TO_FP16(sum);
  1805. }
  1806. static void ggml_compute_forward_sum_bf16(
  1807. const ggml_compute_params * params,
  1808. ggml_tensor * dst) {
  1809. const ggml_tensor * src0 = dst->src[0];
  1810. if (params->ith != 0) {
  1811. return;
  1812. }
  1813. assert(ggml_is_scalar(dst));
  1814. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  1815. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  1816. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  1817. float sum = 0;
  1818. float row_sum = 0;
  1819. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1820. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1821. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1822. ggml_vec_sum_bf16_ggf(ne00,
  1823. &row_sum,
  1824. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  1825. sum += row_sum;
  1826. }
  1827. }
  1828. }
  1829. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  1830. }
  1831. void ggml_compute_forward_sum(
  1832. const ggml_compute_params * params,
  1833. ggml_tensor * dst) {
  1834. const ggml_tensor * src0 = dst->src[0];
  1835. switch (src0->type) {
  1836. case GGML_TYPE_F32:
  1837. {
  1838. ggml_compute_forward_sum_f32(params, dst);
  1839. } break;
  1840. case GGML_TYPE_F16:
  1841. {
  1842. ggml_compute_forward_sum_f16(params, dst);
  1843. } break;
  1844. case GGML_TYPE_BF16:
  1845. {
  1846. ggml_compute_forward_sum_bf16(params, dst);
  1847. } break;
  1848. default:
  1849. {
  1850. GGML_ABORT("fatal error");
  1851. }
  1852. }
  1853. }
  1854. // ggml_compute_forward_sum_rows
  1855. static void ggml_compute_forward_sum_rows_f32(
  1856. const ggml_compute_params * params,
  1857. ggml_tensor * dst) {
  1858. const ggml_tensor * src0 = dst->src[0];
  1859. if (params->ith != 0) {
  1860. return;
  1861. }
  1862. GGML_ASSERT(src0->nb[0] == sizeof(float));
  1863. GGML_ASSERT(dst->nb[0] == sizeof(float));
  1864. GGML_TENSOR_UNARY_OP_LOCALS
  1865. GGML_ASSERT(ne0 == 1);
  1866. GGML_ASSERT(ne1 == ne01);
  1867. GGML_ASSERT(ne2 == ne02);
  1868. GGML_ASSERT(ne3 == ne03);
  1869. for (int64_t i3 = 0; i3 < ne03; i3++) {
  1870. for (int64_t i2 = 0; i2 < ne02; i2++) {
  1871. for (int64_t i1 = 0; i1 < ne01; i1++) {
  1872. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  1873. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  1874. float row_sum = 0;
  1875. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  1876. dst_row[0] = row_sum;
  1877. }
  1878. }
  1879. }
  1880. }
  1881. void ggml_compute_forward_sum_rows(
  1882. const ggml_compute_params * params,
  1883. ggml_tensor * dst) {
  1884. const ggml_tensor * src0 = dst->src[0];
  1885. switch (src0->type) {
  1886. case GGML_TYPE_F32:
  1887. {
  1888. ggml_compute_forward_sum_rows_f32(params, dst);
  1889. } break;
  1890. default:
  1891. {
  1892. GGML_ABORT("fatal error");
  1893. }
  1894. }
  1895. }
  1896. // ggml_compute_forward_mean
  1897. static void ggml_compute_forward_mean_f32(
  1898. const ggml_compute_params * params,
  1899. ggml_tensor * dst) {
  1900. const ggml_tensor * src0 = dst->src[0];
  1901. if (params->ith != 0) {
  1902. return;
  1903. }
  1904. assert(src0->nb[0] == sizeof(float));
  1905. GGML_TENSOR_UNARY_OP_LOCALS
  1906. assert(ne0 == 1);
  1907. assert(ne1 == ne01);
  1908. assert(ne2 == ne02);
  1909. assert(ne3 == ne03);
  1910. GGML_UNUSED(ne0);
  1911. GGML_UNUSED(ne1);
  1912. GGML_UNUSED(ne2);
  1913. GGML_UNUSED(ne3);
  1914. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1915. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1916. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1917. ggml_vec_sum_f32(ne00,
  1918. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  1919. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  1920. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  1921. }
  1922. }
  1923. }
  1924. }
  1925. void ggml_compute_forward_mean(
  1926. const ggml_compute_params * params,
  1927. ggml_tensor * dst) {
  1928. const ggml_tensor * src0 = dst->src[0];
  1929. switch (src0->type) {
  1930. case GGML_TYPE_F32:
  1931. {
  1932. ggml_compute_forward_mean_f32(params, dst);
  1933. } break;
  1934. default:
  1935. {
  1936. GGML_ABORT("fatal error");
  1937. }
  1938. }
  1939. }
  1940. // ggml_compute_forward_argmax
  1941. static void ggml_compute_forward_argmax_f32(
  1942. const ggml_compute_params * params,
  1943. ggml_tensor * dst) {
  1944. const ggml_tensor * src0 = dst->src[0];
  1945. if (params->ith != 0) {
  1946. return;
  1947. }
  1948. assert(src0->nb[0] == sizeof(float));
  1949. assert(dst->nb[0] == sizeof(float));
  1950. const int64_t ne00 = src0->ne[0];
  1951. const int64_t ne01 = src0->ne[1];
  1952. const size_t nb01 = src0->nb[1];
  1953. const size_t nb0 = dst->nb[0];
  1954. for (int64_t i1 = 0; i1 < ne01; i1++) {
  1955. float * src = (float *) ((char *) src0->data + i1*nb01);
  1956. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  1957. int v = 0;
  1958. ggml_vec_argmax_f32(ne00, &v, src);
  1959. dst_[0] = v;
  1960. }
  1961. }
  1962. void ggml_compute_forward_argmax(
  1963. const ggml_compute_params * params,
  1964. ggml_tensor * dst) {
  1965. const ggml_tensor * src0 = dst->src[0];
  1966. switch (src0->type) {
  1967. case GGML_TYPE_F32:
  1968. {
  1969. ggml_compute_forward_argmax_f32(params, dst);
  1970. } break;
  1971. default:
  1972. {
  1973. GGML_ABORT("fatal error");
  1974. }
  1975. }
  1976. }
  1977. // ggml_compute_forward_count_equal
  1978. static void ggml_compute_forward_count_equal_i32(
  1979. const ggml_compute_params * params,
  1980. ggml_tensor * dst) {
  1981. const ggml_tensor * src0 = dst->src[0];
  1982. const ggml_tensor * src1 = dst->src[1];
  1983. GGML_TENSOR_BINARY_OP_LOCALS;
  1984. GGML_ASSERT(src0->type == GGML_TYPE_I32);
  1985. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  1986. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  1987. GGML_ASSERT(ggml_is_scalar(dst));
  1988. GGML_ASSERT(dst->type == GGML_TYPE_I64);
  1989. const int64_t nr = ggml_nrows(src0);
  1990. const int ith = params->ith;
  1991. const int nth = params->nth;
  1992. int64_t * sums = (int64_t *) params->wdata;
  1993. int64_t sum_thread = 0;
  1994. // rows per thread
  1995. const int64_t dr = (nr + nth - 1)/nth;
  1996. // row range for this thread
  1997. const int64_t ir0 = dr*ith;
  1998. const int64_t ir1 = MIN(ir0 + dr, nr);
  1999. for (int64_t ir = ir0; ir < ir1; ++ir) {
  2000. const int64_t i03 = ir / (ne02*ne01);
  2001. const int64_t i02 = (ir - i03*ne03) / ne01;
  2002. const int64_t i01 = ir - i03*ne03 - i02*ne02;
  2003. const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
  2004. const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
  2005. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  2006. const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
  2007. const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
  2008. sum_thread += val0 == val1;
  2009. }
  2010. }
  2011. if (ith != 0) {
  2012. sums[ith] = sum_thread;
  2013. }
  2014. ggml_barrier(params->threadpool);
  2015. if (ith != 0) {
  2016. return;
  2017. }
  2018. for (int ith_other = 1; ith_other < nth; ++ith_other) {
  2019. sum_thread += sums[ith_other];
  2020. }
  2021. *((int64_t *) dst->data) = sum_thread;
  2022. }
  2023. void ggml_compute_forward_count_equal(
  2024. const ggml_compute_params * params,
  2025. ggml_tensor * dst) {
  2026. const ggml_tensor * src0 = dst->src[0];
  2027. switch (src0->type) {
  2028. case GGML_TYPE_I32:
  2029. {
  2030. ggml_compute_forward_count_equal_i32(params, dst);
  2031. } break;
  2032. default:
  2033. {
  2034. GGML_ABORT("fatal error");
  2035. }
  2036. }
  2037. }
  2038. // ggml_compute_forward_repeat
  2039. static void ggml_compute_forward_repeat_f32(
  2040. const ggml_compute_params * params,
  2041. ggml_tensor * dst) {
  2042. const ggml_tensor * src0 = dst->src[0];
  2043. if (params->ith != 0) {
  2044. return;
  2045. }
  2046. GGML_ASSERT(ggml_can_repeat(src0, dst));
  2047. GGML_TENSOR_UNARY_OP_LOCALS
  2048. // guaranteed to be an integer due to the check in ggml_can_repeat
  2049. const int nr0 = (int)(ne0/ne00);
  2050. const int nr1 = (int)(ne1/ne01);
  2051. const int nr2 = (int)(ne2/ne02);
  2052. const int nr3 = (int)(ne3/ne03);
  2053. // TODO: support for transposed / permuted tensors
  2054. GGML_ASSERT(nb0 == sizeof(float));
  2055. GGML_ASSERT(nb00 == sizeof(float));
  2056. // TODO: maybe this is not optimal?
  2057. for (int i3 = 0; i3 < nr3; i3++) {
  2058. for (int k3 = 0; k3 < ne03; k3++) {
  2059. for (int i2 = 0; i2 < nr2; i2++) {
  2060. for (int k2 = 0; k2 < ne02; k2++) {
  2061. for (int i1 = 0; i1 < nr1; i1++) {
  2062. for (int k1 = 0; k1 < ne01; k1++) {
  2063. for (int i0 = 0; i0 < nr0; i0++) {
  2064. ggml_vec_cpy_f32(ne00,
  2065. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  2066. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  2067. }
  2068. }
  2069. }
  2070. }
  2071. }
  2072. }
  2073. }
  2074. }
  2075. static void ggml_compute_forward_repeat_f16(
  2076. const ggml_compute_params * params,
  2077. ggml_tensor * dst) {
  2078. const ggml_tensor * src0 = dst->src[0];
  2079. if (params->ith != 0) {
  2080. return;
  2081. }
  2082. GGML_ASSERT(ggml_can_repeat(src0, dst));
  2083. GGML_TENSOR_UNARY_OP_LOCALS
  2084. // guaranteed to be an integer due to the check in ggml_can_repeat
  2085. const int nr0 = (int)(ne0/ne00);
  2086. const int nr1 = (int)(ne1/ne01);
  2087. const int nr2 = (int)(ne2/ne02);
  2088. const int nr3 = (int)(ne3/ne03);
  2089. // TODO: support for transposed / permuted tensors
  2090. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  2091. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  2092. // TODO: maybe this is not optimal?
  2093. for (int i3 = 0; i3 < nr3; i3++) {
  2094. for (int k3 = 0; k3 < ne03; k3++) {
  2095. for (int i2 = 0; i2 < nr2; i2++) {
  2096. for (int k2 = 0; k2 < ne02; k2++) {
  2097. for (int i1 = 0; i1 < nr1; i1++) {
  2098. for (int k1 = 0; k1 < ne01; k1++) {
  2099. for (int i0 = 0; i0 < nr0; i0++) {
  2100. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  2101. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  2102. // ggml_vec_cpy_f16(ne00, y, x)
  2103. for (int i = 0; i < ne00; ++i) {
  2104. y[i] = x[i];
  2105. }
  2106. }
  2107. }
  2108. }
  2109. }
  2110. }
  2111. }
  2112. }
  2113. }
  2114. void ggml_compute_forward_repeat(
  2115. const ggml_compute_params * params,
  2116. ggml_tensor * dst) {
  2117. const ggml_tensor * src0 = dst->src[0];
  2118. switch (src0->type) {
  2119. case GGML_TYPE_F16:
  2120. case GGML_TYPE_BF16:
  2121. case GGML_TYPE_I16:
  2122. {
  2123. ggml_compute_forward_repeat_f16(params, dst);
  2124. } break;
  2125. case GGML_TYPE_F32:
  2126. case GGML_TYPE_I32:
  2127. {
  2128. ggml_compute_forward_repeat_f32(params, dst);
  2129. } break;
  2130. // TODO: templateify the implemenation and support for I64
  2131. // ref https://github.com/ggml-org/llama.cpp/pull/14274#discussion_r2169492225
  2132. //case GGML_TYPE_I64:
  2133. // {
  2134. // ggml_compute_forward_repeat_i64(params, dst);
  2135. // } break;
  2136. default:
  2137. {
  2138. GGML_ABORT("fatal error");
  2139. }
  2140. }
  2141. }
  2142. // ggml_compute_forward_repeat_back
  2143. static void ggml_compute_forward_repeat_back_f32(
  2144. const ggml_compute_params * params,
  2145. ggml_tensor * dst) {
  2146. const ggml_tensor * src0 = dst->src[0];
  2147. if (params->ith != 0) {
  2148. return;
  2149. }
  2150. GGML_ASSERT(ggml_can_repeat(dst, src0));
  2151. GGML_TENSOR_UNARY_OP_LOCALS
  2152. // guaranteed to be an integer due to the check in ggml_can_repeat
  2153. const int nr0 = (int)(ne00/ne0);
  2154. const int nr1 = (int)(ne01/ne1);
  2155. const int nr2 = (int)(ne02/ne2);
  2156. const int nr3 = (int)(ne03/ne3);
  2157. // TODO: support for transposed / permuted tensors
  2158. GGML_ASSERT(nb0 == sizeof(float));
  2159. GGML_ASSERT(nb00 == sizeof(float));
  2160. if (ggml_is_contiguous(dst)) {
  2161. ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
  2162. } else {
  2163. for (int k3 = 0; k3 < ne3; k3++) {
  2164. for (int k2 = 0; k2 < ne2; k2++) {
  2165. for (int k1 = 0; k1 < ne1; k1++) {
  2166. ggml_vec_set_f32(ne0,
  2167. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  2168. 0);
  2169. }
  2170. }
  2171. }
  2172. }
  2173. // TODO: maybe this is not optimal?
  2174. for (int i3 = 0; i3 < nr3; i3++) {
  2175. for (int k3 = 0; k3 < ne3; k3++) {
  2176. for (int i2 = 0; i2 < nr2; i2++) {
  2177. for (int k2 = 0; k2 < ne2; k2++) {
  2178. for (int i1 = 0; i1 < nr1; i1++) {
  2179. for (int k1 = 0; k1 < ne1; k1++) {
  2180. for (int i0 = 0; i0 < nr0; i0++) {
  2181. ggml_vec_acc_f32(ne0,
  2182. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  2183. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  2184. }
  2185. }
  2186. }
  2187. }
  2188. }
  2189. }
  2190. }
  2191. }
  2192. void ggml_compute_forward_repeat_back(
  2193. const ggml_compute_params * params,
  2194. ggml_tensor * dst) {
  2195. const ggml_tensor * src0 = dst->src[0];
  2196. switch (src0->type) {
  2197. case GGML_TYPE_F32:
  2198. {
  2199. ggml_compute_forward_repeat_back_f32(params, dst);
  2200. } break;
  2201. default:
  2202. {
  2203. GGML_ABORT("fatal error");
  2204. }
  2205. }
  2206. }
  2207. // ggml_compute_forward_concat
  2208. static void ggml_compute_forward_concat_any(
  2209. const ggml_compute_params * params,
  2210. ggml_tensor * dst) {
  2211. const ggml_tensor * src0 = dst->src[0];
  2212. const ggml_tensor * src1 = dst->src[1];
  2213. const size_t len = ggml_type_size(src0->type);
  2214. const int ith = params->ith;
  2215. const int nth = params->nth;
  2216. GGML_TENSOR_BINARY_OP_LOCALS
  2217. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2218. GGML_ASSERT(dim >= 0 && dim < 4);
  2219. int64_t o[4] = {0, 0, 0, 0};
  2220. o[dim] = src0->ne[dim];
  2221. const char * x;
  2222. // TODO: smarter multi-theading
  2223. for (int i3 = 0; i3 < ne3; i3++) {
  2224. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2225. for (int i1 = 0; i1 < ne1; i1++) {
  2226. for (int i0 = 0; i0 < ne0; i0++) {
  2227. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2228. x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03;
  2229. } else {
  2230. x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13;
  2231. }
  2232. char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3;
  2233. memcpy(y, x, len);
  2234. }
  2235. }
  2236. }
  2237. }
  2238. }
  2239. static void ggml_compute_forward_concat_i8(
  2240. const ggml_compute_params * params,
  2241. ggml_tensor * dst) {
  2242. const ggml_tensor * src0 = dst->src[0];
  2243. const ggml_tensor * src1 = dst->src[1];
  2244. GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t));
  2245. const int ith = params->ith;
  2246. const int nth = params->nth;
  2247. GGML_TENSOR_BINARY_OP_LOCALS
  2248. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2249. GGML_ASSERT(dim >= 0 && dim < 4);
  2250. int64_t o[4] = {0, 0, 0, 0};
  2251. o[dim] = src0->ne[dim];
  2252. const int8_t * x;
  2253. // TODO: smarter multi-theading
  2254. for (int i3 = 0; i3 < ne3; i3++) {
  2255. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2256. for (int i1 = 0; i1 < ne1; i1++) {
  2257. for (int i0 = 0; i0 < ne0; i0++) {
  2258. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2259. x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  2260. } else {
  2261. x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  2262. }
  2263. int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  2264. *y = *x;
  2265. }
  2266. }
  2267. }
  2268. }
  2269. }
  2270. static void ggml_compute_forward_concat_f16(
  2271. const ggml_compute_params * params,
  2272. ggml_tensor * dst) {
  2273. const ggml_tensor * src0 = dst->src[0];
  2274. const ggml_tensor * src1 = dst->src[1];
  2275. GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t));
  2276. const int ith = params->ith;
  2277. const int nth = params->nth;
  2278. GGML_TENSOR_BINARY_OP_LOCALS
  2279. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2280. GGML_ASSERT(dim >= 0 && dim < 4);
  2281. int64_t o[4] = {0, 0, 0, 0};
  2282. o[dim] = src0->ne[dim];
  2283. const ggml_fp16_t * x;
  2284. // TODO: smarter multi-theading
  2285. for (int i3 = 0; i3 < ne3; i3++) {
  2286. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2287. for (int i1 = 0; i1 < ne1; i1++) {
  2288. for (int i0 = 0; i0 < ne0; i0++) {
  2289. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2290. x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  2291. } else {
  2292. x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  2293. }
  2294. ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  2295. *y = *x;
  2296. }
  2297. }
  2298. }
  2299. }
  2300. }
  2301. static void ggml_compute_forward_concat_f32(
  2302. const ggml_compute_params * params,
  2303. ggml_tensor * dst) {
  2304. const ggml_tensor * src0 = dst->src[0];
  2305. const ggml_tensor * src1 = dst->src[1];
  2306. GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float));
  2307. const int ith = params->ith;
  2308. const int nth = params->nth;
  2309. GGML_TENSOR_BINARY_OP_LOCALS
  2310. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2311. GGML_ASSERT(dim >= 0 && dim < 4);
  2312. int64_t o[4] = {0, 0, 0, 0};
  2313. o[dim] = src0->ne[dim];
  2314. const float * x;
  2315. // TODO: smarter multi-theading
  2316. for (int i3 = 0; i3 < ne3; i3++) {
  2317. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2318. for (int i1 = 0; i1 < ne1; i1++) {
  2319. for (int i0 = 0; i0 < ne0; i0++) {
  2320. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2321. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  2322. } else {
  2323. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  2324. }
  2325. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  2326. *y = *x;
  2327. }
  2328. }
  2329. }
  2330. }
  2331. }
  2332. void ggml_compute_forward_concat(
  2333. const ggml_compute_params * params,
  2334. ggml_tensor * dst) {
  2335. const ggml_tensor * src0 = dst->src[0];
  2336. switch (src0->type) {
  2337. case GGML_TYPE_F16:
  2338. case GGML_TYPE_BF16:
  2339. case GGML_TYPE_I16:
  2340. {
  2341. ggml_compute_forward_concat_f16(params, dst);
  2342. } break;
  2343. case GGML_TYPE_I8:
  2344. {
  2345. ggml_compute_forward_concat_i8(params, dst);
  2346. } break;
  2347. case GGML_TYPE_F32:
  2348. case GGML_TYPE_I32:
  2349. {
  2350. ggml_compute_forward_concat_f32(params, dst);
  2351. } break;
  2352. default:
  2353. {
  2354. ggml_compute_forward_concat_any(params, dst);
  2355. }
  2356. }
  2357. }
  2358. // ggml_compute_forward_gelu
  2359. static void ggml_compute_forward_gelu_f32(
  2360. const ggml_compute_params * params,
  2361. ggml_tensor * dst) {
  2362. const ggml_tensor * src0 = dst->src[0];
  2363. assert(ggml_is_contiguous_1(src0));
  2364. assert(ggml_is_contiguous_1(dst));
  2365. assert(ggml_are_same_shape(src0, dst));
  2366. const int ith = params->ith;
  2367. const int nth = params->nth;
  2368. const int nc = src0->ne[0];
  2369. const int nr = ggml_nrows(src0);
  2370. // rows per thread
  2371. const int dr = (nr + nth - 1)/nth;
  2372. // row range for this thread
  2373. const int ir0 = dr*ith;
  2374. const int ir1 = MIN(ir0 + dr, nr);
  2375. for (int i1 = ir0; i1 < ir1; i1++) {
  2376. ggml_vec_gelu_f32(nc,
  2377. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2378. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2379. #ifndef NDEBUG
  2380. for (int k = 0; k < nc; k++) {
  2381. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2382. GGML_UNUSED(x);
  2383. assert(!isnan(x));
  2384. assert(!isinf(x));
  2385. }
  2386. #endif
  2387. }
  2388. }
  2389. static void ggml_compute_forward_gelu_f16(
  2390. const ggml_compute_params * params,
  2391. ggml_tensor * dst) {
  2392. const ggml_tensor * src0 = dst->src[0];
  2393. assert(ggml_is_contiguous_1(src0));
  2394. assert(ggml_is_contiguous_1(dst));
  2395. assert(ggml_are_same_shape(src0, dst));
  2396. const int ith = params->ith;
  2397. const int nth = params->nth;
  2398. const int nc = src0->ne[0];
  2399. const int nr = ggml_nrows(src0);
  2400. // rows per thread
  2401. const int dr = (nr + nth - 1)/nth;
  2402. // row range for this thread
  2403. const int ir0 = dr*ith;
  2404. const int ir1 = MIN(ir0 + dr, nr);
  2405. for (int i1 = ir0; i1 < ir1; i1++) {
  2406. ggml_vec_gelu_f16(nc,
  2407. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2408. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2409. #ifndef NDEBUG
  2410. for (int k = 0; k < nc; k++) {
  2411. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2412. const float v = GGML_CPU_FP16_TO_FP32(x);
  2413. GGML_UNUSED(v);
  2414. assert(!isnan(v));
  2415. assert(!isinf(v));
  2416. }
  2417. #endif
  2418. }
  2419. }
  2420. static void ggml_compute_forward_gelu(
  2421. const ggml_compute_params * params,
  2422. ggml_tensor * dst) {
  2423. const ggml_tensor * src0 = dst->src[0];
  2424. switch (src0->type) {
  2425. case GGML_TYPE_F32:
  2426. {
  2427. ggml_compute_forward_gelu_f32(params, dst);
  2428. } break;
  2429. case GGML_TYPE_F16:
  2430. {
  2431. ggml_compute_forward_gelu_f16(params, dst);
  2432. } break;
  2433. default:
  2434. {
  2435. GGML_ABORT("fatal error");
  2436. }
  2437. }
  2438. }
  2439. // ggml_compute_forward_gelu_erf
  2440. static void ggml_compute_forward_gelu_erf_f32(
  2441. const ggml_compute_params * params,
  2442. ggml_tensor * dst) {
  2443. const ggml_tensor * src0 = dst->src[0];
  2444. assert(ggml_is_contiguous_1(src0));
  2445. assert(ggml_is_contiguous_1(dst));
  2446. assert(ggml_are_same_shape(src0, dst));
  2447. const int ith = params->ith;
  2448. const int nth = params->nth;
  2449. const int nc = src0->ne[0];
  2450. const int nr = ggml_nrows(src0);
  2451. // rows per thread
  2452. const int dr = (nr + nth - 1)/nth;
  2453. // row range for this thread
  2454. const int ir0 = dr*ith;
  2455. const int ir1 = MIN(ir0 + dr, nr);
  2456. for (int i1 = ir0; i1 < ir1; i1++) {
  2457. ggml_vec_gelu_erf_f32(nc,
  2458. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2459. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2460. #ifndef NDEBUG
  2461. for (int k = 0; k < nc; k++) {
  2462. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2463. GGML_UNUSED(x);
  2464. assert(!isnan(x));
  2465. assert(!isinf(x));
  2466. }
  2467. #endif
  2468. }
  2469. }
  2470. static void ggml_compute_forward_gelu_erf_f16(
  2471. const ggml_compute_params * params,
  2472. ggml_tensor * dst) {
  2473. const ggml_tensor * src0 = dst->src[0];
  2474. assert(ggml_is_contiguous_1(src0));
  2475. assert(ggml_is_contiguous_1(dst));
  2476. assert(ggml_are_same_shape(src0, dst));
  2477. const int ith = params->ith;
  2478. const int nth = params->nth;
  2479. const int nc = src0->ne[0];
  2480. const int nr = ggml_nrows(src0);
  2481. // rows per thread
  2482. const int dr = (nr + nth - 1)/nth;
  2483. // row range for this thread
  2484. const int ir0 = dr*ith;
  2485. const int ir1 = MIN(ir0 + dr, nr);
  2486. for (int i1 = ir0; i1 < ir1; i1++) {
  2487. ggml_vec_gelu_erf_f16(nc,
  2488. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2489. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2490. #ifndef NDEBUG
  2491. for (int k = 0; k < nc; k++) {
  2492. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2493. const float v = GGML_CPU_FP16_TO_FP32(x);
  2494. GGML_UNUSED(v);
  2495. assert(!isnan(v));
  2496. assert(!isinf(v));
  2497. }
  2498. #endif
  2499. }
  2500. }
  2501. static void ggml_compute_forward_gelu_erf(
  2502. const ggml_compute_params * params,
  2503. ggml_tensor * dst) {
  2504. const ggml_tensor * src0 = dst->src[0];
  2505. switch (src0->type) {
  2506. case GGML_TYPE_F32:
  2507. {
  2508. ggml_compute_forward_gelu_erf_f32(params, dst);
  2509. } break;
  2510. case GGML_TYPE_F16:
  2511. {
  2512. ggml_compute_forward_gelu_erf_f16(params, dst);
  2513. } break;
  2514. default:
  2515. {
  2516. GGML_ABORT("fatal error");
  2517. }
  2518. }
  2519. }
  2520. // ggml_compute_forward_gelu_quick
  2521. static void ggml_compute_forward_gelu_quick_f32(
  2522. const ggml_compute_params * params,
  2523. ggml_tensor * dst) {
  2524. const ggml_tensor * src0 = dst->src[0];
  2525. assert(ggml_is_contiguous_1(src0));
  2526. assert(ggml_is_contiguous_1(dst));
  2527. assert(ggml_are_same_shape(src0, dst));
  2528. const int ith = params->ith;
  2529. const int nth = params->nth;
  2530. const int nc = src0->ne[0];
  2531. const int nr = ggml_nrows(src0);
  2532. // rows per thread
  2533. const int dr = (nr + nth - 1)/nth;
  2534. // row range for this thread
  2535. const int ir0 = dr*ith;
  2536. const int ir1 = MIN(ir0 + dr, nr);
  2537. for (int i1 = ir0; i1 < ir1; i1++) {
  2538. ggml_vec_gelu_quick_f32(nc,
  2539. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2540. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2541. #ifndef NDEBUG
  2542. for (int k = 0; k < nc; k++) {
  2543. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2544. GGML_UNUSED(x);
  2545. assert(!isnan(x));
  2546. assert(!isinf(x));
  2547. }
  2548. #endif
  2549. }
  2550. }
  2551. static void ggml_compute_forward_gelu_quick_f16(
  2552. const ggml_compute_params * params,
  2553. ggml_tensor * dst) {
  2554. const ggml_tensor * src0 = dst->src[0];
  2555. assert(ggml_is_contiguous_1(src0));
  2556. assert(ggml_is_contiguous_1(dst));
  2557. assert(ggml_are_same_shape(src0, dst));
  2558. const int ith = params->ith;
  2559. const int nth = params->nth;
  2560. const int nc = src0->ne[0];
  2561. const int nr = ggml_nrows(src0);
  2562. // rows per thread
  2563. const int dr = (nr + nth - 1)/nth;
  2564. // row range for this thread
  2565. const int ir0 = dr*ith;
  2566. const int ir1 = MIN(ir0 + dr, nr);
  2567. for (int i1 = ir0; i1 < ir1; i1++) {
  2568. ggml_vec_gelu_quick_f16(nc,
  2569. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2570. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2571. #ifndef NDEBUG
  2572. for (int k = 0; k < nc; k++) {
  2573. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2574. const float v = GGML_CPU_FP16_TO_FP32(x);
  2575. GGML_UNUSED(v);
  2576. assert(!isnan(v));
  2577. assert(!isinf(v));
  2578. }
  2579. #endif
  2580. }
  2581. }
  2582. static void ggml_compute_forward_gelu_quick(
  2583. const ggml_compute_params * params,
  2584. ggml_tensor * dst) {
  2585. const ggml_tensor * src0 = dst->src[0];
  2586. switch (src0->type) {
  2587. case GGML_TYPE_F32:
  2588. {
  2589. ggml_compute_forward_gelu_quick_f32(params, dst);
  2590. } break;
  2591. case GGML_TYPE_F16:
  2592. {
  2593. ggml_compute_forward_gelu_quick_f16(params, dst);
  2594. } break;
  2595. default:
  2596. {
  2597. GGML_ABORT("fatal error");
  2598. }
  2599. }
  2600. }
  2601. // ggml_compute_forward_silu
  2602. static void ggml_compute_forward_silu_f32(
  2603. const ggml_compute_params * params,
  2604. ggml_tensor * dst) {
  2605. const ggml_tensor * src0 = dst->src[0];
  2606. assert(ggml_is_contiguous_1(src0));
  2607. assert(ggml_is_contiguous_1(dst));
  2608. assert(ggml_are_same_shape(src0, dst));
  2609. const int ith = params->ith;
  2610. const int nth = params->nth;
  2611. const int nc = src0->ne[0];
  2612. const int nr = ggml_nrows(src0);
  2613. // rows per thread
  2614. const int dr = (nr + nth - 1)/nth;
  2615. // row range for this thread
  2616. const int ir0 = dr*ith;
  2617. const int ir1 = MIN(ir0 + dr, nr);
  2618. for (int i1 = ir0; i1 < ir1; i1++) {
  2619. ggml_vec_silu_f32(nc,
  2620. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2621. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2622. #ifndef NDEBUG
  2623. for (int k = 0; k < nc; k++) {
  2624. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  2625. GGML_UNUSED(x);
  2626. assert(!isnan(x));
  2627. assert(!isinf(x));
  2628. }
  2629. #endif
  2630. }
  2631. }
  2632. static void ggml_compute_forward_silu_f16(
  2633. const ggml_compute_params * params,
  2634. ggml_tensor * dst) {
  2635. const ggml_tensor * src0 = dst->src[0];
  2636. assert(ggml_is_contiguous_1(src0));
  2637. assert(ggml_is_contiguous_1(dst));
  2638. assert(ggml_are_same_shape(src0, dst));
  2639. const int ith = params->ith;
  2640. const int nth = params->nth;
  2641. const int nc = src0->ne[0];
  2642. const int nr = ggml_nrows(src0);
  2643. // rows per thread
  2644. const int dr = (nr + nth - 1)/nth;
  2645. // row range for this thread
  2646. const int ir0 = dr*ith;
  2647. const int ir1 = MIN(ir0 + dr, nr);
  2648. for (int i1 = ir0; i1 < ir1; i1++) {
  2649. ggml_vec_silu_f16(nc,
  2650. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2651. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2652. #ifndef NDEBUG
  2653. for (int k = 0; k < nc; k++) {
  2654. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  2655. const float v = GGML_CPU_FP16_TO_FP32(x);
  2656. GGML_UNUSED(v);
  2657. assert(!isnan(v));
  2658. assert(!isinf(v));
  2659. }
  2660. #endif
  2661. }
  2662. }
  2663. static void ggml_compute_forward_silu(
  2664. const ggml_compute_params * params,
  2665. ggml_tensor * dst) {
  2666. const ggml_tensor * src0 = dst->src[0];
  2667. switch (src0->type) {
  2668. case GGML_TYPE_F32:
  2669. {
  2670. ggml_compute_forward_silu_f32(params, dst);
  2671. } break;
  2672. case GGML_TYPE_F16:
  2673. {
  2674. ggml_compute_forward_silu_f16(params, dst);
  2675. } break;
  2676. default:
  2677. {
  2678. GGML_ABORT("fatal error");
  2679. }
  2680. }
  2681. }
  2682. // ggml_compute_forward_leaky_relu
  2683. static void ggml_compute_forward_leaky_relu_f32(
  2684. const ggml_compute_params * params,
  2685. ggml_tensor * dst) {
  2686. const ggml_tensor * src0 = dst->src[0];
  2687. if (params->ith != 0) {
  2688. return;
  2689. }
  2690. assert(ggml_is_contiguous_1(src0));
  2691. assert(ggml_is_contiguous_1(dst));
  2692. assert(ggml_are_same_shape(src0, dst));
  2693. const int n = ggml_nrows(src0);
  2694. const int nc = src0->ne[0];
  2695. float negative_slope;
  2696. memcpy(&negative_slope, dst->op_params, sizeof(float));
  2697. assert(dst->nb[0] == sizeof(float));
  2698. assert(src0->nb[0] == sizeof(float));
  2699. for (int i = 0; i < n; i++) {
  2700. ggml_vec_leaky_relu_f32(nc,
  2701. (float *) ((char *) dst->data + i*( dst->nb[1])),
  2702. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  2703. }
  2704. }
  2705. static void ggml_compute_forward_leaky_relu_f16(
  2706. const ggml_compute_params * params,
  2707. ggml_tensor * dst) {
  2708. const ggml_tensor * src0 = dst->src[0];
  2709. if (params->ith != 0) {
  2710. return;
  2711. }
  2712. assert(ggml_is_contiguous_1(src0));
  2713. assert(ggml_is_contiguous_1(dst));
  2714. assert(ggml_are_same_shape(src0, dst));
  2715. const int n = ggml_nrows(src0);
  2716. const int nc = src0->ne[0];
  2717. float negative_slope;
  2718. memcpy(&negative_slope, dst->op_params, sizeof(float));
  2719. assert(dst->nb[0] == sizeof(ggml_fp16_t));
  2720. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  2721. for (int i = 0; i < n; i++) {
  2722. ggml_vec_leaky_relu_f16(nc,
  2723. (ggml_fp16_t *) ((char *) dst->data + i*( dst->nb[1])),
  2724. (ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  2725. }
  2726. }
  2727. void ggml_compute_forward_leaky_relu(
  2728. const ggml_compute_params * params,
  2729. ggml_tensor * dst) {
  2730. const ggml_tensor * src0 = dst->src[0];
  2731. switch (src0->type) {
  2732. case GGML_TYPE_F32:
  2733. {
  2734. ggml_compute_forward_leaky_relu_f32(params, dst);
  2735. } break;
  2736. case GGML_TYPE_F16:
  2737. {
  2738. ggml_compute_forward_leaky_relu_f16(params, dst);
  2739. } break;
  2740. default:
  2741. {
  2742. GGML_ABORT("fatal error");
  2743. }
  2744. }
  2745. }
  2746. // ggml_compute_forward_silu_back
  2747. static void ggml_compute_forward_silu_back_f32(
  2748. const ggml_compute_params * params,
  2749. ggml_tensor * dst) {
  2750. const ggml_tensor * grad = dst->src[0];
  2751. const ggml_tensor * src1 = dst->src[1];
  2752. assert(ggml_is_contiguous_1(grad));
  2753. assert(ggml_is_contiguous_1(src1));
  2754. assert(ggml_is_contiguous_1(dst));
  2755. assert(ggml_are_same_shape(src1, dst));
  2756. assert(ggml_are_same_shape(src1, grad));
  2757. const int ith = params->ith;
  2758. const int nth = params->nth;
  2759. const int nc = src1->ne[0];
  2760. const int nr = ggml_nrows(src1);
  2761. // rows per thread
  2762. const int dr = (nr + nth - 1)/nth;
  2763. // row range for this thread
  2764. const int ir0 = dr*ith;
  2765. const int ir1 = MIN(ir0 + dr, nr);
  2766. for (int i1 = ir0; i1 < ir1; i1++) {
  2767. ggml_vec_silu_backward_f32(nc,
  2768. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2769. (float *) ((char *) src1->data + i1*(src1->nb[1])),
  2770. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  2771. #ifndef NDEBUG
  2772. for (int k = 0; k < nc; k++) {
  2773. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2774. GGML_UNUSED(x);
  2775. assert(!isnan(x));
  2776. assert(!isinf(x));
  2777. }
  2778. #endif
  2779. }
  2780. }
  2781. static void ggml_compute_forward_silu_back_f16(
  2782. const ggml_compute_params * params,
  2783. ggml_tensor * dst) {
  2784. const ggml_tensor * grad = dst->src[0];
  2785. const ggml_tensor * src1 = dst->src[1];
  2786. assert(ggml_is_contiguous_1(grad));
  2787. assert(ggml_is_contiguous_1(src1));
  2788. assert(ggml_is_contiguous_1(dst));
  2789. assert(ggml_are_same_shape(src1, dst));
  2790. assert(ggml_are_same_shape(src1, grad));
  2791. const int ith = params->ith;
  2792. const int nth = params->nth;
  2793. const int nc = src1->ne[0];
  2794. const int nr = ggml_nrows(src1);
  2795. // rows per thread
  2796. const int dr = (nr + nth - 1)/nth;
  2797. // row range for this thread
  2798. const int ir0 = dr*ith;
  2799. const int ir1 = MIN(ir0 + dr, nr);
  2800. for (int i1 = ir0; i1 < ir1; i1++) {
  2801. ggml_vec_silu_backward_f16(nc,
  2802. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2803. (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
  2804. (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
  2805. #ifndef NDEBUG
  2806. for (int k = 0; k < nc; k++) {
  2807. const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2808. const float v = GGML_CPU_FP16_TO_FP32(x);
  2809. GGML_UNUSED(v);
  2810. assert(!isnan(v));
  2811. assert(!isinf(v));
  2812. }
  2813. #endif
  2814. }
  2815. }
  2816. void ggml_compute_forward_silu_back(
  2817. const ggml_compute_params * params,
  2818. ggml_tensor * dst) {
  2819. const ggml_tensor * src0 = dst->src[0];
  2820. switch (src0->type) {
  2821. case GGML_TYPE_F32:
  2822. {
  2823. ggml_compute_forward_silu_back_f32(params, dst);
  2824. } break;
  2825. case GGML_TYPE_F16:
  2826. {
  2827. ggml_compute_forward_silu_back_f16(params, dst);
  2828. } break;
  2829. default:
  2830. {
  2831. GGML_ABORT("fatal error");
  2832. }
  2833. }
  2834. }
  2835. // ggml_compute_forward_reglu
  2836. static void ggml_compute_forward_reglu_f32(
  2837. const ggml_compute_params * params,
  2838. ggml_tensor * dst) {
  2839. const ggml_tensor * src0 = dst->src[0];
  2840. const ggml_tensor * src1 = dst->src[1];
  2841. char * src0_d = (char *) src0->data;
  2842. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2843. const size_t src0_o = src0->nb[1];
  2844. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  2845. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2846. GGML_ASSERT(ggml_is_contiguous_1(dst));
  2847. if (src1) {
  2848. GGML_ASSERT(ggml_is_contiguous_1(src1));
  2849. GGML_ASSERT(src0->type == src1->type);
  2850. }
  2851. const int ith = params->ith;
  2852. const int nth = params->nth;
  2853. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  2854. const int nr = ggml_nrows(src0);
  2855. GGML_ASSERT(dst->ne[0] == nc);
  2856. GGML_ASSERT(ggml_nrows(dst) == nr);
  2857. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  2858. // rows per thread
  2859. const int dr = (nr + nth - 1)/nth;
  2860. // row range for this thread
  2861. const int ir0 = dr*ith;
  2862. const int ir1 = MIN(ir0 + dr, nr);
  2863. for (int i1 = ir0; i1 < ir1; i1++) {
  2864. float * src0_p = (float *) (src0_d + i1*src0_o);
  2865. float * src1_p = (float *) (src1_d + i1*src1_o);
  2866. if (!src1) {
  2867. src0_p += swapped ? nc : 0;
  2868. src1_p += swapped ? 0 : nc;
  2869. }
  2870. ggml_vec_reglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  2871. #ifndef NDEBUG
  2872. for (int k = 0; k < nc; k++) {
  2873. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2874. GGML_UNUSED(x);
  2875. assert(!isnan(x));
  2876. assert(!isinf(x));
  2877. }
  2878. #endif
  2879. }
  2880. }
  2881. static void ggml_compute_forward_reglu_f16(
  2882. const ggml_compute_params * params,
  2883. ggml_tensor * dst) {
  2884. const ggml_tensor * src0 = dst->src[0];
  2885. const ggml_tensor * src1 = dst->src[1];
  2886. char * src0_d = (char *) src0->data;
  2887. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2888. const size_t src0_o = src0->nb[1];
  2889. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  2890. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2891. GGML_ASSERT(ggml_is_contiguous_1(dst));
  2892. if (src1) {
  2893. GGML_ASSERT(ggml_is_contiguous_1(src1));
  2894. GGML_ASSERT(src0->type == src1->type);
  2895. }
  2896. const int ith = params->ith;
  2897. const int nth = params->nth;
  2898. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  2899. const int nr = ggml_nrows(src0);
  2900. GGML_ASSERT(dst->ne[0] == nc);
  2901. GGML_ASSERT(ggml_nrows(dst) == nr);
  2902. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  2903. // rows per thread
  2904. const int dr = (nr + nth - 1)/nth;
  2905. // row range for this thread
  2906. const int ir0 = dr*ith;
  2907. const int ir1 = MIN(ir0 + dr, nr);
  2908. for (int i1 = ir0; i1 < ir1; i1++) {
  2909. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  2910. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  2911. if (!src1) {
  2912. src0_p += swapped ? nc : 0;
  2913. src1_p += swapped ? 0 : nc;
  2914. }
  2915. ggml_vec_reglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  2916. #ifndef NDEBUG
  2917. for (int k = 0; k < nc; k++) {
  2918. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2919. const float v = GGML_FP16_TO_FP32(x);
  2920. GGML_UNUSED(v);
  2921. assert(!isnan(v));
  2922. assert(!isinf(v));
  2923. }
  2924. #endif
  2925. }
  2926. }
  2927. static void ggml_compute_forward_reglu(
  2928. const ggml_compute_params * params,
  2929. ggml_tensor * dst) {
  2930. const ggml_tensor * src0 = dst->src[0];
  2931. switch (src0->type) {
  2932. case GGML_TYPE_F32:
  2933. {
  2934. ggml_compute_forward_reglu_f32(params, dst);
  2935. } break;
  2936. case GGML_TYPE_F16:
  2937. {
  2938. ggml_compute_forward_reglu_f16(params, dst);
  2939. } break;
  2940. default:
  2941. {
  2942. GGML_ABORT("fatal error");
  2943. }
  2944. }
  2945. }
  2946. // ggml_compute_forward_geglu
  2947. static void ggml_compute_forward_geglu_f32(
  2948. const ggml_compute_params * params,
  2949. ggml_tensor * dst) {
  2950. const ggml_tensor * src0 = dst->src[0];
  2951. const ggml_tensor * src1 = dst->src[1];
  2952. char * src0_d = (char *) src0->data;
  2953. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2954. const size_t src0_o = src0->nb[1];
  2955. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  2956. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2957. GGML_ASSERT(ggml_is_contiguous_1(dst));
  2958. if (src1) {
  2959. GGML_ASSERT(ggml_is_contiguous_1(src1));
  2960. GGML_ASSERT(src0->type == src1->type);
  2961. }
  2962. const int ith = params->ith;
  2963. const int nth = params->nth;
  2964. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  2965. const int nr = ggml_nrows(src0);
  2966. GGML_ASSERT(dst->ne[0] == nc);
  2967. GGML_ASSERT(ggml_nrows(dst) == nr);
  2968. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  2969. // rows per thread
  2970. const int dr = (nr + nth - 1)/nth;
  2971. // row range for this thread
  2972. const int ir0 = dr*ith;
  2973. const int ir1 = MIN(ir0 + dr, nr);
  2974. for (int i1 = ir0; i1 < ir1; i1++) {
  2975. float * src0_p = (float *) (src0_d + i1*src0_o);
  2976. float * src1_p = (float *) (src1_d + i1*src1_o);
  2977. if (!src1) {
  2978. src0_p += swapped ? nc : 0;
  2979. src1_p += swapped ? 0 : nc;
  2980. }
  2981. ggml_vec_geglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  2982. #ifndef NDEBUG
  2983. for (int k = 0; k < nc; k++) {
  2984. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2985. GGML_UNUSED(x);
  2986. assert(!isnan(x));
  2987. assert(!isinf(x));
  2988. }
  2989. #endif
  2990. }
  2991. }
  2992. static void ggml_compute_forward_geglu_f16(
  2993. const ggml_compute_params * params,
  2994. ggml_tensor * dst) {
  2995. const ggml_tensor * src0 = dst->src[0];
  2996. const ggml_tensor * src1 = dst->src[1];
  2997. char * src0_d = (char *) src0->data;
  2998. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2999. const size_t src0_o = src0->nb[1];
  3000. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3001. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3002. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3003. if (src1) {
  3004. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3005. GGML_ASSERT(src0->type == src1->type);
  3006. }
  3007. const int ith = params->ith;
  3008. const int nth = params->nth;
  3009. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3010. const int nr = ggml_nrows(src0);
  3011. GGML_ASSERT(dst->ne[0] == nc);
  3012. GGML_ASSERT(ggml_nrows(dst) == nr);
  3013. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3014. // rows per thread
  3015. const int dr = (nr + nth - 1)/nth;
  3016. // row range for this thread
  3017. const int ir0 = dr*ith;
  3018. const int ir1 = MIN(ir0 + dr, nr);
  3019. for (int i1 = ir0; i1 < ir1; i1++) {
  3020. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  3021. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  3022. if (!src1) {
  3023. src0_p += swapped ? nc : 0;
  3024. src1_p += swapped ? 0 : nc;
  3025. }
  3026. ggml_vec_geglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3027. #ifndef NDEBUG
  3028. for (int k = 0; k < nc; k++) {
  3029. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3030. const float v = GGML_FP16_TO_FP32(x);
  3031. GGML_UNUSED(v);
  3032. assert(!isnan(v));
  3033. assert(!isinf(v));
  3034. }
  3035. #endif
  3036. }
  3037. }
  3038. static void ggml_compute_forward_geglu(
  3039. const ggml_compute_params * params,
  3040. ggml_tensor * dst) {
  3041. const ggml_tensor * src0 = dst->src[0];
  3042. switch (src0->type) {
  3043. case GGML_TYPE_F32:
  3044. {
  3045. ggml_compute_forward_geglu_f32(params, dst);
  3046. } break;
  3047. case GGML_TYPE_F16:
  3048. {
  3049. ggml_compute_forward_geglu_f16(params, dst);
  3050. } break;
  3051. default:
  3052. {
  3053. GGML_ABORT("fatal error");
  3054. }
  3055. }
  3056. }
  3057. // ggml_compute_forward_swiglu
  3058. static void ggml_compute_forward_swiglu_f32(
  3059. const ggml_compute_params * params,
  3060. ggml_tensor * dst) {
  3061. const ggml_tensor * src0 = dst->src[0];
  3062. const ggml_tensor * src1 = dst->src[1];
  3063. char * src0_d = (char *) src0->data;
  3064. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3065. const size_t src0_o = src0->nb[1];
  3066. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3067. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3068. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3069. if (src1) {
  3070. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3071. GGML_ASSERT(src0->type == src1->type);
  3072. }
  3073. const int ith = params->ith;
  3074. const int nth = params->nth;
  3075. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3076. const int nr = ggml_nrows(src0);
  3077. GGML_ASSERT(dst->ne[0] == nc);
  3078. GGML_ASSERT(ggml_nrows(dst) == nr);
  3079. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3080. // rows per thread
  3081. const int dr = (nr + nth - 1)/nth;
  3082. // row range for this thread
  3083. const int ir0 = dr*ith;
  3084. const int ir1 = MIN(ir0 + dr, nr);
  3085. for (int i1 = ir0; i1 < ir1; i1++) {
  3086. float * src0_p = (float *) (src0_d + i1*src0_o);
  3087. float * src1_p = (float *) (src1_d + i1*src1_o);
  3088. if (!src1) {
  3089. src0_p += swapped ? nc : 0;
  3090. src1_p += swapped ? 0 : nc;
  3091. }
  3092. ggml_vec_swiglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3093. #ifndef NDEBUG
  3094. for (int k = 0; k < nc; k++) {
  3095. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3096. GGML_UNUSED(x);
  3097. assert(!isnan(x));
  3098. assert(!isinf(x));
  3099. }
  3100. #endif
  3101. }
  3102. }
  3103. static void ggml_compute_forward_swiglu_f16(
  3104. const ggml_compute_params * params,
  3105. ggml_tensor * dst) {
  3106. const ggml_tensor * src0 = dst->src[0];
  3107. const ggml_tensor * src1 = dst->src[1];
  3108. char * src0_d = (char *) src0->data;
  3109. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3110. const size_t src0_o = src0->nb[1];
  3111. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3112. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3113. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3114. if (src1) {
  3115. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3116. GGML_ASSERT(src0->type == src1->type);
  3117. }
  3118. const int ith = params->ith;
  3119. const int nth = params->nth;
  3120. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3121. const int nr = ggml_nrows(src0);
  3122. GGML_ASSERT(dst->ne[0] == nc);
  3123. GGML_ASSERT(ggml_nrows(dst) == nr);
  3124. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3125. // rows per thread
  3126. const int dr = (nr + nth - 1)/nth;
  3127. // row range for this thread
  3128. const int ir0 = dr*ith;
  3129. const int ir1 = MIN(ir0 + dr, nr);
  3130. for (int i1 = ir0; i1 < ir1; i1++) {
  3131. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  3132. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  3133. if (!src1) {
  3134. src0_p += swapped ? nc : 0;
  3135. src1_p += swapped ? 0 : nc;
  3136. }
  3137. ggml_vec_swiglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3138. #ifndef NDEBUG
  3139. for (int k = 0; k < nc; k++) {
  3140. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3141. const float v = GGML_FP16_TO_FP32(x);
  3142. GGML_UNUSED(v);
  3143. assert(!isnan(v));
  3144. assert(!isinf(v));
  3145. }
  3146. #endif
  3147. }
  3148. }
  3149. static void ggml_compute_forward_swiglu(
  3150. const ggml_compute_params * params,
  3151. ggml_tensor * dst) {
  3152. const ggml_tensor * src0 = dst->src[0];
  3153. switch (src0->type) {
  3154. case GGML_TYPE_F32:
  3155. {
  3156. ggml_compute_forward_swiglu_f32(params, dst);
  3157. } break;
  3158. case GGML_TYPE_F16:
  3159. {
  3160. ggml_compute_forward_swiglu_f16(params, dst);
  3161. } break;
  3162. default:
  3163. {
  3164. GGML_ABORT("fatal error");
  3165. }
  3166. }
  3167. }
  3168. // ggml_compute_forward_swiglu_oai
  3169. static void ggml_compute_forward_swiglu_oai_f32(
  3170. const ggml_compute_params * params,
  3171. ggml_tensor * dst) {
  3172. const ggml_tensor * src0 = dst->src[0];
  3173. const ggml_tensor * src1 = dst->src[1];
  3174. char * src0_d = (char *) src0->data;
  3175. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3176. const size_t src0_o = src0->nb[1];
  3177. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3178. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3179. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3180. if (src1) {
  3181. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3182. GGML_ASSERT(src0->type == src1->type);
  3183. }
  3184. const int ith = params->ith;
  3185. const int nth = params->nth;
  3186. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3187. const int nr = ggml_nrows(src0);
  3188. GGML_ASSERT(dst->ne[0] == nc);
  3189. GGML_ASSERT(ggml_nrows(dst) == nr);
  3190. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3191. const float alpha = ggml_get_op_params_f32(dst, 2);
  3192. const float limit = ggml_get_op_params_f32(dst, 3);
  3193. // rows per thread
  3194. const int dr = (nr + nth - 1)/nth;
  3195. // row range for this thread
  3196. const int ir0 = dr*ith;
  3197. const int ir1 = MIN(ir0 + dr, nr);
  3198. for (int i1 = ir0; i1 < ir1; i1++) {
  3199. float * src0_p = (float *) (src0_d + i1*src0_o);
  3200. float * src1_p = (float *) (src1_d + i1*src1_o);
  3201. float * dst_p = (float *) ((char *) dst->data + i1*(dst->nb[1]));
  3202. if (!src1) {
  3203. src0_p += swapped ? nc : 0;
  3204. src1_p += swapped ? 0 : nc;
  3205. }
  3206. for (int k = 0; k < nc; k++) {
  3207. const float x = std::min(src0_p[k], limit);
  3208. const float y = std::clamp(src1_p[k], -limit, limit);
  3209. const float out_glu = x / (1.f + expf(alpha * (-x)));
  3210. dst_p[k] = out_glu * (y + 1.f);
  3211. }
  3212. #ifndef NDEBUG
  3213. for (int k = 0; k < nc; k++) {
  3214. const float x = dst_p[k];
  3215. GGML_UNUSED(x);
  3216. assert(!isnan(x));
  3217. assert(!isinf(x));
  3218. }
  3219. #endif
  3220. }
  3221. }
  3222. static void ggml_compute_forward_swiglu_oai(
  3223. const ggml_compute_params * params,
  3224. ggml_tensor * dst) {
  3225. const ggml_tensor * src0 = dst->src[0];
  3226. switch (src0->type) {
  3227. case GGML_TYPE_F32:
  3228. {
  3229. ggml_compute_forward_swiglu_oai_f32(params, dst);
  3230. } break;
  3231. default:
  3232. {
  3233. GGML_ABORT("fatal error");
  3234. }
  3235. }
  3236. }
  3237. // ggml_compute_forward_geglu_erf
  3238. static void ggml_compute_forward_geglu_erf_f32(
  3239. const ggml_compute_params * params,
  3240. ggml_tensor * dst) {
  3241. const ggml_tensor * src0 = dst->src[0];
  3242. const ggml_tensor * src1 = dst->src[1];
  3243. char * src0_d = (char *) src0->data;
  3244. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3245. const size_t src0_o = src0->nb[1];
  3246. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3247. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3248. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3249. if (src1) {
  3250. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3251. GGML_ASSERT(src0->type == src1->type);
  3252. }
  3253. const int ith = params->ith;
  3254. const int nth = params->nth;
  3255. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3256. const int nr = ggml_nrows(src0);
  3257. GGML_ASSERT(dst->ne[0] == nc);
  3258. GGML_ASSERT(ggml_nrows(dst) == nr);
  3259. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3260. // rows per thread
  3261. const int dr = (nr + nth - 1)/nth;
  3262. // row range for this thread
  3263. const int ir0 = dr*ith;
  3264. const int ir1 = MIN(ir0 + dr, nr);
  3265. for (int i1 = ir0; i1 < ir1; i1++) {
  3266. float * src0_p = (float *) (src0_d + i1*src0_o);
  3267. float * src1_p = (float *) (src1_d + i1*src1_o);
  3268. if (!src1) {
  3269. src0_p += swapped ? nc : 0;
  3270. src1_p += swapped ? 0 : nc;
  3271. }
  3272. ggml_vec_geglu_erf_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3273. #ifndef NDEBUG
  3274. for (int k = 0; k < nc; k++) {
  3275. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3276. GGML_UNUSED(x);
  3277. assert(!isnan(x));
  3278. assert(!isinf(x));
  3279. }
  3280. #endif
  3281. }
  3282. }
  3283. static void ggml_compute_forward_geglu_erf_f16(
  3284. const ggml_compute_params * params,
  3285. ggml_tensor * dst) {
  3286. const ggml_tensor * src0 = dst->src[0];
  3287. const ggml_tensor * src1 = dst->src[1];
  3288. char * src0_d = (char *) src0->data;
  3289. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3290. const size_t src0_o = src0->nb[1];
  3291. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3292. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3293. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3294. if (src1) {
  3295. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3296. GGML_ASSERT(src0->type == src1->type);
  3297. }
  3298. const int ith = params->ith;
  3299. const int nth = params->nth;
  3300. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3301. const int nr = ggml_nrows(src0);
  3302. GGML_ASSERT(dst->ne[0] == nc);
  3303. GGML_ASSERT(ggml_nrows(dst) == nr);
  3304. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3305. // rows per thread
  3306. const int dr = (nr + nth - 1)/nth;
  3307. // row range for this thread
  3308. const int ir0 = dr*ith;
  3309. const int ir1 = MIN(ir0 + dr, nr);
  3310. for (int i1 = ir0; i1 < ir1; i1++) {
  3311. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  3312. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  3313. if (!src1) {
  3314. src0_p += swapped ? nc : 0;
  3315. src1_p += swapped ? 0 : nc;
  3316. }
  3317. ggml_vec_geglu_erf_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3318. #ifndef NDEBUG
  3319. for (int k = 0; k < nc; k++) {
  3320. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3321. const float v = GGML_FP16_TO_FP32(x);
  3322. GGML_UNUSED(v);
  3323. assert(!isnan(v));
  3324. assert(!isinf(v));
  3325. }
  3326. #endif
  3327. }
  3328. }
  3329. static void ggml_compute_forward_geglu_erf(
  3330. const ggml_compute_params * params,
  3331. ggml_tensor * dst) {
  3332. const ggml_tensor * src0 = dst->src[0];
  3333. switch (src0->type) {
  3334. case GGML_TYPE_F32:
  3335. {
  3336. ggml_compute_forward_geglu_erf_f32(params, dst);
  3337. } break;
  3338. case GGML_TYPE_F16:
  3339. {
  3340. ggml_compute_forward_geglu_erf_f16(params, dst);
  3341. } break;
  3342. default:
  3343. {
  3344. GGML_ABORT("fatal error");
  3345. }
  3346. }
  3347. }
  3348. // ggml_compute_forward_geglu_quick
  3349. static void ggml_compute_forward_geglu_quick_f32(
  3350. const ggml_compute_params * params,
  3351. ggml_tensor * dst) {
  3352. const ggml_tensor * src0 = dst->src[0];
  3353. const ggml_tensor * src1 = dst->src[1];
  3354. char * src0_d = (char *) src0->data;
  3355. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3356. const size_t src0_o = src0->nb[1];
  3357. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3358. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3359. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3360. if (src1) {
  3361. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3362. GGML_ASSERT(src0->type == src1->type);
  3363. }
  3364. const int ith = params->ith;
  3365. const int nth = params->nth;
  3366. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3367. const int nr = ggml_nrows(src0);
  3368. GGML_ASSERT(dst->ne[0] == nc);
  3369. GGML_ASSERT(ggml_nrows(dst) == nr);
  3370. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3371. // rows per thread
  3372. const int dr = (nr + nth - 1)/nth;
  3373. // row range for this thread
  3374. const int ir0 = dr*ith;
  3375. const int ir1 = MIN(ir0 + dr, nr);
  3376. for (int i1 = ir0; i1 < ir1; i1++) {
  3377. float * src0_p = (float *) (src0_d + i1*src0_o);
  3378. float * src1_p = (float *) (src1_d + i1*src1_o);
  3379. if (!src1) {
  3380. src0_p += swapped ? nc : 0;
  3381. src1_p += swapped ? 0 : nc;
  3382. }
  3383. ggml_vec_geglu_quick_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3384. #ifndef NDEBUG
  3385. for (int k = 0; k < nc; k++) {
  3386. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3387. GGML_UNUSED(x);
  3388. assert(!isnan(x));
  3389. assert(!isinf(x));
  3390. }
  3391. #endif
  3392. }
  3393. }
  3394. static void ggml_compute_forward_geglu_quick_f16(
  3395. const ggml_compute_params * params,
  3396. ggml_tensor * dst) {
  3397. const ggml_tensor * src0 = dst->src[0];
  3398. const ggml_tensor * src1 = dst->src[1];
  3399. char * src0_d = (char *) src0->data;
  3400. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3401. const size_t src0_o = src0->nb[1];
  3402. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3403. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3404. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3405. if (src1) {
  3406. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3407. GGML_ASSERT(src0->type == src1->type);
  3408. }
  3409. const int ith = params->ith;
  3410. const int nth = params->nth;
  3411. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3412. const int nr = ggml_nrows(src0);
  3413. GGML_ASSERT(dst->ne[0] == nc);
  3414. GGML_ASSERT(ggml_nrows(dst) == nr);
  3415. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3416. // rows per thread
  3417. const int dr = (nr + nth - 1)/nth;
  3418. // row range for this thread
  3419. const int ir0 = dr*ith;
  3420. const int ir1 = MIN(ir0 + dr, nr);
  3421. for (int i1 = ir0; i1 < ir1; i1++) {
  3422. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  3423. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  3424. if (!src1) {
  3425. src0_p += swapped ? nc : 0;
  3426. src1_p += swapped ? 0 : nc;
  3427. }
  3428. ggml_vec_geglu_quick_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3429. #ifndef NDEBUG
  3430. for (int k = 0; k < nc; k++) {
  3431. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3432. const float v = GGML_FP16_TO_FP32(x);
  3433. GGML_UNUSED(v);
  3434. assert(!isnan(v));
  3435. assert(!isinf(v));
  3436. }
  3437. #endif
  3438. }
  3439. }
  3440. static void ggml_compute_forward_geglu_quick(
  3441. const ggml_compute_params * params,
  3442. ggml_tensor * dst) {
  3443. const ggml_tensor * src0 = dst->src[0];
  3444. switch (src0->type) {
  3445. case GGML_TYPE_F32:
  3446. {
  3447. ggml_compute_forward_geglu_quick_f32(params, dst);
  3448. } break;
  3449. case GGML_TYPE_F16:
  3450. {
  3451. ggml_compute_forward_geglu_quick_f16(params, dst);
  3452. } break;
  3453. default:
  3454. {
  3455. GGML_ABORT("fatal error");
  3456. }
  3457. }
  3458. }
  3459. // ggml_compute_forward_norm
  3460. static void ggml_compute_forward_norm_f32(
  3461. const ggml_compute_params * params,
  3462. ggml_tensor * dst) {
  3463. const ggml_tensor * src0 = dst->src[0];
  3464. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3465. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3466. const int ith = params->ith;
  3467. const int nth = params->nth;
  3468. GGML_TENSOR_UNARY_OP_LOCALS
  3469. float eps;
  3470. memcpy(&eps, dst->op_params, sizeof(float));
  3471. GGML_ASSERT(eps >= 0.0f);
  3472. // TODO: optimize
  3473. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3474. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3475. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3476. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3477. ggml_float sum = 0.0;
  3478. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3479. sum += (ggml_float)x[i00];
  3480. }
  3481. float mean = sum/ne00;
  3482. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3483. ggml_float sum2 = 0.0;
  3484. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3485. float v = x[i00] - mean;
  3486. y[i00] = v;
  3487. sum2 += (ggml_float)(v*v);
  3488. }
  3489. float variance = sum2/ne00;
  3490. const float scale = 1.0f/sqrtf(variance + eps);
  3491. ggml_vec_scale_f32(ne00, y, scale);
  3492. }
  3493. }
  3494. }
  3495. }
  3496. void ggml_compute_forward_norm(
  3497. const ggml_compute_params * params,
  3498. ggml_tensor * dst) {
  3499. const ggml_tensor * src0 = dst->src[0];
  3500. switch (src0->type) {
  3501. case GGML_TYPE_F32:
  3502. {
  3503. ggml_compute_forward_norm_f32(params, dst);
  3504. } break;
  3505. default:
  3506. {
  3507. GGML_ABORT("fatal error");
  3508. }
  3509. }
  3510. }
  3511. // ggml_compute_forward_group_rms_norm
  3512. static void ggml_compute_forward_rms_norm_f32(
  3513. const ggml_compute_params * params,
  3514. ggml_tensor * dst) {
  3515. const ggml_tensor * src0 = dst->src[0];
  3516. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3517. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3518. const int ith = params->ith;
  3519. const int nth = params->nth;
  3520. GGML_TENSOR_UNARY_OP_LOCALS
  3521. float eps;
  3522. memcpy(&eps, dst->op_params, sizeof(float));
  3523. GGML_ASSERT(eps >= 0.0f);
  3524. // TODO: optimize
  3525. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3526. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3527. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3528. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3529. ggml_float sum = 0.0;
  3530. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3531. sum += (ggml_float)(x[i00] * x[i00]);
  3532. }
  3533. const float mean = sum/ne00;
  3534. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3535. memcpy(y, x, ne00 * sizeof(float));
  3536. // for (int i00 = 0; i00 < ne00; i00++) {
  3537. // y[i00] = x[i00];
  3538. // }
  3539. const float scale = 1.0f/sqrtf(mean + eps);
  3540. // if you hit this, likely you got an inf somewhere earlier
  3541. assert(scale > 0.0f);
  3542. ggml_vec_scale_f32(ne00, y, scale);
  3543. }
  3544. }
  3545. }
  3546. }
  3547. void ggml_compute_forward_rms_norm(
  3548. const ggml_compute_params * params,
  3549. ggml_tensor * dst) {
  3550. const ggml_tensor * src0 = dst->src[0];
  3551. switch (src0->type) {
  3552. case GGML_TYPE_F32:
  3553. {
  3554. ggml_compute_forward_rms_norm_f32(params, dst);
  3555. } break;
  3556. default:
  3557. {
  3558. GGML_ABORT("fatal error");
  3559. }
  3560. }
  3561. }
  3562. static void ggml_compute_forward_rms_norm_back_f32(
  3563. const ggml_compute_params * params,
  3564. ggml_tensor * dst) {
  3565. const ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
  3566. const ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
  3567. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  3568. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3569. GGML_ASSERT(src1->nb[0] == sizeof(float));
  3570. const int ith = params->ith;
  3571. const int nth = params->nth;
  3572. GGML_TENSOR_BINARY_OP_LOCALS
  3573. float eps;
  3574. memcpy(&eps, dst->op_params, sizeof(float));
  3575. // TODO: optimize
  3576. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3577. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3578. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3579. // src1 is same shape as src0 => same indices
  3580. const int64_t i11 = i01;
  3581. const int64_t i12 = i02;
  3582. const int64_t i13 = i03;
  3583. const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3584. const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  3585. ggml_float sum_xx = 0.0;
  3586. ggml_float sum_xdz = 0.0;
  3587. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3588. sum_xx += (ggml_float)(x[i00] * x[i00]);
  3589. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  3590. }
  3591. //const float mean = (float)(sum_xx)/ne00;
  3592. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  3593. const float sum_eps = (float)(sum_xx) + eps*ne00;
  3594. //const float mean_xdz = (float)(sum_xdz)/ne00;
  3595. // we could cache rms from forward pass to improve performance.
  3596. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  3597. //const float rms = sqrtf(mean_eps);
  3598. const float rrms = 1.0f / sqrtf(mean_eps);
  3599. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  3600. {
  3601. // z = rms_norm(x)
  3602. //
  3603. // rms_norm(src1) =
  3604. // scale(
  3605. // src1,
  3606. // div(
  3607. // 1,
  3608. // sqrt(
  3609. // add(
  3610. // scale(
  3611. // sum(
  3612. // sqr(
  3613. // src1)),
  3614. // (1.0/N)),
  3615. // eps))));
  3616. // postorder:
  3617. // ## op args grad
  3618. // 00 param src1 grad[#00]
  3619. // 01 const 1
  3620. // 02 sqr (#00) grad[#02]
  3621. // 03 sum (#02) grad[#03]
  3622. // 04 const 1/N
  3623. // 05 scale (#03, #04) grad[#05]
  3624. // 06 const eps
  3625. // 07 add (#05, #06) grad[#07]
  3626. // 08 sqrt (#07) grad[#08]
  3627. // 09 div (#01,#08) grad[#09]
  3628. // 10 scale (#00,#09) grad[#10]
  3629. //
  3630. // backward pass, given grad[#10]
  3631. // #10: scale
  3632. // grad[#00] += scale(grad[#10],#09)
  3633. // grad[#09] += sum(mul(grad[#10],#00))
  3634. // #09: div
  3635. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  3636. // #08: sqrt
  3637. // grad[#07] += mul(grad[#08], div(0.5, #08))
  3638. // #07: add
  3639. // grad[#05] += grad[#07]
  3640. // #05: scale
  3641. // grad[#03] += scale(grad[#05],#04)
  3642. // #03: sum
  3643. // grad[#02] += repeat(grad[#03], #02)
  3644. // #02:
  3645. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  3646. //
  3647. // substitute and simplify:
  3648. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  3649. // grad[#02] = repeat(grad[#03], #02)
  3650. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  3651. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  3652. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  3653. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  3654. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  3655. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  3656. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  3657. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  3658. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  3659. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  3660. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  3661. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  3662. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  3663. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  3664. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  3665. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  3666. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  3667. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  3668. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  3669. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  3670. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  3671. // a = b*c + d*e
  3672. // a = b*c*f/f + d*e*f/f
  3673. // a = (b*c*f + d*e*f)*(1/f)
  3674. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  3675. // a = (b + d*e/c)*c
  3676. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  3677. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  3678. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  3679. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  3680. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  3681. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  3682. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  3683. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  3684. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  3685. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  3686. }
  3687. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  3688. // post-order:
  3689. // dx := x
  3690. // dx := scale(dx,-mean_xdz/mean_eps)
  3691. // dx := add(dx, dz)
  3692. // dx := scale(dx, rrms)
  3693. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3694. // dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
  3695. ggml_vec_cpy_f32 (ne00, dx, x);
  3696. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  3697. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  3698. ggml_vec_acc_f32 (ne00, dx, dz);
  3699. ggml_vec_scale_f32(ne00, dx, rrms);
  3700. }
  3701. }
  3702. }
  3703. }
  3704. void ggml_compute_forward_rms_norm_back(
  3705. const ggml_compute_params * params,
  3706. ggml_tensor * dst) {
  3707. const ggml_tensor * src0 = dst->src[0];
  3708. switch (src0->type) {
  3709. case GGML_TYPE_F32:
  3710. {
  3711. ggml_compute_forward_rms_norm_back_f32(params, dst);
  3712. } break;
  3713. default:
  3714. {
  3715. GGML_ABORT("fatal error");
  3716. }
  3717. }
  3718. }
  3719. // ggml_compute_forward_group_norm
  3720. static void ggml_compute_forward_group_norm_f32(
  3721. const ggml_compute_params * params,
  3722. ggml_tensor * dst) {
  3723. const ggml_tensor * src0 = dst->src[0];
  3724. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3725. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3726. const int ith = params->ith;
  3727. const int nth = params->nth;
  3728. GGML_TENSOR_UNARY_OP_LOCALS
  3729. // TODO: optimize
  3730. float eps;
  3731. memcpy(&eps, dst->op_params + 1, sizeof(float));
  3732. int n_channels = src0->ne[2];
  3733. int n_groups = dst->op_params[0];
  3734. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  3735. for (int i = ith; i < n_groups; i += nth) {
  3736. int start = i * n_channels_per_group;
  3737. int end = start + n_channels_per_group;
  3738. if (end > n_channels) {
  3739. end = n_channels;
  3740. }
  3741. int step = end - start;
  3742. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3743. ggml_float sum = 0.0;
  3744. for (int64_t i02 = start; i02 < end; i02++) {
  3745. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3746. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  3747. ggml_float sumr = 0.0;
  3748. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3749. sumr += (ggml_float)x[i00];
  3750. }
  3751. sum += sumr;
  3752. }
  3753. }
  3754. const float mean = sum / (ne00 * ne01 * step);
  3755. ggml_float sum2 = 0.0;
  3756. for (int64_t i02 = start; i02 < end; i02++) {
  3757. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3758. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  3759. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  3760. ggml_float sumr = 0.0;
  3761. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3762. float v = x[i00] - mean;
  3763. y[i00] = v;
  3764. sumr += (ggml_float)(v * v);
  3765. }
  3766. sum2 += sumr;
  3767. }
  3768. }
  3769. const float variance = sum2 / (ne00 * ne01 * step);
  3770. const float scale = 1.0f / sqrtf(variance + eps);
  3771. for (int64_t i02 = start; i02 < end; i02++) {
  3772. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3773. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  3774. ggml_vec_scale_f32(ne00, y, scale);
  3775. }
  3776. }
  3777. }
  3778. }
  3779. }
  3780. void ggml_compute_forward_group_norm(
  3781. const ggml_compute_params * params,
  3782. ggml_tensor * dst) {
  3783. const ggml_tensor * src0 = dst->src[0];
  3784. switch (src0->type) {
  3785. case GGML_TYPE_F32:
  3786. {
  3787. ggml_compute_forward_group_norm_f32(params, dst);
  3788. } break;
  3789. default:
  3790. {
  3791. GGML_ABORT("fatal error");
  3792. }
  3793. }
  3794. }
  3795. // ggml_compute_forward_l2_norm
  3796. static void ggml_compute_forward_l2_norm_f32(
  3797. const ggml_compute_params * params,
  3798. ggml_tensor * dst) {
  3799. const ggml_tensor * src0 = dst->src[0];
  3800. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3801. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3802. const int ith = params->ith;
  3803. const int nth = params->nth;
  3804. GGML_TENSOR_UNARY_OP_LOCALS
  3805. float eps;
  3806. memcpy(&eps, dst->op_params, sizeof(float));
  3807. GGML_ASSERT(eps >= 0.0f);
  3808. // TODO: optimize
  3809. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3810. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3811. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3812. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3813. ggml_float sum = 0.0;
  3814. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3815. sum += (ggml_float)(x[i00] * x[i00]);
  3816. }
  3817. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3818. memcpy(y, x, ne00 * sizeof(float));
  3819. const float scale = 1.0f/fmaxf(sqrtf(sum), eps);
  3820. ggml_vec_scale_f32(ne00, y, scale);
  3821. }
  3822. }
  3823. }
  3824. }
  3825. void ggml_compute_forward_l2_norm(
  3826. const ggml_compute_params * params,
  3827. ggml_tensor * dst) {
  3828. const ggml_tensor * src0 = dst->src[0];
  3829. switch (src0->type) {
  3830. case GGML_TYPE_F32:
  3831. {
  3832. ggml_compute_forward_l2_norm_f32(params, dst);
  3833. } break;
  3834. default:
  3835. {
  3836. GGML_ABORT("fatal error");
  3837. }
  3838. }
  3839. }
  3840. // ggml_compute_forward_out_prod
  3841. static void ggml_compute_forward_out_prod_f32(
  3842. const ggml_compute_params * params,
  3843. ggml_tensor * dst) {
  3844. const ggml_tensor * src0 = dst->src[0];
  3845. const ggml_tensor * src1 = dst->src[1];
  3846. GGML_TENSOR_BINARY_OP_LOCALS
  3847. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  3848. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  3849. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3850. const int ith = params->ith;
  3851. const int nth = params->nth;
  3852. GGML_ASSERT(ne0 == ne00);
  3853. GGML_ASSERT(ne1 == ne10);
  3854. GGML_ASSERT(ne2 == ne12);
  3855. GGML_ASSERT(ne3 == ne13);
  3856. GGML_ASSERT(ne2 % ne02 == 0);
  3857. GGML_ASSERT(ne3 % ne03 == 0);
  3858. // we don't support permuted src0 or src1
  3859. GGML_ASSERT(nb00 == sizeof(float));
  3860. // dst cannot be transposed or permuted
  3861. GGML_ASSERT(nb0 == sizeof(float));
  3862. // GGML_ASSERT(nb0 <= nb1);
  3863. // GGML_ASSERT(nb1 <= nb2);
  3864. // GGML_ASSERT(nb2 <= nb3);
  3865. // nb01 >= nb00 - src0 is not transposed
  3866. // compute by src0 rows
  3867. if (ith == 0) {
  3868. ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
  3869. }
  3870. ggml_barrier(params->threadpool);
  3871. // dst[:,:,:,:] = 0
  3872. // for i2,i3:
  3873. // for i1:
  3874. // for i01:
  3875. // for i0:
  3876. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  3877. // parallelize by last three dimensions
  3878. // total rows in dst
  3879. const int64_t nr = ne1*ne2*ne3;
  3880. // rows per thread
  3881. const int64_t dr = (nr + nth - 1)/nth;
  3882. // row range for this thread
  3883. const int64_t ir0 = dr*ith;
  3884. const int64_t ir1 = MIN(ir0 + dr, nr);
  3885. // block-tiling attempt
  3886. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  3887. const int64_t blck_1 = 16;
  3888. // dps == dst per src0, used for group query attention
  3889. const int64_t dps2 = ne2 / ne02;
  3890. const int64_t dps3 = ne3 / ne03;
  3891. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  3892. const int64_t bir1 = MIN(bir + blck_1, ir1);
  3893. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  3894. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  3895. for (int64_t ir = bir; ir < bir1; ++ir) {
  3896. // dst indices
  3897. const int64_t i3 = ir/(ne2*ne1);
  3898. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  3899. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3900. const int64_t i02 = i2 / dps2;
  3901. const int64_t i03 = i3 / dps3;
  3902. //const int64_t i10 = i1;
  3903. const int64_t i12 = i2;
  3904. const int64_t i13 = i3;
  3905. #if GGML_VEC_MAD_UNROLL > 2
  3906. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  3907. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  3908. const int64_t i11 = i01;
  3909. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  3910. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  3911. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3912. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  3913. }
  3914. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  3915. const int64_t i11 = i01;
  3916. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  3917. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  3918. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3919. ggml_vec_mad_f32(ne0, d, s0, *s1);
  3920. }
  3921. #else
  3922. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  3923. const int64_t i11 = i01;
  3924. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  3925. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  3926. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3927. ggml_vec_mad_f32(ne0, d, s0, *s1);
  3928. }
  3929. #endif
  3930. }
  3931. }
  3932. }
  3933. }
  3934. static void ggml_compute_forward_out_prod_q_f32(
  3935. const ggml_compute_params * params,
  3936. ggml_tensor * dst) {
  3937. const ggml_tensor * src0 = dst->src[0];
  3938. const ggml_tensor * src1 = dst->src[1];
  3939. GGML_TENSOR_BINARY_OP_LOCALS;
  3940. const int ith = params->ith;
  3941. const int nth = params->nth;
  3942. const ggml_type type = src0->type;
  3943. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  3944. GGML_ASSERT(ne02 == ne12);
  3945. GGML_ASSERT(ne03 == ne13);
  3946. GGML_ASSERT(ne2 == ne12);
  3947. GGML_ASSERT(ne3 == ne13);
  3948. // we don't support permuted src0 dim0
  3949. GGML_ASSERT(nb00 == ggml_type_size(type));
  3950. // dst dim0 cannot be transposed or permuted
  3951. GGML_ASSERT(nb0 == sizeof(float));
  3952. // GGML_ASSERT(nb0 <= nb1);
  3953. // GGML_ASSERT(nb1 <= nb2);
  3954. // GGML_ASSERT(nb2 <= nb3);
  3955. GGML_ASSERT(ne0 == ne00);
  3956. GGML_ASSERT(ne1 == ne10);
  3957. GGML_ASSERT(ne2 == ne02);
  3958. GGML_ASSERT(ne3 == ne03);
  3959. // nb01 >= nb00 - src0 is not transposed
  3960. // compute by src0 rows
  3961. if (ith == 0) {
  3962. ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
  3963. }
  3964. ggml_barrier(params->threadpool);
  3965. // parallelize by last three dimensions
  3966. // total rows in dst
  3967. const int64_t nr = ne1*ne2*ne3;
  3968. // rows per thread
  3969. const int64_t dr = (nr + nth - 1)/nth;
  3970. // row range for this thread
  3971. const int64_t ir0 = dr*ith;
  3972. const int64_t ir1 = MIN(ir0 + dr, nr);
  3973. // dst[:,:,:,:] = 0
  3974. // for i2,i3:
  3975. // for i1:
  3976. // for i01:
  3977. // for i0:
  3978. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  3979. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  3980. for (int64_t ir = ir0; ir < ir1; ++ir) {
  3981. // dst indices
  3982. const int64_t i3 = ir/(ne2*ne1);
  3983. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  3984. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3985. const int64_t i02 = i2;
  3986. const int64_t i03 = i3;
  3987. //const int64_t i10 = i1;
  3988. const int64_t i12 = i2;
  3989. const int64_t i13 = i3;
  3990. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  3991. const int64_t i11 = i01;
  3992. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  3993. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  3994. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3995. dequantize_row_q(s0, wdata, ne0);
  3996. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  3997. }
  3998. }
  3999. }
  4000. void ggml_compute_forward_out_prod(
  4001. const ggml_compute_params * params,
  4002. ggml_tensor * dst) {
  4003. const ggml_tensor * src0 = dst->src[0];
  4004. switch (src0->type) {
  4005. case GGML_TYPE_Q4_0:
  4006. case GGML_TYPE_Q4_1:
  4007. case GGML_TYPE_Q5_0:
  4008. case GGML_TYPE_Q5_1:
  4009. case GGML_TYPE_Q8_0:
  4010. case GGML_TYPE_MXFP4:
  4011. case GGML_TYPE_Q2_K:
  4012. case GGML_TYPE_Q3_K:
  4013. case GGML_TYPE_Q4_K:
  4014. case GGML_TYPE_Q5_K:
  4015. case GGML_TYPE_Q6_K:
  4016. case GGML_TYPE_TQ1_0:
  4017. case GGML_TYPE_TQ2_0:
  4018. case GGML_TYPE_IQ2_XXS:
  4019. case GGML_TYPE_IQ2_XS:
  4020. case GGML_TYPE_IQ3_XXS:
  4021. case GGML_TYPE_IQ1_S:
  4022. case GGML_TYPE_IQ1_M:
  4023. case GGML_TYPE_IQ4_NL:
  4024. case GGML_TYPE_IQ4_XS:
  4025. case GGML_TYPE_IQ3_S:
  4026. case GGML_TYPE_IQ2_S:
  4027. {
  4028. ggml_compute_forward_out_prod_q_f32(params, dst);
  4029. } break;
  4030. case GGML_TYPE_F16:
  4031. {
  4032. GGML_ABORT("fatal error"); // todo
  4033. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  4034. }
  4035. case GGML_TYPE_F32:
  4036. {
  4037. ggml_compute_forward_out_prod_f32(params, dst);
  4038. } break;
  4039. default:
  4040. {
  4041. GGML_ABORT("fatal error");
  4042. }
  4043. }
  4044. }
  4045. // ggml_compute_forward_scale
  4046. static void ggml_compute_forward_scale_f32(
  4047. const ggml_compute_params * params,
  4048. ggml_tensor * dst) {
  4049. const ggml_tensor * src0 = dst->src[0];
  4050. GGML_ASSERT(ggml_is_contiguous(src0));
  4051. GGML_ASSERT(ggml_is_contiguous(dst));
  4052. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4053. float s; // scale factor
  4054. float b; // bias
  4055. memcpy(&s, (float *) dst->op_params + 0, sizeof(float));
  4056. memcpy(&b, (float *) dst->op_params + 1, sizeof(float));
  4057. const int ith = params->ith;
  4058. const int nth = params->nth;
  4059. const int nc = src0->ne[0];
  4060. const int nr = ggml_nrows(src0);
  4061. // rows per thread
  4062. const int dr = (nr + nth - 1)/nth;
  4063. // row range for this thread
  4064. const int ir0 = dr*ith;
  4065. const int ir1 = MIN(ir0 + dr, nr);
  4066. const size_t nb01 = src0->nb[1];
  4067. const size_t nb1 = dst->nb[1];
  4068. if (b == 0.0f) {
  4069. for (int i1 = ir0; i1 < ir1; i1++) {
  4070. if (dst->data != src0->data) {
  4071. // src0 is same shape as dst => same indices
  4072. // TODO: add x parameter to ggml_vec_scale_f32 and remove this memcpy
  4073. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  4074. }
  4075. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), s);
  4076. }
  4077. } else {
  4078. for (int i1 = ir0; i1 < ir1; i1++) {
  4079. ggml_vec_mad1_f32(nc,
  4080. (float *) ((char *) dst->data + i1*nb1),
  4081. (float *) ((char *) src0->data + i1*nb1),
  4082. s, b);
  4083. }
  4084. }
  4085. }
  4086. void ggml_compute_forward_scale(
  4087. const ggml_compute_params * params,
  4088. ggml_tensor * dst) {
  4089. const ggml_tensor * src0 = dst->src[0];
  4090. switch (src0->type) {
  4091. case GGML_TYPE_F32:
  4092. {
  4093. ggml_compute_forward_scale_f32(params, dst);
  4094. } break;
  4095. default:
  4096. {
  4097. GGML_ABORT("fatal error");
  4098. }
  4099. }
  4100. }
  4101. // ggml_compute_forward_set
  4102. static void ggml_compute_forward_set_f32(
  4103. const ggml_compute_params * params,
  4104. ggml_tensor * dst) {
  4105. const ggml_tensor * src0 = dst->src[0];
  4106. const ggml_tensor * src1 = dst->src[1];
  4107. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4108. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4109. // view src0 and dst with these strides and data offset inbytes during set
  4110. // nb0 is implicitly element_size because src0 and dst are contiguous
  4111. size_t nb1 = ((int32_t *) dst->op_params)[0];
  4112. size_t nb2 = ((int32_t *) dst->op_params)[1];
  4113. size_t nb3 = ((int32_t *) dst->op_params)[2];
  4114. size_t offset = ((int32_t *) dst->op_params)[3];
  4115. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  4116. if (!inplace) {
  4117. if (params->ith == 0) {
  4118. // memcpy needs to be synchronized across threads to avoid race conditions.
  4119. // => do it in INIT phase
  4120. memcpy(
  4121. ((char *) dst->data),
  4122. ((char *) src0->data),
  4123. ggml_nbytes(dst));
  4124. }
  4125. ggml_barrier(params->threadpool);
  4126. }
  4127. const int ith = params->ith;
  4128. const int nth = params->nth;
  4129. const int nr = ggml_nrows(src1);
  4130. const int nc = src1->ne[0];
  4131. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  4132. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  4133. // src0 and dst as viewed during set
  4134. const size_t nb0 = ggml_element_size(src0);
  4135. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  4136. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  4137. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  4138. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  4139. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  4140. GGML_ASSERT(nb10 == sizeof(float));
  4141. // rows per thread
  4142. const int dr = (nr + nth - 1)/nth;
  4143. // row range for this thread
  4144. const int ir0 = dr*ith;
  4145. const int ir1 = MIN(ir0 + dr, nr);
  4146. for (int ir = ir0; ir < ir1; ++ir) {
  4147. // src0 and dst are viewed with shape of src1 and offset
  4148. // => same indices
  4149. const int i3 = ir/(ne12*ne11);
  4150. const int i2 = (ir - i3*ne12*ne11)/ne11;
  4151. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  4152. ggml_vec_cpy_f32(nc,
  4153. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  4154. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  4155. }
  4156. }
  4157. static void ggml_compute_forward_set_i32(
  4158. const ggml_compute_params * params,
  4159. ggml_tensor * dst) {
  4160. const ggml_tensor * src0 = dst->src[0];
  4161. const ggml_tensor * src1 = dst->src[1];
  4162. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4163. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4164. // view src0 and dst with these strides and data offset inbytes during set
  4165. // nb0 is implicitly element_size because src0 and dst are contiguous
  4166. size_t nb1 = ((int32_t *) dst->op_params)[0];
  4167. size_t nb2 = ((int32_t *) dst->op_params)[1];
  4168. size_t nb3 = ((int32_t *) dst->op_params)[2];
  4169. size_t offset = ((int32_t *) dst->op_params)[3];
  4170. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  4171. if (!inplace) {
  4172. if (params->ith == 0) {
  4173. // memcpy needs to be synchronized across threads to avoid race conditions.
  4174. // => do it in INIT phase
  4175. memcpy(
  4176. ((char *) dst->data),
  4177. ((char *) src0->data),
  4178. ggml_nbytes(dst));
  4179. }
  4180. ggml_barrier(params->threadpool);
  4181. }
  4182. const int ith = params->ith;
  4183. const int nth = params->nth;
  4184. const int nr = ggml_nrows(src1);
  4185. const int nc = src1->ne[0];
  4186. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  4187. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  4188. // src0 and dst as viewed during set
  4189. const size_t nb0 = ggml_element_size(src0);
  4190. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  4191. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  4192. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  4193. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  4194. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  4195. GGML_ASSERT(nb10 == sizeof(int32_t));
  4196. // rows per thread
  4197. const int dr = (nr + nth - 1)/nth;
  4198. // row range for this thread
  4199. const int ir0 = dr*ith;
  4200. const int ir1 = MIN(ir0 + dr, nr);
  4201. for (int ir = ir0; ir < ir1; ++ir) {
  4202. // src0 and dst are viewed with shape of src1 and offset
  4203. // => same indices
  4204. const int i3 = ir/(ne12*ne11);
  4205. const int i2 = (ir - i3*ne12*ne11)/ne11;
  4206. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  4207. ggml_vec_cpy_i32(nc,
  4208. (int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  4209. (int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  4210. }
  4211. }
  4212. void ggml_compute_forward_set(
  4213. const ggml_compute_params * params,
  4214. ggml_tensor * dst) {
  4215. const ggml_tensor * src0 = dst->src[0];
  4216. switch (src0->type) {
  4217. case GGML_TYPE_F32:
  4218. {
  4219. ggml_compute_forward_set_f32(params, dst);
  4220. } break;
  4221. case GGML_TYPE_I32:
  4222. {
  4223. ggml_compute_forward_set_i32(params, dst);
  4224. } break;
  4225. case GGML_TYPE_F16:
  4226. case GGML_TYPE_BF16:
  4227. case GGML_TYPE_Q4_0:
  4228. case GGML_TYPE_Q4_1:
  4229. case GGML_TYPE_Q5_0:
  4230. case GGML_TYPE_Q5_1:
  4231. case GGML_TYPE_Q8_0:
  4232. case GGML_TYPE_Q8_1:
  4233. case GGML_TYPE_MXFP4:
  4234. case GGML_TYPE_Q2_K:
  4235. case GGML_TYPE_Q3_K:
  4236. case GGML_TYPE_Q4_K:
  4237. case GGML_TYPE_Q5_K:
  4238. case GGML_TYPE_Q6_K:
  4239. case GGML_TYPE_TQ1_0:
  4240. case GGML_TYPE_TQ2_0:
  4241. case GGML_TYPE_IQ2_XXS:
  4242. case GGML_TYPE_IQ2_XS:
  4243. case GGML_TYPE_IQ3_XXS:
  4244. case GGML_TYPE_IQ1_S:
  4245. case GGML_TYPE_IQ1_M:
  4246. case GGML_TYPE_IQ4_NL:
  4247. case GGML_TYPE_IQ4_XS:
  4248. case GGML_TYPE_IQ3_S:
  4249. case GGML_TYPE_IQ2_S:
  4250. default:
  4251. {
  4252. GGML_ABORT("fatal error");
  4253. }
  4254. }
  4255. }
  4256. // ggml_compute_forward_cpy
  4257. void ggml_compute_forward_cpy(
  4258. const ggml_compute_params * params,
  4259. ggml_tensor * dst) {
  4260. ggml_compute_forward_dup(params, dst);
  4261. }
  4262. // ggml_compute_forward_cont
  4263. void ggml_compute_forward_cont(
  4264. const ggml_compute_params * params,
  4265. ggml_tensor * dst) {
  4266. ggml_compute_forward_dup(params, dst);
  4267. }
  4268. // ggml_compute_forward_reshape
  4269. void ggml_compute_forward_reshape(
  4270. const ggml_compute_params * params,
  4271. ggml_tensor * dst) {
  4272. // NOP
  4273. GGML_UNUSED(params);
  4274. GGML_UNUSED(dst);
  4275. }
  4276. // ggml_compute_forward_view
  4277. void ggml_compute_forward_view(
  4278. const ggml_compute_params * params,
  4279. ggml_tensor * dst) {
  4280. // NOP
  4281. GGML_UNUSED(params);
  4282. GGML_UNUSED(dst);
  4283. }
  4284. // ggml_compute_forward_permute
  4285. void ggml_compute_forward_permute(
  4286. const ggml_compute_params * params,
  4287. ggml_tensor * dst) {
  4288. // NOP
  4289. GGML_UNUSED(params);
  4290. GGML_UNUSED(dst);
  4291. }
  4292. // ggml_compute_forward_transpose
  4293. void ggml_compute_forward_transpose(
  4294. const ggml_compute_params * params,
  4295. ggml_tensor * dst) {
  4296. // NOP
  4297. GGML_UNUSED(params);
  4298. GGML_UNUSED(dst);
  4299. }
  4300. // ggml_compute_forward_get_rows
  4301. static void ggml_compute_forward_get_rows_q(
  4302. const ggml_compute_params * params,
  4303. ggml_tensor * dst) {
  4304. const ggml_tensor * src0 = dst->src[0];
  4305. const ggml_tensor * src1 = dst->src[1];
  4306. GGML_TENSOR_BINARY_OP_LOCALS
  4307. const int64_t nc = ne00;
  4308. const int64_t nr = ggml_nelements(src1);
  4309. const ggml_type type = src0->type;
  4310. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  4311. assert(ne0 == nc);
  4312. assert(ne02 == ne11);
  4313. assert(nb00 == ggml_type_size(type));
  4314. assert(ggml_nrows(dst) == nr);
  4315. const int ith = params->ith;
  4316. const int nth = params->nth;
  4317. // rows per thread
  4318. const int dr = (nr + nth - 1)/nth;
  4319. // row range for this thread
  4320. const int ir0 = dr*ith;
  4321. const int ir1 = MIN(ir0 + dr, nr);
  4322. for (int64_t i = ir0; i < ir1; ++i) {
  4323. const int64_t i12 = i/(ne11*ne10);
  4324. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4325. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4326. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4327. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4328. dequantize_row_q(
  4329. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  4330. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  4331. }
  4332. }
  4333. static void ggml_compute_forward_get_rows_f16(
  4334. const ggml_compute_params * params,
  4335. ggml_tensor * dst) {
  4336. const ggml_tensor * src0 = dst->src[0];
  4337. const ggml_tensor * src1 = dst->src[1];
  4338. GGML_TENSOR_BINARY_OP_LOCALS
  4339. const int64_t nc = ne00;
  4340. const int64_t nr = ggml_nelements(src1);
  4341. assert(ne0 == nc);
  4342. assert(ne02 == ne11);
  4343. assert(nb00 == sizeof(ggml_fp16_t));
  4344. assert(ggml_nrows(dst) == nr);
  4345. const int ith = params->ith;
  4346. const int nth = params->nth;
  4347. // rows per thread
  4348. const int dr = (nr + nth - 1)/nth;
  4349. // row range for this thread
  4350. const int ir0 = dr*ith;
  4351. const int ir1 = MIN(ir0 + dr, nr);
  4352. for (int64_t i = ir0; i < ir1; ++i) {
  4353. const int64_t i12 = i/(ne11*ne10);
  4354. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4355. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4356. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4357. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4358. ggml_cpu_fp16_to_fp32(
  4359. (const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  4360. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  4361. }
  4362. }
  4363. static void ggml_compute_forward_get_rows_bf16(
  4364. const ggml_compute_params * params,
  4365. ggml_tensor * dst) {
  4366. const ggml_tensor * src0 = dst->src[0];
  4367. const ggml_tensor * src1 = dst->src[1];
  4368. GGML_TENSOR_BINARY_OP_LOCALS
  4369. const int64_t nc = ne00;
  4370. const int64_t nr = ggml_nelements(src1);
  4371. assert(ne0 == nc);
  4372. assert(ne02 == ne11);
  4373. assert(nb00 == sizeof(ggml_bf16_t));
  4374. assert(ggml_nrows(dst) == nr);
  4375. const int ith = params->ith;
  4376. const int nth = params->nth;
  4377. // rows per thread
  4378. const int dr = (nr + nth - 1)/nth;
  4379. // row range for this thread
  4380. const int ir0 = dr*ith;
  4381. const int ir1 = MIN(ir0 + dr, nr);
  4382. for (int64_t i = ir0; i < ir1; ++i) {
  4383. const int64_t i12 = i/(ne11*ne10);
  4384. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4385. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4386. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4387. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4388. ggml_cpu_bf16_to_fp32(
  4389. (const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  4390. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  4391. }
  4392. }
  4393. static void ggml_compute_forward_get_rows_f32(
  4394. const ggml_compute_params * params,
  4395. ggml_tensor * dst) {
  4396. const ggml_tensor * src0 = dst->src[0];
  4397. const ggml_tensor * src1 = dst->src[1];
  4398. GGML_TENSOR_BINARY_OP_LOCALS
  4399. const int64_t nc = ne00;
  4400. const int64_t nr = ggml_nelements(src1);
  4401. assert(ne0 == nc);
  4402. assert(ne02 == ne11);
  4403. assert(nb00 == sizeof(float));
  4404. assert(ggml_nrows(dst) == nr);
  4405. const int ith = params->ith;
  4406. const int nth = params->nth;
  4407. // rows per thread
  4408. const int dr = (nr + nth - 1)/nth;
  4409. // row range for this thread
  4410. const int ir0 = dr*ith;
  4411. const int ir1 = MIN(ir0 + dr, nr);
  4412. for (int64_t i = ir0; i < ir1; ++i) {
  4413. const int64_t i12 = i/(ne11*ne10);
  4414. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4415. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4416. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4417. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4418. ggml_vec_cpy_f32(nc,
  4419. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  4420. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  4421. }
  4422. }
  4423. void ggml_compute_forward_get_rows(
  4424. const ggml_compute_params * params,
  4425. ggml_tensor * dst) {
  4426. const ggml_tensor * src0 = dst->src[0];
  4427. switch (src0->type) {
  4428. case GGML_TYPE_Q4_0:
  4429. case GGML_TYPE_Q4_1:
  4430. case GGML_TYPE_Q5_0:
  4431. case GGML_TYPE_Q5_1:
  4432. case GGML_TYPE_Q8_0:
  4433. case GGML_TYPE_Q8_1:
  4434. case GGML_TYPE_MXFP4:
  4435. case GGML_TYPE_Q2_K:
  4436. case GGML_TYPE_Q3_K:
  4437. case GGML_TYPE_Q4_K:
  4438. case GGML_TYPE_Q5_K:
  4439. case GGML_TYPE_Q6_K:
  4440. case GGML_TYPE_TQ1_0:
  4441. case GGML_TYPE_TQ2_0:
  4442. case GGML_TYPE_IQ2_XXS:
  4443. case GGML_TYPE_IQ2_XS:
  4444. case GGML_TYPE_IQ3_XXS:
  4445. case GGML_TYPE_IQ1_S:
  4446. case GGML_TYPE_IQ1_M:
  4447. case GGML_TYPE_IQ4_NL:
  4448. case GGML_TYPE_IQ4_XS:
  4449. case GGML_TYPE_IQ3_S:
  4450. case GGML_TYPE_IQ2_S:
  4451. {
  4452. ggml_compute_forward_get_rows_q(params, dst);
  4453. } break;
  4454. case GGML_TYPE_F16:
  4455. {
  4456. ggml_compute_forward_get_rows_f16(params, dst);
  4457. } break;
  4458. case GGML_TYPE_BF16:
  4459. {
  4460. ggml_compute_forward_get_rows_bf16(params, dst);
  4461. } break;
  4462. case GGML_TYPE_F32:
  4463. case GGML_TYPE_I32:
  4464. {
  4465. ggml_compute_forward_get_rows_f32(params, dst);
  4466. } break;
  4467. default:
  4468. {
  4469. GGML_ABORT("fatal error");
  4470. }
  4471. }
  4472. //static bool first = true;
  4473. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  4474. //if (first) {
  4475. // first = false;
  4476. //} else {
  4477. // for (int k = 0; k < dst->ne[1]; ++k) {
  4478. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  4479. // for (int i = 0; i < 16; ++i) {
  4480. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  4481. // }
  4482. // printf("\n");
  4483. // }
  4484. // printf("\n");
  4485. // }
  4486. // printf("\n");
  4487. // exit(0);
  4488. //}
  4489. }
  4490. static void ggml_compute_forward_set_rows_f32(
  4491. const ggml_compute_params * params,
  4492. ggml_tensor * dst) {
  4493. const ggml_tensor * src0 = dst->src[0];
  4494. const ggml_tensor * src1 = dst->src[1];
  4495. GGML_TENSOR_BINARY_OP_LOCALS
  4496. const int64_t nc = ne00;
  4497. const int64_t nr = ne01;
  4498. assert(ne0 == nc);
  4499. assert(ne2 == ne02);
  4500. assert(ne3 == ne03);
  4501. assert(src0->type == GGML_TYPE_F32);
  4502. assert(ne02 % ne11 == 0);
  4503. assert(ne03 % ne12 == 0);
  4504. const int ith = params->ith;
  4505. const int nth = params->nth;
  4506. // rows per thread
  4507. const int64_t dr = (nr + nth - 1)/nth;
  4508. // row range for this thread
  4509. const int64_t ir0 = dr*ith;
  4510. const int64_t ir1 = std::min(ir0 + dr, nr);
  4511. ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
  4512. for (int64_t i03 = 0; i03 < ne03; ++i03) {
  4513. for (int64_t i02 = 0; i02 < ne02; ++i02) {
  4514. for (int64_t i = ir0; i < ir1; ++i) {
  4515. const int64_t i12 = i03%ne12;
  4516. const int64_t i11 = i02%ne11;
  4517. const int64_t i10 = i;
  4518. const int64_t i1 = *(int64_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4519. GGML_ASSERT(i1 >= 0 && i1 < ne1);
  4520. from_float(
  4521. (const float *) ((char *) src0->data + i*nb01 + i02*nb02 + i03*nb03),
  4522. ((char *) dst->data + i1*nb1 + i02*nb2 + i03*nb3), nc);
  4523. }
  4524. }
  4525. }
  4526. }
  4527. void ggml_compute_forward_set_rows(
  4528. const ggml_compute_params * params,
  4529. ggml_tensor * dst) {
  4530. const ggml_tensor * src0 = dst->src[0];
  4531. switch (src0->type) {
  4532. case GGML_TYPE_F32:
  4533. {
  4534. ggml_compute_forward_set_rows_f32(params, dst);
  4535. } break;
  4536. default:
  4537. {
  4538. GGML_ABORT("src0->type = %d (%s) not supported", src0->type, ggml_type_name(src0->type));
  4539. }
  4540. }
  4541. }
  4542. // ggml_compute_forward_get_rows_back
  4543. static void ggml_compute_forward_get_rows_back_f32_f16(
  4544. const ggml_compute_params * params,
  4545. ggml_tensor * dst) {
  4546. const ggml_tensor * src0 = dst->src[0];
  4547. const ggml_tensor * src1 = dst->src[1];
  4548. if (params->ith != 0) {
  4549. return;
  4550. }
  4551. GGML_ASSERT(ggml_is_contiguous(dst));
  4552. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  4553. memset(dst->data, 0, ggml_nbytes(dst));
  4554. const int nc = src0->ne[0];
  4555. const int nr = ggml_nelements(src1);
  4556. GGML_ASSERT( dst->ne[0] == nc);
  4557. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  4558. for (int i = 0; i < nr; ++i) {
  4559. const int r = ((int32_t *) src1->data)[i];
  4560. for (int j = 0; j < nc; ++j) {
  4561. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  4562. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_CPU_FP16_TO_FP32(v);
  4563. }
  4564. }
  4565. }
  4566. static void ggml_compute_forward_get_rows_back_f32(
  4567. const ggml_compute_params * params,
  4568. ggml_tensor * dst) {
  4569. const ggml_tensor * src0 = dst->src[0];
  4570. const ggml_tensor * src1 = dst->src[1];
  4571. if (params->ith != 0) {
  4572. return;
  4573. }
  4574. GGML_ASSERT(ggml_is_contiguous(dst));
  4575. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  4576. memset(dst->data, 0, ggml_nbytes(dst));
  4577. const int nc = src0->ne[0];
  4578. const int nr = ggml_nelements(src1);
  4579. GGML_ASSERT( dst->ne[0] == nc);
  4580. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4581. for (int i = 0; i < nr; ++i) {
  4582. const int r = ((int32_t *) src1->data)[i];
  4583. ggml_vec_add_f32(nc,
  4584. (float *) ((char *) dst->data + r*dst->nb[1]),
  4585. (float *) ((char *) dst->data + r*dst->nb[1]),
  4586. (float *) ((char *) src0->data + i*src0->nb[1]));
  4587. }
  4588. }
  4589. void ggml_compute_forward_get_rows_back(
  4590. const ggml_compute_params * params,
  4591. ggml_tensor * dst) {
  4592. const ggml_tensor * src0 = dst->src[0];
  4593. switch (src0->type) {
  4594. case GGML_TYPE_F16:
  4595. {
  4596. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  4597. } break;
  4598. case GGML_TYPE_F32:
  4599. {
  4600. ggml_compute_forward_get_rows_back_f32(params, dst);
  4601. } break;
  4602. default:
  4603. {
  4604. GGML_ABORT("fatal error");
  4605. }
  4606. }
  4607. //static bool first = true;
  4608. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  4609. //if (first) {
  4610. // first = false;
  4611. //} else {
  4612. // for (int k = 0; k < dst->ne[1]; ++k) {
  4613. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  4614. // for (int i = 0; i < 16; ++i) {
  4615. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  4616. // }
  4617. // printf("\n");
  4618. // }
  4619. // printf("\n");
  4620. // }
  4621. // printf("\n");
  4622. // exit(0);
  4623. //}
  4624. }
  4625. // ggml_compute_forward_diag
  4626. static void ggml_compute_forward_diag_f32(
  4627. const ggml_compute_params * params,
  4628. ggml_tensor * dst) {
  4629. const ggml_tensor * src0 = dst->src[0];
  4630. if (params->ith != 0) {
  4631. return;
  4632. }
  4633. // TODO: handle transposed/permuted matrices
  4634. GGML_TENSOR_UNARY_OP_LOCALS
  4635. GGML_ASSERT(ne00 == ne0);
  4636. GGML_ASSERT(ne00 == ne1);
  4637. GGML_ASSERT(ne01 == 1);
  4638. GGML_ASSERT(ne02 == ne2);
  4639. GGML_ASSERT(ne03 == ne3);
  4640. GGML_ASSERT(nb00 == sizeof(float));
  4641. GGML_ASSERT(nb0 == sizeof(float));
  4642. for (int i3 = 0; i3 < ne3; i3++) {
  4643. for (int i2 = 0; i2 < ne2; i2++) {
  4644. for (int i1 = 0; i1 < ne1; i1++) {
  4645. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  4646. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  4647. for (int i0 = 0; i0 < i1; i0++) {
  4648. d[i0] = 0;
  4649. }
  4650. d[i1] = s[i1];
  4651. for (int i0 = i1+1; i0 < ne0; i0++) {
  4652. d[i0] = 0;
  4653. }
  4654. }
  4655. }
  4656. }
  4657. }
  4658. void ggml_compute_forward_diag(
  4659. const ggml_compute_params * params,
  4660. ggml_tensor * dst) {
  4661. const ggml_tensor * src0 = dst->src[0];
  4662. switch (src0->type) {
  4663. case GGML_TYPE_F32:
  4664. {
  4665. ggml_compute_forward_diag_f32(params, dst);
  4666. } break;
  4667. default:
  4668. {
  4669. GGML_ABORT("fatal error");
  4670. }
  4671. }
  4672. }
  4673. // ggml_compute_forward_diag_mask_inf
  4674. static void ggml_compute_forward_diag_mask_f32(
  4675. const ggml_compute_params * params,
  4676. ggml_tensor * dst,
  4677. const float value) {
  4678. const ggml_tensor * src0 = dst->src[0];
  4679. const int ith = params->ith;
  4680. const int nth = params->nth;
  4681. const int n_past = ((int32_t *) dst->op_params)[0];
  4682. const bool inplace = src0->data == dst->data;
  4683. GGML_ASSERT(n_past >= 0);
  4684. if (!inplace) {
  4685. if (ith == 0) {
  4686. // memcpy needs to be synchronized across threads to avoid race conditions.
  4687. // => do it in INIT phase
  4688. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4689. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4690. memcpy(
  4691. ((char *) dst->data),
  4692. ((char *) src0->data),
  4693. ggml_nbytes(dst));
  4694. }
  4695. ggml_barrier(params->threadpool);
  4696. }
  4697. // TODO: handle transposed/permuted matrices
  4698. const int n = ggml_nrows(src0);
  4699. const int nc = src0->ne[0];
  4700. const int nr = src0->ne[1];
  4701. const int nz = n/nr;
  4702. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4703. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4704. for (int k = 0; k < nz; k++) {
  4705. for (int j = ith; j < nr; j += nth) {
  4706. for (int i = n_past; i < nc; i++) {
  4707. if (i > n_past + j) {
  4708. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  4709. }
  4710. }
  4711. }
  4712. }
  4713. }
  4714. void ggml_compute_forward_diag_mask_inf(
  4715. const ggml_compute_params * params,
  4716. ggml_tensor * dst) {
  4717. const ggml_tensor * src0 = dst->src[0];
  4718. switch (src0->type) {
  4719. case GGML_TYPE_F32:
  4720. {
  4721. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  4722. } break;
  4723. default:
  4724. {
  4725. GGML_ABORT("fatal error");
  4726. }
  4727. }
  4728. }
  4729. void ggml_compute_forward_diag_mask_zero(
  4730. const ggml_compute_params * params,
  4731. ggml_tensor * dst) {
  4732. const ggml_tensor * src0 = dst->src[0];
  4733. switch (src0->type) {
  4734. case GGML_TYPE_F32:
  4735. {
  4736. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  4737. } break;
  4738. default:
  4739. {
  4740. GGML_ABORT("fatal error");
  4741. }
  4742. }
  4743. }
  4744. // ggml_compute_forward_soft_max
  4745. static void ggml_compute_forward_soft_max_f32(
  4746. const ggml_compute_params * params,
  4747. ggml_tensor * dst) {
  4748. const ggml_tensor * src0 = dst->src[0];
  4749. const ggml_tensor * src1 = dst->src[1];
  4750. const ggml_tensor * src2 = dst->src[2];
  4751. assert(ggml_is_contiguous(dst));
  4752. assert(ggml_are_same_shape(src0, dst));
  4753. float scale = 1.0f;
  4754. float max_bias = 0.0f;
  4755. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  4756. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  4757. const int ith = params->ith;
  4758. const int nth = params->nth;
  4759. GGML_TENSOR_UNARY_OP_LOCALS
  4760. const int64_t nb11 = src1 ? src1->nb[1] : 1;
  4761. const int64_t nb12 = src1 ? src1->nb[2] : 1;
  4762. const int64_t nb13 = src1 ? src1->nb[3] : 1;
  4763. const int64_t ne12 = src1 ? src1->ne[2] : 1;
  4764. const int64_t ne13 = src1 ? src1->ne[3] : 1;
  4765. // TODO: is this supposed to be ceil instead of floor?
  4766. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  4767. const uint32_t n_head = ne02;
  4768. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  4769. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  4770. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  4771. float * wp = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4772. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  4773. // sinks
  4774. const float * sk = src2 ? (float *)((char *) src2->data) : nullptr;
  4775. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4776. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4777. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4778. const int64_t i11 = i01;
  4779. const int64_t i12 = i02%ne12;
  4780. const int64_t i13 = i03%ne13;
  4781. // ALiBi
  4782. const uint32_t h = i02; // head
  4783. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  4784. float * sp = (float *)((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4785. float * dp = (float *)((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4786. // broadcast the mask across rows
  4787. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
  4788. float * mp_f32 = src1 ? (float *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
  4789. ggml_vec_cpy_f32 (ne00, wp, sp);
  4790. ggml_vec_scale_f32(ne00, wp, scale);
  4791. if (mp_f32) {
  4792. if (use_f16) {
  4793. for (int i = 0; i < ne00; ++i) {
  4794. wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
  4795. }
  4796. } else {
  4797. for (int i = 0; i < ne00; ++i) {
  4798. wp[i] += slope*mp_f32[i];
  4799. }
  4800. }
  4801. }
  4802. #ifndef NDEBUG
  4803. for (int i = 0; i < ne00; ++i) {
  4804. //printf("p[%d] = %f\n", i, p[i]);
  4805. assert(!isnan(wp[i]));
  4806. }
  4807. #endif
  4808. float max = -INFINITY;
  4809. ggml_vec_max_f32(ne00, &max, wp);
  4810. // if we have sinks, make a correction as if they were included in the softmax
  4811. if (sk) {
  4812. max = MAX(max, sk[i02]);
  4813. }
  4814. ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
  4815. assert(sum > 0.0);
  4816. if (sk) {
  4817. sum += (ggml_float) expf(sk[i02] - max);
  4818. }
  4819. sum = 1.0/sum;
  4820. ggml_vec_scale_f32(ne00, dp, sum);
  4821. #ifndef NDEBUG
  4822. for (int i = 0; i < ne00; ++i) {
  4823. assert(!isnan(dp[i]));
  4824. assert(!isinf(dp[i]));
  4825. }
  4826. #endif
  4827. }
  4828. }
  4829. }
  4830. }
  4831. void ggml_compute_forward_soft_max(
  4832. const ggml_compute_params * params,
  4833. ggml_tensor * dst) {
  4834. const ggml_tensor * src0 = dst->src[0];
  4835. switch (src0->type) {
  4836. case GGML_TYPE_F32:
  4837. {
  4838. ggml_compute_forward_soft_max_f32(params, dst);
  4839. } break;
  4840. default:
  4841. {
  4842. GGML_ABORT("fatal error");
  4843. }
  4844. }
  4845. }
  4846. // ggml_compute_forward_soft_max_ext_back
  4847. static void ggml_compute_forward_soft_max_ext_back_f32(
  4848. const ggml_compute_params * params,
  4849. ggml_tensor * dst) {
  4850. const ggml_tensor * src0 = dst->src[0];
  4851. const ggml_tensor * src1 = dst->src[1];
  4852. GGML_ASSERT(ggml_is_contiguous(src0));
  4853. GGML_ASSERT(ggml_is_contiguous(src1));
  4854. GGML_ASSERT(ggml_is_contiguous(dst));
  4855. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4856. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  4857. float scale = 1.0f;
  4858. float max_bias = 0.0f;
  4859. memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
  4860. memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
  4861. GGML_ASSERT(max_bias == 0.0f);
  4862. // TODO: handle transposed/permuted matrices
  4863. const int ith = params->ith;
  4864. const int nth = params->nth;
  4865. const int nc = src0->ne[0];
  4866. const int nr = ggml_nrows(src0);
  4867. // rows per thread
  4868. const int dr = (nr + nth - 1)/nth;
  4869. // row range for this thread
  4870. const int ir0 = dr*ith;
  4871. const int ir1 = MIN(ir0 + dr, nr);
  4872. for (int i1 = ir0; i1 < ir1; i1++) {
  4873. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  4874. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  4875. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  4876. #ifndef NDEBUG
  4877. for (int i = 0; i < nc; ++i) {
  4878. //printf("p[%d] = %f\n", i, p[i]);
  4879. assert(!isnan(dy[i]));
  4880. assert(!isnan(y[i]));
  4881. }
  4882. #endif
  4883. // Jii = yi - yi*yi
  4884. // Jij = -yi*yj
  4885. // J = diag(y)-y.T*y
  4886. // dx = J * dy
  4887. // dxk = sum_i(Jki * dyi)
  4888. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  4889. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  4890. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  4891. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  4892. // dxk = -yk * dot(y, dy) + yk*dyk
  4893. // dxk = yk * (- dot(y, dy) + dyk)
  4894. // dxk = yk * (dyk - dot(y, dy))
  4895. //
  4896. // post-order:
  4897. // dot_y_dy := dot(y, dy)
  4898. // dx := dy
  4899. // dx := dx - dot_y_dy
  4900. // dx := dx * y
  4901. // linear runtime, no additional memory
  4902. float dot_y_dy = 0;
  4903. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  4904. ggml_vec_cpy_f32 (nc, dx, dy);
  4905. ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
  4906. ggml_vec_mul_f32 (nc, dx, dx, y);
  4907. ggml_vec_scale_f32(nc, dx, scale);
  4908. #ifndef NDEBUG
  4909. for (int i = 0; i < nc; ++i) {
  4910. assert(!isnan(dx[i]));
  4911. assert(!isinf(dx[i]));
  4912. }
  4913. #endif
  4914. }
  4915. }
  4916. void ggml_compute_forward_soft_max_ext_back(
  4917. const ggml_compute_params * params,
  4918. ggml_tensor * dst) {
  4919. const ggml_tensor * src0 = dst->src[0];
  4920. switch (src0->type) {
  4921. case GGML_TYPE_F32:
  4922. {
  4923. ggml_compute_forward_soft_max_ext_back_f32(params, dst);
  4924. } break;
  4925. default:
  4926. {
  4927. GGML_ABORT("fatal error");
  4928. }
  4929. }
  4930. }
  4931. // ggml_compute_forward_clamp
  4932. static void ggml_compute_forward_clamp_f32(
  4933. const ggml_compute_params * params,
  4934. ggml_tensor * dst) {
  4935. const ggml_tensor * src0 = dst->src[0];
  4936. float min;
  4937. float max;
  4938. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  4939. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  4940. const int ith = params->ith;
  4941. const int nth = params->nth;
  4942. const int n = ggml_nrows(src0);
  4943. const int nc = src0->ne[0];
  4944. const size_t nb00 = src0->nb[0];
  4945. const size_t nb01 = src0->nb[1];
  4946. const size_t nb0 = dst->nb[0];
  4947. const size_t nb1 = dst->nb[1];
  4948. GGML_ASSERT( nb0 == sizeof(float));
  4949. GGML_ASSERT(nb00 == sizeof(float));
  4950. for (int j = ith; j < n; j += nth) {
  4951. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4952. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4953. for (int i = 0; i < nc; i++) {
  4954. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  4955. }
  4956. }
  4957. }
  4958. static void ggml_compute_forward_clamp_f16(
  4959. const ggml_compute_params * params,
  4960. ggml_tensor * dst) {
  4961. const ggml_tensor * src0 = dst->src[0];
  4962. float min;
  4963. float max;
  4964. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  4965. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  4966. const int ith = params->ith;
  4967. const int nth = params->nth;
  4968. const int n = ggml_nrows(src0);
  4969. const int nc = src0->ne[0];
  4970. const size_t nb00 = src0->nb[0];
  4971. const size_t nb01 = src0->nb[1];
  4972. const size_t nb0 = dst->nb[0];
  4973. const size_t nb1 = dst->nb[1];
  4974. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4975. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4976. for (int j = ith; j < n; j += nth) {
  4977. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4978. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4979. for (int i = 0; i < nc; i++) {
  4980. float v = GGML_CPU_FP16_TO_FP32(src0_ptr[i]);
  4981. dst_ptr[i] = GGML_CPU_FP32_TO_FP16(MAX(MIN(v, max), min));
  4982. }
  4983. }
  4984. }
  4985. void ggml_compute_forward_clamp(
  4986. const ggml_compute_params * params,
  4987. ggml_tensor * dst) {
  4988. const ggml_tensor * src0 = dst->src[0];
  4989. switch (src0->type) {
  4990. case GGML_TYPE_F32:
  4991. {
  4992. ggml_compute_forward_clamp_f32(params, dst);
  4993. } break;
  4994. case GGML_TYPE_F16:
  4995. {
  4996. ggml_compute_forward_clamp_f16(params, dst);
  4997. } break;
  4998. case GGML_TYPE_BF16:
  4999. case GGML_TYPE_Q4_0:
  5000. case GGML_TYPE_Q4_1:
  5001. case GGML_TYPE_Q5_0:
  5002. case GGML_TYPE_Q5_1:
  5003. case GGML_TYPE_Q8_0:
  5004. case GGML_TYPE_Q8_1:
  5005. case GGML_TYPE_MXFP4:
  5006. case GGML_TYPE_Q2_K:
  5007. case GGML_TYPE_Q3_K:
  5008. case GGML_TYPE_Q4_K:
  5009. case GGML_TYPE_Q5_K:
  5010. case GGML_TYPE_Q6_K:
  5011. case GGML_TYPE_TQ1_0:
  5012. case GGML_TYPE_TQ2_0:
  5013. case GGML_TYPE_IQ2_XXS:
  5014. case GGML_TYPE_IQ2_XS:
  5015. case GGML_TYPE_IQ3_XXS:
  5016. case GGML_TYPE_IQ1_S:
  5017. case GGML_TYPE_IQ1_M:
  5018. case GGML_TYPE_IQ4_NL:
  5019. case GGML_TYPE_IQ4_XS:
  5020. case GGML_TYPE_IQ3_S:
  5021. case GGML_TYPE_IQ2_S:
  5022. case GGML_TYPE_Q8_K:
  5023. case GGML_TYPE_I8:
  5024. case GGML_TYPE_I16:
  5025. case GGML_TYPE_I32:
  5026. case GGML_TYPE_I64:
  5027. case GGML_TYPE_F64:
  5028. case GGML_TYPE_COUNT:
  5029. {
  5030. GGML_ABORT("fatal error");
  5031. }
  5032. }
  5033. }
  5034. // ggml_compute_forward_rope
  5035. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  5036. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  5037. return 1 - MIN(1, MAX(0, y));
  5038. }
  5039. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  5040. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  5041. static void rope_yarn(
  5042. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  5043. float * cos_theta, float * sin_theta) {
  5044. // Get n-d rotational scaling corrected for extrapolation
  5045. float theta_interp = freq_scale * theta_extrap;
  5046. float theta = theta_interp;
  5047. if (ext_factor != 0.0f) {
  5048. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  5049. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  5050. // Get n-d magnitude scaling corrected for interpolation
  5051. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  5052. }
  5053. *cos_theta = cosf(theta) * mscale;
  5054. *sin_theta = sinf(theta) * mscale;
  5055. }
  5056. static void ggml_rope_cache_init(
  5057. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  5058. float * cache, float sin_sign, float theta_scale) {
  5059. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  5060. float theta = theta_base;
  5061. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  5062. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  5063. rope_yarn(
  5064. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  5065. );
  5066. cache[i0 + 1] *= sin_sign;
  5067. theta *= theta_scale;
  5068. }
  5069. }
  5070. static void ggml_mrope_cache_init(
  5071. float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
  5072. float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  5073. float * cache, float sin_sign, float theta_scale) {
  5074. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  5075. float theta_t = theta_base_t;
  5076. float theta_h = theta_base_h;
  5077. float theta_w = theta_base_w;
  5078. float theta_e = theta_base_e; // extra position id for vision encoder
  5079. int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
  5080. int sec_w = sections[1] + sections[0];
  5081. int sec_e = sections[2] + sec_w;
  5082. GGML_ASSERT(sect_dims <= ne0);
  5083. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  5084. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  5085. int sector = (i0 / 2) % sect_dims;
  5086. if (indep_sects) {
  5087. // compute theta independently for each dim sections
  5088. // (i.e. reset corresponding theta when `i0` go from one section to another)
  5089. if (sector == 0) {
  5090. theta_t = theta_base_t;
  5091. }
  5092. else if (sector == sections[0]) {
  5093. theta_h = theta_base_h;;
  5094. }
  5095. else if (sector == sec_w) {
  5096. theta_w = theta_base_w;
  5097. }
  5098. else if (sector == sec_e) {
  5099. theta_e = theta_base_e;
  5100. }
  5101. }
  5102. float theta = theta_t;
  5103. if (sector >= sections[0] && sector < sec_w) {
  5104. theta = theta_h;
  5105. }
  5106. else if (sector >= sec_w && sector < sec_w + sections[2]) {
  5107. theta = theta_w;
  5108. }
  5109. else if (sector >= sec_w + sections[2]) {
  5110. theta = theta_e;
  5111. }
  5112. rope_yarn(
  5113. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  5114. );
  5115. cache[i0 + 1] *= sin_sign;
  5116. theta_t *= theta_scale;
  5117. theta_w *= theta_scale;
  5118. theta_h *= theta_scale;
  5119. theta_e *= theta_scale;
  5120. }
  5121. }
  5122. static void ggml_compute_forward_rope_f32(
  5123. const ggml_compute_params * params,
  5124. ggml_tensor * dst,
  5125. const bool forward) {
  5126. const ggml_tensor * src0 = dst->src[0];
  5127. const ggml_tensor * src1 = dst->src[1];
  5128. const ggml_tensor * src2 = dst->src[2];
  5129. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  5130. int sections[4];
  5131. //const int n_past = ((int32_t *) dst->op_params)[0];
  5132. const int n_dims = ((int32_t *) dst->op_params)[1];
  5133. const int mode = ((int32_t *) dst->op_params)[2];
  5134. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  5135. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  5136. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  5137. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  5138. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  5139. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  5140. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  5141. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  5142. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
  5143. GGML_TENSOR_UNARY_OP_LOCALS
  5144. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5145. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5146. GGML_ASSERT(nb00 == sizeof(float));
  5147. const int ith = params->ith;
  5148. const int nth = params->nth;
  5149. const int nr = ggml_nrows(dst);
  5150. GGML_ASSERT(n_dims <= ne0);
  5151. GGML_ASSERT(n_dims % 2 == 0);
  5152. // rows per thread
  5153. const int dr = (nr + nth - 1)/nth;
  5154. // row range for this thread
  5155. const int ir0 = dr*ith;
  5156. const int ir1 = MIN(ir0 + dr, nr);
  5157. // row index used to determine which thread to use
  5158. int ir = 0;
  5159. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  5160. float corr_dims[2];
  5161. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  5162. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  5163. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
  5164. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  5165. if (is_mrope) {
  5166. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  5167. }
  5168. if (is_vision) {
  5169. GGML_ASSERT(n_dims == ne0/2);
  5170. }
  5171. const float * freq_factors = NULL;
  5172. if (src2 != NULL) {
  5173. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  5174. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  5175. freq_factors = (const float *) src2->data;
  5176. }
  5177. // backward process uses inverse rotation by cos and sin.
  5178. // cos and sin build a rotation matrix, where the inverse is the transpose.
  5179. // this essentially just switches the sign of sin.
  5180. const float sin_sign = forward ? 1.0f : -1.0f;
  5181. const int32_t * pos = (const int32_t *) src1->data;
  5182. for (int64_t i3 = 0; i3 < ne3; i3++) { // batch
  5183. for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len
  5184. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  5185. if (!is_mrope) {
  5186. const int64_t p = pos[i2];
  5187. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5188. }
  5189. else {
  5190. const int64_t p_t = pos[i2];
  5191. const int64_t p_h = pos[i2 + ne2];
  5192. const int64_t p_w = pos[i2 + ne2 * 2];
  5193. const int64_t p_e = pos[i2 + ne2 * 3];
  5194. ggml_mrope_cache_init(
  5195. p_t, p_h, p_w, p_e, sections, is_vision,
  5196. freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5197. }
  5198. for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads
  5199. if (ir++ < ir0) continue;
  5200. if (ir > ir1) break;
  5201. if (is_neox || is_mrope) {
  5202. if (is_vision){
  5203. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5204. const int64_t ic = i0/2;
  5205. const float cos_theta = cache[i0 + 0];
  5206. const float sin_theta = cache[i0 + 1];
  5207. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5208. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5209. const float x0 = src[0];
  5210. const float x1 = src[n_dims];
  5211. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5212. dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
  5213. }
  5214. } else {
  5215. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5216. const int64_t ic = i0/2;
  5217. const float cos_theta = cache[i0 + 0];
  5218. const float sin_theta = cache[i0 + 1];
  5219. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5220. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5221. const float x0 = src[0];
  5222. const float x1 = src[n_dims/2];
  5223. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5224. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  5225. }
  5226. }
  5227. } else {
  5228. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5229. const float cos_theta = cache[i0 + 0];
  5230. const float sin_theta = cache[i0 + 1];
  5231. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5232. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5233. const float x0 = src[0];
  5234. const float x1 = src[1];
  5235. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5236. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5237. }
  5238. }
  5239. if (is_vision) {
  5240. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5241. const int64_t ic = i0/2;
  5242. const float cos_theta = cache[i0 + 0];
  5243. const float sin_theta = cache[i0 + 1];
  5244. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5245. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5246. const float x0 = src[0];
  5247. const float x1 = src[n_dims];
  5248. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5249. dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
  5250. }
  5251. } else {
  5252. // fill the remain channels with data from src tensor
  5253. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5254. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5255. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5256. dst_data[0] = src[0];
  5257. dst_data[1] = src[1];
  5258. }
  5259. }
  5260. }
  5261. }
  5262. }
  5263. }
  5264. // TODO: deduplicate f16/f32 code
  5265. static void ggml_compute_forward_rope_f16(
  5266. const ggml_compute_params * params,
  5267. ggml_tensor * dst,
  5268. const bool forward) {
  5269. const ggml_tensor * src0 = dst->src[0];
  5270. const ggml_tensor * src1 = dst->src[1];
  5271. const ggml_tensor * src2 = dst->src[2];
  5272. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  5273. int sections[4];
  5274. //const int n_past = ((int32_t *) dst->op_params)[0];
  5275. const int n_dims = ((int32_t *) dst->op_params)[1];
  5276. const int mode = ((int32_t *) dst->op_params)[2];
  5277. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  5278. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  5279. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  5280. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  5281. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  5282. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  5283. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  5284. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  5285. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
  5286. GGML_TENSOR_UNARY_OP_LOCALS
  5287. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5288. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5289. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  5290. const int ith = params->ith;
  5291. const int nth = params->nth;
  5292. const int nr = ggml_nrows(dst);
  5293. GGML_ASSERT(n_dims <= ne0);
  5294. GGML_ASSERT(n_dims % 2 == 0);
  5295. // rows per thread
  5296. const int dr = (nr + nth - 1)/nth;
  5297. // row range for this thread
  5298. const int ir0 = dr*ith;
  5299. const int ir1 = MIN(ir0 + dr, nr);
  5300. // row index used to determine which thread to use
  5301. int ir = 0;
  5302. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  5303. float corr_dims[2];
  5304. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  5305. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  5306. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  5307. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  5308. if (is_mrope) {
  5309. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  5310. }
  5311. if (is_vision) {
  5312. GGML_ASSERT(n_dims == ne0/2);
  5313. }
  5314. const float * freq_factors = NULL;
  5315. if (src2 != NULL) {
  5316. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  5317. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  5318. freq_factors = (const float *) src2->data;
  5319. }
  5320. // backward process uses inverse rotation by cos and sin.
  5321. // cos and sin build a rotation matrix, where the inverse is the transpose.
  5322. // this essentially just switches the sign of sin.
  5323. const float sin_sign = forward ? 1.0f : -1.0f;
  5324. const int32_t * pos = (const int32_t *) src1->data;
  5325. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5326. for (int64_t i2 = 0; i2 < ne2; i2++) {
  5327. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  5328. if (!is_mrope) {
  5329. const int64_t p = pos[i2];
  5330. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5331. }
  5332. else {
  5333. const int64_t p_t = pos[i2];
  5334. const int64_t p_h = pos[i2 + ne2];
  5335. const int64_t p_w = pos[i2 + ne2 * 2];
  5336. const int64_t p_e = pos[i2 + ne2 * 3];
  5337. ggml_mrope_cache_init(
  5338. p_t, p_h, p_w, p_e, sections, is_vision,
  5339. freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5340. }
  5341. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5342. if (ir++ < ir0) continue;
  5343. if (ir > ir1) break;
  5344. if (is_neox || is_mrope) {
  5345. if (is_vision) {
  5346. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5347. const int64_t ic = i0/2;
  5348. const float cos_theta = cache[i0 + 0];
  5349. const float sin_theta = cache[i0 + 1];
  5350. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5351. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5352. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5353. const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
  5354. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5355. dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5356. }
  5357. } else {
  5358. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5359. const int64_t ic = i0/2;
  5360. const float cos_theta = cache[i0 + 0];
  5361. const float sin_theta = cache[i0 + 1];
  5362. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5363. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5364. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5365. const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims/2]);
  5366. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5367. dst_data[n_dims/2] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5368. }
  5369. }
  5370. } else {
  5371. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5372. const float cos_theta = cache[i0 + 0];
  5373. const float sin_theta = cache[i0 + 1];
  5374. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5375. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5376. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5377. const float x1 = GGML_CPU_FP16_TO_FP32(src[1]);
  5378. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5379. dst_data[1] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5380. }
  5381. }
  5382. if (is_vision) {
  5383. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5384. const int64_t ic = i0/2;
  5385. const float cos_theta = cache[i0 + 0];
  5386. const float sin_theta = cache[i0 + 1];
  5387. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5388. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5389. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5390. const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
  5391. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5392. dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5393. }
  5394. } else {
  5395. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5396. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5397. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5398. dst_data[0] = src[0];
  5399. dst_data[1] = src[1];
  5400. }
  5401. }
  5402. }
  5403. }
  5404. }
  5405. }
  5406. void ggml_compute_forward_rope(
  5407. const ggml_compute_params * params,
  5408. ggml_tensor * dst) {
  5409. const ggml_tensor * src0 = dst->src[0];
  5410. switch (src0->type) {
  5411. case GGML_TYPE_F16:
  5412. {
  5413. ggml_compute_forward_rope_f16(params, dst, true);
  5414. } break;
  5415. case GGML_TYPE_F32:
  5416. {
  5417. ggml_compute_forward_rope_f32(params, dst, true);
  5418. } break;
  5419. default:
  5420. {
  5421. GGML_ABORT("fatal error");
  5422. }
  5423. }
  5424. }
  5425. // ggml_compute_forward_rope_back
  5426. void ggml_compute_forward_rope_back(
  5427. const ggml_compute_params * params,
  5428. ggml_tensor * dst) {
  5429. const ggml_tensor * src0 = dst->src[0];
  5430. switch (src0->type) {
  5431. case GGML_TYPE_F16:
  5432. {
  5433. ggml_compute_forward_rope_f16(params, dst, false);
  5434. } break;
  5435. case GGML_TYPE_F32:
  5436. {
  5437. ggml_compute_forward_rope_f32(params, dst, false);
  5438. } break;
  5439. default:
  5440. {
  5441. GGML_ABORT("fatal error");
  5442. }
  5443. }
  5444. }
  5445. // ggml_compute_forward_conv_transpose_1d
  5446. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  5447. const ggml_compute_params * params,
  5448. ggml_tensor * dst) {
  5449. const ggml_tensor * src0 = dst->src[0];
  5450. const ggml_tensor * src1 = dst->src[1];
  5451. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5452. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5453. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5454. GGML_TENSOR_BINARY_OP_LOCALS
  5455. const int ith = params->ith;
  5456. const int nth = params->nth;
  5457. const int nk = ne00*ne01*ne02;
  5458. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5459. GGML_ASSERT(nb10 == sizeof(float));
  5460. if (ith == 0) {
  5461. memset(params->wdata, 0, params->wsize);
  5462. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  5463. {
  5464. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5465. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5466. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5467. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5468. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  5469. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5470. dst_data[i00*ne02 + i02] = src[i00];
  5471. }
  5472. }
  5473. }
  5474. }
  5475. // permute source data (src1) from (L x Cin) to (Cin x L)
  5476. {
  5477. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  5478. ggml_fp16_t * dst_data = wdata;
  5479. for (int64_t i11 = 0; i11 < ne11; i11++) {
  5480. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5481. for (int64_t i10 = 0; i10 < ne10; i10++) {
  5482. dst_data[i10*ne11 + i11] = GGML_CPU_FP32_TO_FP16(src[i10]);
  5483. }
  5484. }
  5485. }
  5486. // need to zero dst since we are accumulating into it
  5487. memset(dst->data, 0, ggml_nbytes(dst));
  5488. }
  5489. ggml_barrier(params->threadpool);
  5490. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  5491. // total rows in dst
  5492. const int nr = ne1;
  5493. // rows per thread
  5494. const int dr = (nr + nth - 1)/nth;
  5495. // row range for this thread
  5496. const int ir0 = dr*ith;
  5497. const int ir1 = MIN(ir0 + dr, nr);
  5498. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5499. ggml_fp16_t * const wdata_src = wdata + nk;
  5500. for (int i1 = ir0; i1 < ir1; i1++) {
  5501. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5502. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  5503. for (int i10 = 0; i10 < ne10; i10++) {
  5504. const int i1n = i10*ne11;
  5505. for (int i00 = 0; i00 < ne00; i00++) {
  5506. float v = 0;
  5507. ggml_vec_dot_f16(ne02, &v, 0,
  5508. (ggml_fp16_t *) wdata_src + i1n, 0,
  5509. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  5510. dst_data[i10*s0 + i00] += v;
  5511. }
  5512. }
  5513. }
  5514. }
  5515. static void ggml_compute_forward_conv_transpose_1d_f32(
  5516. const ggml_compute_params * params,
  5517. ggml_tensor * dst) {
  5518. const ggml_tensor * src0 = dst->src[0];
  5519. const ggml_tensor * src1 = dst->src[1];
  5520. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5521. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5522. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5523. GGML_TENSOR_BINARY_OP_LOCALS
  5524. const int ith = params->ith;
  5525. const int nth = params->nth;
  5526. const int nk = ne00*ne01*ne02;
  5527. GGML_ASSERT(nb00 == sizeof(float));
  5528. GGML_ASSERT(nb10 == sizeof(float));
  5529. if (ith == 0) {
  5530. memset(params->wdata, 0, params->wsize);
  5531. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  5532. {
  5533. float * const wdata = (float *) params->wdata + 0;
  5534. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5535. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5536. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5537. float * dst_data = wdata + i01*ne00*ne02;
  5538. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5539. dst_data[i00*ne02 + i02] = src[i00];
  5540. }
  5541. }
  5542. }
  5543. }
  5544. // prepare source data (src1)
  5545. {
  5546. float * const wdata = (float *) params->wdata + nk;
  5547. float * dst_data = wdata;
  5548. for (int64_t i11 = 0; i11 < ne11; i11++) {
  5549. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5550. for (int64_t i10 = 0; i10 < ne10; i10++) {
  5551. dst_data[i10*ne11 + i11] = src[i10];
  5552. }
  5553. }
  5554. }
  5555. // need to zero dst since we are accumulating into it
  5556. memset(dst->data, 0, ggml_nbytes(dst));
  5557. }
  5558. ggml_barrier(params->threadpool);
  5559. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  5560. // total rows in dst
  5561. const int nr = ne1;
  5562. // rows per thread
  5563. const int dr = (nr + nth - 1)/nth;
  5564. // row range for this thread
  5565. const int ir0 = dr*ith;
  5566. const int ir1 = MIN(ir0 + dr, nr);
  5567. float * const wdata = (float *) params->wdata + 0;
  5568. float * const wdata_src = wdata + nk;
  5569. for (int i1 = ir0; i1 < ir1; i1++) {
  5570. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5571. float * wdata_kernel = wdata + i1*ne02*ne00;
  5572. for (int i10 = 0; i10 < ne10; i10++) {
  5573. const int i1n = i10*ne11;
  5574. for (int i00 = 0; i00 < ne00; i00++) {
  5575. float v = 0;
  5576. ggml_vec_dot_f32(ne02, &v, 0,
  5577. wdata_src + i1n, 0,
  5578. wdata_kernel + i00*ne02, 0, 1);
  5579. dst_data[i10*s0 + i00] += v;
  5580. }
  5581. }
  5582. }
  5583. }
  5584. void ggml_compute_forward_conv_transpose_1d(
  5585. const ggml_compute_params * params,
  5586. ggml_tensor * dst) {
  5587. const ggml_tensor * src0 = dst->src[0];
  5588. switch (src0->type) {
  5589. case GGML_TYPE_F16:
  5590. {
  5591. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  5592. } break;
  5593. case GGML_TYPE_F32:
  5594. {
  5595. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  5596. } break;
  5597. default:
  5598. {
  5599. GGML_ABORT("fatal error");
  5600. }
  5601. }
  5602. }
  5603. // ggml_compute_forward_im2col_f32
  5604. // src0: kernel [OC, IC, KH, KW]
  5605. // src1: image [N, IC, IH, IW]
  5606. // dst: result [N, OH, OW, IC*KH*KW]
  5607. static void ggml_compute_forward_im2col_f32(
  5608. const ggml_compute_params * params,
  5609. ggml_tensor * dst) {
  5610. const ggml_tensor * src0 = dst->src[0];
  5611. const ggml_tensor * src1 = dst->src[1];
  5612. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5613. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5614. GGML_TENSOR_BINARY_OP_LOCALS;
  5615. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5616. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5617. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  5618. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  5619. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  5620. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  5621. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  5622. const int ith = params->ith;
  5623. const int nth = params->nth;
  5624. const int64_t N = is_2D ? ne13 : ne12;
  5625. const int64_t IC = is_2D ? ne12 : ne11;
  5626. const int64_t IH = is_2D ? ne11 : 1;
  5627. const int64_t IW = ne10;
  5628. const int64_t KH = is_2D ? ne01 : 1;
  5629. const int64_t KW = ne00;
  5630. const int64_t OH = is_2D ? ne2 : 1;
  5631. const int64_t OW = ne1;
  5632. int ofs0 = is_2D ? nb13 : nb12;
  5633. int ofs1 = is_2D ? nb12 : nb11;
  5634. GGML_ASSERT(nb10 == sizeof(float));
  5635. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5636. {
  5637. float * const wdata = (float *) dst->data;
  5638. for (int64_t in = 0; in < N; in++) {
  5639. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  5640. for (int64_t iow = 0; iow < OW; iow++) {
  5641. for (int64_t iic = ith; iic < IC; iic += nth) {
  5642. // micro kernel
  5643. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  5644. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  5645. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  5646. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5647. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  5648. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  5649. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  5650. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  5651. } else {
  5652. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  5653. }
  5654. }
  5655. }
  5656. }
  5657. }
  5658. }
  5659. }
  5660. }
  5661. }
  5662. // ggml_compute_forward_im2col_f16
  5663. // src0: kernel [OC, IC, KH, KW]
  5664. // src1: image [N, IC, IH, IW]
  5665. // dst: result [N, OH, OW, IC*KH*KW]
  5666. static void ggml_compute_forward_im2col_f16(
  5667. const ggml_compute_params * params,
  5668. ggml_tensor * dst) {
  5669. const ggml_tensor * src0 = dst->src[0];
  5670. const ggml_tensor * src1 = dst->src[1];
  5671. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5672. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5673. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  5674. GGML_TENSOR_BINARY_OP_LOCALS;
  5675. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5676. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5677. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  5678. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  5679. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  5680. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  5681. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  5682. const int ith = params->ith;
  5683. const int nth = params->nth;
  5684. const int64_t N = is_2D ? ne13 : ne12;
  5685. const int64_t IC = is_2D ? ne12 : ne11;
  5686. const int64_t IH = is_2D ? ne11 : 1;
  5687. const int64_t IW = ne10;
  5688. const int64_t KH = is_2D ? ne01 : 1;
  5689. const int64_t KW = ne00;
  5690. const int64_t OH = is_2D ? ne2 : 1;
  5691. const int64_t OW = ne1;
  5692. int ofs0 = is_2D ? nb13 : nb12;
  5693. int ofs1 = is_2D ? nb12 : nb11;
  5694. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5695. GGML_ASSERT(nb10 == sizeof(float));
  5696. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5697. {
  5698. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  5699. for (int64_t in = 0; in < N; in++) {
  5700. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  5701. for (int64_t iow = 0; iow < OW; iow++) {
  5702. for (int64_t iic = ith; iic < IC; iic += nth) {
  5703. // micro kernel
  5704. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  5705. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  5706. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  5707. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5708. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  5709. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  5710. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  5711. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  5712. } else {
  5713. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(src_data[iih*IW + iiw]);
  5714. }
  5715. }
  5716. }
  5717. }
  5718. }
  5719. }
  5720. }
  5721. }
  5722. }
  5723. void ggml_compute_forward_im2col(
  5724. const ggml_compute_params * params,
  5725. ggml_tensor * dst) {
  5726. switch (dst->type) {
  5727. case GGML_TYPE_F16:
  5728. {
  5729. ggml_compute_forward_im2col_f16(params, dst);
  5730. } break;
  5731. case GGML_TYPE_F32:
  5732. {
  5733. ggml_compute_forward_im2col_f32(params, dst);
  5734. } break;
  5735. default:
  5736. {
  5737. GGML_ABORT("fatal error");
  5738. }
  5739. }
  5740. }
  5741. // ggml_compute_forward_im2col_back_f32
  5742. void ggml_compute_forward_im2col_back_f32(
  5743. const ggml_compute_params * params,
  5744. ggml_tensor * dst) {
  5745. const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
  5746. const ggml_tensor * src1 = dst->src[1]; // convolution kernel
  5747. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5748. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5749. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5750. GGML_TENSOR_BINARY_OP_LOCALS;
  5751. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5752. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5753. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  5754. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  5755. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  5756. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  5757. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  5758. const int ith = params->ith;
  5759. const int nth = params->nth;
  5760. const int64_t N = is_2D ? ne3 : ne2;
  5761. const int64_t IC = is_2D ? ne2 : ne1;
  5762. const int64_t IH = is_2D ? ne1 : 1;
  5763. const int64_t IW = ne0;
  5764. const int64_t KH = is_2D ? ne11 : 1;
  5765. const int64_t KW = ne10;
  5766. const int64_t OH = is_2D ? ne02 : 1;
  5767. const int64_t OW = ne01;
  5768. int ofs0 = is_2D ? nb3 : nb2;
  5769. int ofs1 = is_2D ? nb2 : nb1;
  5770. GGML_ASSERT(nb0 == sizeof(float));
  5771. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5772. {
  5773. float * const wdata = (float *) dst->data;
  5774. for (int64_t in = 0; in < N; in++) {
  5775. for (int64_t iic = ith; iic < IC; iic += nth) {
  5776. for (int64_t iih = 0; iih < IH; iih++) {
  5777. for (int64_t iiw = 0; iiw < IW; iiw++) {
  5778. // micro kernel
  5779. float grad = 0.0f;
  5780. for (int64_t ikh = 0; ikh < KH; ikh++) {
  5781. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5782. // For s0 > 1 some values were skipped over in the forward pass.
  5783. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
  5784. const int64_t tmpw = (iiw + p0 - ikw*d0);
  5785. if (tmpw % s0 != 0) {
  5786. continue;
  5787. }
  5788. const int64_t iow = tmpw / s0;
  5789. // Equivalent logic as above except for s1.
  5790. int64_t ioh;
  5791. if (is_2D) {
  5792. const int64_t tmph = iih + p1 - ikh*d1;
  5793. if (tmph % s1 != 0) {
  5794. continue;
  5795. }
  5796. ioh = tmph / s1;
  5797. } else {
  5798. ioh = 0;
  5799. }
  5800. if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
  5801. continue;
  5802. }
  5803. const float * const grad_in = (const float *) src0->data
  5804. + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  5805. grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
  5806. }
  5807. }
  5808. float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
  5809. dst_data[iih*IW + iiw] = grad;
  5810. }
  5811. }
  5812. }
  5813. }
  5814. }
  5815. }
  5816. // ggml_compute_forward_im2col_3d_f16
  5817. // src0: kernel [OC*IC, KD, KH, KW]
  5818. // src1: image [N*IC, ID, IH, IW]
  5819. // dst: result [N*OD, OH, OW, IC * KD * KH * KW]
  5820. static void ggml_compute_forward_im2col_3d_f16(
  5821. const ggml_compute_params * params,
  5822. ggml_tensor * dst) {
  5823. const ggml_tensor * src0 = dst->src[0];
  5824. const ggml_tensor * src1 = dst->src[1];
  5825. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5826. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5827. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  5828. GGML_TENSOR_BINARY_OP_LOCALS;
  5829. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5830. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5831. const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
  5832. const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
  5833. const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
  5834. const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
  5835. const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
  5836. const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
  5837. const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
  5838. const int32_t IC = ((const int32_t *)(dst->op_params))[9];
  5839. const int ith = params->ith;
  5840. const int nth = params->nth;
  5841. const int64_t N = ne13 / IC;
  5842. const int64_t ID = ne12;
  5843. const int64_t IH = ne11;
  5844. const int64_t IW = ne10;
  5845. const int64_t OC = ne03 / IC;
  5846. GGML_UNUSED(OC);
  5847. const int64_t KD = ne02;
  5848. const int64_t KH = ne01;
  5849. const int64_t KW = ne00;
  5850. const int64_t OD = ne3 / N;
  5851. const int64_t OH = ne2;
  5852. const int64_t OW = ne1;
  5853. const int64_t OH_OW = OH*OW;
  5854. const int64_t KD_KH_KW = KD*KH*KW;
  5855. const int64_t KH_KW = KH*KW;
  5856. const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
  5857. GGML_ASSERT(nb10 == sizeof(float));
  5858. // im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
  5859. {
  5860. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  5861. for (int64_t in = 0; in < N; in++) {
  5862. for (int64_t iod = 0; iod < OD; iod++) {
  5863. for (int64_t ioh = 0; ioh < OH; ioh++) {
  5864. for (int64_t iow = 0; iow < OW; iow++) {
  5865. for (int64_t iic = ith; iic < IC; iic += nth) {
  5866. // micro kernel
  5867. ggml_fp16_t * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
  5868. const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
  5869. for (int64_t ikd = 0; ikd < KD; ikd++) {
  5870. for (int64_t ikh = 0; ikh < KH; ikh++) {
  5871. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5872. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  5873. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  5874. const int64_t iid = iod*s2 + ikd*d2 - p2;
  5875. if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
  5876. dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
  5877. } else {
  5878. const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
  5879. dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(*s);
  5880. }
  5881. }
  5882. }
  5883. }
  5884. }
  5885. }
  5886. }
  5887. }
  5888. }
  5889. }
  5890. }
  5891. // ggml_compute_forward_im2col_3d_f32
  5892. // src0: kernel [OC*IC, KD, KH, KW]
  5893. // src1: image [N*IC, ID, IH, IW]
  5894. // dst: result [N*OD, OH, OW, IC * KD * KH * KW]
  5895. static void ggml_compute_forward_im2col_3d_f32(
  5896. const ggml_compute_params * params,
  5897. ggml_tensor * dst) {
  5898. const ggml_tensor * src0 = dst->src[0];
  5899. const ggml_tensor * src1 = dst->src[1];
  5900. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5901. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5902. GGML_TENSOR_BINARY_OP_LOCALS;
  5903. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5904. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5905. const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
  5906. const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
  5907. const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
  5908. const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
  5909. const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
  5910. const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
  5911. const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
  5912. const int32_t IC = ((const int32_t *)(dst->op_params))[9];
  5913. const int ith = params->ith;
  5914. const int nth = params->nth;
  5915. const int64_t N = ne13 / IC;
  5916. const int64_t ID = ne12;
  5917. const int64_t IH = ne11;
  5918. const int64_t IW = ne10;
  5919. const int64_t OC = ne03 / IC;
  5920. GGML_UNUSED(OC);
  5921. const int64_t KD = ne02;
  5922. const int64_t KH = ne01;
  5923. const int64_t KW = ne00;
  5924. const int64_t OD = ne3 / N;
  5925. const int64_t OH = ne2;
  5926. const int64_t OW = ne1;
  5927. const int64_t OH_OW = OH*OW;
  5928. const int64_t KD_KH_KW = KD*KH*KW;
  5929. const int64_t KH_KW = KH*KW;
  5930. const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
  5931. GGML_ASSERT(nb10 == sizeof(float));
  5932. // im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
  5933. {
  5934. float * const wdata = (float *) dst->data;
  5935. for (int64_t in = 0; in < N; in++) {
  5936. for (int64_t iod = 0; iod < OD; iod++) {
  5937. for (int64_t ioh = 0; ioh < OH; ioh++) {
  5938. for (int64_t iow = 0; iow < OW; iow++) {
  5939. for (int64_t iic = ith; iic < IC; iic += nth) {
  5940. // micro kernel
  5941. float * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
  5942. const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
  5943. for (int64_t ikd = 0; ikd < KD; ikd++) {
  5944. for (int64_t ikh = 0; ikh < KH; ikh++) {
  5945. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5946. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  5947. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  5948. const int64_t iid = iod*s2 + ikd*d2 - p2;
  5949. if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
  5950. dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
  5951. } else {
  5952. const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
  5953. dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = *s;
  5954. }
  5955. }
  5956. }
  5957. }
  5958. }
  5959. }
  5960. }
  5961. }
  5962. }
  5963. }
  5964. }
  5965. void ggml_compute_forward_im2col_3d(
  5966. const ggml_compute_params * params,
  5967. ggml_tensor * dst) {
  5968. switch (dst->type) {
  5969. case GGML_TYPE_F16:
  5970. {
  5971. ggml_compute_forward_im2col_3d_f16(params, dst);
  5972. } break;
  5973. case GGML_TYPE_F32:
  5974. {
  5975. ggml_compute_forward_im2col_3d_f32(params, dst);
  5976. } break;
  5977. default:
  5978. {
  5979. GGML_ABORT("fatal error");
  5980. }
  5981. }
  5982. }
  5983. static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
  5984. void * a, void * b, float * c) {
  5985. const ggml_type_traits * traits = ggml_get_type_traits(type);
  5986. struct ggml_tensor src1 = {};
  5987. src1.type = type;
  5988. src1.ne[0] = k;
  5989. src1.ne[1] = m;
  5990. src1.ne[2] = 1;
  5991. src1.ne[3] = 1;
  5992. src1.nb[0] = traits->type_size;
  5993. src1.nb[1] = k * traits->type_size;
  5994. src1.nb[2] = src1.nb[1];
  5995. src1.nb[3] = src1.nb[2];
  5996. src1.data = a;
  5997. struct ggml_tensor src0 = {};
  5998. src0.type = type;
  5999. src0.ne[0] = k;
  6000. src0.ne[1] = n;
  6001. src0.ne[2] = 1;
  6002. src0.ne[3] = 1;
  6003. src0.nb[0] = traits->type_size;
  6004. src0.nb[1] = k * traits->type_size;
  6005. src0.nb[2] = src0.nb[1];
  6006. src0.nb[3] = src0.nb[2];
  6007. src0.data = b;
  6008. struct ggml_tensor dst = {};
  6009. dst.ne[0] = n;
  6010. dst.ne[1] = m;
  6011. dst.ne[2] = 1;
  6012. dst.ne[3] = 1;
  6013. dst.nb[0] = sizeof(float);
  6014. dst.nb[1] = n * sizeof(float);
  6015. dst.nb[2] = dst.nb[1];
  6016. dst.nb[3] = dst.nb[2];
  6017. dst.data = c;
  6018. dst.src[0] = &src0;
  6019. dst.src[1] = &src1;
  6020. ggml_compute_forward_mul_mat(params, &dst);
  6021. }
  6022. // ggml_compute_forward_conv_2d
  6023. static void ggml_compute_forward_conv_2d_impl(const ggml_compute_params * params,
  6024. const ggml_tensor * kernel, // [KW, KH, IC, OC]
  6025. const ggml_tensor * src, // [W, H, C, N]
  6026. ggml_tensor * dst, // [OW, OH, OC, N]
  6027. ggml_type kernel_type) {
  6028. GGML_ASSERT(ggml_is_contiguous(kernel));
  6029. GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32);
  6030. GGML_ASSERT(kernel->type == kernel_type);
  6031. const ggml_type_traits * traits = ggml_get_type_traits(kernel_type);
  6032. const int32_t stride_x = dst->op_params[0];
  6033. const int32_t stride_y = dst->op_params[1];
  6034. const int32_t pad_x = dst->op_params[2];
  6035. const int32_t pad_y = dst->op_params[3];
  6036. const int32_t dilation_x = dst->op_params[4];
  6037. const int32_t dilation_y = dst->op_params[5];
  6038. const int64_t c_in = src->ne[2];
  6039. const int64_t c_out = kernel->ne[3];
  6040. GGML_ASSERT(c_in == kernel->ne[2]);
  6041. const int64_t src_w = src->ne[0];
  6042. const int64_t src_h = src->ne[1];
  6043. const int64_t knl_w = kernel->ne[0];
  6044. const int64_t knl_h = kernel->ne[1];
  6045. const int64_t dst_w = dst->ne[0];
  6046. const int64_t dst_h = dst->ne[1];
  6047. const float * src_data = (float *) src->data;
  6048. void * knl_data = kernel->data;
  6049. float * dst_data = (float *) dst->data;
  6050. const int64_t knl_n = knl_w * knl_h * c_in;
  6051. const int64_t patch_total = dst->ne[3] * dst_w * dst_h;
  6052. const int64_t space_per_patch = knl_n * traits->type_size + c_out * sizeof(float);
  6053. const int64_t batch_size = params->wsize / space_per_patch;
  6054. const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size;
  6055. const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch;
  6056. GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1);
  6057. void * tmp = params->wdata;
  6058. for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) {
  6059. const int64_t patch_start_batch = batch_i * patches_per_batch;
  6060. const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch,
  6061. patch_total);
  6062. const int64_t patch_n = patch_end_batch - patch_start_batch;
  6063. const int64_t patch_per_thread = (patch_n + params->nth - 1) / params->nth;
  6064. const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread;
  6065. const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch);
  6066. //im2col for a patch
  6067. for (int64_t p = patch_start; p < patch_end; ++p) {
  6068. const int64_t batch_n = p / (dst_w * dst_h);
  6069. const int64_t src_x = (p / dst_w) % dst_h;
  6070. const int64_t src_y = p % dst_w;
  6071. const float * src_base = (const float *)((const char *)src_data + batch_n * src->nb[3]);
  6072. char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n * traits->type_size;
  6073. for (int64_t ic = 0; ic < c_in; ++ic) {
  6074. for (int64_t ky = 0; ky < knl_h; ++ky) {
  6075. for (int64_t kx = 0; kx < knl_w; ++kx) {
  6076. const int64_t sy = src_x * stride_y + ky * dilation_y - pad_y;
  6077. const int64_t sx = src_y * stride_x + kx * dilation_x - pad_x;
  6078. int64_t dst_idx = ic * (knl_h * knl_w) + ky * knl_w + kx;
  6079. float src_val;
  6080. if (sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) {
  6081. src_val = 0.0f;
  6082. } else {
  6083. const float * src_ptr = (const float *)((const char *)src_base + sx * src->nb[0] + sy * src->nb[1] + ic * src->nb[2]);
  6084. src_val = *src_ptr;
  6085. }
  6086. char * element_ptr = dst_row + dst_idx * traits->type_size;
  6087. if (kernel_type == GGML_TYPE_F32) {
  6088. *(float *) element_ptr = src_val;
  6089. } else if (kernel_type == GGML_TYPE_F16) {
  6090. *(ggml_fp16_t *) element_ptr = GGML_CPU_FP32_TO_FP16(src_val);
  6091. }
  6092. }
  6093. }
  6094. }
  6095. } // patches handled by this thread
  6096. ggml_barrier(params->threadpool);
  6097. float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n * traits->type_size);
  6098. GGML_ASSERT(gemm_output + patch_n * c_out <= (float*)tmp + params->wsize);
  6099. // GEMM: patches[patch_n, knl_n] × kernel[knl_n, c_out] = output[patch_n, c_out]
  6100. ggml_call_mul_mat(kernel_type, params, patch_n, c_out, knl_n, tmp, knl_data, gemm_output);
  6101. ggml_barrier(params->threadpool);
  6102. //permute back [OC, N, OH, OW] to [N, OC, OH, OW]
  6103. const int64_t permute_per_thread = (patch_n + params->nth - 1) / params->nth;
  6104. const int64_t permute_start = params->ith * permute_per_thread;
  6105. const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n);
  6106. for (int64_t i = permute_start; i < permute_end; ++i) {
  6107. const int64_t p = patch_start_batch + i;
  6108. const int64_t batch_n = p / (dst_w * dst_h);
  6109. const int64_t dst_y = (p / dst_w) % dst_h;
  6110. const int64_t dst_x = p % dst_w;
  6111. for (int64_t oc = 0; oc < c_out; ++oc) {
  6112. const float value = gemm_output[i * c_out + oc];
  6113. float * dst_ptr = (float *)((char *)dst_data + dst_x * dst->nb[0] + dst_y * dst->nb[1] + oc * dst->nb[2] + batch_n * dst->nb[3]);
  6114. *dst_ptr = value;
  6115. }
  6116. }
  6117. }
  6118. }
  6119. void ggml_compute_forward_conv_2d(
  6120. const ggml_compute_params * params,
  6121. ggml_tensor * dst) {
  6122. const ggml_tensor * src0 = dst->src[0];
  6123. const ggml_tensor * src1 = dst->src[1];
  6124. ggml_compute_forward_conv_2d_impl(params, src0, src1, dst, src0->type);
  6125. }
  6126. // ggml_compute_forward_conv_3d
  6127. static void ggml_compute_forward_conv_3d_impl(const ggml_compute_params * params,
  6128. const ggml_tensor * kernel,
  6129. const ggml_tensor * src,
  6130. ggml_tensor * dst,
  6131. ggml_type kernel_type) {
  6132. GGML_ASSERT(ggml_is_contiguous(kernel));
  6133. GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32);
  6134. GGML_ASSERT(kernel->type == kernel_type);
  6135. const ggml_type_traits * traits = ggml_get_type_traits(kernel_type);
  6136. const int32_t s0 = dst->op_params[0];
  6137. const int32_t s1 = dst->op_params[1];
  6138. const int32_t s2 = dst->op_params[2];
  6139. const int32_t p0 = dst->op_params[3];
  6140. const int32_t p1 = dst->op_params[4];
  6141. const int32_t p2 = dst->op_params[5];
  6142. const int32_t d0 = dst->op_params[6];
  6143. const int32_t d1 = dst->op_params[7];
  6144. const int32_t d2 = dst->op_params[8];
  6145. const int32_t c = dst->op_params[9];
  6146. const int32_t n = dst->op_params[10];
  6147. const int32_t oc = dst->op_params[11];
  6148. const int64_t src_w = src->ne[0];
  6149. const int64_t src_h = src->ne[1];
  6150. const int64_t src_d = src->ne[2];
  6151. const int64_t knl_w = kernel->ne[0];
  6152. const int64_t knl_h = kernel->ne[1];
  6153. const int64_t knl_d = kernel->ne[2];
  6154. const int64_t dst_w = dst->ne[0];
  6155. const int64_t dst_h = dst->ne[1];
  6156. const int64_t dst_d = dst->ne[2];
  6157. const float * src_data = (float *) src->data;
  6158. void * knl_data = kernel->data;
  6159. float * dst_data = (float *) dst->data;
  6160. const int64_t knl_n_per_channel = knl_w * knl_h * knl_d;
  6161. const int64_t knl_n_total = knl_n_per_channel * c;
  6162. const int64_t patch_total = n * dst_w * dst_h * dst_d;
  6163. const int64_t space_per_patch = knl_n_total * traits->type_size + oc * sizeof(float);
  6164. const int64_t batch_size = params->wsize / space_per_patch;
  6165. const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size;
  6166. const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch;
  6167. GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1);
  6168. void * tmp = params->wdata;
  6169. for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) {
  6170. const int64_t patch_start_batch = batch_i * patches_per_batch;
  6171. const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch, patch_total);
  6172. const int64_t patch_n_in_batch = patch_end_batch - patch_start_batch;
  6173. const int64_t patch_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth;
  6174. const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread;
  6175. const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch);
  6176. for (int64_t p = patch_start; p < patch_end; ++p) {
  6177. const int64_t p_in_batch = p % (dst_w * dst_h * dst_d);
  6178. const int64_t p_in_depth = p_in_batch % (dst_w * dst_h);
  6179. const int64_t batch_idx = p / (dst_w * dst_h * dst_d);
  6180. const int64_t dst_z = p_in_batch / (dst_w * dst_h);
  6181. const int64_t dst_y = p_in_depth / dst_w;
  6182. const int64_t dst_x = p_in_depth % dst_w;
  6183. char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n_total * traits->type_size;
  6184. for (int64_t ic = 0; ic < c; ++ic) {
  6185. for (int64_t kz = 0; kz < knl_d; ++kz) {
  6186. for (int64_t ky = 0; ky < knl_h; ++ky) {
  6187. for (int64_t kx = 0; kx < knl_w; ++kx) {
  6188. const int64_t sz = dst_z * s2 + kz * d2 - p2;
  6189. const int64_t sy = dst_y * s1 + ky * d1 - p1;
  6190. const int64_t sx = dst_x * s0 + kx * d0 - p0;
  6191. int64_t dst_idx = ic * knl_n_per_channel + kz * (knl_h * knl_w) + ky * knl_w + kx;
  6192. float src_val;
  6193. if (sz < 0 || sz >= src_d || sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) {
  6194. src_val = 0.0f;
  6195. } else {
  6196. const int64_t cn_idx = batch_idx * c + ic;
  6197. const float * src_ptr = (const float *)((const char *)src_data + sx*src->nb[0] + sy*src->nb[1] + sz*src->nb[2] + cn_idx*src->nb[3]);
  6198. src_val = *src_ptr;
  6199. }
  6200. char * element_ptr = dst_row + dst_idx * traits->type_size;
  6201. if (kernel_type == GGML_TYPE_F32) {
  6202. *(float *)element_ptr = src_val;
  6203. } else if (kernel_type == GGML_TYPE_F16) {
  6204. *(ggml_fp16_t *)element_ptr = GGML_CPU_FP32_TO_FP16(src_val);
  6205. }
  6206. }
  6207. }
  6208. }
  6209. }
  6210. }
  6211. ggml_barrier(params->threadpool);
  6212. float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n_total * traits->type_size);
  6213. ggml_call_mul_mat(kernel_type, params, patch_n_in_batch, oc, knl_n_total, tmp, knl_data, gemm_output);
  6214. ggml_barrier(params->threadpool);
  6215. const int64_t permute_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth;
  6216. const int64_t permute_start = params->ith * permute_per_thread;
  6217. const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n_in_batch);
  6218. for (int64_t i = permute_start; i < permute_end; ++i) {
  6219. const int64_t p = patch_start_batch + i;
  6220. const int64_t p_in_batch = p % (dst_w * dst_h * dst_d);
  6221. const int64_t p_in_depth = p_in_batch % (dst_w * dst_h);
  6222. const int64_t batch_idx = p / (dst_w * dst_h * dst_d);
  6223. const int64_t dst_z = p_in_batch / (dst_w * dst_h);
  6224. const int64_t dst_y = p_in_depth / dst_w;
  6225. const int64_t dst_x = p_in_depth % dst_w;
  6226. for (int64_t ioc = 0; ioc < oc; ++ioc) {
  6227. const float value = gemm_output[i * oc + ioc];
  6228. const int64_t ocn_idx = batch_idx * oc + ioc;
  6229. float * dst_ptr = (float *)((char *)dst_data + dst_x*dst->nb[0] + dst_y*dst->nb[1] + dst_z*dst->nb[2] + ocn_idx*dst->nb[3]);
  6230. *dst_ptr = value;
  6231. }
  6232. }
  6233. }
  6234. }
  6235. void ggml_compute_forward_conv_3d(
  6236. const ggml_compute_params * params,
  6237. ggml_tensor * dst) {
  6238. const ggml_tensor * src0 = dst->src[0];
  6239. const ggml_tensor * src1 = dst->src[1];
  6240. ggml_compute_forward_conv_3d_impl(params, src0, src1, dst, src0->type);
  6241. }
  6242. // ggml_compute_forward_conv_transpose_2d
  6243. void ggml_compute_forward_conv_transpose_2d(
  6244. const ggml_compute_params * params,
  6245. ggml_tensor * dst) {
  6246. const ggml_tensor * src0 = dst->src[0];
  6247. const ggml_tensor * src1 = dst->src[1];
  6248. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6249. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6250. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6251. GGML_TENSOR_BINARY_OP_LOCALS
  6252. const int ith = params->ith;
  6253. const int nth = params->nth;
  6254. const int nk = ne00*ne01*ne02*ne03;
  6255. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6256. GGML_ASSERT(nb10 == sizeof(float));
  6257. if (ith == 0) {
  6258. memset(params->wdata, 0, params->wsize);
  6259. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  6260. {
  6261. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6262. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6263. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6264. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  6265. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  6266. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6267. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6268. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  6269. }
  6270. }
  6271. }
  6272. }
  6273. }
  6274. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  6275. {
  6276. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  6277. for (int i12 = 0; i12 < ne12; i12++) {
  6278. for (int i11 = 0; i11 < ne11; i11++) {
  6279. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  6280. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  6281. for (int i10 = 0; i10 < ne10; i10++) {
  6282. dst_data[i10*ne12 + i12] = GGML_CPU_FP32_TO_FP16(src[i10]);
  6283. }
  6284. }
  6285. }
  6286. }
  6287. memset(dst->data, 0, ggml_nbytes(dst));
  6288. }
  6289. ggml_barrier(params->threadpool);
  6290. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  6291. // total patches in dst
  6292. const int np = ne2;
  6293. // patches per thread
  6294. const int dp = (np + nth - 1)/nth;
  6295. // patch range for this thread
  6296. const int ip0 = dp*ith;
  6297. const int ip1 = MIN(ip0 + dp, np);
  6298. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6299. ggml_fp16_t * const wdata_src = wdata + nk;
  6300. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  6301. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  6302. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  6303. for (int i11 = 0; i11 < ne11; i11++) {
  6304. for (int i10 = 0; i10 < ne10; i10++) {
  6305. const int i1n = i11*ne10*ne12 + i10*ne12;
  6306. for (int i01 = 0; i01 < ne01; i01++) {
  6307. for (int i00 = 0; i00 < ne00; i00++) {
  6308. float v = 0;
  6309. ggml_vec_dot_f16(ne03, &v, 0,
  6310. wdata_src + i1n, 0,
  6311. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  6312. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  6313. }
  6314. }
  6315. }
  6316. }
  6317. }
  6318. }
  6319. // ggml_compute_forward_conv_2d_dw
  6320. struct ggml_conv_2d_dw_params {
  6321. int64_t channels;
  6322. int64_t batch;
  6323. int64_t src_w;
  6324. int64_t src_h;
  6325. int64_t dst_w;
  6326. int64_t dst_h;
  6327. int64_t knl_w;
  6328. int64_t knl_h;
  6329. int stride_x;
  6330. int stride_y;
  6331. int pad_x;
  6332. int pad_y;
  6333. int dilation_x;
  6334. int dilation_y;
  6335. };
  6336. static void ggml_compute_forward_conv_2d_dw_cwhn(
  6337. const ggml_compute_params * params,
  6338. const ggml_tensor * src,
  6339. const ggml_tensor * kernel,
  6340. ggml_tensor * dst,
  6341. const ggml_conv_2d_dw_params & p) {
  6342. const int64_t c = p.channels;
  6343. const float * knl_data = (const float *)kernel->data;
  6344. const int64_t rows_total = p.dst_h * p.batch;
  6345. const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth;
  6346. const int64_t row_start = params->ith * rows_per_thread;
  6347. const int64_t row_end = MIN(row_start + rows_per_thread, rows_total);
  6348. #ifdef GGML_SIMD
  6349. const int64_t pkg_size = GGML_F32_EPR;
  6350. const int64_t pkg_count = c / pkg_size;
  6351. const int64_t c_pkg_end = pkg_count * pkg_size;
  6352. #else
  6353. const int64_t c_pkg_end = 0;
  6354. #endif
  6355. for (int64_t row = row_start; row < row_end; ++row) {
  6356. const int64_t dst_y = row % p.dst_h;
  6357. const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c;
  6358. for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
  6359. float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c;
  6360. const int64_t src_y_base = dst_y * p.stride_y - p.pad_y;
  6361. const int64_t src_x_base = dst_x * p.stride_x - p.pad_x;
  6362. #ifdef GGML_SIMD
  6363. // Vectorized loop
  6364. for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) {
  6365. GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
  6366. for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
  6367. const int64_t src_y = src_y_base + knl_y * p.dilation_y;
  6368. if (src_y < 0 || src_y >= p.src_h) {
  6369. continue;
  6370. }
  6371. for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
  6372. const int64_t src_x = src_x_base + knl_x * p.dilation_x;
  6373. if (src_x < 0 || src_x >= p.src_w) {
  6374. continue;
  6375. }
  6376. GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i);
  6377. GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i);
  6378. sum = GGML_F32_VEC_FMA(sum, k, s);
  6379. }
  6380. }
  6381. GGML_F32_VEC_STORE(dst_data + c_i, sum);
  6382. }
  6383. #endif
  6384. // Scalar loop
  6385. for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) {
  6386. float sum = 0.0f;
  6387. for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
  6388. const int64_t src_y = src_y_base + knl_y * p.dilation_y;
  6389. if (src_y < 0 || src_y >= p.src_h) {
  6390. continue;
  6391. }
  6392. for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
  6393. const int64_t src_x = src_x_base + knl_x * p.dilation_x;
  6394. if (src_x < 0 || src_x >= p.src_w) {
  6395. continue;
  6396. }
  6397. sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i]
  6398. * src_data[(src_y * p.src_w + src_x) * c + c_i];
  6399. }
  6400. }
  6401. dst_data[c_i] = sum;
  6402. }
  6403. }
  6404. }
  6405. }
  6406. static void ggml_compute_forward_conv_2d_dw_whcn(
  6407. const ggml_compute_params * params,
  6408. const ggml_tensor * src,
  6409. const ggml_tensor * kernel,
  6410. ggml_tensor * dst,
  6411. const ggml_conv_2d_dw_params & p) {
  6412. const int64_t n = p.channels * p.batch;
  6413. const int64_t per_thread = (n + params->nth - 1) / params->nth;
  6414. const int64_t start = params->ith * per_thread;
  6415. const int64_t end = MIN(start + per_thread, n);
  6416. for (int64_t i = start; i < end; ++i) {
  6417. const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h;
  6418. const float * src_data = (const float *)src->data + i * p.src_w * p.src_h;
  6419. float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h;
  6420. for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) {
  6421. for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
  6422. float sum = 0.0f;
  6423. for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
  6424. const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
  6425. if (src_y < 0 || src_y >= p.src_h) {
  6426. continue;
  6427. }
  6428. for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
  6429. const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
  6430. if (src_x < 0 || src_x >= p.src_w) {
  6431. continue;
  6432. }
  6433. sum += knl_data[knl_y * p.knl_w + knl_x]
  6434. * src_data[src_y * p.src_w + src_x];
  6435. }
  6436. }
  6437. dst_data[dst_y * p.dst_w + dst_x] = sum;
  6438. }
  6439. }
  6440. }
  6441. }
  6442. void ggml_compute_forward_conv_2d_dw(
  6443. const ggml_compute_params * params,
  6444. ggml_tensor * dst) {
  6445. const ggml_tensor * kernel = dst->src[0];
  6446. const ggml_tensor * src = dst->src[1];
  6447. ggml_conv_2d_dw_params p;
  6448. p.channels = src->ne[2];
  6449. p.batch = src->ne[3];
  6450. p.src_w = src->ne[0];
  6451. p.src_h = src->ne[1];
  6452. p.dst_w = dst->ne[0];
  6453. p.dst_h = dst->ne[1];
  6454. p.knl_w = kernel->ne[0];
  6455. p.knl_h = kernel->ne[1];
  6456. p.stride_x = dst->op_params[0];
  6457. p.stride_y = dst->op_params[1];
  6458. p.pad_x = dst->op_params[2];
  6459. p.pad_y = dst->op_params[3];
  6460. p.dilation_x = dst->op_params[4];
  6461. p.dilation_y = dst->op_params[5];
  6462. GGML_ASSERT(kernel->ne[3] == p.channels);
  6463. GGML_ASSERT(dst->ne[3] == p.batch);
  6464. if (ggml_is_contiguous(src)) {
  6465. ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p);
  6466. } else if (ggml_is_contiguous_channels(src)) {
  6467. // kernel should also have channels most contiguous in memory
  6468. GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]);
  6469. ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p);
  6470. } else {
  6471. GGML_ABORT("non-contiguous memory layout not supported");
  6472. }
  6473. }
  6474. // ggml_compute_forward_pool_1d_sk_p0
  6475. static void ggml_compute_forward_pool_1d_sk_p0(
  6476. const ggml_compute_params * params,
  6477. const ggml_op_pool op,
  6478. const int k,
  6479. ggml_tensor * dst) {
  6480. const ggml_tensor * src = dst->src[0];
  6481. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  6482. if (params->ith != 0) {
  6483. return;
  6484. }
  6485. const char * cdata = (const char *)src->data;
  6486. const char * const data_end = cdata + ggml_nbytes(src);
  6487. float * drow = (float *)dst->data;
  6488. const int64_t rs = dst->ne[0];
  6489. while (cdata < data_end) {
  6490. const void * srow = (const void *)cdata;
  6491. int j = 0;
  6492. for (int64_t i = 0; i < rs; ++i) {
  6493. switch (op) {
  6494. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  6495. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  6496. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6497. }
  6498. for (int ki = 0; ki < k; ++ki) {
  6499. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  6500. switch (op) {
  6501. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  6502. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  6503. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6504. }
  6505. ++j;
  6506. }
  6507. switch (op) {
  6508. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  6509. case GGML_OP_POOL_MAX: break;
  6510. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6511. }
  6512. }
  6513. cdata += src->nb[1];
  6514. drow += rs;
  6515. }
  6516. }
  6517. // ggml_compute_forward_pool_1d
  6518. void ggml_compute_forward_pool_1d(
  6519. const ggml_compute_params * params,
  6520. ggml_tensor * dst) {
  6521. const int32_t * opts = (const int32_t *)dst->op_params;
  6522. ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
  6523. const int k0 = opts[1];
  6524. const int s0 = opts[2];
  6525. const int p0 = opts[3];
  6526. GGML_ASSERT(p0 == 0); // padding not supported
  6527. GGML_ASSERT(k0 == s0); // only s = k supported
  6528. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  6529. }
  6530. // ggml_compute_forward_pool_2d
  6531. void ggml_compute_forward_pool_2d(
  6532. const ggml_compute_params * params,
  6533. ggml_tensor * dst) {
  6534. const ggml_tensor * src = dst->src[0];
  6535. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  6536. if (params->ith != 0) {
  6537. return;
  6538. }
  6539. const int32_t * opts = (const int32_t *)dst->op_params;
  6540. ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
  6541. const int k0 = opts[1];
  6542. const int k1 = opts[2];
  6543. const int s0 = opts[3];
  6544. const int s1 = opts[4];
  6545. const int p0 = opts[5];
  6546. const int p1 = opts[6];
  6547. const char * cdata = (const char*)src->data;
  6548. const char * const data_end = cdata + ggml_nbytes(src);
  6549. const int64_t px = dst->ne[0];
  6550. const int64_t py = dst->ne[1];
  6551. const int64_t pa = px * py;
  6552. float * dplane = (float *)dst->data;
  6553. const int ka = k0 * k1;
  6554. const int offset0 = -p0;
  6555. const int offset1 = -p1;
  6556. while (cdata < data_end) {
  6557. for (int oy = 0; oy < py; ++oy) {
  6558. float * const drow = dplane + oy * px;
  6559. for (int ox = 0; ox < px; ++ox) {
  6560. float * const out = drow + ox;
  6561. switch (op) {
  6562. case GGML_OP_POOL_AVG: *out = 0; break;
  6563. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  6564. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6565. }
  6566. const int ix = offset0 + ox * s0;
  6567. const int iy = offset1 + oy * s1;
  6568. for (int ky = 0; ky < k1; ++ky) {
  6569. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  6570. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  6571. for (int kx = 0; kx < k0; ++kx) {
  6572. int j = ix + kx;
  6573. if (j < 0 || j >= src->ne[0]) continue;
  6574. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  6575. switch (op) {
  6576. case GGML_OP_POOL_AVG: *out += srow_j; break;
  6577. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  6578. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6579. }
  6580. }
  6581. }
  6582. switch (op) {
  6583. case GGML_OP_POOL_AVG: *out /= ka; break;
  6584. case GGML_OP_POOL_MAX: break;
  6585. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6586. }
  6587. }
  6588. }
  6589. cdata += src->nb[2];
  6590. dplane += pa;
  6591. }
  6592. }
  6593. // ggml_compute_forward_pool_2d_back
  6594. void ggml_compute_forward_pool_2d_back(
  6595. const ggml_compute_params * params,
  6596. ggml_tensor * dst) {
  6597. const ggml_tensor * src = dst->src[0];
  6598. const ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
  6599. assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
  6600. if (params->ith != 0) {
  6601. return;
  6602. }
  6603. const int32_t * opts = (const int32_t *)dst->op_params;
  6604. ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
  6605. const int k0 = opts[1];
  6606. const int k1 = opts[2];
  6607. const int s0 = opts[3];
  6608. const int s1 = opts[4];
  6609. const int p0 = opts[5];
  6610. const int p1 = opts[6];
  6611. char * cdata = (char *) dst->data;
  6612. const char * cdataf = (const char *) dstf->data;
  6613. const char * const data_end = cdata + ggml_nbytes(dst);
  6614. GGML_ASSERT(params->ith == 0);
  6615. memset(cdata, 0, ggml_nbytes(dst));
  6616. const int64_t px = src->ne[0];
  6617. const int64_t py = src->ne[1];
  6618. const int64_t pa = px * py;
  6619. const float * splane = (const float *) src->data;
  6620. const int ka = k0 * k1;
  6621. const int offset0 = -p0;
  6622. const int offset1 = -p1;
  6623. while (cdata < data_end) {
  6624. for (int oy = 0; oy < py; ++oy) {
  6625. const float * const srow = splane + oy * px;
  6626. for (int ox = 0; ox < px; ++ox) {
  6627. const float grad0 = srow[ox];
  6628. const int ix = offset0 + ox * s0;
  6629. const int iy = offset1 + oy * s1;
  6630. if (op == GGML_OP_POOL_MAX) {
  6631. float maxval = -FLT_MAX;
  6632. int kxmax = -1;
  6633. int kymax = -1;
  6634. for (int ky = 0; ky < k1; ++ky) {
  6635. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  6636. continue;
  6637. }
  6638. const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
  6639. for (int kx = 0; kx < k0; ++kx) {
  6640. int j = ix + kx;
  6641. if (j < 0 || j >= dst->ne[0]) {
  6642. continue;
  6643. }
  6644. const float val = dst->type == GGML_TYPE_F32 ?
  6645. ((const float *) drowf)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
  6646. if (val <= maxval) {
  6647. continue;
  6648. }
  6649. maxval = val;
  6650. kxmax = kx;
  6651. kymax = ky;
  6652. }
  6653. }
  6654. if (kxmax == -1 || kymax == -1) {
  6655. continue;
  6656. }
  6657. void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
  6658. const int j = ix + kxmax;
  6659. if (dst->type == GGML_TYPE_F32) {
  6660. ((float *) drow)[j] += grad0;
  6661. } else {
  6662. ((ggml_fp16_t *) drow)[j] = GGML_CPU_FP32_TO_FP16(grad0 + GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
  6663. }
  6664. } else if (op == GGML_OP_POOL_AVG) {
  6665. const float grad = grad0 / ka;
  6666. for (int ky = 0; ky < k1; ++ky) {
  6667. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  6668. continue;
  6669. }
  6670. void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
  6671. for (int kx = 0; kx < k0; ++kx) {
  6672. int j = ix + kx;
  6673. if (j < 0 || j >= dst->ne[0]) {
  6674. continue;
  6675. }
  6676. if (dst->type == GGML_TYPE_F32) {
  6677. ((float *) drow)[j] += grad;
  6678. } else {
  6679. ((ggml_fp16_t *) drow)[j] += GGML_CPU_FP32_TO_FP16(grad);
  6680. }
  6681. }
  6682. }
  6683. } else {
  6684. GGML_ASSERT(false);
  6685. }
  6686. }
  6687. }
  6688. cdata += dst->nb[2];
  6689. cdataf += dst->nb[2];
  6690. splane += pa;
  6691. }
  6692. }
  6693. // ggml_compute_forward_upscale
  6694. static void ggml_compute_forward_upscale_f32(
  6695. const ggml_compute_params * params,
  6696. ggml_tensor * dst) {
  6697. const ggml_tensor * src0 = dst->src[0];
  6698. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6699. const int ith = params->ith;
  6700. const int nth = params->nth;
  6701. GGML_TENSOR_UNARY_OP_LOCALS
  6702. float sf0 = (float)ne0/src0->ne[0];
  6703. float sf1 = (float)ne1/src0->ne[1];
  6704. float sf2 = (float)ne2/src0->ne[2];
  6705. float sf3 = (float)ne3/src0->ne[3];
  6706. const int32_t mode_flags = ggml_get_op_params_i32(dst, 0);
  6707. const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
  6708. if (mode == GGML_SCALE_MODE_NEAREST) {
  6709. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6710. const int64_t i03 = i3 / sf3;
  6711. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  6712. const int64_t i02 = i2 / sf2;
  6713. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6714. const int64_t i01 = i1 / sf1;
  6715. for (int64_t i0 = 0; i0 < ne0; i0++) {
  6716. const int64_t i00 = i0 / sf0;
  6717. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6718. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  6719. *y = *x;
  6720. }
  6721. }
  6722. }
  6723. }
  6724. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  6725. float pixel_offset = 0.5f;
  6726. if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  6727. pixel_offset = 0.0f;
  6728. sf0 = (float)(ne0 - 1) / (src0->ne[0] - 1);
  6729. sf1 = (float)(ne1 - 1) / (src0->ne[1] - 1);
  6730. }
  6731. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6732. const int64_t i03 = i3 / sf3;
  6733. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  6734. const int64_t i02 = i2 / sf2;
  6735. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6736. const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset;
  6737. int64_t y0 = (int64_t)floorf(y);
  6738. int64_t y1 = y0 + 1;
  6739. y0 = std::max(int64_t(0), std::min(y0, ne01 - 1));
  6740. y1 = std::max(int64_t(0), std::min(y1, ne01 - 1));
  6741. float dy = y - (float)y0;
  6742. dy = std::max(0.0f, std::min(dy, 1.0f));
  6743. for (int64_t i0 = 0; i0 < ne0; i0++) {
  6744. const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset;
  6745. int64_t x0 = (int64_t)floorf(x);
  6746. int64_t x1 = x0 + 1;
  6747. x0 = std::max(int64_t(0), std::min(x0, ne00 - 1));
  6748. x1 = std::max(int64_t(0), std::min(x1, ne00 - 1));
  6749. float dx = x - (float)x0;
  6750. dx = std::max(0.0f, std::min(dx, 1.0f));
  6751. // fetch the four surrounding pixel values and interpolate
  6752. const float a = *(const float *)((const char *)src0->data + x0*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
  6753. const float b = *(const float *)((const char *)src0->data + x1*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
  6754. const float c = *(const float *)((const char *)src0->data + x0*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
  6755. const float d = *(const float *)((const char *)src0->data + x1*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
  6756. const float val = a*(1 - dx)*(1 - dy) + b*dx*(1 - dy) + c*(1 - dx)*dy + d*dx*dy;
  6757. float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  6758. *y_dst = val;
  6759. }
  6760. }
  6761. }
  6762. }
  6763. } else {
  6764. GGML_ABORT("unsupported upscale mode");
  6765. }
  6766. }
  6767. void ggml_compute_forward_upscale(
  6768. const ggml_compute_params * params,
  6769. ggml_tensor * dst) {
  6770. const ggml_tensor * src0 = dst->src[0];
  6771. switch (src0->type) {
  6772. case GGML_TYPE_F32:
  6773. {
  6774. ggml_compute_forward_upscale_f32(params, dst);
  6775. } break;
  6776. default:
  6777. {
  6778. GGML_ABORT("fatal error");
  6779. }
  6780. }
  6781. }
  6782. // ggml_compute_forward_pad
  6783. static void ggml_compute_forward_pad_f32(
  6784. const ggml_compute_params * params,
  6785. ggml_tensor * dst) {
  6786. const ggml_tensor * src0 = dst->src[0];
  6787. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6788. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6789. const int ith = params->ith;
  6790. const int nth = params->nth;
  6791. GGML_TENSOR_UNARY_OP_LOCALS
  6792. float * dst_ptr = (float *) dst->data;
  6793. const int32_t lp0 = ggml_get_op_params_i32(dst, 0);
  6794. const int32_t rp0 = ggml_get_op_params_i32(dst, 1);
  6795. const int32_t lp1 = ggml_get_op_params_i32(dst, 2);
  6796. const int32_t rp1 = ggml_get_op_params_i32(dst, 3);
  6797. const int32_t lp2 = ggml_get_op_params_i32(dst, 4);
  6798. const int32_t rp2 = ggml_get_op_params_i32(dst, 5);
  6799. const int32_t lp3 = ggml_get_op_params_i32(dst, 6);
  6800. const int32_t rp3 = ggml_get_op_params_i32(dst, 7);
  6801. // TODO: optimize
  6802. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  6803. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  6804. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6805. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  6806. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  6807. if ((i0 >= lp0 && i0 < ne0 - rp0) \
  6808. && (i1 >= lp1 && i1 < ne1 - rp1) \
  6809. && (i2 >= lp2 && i2 < ne2 - rp2) \
  6810. && (i3 >= lp3 && i3 < ne3 - rp3)) {
  6811. const int64_t src_idx = (i3 - lp3)*nb03 + (i2 - lp2)*nb02 + (i1 - lp1)*nb01 + (i0 - lp0)*nb00;
  6812. const float * src_ptr = (const float *)((char *) src0->data + src_idx);
  6813. dst_ptr[dst_idx] = *src_ptr;
  6814. } else {
  6815. dst_ptr[dst_idx] = 0;
  6816. }
  6817. }
  6818. }
  6819. }
  6820. }
  6821. }
  6822. void ggml_compute_forward_pad(
  6823. const ggml_compute_params * params,
  6824. ggml_tensor * dst) {
  6825. const ggml_tensor * src0 = dst->src[0];
  6826. switch (src0->type) {
  6827. case GGML_TYPE_F32:
  6828. {
  6829. ggml_compute_forward_pad_f32(params, dst);
  6830. } break;
  6831. default:
  6832. {
  6833. GGML_ABORT("fatal error");
  6834. }
  6835. }
  6836. }
  6837. // ggml_compute_forward_pad_reflect_1d
  6838. void ggml_compute_forward_pad_reflect_1d(
  6839. const ggml_compute_params * params,
  6840. ggml_tensor * dst) {
  6841. const ggml_tensor * src0 = dst->src[0];
  6842. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6843. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6844. const int ith = params->ith;
  6845. const int nth = params->nth;
  6846. const int32_t * opts = (const int32_t *) dst->op_params;
  6847. const int p0 = opts[0];
  6848. const int p1 = opts[1];
  6849. GGML_TENSOR_UNARY_OP_LOCALS
  6850. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6851. for (int64_t i2 = 0; i2 < ne2; i2++) {
  6852. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  6853. float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0);
  6854. float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0);
  6855. ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01));
  6856. for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; }
  6857. for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; }
  6858. }
  6859. }
  6860. }
  6861. }
  6862. // ggml_compute_forward_roll
  6863. static int64_t ggml_wrap_index(int64_t i, int64_t ne) {
  6864. if (i < 0) {
  6865. return i + ne;
  6866. } else if (i >= ne) {
  6867. return i - ne;
  6868. }
  6869. return i;
  6870. }
  6871. static void ggml_compute_forward_roll_f32(
  6872. const ggml_compute_params * params,
  6873. ggml_tensor * dst) {
  6874. const ggml_tensor * src0 = dst->src[0];
  6875. const float * src_data = (const float *) src0->data;
  6876. float * dst_data = (float *) dst->data;
  6877. GGML_TENSOR_UNARY_OP_LOCALS
  6878. const int s0 = ggml_get_op_params_i32(dst, 0);
  6879. const int s1 = ggml_get_op_params_i32(dst, 1);
  6880. const int s2 = ggml_get_op_params_i32(dst, 2);
  6881. const int s3 = ggml_get_op_params_i32(dst, 3);
  6882. const int64_t total = ne1 * ne2 * ne3;
  6883. const int64_t per_thread = (total + params->nth) / params->nth;
  6884. const int64_t start = params->ith * per_thread;
  6885. const int64_t end = std::min(start + per_thread, total);
  6886. for (int64_t i = start; i < end; ++i) {
  6887. const int64_t i1 = i % ne1;
  6888. const int64_t i2 = (i / ne1) % ne2;
  6889. const int64_t i3 = i / (ne2 * ne1);
  6890. float * dst_row = dst_data + (i3*nb3 + i2*nb2 + i1*nb1) / sizeof(float);
  6891. const int64_t i01 = ggml_wrap_index(i1 - s1, ne01);
  6892. const int64_t i02 = ggml_wrap_index(i2 - s2, ne02);
  6893. const int64_t i03 = ggml_wrap_index(i3 - s3, ne03);
  6894. const float * src_row = src_data + (i03*nb03 + i02*nb02 + i01*nb01) / sizeof(float);
  6895. const int64_t s = ggml_wrap_index(-s0, ne00);
  6896. const int64_t n = ne00 - s;
  6897. ggml_vec_cpy_f32(n, dst_row, src_row + s);
  6898. ggml_vec_cpy_f32(s, dst_row + n, src_row);
  6899. }
  6900. }
  6901. void ggml_compute_forward_roll(
  6902. const ggml_compute_params * params,
  6903. ggml_tensor * dst) {
  6904. const ggml_tensor * src0 = dst->src[0];
  6905. switch (src0->type) {
  6906. case GGML_TYPE_F32:
  6907. {
  6908. ggml_compute_forward_roll_f32(params, dst);
  6909. } break;
  6910. default:
  6911. {
  6912. GGML_ABORT("fatal error");
  6913. }
  6914. }
  6915. }
  6916. // ggml_compute_forward_arange
  6917. static void ggml_compute_forward_arange_f32(
  6918. const ggml_compute_params * params,
  6919. ggml_tensor * dst) {
  6920. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6921. const int ith = params->ith;
  6922. const int nth = params->nth;
  6923. const float start = ggml_get_op_params_f32(dst, 0);
  6924. const float stop = ggml_get_op_params_f32(dst, 1);
  6925. const float step = ggml_get_op_params_f32(dst, 2);
  6926. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  6927. GGML_ASSERT(ggml_nelements(dst) == steps);
  6928. for (int64_t i = ith; i < steps; i+= nth) {
  6929. float value = start + step * i;
  6930. ((float *)dst->data)[i] = value;
  6931. }
  6932. }
  6933. void ggml_compute_forward_arange(
  6934. const ggml_compute_params * params,
  6935. ggml_tensor * dst) {
  6936. switch (dst->type) {
  6937. case GGML_TYPE_F32:
  6938. {
  6939. ggml_compute_forward_arange_f32(params, dst);
  6940. } break;
  6941. default:
  6942. {
  6943. GGML_ABORT("fatal error");
  6944. }
  6945. }
  6946. }
  6947. static void ggml_compute_forward_timestep_embedding_f32(
  6948. const ggml_compute_params * params,
  6949. ggml_tensor * dst) {
  6950. const ggml_tensor * src0 = dst->src[0];
  6951. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6952. const int ith = params->ith;
  6953. const int nth = params->nth;
  6954. GGML_TENSOR_UNARY_OP_LOCALS
  6955. const int dim = ggml_get_op_params_i32(dst, 0);
  6956. const int max_period = ggml_get_op_params_i32(dst, 1);
  6957. int half = dim / 2;
  6958. for (int64_t i = 0; i < ne00; i++) {
  6959. float * embed_data = (float *)((char *) dst->data + i*nb1);
  6960. for (int64_t j = ith; j < half; j += nth) {
  6961. float timestep = ((float *)src0->data)[i];
  6962. float freq = (float)expf(-logf(max_period) * j / half);
  6963. float arg = timestep * freq;
  6964. embed_data[j] = cosf(arg);
  6965. embed_data[j + half] = sinf(arg);
  6966. }
  6967. if (dim % 2 != 0 && ith == 0) {
  6968. embed_data[2 * half] = 0.f;
  6969. }
  6970. }
  6971. }
  6972. void ggml_compute_forward_timestep_embedding(
  6973. const ggml_compute_params * params,
  6974. ggml_tensor * dst) {
  6975. const ggml_tensor * src0 = dst->src[0];
  6976. switch (src0->type) {
  6977. case GGML_TYPE_F32:
  6978. {
  6979. ggml_compute_forward_timestep_embedding_f32(params, dst);
  6980. } break;
  6981. default:
  6982. {
  6983. GGML_ABORT("fatal error");
  6984. }
  6985. }
  6986. }
  6987. // ggml_compute_forward_argsort
  6988. static void ggml_compute_forward_argsort_f32(
  6989. const ggml_compute_params * params,
  6990. ggml_tensor * dst) {
  6991. const ggml_tensor * src0 = dst->src[0];
  6992. GGML_TENSOR_UNARY_OP_LOCALS
  6993. GGML_ASSERT(nb0 == sizeof(float));
  6994. const int ith = params->ith;
  6995. const int nth = params->nth;
  6996. const int64_t nr = ggml_nrows(src0);
  6997. ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  6998. for (int64_t i = ith; i < nr; i += nth) {
  6999. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  7000. const float * src_data = (float *)((char *) src0->data + i*nb01);
  7001. for (int64_t j = 0; j < ne0; j++) {
  7002. dst_data[j] = j;
  7003. }
  7004. // C doesn't have a functional sort, so we do a bubble sort instead
  7005. for (int64_t j = 0; j < ne0; j++) {
  7006. for (int64_t k = j + 1; k < ne0; k++) {
  7007. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  7008. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  7009. int32_t tmp = dst_data[j];
  7010. dst_data[j] = dst_data[k];
  7011. dst_data[k] = tmp;
  7012. }
  7013. }
  7014. }
  7015. }
  7016. }
  7017. void ggml_compute_forward_argsort(
  7018. const ggml_compute_params * params,
  7019. ggml_tensor * dst) {
  7020. const ggml_tensor * src0 = dst->src[0];
  7021. switch (src0->type) {
  7022. case GGML_TYPE_F32:
  7023. {
  7024. ggml_compute_forward_argsort_f32(params, dst);
  7025. } break;
  7026. default:
  7027. {
  7028. GGML_ABORT("fatal error");
  7029. }
  7030. }
  7031. }
  7032. // ggml_compute_forward_flash_attn_ext
  7033. static void ggml_compute_forward_flash_attn_ext_f16(
  7034. const ggml_compute_params * params,
  7035. ggml_tensor * dst) {
  7036. const ggml_tensor * q = dst->src[0];
  7037. const ggml_tensor * k = dst->src[1];
  7038. const ggml_tensor * v = dst->src[2];
  7039. const ggml_tensor * mask = dst->src[3];
  7040. const ggml_tensor * sinks = dst->src[4];
  7041. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  7042. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  7043. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  7044. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  7045. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  7046. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  7047. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  7048. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  7049. const int ith = params->ith;
  7050. const int nth = params->nth;
  7051. const int64_t DK = nek0;
  7052. const int64_t DV = nev0;
  7053. const int64_t N = neq1;
  7054. GGML_ASSERT(ne0 == DV);
  7055. GGML_ASSERT(ne2 == N);
  7056. // input tensor rows must be contiguous
  7057. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  7058. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  7059. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  7060. GGML_ASSERT(neq0 == DK);
  7061. GGML_ASSERT(nek0 == DK);
  7062. GGML_ASSERT(nev0 == DV);
  7063. GGML_ASSERT(neq1 == N);
  7064. // dst cannot be transposed or permuted
  7065. GGML_ASSERT(nb0 == sizeof(float));
  7066. GGML_ASSERT(nb0 <= nb1);
  7067. GGML_ASSERT(nb1 <= nb2);
  7068. GGML_ASSERT(nb2 <= nb3);
  7069. // broadcast factors
  7070. const int64_t rk2 = neq2/nek2;
  7071. const int64_t rk3 = neq3/nek3;
  7072. const int64_t rv2 = neq2/nev2;
  7073. const int64_t rv3 = neq3/nev3;
  7074. // parallelize by q rows using ggml_vec_dot_f32
  7075. // total rows in q
  7076. const int nr = neq1*neq2*neq3;
  7077. // rows per thread
  7078. const int dr = (nr + nth - 1)/nth;
  7079. // row range for this thread
  7080. const int ir0 = dr*ith;
  7081. const int ir1 = MIN(ir0 + dr, nr);
  7082. float scale = 1.0f;
  7083. float max_bias = 0.0f;
  7084. float logit_softcap = 0.0f;
  7085. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  7086. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  7087. memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
  7088. if (logit_softcap != 0) {
  7089. scale /= logit_softcap;
  7090. }
  7091. const uint32_t n_head = neq2;
  7092. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  7093. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  7094. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  7095. ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
  7096. ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float;
  7097. ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
  7098. ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
  7099. GGML_ASSERT(( q_to_vec_dot) && "fattn: unsupported K-type");
  7100. GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float ) && "fattn: unsupported V-type");
  7101. // loop over n_batch and n_head
  7102. for (int ir = ir0; ir < ir1; ++ir) {
  7103. // q indices
  7104. const int iq3 = ir/(neq2*neq1);
  7105. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7106. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7107. const uint32_t h = iq2; // head index
  7108. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  7109. float S = 0.0f; // sum
  7110. float M = -INFINITY; // maximum KQ value
  7111. float * VKQ32 = (float *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  7112. float * V32 = (VKQ32 + 1*DV); // (temporary) FP32 V buffer
  7113. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator
  7114. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16
  7115. if (v->type == GGML_TYPE_F16) {
  7116. memset(VKQ16, 0, DV*sizeof(ggml_fp16_t));
  7117. } else {
  7118. memset(VKQ32, 0, DV*sizeof(float));
  7119. }
  7120. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1] + (iq2%mask->ne[2])*mask->nb[2] + (iq3%mask->ne[3])*mask->nb[3]) : NULL;
  7121. // k indices
  7122. const int ik3 = iq3 / rk3;
  7123. const int ik2 = iq2 / rk2;
  7124. // v indices
  7125. const int iv3 = iq3 / rv3;
  7126. const int iv2 = iq2 / rv2;
  7127. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  7128. q_to_vec_dot(pq, Q_q, DK);
  7129. // online softmax / attention
  7130. // loop over n_kv and n_head_kv
  7131. // ref: https://arxiv.org/pdf/2112.05682.pdf
  7132. for (int64_t ic = 0; ic < nek1; ++ic) {
  7133. const float mv = mp ? slope*GGML_CPU_FP16_TO_FP32(mp[ic]) : 0.0f;
  7134. if (mv == -INFINITY) {
  7135. continue;
  7136. }
  7137. float s; // KQ value
  7138. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  7139. kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1);
  7140. s = s*scale; // scale KQ value
  7141. if (logit_softcap != 0.0f) {
  7142. s = logit_softcap*tanhf(s);
  7143. }
  7144. s += mv; // apply mask
  7145. const float Mold = M;
  7146. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  7147. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  7148. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  7149. if (v->type == GGML_TYPE_F16) {
  7150. if (s > M) {
  7151. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  7152. M = s;
  7153. ms = expf(Mold - M);
  7154. // V = V*expf(Mold - M)
  7155. ggml_vec_scale_f16(DV, VKQ16, ms);
  7156. } else {
  7157. // no new maximum, ms == 1.0f, vs != 1.0f
  7158. vs = expf(s - M);
  7159. }
  7160. // V += v*expf(s - M)
  7161. ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs);
  7162. } else {
  7163. if (s > M) {
  7164. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  7165. M = s;
  7166. ms = expf(Mold - M);
  7167. // V = V*expf(Mold - M)
  7168. ggml_vec_scale_f32(DV, VKQ32, ms);
  7169. } else {
  7170. // no new maximum, ms == 1.0f, vs != 1.0f
  7171. vs = expf(s - M);
  7172. }
  7173. // V += v*expf(s - M)
  7174. if (v_to_float) {
  7175. v_to_float(v_data, V32, DV);
  7176. ggml_vec_mad_f32(DV, VKQ32, V32, vs);
  7177. } else {
  7178. // V is F32
  7179. ggml_vec_mad_f32(DV, VKQ32, (const float *) v_data, vs);
  7180. }
  7181. }
  7182. S = S*ms + vs; // scale and increment sum with partial sum
  7183. }
  7184. if (v->type == GGML_TYPE_F16) {
  7185. for (int64_t d = 0; d < DV; ++d) {
  7186. VKQ32[d] = GGML_CPU_FP16_TO_FP32(VKQ16[d]);
  7187. }
  7188. }
  7189. // sinks
  7190. if (sinks) {
  7191. const float s = ((float *)((char *) sinks->data))[h];
  7192. float ms = 1.0f;
  7193. float vs = 1.0f;
  7194. if (s > M) {
  7195. ms = expf(M - s);
  7196. ggml_vec_scale_f32(DV, VKQ32, ms);
  7197. } else {
  7198. vs = expf(s - M);
  7199. }
  7200. S = S*ms + vs;
  7201. }
  7202. // V /= S
  7203. const float S_inv = 1.0f/S;
  7204. ggml_vec_scale_f32(DV, VKQ32, S_inv);
  7205. // dst indices
  7206. const int i1 = iq1;
  7207. const int i2 = iq2;
  7208. const int i3 = iq3;
  7209. // original
  7210. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  7211. // permute(0, 2, 1, 3)
  7212. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  7213. }
  7214. }
  7215. void ggml_compute_forward_flash_attn_ext(
  7216. const ggml_compute_params * params,
  7217. ggml_tensor * dst) {
  7218. switch (dst->op_params[3]) {
  7219. case GGML_PREC_DEFAULT:
  7220. case GGML_PREC_F32:
  7221. {
  7222. // uses F32 accumulators
  7223. ggml_compute_forward_flash_attn_ext_f16(params, dst);
  7224. } break;
  7225. default:
  7226. {
  7227. GGML_ABORT("fatal error");
  7228. }
  7229. }
  7230. }
  7231. // ggml_compute_forward_flash_attn_back
  7232. static void ggml_compute_forward_flash_attn_back_f32(
  7233. const ggml_compute_params * params,
  7234. const bool masked,
  7235. ggml_tensor * dst) {
  7236. const ggml_tensor * q = dst->src[0];
  7237. const ggml_tensor * k = dst->src[1];
  7238. const ggml_tensor * v = dst->src[2];
  7239. const ggml_tensor * d = dst->src[3];
  7240. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  7241. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  7242. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  7243. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  7244. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  7245. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  7246. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  7247. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  7248. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  7249. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  7250. const int ith = params->ith;
  7251. const int nth = params->nth;
  7252. const int64_t D = neq0;
  7253. const int64_t N = neq1;
  7254. const int64_t P = nek1 - N;
  7255. const int64_t M = P + N;
  7256. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7257. const int mxDM = MAX(D, Mup);
  7258. // GGML_ASSERT(ne0 == D);
  7259. // GGML_ASSERT(ne1 == N);
  7260. GGML_ASSERT(P >= 0);
  7261. GGML_ASSERT(nbq0 == sizeof(float));
  7262. GGML_ASSERT(nbk0 == sizeof(float));
  7263. GGML_ASSERT(nbv0 == sizeof(float));
  7264. GGML_ASSERT(neq0 == D);
  7265. GGML_ASSERT(nek0 == D);
  7266. GGML_ASSERT(nev1 == D);
  7267. GGML_ASSERT(ned0 == D);
  7268. GGML_ASSERT(neq1 == N);
  7269. GGML_ASSERT(nek1 == N + P);
  7270. GGML_ASSERT(nev1 == D);
  7271. GGML_ASSERT(ned1 == N);
  7272. // dst cannot be transposed or permuted
  7273. GGML_ASSERT(nb0 == sizeof(float));
  7274. GGML_ASSERT(nb0 <= nb1);
  7275. GGML_ASSERT(nb1 <= nb2);
  7276. GGML_ASSERT(nb2 <= nb3);
  7277. if (ith == 0) {
  7278. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  7279. }
  7280. ggml_barrier(params->threadpool);
  7281. const int64_t elem_q = ggml_nelements(q);
  7282. const int64_t elem_k = ggml_nelements(k);
  7283. ggml_type result_type = dst->type;
  7284. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  7285. const size_t tsize = ggml_type_size(result_type);
  7286. const size_t offs_q = 0;
  7287. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  7288. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  7289. void * grad_q = (char *) dst->data;
  7290. void * grad_k = (char *) dst->data + offs_k;
  7291. void * grad_v = (char *) dst->data + offs_v;
  7292. const size_t nbgq1 = nb0*neq0;
  7293. const size_t nbgq2 = nb0*neq0*neq1;
  7294. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  7295. const size_t nbgk1 = nb0*nek0;
  7296. const size_t nbgk2 = nb0*nek0*nek1;
  7297. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  7298. const size_t nbgv1 = nb0*nev0;
  7299. const size_t nbgv2 = nb0*nev0*nev1;
  7300. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  7301. // parallelize by k rows using ggml_vec_dot_f32
  7302. // total rows in k
  7303. const int nr = nek2*nek3;
  7304. // rows per thread
  7305. const int dr = (nr + nth - 1)/nth;
  7306. // row range for this thread
  7307. const int ir0 = dr*ith;
  7308. const int ir1 = MIN(ir0 + dr, nr);
  7309. const float scale = 1.0f/sqrtf(D);
  7310. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7311. // how often k2 (and v2) is repeated in q2
  7312. int nrep = neq2/nek2;
  7313. for (int ir = ir0; ir < ir1; ++ir) {
  7314. // q indices
  7315. const int ik3 = ir/(nek2);
  7316. const int ik2 = ir - ik3*nek2;
  7317. const int iq3 = ik3;
  7318. const int id3 = ik3;
  7319. const int iv3 = ik3;
  7320. const int iv2 = ik2;
  7321. for (int irep = 0; irep < nrep; ++irep) {
  7322. const int iq2 = ik2 + irep*nek2;
  7323. const int id2 = iq2;
  7324. // (ik2 + irep*nek2) % nek2 == ik2
  7325. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  7326. const int id1 = iq1;
  7327. // not sure about CACHE_LINE_SIZE_F32..
  7328. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  7329. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  7330. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  7331. for (int i = M; i < Mup; ++i) {
  7332. S[i] = -INFINITY;
  7333. }
  7334. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  7335. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  7336. // k indices
  7337. const int ik1 = ic;
  7338. // S indices
  7339. const int i1 = ik1;
  7340. ggml_vec_dot_f32(neq0,
  7341. S + i1, 0,
  7342. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  7343. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  7344. }
  7345. // scale
  7346. ggml_vec_scale_f32(masked_begin, S, scale);
  7347. for (int64_t i = masked_begin; i < M; i++) {
  7348. S[i] = -INFINITY;
  7349. }
  7350. // softmax
  7351. // exclude known -INF S[..] values from max and loop
  7352. // dont forget to set their SM values to zero
  7353. {
  7354. float max = -INFINITY;
  7355. ggml_vec_max_f32(masked_begin, &max, S);
  7356. ggml_float sum = 0.0;
  7357. {
  7358. #ifdef GGML_SOFT_MAX_ACCELERATE
  7359. max = -max;
  7360. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  7361. vvexpf(SM, SM, &Mup);
  7362. ggml_vec_sum_f32(Mup, &sum, SM);
  7363. #else
  7364. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  7365. #endif
  7366. }
  7367. assert(sum > 0.0);
  7368. sum = 1.0/sum;
  7369. ggml_vec_scale_f32(masked_begin, SM, sum);
  7370. }
  7371. // step-by-step explanation
  7372. {
  7373. // forward-process shape grads from backward process
  7374. // parallel_for ik2,ik3:
  7375. // for irep:
  7376. // iq2 = ik2 + irep*nek2
  7377. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  7378. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  7379. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  7380. // for iq1:
  7381. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  7382. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  7383. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  7384. // S0 = -Inf [D,1,1,1]
  7385. // ~S1[i] = dot(kcur[:D,i], qcur)
  7386. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  7387. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  7388. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  7389. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  7390. // ~S5[i] = dot(vcur[:,i], S4)
  7391. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  7392. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  7393. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  7394. // dst backward-/ grad[dst] = d
  7395. //
  7396. // output gradients with their dependencies:
  7397. //
  7398. // grad[kcur] = grad[S1].T @ qcur
  7399. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  7400. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  7401. // grad[S4] = grad[S5] @ vcur
  7402. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  7403. // grad[qcur] = grad[S1] @ kcur
  7404. // grad[vcur] = grad[S5].T @ S4
  7405. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  7406. //
  7407. // in post-order:
  7408. //
  7409. // S1 = qcur @ kcur.T
  7410. // S2 = S1 * scale
  7411. // S3 = diag_mask_inf(S2, P)
  7412. // S4 = softmax(S3)
  7413. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  7414. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  7415. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  7416. // grad[qcur] = grad[S1] @ kcur
  7417. // grad[kcur] = grad[S1].T @ qcur
  7418. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  7419. //
  7420. // using less variables (SM=S4):
  7421. //
  7422. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  7423. // SM = softmax(S)
  7424. // S = d[:D,iq1,iq2,iq3] @ vcur
  7425. // dot_SM_gradSM = dot(SM, S)
  7426. // S = SM * (S - dot(SM, S))
  7427. // S = diag_mask_zero(S, P) * scale
  7428. //
  7429. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  7430. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  7431. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  7432. }
  7433. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  7434. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  7435. // for ic:
  7436. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  7437. // exclude known future zero S[..] values from operation
  7438. ggml_vec_set_f32(masked_begin, S, 0);
  7439. for (int64_t ic = 0; ic < D; ++ic) {
  7440. ggml_vec_mad_f32(masked_begin,
  7441. S,
  7442. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  7443. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  7444. }
  7445. // S = SM * (S - dot(SM, S))
  7446. float dot_SM_gradSM = 0;
  7447. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  7448. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  7449. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  7450. // S = diag_mask_zero(S, P) * scale
  7451. // already done by above ggml_vec_set_f32
  7452. // exclude known zero S[..] values from operation
  7453. ggml_vec_scale_f32(masked_begin, S, scale);
  7454. // S shape [M,1]
  7455. // SM shape [M,1]
  7456. // kcur shape [D,M]
  7457. // qcur shape [D,1]
  7458. // vcur shape [M,D]
  7459. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  7460. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  7461. // for ic:
  7462. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  7463. // exclude known zero S[..] values from loop
  7464. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  7465. ggml_vec_mad_f32(D,
  7466. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  7467. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7468. S[ic]);
  7469. }
  7470. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  7471. // for ic:
  7472. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  7473. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  7474. // exclude known zero S[..] values from loop
  7475. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  7476. ggml_vec_mad_f32(D,
  7477. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  7478. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  7479. S[ic]);
  7480. }
  7481. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  7482. // for ic:
  7483. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  7484. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  7485. // exclude known zero SM[..] values from mad
  7486. for (int64_t ic = 0; ic < D; ++ic) {
  7487. ggml_vec_mad_f32(masked_begin,
  7488. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  7489. SM,
  7490. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  7491. }
  7492. }
  7493. }
  7494. }
  7495. }
  7496. void ggml_compute_forward_flash_attn_back(
  7497. const ggml_compute_params * params,
  7498. const bool masked,
  7499. ggml_tensor * dst) {
  7500. const ggml_tensor * q = dst->src[0];
  7501. switch (q->type) {
  7502. case GGML_TYPE_F32:
  7503. {
  7504. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  7505. } break;
  7506. default:
  7507. {
  7508. GGML_ABORT("fatal error");
  7509. }
  7510. }
  7511. }
  7512. // ggml_compute_forward_ssm_conv
  7513. static void ggml_compute_forward_ssm_conv_f32(
  7514. const ggml_compute_params * params,
  7515. ggml_tensor * dst) {
  7516. const ggml_tensor * src0 = dst->src[0]; // conv_x
  7517. const ggml_tensor * src1 = dst->src[1]; // conv1d.weight
  7518. const int ith = params->ith;
  7519. const int nth = params->nth;
  7520. const int nc = src1->ne[0]; // d_conv
  7521. const int ncs = src0->ne[0]; // d_conv - 1 + n_t
  7522. const int nr = src0->ne[1]; // d_inner
  7523. const int n_t = dst->ne[1]; // tokens per sequence
  7524. const int n_s = dst->ne[2]; // number of sequences in the batch
  7525. GGML_ASSERT( dst->ne[0] == nr);
  7526. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7527. GGML_ASSERT(src1->nb[0] == sizeof(float));
  7528. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  7529. // rows per thread
  7530. const int dr = (nr + nth - 1)/nth;
  7531. // row range for this thread
  7532. const int ir0 = dr*ith;
  7533. const int ir1 = MIN(ir0 + dr, nr);
  7534. const int ir = ir1 - ir0;
  7535. for (int i3 = 0; i3 < n_s; ++i3) {
  7536. for (int i2 = 0; i2 < n_t; ++i2) {
  7537. // {d_conv - 1 + n_t, d_inner, n_seqs}
  7538. // sliding window
  7539. const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
  7540. const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
  7541. float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
  7542. // TODO: transpose the output for smaller strides for big batches?
  7543. // d_inner
  7544. for (int i1 = 0; i1 < ir; ++i1) {
  7545. // rowwise dot product
  7546. // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
  7547. float sumf = 0.0f;
  7548. // d_conv
  7549. for (int i0 = 0; i0 < nc; ++i0) {
  7550. sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
  7551. }
  7552. x[i1] = sumf;
  7553. }
  7554. }
  7555. }
  7556. }
  7557. void ggml_compute_forward_ssm_conv(
  7558. const ggml_compute_params * params,
  7559. ggml_tensor * dst) {
  7560. switch (dst->src[0]->type) {
  7561. case GGML_TYPE_F32:
  7562. {
  7563. ggml_compute_forward_ssm_conv_f32(params, dst);
  7564. } break;
  7565. default:
  7566. {
  7567. GGML_ABORT("fatal error");
  7568. }
  7569. }
  7570. }
  7571. // ggml_compute_forward_ssm_scan
  7572. static void ggml_compute_forward_ssm_scan_f32(
  7573. const ggml_compute_params * params,
  7574. ggml_tensor * dst) {
  7575. const ggml_tensor * src0 = dst->src[0]; // s {d_state, dim, n_head, n_seqs+}
  7576. const ggml_tensor * src1 = dst->src[1]; // x {dim, n_head, n_seq_tokens, n_seqs}
  7577. const ggml_tensor * src2 = dst->src[2]; // dt {n_head, n_seq_tokens, n_seqs}
  7578. const ggml_tensor * src3 = dst->src[3]; // A {d_state, n_head} or {1, n_head}
  7579. const ggml_tensor * src4 = dst->src[4]; // B {d_state, n_group, n_seq_tokens, n_seqs}
  7580. const ggml_tensor * src5 = dst->src[5]; // C {d_state, n_group, n_seq_tokens, n_seqs}
  7581. const ggml_tensor * src6 = dst->src[6]; // ids {n_seqs}
  7582. const int ith = params->ith;
  7583. const int nth = params->nth;
  7584. const int64_t nc = src0->ne[0]; // d_state
  7585. const int64_t nr = src0->ne[1]; // dim
  7586. const int64_t nh = src1->ne[1]; // n_head
  7587. const int64_t ng = src4->ne[1];
  7588. const int64_t nt = src1->ne[2]; // number of tokens per sequence
  7589. const int64_t ns = src1->ne[3]; // number of sequences in the batch
  7590. // can't use ggml_nbytes because src1 is not necessarily contiguous
  7591. const int64_t s_off = ggml_nelements(src1) * ggml_element_size(src1);
  7592. GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*ns == ggml_nelements(dst));
  7593. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7594. GGML_ASSERT(src1->nb[0] == sizeof(float));
  7595. GGML_ASSERT(src2->nb[0] == sizeof(float));
  7596. GGML_ASSERT(src3->nb[0] == sizeof(float));
  7597. GGML_ASSERT(src4->nb[0] == sizeof(float));
  7598. GGML_ASSERT(src5->nb[0] == sizeof(float));
  7599. GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
  7600. GGML_ASSERT(nh % ng == 0);
  7601. // heads per thread
  7602. const int dh = (nh + nth - 1)/nth;
  7603. // head range for this thread
  7604. const int ih0 = dh*ith;
  7605. const int ih1 = MIN(ih0 + dh, nh);
  7606. const int32_t * ids = (const int32_t *) src6->data;
  7607. for (int i3 = 0; i3 < ns; ++i3) {
  7608. const float * s0 = (const float *) ((const char *) src0->data + ids[i3]*(src0->nb[3])); // {d_state, dim, nh, ns}
  7609. float * s = ( float *) (( char *) dst->data + i3*(src0->nb[3]) + s_off); // {d_state, dim, nh, ns}
  7610. for (int i2 = 0; i2 < nt; ++i2) {
  7611. const float * x = (const float *) ((const char *) src1->data + i2*(src1->nb[2]) + i3*(src1->nb[3])); // {dim, nh, nt, ns}
  7612. const float * dt = (const float *) ((const char *) src2->data + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {nh, nt, ns}
  7613. const float * A = (const float *) ((const char *) src3->data); // {d_state, nh} or {1, nh}
  7614. const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[2]) + i3*(src4->nb[3])); // {d_state, ng, nt, ns}
  7615. const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[2]) + i3*(src5->nb[3])); // {d_state, ng, nt, ns}
  7616. float * y = ( float *) (( char *) dst->data + i2*(nh*nr*sizeof(float)) + i3*(nt*nh*nr*sizeof(float))); // {dim, nh, nt, ns}
  7617. if (src3->ne[0] == 1) {
  7618. // Mamba-2 has a scalar decay factor per head; dA can be outside the state-wise loop
  7619. // n_head
  7620. for (int h = ih0; h < ih1; ++h) {
  7621. // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
  7622. const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
  7623. const float dA = expf(dt_soft_plus * A[h]);
  7624. const int g = h / (nh / ng); // repeat_interleave
  7625. // dim
  7626. for (int i1 = 0; i1 < nr; ++i1) {
  7627. const int ii = i1 + h*nr;
  7628. const float x_dt = x[ii] * dt_soft_plus;
  7629. float sumf = 0.0f;
  7630. #if defined(GGML_SIMD)
  7631. #if defined(__ARM_FEATURE_SVE)
  7632. const int ggml_f32_epr = svcntw();
  7633. const int ggml_f32_step = 1 * ggml_f32_epr;
  7634. const int np = (nc & ~(ggml_f32_step - 1));
  7635. GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
  7636. GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
  7637. GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
  7638. for (int i = 0; i < np; i += ggml_f32_step) {
  7639. // TODO: maybe unroll more?
  7640. for (int j = 0; j < 1; j++) {
  7641. GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
  7642. GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + g*nc);
  7643. GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + g*nc);
  7644. t0 = GGML_F32_VEC_MUL(t0, adA);
  7645. t1 = GGML_F32_VEC_MUL(t1, axdt);
  7646. t0 = GGML_F32_VEC_ADD(t0, t1);
  7647. sum = GGML_F32_VEC_FMA(sum, t0, t2);
  7648. GGML_F32_VEC_STORE(s + i + j*ggml_f32_epr + ii*nc, t0);
  7649. }
  7650. }
  7651. sumf = GGML_F32xt_REDUCE_ONE(sum);
  7652. #elif defined(__riscv_v_intrinsic)
  7653. // todo: RVV implementation
  7654. const int np = 0;
  7655. #else
  7656. const int np = (nc & ~(GGML_F32_STEP - 1));
  7657. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  7658. GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
  7659. GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
  7660. GGML_F32_VEC ax[GGML_F32_ARR];
  7661. GGML_F32_VEC ay[GGML_F32_ARR];
  7662. GGML_F32_VEC az[GGML_F32_ARR];
  7663. for (int i = 0; i < np; i += GGML_F32_STEP) {
  7664. for (int j = 0; j < GGML_F32_ARR; j++) {
  7665. ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
  7666. ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + g*nc);
  7667. az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + g*nc);
  7668. ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
  7669. ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
  7670. ax[j] = GGML_F32_VEC_ADD(ax[j], ay[j]);
  7671. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], az[j]);
  7672. GGML_F32_VEC_STORE(s + i + j*GGML_F32_EPR + ii*nc, ax[j]);
  7673. }
  7674. }
  7675. // reduce sum0..sum3 to sum0
  7676. GGML_F32_VEC_REDUCE(sumf, sum);
  7677. #endif
  7678. #else
  7679. const int np = 0;
  7680. #endif
  7681. // d_state
  7682. for (int i0 = np; i0 < nc; ++i0) {
  7683. const int i = i0 + ii*nc;
  7684. const int ig = i0 + g*nc;
  7685. // state = prev_state * dA + dB * x
  7686. const float state = (s0[i] * dA) + (B[ig] * x_dt);
  7687. // y = rowwise_dotprod(state, C)
  7688. sumf += state * C[ig];
  7689. s[i] = state;
  7690. }
  7691. y[ii] = sumf;
  7692. }
  7693. }
  7694. } else {
  7695. // Mamba-1 has an element-wise decay factor for the states
  7696. // n_head
  7697. for (int h = ih0; h < ih1; ++h) {
  7698. // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
  7699. const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
  7700. const int g = h / (nh / ng); // repeat_interleave
  7701. // dim
  7702. for (int i1 = 0; i1 < nr; ++i1) {
  7703. const int ii = i1 + h*nr;
  7704. const float x_dt = x[ii] * dt_soft_plus;
  7705. #if defined(__ARM_FEATURE_SVE)
  7706. svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
  7707. svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
  7708. svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
  7709. // d_state
  7710. // TODO: what happens when (d_state % svcntw()) != 0?
  7711. for (int64_t k = 0; k < nc; k += svcntw()) {
  7712. svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
  7713. svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + g*nc]);
  7714. svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + g*nc]);
  7715. svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
  7716. svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
  7717. t1 = exp_ps_sve(svptrue_b32(), t1);
  7718. svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
  7719. vs0 = GGML_F32_VEC_FMA(t2, vs0, t1);
  7720. r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
  7721. GGML_F32_VEC_STORE(&s[ii*nc + k], vs0);
  7722. }
  7723. y[ii] = GGML_F32xt_REDUCE_ONE(r1_vector);
  7724. #else
  7725. float sumf = 0.0f;
  7726. // NOTE: can't really use GGML_SIMD here because d_state is usually 16
  7727. // and also because expf is used within the loop.
  7728. // d_state
  7729. for (int i0 = 0; i0 < nc; ++i0) {
  7730. const int i = i0 + ii*nc;
  7731. const int ig = i0 + g*nc;
  7732. // state = prev_state * dA + dB * x
  7733. const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
  7734. // y = rowwise_dotprod(state, C)
  7735. sumf += state * C[ig];
  7736. s[i] = state;
  7737. }
  7738. y[ii] = sumf;
  7739. #endif
  7740. }
  7741. }
  7742. }
  7743. // use the output as the source when it's not the first token-wise iteration
  7744. s0 = s;
  7745. }
  7746. }
  7747. }
  7748. void ggml_compute_forward_ssm_scan(
  7749. const ggml_compute_params * params,
  7750. ggml_tensor * dst) {
  7751. switch (dst->src[0]->type) {
  7752. case GGML_TYPE_F32:
  7753. {
  7754. ggml_compute_forward_ssm_scan_f32(params, dst);
  7755. } break;
  7756. default:
  7757. {
  7758. GGML_ABORT("fatal error");
  7759. }
  7760. }
  7761. }
  7762. // ggml_compute_forward_win_part
  7763. static void ggml_compute_forward_win_part_f32(
  7764. const ggml_compute_params * params,
  7765. ggml_tensor * dst) {
  7766. GGML_UNUSED(params);
  7767. const ggml_tensor * src0 = dst->src[0];
  7768. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7769. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  7770. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  7771. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  7772. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  7773. assert(ne00 == ne0);
  7774. assert(ne3 == nep0*nep1);
  7775. // TODO: optimize / multi-thread
  7776. for (int py = 0; py < nep1; ++py) {
  7777. for (int px = 0; px < nep0; ++px) {
  7778. const int64_t i3 = py*nep0 + px;
  7779. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  7780. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  7781. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7782. const int64_t i02 = py*w + i2;
  7783. const int64_t i01 = px*w + i1;
  7784. const int64_t i00 = i0;
  7785. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  7786. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  7787. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  7788. ((float *) dst->data)[i] = 0.0f;
  7789. } else {
  7790. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  7791. }
  7792. }
  7793. }
  7794. }
  7795. }
  7796. }
  7797. }
  7798. void ggml_compute_forward_win_part(
  7799. const ggml_compute_params * params,
  7800. ggml_tensor * dst) {
  7801. const ggml_tensor * src0 = dst->src[0];
  7802. switch (src0->type) {
  7803. case GGML_TYPE_F32:
  7804. {
  7805. ggml_compute_forward_win_part_f32(params, dst);
  7806. } break;
  7807. default:
  7808. {
  7809. GGML_ABORT("fatal error");
  7810. }
  7811. }
  7812. }
  7813. // ggml_compute_forward_win_unpart
  7814. static void ggml_compute_forward_win_unpart_f32(
  7815. const ggml_compute_params * params,
  7816. ggml_tensor * dst) {
  7817. GGML_UNUSED(params);
  7818. const ggml_tensor * src0 = dst->src[0];
  7819. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7820. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  7821. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  7822. // padding
  7823. const int px = (w - ne1%w)%w;
  7824. //const int py = (w - ne2%w)%w;
  7825. const int npx = (px + ne1)/w;
  7826. //const int npy = (py + ne2)/w;
  7827. assert(ne0 == ne00);
  7828. // TODO: optimize / multi-thread
  7829. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  7830. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  7831. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7832. const int ip2 = i2/w;
  7833. const int ip1 = i1/w;
  7834. const int64_t i02 = i2%w;
  7835. const int64_t i01 = i1%w;
  7836. const int64_t i00 = i0;
  7837. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  7838. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  7839. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  7840. }
  7841. }
  7842. }
  7843. }
  7844. void ggml_compute_forward_win_unpart(
  7845. const ggml_compute_params * params,
  7846. ggml_tensor * dst) {
  7847. const ggml_tensor * src0 = dst->src[0];
  7848. switch (src0->type) {
  7849. case GGML_TYPE_F32:
  7850. {
  7851. ggml_compute_forward_win_unpart_f32(params, dst);
  7852. } break;
  7853. default:
  7854. {
  7855. GGML_ABORT("fatal error");
  7856. }
  7857. }
  7858. }
  7859. //gmml_compute_forward_unary
  7860. void ggml_compute_forward_unary(
  7861. const ggml_compute_params * params,
  7862. ggml_tensor * dst) {
  7863. const ggml_unary_op op = ggml_get_unary_op(dst);
  7864. switch (op) {
  7865. case GGML_UNARY_OP_ABS:
  7866. {
  7867. ggml_compute_forward_abs(params, dst);
  7868. } break;
  7869. case GGML_UNARY_OP_SGN:
  7870. {
  7871. ggml_compute_forward_sgn(params, dst);
  7872. } break;
  7873. case GGML_UNARY_OP_NEG:
  7874. {
  7875. ggml_compute_forward_neg(params, dst);
  7876. } break;
  7877. case GGML_UNARY_OP_STEP:
  7878. {
  7879. ggml_compute_forward_step(params, dst);
  7880. } break;
  7881. case GGML_UNARY_OP_TANH:
  7882. {
  7883. ggml_compute_forward_tanh(params, dst);
  7884. } break;
  7885. case GGML_UNARY_OP_ELU:
  7886. {
  7887. ggml_compute_forward_elu(params, dst);
  7888. } break;
  7889. case GGML_UNARY_OP_RELU:
  7890. {
  7891. ggml_compute_forward_relu(params, dst);
  7892. } break;
  7893. case GGML_UNARY_OP_SIGMOID:
  7894. {
  7895. ggml_compute_forward_sigmoid(params, dst);
  7896. } break;
  7897. case GGML_UNARY_OP_GELU:
  7898. {
  7899. ggml_compute_forward_gelu(params, dst);
  7900. } break;
  7901. case GGML_UNARY_OP_GELU_ERF:
  7902. {
  7903. ggml_compute_forward_gelu_erf(params, dst);
  7904. } break;
  7905. case GGML_UNARY_OP_GELU_QUICK:
  7906. {
  7907. ggml_compute_forward_gelu_quick(params, dst);
  7908. } break;
  7909. case GGML_UNARY_OP_SILU:
  7910. {
  7911. ggml_compute_forward_silu(params, dst);
  7912. } break;
  7913. case GGML_UNARY_OP_HARDSWISH:
  7914. {
  7915. ggml_compute_forward_hardswish(params, dst);
  7916. } break;
  7917. case GGML_UNARY_OP_HARDSIGMOID:
  7918. {
  7919. ggml_compute_forward_hardsigmoid(params, dst);
  7920. } break;
  7921. case GGML_UNARY_OP_EXP:
  7922. {
  7923. ggml_compute_forward_exp(params, dst);
  7924. } break;
  7925. default:
  7926. {
  7927. GGML_ABORT("fatal error");
  7928. }
  7929. }
  7930. }
  7931. //ggml_compute_forward_glu
  7932. void ggml_compute_forward_glu(
  7933. const ggml_compute_params * params,
  7934. ggml_tensor * dst) {
  7935. const ggml_glu_op op = ggml_get_glu_op(dst);
  7936. switch (op) {
  7937. case GGML_GLU_OP_REGLU:
  7938. {
  7939. ggml_compute_forward_reglu(params, dst);
  7940. } break;
  7941. case GGML_GLU_OP_GEGLU:
  7942. {
  7943. ggml_compute_forward_geglu(params, dst);
  7944. } break;
  7945. case GGML_GLU_OP_SWIGLU:
  7946. {
  7947. ggml_compute_forward_swiglu(params, dst);
  7948. } break;
  7949. case GGML_GLU_OP_SWIGLU_OAI:
  7950. {
  7951. ggml_compute_forward_swiglu_oai(params, dst);
  7952. } break;
  7953. case GGML_GLU_OP_GEGLU_ERF:
  7954. {
  7955. ggml_compute_forward_geglu_erf(params, dst);
  7956. } break;
  7957. case GGML_GLU_OP_GEGLU_QUICK:
  7958. {
  7959. ggml_compute_forward_geglu_quick(params, dst);
  7960. } break;
  7961. default:
  7962. {
  7963. GGML_ABORT("fatal error");
  7964. }
  7965. }
  7966. }
  7967. // ggml_compute_forward_get_rel_pos
  7968. static void ggml_compute_forward_get_rel_pos_f16(
  7969. const ggml_compute_params * params,
  7970. ggml_tensor * dst) {
  7971. GGML_UNUSED(params);
  7972. const ggml_tensor * src0 = dst->src[0];
  7973. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  7974. GGML_TENSOR_UNARY_OP_LOCALS
  7975. const int64_t w = ne1;
  7976. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  7977. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  7978. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  7979. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  7980. const int64_t pos = (w - i1 - 1) + i2;
  7981. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7982. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  7983. }
  7984. }
  7985. }
  7986. }
  7987. void ggml_compute_forward_get_rel_pos(
  7988. const ggml_compute_params * params,
  7989. ggml_tensor * dst) {
  7990. const ggml_tensor * src0 = dst->src[0];
  7991. switch (src0->type) {
  7992. case GGML_TYPE_F16:
  7993. case GGML_TYPE_BF16:
  7994. {
  7995. ggml_compute_forward_get_rel_pos_f16(params, dst);
  7996. } break;
  7997. default:
  7998. {
  7999. GGML_ABORT("fatal error");
  8000. }
  8001. }
  8002. }
  8003. // ggml_compute_forward_add_rel_pos
  8004. static void ggml_compute_forward_add_rel_pos_f32(
  8005. const ggml_compute_params * params,
  8006. ggml_tensor * dst) {
  8007. const ggml_tensor * src0 = dst->src[0];
  8008. const ggml_tensor * src1 = dst->src[1];
  8009. const ggml_tensor * src2 = dst->src[2];
  8010. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  8011. if (!inplace) {
  8012. if (params->ith == 0) {
  8013. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  8014. }
  8015. ggml_barrier(params->threadpool);
  8016. }
  8017. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  8018. float * src1_data = (float *) src1->data;
  8019. float * src2_data = (float *) src2->data;
  8020. float * dst_data = (float *) dst->data;
  8021. const int64_t ne10 = src1->ne[0];
  8022. const int64_t ne11 = src1->ne[1];
  8023. const int64_t ne12 = src1->ne[2];
  8024. const int64_t ne13 = src1->ne[3];
  8025. const int ith = params->ith;
  8026. const int nth = params->nth;
  8027. // total patches in dst
  8028. const int np = ne13;
  8029. // patches per thread
  8030. const int dp = (np + nth - 1)/nth;
  8031. // patch range for this thread
  8032. const int ip0 = dp*ith;
  8033. const int ip1 = MIN(ip0 + dp, np);
  8034. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  8035. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8036. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8037. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  8038. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8039. const int64_t jp0 = jp1 + i10;
  8040. const float src1_e = src1_data[jp0];
  8041. const float src2_e = src2_data[jp0];
  8042. const int64_t jdh = jp0 * ne10;
  8043. const int64_t jdw = jdh - (ne10 - 1) * i10;
  8044. for (int64_t j = 0; j < ne10; ++j) {
  8045. dst_data[jdh + j ] += src2_e;
  8046. dst_data[jdw + j*ne10] += src1_e;
  8047. }
  8048. }
  8049. }
  8050. }
  8051. }
  8052. }
  8053. void ggml_compute_forward_add_rel_pos(
  8054. const ggml_compute_params * params,
  8055. ggml_tensor * dst) {
  8056. const ggml_tensor * src0 = dst->src[0];
  8057. switch (src0->type) {
  8058. case GGML_TYPE_F32:
  8059. {
  8060. ggml_compute_forward_add_rel_pos_f32(params, dst);
  8061. } break;
  8062. default:
  8063. {
  8064. GGML_ABORT("fatal error");
  8065. }
  8066. }
  8067. }
  8068. // ggml_compute_forward_rwkv_wkv6
  8069. static void ggml_compute_forward_rwkv_wkv6_f32(
  8070. const ggml_compute_params * params,
  8071. ggml_tensor * dst) {
  8072. const int64_t T = dst->src[1]->ne[2];
  8073. const int64_t C = dst->ne[0];
  8074. const int64_t HEADS = dst->src[1]->ne[1];
  8075. const int64_t n_seqs = dst->src[5]->ne[1];
  8076. const int64_t head_size = C / HEADS;
  8077. float * dst_data = (float *) dst->data;
  8078. float * state = ((float *) dst->data) + C * T;
  8079. const int ith = params->ith;
  8080. const int nth = params->nth;
  8081. if (ith >= HEADS) {
  8082. return;
  8083. }
  8084. const int h_start = (HEADS * ith) / nth;
  8085. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  8086. (HEADS * (ith + 1)) / nth : HEADS;
  8087. float * k = (float *) dst->src[0]->data;
  8088. float * v = (float *) dst->src[1]->data;
  8089. float * r = (float *) dst->src[2]->data;
  8090. float * time_faaaa = (float *) dst->src[3]->data;
  8091. float * time_decay = (float *) dst->src[4]->data;
  8092. size_t t_stride = HEADS * head_size; // Same to C
  8093. size_t h_stride = C / HEADS;
  8094. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  8095. size_t h_stride_2d = head_size * head_size;
  8096. if (ith == 0) {
  8097. memset(dst_data, 0, T * C * sizeof(float));
  8098. }
  8099. ggml_barrier(params->threadpool);
  8100. #if defined(__AVX__) && !defined(__AVX512F__)
  8101. #define GGML_F32X GGML_F32x8
  8102. #define GGML_F32X_SET1 GGML_F32x8_SET1
  8103. #define GGML_F32X_LOAD GGML_F32x8_LOAD
  8104. #define GGML_F32X_STORE GGML_F32x8_STORE
  8105. #define GGML_F32X_MUL GGML_F32x8_MUL
  8106. #define GGML_F32X_FMA GGML_F32x8_FMA
  8107. #define WKV_VECTOR_SIZE 8
  8108. #elif defined(__AVX512F__)
  8109. #define GGML_F32X GGML_F32x16
  8110. #define GGML_F32X_SET1 GGML_F32x16_SET1
  8111. #define GGML_F32X_LOAD GGML_F32x16_LOAD
  8112. #define GGML_F32X_STORE GGML_F32x16_STORE
  8113. #define GGML_F32X_MUL GGML_F32x16_MUL
  8114. #define GGML_F32X_FMA GGML_F32x16_FMA
  8115. #define WKV_VECTOR_SIZE 16
  8116. #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
  8117. #define GGML_F32X GGML_F32xt
  8118. #define GGML_F32X_SET1 GGML_F32xt_SET1
  8119. #define GGML_F32X_LOAD GGML_F32xt_LOAD
  8120. #define GGML_F32X_STORE GGML_F32xt_STORE
  8121. #define GGML_F32X_MUL GGML_F32xt_MUL
  8122. #define GGML_F32X_FMA GGML_F32xt_FMA
  8123. #define WKV_VECTOR_SIZE 8
  8124. #elif defined(__ARM_NEON) && defined(__aarch64__)
  8125. #define GGML_F32X GGML_F32x4
  8126. #define GGML_F32X_SET1 GGML_F32x4_SET1
  8127. #define GGML_F32X_LOAD GGML_F32x4_LOAD
  8128. #define GGML_F32X_STORE GGML_F32x4_STORE
  8129. #define GGML_F32X_MUL GGML_F32x4_MUL
  8130. #define GGML_F32X_FMA GGML_F32x4_FMA
  8131. #define WKV_VECTOR_SIZE 4
  8132. #endif
  8133. #ifdef WKV_VECTOR_SIZE
  8134. int wkv_vector_size;
  8135. #if defined(__ARM_FEATURE_SVE)
  8136. wkv_vector_size = svcntw();
  8137. #else
  8138. wkv_vector_size = WKV_VECTOR_SIZE;
  8139. #endif
  8140. const int64_t vec_count = head_size / wkv_vector_size;
  8141. for (int64_t t = 0; t < T; t++) {
  8142. size_t t_offset = t * t_stride;
  8143. size_t state_offset = head_size * C * (t / (T / n_seqs));
  8144. float * state_cur = state + state_offset;
  8145. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  8146. for (int64_t h = h_start; h < h_end; h++) {
  8147. size_t h_offset = h * h_stride;
  8148. size_t t_h_offset = t_offset + h_offset;
  8149. size_t h_2d_offset = h * h_stride_2d;
  8150. for (int64_t i = 0; i < head_size; i++) {
  8151. size_t t_h_i_offset = t_h_offset + i;
  8152. size_t h_i_offset = h_offset + i;
  8153. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8154. float k_val = k[t_h_i_offset];
  8155. float r_val = r[t_h_i_offset];
  8156. float time_faaaa_val = time_faaaa[h_i_offset];
  8157. float time_decay_val = time_decay[t_h_i_offset];
  8158. // Broadcast scalar values to vectors
  8159. GGML_F32X k_vec = GGML_F32X_SET1(k_val);
  8160. GGML_F32X r_vec = GGML_F32X_SET1(r_val);
  8161. GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
  8162. GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
  8163. for (int64_t j = 0; j < vec_count; j++) {
  8164. size_t base_j = j * wkv_vector_size;
  8165. size_t t_h_j_offset = t_h_offset + base_j;
  8166. size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
  8167. // Load x elements at once
  8168. GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
  8169. GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
  8170. GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
  8171. // Compute kv = v * k
  8172. GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
  8173. // Compute temp = kv * time_faaaa + prev_state
  8174. GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
  8175. // Update dst: dst += temp * r
  8176. dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
  8177. GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
  8178. // Update state: state = prev_state * time_decay + kv
  8179. GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
  8180. GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
  8181. }
  8182. // Handle remaining elements, this will not be used.
  8183. for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
  8184. size_t t_h_j_offset = t_h_offset + j;
  8185. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  8186. float v_val = v[t_h_j_offset];
  8187. float kv_val = v_val * k_val;
  8188. float prev_state_val = state_prev[h_2d_i_j_offset];
  8189. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  8190. dst_data[t_h_j_offset] += temp_val * r_val;
  8191. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  8192. }
  8193. }
  8194. }
  8195. }
  8196. #else
  8197. // basically fused operations:
  8198. // dst = r @ (time_faaaa * (k @ v) + state),
  8199. // state = time_decay * state + (k @ v),
  8200. // recursive through each token
  8201. for (int64_t t = 0; t < T; t++) {
  8202. size_t t_offset = t * t_stride;
  8203. size_t state_offset = head_size * C * (t / (T / n_seqs));
  8204. float * state_cur = state + state_offset;
  8205. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  8206. for (int64_t h = h_start; h < h_end; h++) {
  8207. size_t h_offset = h * h_stride;
  8208. size_t t_h_offset = t_offset + h_offset;
  8209. size_t h_2d_offset = h * h_stride_2d;
  8210. for (int64_t i = 0; i < head_size; i++) {
  8211. size_t t_h_i_offset = t_h_offset + i;
  8212. size_t h_i_offset = h_offset + i;
  8213. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8214. float k_val = k[t_h_i_offset];
  8215. float r_val = r[t_h_i_offset];
  8216. float time_faaaa_val = time_faaaa[h_i_offset];
  8217. // RWKV v6: different time_decay for each token.
  8218. float time_decay_val = time_decay[t_h_i_offset];
  8219. for (int64_t j = 0; j < head_size; j++) {
  8220. size_t t_h_j_offset = t_h_offset + j;
  8221. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  8222. float v_val = v[t_h_j_offset];
  8223. float kv_val = v_val * k_val;
  8224. float prev_state_val = state_prev[h_2d_i_j_offset];
  8225. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  8226. dst_data[t_h_j_offset] += temp_val * r_val;
  8227. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  8228. }
  8229. }
  8230. }
  8231. }
  8232. #endif
  8233. }
  8234. void ggml_compute_forward_rwkv_wkv6(
  8235. const ggml_compute_params * params,
  8236. ggml_tensor * dst) {
  8237. const ggml_tensor * src0 = dst->src[0];
  8238. switch (src0->type) {
  8239. case GGML_TYPE_F32:
  8240. {
  8241. ggml_compute_forward_rwkv_wkv6_f32(params, dst);
  8242. } break;
  8243. default:
  8244. {
  8245. GGML_ABORT("fatal error");
  8246. }
  8247. }
  8248. }
  8249. // ggml_compute_forward_gla
  8250. static void ggml_compute_forward_gla_f32(
  8251. const ggml_compute_params * params,
  8252. ggml_tensor * dst) {
  8253. const int64_t T = dst->src[1]->ne[2];
  8254. const int64_t C = dst->ne[0];
  8255. const int64_t HEADS = dst->src[1]->ne[1];
  8256. const int64_t n_seqs = dst->src[4]->ne[1];
  8257. const int64_t head_size = C / HEADS;
  8258. const float scale = ggml_get_op_params_f32(dst, 0);
  8259. float * dst_data = (float *) dst->data;
  8260. float * state = ((float *) dst->data) + C * T;
  8261. const int ith = params->ith;
  8262. const int nth = params->nth;
  8263. if (ith >= HEADS) {
  8264. return;
  8265. }
  8266. const int h_start = (HEADS * ith) / nth;
  8267. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  8268. (HEADS * (ith + 1)) / nth : HEADS;
  8269. float * k = (float *) dst->src[0]->data;
  8270. float * v = (float *) dst->src[1]->data;
  8271. float * q = (float *) dst->src[2]->data;
  8272. float * g = (float *) dst->src[3]->data;
  8273. size_t t_stride = HEADS * head_size; // Same to C
  8274. size_t h_stride = C / HEADS;
  8275. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  8276. size_t h_stride_2d = head_size * head_size;
  8277. if (ith == 0) {
  8278. memset(dst_data, 0, T * C * sizeof(float));
  8279. }
  8280. ggml_barrier(params->threadpool);
  8281. #if defined(__AVX__) && !defined(__AVX512F__)
  8282. #define GGML_F32X GGML_F32x8
  8283. #define GGML_F32X_SET1 GGML_F32x8_SET1
  8284. #define GGML_F32X_LOAD GGML_F32x8_LOAD
  8285. #define GGML_F32X_STORE GGML_F32x8_STORE
  8286. #define GGML_F32X_MUL GGML_F32x8_MUL
  8287. #define GGML_F32X_FMA GGML_F32x8_FMA
  8288. #define GLA_VECTOR_SIZE 8
  8289. #elif defined(__AVX512F__)
  8290. #define GGML_F32X GGML_F32x16
  8291. #define GGML_F32X_SET1 GGML_F32x16_SET1
  8292. #define GGML_F32X_LOAD GGML_F32x16_LOAD
  8293. #define GGML_F32X_STORE GGML_F32x16_STORE
  8294. #define GGML_F32X_MUL GGML_F32x16_MUL
  8295. #define GGML_F32X_FMA GGML_F32x16_FMA
  8296. #define GLA_VECTOR_SIZE 16
  8297. #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
  8298. #define GGML_F32X GGML_F32xt
  8299. #define GGML_F32X_SET1 GGML_F32xt_SET1
  8300. #define GGML_F32X_LOAD GGML_F32xt_LOAD
  8301. #define GGML_F32X_STORE GGML_F32xt_STORE
  8302. #define GGML_F32X_MUL GGML_F32xt_MUL
  8303. #define GGML_F32X_FMA GGML_F32xt_FMA
  8304. #define GLA_VECTOR_SIZE 8
  8305. #elif defined(__ARM_NEON) && defined(__aarch64__)
  8306. #define GGML_F32X GGML_F32x4
  8307. #define GGML_F32X_SET1 GGML_F32x4_SET1
  8308. #define GGML_F32X_LOAD GGML_F32x4_LOAD
  8309. #define GGML_F32X_STORE GGML_F32x4_STORE
  8310. #define GGML_F32X_MUL GGML_F32x4_MUL
  8311. #define GGML_F32X_FMA GGML_F32x4_FMA
  8312. #define GLA_VECTOR_SIZE 4
  8313. #endif
  8314. #ifdef GLA_VECTOR_SIZE
  8315. int gla_vector_size;
  8316. #if defined(__ARM_FEATURE_SVE)
  8317. gla_vector_size = svcntw();
  8318. #else
  8319. gla_vector_size = GLA_VECTOR_SIZE;
  8320. #endif
  8321. const int64_t vec_count = head_size / gla_vector_size;
  8322. for (int64_t t = 0; t < T; t++) {
  8323. size_t t_offset = t * t_stride;
  8324. size_t state_offset = head_size * C * (t / (T / n_seqs));
  8325. float * state_cur = state + state_offset;
  8326. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
  8327. for (int64_t h = h_start; h < h_end; h++) {
  8328. size_t h_offset = h * h_stride;
  8329. size_t t_h_offset = t_offset + h_offset;
  8330. size_t h_2d_offset = h * h_stride_2d;
  8331. for (int64_t i = 0; i < head_size; i++) {
  8332. size_t t_h_i_offset = t_h_offset + i;
  8333. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8334. float k_val = k[t_h_i_offset];
  8335. float q_val = q[t_h_i_offset] * scale;
  8336. float g_val = g[t_h_i_offset];
  8337. // Broadcast scalar values to vectors
  8338. GGML_F32X k_vec = GGML_F32X_SET1(k_val);
  8339. GGML_F32X q_vec = GGML_F32X_SET1(q_val);
  8340. GGML_F32X g_vec = GGML_F32X_SET1(g_val);
  8341. for (int64_t j = 0; j < vec_count; j++) {
  8342. size_t base_j = j * gla_vector_size;
  8343. size_t t_h_j_offset = t_h_offset + base_j;
  8344. size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
  8345. // Load x elements at once
  8346. GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
  8347. GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
  8348. GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
  8349. // Compute kv = v * k
  8350. GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
  8351. // Compute temp = prev_state * g + kv
  8352. GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);
  8353. // Update dst: dst += temp * q
  8354. dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
  8355. GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
  8356. // Update state
  8357. GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
  8358. }
  8359. // Handle remaining elements, this will not be used.
  8360. for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
  8361. size_t t_h_j_offset = t_h_offset + j;
  8362. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  8363. float v_val = v[t_h_j_offset];
  8364. float kv_val = v_val * k_val;
  8365. float prev_state_val = state_prev[h_2d_i_j_offset];
  8366. float temp_val = kv_val + prev_state_val * g_val;
  8367. dst_data[t_h_j_offset] += temp_val * q_val;
  8368. state_cur[h_2d_i_j_offset] = temp_val;
  8369. }
  8370. }
  8371. }
  8372. }
  8373. #else
  8374. for (int64_t t = 0; t < T; t++) {
  8375. size_t t_offset = t * t_stride;
  8376. size_t state_offset = head_size * C * (t / (T / n_seqs));
  8377. float * state_cur = state + state_offset;
  8378. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
  8379. for (int64_t h = h_start; h < h_end; h++) {
  8380. size_t h_offset = h * h_stride;
  8381. size_t t_h_offset = t_offset + h_offset;
  8382. size_t h_2d_offset = h * h_stride_2d;
  8383. for (int64_t i = 0; i < head_size; i++) {
  8384. size_t t_h_i_offset = t_h_offset + i;
  8385. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8386. float k_val = k[t_h_i_offset];
  8387. float q_val = q[t_h_i_offset] * scale;
  8388. float g_val = g[t_h_i_offset];
  8389. for (int64_t j = 0; j < head_size; j++) {
  8390. size_t t_h_j_offset = t_h_offset + j;
  8391. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  8392. float v_val = v[t_h_j_offset];
  8393. float kv_val = v_val * k_val;
  8394. float prev_state_val = state_prev[h_2d_i_j_offset];
  8395. float temp_val = prev_state_val * g_val + kv_val;
  8396. dst_data[t_h_j_offset] += temp_val * q_val;
  8397. state_cur[h_2d_i_j_offset] = temp_val;
  8398. }
  8399. }
  8400. }
  8401. }
  8402. #endif
  8403. }
  8404. void ggml_compute_forward_gla(
  8405. const ggml_compute_params * params,
  8406. ggml_tensor * dst) {
  8407. const ggml_tensor * src0 = dst->src[0];
  8408. switch (src0->type) {
  8409. case GGML_TYPE_F32:
  8410. {
  8411. ggml_compute_forward_gla_f32(params, dst);
  8412. } break;
  8413. default:
  8414. {
  8415. GGML_ABORT("fatal error");
  8416. }
  8417. }
  8418. }
  8419. // ggml_compute_forward_rwkv_wkv7
  8420. static void ggml_compute_forward_rwkv_wkv7_f32(
  8421. const ggml_compute_params * params,
  8422. ggml_tensor * dst) {
  8423. const int64_t T = dst->src[1]->ne[2];
  8424. const int64_t C = dst->ne[0];
  8425. const int64_t HEADS = dst->src[1]->ne[1];
  8426. const int64_t n_seqs = dst->src[6]->ne[1];
  8427. const int64_t head_size = C / HEADS;
  8428. float * dst_data = (float *) dst->data;
  8429. float * state = ((float *) dst->data) + C * T;
  8430. const int ith = params->ith;
  8431. const int nth = params->nth;
  8432. if (ith >= HEADS) {
  8433. return;
  8434. }
  8435. const int h_start = (HEADS * ith) / nth;
  8436. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  8437. (HEADS * (ith + 1)) / nth : HEADS;
  8438. float * r = (float *) dst->src[0]->data;
  8439. float * w = (float *) dst->src[1]->data;
  8440. float * k = (float *) dst->src[2]->data;
  8441. float * v = (float *) dst->src[3]->data;
  8442. float * a = (float *) dst->src[4]->data;
  8443. float * b = (float *) dst->src[5]->data;
  8444. int64_t t_stride = HEADS * head_size; // Same to C
  8445. int64_t h_stride = C / HEADS;
  8446. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  8447. int64_t h_stride_2d = head_size * head_size;
  8448. #if defined(GGML_SIMD)
  8449. #if defined(__ARM_FEATURE_SVE) || defined(__riscv_v_intrinsic)
  8450. // scalar Route to scalar implementation //TODO: Write SVE code and RVV code
  8451. for (int64_t t = 0; t < T; t++) {
  8452. int64_t t_offset = t * t_stride;
  8453. int64_t state_offset = head_size * C * (t / (T / n_seqs));
  8454. float * state_cur = state + state_offset;
  8455. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
  8456. for (int64_t h = h_start; h < h_end; h++) {
  8457. int64_t h_offset = h * h_stride;
  8458. int64_t t_h_offset = t_offset + h_offset;
  8459. int64_t h_2d_offset = h * h_stride_2d;
  8460. for (int64_t i = 0; i < head_size; i++) {
  8461. int64_t t_h_i_offset = t_h_offset + i;
  8462. int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8463. float v_val = v[t_h_i_offset];
  8464. float sa = 0, result = 0;
  8465. for (int64_t j = 0; j < head_size; j++) {
  8466. sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
  8467. }
  8468. for (int64_t j = 0; j < head_size; j++) {
  8469. int64_t t_h_j_offset = t_h_offset + j;
  8470. int64_t h_2d_i_j_offset = h_2d_i_offset + j;
  8471. float r_val = r[t_h_j_offset];
  8472. float w_val = w[t_h_j_offset];
  8473. float k_val = k[t_h_j_offset];
  8474. float b_val = b[t_h_j_offset];
  8475. float kv_val = v_val * k_val;
  8476. float prev_state_val = state_prev[h_2d_i_j_offset];
  8477. state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
  8478. result += state_cur[h_2d_i_j_offset] * r_val;
  8479. }
  8480. dst_data[t_h_i_offset] = result;
  8481. }
  8482. }
  8483. }
  8484. #else
  8485. for (int64_t t = 0; t < T; t++) {
  8486. int64_t t_offset = t * t_stride;
  8487. int64_t state_offset = head_size * C * (t / (T / n_seqs));
  8488. float * state_cur = state + state_offset;
  8489. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
  8490. for (int64_t h = h_start; h < h_end; h++) {
  8491. int64_t h_offset = h * h_stride;
  8492. int64_t t_h_offset = t_offset + h_offset;
  8493. int64_t h_2d_offset = h * h_stride_2d;
  8494. for (int64_t ii = 0; ii < head_size; ii++) {
  8495. int64_t t_h_i_offset = t_h_offset + ii;
  8496. int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
  8497. GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
  8498. float sa = 0;
  8499. {
  8500. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  8501. GGML_F32_VEC ax[GGML_F32_ARR];
  8502. GGML_F32_VEC ay[GGML_F32_ARR];
  8503. for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
  8504. for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
  8505. ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
  8506. ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
  8507. sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
  8508. }
  8509. }
  8510. GGML_F32_VEC_REDUCE(sa, sum);
  8511. }
  8512. GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
  8513. int64_t j = 0;
  8514. GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  8515. for (; j < head_size; j += GGML_F32_STEP) {
  8516. for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
  8517. int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
  8518. int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
  8519. GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
  8520. GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
  8521. GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
  8522. GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
  8523. k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
  8524. GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
  8525. // kv + s * decay + sa * b
  8526. state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
  8527. state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
  8528. GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
  8529. result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
  8530. }
  8531. }
  8532. GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
  8533. // There shouldn't be left-overs though.
  8534. for (; j < head_size; j++) {
  8535. int64_t t_h_j_offset = t_h_offset + j;
  8536. int64_t h_2d_i_j_offset = h_2d_i_offset + j;
  8537. float r_val = r[t_h_j_offset];
  8538. float w_val = w[t_h_j_offset];
  8539. float k_val = k[t_h_j_offset];
  8540. float b_val = b[t_h_j_offset];
  8541. float kv_val = v[t_h_i_offset] * k_val;
  8542. float prev_state_val = state_prev[h_2d_i_j_offset];
  8543. state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
  8544. dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
  8545. }
  8546. }
  8547. }
  8548. }
  8549. #endif
  8550. #else
  8551. for (int64_t t = 0; t < T; t++) {
  8552. int64_t t_offset = t * t_stride;
  8553. int64_t state_offset = head_size * C * (t / (T / n_seqs));
  8554. float * state_cur = state + state_offset;
  8555. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
  8556. for (int64_t h = h_start; h < h_end; h++) {
  8557. int64_t h_offset = h * h_stride;
  8558. int64_t t_h_offset = t_offset + h_offset;
  8559. int64_t h_2d_offset = h * h_stride_2d;
  8560. for (int64_t i = 0; i < head_size; i++) {
  8561. int64_t t_h_i_offset = t_h_offset + i;
  8562. int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8563. float v_val = v[t_h_i_offset];
  8564. float sa = 0, result = 0;
  8565. for (int64_t j = 0; j < head_size; j++) {
  8566. sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
  8567. }
  8568. for (int64_t j = 0; j < head_size; j++) {
  8569. int64_t t_h_j_offset = t_h_offset + j;
  8570. int64_t h_2d_i_j_offset = h_2d_i_offset + j;
  8571. float r_val = r[t_h_j_offset];
  8572. float w_val = w[t_h_j_offset];
  8573. float k_val = k[t_h_j_offset];
  8574. float b_val = b[t_h_j_offset];
  8575. float kv_val = v_val * k_val;
  8576. float prev_state_val = state_prev[h_2d_i_j_offset];
  8577. state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
  8578. result += state_cur[h_2d_i_j_offset] * r_val;
  8579. }
  8580. dst_data[t_h_i_offset] = result;
  8581. }
  8582. }
  8583. }
  8584. #endif
  8585. }
  8586. void ggml_compute_forward_rwkv_wkv7(
  8587. const ggml_compute_params * params,
  8588. ggml_tensor * dst) {
  8589. const ggml_tensor * src0 = dst->src[0];
  8590. switch (src0->type) {
  8591. case GGML_TYPE_F32:
  8592. {
  8593. ggml_compute_forward_rwkv_wkv7_f32(params, dst);
  8594. } break;
  8595. default:
  8596. {
  8597. GGML_ABORT("fatal error");
  8598. }
  8599. }
  8600. }
  8601. // ggml_compute_forward_map_custom1
  8602. void ggml_compute_forward_map_custom1(
  8603. const ggml_compute_params * params,
  8604. ggml_tensor * dst) {
  8605. const ggml_tensor * a = dst->src[0];
  8606. struct ggml_map_custom1_op_params p;
  8607. memcpy(&p, dst->op_params, sizeof(p));
  8608. p.fun(dst, a, params->ith, params->nth, p.userdata);
  8609. }
  8610. // ggml_compute_forward_map_custom2
  8611. void ggml_compute_forward_map_custom2(
  8612. const ggml_compute_params * params,
  8613. ggml_tensor * dst) {
  8614. const ggml_tensor * a = dst->src[0];
  8615. const ggml_tensor * b = dst->src[1];
  8616. struct ggml_map_custom2_op_params p;
  8617. memcpy(&p, dst->op_params, sizeof(p));
  8618. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  8619. }
  8620. // ggml_compute_forward_map_custom3
  8621. void ggml_compute_forward_map_custom3(
  8622. const ggml_compute_params * params,
  8623. ggml_tensor * dst) {
  8624. const ggml_tensor * a = dst->src[0];
  8625. const ggml_tensor * b = dst->src[1];
  8626. const ggml_tensor * c = dst->src[2];
  8627. struct ggml_map_custom3_op_params p;
  8628. memcpy(&p, dst->op_params, sizeof(p));
  8629. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  8630. }
  8631. // ggml_compute_forward_custom
  8632. void ggml_compute_forward_custom(
  8633. const struct ggml_compute_params * params,
  8634. struct ggml_tensor * dst) {
  8635. struct ggml_custom_op_params p;
  8636. memcpy(&p, dst->op_params, sizeof(p));
  8637. p.fun(dst, params->ith, params->nth, p.userdata);
  8638. }
  8639. // ggml_compute_forward_cross_entropy_loss
  8640. static void ggml_compute_forward_cross_entropy_loss_f32(
  8641. const ggml_compute_params * params,
  8642. ggml_tensor * dst) {
  8643. const ggml_tensor * src0 = dst->src[0];
  8644. const ggml_tensor * src1 = dst->src[1];
  8645. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8646. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8647. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  8648. GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
  8649. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  8650. GGML_ASSERT(ggml_is_scalar(dst));
  8651. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  8652. // TODO: handle transposed/permuted matrices
  8653. const int64_t nc = src0->ne[0];
  8654. const int64_t nr = ggml_nrows(src0);
  8655. const int ith = params->ith;
  8656. const int nth = params->nth;
  8657. float * sums = (float *) params->wdata;
  8658. float * st = ((float *) params->wdata) + nth + ith*nc;
  8659. float sum_thread = 0.0f;
  8660. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  8661. // rows per thread
  8662. const int64_t dr = (nr + nth - 1)/nth;
  8663. // row range for this thread
  8664. const int64_t ir0 = dr*ith;
  8665. const int64_t ir1 = MIN(ir0 + dr, nr);
  8666. for (int64_t i1 = ir0; i1 < ir1; ++i1) {
  8667. const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
  8668. const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
  8669. #ifndef NDEBUG
  8670. for (int64_t i = 0; i < nc; ++i) {
  8671. //printf("p[%d] = %f\n", i, p[i]);
  8672. assert(!isnan(s0[i]));
  8673. assert(!isnan(s1[i]));
  8674. }
  8675. #endif
  8676. float max = -INFINITY;
  8677. ggml_vec_max_f32(nc, &max, s0);
  8678. const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
  8679. assert(sum_softmax >= 0.0);
  8680. ggml_vec_add1_f32(nc, st, st, -sum_softmax);
  8681. ggml_vec_mul_f32(nc, st, st, s1);
  8682. float sum_st = 0.0f;
  8683. ggml_vec_sum_f32(nc, &sum_st, st);
  8684. sum_thread += sum_st;
  8685. #ifndef NDEBUG
  8686. for (int64_t i = 0; i < nc; ++i) {
  8687. assert(!isnan(st[i]));
  8688. assert(!isinf(st[i]));
  8689. }
  8690. #endif
  8691. }
  8692. sums[ith] = sum_thread;
  8693. ggml_barrier(params->threadpool);
  8694. if (ith == 0) {
  8695. float * dp = (float *) dst->data;
  8696. ggml_vec_sum_f32(nth, dp, sums);
  8697. dp[0] *= -1.0f / (float) nr;
  8698. }
  8699. }
  8700. void ggml_compute_forward_cross_entropy_loss(
  8701. const ggml_compute_params * params,
  8702. ggml_tensor * dst) {
  8703. const ggml_tensor * src0 = dst->src[0];
  8704. switch (src0->type) {
  8705. case GGML_TYPE_F32:
  8706. {
  8707. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  8708. } break;
  8709. default:
  8710. {
  8711. GGML_ABORT("fatal error");
  8712. }
  8713. }
  8714. }
  8715. // ggml_compute_forward_cross_entropy_loss_back
  8716. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  8717. const ggml_compute_params * params,
  8718. ggml_tensor * dst) {
  8719. const ggml_tensor * grad = dst->src[0]; // gradient of forward pass output
  8720. const ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
  8721. const ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
  8722. GGML_ASSERT(ggml_is_contiguous(dst));
  8723. GGML_ASSERT(ggml_is_contiguous(src0f));
  8724. GGML_ASSERT(ggml_is_contiguous(src1f));
  8725. GGML_ASSERT(ggml_is_contiguous(grad));
  8726. GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
  8727. const int64_t ith = params->ith;
  8728. const int64_t nth = params->nth;
  8729. // TODO: handle transposed/permuted matrices
  8730. const int64_t nc = src0f->ne[0];
  8731. const int64_t nr = ggml_nrows(src0f);
  8732. // rows per thread
  8733. const int64_t dr = (nr + nth - 1)/nth;
  8734. // row range for this thread
  8735. const int64_t ir0 = dr*ith;
  8736. const int64_t ir1 = MIN(ir0 + dr, nr);
  8737. const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
  8738. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  8739. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  8740. const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
  8741. const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
  8742. #ifndef NDEBUG
  8743. for (int64_t i = 0; i < nc; ++i) {
  8744. //printf("p[%d] = %f\n", i, p[i]);
  8745. assert(!isnan(s0[i]));
  8746. assert(!isnan(s1[i]));
  8747. }
  8748. #endif
  8749. // soft_max
  8750. float max = -INFINITY;
  8751. ggml_vec_max_f32(nc, &max, s0);
  8752. const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  8753. assert(sum > 0.0);
  8754. ggml_vec_scale_f32(nc, ds0, 1.0/sum);
  8755. // grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
  8756. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  8757. ggml_vec_scale_f32(nc, ds0, d_by_nr);
  8758. #ifndef NDEBUG
  8759. for (int64_t i = 0; i < nc; ++i) {
  8760. assert(!isnan(ds0[i]));
  8761. assert(!isinf(ds0[i]));
  8762. }
  8763. #endif
  8764. }
  8765. }
  8766. void ggml_compute_forward_cross_entropy_loss_back(
  8767. const ggml_compute_params * params,
  8768. ggml_tensor * dst) {
  8769. const ggml_tensor * src0 = dst->src[0];
  8770. switch (src0->type) {
  8771. case GGML_TYPE_F32:
  8772. {
  8773. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  8774. } break;
  8775. default:
  8776. {
  8777. GGML_ABORT("fatal error");
  8778. }
  8779. }
  8780. }
  8781. static void ggml_compute_forward_opt_step_adamw_f32(
  8782. const ggml_compute_params * params,
  8783. ggml_tensor * dst) {
  8784. const ggml_tensor * src0 = dst->src[0];
  8785. const ggml_tensor * src0_grad = dst->src[1];
  8786. const ggml_tensor * src0_grad_m = dst->src[2];
  8787. const ggml_tensor * src0_grad_v = dst->src[3];
  8788. const ggml_tensor * adamw_params = dst->src[4];
  8789. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  8790. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
  8791. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
  8792. GGML_ASSERT(ggml_nelements(adamw_params) == 7);
  8793. const int ith = params->ith;
  8794. const int nth = params->nth;
  8795. const int nr = ggml_nrows(src0);
  8796. GGML_TENSOR_UNARY_OP_LOCALS
  8797. GGML_ASSERT(nb00 == sizeof(float));
  8798. // rows per thread
  8799. const int dr = (nr + nth - 1)/nth;
  8800. // row range for this thread
  8801. const int ir0 = dr*ith;
  8802. const int ir1 = MIN(ir0 + dr, nr);
  8803. const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
  8804. const float alpha = adamw_params_ptr[0];
  8805. const float beta1 = adamw_params_ptr[1];
  8806. const float beta2 = adamw_params_ptr[2];
  8807. const float eps = adamw_params_ptr[3];
  8808. const float wd = adamw_params_ptr[4];
  8809. const float beta1h = adamw_params_ptr[5];
  8810. const float beta2h = adamw_params_ptr[6];
  8811. const float keep = 1.f - alpha * wd;
  8812. for (int ir = ir0; ir < ir1; ++ir) {
  8813. const int64_t i03 = ir/(ne02*ne01);
  8814. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8815. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8816. const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
  8817. float * w = (float *) ((char *) src0->data + offset); // weight
  8818. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  8819. float * m = (float *) ((char *) src0_grad_m->data + offset);
  8820. float * v = (float *) ((char *) src0_grad_v->data + offset);
  8821. for (int i00 = 0; i00 < ne00; ++i00) {
  8822. m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
  8823. v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
  8824. const float mh = m[i00]*beta1h;
  8825. const float vh = sqrtf(v[i00]*beta2h) + eps;
  8826. // The weight decay is applied independently of the Adam momenta m and v.
  8827. // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
  8828. // See: https://arxiv.org/pdf/1711.05101v3.pdf
  8829. w[i00] = w[i00] * keep - alpha * mh / vh;
  8830. }
  8831. }
  8832. }
  8833. void ggml_compute_forward_opt_step_adamw(
  8834. const ggml_compute_params * params,
  8835. ggml_tensor * dst) {
  8836. const ggml_tensor * src0 = dst->src[0];
  8837. switch (src0->type) {
  8838. case GGML_TYPE_F32:
  8839. {
  8840. ggml_compute_forward_opt_step_adamw_f32(params, dst);
  8841. } break;
  8842. default:
  8843. {
  8844. GGML_ABORT("fatal error");
  8845. }
  8846. }
  8847. }
  8848. static void ggml_compute_forward_opt_step_sgd_f32(const ggml_compute_params * params, ggml_tensor * dst) {
  8849. const ggml_tensor * src0 = dst->src[0];
  8850. const ggml_tensor * src0_grad = dst->src[1];
  8851. const ggml_tensor * sgd_params = dst->src[2];
  8852. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  8853. GGML_ASSERT(ggml_nelements(sgd_params) == 2);
  8854. const int ith = params->ith;
  8855. const int nth = params->nth;
  8856. const int nr = ggml_nrows(src0);
  8857. GGML_TENSOR_UNARY_OP_LOCALS
  8858. GGML_ASSERT(nb00 == sizeof(float));
  8859. // rows per thread
  8860. const int dr = (nr + nth - 1) / nth;
  8861. // row range for this thread
  8862. const int ir0 = dr * ith;
  8863. const int ir1 = MIN(ir0 + dr, nr);
  8864. // using adamw param subset we care about - alpha, wd - could have a separate struct
  8865. const float * sgd_params_ptr = ggml_get_data_f32(sgd_params);
  8866. const float alpha = sgd_params_ptr[0];
  8867. const float keep = 1.f - alpha * sgd_params_ptr[1];
  8868. for (int ir = ir0; ir < ir1; ++ir) {
  8869. const int64_t i03 = ir / (ne02 * ne01);
  8870. const int64_t i02 = (ir - i03 * ne02 * ne01) / ne01;
  8871. const int64_t i01 = (ir - i03 * ne02 * ne01 - i02 * ne01);
  8872. const size_t offset = i03 * nb03 + i02 * nb02 + i01 * nb01;
  8873. float * w = (float *) ((char *) src0->data + offset); // weight
  8874. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  8875. for (int i00 = 0; i00 < ne00; ++i00) {
  8876. w[i00] = w[i00] * keep - alpha * g[i00];
  8877. }
  8878. }
  8879. }
  8880. void ggml_compute_forward_opt_step_sgd(const ggml_compute_params * params, ggml_tensor * dst) {
  8881. const ggml_tensor * src0 = dst->src[0];
  8882. switch (src0->type) {
  8883. case GGML_TYPE_F32:
  8884. {
  8885. ggml_compute_forward_opt_step_sgd_f32(params, dst);
  8886. }
  8887. break;
  8888. default:
  8889. {
  8890. GGML_ABORT("fatal error - sgd is F32 only");
  8891. }
  8892. }
  8893. }