llm_build_arctic.cpp 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. #include "../llama-model.h"
  2. #include "../llama-graph.h"
  3. #include "llm_build_arctic.h"
  4. #include <cmath>
  5. llm_build_arctic::llm_build_arctic(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6. const int64_t n_embd_head = hparams.n_embd_head_v;
  7. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9. ggml_tensor * cur;
  10. ggml_tensor * inpL;
  11. inpL = build_inp_embd(model.tok_embd);
  12. // inp_pos - contains the positions
  13. ggml_tensor * inp_pos = build_inp_pos();
  14. auto * inp_attn = build_attn_inp_kv();
  15. ggml_tensor * inp_out_ids = build_inp_out_ids();
  16. for (int il = 0; il < n_layer; ++il) {
  17. ggml_tensor * inpSA = inpL;
  18. // norm
  19. cur = build_norm(inpL,
  20. model.layers[il].attn_norm, NULL,
  21. LLM_NORM_RMS, il);
  22. cb(cur, "attn_norm", il);
  23. // self-attention
  24. {
  25. // compute Q and K and RoPE them
  26. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  27. cb(Qcur, "Qcur", il);
  28. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  29. cb(Kcur, "Kcur", il);
  30. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  31. cb(Vcur, "Vcur", il);
  32. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  33. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  34. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  35. Qcur = ggml_rope_ext(
  36. ctx0, Qcur, inp_pos, nullptr,
  37. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  38. ext_factor, attn_factor, beta_fast, beta_slow
  39. );
  40. Kcur = ggml_rope_ext(
  41. ctx0, Kcur, inp_pos, nullptr,
  42. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  43. ext_factor, attn_factor, beta_fast, beta_slow
  44. );
  45. cb(Qcur, "Qcur", il);
  46. cb(Kcur, "Kcur", il);
  47. cb(Vcur, "Vcur", il);
  48. cur = build_attn(inp_attn,
  49. model.layers[il].wo, NULL,
  50. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  51. }
  52. if (il == n_layer - 1 && inp_out_ids) {
  53. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  54. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  55. }
  56. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  57. cb(ffn_inp, "ffn_inp", il);
  58. // feed-forward network
  59. cur = build_norm(ffn_inp,
  60. model.layers[il].ffn_norm, NULL,
  61. LLM_NORM_RMS, il);
  62. cb(cur, "ffn_norm", il);
  63. cur = build_ffn(cur,
  64. model.layers[il].ffn_up, NULL, NULL,
  65. model.layers[il].ffn_gate, NULL, NULL,
  66. model.layers[il].ffn_down, NULL, NULL,
  67. NULL,
  68. LLM_FFN_SILU, LLM_FFN_PAR, il);
  69. cb(cur, "ffn_out", il);
  70. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  71. cb(ffn_out, "ffn_out", il);
  72. // MoE
  73. cur = build_norm(inpSA,
  74. model.layers[il].ffn_norm_exps, NULL,
  75. LLM_NORM_RMS, il);
  76. cb(cur, "ffn_norm_exps", il);
  77. cur = build_moe_ffn(cur,
  78. model.layers[il].ffn_gate_inp,
  79. model.layers[il].ffn_up_exps,
  80. model.layers[il].ffn_gate_exps,
  81. model.layers[il].ffn_down_exps,
  82. nullptr,
  83. n_expert, n_expert_used,
  84. LLM_FFN_SILU, true,
  85. false, 0.0,
  86. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  87. il);
  88. cb(cur, "ffn_moe_out", il);
  89. cur = ggml_add(ctx0, cur, ffn_out);
  90. cb(cur, "ffn_out", il);
  91. cur = build_cvec(cur, il);
  92. cb(cur, "l_out", il);
  93. // input for next layer
  94. inpL = cur;
  95. }
  96. cur = inpL;
  97. cur = build_norm(cur,
  98. model.output_norm, NULL,
  99. LLM_NORM_RMS, -1);
  100. cb(cur, "result_norm", -1);
  101. res->t_embd = cur;
  102. // lm_head
  103. cur = build_lora_mm(model.output, cur);
  104. cb(cur, "result_output", -1);
  105. res->t_logits = cur;
  106. ggml_build_forward_expand(gf, cur);
  107. }