| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- #include "../llama-model.h"
- #include "../llama-graph.h"
- #include "llm_build_chameleon.h"
- #include <cmath>
- #include <float.h>
- llm_build_chameleon::llm_build_chameleon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * inpSA = inpL;
- // norm
- if (hparams.swin_norm) {
- cur = inpL;
- } else {
- cur = build_norm(inpL,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_norm", il);
- }
- // self-attention
- {
- // compute Q and K and RoPE them
- ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].attn_q_norm) {
- Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
- ggml_element_size(Qcur) * n_embd_head,
- ggml_element_size(Qcur) * n_embd_head * n_head,
- 0);
- cb(Qcur, "Qcur", il);
- Qcur = build_norm(Qcur,
- model.layers[il].attn_q_norm,
- model.layers[il].attn_q_norm_b,
- LLM_NORM, il);
- cb(Qcur, "Qcur", il);
- }
- if (model.layers[il].attn_k_norm) {
- Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
- ggml_element_size(Kcur) * n_embd_head,
- ggml_element_size(Kcur) * n_embd_head * n_head_kv,
- 0);
- cb(Kcur, "Kcur", il);
- Kcur = build_norm(Kcur,
- model.layers[il].attn_k_norm,
- model.layers[il].attn_k_norm_b,
- LLM_NORM, il);
- cb(Kcur, "Kcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, nullptr,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- if (hparams.swin_norm) {
- cur = build_norm(cur,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, il);
- }
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- if (!hparams.swin_norm) {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- }
- cur = build_ffn(cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
- if (hparams.swin_norm) {
- cur = build_norm(cur,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "ffn_norm", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = build_norm(cur,
- model.output_norm, NULL,
- LLM_NORM_RMS, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- // lm_head
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output_with_img_logits", -1);
- // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
- // Needs to be removed once image outputs are supported.
- int img_token_end_idx = 8196;
- int img_token_start_idx = 4;
- int num_img_tokens = img_token_end_idx - img_token_start_idx;
- // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
- // which ensures that text token values are always at least larger than image token values
- ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
- img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
- cb(img_logits, "img_logits", -1);
- cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
|