llm_build_orion.cpp 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. #include "../llama-model.h"
  2. #include "../llama-graph.h"
  3. #include "llm_build_orion.h"
  4. #include <cmath>
  5. llm_build_orion::llm_build_orion(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6. const int64_t n_embd_head = hparams.n_embd_head_v;
  7. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9. ggml_tensor * cur;
  10. ggml_tensor * inpL;
  11. inpL = build_inp_embd(model.tok_embd);
  12. // inp_pos - contains the positions
  13. ggml_tensor * inp_pos = build_inp_pos();
  14. auto * inp_attn = build_attn_inp_kv();
  15. ggml_tensor * inp_out_ids = build_inp_out_ids();
  16. for (int il = 0; il < n_layer; ++il) {
  17. ggml_tensor * inpSA = inpL;
  18. // norm
  19. cur = build_norm(inpL,
  20. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  21. LLM_NORM, il);
  22. cb(cur, "attn_norm", il);
  23. // self-attention
  24. {
  25. // compute Q and K and RoPE them
  26. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  27. cb(Qcur, "Qcur", il);
  28. // if (model.layers[il].bq) {
  29. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  30. // cb(Qcur, "Qcur", il);
  31. // }
  32. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  33. cb(Kcur, "Kcur", il);
  34. // if (model.layers[il].bk) {
  35. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  36. // cb(Kcur, "Kcur", il);
  37. // }
  38. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  39. cb(Vcur, "Vcur", il);
  40. // if (model.layers[il].bv) {
  41. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  42. // cb(Vcur, "Vcur", il);
  43. // }
  44. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  45. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  46. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  47. Qcur = ggml_rope_ext(
  48. ctx0, Qcur, inp_pos, nullptr,
  49. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  50. ext_factor, attn_factor, beta_fast, beta_slow
  51. );
  52. Kcur = ggml_rope_ext(
  53. ctx0, Kcur, inp_pos, nullptr,
  54. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  55. ext_factor, attn_factor, beta_fast, beta_slow
  56. );
  57. cb(Qcur, "Qcur", il);
  58. cb(Kcur, "Kcur", il);
  59. cb(Vcur, "Vcur", il);
  60. cur = build_attn(inp_attn,
  61. model.layers[il].wo, NULL,
  62. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  63. }
  64. ;
  65. if (il == n_layer - 1 && inp_out_ids) {
  66. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  67. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  68. }
  69. ;
  70. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  71. cb(ffn_inp, "ffn_inp", il);
  72. // feed-forward network
  73. cur = build_norm(ffn_inp,
  74. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  75. LLM_NORM, il);
  76. cb(cur, "ffn_norm", il);
  77. cur = build_ffn(cur,
  78. model.layers[il].ffn_up, NULL, NULL,
  79. model.layers[il].ffn_gate, NULL, NULL,
  80. model.layers[il].ffn_down, NULL, NULL,
  81. NULL,
  82. LLM_FFN_SILU, LLM_FFN_PAR, il);
  83. cb(cur, "ffn_out", il);
  84. cur = ggml_add(ctx0, cur, ffn_inp);
  85. cur = build_cvec(cur, il);
  86. cb(cur, "l_out", il);
  87. // input for next layer
  88. inpL = cur;
  89. }
  90. ;
  91. cur = inpL;
  92. cur = build_norm(cur,
  93. model.output_norm, model.output_norm_b,
  94. LLM_NORM, -1);
  95. cb(cur, "result_norm", -1);
  96. res->t_embd = cur;
  97. // lm_head
  98. cur = build_lora_mm(model.output, cur);
  99. cb(cur, "result_output", -1);
  100. res->t_logits = cur;
  101. ggml_build_forward_expand(gf, cur);
  102. }
  103. ;