llm_build_grok.cpp 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172
  1. #include "../llama-model.h"
  2. #include "../llama-graph.h"
  3. #include "llm_build_grok.h"
  4. #include <cmath>
  5. llm_build_grok::llm_build_grok(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6. const int64_t n_embd_head = hparams.n_embd_head_v;
  7. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9. ggml_tensor * cur;
  10. ggml_tensor * inpL;
  11. inpL = build_inp_embd(model.tok_embd);
  12. // inp_pos - contains the positions
  13. ggml_tensor * inp_pos = build_inp_pos();
  14. auto * inp_attn = build_attn_inp_kv();
  15. ggml_tensor * inp_out_ids = build_inp_out_ids();
  16. for (int il = 0; il < n_layer; ++il) {
  17. ggml_tensor * inpSA = inpL;
  18. // norm
  19. cur = build_norm(inpL,
  20. model.layers[il].attn_norm, NULL,
  21. LLM_NORM_RMS, il);
  22. cb(cur, "attn_norm", il);
  23. // self-attention
  24. {
  25. // compute Q and K and RoPE them
  26. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  27. cb(Qcur, "Qcur", il);
  28. if (model.layers[il].bq) {
  29. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  30. cb(Qcur, "Qcur", il);
  31. }
  32. ;
  33. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  34. cb(Kcur, "Kcur", il);
  35. if (model.layers[il].bk) {
  36. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  37. cb(Kcur, "Kcur", il);
  38. }
  39. ;
  40. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  41. cb(Vcur, "Vcur", il);
  42. if (model.layers[il].bv) {
  43. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  44. cb(Vcur, "Vcur", il);
  45. }
  46. ;
  47. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  48. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  49. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  50. Qcur = ggml_rope_ext(
  51. ctx0, Qcur, inp_pos, nullptr,
  52. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  53. ext_factor, attn_factor, beta_fast, beta_slow
  54. );
  55. Kcur = ggml_rope_ext(
  56. ctx0, Kcur, inp_pos, nullptr,
  57. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  58. ext_factor, attn_factor, beta_fast, beta_slow
  59. );
  60. cb(Qcur, "Qcur", il);
  61. cb(Kcur, "Kcur", il);
  62. cb(Vcur, "Vcur", il);
  63. cur = build_attn(inp_attn,
  64. model.layers[il].wo, model.layers[il].bo,
  65. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
  66. }
  67. ;
  68. if (il == n_layer - 1 && inp_out_ids) {
  69. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  70. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  71. }
  72. ;
  73. cur = build_norm(cur,
  74. model.layers[il].attn_out_norm, NULL,
  75. LLM_NORM_RMS, il);
  76. cb(cur, "attn_out_norm", il);
  77. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  78. cb(ffn_inp, "ffn_inp", il);
  79. // feed-forward network
  80. cur = build_norm(ffn_inp,
  81. model.layers[il].ffn_norm, NULL,
  82. LLM_NORM_RMS, il);
  83. cb(cur, "ffn_norm", il);
  84. // MoE branch
  85. ggml_tensor * moe_out = build_moe_ffn(cur,
  86. model.layers[il].ffn_gate_inp,
  87. model.layers[il].ffn_up_exps,
  88. model.layers[il].ffn_gate_exps,
  89. model.layers[il].ffn_down_exps,
  90. nullptr,
  91. n_expert, n_expert_used,
  92. LLM_FFN_GELU, true,
  93. false, 0.0,
  94. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  95. il);
  96. cb(moe_out, "ffn_moe_out", il);
  97. if (model.layers[il].ffn_up) {
  98. ggml_tensor * ffn_out = build_ffn(cur,
  99. model.layers[il].ffn_up, NULL, NULL,
  100. model.layers[il].ffn_gate, NULL, NULL,
  101. model.layers[il].ffn_down, NULL, NULL,
  102. NULL,
  103. LLM_FFN_GELU, LLM_FFN_PAR, il);
  104. cb(ffn_out, "ffn_out", il);
  105. cur = ggml_scale(ctx0, ggml_add(ctx0, ffn_out, moe_out), std::sqrt(2) / 2);
  106. cb(cur, "ffn_out", il);
  107. } else {
  108. cur = moe_out;
  109. }
  110. ;
  111. cur = build_norm(cur,
  112. model.layers[il].ffn_post_norm, NULL,
  113. LLM_NORM_RMS, il);
  114. cb(cur, "ffn_post_norm", il);
  115. cur = ggml_add(ctx0, cur, ffn_inp);
  116. cb(cur, "ffn_out", il);
  117. cur = build_cvec(cur, il);
  118. cb(cur, "l_out", il);
  119. // input for next layer
  120. inpL = cur;
  121. }
  122. ;
  123. cur = inpL;
  124. cur = build_norm(cur,
  125. model.output_norm, NULL,
  126. LLM_NORM_RMS, -1);
  127. cb(cur, "result_norm", -1);
  128. res->t_embd = cur;
  129. // lm_head
  130. cur = build_lora_mm(model.output, cur);
  131. cur = ggml_scale(ctx0, cur, hparams.f_logit_scale);
  132. // final logit soft-capping
  133. if (hparams.f_final_logit_softcapping) {
  134. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  135. cur = ggml_tanh(ctx0, cur);
  136. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  137. }
  138. ;
  139. cb(cur, "result_output", -1);
  140. res->t_logits = cur;
  141. ggml_build_forward_expand(gf, cur);
  142. }