llm_build_cohere2_iswa.cpp 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. #include "../llama-model.h"
  2. #include "../llama-graph.h"
  3. #include "llm_build_cohere2_iswa.h"
  4. #include <cmath>
  5. llm_build_cohere2_iswa::llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6. const int64_t n_embd_head = hparams.n_embd_head_v;
  7. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8. const float f_logit_scale = hparams.f_logit_scale;
  9. ggml_tensor * cur;
  10. ggml_tensor * inpL;
  11. inpL = build_inp_embd(model.tok_embd);
  12. // inp_pos - contains the positions
  13. ggml_tensor * inp_pos = build_inp_pos();
  14. auto * inp_attn = build_attn_inp_kv_iswa();
  15. ggml_tensor * inp_out_ids = build_inp_out_ids();
  16. for (int il = 0; il < n_layer; ++il) {
  17. const bool is_swa = hparams.is_swa(il);
  18. // norm
  19. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  20. cb(cur, "attn_norm", il);
  21. ggml_tensor * ffn_inp = cur;
  22. // self-attention
  23. {
  24. // rope freq factors for 128k context
  25. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  26. // compute Q and K and RoPE them
  27. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  28. cb(Qcur, "Qcur", il);
  29. if (model.layers[il].bq) {
  30. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  31. cb(Qcur, "Qcur", il);
  32. }
  33. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  34. cb(Kcur, "Kcur", il);
  35. if (model.layers[il].bk) {
  36. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  37. cb(Kcur, "Kcur", il);
  38. }
  39. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  40. cb(Vcur, "Vcur", il);
  41. if (model.layers[il].bv) {
  42. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  43. cb(Vcur, "Vcur", il);
  44. }
  45. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  46. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  47. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  48. if (is_swa) {
  49. Qcur = ggml_rope_ext(
  50. ctx0, Qcur, inp_pos, rope_factors,
  51. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  52. ext_factor, attn_factor, beta_fast, beta_slow
  53. );
  54. Kcur = ggml_rope_ext(
  55. ctx0, Kcur, inp_pos, rope_factors,
  56. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  57. ext_factor, attn_factor, beta_fast, beta_slow
  58. );
  59. }
  60. cb(Qcur, "Qcur", il);
  61. cb(Kcur, "Kcur", il);
  62. cb(Vcur, "Vcur", il);
  63. cur = build_attn(inp_attn,
  64. model.layers[il].wo, model.layers[il].bo,
  65. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  66. }
  67. if (il == n_layer - 1 && inp_out_ids) {
  68. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  69. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  70. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  71. }
  72. ggml_tensor * attn_out = cur;
  73. // feed-forward network
  74. {
  75. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  76. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  77. il);
  78. cb(cur, "ffn_out", il);
  79. }
  80. // add together residual + FFN + self-attention
  81. cur = ggml_add(ctx0, cur, inpL);
  82. cur = ggml_add(ctx0, cur, attn_out);
  83. cur = build_cvec(cur, il);
  84. cb(cur, "l_out", il);
  85. // input for next layer
  86. inpL = cur;
  87. }
  88. cur = inpL;
  89. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  90. cb(cur, "result_norm", -1);
  91. res->t_embd = cur;
  92. // lm_head
  93. cur = build_lora_mm(model.output, cur);
  94. if (f_logit_scale) {
  95. cur = ggml_scale(ctx0, cur, f_logit_scale);
  96. }
  97. cb(cur, "result_output", -1);
  98. res->t_logits = cur;
  99. ggml_build_forward_expand(gf, cur);
  100. }