llm_build_bitnet.cpp 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. #include "../llama-model.h"
  2. #include "../llama-graph.h"
  3. #include "llm_build_bitnet.h"
  4. #include <cmath>
  5. llm_build_bitnet::llm_build_bitnet(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6. const int64_t n_embd_head = hparams.n_embd_head_v;
  7. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8. ggml_tensor * cur;
  9. ggml_tensor * inpL;
  10. inpL = build_inp_embd(model.tok_embd);
  11. // inp_pos - contains the positions
  12. ggml_tensor * inp_pos = build_inp_pos();
  13. auto * inp_attn = build_attn_inp_kv();
  14. ggml_tensor * inp_out_ids = build_inp_out_ids();
  15. for (int il = 0; il < n_layer; ++il) {
  16. ggml_tensor * inpSA = inpL;
  17. cur = build_norm(inpL,
  18. model.layers[il].attn_norm, NULL,
  19. LLM_NORM_RMS, il);
  20. cb(cur, "attn_norm", il);
  21. // self-attention
  22. {
  23. // compute Q and K and RoPE them
  24. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  25. if (model.layers[il].wq_scale) {
  26. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  27. }
  28. cb(Qcur, "Qcur", il);
  29. if (model.layers[il].bq) {
  30. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  31. cb(Qcur, "Qcur", il);
  32. }
  33. // B1.K
  34. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  35. if (model.layers[il].wk_scale) {
  36. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  37. }
  38. cb(Kcur, "Kcur", il);
  39. if (model.layers[il].bk) {
  40. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  41. cb(Kcur, "Kcur", il);
  42. }
  43. // B1.V
  44. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  45. if (model.layers[il].wv_scale) {
  46. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  47. }
  48. cb(Vcur, "Vcur", il);
  49. if (model.layers[il].bv) {
  50. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  51. cb(Vcur, "Vcur", il);
  52. }
  53. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  54. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  55. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  56. Qcur = ggml_rope_ext(
  57. ctx0, Qcur, inp_pos, nullptr,
  58. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  59. ext_factor, attn_factor, beta_fast, beta_slow
  60. );
  61. Kcur = ggml_rope_ext(
  62. ctx0, Kcur, inp_pos, nullptr,
  63. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  64. ext_factor, attn_factor, beta_fast, beta_slow
  65. );
  66. cb(Qcur, "Qcur", il);
  67. cb(Kcur, "Kcur", il);
  68. cb(Vcur, "Vcur", il);
  69. cur = build_attn(inp_attn,
  70. NULL, NULL,
  71. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  72. cur = build_norm(cur,
  73. model.layers[il].attn_sub_norm, NULL,
  74. LLM_NORM_RMS, il);
  75. cb(cur, "attn_sub_norm", il);
  76. cur = build_lora_mm(model.layers[il].wo, cur);
  77. if (model.layers[il].wo_scale) {
  78. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  79. }
  80. if (model.layers[il].bo) {
  81. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  82. }
  83. cb(cur, "attn_out", il);
  84. }
  85. if (il == n_layer - 1 && inp_out_ids) {
  86. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  87. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  88. }
  89. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  90. cb(ffn_inp, "ffn_inp", il);
  91. // feed-forward forward
  92. cur = build_norm(ffn_inp,
  93. model.layers[il].ffn_norm, NULL,
  94. LLM_NORM_RMS, il);
  95. cb(cur, "ffn_norm", il);
  96. cur = build_ffn(cur,
  97. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  98. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  99. NULL, NULL, NULL,
  100. NULL,
  101. LLM_FFN_SILU, LLM_FFN_PAR, il);
  102. cb(cur, "ffn_sub_out", il);
  103. cur = build_norm(cur,
  104. model.layers[il].ffn_sub_norm, NULL,
  105. LLM_NORM_RMS, il);
  106. cb(cur, "ffn_sub_norm", il);
  107. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  108. if (model.layers[il].ffn_down_scale) {
  109. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  110. }
  111. cb(cur, "ffn_down", il);
  112. cur = ggml_add(ctx0, cur, ffn_inp);
  113. cb(cur, "l_out", il);
  114. // input for next layer
  115. inpL = cur;
  116. }
  117. cur = inpL;
  118. cur = build_norm(cur,
  119. model.output_norm, NULL,
  120. LLM_NORM_RMS, -1);
  121. cb(cur, "result_norm", -1);
  122. res->t_embd = cur;
  123. // lm_head
  124. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  125. cur = build_lora_mm(model.tok_embd, cur);
  126. cb(cur, "result_output", -1);
  127. res->t_logits = cur;
  128. ggml_build_forward_expand(gf, cur);
  129. }