llm_build_chameleon.cpp 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. #include "../llama-model.h"
  2. #include "../llama-graph.h"
  3. #include "llm_build_chameleon.h"
  4. #include <cmath>
  5. #include <float.h>
  6. llm_build_chameleon::llm_build_chameleon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  7. const int64_t n_embd_head = hparams.n_embd_head_v;
  8. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10. ggml_tensor * cur;
  11. ggml_tensor * inpL;
  12. inpL = build_inp_embd(model.tok_embd);
  13. // inp_pos - contains the positions
  14. ggml_tensor * inp_pos = build_inp_pos();
  15. auto * inp_attn = build_attn_inp_kv();
  16. ggml_tensor * inp_out_ids = build_inp_out_ids();
  17. for (int il = 0; il < n_layer; ++il) {
  18. ggml_tensor * inpSA = inpL;
  19. // norm
  20. if (hparams.swin_norm) {
  21. cur = inpL;
  22. } else {
  23. cur = build_norm(inpL,
  24. model.layers[il].attn_norm, NULL,
  25. LLM_NORM_RMS, il);
  26. cb(cur, "attn_norm", il);
  27. }
  28. // self-attention
  29. {
  30. // compute Q and K and RoPE them
  31. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  32. cb(Qcur, "Qcur", il);
  33. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  34. cb(Kcur, "Kcur", il);
  35. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  36. cb(Vcur, "Vcur", il);
  37. if (model.layers[il].attn_q_norm) {
  38. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  39. ggml_element_size(Qcur) * n_embd_head,
  40. ggml_element_size(Qcur) * n_embd_head * n_head,
  41. 0);
  42. cb(Qcur, "Qcur", il);
  43. Qcur = build_norm(Qcur,
  44. model.layers[il].attn_q_norm,
  45. model.layers[il].attn_q_norm_b,
  46. LLM_NORM, il);
  47. cb(Qcur, "Qcur", il);
  48. }
  49. if (model.layers[il].attn_k_norm) {
  50. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  51. ggml_element_size(Kcur) * n_embd_head,
  52. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  53. 0);
  54. cb(Kcur, "Kcur", il);
  55. Kcur = build_norm(Kcur,
  56. model.layers[il].attn_k_norm,
  57. model.layers[il].attn_k_norm_b,
  58. LLM_NORM, il);
  59. cb(Kcur, "Kcur", il);
  60. }
  61. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  62. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  63. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  64. Qcur = ggml_rope_ext(
  65. ctx0, Qcur, inp_pos, nullptr,
  66. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  67. ext_factor, attn_factor, beta_fast, beta_slow
  68. );
  69. Kcur = ggml_rope_ext(
  70. ctx0, Kcur, inp_pos, nullptr,
  71. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  72. ext_factor, attn_factor, beta_fast, beta_slow
  73. );
  74. cb(Qcur, "Qcur", il);
  75. cb(Kcur, "Kcur", il);
  76. cb(Vcur, "Vcur", il);
  77. cur = build_attn(inp_attn,
  78. model.layers[il].wo, nullptr,
  79. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  80. }
  81. if (il == n_layer - 1 && inp_out_ids) {
  82. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  83. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  84. }
  85. if (hparams.swin_norm) {
  86. cur = build_norm(cur,
  87. model.layers[il].attn_norm, NULL,
  88. LLM_NORM_RMS, il);
  89. }
  90. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  91. cb(ffn_inp, "ffn_inp", il);
  92. // feed-forward network
  93. if (!hparams.swin_norm) {
  94. cur = build_norm(ffn_inp,
  95. model.layers[il].ffn_norm, NULL,
  96. LLM_NORM_RMS, il);
  97. cb(cur, "ffn_norm", il);
  98. }
  99. cur = build_ffn(cur,
  100. model.layers[il].ffn_up, NULL, NULL,
  101. model.layers[il].ffn_gate, NULL, NULL,
  102. model.layers[il].ffn_down, NULL, NULL,
  103. NULL,
  104. LLM_FFN_SILU, LLM_FFN_PAR, il);
  105. cb(cur, "ffn_out", il);
  106. if (hparams.swin_norm) {
  107. cur = build_norm(cur,
  108. model.layers[il].ffn_norm, NULL,
  109. LLM_NORM_RMS, il);
  110. cb(cur, "ffn_norm", il);
  111. }
  112. cur = ggml_add(ctx0, cur, ffn_inp);
  113. cb(cur, "ffn_out", il);
  114. cur = build_cvec(cur, il);
  115. cb(cur, "l_out", il);
  116. // input for next layer
  117. inpL = cur;
  118. }
  119. cur = inpL;
  120. cur = build_norm(cur,
  121. model.output_norm, NULL,
  122. LLM_NORM_RMS, -1);
  123. cb(cur, "result_norm", -1);
  124. res->t_embd = cur;
  125. // lm_head
  126. cur = build_lora_mm(model.output, cur);
  127. cb(cur, "result_output_with_img_logits", -1);
  128. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  129. // Needs to be removed once image outputs are supported.
  130. int img_token_end_idx = 8196;
  131. int img_token_start_idx = 4;
  132. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  133. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  134. // which ensures that text token values are always at least larger than image token values
  135. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  136. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  137. cb(img_logits, "img_logits", -1);
  138. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  139. cb(cur, "result_output", -1);
  140. res->t_logits = cur;
  141. ggml_build_forward_expand(gf, cur);
  142. }