ggml-quants.c 606 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378
  1. #define GGML_COMMON_IMPL_C
  2. #include "ggml-common.h"
  3. #include "ggml-quants.h"
  4. #include "ggml-impl.h"
  5. #include <math.h>
  6. #include <string.h>
  7. #include <assert.h>
  8. #include <float.h>
  9. #include <stdlib.h> // for qsort
  10. #include <stdio.h> // for GGML_ASSERT
  11. #define GROUP_MAX_EPS 1e-15f
  12. #define GROUP_MAX_EPS_IQ3_XXS 1e-8f
  13. #define GROUP_MAX_EPS_IQ2_S 1e-8f
  14. #define GROUP_MAX_EPS_IQ1_M 1e-7f
  15. #define GROUP_MAX_EPS_IQ1_S 1e-12f
  16. #if defined(_MSC_VER)
  17. // disable "possible loss of data" to avoid warnings for hundreds of casts
  18. // we should just be careful :)
  19. #pragma warning(disable: 4244 4267)
  20. #endif
  21. #define UNUSED GGML_UNUSED
  22. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  23. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  24. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  25. // multiply int8_t, add results pairwise twice
  26. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  27. // Get absolute values of x vectors
  28. const __m128i ax = _mm_sign_epi8(x, x);
  29. // Sign the values of the y vectors
  30. const __m128i sy = _mm_sign_epi8(y, x);
  31. // Perform multiplication and create 16-bit values
  32. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  33. const __m128i ones = _mm_set1_epi16(1);
  34. return _mm_madd_epi16(ones, dot);
  35. }
  36. #if __AVX__ || __AVX2__ || __AVX512F__
  37. // horizontally add 8 floats
  38. static inline float hsum_float_8(const __m256 x) {
  39. __m128 res = _mm256_extractf128_ps(x, 1);
  40. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  41. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  42. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  43. return _mm_cvtss_f32(res);
  44. }
  45. // horizontally add 8 int32_t
  46. static inline int hsum_i32_8(const __m256i a) {
  47. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  48. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  49. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  50. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  51. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  52. }
  53. // horizontally add 4 int32_t
  54. static inline int hsum_i32_4(const __m128i a) {
  55. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  56. const __m128i sum64 = _mm_add_epi32(hi64, a);
  57. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  58. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  59. }
  60. #if defined(__AVX2__) || defined(__AVX512F__)
  61. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  62. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  63. uint32_t x32;
  64. memcpy(&x32, x, sizeof(uint32_t));
  65. const __m256i shuf_mask = _mm256_set_epi64x(
  66. 0x0303030303030303, 0x0202020202020202,
  67. 0x0101010101010101, 0x0000000000000000);
  68. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  69. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  70. bytes = _mm256_or_si256(bytes, bit_mask);
  71. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  72. }
  73. // Unpack 32 4-bit fields into 32 bytes
  74. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  75. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  76. {
  77. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  78. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  79. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  80. return _mm256_and_si256(lowMask, bytes);
  81. }
  82. // add int16_t pairwise and return as float vector
  83. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  84. const __m256i ones = _mm256_set1_epi16(1);
  85. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  86. return _mm256_cvtepi32_ps(summed_pairs);
  87. }
  88. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  89. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  90. const __m256i zero = _mm256_setzero_si256();
  91. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  92. return _mm256_cvtepi32_ps(summed_pairs);
  93. #else
  94. // Perform multiplication and create 16-bit values
  95. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  96. return sum_i16_pairs_float(dot);
  97. #endif
  98. }
  99. // multiply int8_t, add results pairwise twice and return as float vector
  100. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  101. #if __AVXVNNIINT8__
  102. const __m256i zero = _mm256_setzero_si256();
  103. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  104. return _mm256_cvtepi32_ps(summed_pairs);
  105. #else
  106. // Get absolute values of x vectors
  107. const __m256i ax = _mm256_sign_epi8(x, x);
  108. // Sign the values of the y vectors
  109. const __m256i sy = _mm256_sign_epi8(y, x);
  110. return mul_sum_us8_pairs_float(ax, sy);
  111. #endif
  112. }
  113. static inline __m128i packNibbles( __m256i bytes )
  114. {
  115. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  116. #if __AVX512F__
  117. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  118. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  119. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  120. #else
  121. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  122. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  123. __m256i low = _mm256_and_si256( lowByte, bytes );
  124. high = _mm256_srli_epi16( high, 4 );
  125. bytes = _mm256_or_si256( low, high );
  126. // Compress uint16_t lanes into bytes
  127. __m128i r0 = _mm256_castsi256_si128( bytes );
  128. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  129. return _mm_packus_epi16( r0, r1 );
  130. #endif
  131. }
  132. #elif defined(__AVX__)
  133. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  134. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  135. uint32_t x32;
  136. memcpy(&x32, x, sizeof(uint32_t));
  137. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  138. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  139. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  140. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  141. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  142. bytesl = _mm_or_si128(bytesl, bit_mask);
  143. bytesh = _mm_or_si128(bytesh, bit_mask);
  144. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  145. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  146. return MM256_SET_M128I(bytesh, bytesl);
  147. }
  148. // Unpack 32 4-bit fields into 32 bytes
  149. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  150. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  151. {
  152. // Load 16 bytes from memory
  153. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  154. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  155. const __m128i lowMask = _mm_set1_epi8(0xF);
  156. tmpl = _mm_and_si128(lowMask, tmpl);
  157. tmph = _mm_and_si128(lowMask, tmph);
  158. return MM256_SET_M128I(tmph, tmpl);
  159. }
  160. // add int16_t pairwise and return as float vector
  161. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  162. const __m128i ones = _mm_set1_epi16(1);
  163. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  164. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  165. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  166. return _mm256_cvtepi32_ps(summed_pairs);
  167. }
  168. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  169. const __m128i axl = _mm256_castsi256_si128(ax);
  170. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  171. const __m128i syl = _mm256_castsi256_si128(sy);
  172. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  173. // Perform multiplication and create 16-bit values
  174. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  175. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  176. return sum_i16_pairs_float(doth, dotl);
  177. }
  178. // multiply int8_t, add results pairwise twice and return as float vector
  179. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  180. const __m128i xl = _mm256_castsi256_si128(x);
  181. const __m128i xh = _mm256_extractf128_si256(x, 1);
  182. const __m128i yl = _mm256_castsi256_si128(y);
  183. const __m128i yh = _mm256_extractf128_si256(y, 1);
  184. // Get absolute values of x vectors
  185. const __m128i axl = _mm_sign_epi8(xl, xl);
  186. const __m128i axh = _mm_sign_epi8(xh, xh);
  187. // Sign the values of the y vectors
  188. const __m128i syl = _mm_sign_epi8(yl, xl);
  189. const __m128i syh = _mm_sign_epi8(yh, xh);
  190. // Perform multiplication and create 16-bit values
  191. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  192. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  193. return sum_i16_pairs_float(doth, dotl);
  194. }
  195. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  196. {
  197. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  198. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  199. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  200. __m128i low = _mm_and_si128( lowByte, bytes1 );
  201. high = _mm_srli_epi16( high, 4 );
  202. bytes1 = _mm_or_si128( low, high );
  203. high = _mm_andnot_si128( lowByte, bytes2 );
  204. low = _mm_and_si128( lowByte, bytes2 );
  205. high = _mm_srli_epi16( high, 4 );
  206. bytes2 = _mm_or_si128( low, high );
  207. return _mm_packus_epi16( bytes1, bytes2);
  208. }
  209. #endif
  210. #elif defined(__SSSE3__)
  211. // horizontally add 4x4 floats
  212. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  213. __m128 res_0 =_mm_hadd_ps(a, b);
  214. __m128 res_1 =_mm_hadd_ps(c, d);
  215. __m128 res =_mm_hadd_ps(res_0, res_1);
  216. res =_mm_hadd_ps(res, res);
  217. res =_mm_hadd_ps(res, res);
  218. return _mm_cvtss_f32(res);
  219. }
  220. #endif // __AVX__ || __AVX2__ || __AVX512F__
  221. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  222. #if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  223. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  224. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  225. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  226. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  227. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  228. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  229. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  230. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  231. // precomputed tables for expanding 8bits to 8 bytes:
  232. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  233. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  234. #endif
  235. #if defined(__loongarch_asx)
  236. #ifdef __clang__
  237. #define VREGS_PREFIX "$vr"
  238. #define XREGS_PREFIX "$xr"
  239. #else // GCC
  240. #define VREGS_PREFIX "$f"
  241. #define XREGS_PREFIX "$f"
  242. #endif
  243. #define __ALL_REGS "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31"
  244. // Convert __m128i to __m256i
  245. static inline __m256i ____m256i(__m128i in) {
  246. __m256i out = __lasx_xvldi(0);
  247. __asm__ volatile (
  248. ".irp i," __ALL_REGS "\n\t"
  249. " .ifc %[out], " XREGS_PREFIX"\\i \n\t"
  250. " .irp j," __ALL_REGS "\n\t"
  251. " .ifc %[in], " VREGS_PREFIX "\\j \n\t"
  252. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  253. " .endif \n\t"
  254. " .endr \n\t"
  255. " .endif \n\t"
  256. ".endr \n\t"
  257. : [out] "+f" (out) : [in] "f" (in)
  258. );
  259. return out;
  260. }
  261. // Convert two __m128i to __m256i
  262. static inline __m256i lasx_set_q(__m128i inhi, __m128i inlo) {
  263. __m256i out;
  264. __asm__ volatile (
  265. ".irp i," __ALL_REGS "\n\t"
  266. " .ifc %[hi], " VREGS_PREFIX "\\i \n\t"
  267. " .irp j," __ALL_REGS "\n\t"
  268. " .ifc %[lo], " VREGS_PREFIX "\\j \n\t"
  269. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  270. " .endif \n\t"
  271. " .endr \n\t"
  272. " .endif \n\t"
  273. ".endr \n\t"
  274. ".ifnc %[out], %[hi] \n\t"
  275. ".irp i," __ALL_REGS "\n\t"
  276. " .ifc %[out], " XREGS_PREFIX "\\i \n\t"
  277. " .irp j," __ALL_REGS "\n\t"
  278. " .ifc %[hi], " VREGS_PREFIX "\\j \n\t"
  279. " xvori.b $xr\\i, $xr\\j, 0 \n\t"
  280. " .endif \n\t"
  281. " .endr \n\t"
  282. " .endif \n\t"
  283. ".endr \n\t"
  284. ".endif \n\t"
  285. : [out] "=f" (out), [hi] "+f" (inhi)
  286. : [lo] "f" (inlo)
  287. );
  288. return out;
  289. }
  290. // Convert __m256i low part to __m128i
  291. static inline __m128i lasx_extracti128_lo(__m256i in) {
  292. __m128i out;
  293. __asm__ volatile (
  294. ".ifnc %[out], %[in] \n\t"
  295. ".irp i," __ALL_REGS "\n\t"
  296. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  297. " .irp j," __ALL_REGS "\n\t"
  298. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  299. " vori.b $vr\\i, $vr\\j, 0 \n\t"
  300. " .endif \n\t"
  301. " .endr \n\t"
  302. " .endif \n\t"
  303. ".endr \n\t"
  304. ".endif \n\t"
  305. : [out] "=f" (out) : [in] "f" (in)
  306. );
  307. return out;
  308. }
  309. // Convert __m256i high part to __m128i
  310. static inline __m128i lasx_extracti128_hi(__m256i in) {
  311. __m128i out;
  312. __asm__ volatile (
  313. ".irp i," __ALL_REGS "\n\t"
  314. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  315. " .irp j," __ALL_REGS "\n\t"
  316. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  317. " xvpermi.q $xr\\i, $xr\\j, 0x11 \n\t"
  318. " .endif \n\t"
  319. " .endr \n\t"
  320. " .endif \n\t"
  321. ".endr \n\t"
  322. : [out] "=f" (out) : [in] "f" (in)
  323. );
  324. return out;
  325. }
  326. static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0) {
  327. v8i32 __ret = {e0, e1, e2, e3, e4, e5, e6, e7};
  328. return (__m256i)__ret;
  329. }
  330. static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
  331. v4i32 __ret = {d, c, b, a};
  332. return (__m128i)__ret;
  333. }
  334. static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) {
  335. v4i64 __ret = {d, c, b, a};
  336. return (__m256i)__ret;
  337. }
  338. static __m256i lasx_insertf128( __m128i x, __m128i y) {
  339. return lasx_set_q(x, y);
  340. }
  341. static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
  342. __m128i mask_f, zero, tmp0, tmp2, mask;
  343. int f = 0x8f;
  344. mask_f = __lsx_vreplgr2vr_b(f);
  345. zero = __lsx_vldi(0);
  346. tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
  347. tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  348. mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
  349. tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
  350. return __lsx_vshuf_b(a, zero, tmp2);
  351. }
  352. static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
  353. __m256i mask_f, zero, tmp0, tmp2, mask;
  354. int f = 0x8f;
  355. mask_f = __lasx_xvreplgr2vr_b(f);
  356. zero = __lasx_xvldi(0);
  357. tmp0 = __lasx_xvand_v(b, mask_f); // get mask with low 4 bit and sign bits
  358. tmp0 = __lasx_xvori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  359. mask = __lasx_xvsle_b(zero, tmp0); // if mask >= 0, set mask
  360. tmp2 = __lasx_xvand_v(tmp0, mask); // maskout the in2 < ones
  361. return __lasx_xvshuf_b(a, zero, tmp2);
  362. }
  363. static __m256i lasx_extu8_16(__m128i a) {
  364. __m128i zero = __lsx_vldi(0);
  365. __m128i vlo = __lsx_vilvl_b(zero, a);
  366. __m128i vhi = __lsx_vilvh_b(zero, a);
  367. return lasx_set_q(vhi, vlo);
  368. }
  369. static __m256i lasx_ext8_16(__m128i a) {
  370. __m128i sign = __lsx_vslti_b(a, 0);
  371. __m128i vlo = __lsx_vilvl_b(sign, a);
  372. __m128i vhi = __lsx_vilvh_b(sign, a);
  373. return lasx_set_q(vhi, vlo);
  374. }
  375. static __m256i lasx_ext16_32(__m128i a) {
  376. __m256i tmp1;
  377. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0);
  378. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1);
  379. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2);
  380. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3);
  381. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4);
  382. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5);
  383. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6);
  384. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7);
  385. return tmp1;
  386. }
  387. static __m128i lasx_extracti128( __m256i a, int pos) {
  388. __m128i ret;
  389. if( pos == 0)
  390. {
  391. ret = lasx_extracti128_lo(a);
  392. } else {
  393. ret = lasx_extracti128_hi(a);
  394. }
  395. return ret;
  396. }
  397. static __m128 lasx_extractf128( __m256 a, int pos) {
  398. __m128 ret;
  399. if( pos == 0)
  400. {
  401. ret = (__m128)lasx_extracti128_lo((__m256i)a);
  402. } else {
  403. ret = (__m128)lasx_extracti128_hi((__m256i)a);
  404. }
  405. return ret;
  406. }
  407. static __m128i lsx_hadd_h(__m128i a, __m128i b) {
  408. __m128i tmp1 = __lsx_vpickev_h(b, a);
  409. __m128i tmp2 = __lsx_vpickod_h(b, a);
  410. return __lsx_vadd_h(tmp1, tmp2);
  411. }
  412. static __m128i lsx_hadd_w(__m128i a, __m128i b) {
  413. __m128i tmp1 = __lsx_vpickev_w(b, a);
  414. __m128i tmp2 = __lsx_vpickod_w(b, a);
  415. return __lsx_vadd_w(tmp1, tmp2);
  416. }
  417. static __m128 lsx_hadd_s(__m128 a, __m128 b) {
  418. __m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
  419. __m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
  420. return __lsx_vfadd_s(tmp1, tmp2);
  421. }
  422. static __m256i lasx_maddubs_h(__m256i a, __m256i b) {
  423. __m256i tmp1, tmp2;
  424. tmp1 = __lasx_xvmulwev_h_b(a, b);
  425. tmp2 = __lasx_xvmulwod_h_b(a, b);
  426. return __lasx_xvsadd_h(tmp1, tmp2);
  427. }
  428. static __m256i lasx_madd_h(__m256i a, __m256i b) {
  429. __m256i tmp1, tmp2;
  430. tmp1 = __lasx_xvmulwev_w_h(a, b);
  431. tmp2 = __lasx_xvmulwod_w_h(a, b);
  432. return __lasx_xvadd_w(tmp1, tmp2);
  433. }
  434. static __m256i lasx_packs_w(__m256i a, __m256i b) {
  435. __m256i tmp, tmp1;
  436. tmp = __lasx_xvsat_w(a, 15);
  437. tmp1 = __lasx_xvsat_w(b, 15);
  438. return __lasx_xvpickev_h(tmp1, tmp);
  439. }
  440. static __m256i lasx_packs_h(__m256i a, __m256i b) {
  441. __m256i tmp, tmp1;
  442. tmp = __lasx_xvsat_h(a, 7);
  443. tmp1 = __lasx_xvsat_h(b, 7);
  444. return __lasx_xvpickev_b(tmp1, tmp);
  445. }
  446. static __m128i lsx_packs_w(__m128i a, __m128i b) {
  447. __m128i tmp, tmp1;
  448. tmp = __lsx_vsat_w(a, 15);
  449. tmp1 = __lsx_vsat_w(b, 15);
  450. return __lsx_vpickev_h(tmp1, tmp);
  451. }
  452. static __m128i lsx_packs_h(__m128i a, __m128i b) {
  453. __m128i tmp, tmp1;
  454. tmp = __lsx_vsat_h(a, 7);
  455. tmp1 = __lsx_vsat_h(b, 7);
  456. return __lsx_vpickev_b(tmp1, tmp);
  457. }
  458. static __m128i lsx_packus_h(__m128i a, __m128i b) {
  459. __m128i tmp, tmp1;
  460. tmp = __lsx_vsat_hu(a, 7);
  461. tmp1 = __lsx_vsat_hu(b, 7);
  462. return __lsx_vpickev_b(tmp1, tmp);
  463. }
  464. static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
  465. __m128i tmp1, tmp2;
  466. tmp1 = __lsx_vmulwev_h_b(a, b);
  467. tmp2 = __lsx_vmulwod_h_b(a, b);
  468. return __lsx_vsadd_h(tmp1, tmp2);
  469. }
  470. static __m128i lsx_madd_h(__m128i a, __m128i b) {
  471. __m128i tmp1, tmp2;
  472. tmp1 = __lsx_vmulwev_w_h(a, b);
  473. tmp2 = __lsx_vmulwod_w_h(a, b);
  474. return __lsx_vadd_w(tmp1, tmp2);
  475. }
  476. // multiply int8_t, add results pairwise twice
  477. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  478. // Get absolute values of x vectors
  479. const __m128i ax = __lsx_vsigncov_b(x, x);
  480. // Sign the values of the y vectors
  481. const __m128i sy = __lsx_vsigncov_b(x, y);
  482. // Perform multiplication and create 16-bit values
  483. const __m128i dot = lsx_maddubs_h(ax, sy);
  484. const __m128i ones = __lsx_vreplgr2vr_h(1);
  485. return lsx_madd_h(ones, dot);
  486. }
  487. // horizontally add 8 floats
  488. static inline float hsum_float_8(const __m256 x) {
  489. __m128 res = lasx_extractf128(x, 1);
  490. ft_union tmp;
  491. res = __lsx_vfadd_s(res, lasx_extractf128(x, 0));
  492. res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res));
  493. res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0));
  494. tmp.i = __lsx_vpickve2gr_w(res, 0);
  495. return tmp.f;
  496. }
  497. // horizontally add 8 int32_t
  498. static inline int hsum_i32_8(const __m256i a) {
  499. __m256i tmp1 = __lasx_xvpermi_q(a, a, 0x11);
  500. __m256i tmp2 = __lasx_xvpermi_q(a, a, 0x00);
  501. __m128i tmp1_128 = lasx_extracti128_lo(tmp1);
  502. __m128i tmp2_128 = lasx_extracti128_lo(tmp2);
  503. __m128i sum128 = __lsx_vadd_w(tmp1_128, tmp2_128);
  504. __m128i ev = __lsx_vpickev_w(sum128, sum128);
  505. __m128i od = __lsx_vpickod_w(sum128, sum128);
  506. __m128i sum64 = __lsx_vadd_w(ev, od);
  507. int sum64_1, sum64_2;
  508. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  509. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  510. return sum64_1 + sum64_2;
  511. }
  512. // horizontally add 4 int32_t
  513. static inline int hsum_i32_4(const __m128i a) {
  514. __m128i ev = __lsx_vpickev_w(a, a);
  515. __m128i od = __lsx_vpickod_w(a, a);
  516. __m128i sum64 = __lsx_vadd_w(ev, od);
  517. int sum64_1, sum64_2;
  518. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  519. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  520. return sum64_1 + sum64_2;
  521. }
  522. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  523. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  524. uint32_t x32;
  525. memcpy(&x32, x, sizeof(uint32_t));
  526. const __m256i shuf_mask = lasx_set_d(
  527. 0x0303030303030303, 0x0202020202020202,
  528. 0x0101010101010101, 0x0000000000000000);
  529. __m256i bytes = lasx_shuffle_b(__lasx_xvreplgr2vr_w(x32), shuf_mask);
  530. const __m256i bit_mask = __lasx_xvreplgr2vr_d(0x7fbfdfeff7fbfdfe);
  531. bytes = __lasx_xvor_v(bytes, bit_mask);
  532. return __lasx_xvseq_b(bytes, __lasx_xvreplgr2vr_d(-1));
  533. }
  534. // Unpack 32 4-bit fields into 32 bytes
  535. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  536. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
  537. const __m128i lo = __lsx_vld((const __m128i *)rsi, 0);
  538. __m128i hi = __lsx_vsrli_h(lo, 4);
  539. return __lasx_xvandi_b(lasx_insertf128(hi, lo), 0xf);
  540. }
  541. // add int16_t pairwise and return as float vector
  542. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  543. __m256i v = __lasx_xvpackod_h(x, x);
  544. __m256i summed_pairs = __lasx_xvaddwev_w_h(x, v);
  545. return __lasx_xvffint_s_w(summed_pairs);
  546. }
  547. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  548. // Perform multiplication and create 16-bit values
  549. const __m256i dot = lasx_maddubs_h(ax, sy);
  550. return sum_i16_pairs_float(dot);
  551. }
  552. // multiply int8_t, add results pairwise twice and return as float vector
  553. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  554. // Get absolute values of x vectors
  555. const __m256i ax = __lasx_xvsigncov_b(x, x);
  556. // Sign the values of the y vectors
  557. const __m256i sy = __lasx_xvsigncov_b(x, y);
  558. return mul_sum_us8_pairs_float(ax, sy);
  559. }
  560. static inline __m128i packNibbles( __m256i bytes ) {
  561. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  562. const __m256i lowByte = __lasx_xvreplgr2vr_h(0xFF);
  563. __m256i high = __lasx_xvandn_v(lowByte, bytes);
  564. __m256i low = __lasx_xvand_v(lowByte, bytes);
  565. high = __lasx_xvsrli_h(high, 4);
  566. bytes = __lasx_xvor_v(low, high);
  567. // Compress uint16_t lanes into bytes
  568. __m128i *r0 = (__m128i *)&bytes;
  569. __m256i tmp_h128 = __lasx_xvpermi_q(bytes, bytes, 0x11);
  570. __m128i *r1 = (__m128i *)&tmp_h128;
  571. __m128i zero = __lsx_vldi(0);
  572. __m128i tmp, tmp2, tmp3;
  573. tmp = __lsx_vmax_h(zero, *r0);
  574. tmp2 = __lsx_vsat_hu(tmp, 7);
  575. tmp = __lsx_vmax_h(zero, *r1);
  576. tmp3 = __lsx_vsat_hu(tmp, 7);
  577. return __lsx_vpickev_b(tmp3, tmp2);
  578. }
  579. #endif //__loongarch_asx
  580. // reference implementation for deterministic creation of model files
  581. void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int64_t k) {
  582. static const int qk = QK4_0;
  583. assert(k % qk == 0);
  584. const int nb = k / qk;
  585. for (int i = 0; i < nb; i++) {
  586. float amax = 0.0f; // absolute max
  587. float max = 0.0f;
  588. for (int j = 0; j < qk; j++) {
  589. const float v = x[i*qk + j];
  590. if (amax < fabsf(v)) {
  591. amax = fabsf(v);
  592. max = v;
  593. }
  594. }
  595. const float d = max / -8;
  596. const float id = d ? 1.0f/d : 0.0f;
  597. y[i].d = GGML_FP32_TO_FP16(d);
  598. for (int j = 0; j < qk/2; ++j) {
  599. const float x0 = x[i*qk + 0 + j]*id;
  600. const float x1 = x[i*qk + qk/2 + j]*id;
  601. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  602. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  603. y[i].qs[j] = xi0;
  604. y[i].qs[j] |= xi1 << 4;
  605. }
  606. }
  607. }
  608. void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
  609. quantize_row_q4_0_reference(x, y, k);
  610. }
  611. void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int64_t k) {
  612. const int qk = QK4_1;
  613. assert(k % qk == 0);
  614. const int nb = k / qk;
  615. for (int i = 0; i < nb; i++) {
  616. float min = FLT_MAX;
  617. float max = -FLT_MAX;
  618. for (int j = 0; j < qk; j++) {
  619. const float v = x[i*qk + j];
  620. if (v < min) min = v;
  621. if (v > max) max = v;
  622. }
  623. const float d = (max - min) / ((1 << 4) - 1);
  624. const float id = d ? 1.0f/d : 0.0f;
  625. y[i].d = GGML_FP32_TO_FP16(d);
  626. y[i].m = GGML_FP32_TO_FP16(min);
  627. for (int j = 0; j < qk/2; ++j) {
  628. const float x0 = (x[i*qk + 0 + j] - min)*id;
  629. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  630. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  631. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  632. y[i].qs[j] = xi0;
  633. y[i].qs[j] |= xi1 << 4;
  634. }
  635. }
  636. }
  637. void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) {
  638. quantize_row_q4_1_reference(x, y, k);
  639. }
  640. void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int64_t k) {
  641. static const int qk = QK5_0;
  642. assert(k % qk == 0);
  643. const int nb = k / qk;
  644. for (int i = 0; i < nb; i++) {
  645. float amax = 0.0f; // absolute max
  646. float max = 0.0f;
  647. for (int j = 0; j < qk; j++) {
  648. const float v = x[i*qk + j];
  649. if (amax < fabsf(v)) {
  650. amax = fabsf(v);
  651. max = v;
  652. }
  653. }
  654. const float d = max / -16;
  655. const float id = d ? 1.0f/d : 0.0f;
  656. y[i].d = GGML_FP32_TO_FP16(d);
  657. uint32_t qh = 0;
  658. for (int j = 0; j < qk/2; ++j) {
  659. const float x0 = x[i*qk + 0 + j]*id;
  660. const float x1 = x[i*qk + qk/2 + j]*id;
  661. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  662. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  663. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  664. // get the 5-th bit and store it in qh at the right position
  665. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  666. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  667. }
  668. memcpy(&y[i].qh, &qh, sizeof(qh));
  669. }
  670. }
  671. void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) {
  672. quantize_row_q5_0_reference(x, y, k);
  673. }
  674. void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int64_t k) {
  675. const int qk = QK5_1;
  676. assert(k % qk == 0);
  677. const int nb = k / qk;
  678. for (int i = 0; i < nb; i++) {
  679. float min = FLT_MAX;
  680. float max = -FLT_MAX;
  681. for (int j = 0; j < qk; j++) {
  682. const float v = x[i*qk + j];
  683. if (v < min) min = v;
  684. if (v > max) max = v;
  685. }
  686. const float d = (max - min) / ((1 << 5) - 1);
  687. const float id = d ? 1.0f/d : 0.0f;
  688. y[i].d = GGML_FP32_TO_FP16(d);
  689. y[i].m = GGML_FP32_TO_FP16(min);
  690. uint32_t qh = 0;
  691. for (int j = 0; j < qk/2; ++j) {
  692. const float x0 = (x[i*qk + 0 + j] - min)*id;
  693. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  694. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  695. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  696. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  697. // get the 5-th bit and store it in qh at the right position
  698. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  699. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  700. }
  701. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  702. }
  703. }
  704. void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) {
  705. quantize_row_q5_1_reference(x, y, k);
  706. }
  707. // reference implementation for deterministic creation of model files
  708. void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int64_t k) {
  709. assert(k % QK8_0 == 0);
  710. const int nb = k / QK8_0;
  711. for (int i = 0; i < nb; i++) {
  712. float amax = 0.0f; // absolute max
  713. for (int j = 0; j < QK8_0; j++) {
  714. const float v = x[i*QK8_0 + j];
  715. amax = MAX(amax, fabsf(v));
  716. }
  717. const float d = amax / ((1 << 7) - 1);
  718. const float id = d ? 1.0f/d : 0.0f;
  719. y[i].d = GGML_FP32_TO_FP16(d);
  720. for (int j = 0; j < QK8_0; ++j) {
  721. const float x0 = x[i*QK8_0 + j]*id;
  722. y[i].qs[j] = roundf(x0);
  723. }
  724. }
  725. }
  726. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) {
  727. assert(QK8_0 == 32);
  728. assert(k % QK8_0 == 0);
  729. const int nb = k / QK8_0;
  730. block_q8_0 * restrict y = vy;
  731. #if defined(__ARM_NEON)
  732. for (int i = 0; i < nb; i++) {
  733. float32x4_t srcv [8];
  734. float32x4_t asrcv[8];
  735. float32x4_t amaxv[8];
  736. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  737. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  738. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  739. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  740. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  741. const float amax = vmaxvq_f32(amaxv[0]);
  742. const float d = amax / ((1 << 7) - 1);
  743. const float id = d ? 1.0f/d : 0.0f;
  744. y[i].d = GGML_FP32_TO_FP16(d);
  745. for (int j = 0; j < 8; j++) {
  746. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  747. const int32x4_t vi = vcvtnq_s32_f32(v);
  748. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  749. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  750. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  751. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  752. }
  753. }
  754. #elif defined(__wasm_simd128__)
  755. for (int i = 0; i < nb; i++) {
  756. v128_t srcv [8];
  757. v128_t asrcv[8];
  758. v128_t amaxv[8];
  759. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  760. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  761. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  762. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  763. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  764. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  765. wasm_f32x4_extract_lane(amaxv[0], 1)),
  766. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  767. wasm_f32x4_extract_lane(amaxv[0], 3)));
  768. const float d = amax / ((1 << 7) - 1);
  769. const float id = d ? 1.0f/d : 0.0f;
  770. y[i].d = GGML_FP32_TO_FP16(d);
  771. for (int j = 0; j < 8; j++) {
  772. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  773. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  774. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  775. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  776. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  777. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  778. }
  779. }
  780. #elif defined(__AVX2__) || defined(__AVX__)
  781. for (int i = 0; i < nb; i++) {
  782. // Load elements into 4 AVX vectors
  783. __m256 v0 = _mm256_loadu_ps( x );
  784. __m256 v1 = _mm256_loadu_ps( x + 8 );
  785. __m256 v2 = _mm256_loadu_ps( x + 16 );
  786. __m256 v3 = _mm256_loadu_ps( x + 24 );
  787. x += 32;
  788. // Compute max(abs(e)) for the block
  789. const __m256 signBit = _mm256_set1_ps( -0.0f );
  790. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  791. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  792. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  793. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  794. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  795. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  796. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  797. const float maxScalar = _mm_cvtss_f32( max4 );
  798. // Quantize these floats
  799. const float d = maxScalar / 127.f;
  800. y[i].d = GGML_FP32_TO_FP16(d);
  801. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  802. const __m256 mul = _mm256_set1_ps( id );
  803. // Apply the multiplier
  804. v0 = _mm256_mul_ps( v0, mul );
  805. v1 = _mm256_mul_ps( v1, mul );
  806. v2 = _mm256_mul_ps( v2, mul );
  807. v3 = _mm256_mul_ps( v3, mul );
  808. // Round to nearest integer
  809. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  810. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  811. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  812. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  813. // Convert floats to integers
  814. __m256i i0 = _mm256_cvtps_epi32( v0 );
  815. __m256i i1 = _mm256_cvtps_epi32( v1 );
  816. __m256i i2 = _mm256_cvtps_epi32( v2 );
  817. __m256i i3 = _mm256_cvtps_epi32( v3 );
  818. #if defined(__AVX2__)
  819. // Convert int32 to int16
  820. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  821. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  822. // Convert int16 to int8
  823. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  824. // We got our precious signed bytes, but the order is now wrong
  825. // These AVX2 pack instructions process 16-byte pieces independently
  826. // The following instruction is fixing the order
  827. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  828. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  829. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  830. #else
  831. // Since we don't have in AVX some necessary functions,
  832. // we split the registers in half and call AVX2 analogs from SSE
  833. __m128i ni0 = _mm256_castsi256_si128( i0 );
  834. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  835. __m128i ni2 = _mm256_castsi256_si128( i1 );
  836. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  837. __m128i ni4 = _mm256_castsi256_si128( i2 );
  838. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  839. __m128i ni6 = _mm256_castsi256_si128( i3 );
  840. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  841. // Convert int32 to int16
  842. ni0 = _mm_packs_epi32( ni0, ni1 );
  843. ni2 = _mm_packs_epi32( ni2, ni3 );
  844. ni4 = _mm_packs_epi32( ni4, ni5 );
  845. ni6 = _mm_packs_epi32( ni6, ni7 );
  846. // Convert int16 to int8
  847. ni0 = _mm_packs_epi16( ni0, ni2 );
  848. ni4 = _mm_packs_epi16( ni4, ni6 );
  849. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  850. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  851. #endif
  852. }
  853. #elif defined(__riscv_v_intrinsic)
  854. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  855. for (int i = 0; i < nb; i++) {
  856. // load elements
  857. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  858. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  859. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  860. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  861. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = GGML_FP32_TO_FP16(d);
  865. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  866. // convert to integer
  867. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  868. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  869. // store result
  870. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  871. }
  872. #elif defined(__POWER9_VECTOR__)
  873. for (int i = 0; i < nb; i++) {
  874. vector float srcv [8];
  875. vector float asrcv[8];
  876. vector float amaxv[8];
  877. vector signed int vi[8];
  878. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  879. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  880. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  881. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  882. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  883. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  884. vec_extract(amaxv[0], 1)),
  885. MAX(vec_extract(amaxv[0], 2),
  886. vec_extract(amaxv[0], 3)));
  887. const float d = amax / ((1 << 7) - 1);
  888. const float id = d ? 1.0f/d : 0.0f;
  889. const vector float vid = vec_splats(id);
  890. y[i].d = GGML_FP32_TO_FP16(d);
  891. for (int j = 0; j < 8; j++) {
  892. const vector float v = vec_round(vec_mul(srcv[j], vid));
  893. vi[j] = vec_cts(v, 0);
  894. }
  895. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  896. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  897. #elif defined(__loongarch_asx)
  898. for (int i = 0; i < nb; i++) {
  899. ft_union fi;
  900. __m256 v0 = (__m256)__lasx_xvld( x , 0);
  901. __m256 v1 = (__m256)__lasx_xvld( x , 32);
  902. __m256 v2 = (__m256)__lasx_xvld( x , 64);
  903. __m256 v3 = (__m256)__lasx_xvld( x , 96);
  904. x += 32;
  905. // Compute max(abs(e)) for the block
  906. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  907. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  908. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  909. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  910. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  911. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs , 0) );
  912. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  913. __m128 tmp = max4;
  914. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 ));
  915. fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  916. const float max_scalar = fi.f;
  917. // Quantize these floats
  918. const float d = max_scalar / 127.f;
  919. y[i].d = GGML_FP32_TO_FP16(d);
  920. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  921. const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id );
  922. // Apply the multiplier
  923. v0 = __lasx_xvfmul_s( v0, mul );
  924. v1 = __lasx_xvfmul_s( v1, mul );
  925. v2 = __lasx_xvfmul_s( v2, mul );
  926. v3 = __lasx_xvfmul_s( v3, mul );
  927. // Round to nearest integer
  928. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  929. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  930. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  931. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  932. __m128i ni0 = lasx_extracti128( i0, 0 );
  933. __m128i ni1 = lasx_extracti128( i0, 1);
  934. __m128i ni2 = lasx_extracti128( i1, 0);
  935. __m128i ni3 = lasx_extracti128( i1, 1);
  936. __m128i ni4 = lasx_extracti128( i2, 0);
  937. __m128i ni5 = lasx_extracti128( i2, 1);
  938. __m128i ni6 = lasx_extracti128( i3, 0);
  939. __m128i ni7 = lasx_extracti128( i3, 1);
  940. // Convert int32 to int16
  941. ni0 = lsx_packs_w( ni0, ni1 );
  942. ni2 = lsx_packs_w( ni2, ni3 );
  943. ni4 = lsx_packs_w( ni4, ni5 );
  944. ni6 = lsx_packs_w( ni6, ni7 );
  945. // Convert int16 to int8
  946. ni0 = lsx_packs_h( ni0, ni2 );
  947. ni4 = lsx_packs_h( ni4, ni6 );
  948. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  949. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  950. }
  951. #else
  952. GGML_UNUSED(nb);
  953. // scalar
  954. quantize_row_q8_0_reference(x, y, k);
  955. #endif
  956. }
  957. // reference implementation for deterministic creation of model files
  958. void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int64_t k) {
  959. assert(QK8_1 == 32);
  960. assert(k % QK8_1 == 0);
  961. const int nb = k / QK8_1;
  962. for (int i = 0; i < nb; i++) {
  963. float amax = 0.0f; // absolute max
  964. for (int j = 0; j < QK8_1; j++) {
  965. const float v = x[i*QK8_1 + j];
  966. amax = MAX(amax, fabsf(v));
  967. }
  968. const float d = amax / ((1 << 7) - 1);
  969. const float id = d ? 1.0f/d : 0.0f;
  970. y[i].d = GGML_FP32_TO_FP16(d);
  971. int sum = 0;
  972. for (int j = 0; j < QK8_1/2; ++j) {
  973. const float v0 = x[i*QK8_1 + j]*id;
  974. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  975. y[i].qs[ j] = roundf(v0);
  976. y[i].qs[QK8_1/2 + j] = roundf(v1);
  977. sum += y[i].qs[ j];
  978. sum += y[i].qs[QK8_1/2 + j];
  979. }
  980. y[i].s = GGML_FP32_TO_FP16(sum*d);
  981. }
  982. }
  983. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) {
  984. assert(k % QK8_1 == 0);
  985. const int nb = k / QK8_1;
  986. block_q8_1 * restrict y = vy;
  987. #if defined(__ARM_NEON)
  988. for (int i = 0; i < nb; i++) {
  989. float32x4_t srcv [8];
  990. float32x4_t asrcv[8];
  991. float32x4_t amaxv[8];
  992. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  993. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  994. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  995. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  996. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  997. const float amax = vmaxvq_f32(amaxv[0]);
  998. const float d = amax / ((1 << 7) - 1);
  999. const float id = d ? 1.0f/d : 0.0f;
  1000. y[i].d = GGML_FP32_TO_FP16(d);
  1001. int32x4_t accv = vdupq_n_s32(0);
  1002. for (int j = 0; j < 8; j++) {
  1003. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1004. const int32x4_t vi = vcvtnq_s32_f32(v);
  1005. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1006. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1007. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1008. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1009. accv = vaddq_s32(accv, vi);
  1010. }
  1011. y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
  1012. }
  1013. #elif defined(__wasm_simd128__)
  1014. for (int i = 0; i < nb; i++) {
  1015. v128_t srcv [8];
  1016. v128_t asrcv[8];
  1017. v128_t amaxv[8];
  1018. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1019. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1020. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1021. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1022. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1023. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1024. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1025. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1026. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1027. const float d = amax / ((1 << 7) - 1);
  1028. const float id = d ? 1.0f/d : 0.0f;
  1029. y[i].d = GGML_FP32_TO_FP16(d);
  1030. v128_t accv = wasm_i32x4_splat(0);
  1031. for (int j = 0; j < 8; j++) {
  1032. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1033. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1034. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1035. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1036. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1037. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1038. accv = wasm_i32x4_add(accv, vi);
  1039. }
  1040. y[i].s = GGML_FP32_TO_FP16(
  1041. d * (wasm_i32x4_extract_lane(accv, 0) +
  1042. wasm_i32x4_extract_lane(accv, 1) +
  1043. wasm_i32x4_extract_lane(accv, 2) +
  1044. wasm_i32x4_extract_lane(accv, 3)));
  1045. }
  1046. #elif defined(__AVX2__) || defined(__AVX__)
  1047. for (int i = 0; i < nb; i++) {
  1048. // Load elements into 4 AVX vectors
  1049. __m256 v0 = _mm256_loadu_ps( x );
  1050. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1051. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1052. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1053. x += 32;
  1054. // Compute max(abs(e)) for the block
  1055. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1056. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1057. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1058. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1059. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1060. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1061. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1062. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1063. const float max_scalar = _mm_cvtss_f32( max4 );
  1064. // Quantize these floats
  1065. const float d = max_scalar / 127.f;
  1066. y[i].d = GGML_FP32_TO_FP16(d);
  1067. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1068. const __m256 mul = _mm256_set1_ps( id );
  1069. // Apply the multiplier
  1070. v0 = _mm256_mul_ps( v0, mul );
  1071. v1 = _mm256_mul_ps( v1, mul );
  1072. v2 = _mm256_mul_ps( v2, mul );
  1073. v3 = _mm256_mul_ps( v3, mul );
  1074. // Round to nearest integer
  1075. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1076. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1077. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1078. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1079. // Convert floats to integers
  1080. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1081. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1082. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1083. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1084. #if defined(__AVX2__)
  1085. // Compute the sum of the quants and set y[i].s
  1086. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))));
  1087. // Convert int32 to int16
  1088. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1089. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1090. // Convert int16 to int8
  1091. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1092. // We got our precious signed bytes, but the order is now wrong
  1093. // These AVX2 pack instructions process 16-byte pieces independently
  1094. // The following instruction is fixing the order
  1095. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1096. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1097. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1098. #else
  1099. // Since we don't have in AVX some necessary functions,
  1100. // we split the registers in half and call AVX2 analogs from SSE
  1101. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1102. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1103. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1104. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1105. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1106. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1107. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1108. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1109. // Compute the sum of the quants and set y[i].s
  1110. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1111. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1112. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1)));
  1113. // Convert int32 to int16
  1114. ni0 = _mm_packs_epi32( ni0, ni1 );
  1115. ni2 = _mm_packs_epi32( ni2, ni3 );
  1116. ni4 = _mm_packs_epi32( ni4, ni5 );
  1117. ni6 = _mm_packs_epi32( ni6, ni7 );
  1118. // Convert int16 to int8
  1119. ni0 = _mm_packs_epi16( ni0, ni2 );
  1120. ni4 = _mm_packs_epi16( ni4, ni6 );
  1121. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1122. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1123. #endif
  1124. }
  1125. #elif defined(__riscv_v_intrinsic)
  1126. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  1127. for (int i = 0; i < nb; i++) {
  1128. // load elements
  1129. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1130. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1131. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1132. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1133. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1134. const float d = amax / ((1 << 7) - 1);
  1135. const float id = d ? 1.0f/d : 0.0f;
  1136. y[i].d = GGML_FP32_TO_FP16(d);
  1137. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1138. // convert to integer
  1139. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1140. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1141. // store result
  1142. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1143. // compute sum for y[i].s
  1144. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1145. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1146. // set y[i].s
  1147. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1148. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1149. }
  1150. #elif defined(__POWER9_VECTOR__)
  1151. for (int i = 0; i < nb; i++) {
  1152. vector float srcv [8];
  1153. vector float asrcv[8];
  1154. vector float amaxv[8];
  1155. vector signed int vi[8];
  1156. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  1157. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  1158. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  1159. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  1160. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  1161. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  1162. vec_extract(amaxv[0], 1)),
  1163. MAX(vec_extract(amaxv[0], 2),
  1164. vec_extract(amaxv[0], 3)));
  1165. const float d = amax / ((1 << 7) - 1);
  1166. const float id = d ? 1.0f/d : 0.0f;
  1167. const vector float vid = vec_splats(id);
  1168. y[i].d = GGML_FP32_TO_FP16(d);
  1169. vector int accv = vec_splats(0);
  1170. for (int j = 0; j < 8; j++) {
  1171. const vector float v = vec_round(vec_mul(srcv[j], vid));
  1172. vi[j] = vec_cts(v, 0);
  1173. accv = vec_add(accv, vi[j]);
  1174. }
  1175. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  1176. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  1177. accv = vec_add(accv, vec_sld(accv, accv, 4));
  1178. accv = vec_add(accv, vec_sld(accv, accv, 8));
  1179. y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0));
  1180. #elif defined(__loongarch_asx)
  1181. for (int i = 0; i < nb; i++) {
  1182. ft_union ft;
  1183. __m256 v0 = (__m256)__lasx_xvld( x , 0 );
  1184. __m256 v1 = (__m256)__lasx_xvld( x , 32 );
  1185. __m256 v2 = (__m256)__lasx_xvld( x , 64 );
  1186. __m256 v3 = (__m256)__lasx_xvld( x , 96 );
  1187. x += 32;
  1188. // Compute max(abs(e)) for the block
  1189. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  1190. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  1191. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  1192. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  1193. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  1194. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) );
  1195. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  1196. __m128 tmp = max4;
  1197. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
  1198. ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  1199. const float max_scalar = ft.f;
  1200. // Quantize these floats
  1201. const float d = max_scalar / 127.f;
  1202. y[i].d = GGML_FP32_TO_FP16(d);
  1203. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1204. const __m256 mul = __lasx_xvreplfr2vr_s( id );
  1205. // Apply the multiplier
  1206. v0 = __lasx_xvfmul_s( v0, mul );
  1207. v1 = __lasx_xvfmul_s( v1, mul );
  1208. v2 = __lasx_xvfmul_s( v2, mul );
  1209. v3 = __lasx_xvfmul_s( v3, mul );
  1210. // Round to nearest integer
  1211. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  1212. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  1213. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  1214. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  1215. __m128i ni0 = lasx_extracti128(i0, 0);
  1216. __m128i ni1 = lasx_extracti128( i0, 1);
  1217. __m128i ni2 = lasx_extracti128( i1, 0);
  1218. __m128i ni3 = lasx_extracti128( i1, 1);
  1219. __m128i ni4 = lasx_extracti128( i2, 0 );
  1220. __m128i ni5 = lasx_extracti128( i2, 1);
  1221. __m128i ni6 = lasx_extracti128( i3, 0);
  1222. __m128i ni7 = lasx_extracti128( i3, 1);
  1223. // Compute the sum of the quants and set y[i].s
  1224. const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3));
  1225. const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7));
  1226. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
  1227. // Convert int32 to int16
  1228. ni0 = lsx_packs_w( ni0, ni1 );
  1229. ni2 = lsx_packs_w( ni2, ni3 );
  1230. ni4 = lsx_packs_w( ni4, ni5 );
  1231. ni6 = lsx_packs_w( ni6, ni7 );
  1232. // Convert int16 to int8
  1233. ni0 = lsx_packs_h( ni0, ni2 );
  1234. ni4 = lsx_packs_h( ni4, ni6 );
  1235. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  1236. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  1237. }
  1238. #else
  1239. GGML_UNUSED(nb);
  1240. // scalar
  1241. quantize_row_q8_1_reference(x, y, k);
  1242. #endif
  1243. }
  1244. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int64_t k) {
  1245. static const int qk = QK4_0;
  1246. assert(k % qk == 0);
  1247. const int nb = k / qk;
  1248. for (int i = 0; i < nb; i++) {
  1249. const float d = GGML_FP16_TO_FP32(x[i].d);
  1250. for (int j = 0; j < qk/2; ++j) {
  1251. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1252. const int x1 = (x[i].qs[j] >> 4) - 8;
  1253. y[i*qk + j + 0 ] = x0*d;
  1254. y[i*qk + j + qk/2] = x1*d;
  1255. }
  1256. }
  1257. }
  1258. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int64_t k) {
  1259. static const int qk = QK4_1;
  1260. assert(k % qk == 0);
  1261. const int nb = k / qk;
  1262. for (int i = 0; i < nb; i++) {
  1263. const float d = GGML_FP16_TO_FP32(x[i].d);
  1264. const float m = GGML_FP16_TO_FP32(x[i].m);
  1265. for (int j = 0; j < qk/2; ++j) {
  1266. const int x0 = (x[i].qs[j] & 0x0F);
  1267. const int x1 = (x[i].qs[j] >> 4);
  1268. y[i*qk + j + 0 ] = x0*d + m;
  1269. y[i*qk + j + qk/2] = x1*d + m;
  1270. }
  1271. }
  1272. }
  1273. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int64_t k) {
  1274. static const int qk = QK5_0;
  1275. assert(k % qk == 0);
  1276. const int nb = k / qk;
  1277. for (int i = 0; i < nb; i++) {
  1278. const float d = GGML_FP16_TO_FP32(x[i].d);
  1279. uint32_t qh;
  1280. memcpy(&qh, x[i].qh, sizeof(qh));
  1281. for (int j = 0; j < qk/2; ++j) {
  1282. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1283. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1284. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1285. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1286. y[i*qk + j + 0 ] = x0*d;
  1287. y[i*qk + j + qk/2] = x1*d;
  1288. }
  1289. }
  1290. }
  1291. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int64_t k) {
  1292. static const int qk = QK5_1;
  1293. assert(k % qk == 0);
  1294. const int nb = k / qk;
  1295. for (int i = 0; i < nb; i++) {
  1296. const float d = GGML_FP16_TO_FP32(x[i].d);
  1297. const float m = GGML_FP16_TO_FP32(x[i].m);
  1298. uint32_t qh;
  1299. memcpy(&qh, x[i].qh, sizeof(qh));
  1300. for (int j = 0; j < qk/2; ++j) {
  1301. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1302. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1303. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1304. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1305. y[i*qk + j + 0 ] = x0*d + m;
  1306. y[i*qk + j + qk/2] = x1*d + m;
  1307. }
  1308. }
  1309. }
  1310. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int64_t k) {
  1311. static const int qk = QK8_0;
  1312. assert(k % qk == 0);
  1313. const int nb = k / qk;
  1314. for (int i = 0; i < nb; i++) {
  1315. const float d = GGML_FP16_TO_FP32(x[i].d);
  1316. for (int j = 0; j < qk; ++j) {
  1317. y[i*qk + j] = x[i].qs[j]*d;
  1318. }
  1319. }
  1320. }
  1321. //
  1322. // 2-6 bit quantization in super-blocks
  1323. //
  1324. //
  1325. // ===================== Helper functions
  1326. //
  1327. static inline int nearest_int(float fval) {
  1328. assert(fval <= 4194303.f);
  1329. float val = fval + 12582912.f;
  1330. int i; memcpy(&i, &val, sizeof(int));
  1331. return (i & 0x007fffff) - 0x00400000;
  1332. }
  1333. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1334. const float * restrict qw) {
  1335. float max = 0;
  1336. float amax = 0;
  1337. for (int i = 0; i < n; ++i) {
  1338. float ax = fabsf(x[i]);
  1339. if (ax > amax) { amax = ax; max = x[i]; }
  1340. }
  1341. if (amax < GROUP_MAX_EPS) { // all zero
  1342. for (int i = 0; i < n; ++i) {
  1343. L[i] = 0;
  1344. }
  1345. return 0.f;
  1346. }
  1347. float iscale = -nmax / max;
  1348. if (rmse_type == 0) {
  1349. for (int i = 0; i < n; ++i) {
  1350. int l = nearest_int(iscale * x[i]);
  1351. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1352. }
  1353. return 1/iscale;
  1354. }
  1355. bool return_early = false;
  1356. if (rmse_type < 0) {
  1357. rmse_type = -rmse_type;
  1358. return_early = true;
  1359. }
  1360. float sumlx = 0;
  1361. float suml2 = 0;
  1362. #ifdef HAVE_BUGGY_APPLE_LINKER
  1363. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1364. for (volatile int i = 0; i < n; ++i) {
  1365. #else
  1366. for (int i = 0; i < n; ++i) {
  1367. #endif
  1368. int l = nearest_int(iscale * x[i]);
  1369. l = MAX(-nmax, MIN(nmax-1, l));
  1370. L[i] = l + nmax;
  1371. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1372. sumlx += w*x[i]*l;
  1373. suml2 += w*l*l;
  1374. }
  1375. float scale = suml2 ? sumlx/suml2 : 0.0f;
  1376. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1377. float best = scale * sumlx;
  1378. for (int is = -9; is <= 9; ++is) {
  1379. if (is == 0) {
  1380. continue;
  1381. }
  1382. iscale = -(nmax + 0.1f*is) / max;
  1383. sumlx = suml2 = 0;
  1384. for (int i = 0; i < n; ++i) {
  1385. int l = nearest_int(iscale * x[i]);
  1386. l = MAX(-nmax, MIN(nmax-1, l));
  1387. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1388. sumlx += w*x[i]*l;
  1389. suml2 += w*l*l;
  1390. }
  1391. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1392. for (int i = 0; i < n; ++i) {
  1393. int l = nearest_int(iscale * x[i]);
  1394. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1395. }
  1396. scale = sumlx/suml2; best = scale*sumlx;
  1397. }
  1398. }
  1399. return scale;
  1400. }
  1401. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1402. float max = 0;
  1403. float amax = 0;
  1404. for (int i = 0; i < n; ++i) {
  1405. float ax = fabsf(x[i]);
  1406. if (ax > amax) { amax = ax; max = x[i]; }
  1407. }
  1408. if (amax < GROUP_MAX_EPS) { // all zero
  1409. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1410. return 0.f;
  1411. }
  1412. float iscale = -nmax / max;
  1413. if (do_rmse) {
  1414. float sumlx = 0;
  1415. float suml2 = 0;
  1416. for (int i = 0; i < n; ++i) {
  1417. int l = nearest_int(iscale * x[i]);
  1418. l = MAX(-nmax, MIN(nmax-1, l));
  1419. L[i] = l;
  1420. float w = x[i]*x[i];
  1421. sumlx += w*x[i]*l;
  1422. suml2 += w*l*l;
  1423. }
  1424. for (int itry = 0; itry < 5; ++itry) {
  1425. int n_changed = 0;
  1426. for (int i = 0; i < n; ++i) {
  1427. float w = x[i]*x[i];
  1428. float slx = sumlx - w*x[i]*L[i];
  1429. if (slx > 0) {
  1430. float sl2 = suml2 - w*L[i]*L[i];
  1431. int new_l = nearest_int(x[i] * sl2 / slx);
  1432. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1433. if (new_l != L[i]) {
  1434. slx += w*x[i]*new_l;
  1435. sl2 += w*new_l*new_l;
  1436. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1437. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1438. ++n_changed;
  1439. }
  1440. }
  1441. }
  1442. }
  1443. if (!n_changed) {
  1444. break;
  1445. }
  1446. }
  1447. for (int i = 0; i < n; ++i) {
  1448. L[i] += nmax;
  1449. }
  1450. return sumlx / suml2;
  1451. }
  1452. for (int i = 0; i < n; ++i) {
  1453. int l = nearest_int(iscale * x[i]);
  1454. l = MAX(-nmax, MIN(nmax-1, l));
  1455. L[i] = l + nmax;
  1456. }
  1457. return 1/iscale;
  1458. }
  1459. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1460. int ntry, float alpha) {
  1461. float min = x[0];
  1462. float max = x[0];
  1463. for (int i = 1; i < n; ++i) {
  1464. if (x[i] < min) min = x[i];
  1465. if (x[i] > max) max = x[i];
  1466. }
  1467. if (max == min) {
  1468. for (int i = 0; i < n; ++i) L[i] = 0;
  1469. *the_min = 0;
  1470. return 0.f;
  1471. }
  1472. if (min > 0) min = 0;
  1473. float iscale = nmax/(max - min);
  1474. float scale = 1/iscale;
  1475. for (int itry = 0; itry < ntry; ++itry) {
  1476. float sumlx = 0; int suml2 = 0;
  1477. bool did_change = false;
  1478. for (int i = 0; i < n; ++i) {
  1479. int l = nearest_int(iscale*(x[i] - min));
  1480. l = MAX(0, MIN(nmax, l));
  1481. if (l != L[i]) {
  1482. L[i] = l;
  1483. did_change = true;
  1484. }
  1485. sumlx += (x[i] - min)*l;
  1486. suml2 += l*l;
  1487. }
  1488. scale = sumlx/suml2;
  1489. float sum = 0;
  1490. for (int i = 0; i < n; ++i) {
  1491. sum += x[i] - scale*L[i];
  1492. }
  1493. min = alpha*min + (1 - alpha)*sum/n;
  1494. if (min > 0) min = 0;
  1495. iscale = 1/scale;
  1496. if (!did_change) break;
  1497. }
  1498. *the_min = -min;
  1499. return scale;
  1500. }
  1501. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1502. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1503. float rmin, float rdelta, int nstep, bool use_mad) {
  1504. float min = x[0];
  1505. float max = x[0];
  1506. float sum_w = weights[0];
  1507. float sum_x = sum_w * x[0];
  1508. #ifdef HAVE_BUGGY_APPLE_LINKER
  1509. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1510. for (volatile int i = 1; i < n; ++i) {
  1511. #else
  1512. for (int i = 1; i < n; ++i) {
  1513. #endif
  1514. if (x[i] < min) min = x[i];
  1515. if (x[i] > max) max = x[i];
  1516. float w = weights[i];
  1517. sum_w += w;
  1518. sum_x += w * x[i];
  1519. }
  1520. if (min > 0) min = 0;
  1521. if (max == min) {
  1522. for (int i = 0; i < n; ++i) L[i] = 0;
  1523. *the_min = -min;
  1524. return 0.f;
  1525. }
  1526. float iscale = nmax/(max - min);
  1527. float scale = 1/iscale;
  1528. float best_mad = 0;
  1529. for (int i = 0; i < n; ++i) {
  1530. int l = nearest_int(iscale*(x[i] - min));
  1531. L[i] = MAX(0, MIN(nmax, l));
  1532. float diff = scale * L[i] + min - x[i];
  1533. diff = use_mad ? fabsf(diff) : diff * diff;
  1534. float w = weights[i];
  1535. best_mad += w * diff;
  1536. }
  1537. if (nstep < 1) {
  1538. *the_min = -min;
  1539. return scale;
  1540. }
  1541. for (int is = 0; is <= nstep; ++is) {
  1542. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1543. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1544. for (int i = 0; i < n; ++i) {
  1545. int l = nearest_int(iscale*(x[i] - min));
  1546. l = MAX(0, MIN(nmax, l));
  1547. Laux[i] = l;
  1548. float w = weights[i];
  1549. sum_l += w*l;
  1550. sum_l2 += w*l*l;
  1551. sum_xl += w*l*x[i];
  1552. }
  1553. float D = sum_w * sum_l2 - sum_l * sum_l;
  1554. if (D > 0) {
  1555. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1556. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1557. if (this_min > 0) {
  1558. this_min = 0;
  1559. this_scale = sum_xl / sum_l2;
  1560. }
  1561. float mad = 0;
  1562. for (int i = 0; i < n; ++i) {
  1563. float diff = this_scale * Laux[i] + this_min - x[i];
  1564. diff = use_mad ? fabsf(diff) : diff * diff;
  1565. float w = weights[i];
  1566. mad += w * diff;
  1567. }
  1568. if (mad < best_mad) {
  1569. for (int i = 0; i < n; ++i) {
  1570. L[i] = Laux[i];
  1571. }
  1572. best_mad = mad;
  1573. scale = this_scale;
  1574. min = this_min;
  1575. }
  1576. }
  1577. }
  1578. *the_min = -min;
  1579. return scale;
  1580. }
  1581. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1582. if (j < 4) {
  1583. *d = q[j] & 63; *m = q[j + 4] & 63;
  1584. } else {
  1585. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1586. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1587. }
  1588. }
  1589. //========================- 2-bit (de)-quantization
  1590. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int64_t k) {
  1591. assert(k % QK_K == 0);
  1592. const int nb = k / QK_K;
  1593. uint8_t L[QK_K];
  1594. uint8_t Laux[16];
  1595. float weights[16];
  1596. float mins[QK_K/16];
  1597. float scales[QK_K/16];
  1598. const float q4scale = 15.f;
  1599. for (int i = 0; i < nb; i++) {
  1600. float max_scale = 0; // as we are deducting the min, scales are always positive
  1601. float max_min = 0;
  1602. for (int j = 0; j < QK_K/16; ++j) {
  1603. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1604. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1605. float scale = scales[j];
  1606. if (scale > max_scale) {
  1607. max_scale = scale;
  1608. }
  1609. float min = mins[j];
  1610. if (min > max_min) {
  1611. max_min = min;
  1612. }
  1613. }
  1614. if (max_scale > 0) {
  1615. float iscale = q4scale/max_scale;
  1616. for (int j = 0; j < QK_K/16; ++j) {
  1617. int l = nearest_int(iscale*scales[j]);
  1618. y[i].scales[j] = l;
  1619. }
  1620. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1621. } else {
  1622. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1623. y[i].d = GGML_FP32_TO_FP16(0.f);
  1624. }
  1625. if (max_min > 0) {
  1626. float iscale = q4scale/max_min;
  1627. for (int j = 0; j < QK_K/16; ++j) {
  1628. int l = nearest_int(iscale*mins[j]);
  1629. y[i].scales[j] |= (l << 4);
  1630. }
  1631. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1632. } else {
  1633. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1634. }
  1635. for (int j = 0; j < QK_K/16; ++j) {
  1636. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1637. if (!d) continue;
  1638. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1639. for (int ii = 0; ii < 16; ++ii) {
  1640. int l = nearest_int((x[16*j + ii] + dm)/d);
  1641. l = MAX(0, MIN(3, l));
  1642. L[16*j + ii] = l;
  1643. }
  1644. }
  1645. for (int j = 0; j < QK_K; j += 128) {
  1646. for (int l = 0; l < 32; ++l) {
  1647. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1648. }
  1649. }
  1650. x += QK_K;
  1651. }
  1652. }
  1653. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int64_t k) {
  1654. assert(k % QK_K == 0);
  1655. const int nb = k / QK_K;
  1656. for (int i = 0; i < nb; i++) {
  1657. const float d = GGML_FP16_TO_FP32(x[i].d);
  1658. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1659. const uint8_t * q = x[i].qs;
  1660. int is = 0;
  1661. float dl, ml;
  1662. for (int n = 0; n < QK_K; n += 128) {
  1663. int shift = 0;
  1664. for (int j = 0; j < 4; ++j) {
  1665. uint8_t sc = x[i].scales[is++];
  1666. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1667. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1668. sc = x[i].scales[is++];
  1669. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1670. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1671. shift += 2;
  1672. }
  1673. q += 32;
  1674. }
  1675. }
  1676. }
  1677. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) {
  1678. quantize_row_q2_K_reference(x, vy, k);
  1679. }
  1680. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1681. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1682. float rmin, float rdelta, int nstep, bool use_mad) {
  1683. float min = x[0];
  1684. float max = x[0];
  1685. float sum_w = weights ? weights[0] : x[0]*x[0];
  1686. float sum_x = sum_w * x[0];
  1687. #ifdef HAVE_BUGGY_APPLE_LINKER
  1688. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1689. for (volatile int i = 1; i < n; ++i) {
  1690. #else
  1691. for (int i = 1; i < n; ++i) {
  1692. #endif
  1693. if (x[i] < min) min = x[i];
  1694. if (x[i] > max) max = x[i];
  1695. float w = weights ? weights[i] : x[i]*x[i];
  1696. sum_w += w;
  1697. sum_x += w * x[i];
  1698. }
  1699. if (min > 0) {
  1700. min = 0;
  1701. }
  1702. if (max <= min) {
  1703. memset(L, 0, n);
  1704. *the_min = -min;
  1705. return 0.f;
  1706. }
  1707. float iscale = nmax/(max - min);
  1708. float scale = 1/iscale;
  1709. float best_mad = 0;
  1710. for (int i = 0; i < n; ++i) {
  1711. int l = nearest_int(iscale*(x[i] - min));
  1712. L[i] = MAX(0, MIN(nmax, l));
  1713. float diff = scale * L[i] + min - x[i];
  1714. diff = use_mad ? fabsf(diff) : diff*diff;
  1715. float w = weights ? weights[i] : x[i]*x[i];
  1716. best_mad += w * diff;
  1717. }
  1718. if (nstep < 1) {
  1719. *the_min = -min;
  1720. return scale;
  1721. }
  1722. for (int is = 0; is <= nstep; ++is) {
  1723. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1724. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1725. for (int i = 0; i < n; ++i) {
  1726. int l = nearest_int(iscale*(x[i] - min));
  1727. l = MAX(0, MIN(nmax, l));
  1728. Laux[i] = l;
  1729. float w = weights ? weights[i] : x[i]*x[i];
  1730. sum_l += w*l;
  1731. sum_l2 += w*l*l;
  1732. sum_xl += w*l*x[i];
  1733. }
  1734. float D = sum_w * sum_l2 - sum_l * sum_l;
  1735. if (D > 0) {
  1736. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1737. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1738. if (this_min > 0) {
  1739. this_min = 0;
  1740. this_scale = sum_xl / sum_l2;
  1741. }
  1742. float mad = 0;
  1743. for (int i = 0; i < n; ++i) {
  1744. float diff = this_scale * Laux[i] + this_min - x[i];
  1745. diff = use_mad ? fabsf(diff) : diff*diff;
  1746. float w = weights ? weights[i] : x[i]*x[i];
  1747. mad += w * diff;
  1748. }
  1749. if (mad < best_mad) {
  1750. for (int i = 0; i < n; ++i) {
  1751. L[i] = Laux[i];
  1752. }
  1753. best_mad = mad;
  1754. scale = this_scale;
  1755. min = this_min;
  1756. }
  1757. }
  1758. }
  1759. *the_min = -min;
  1760. return scale;
  1761. }
  1762. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1763. float max = 0;
  1764. for (int i = 0; i < n; ++i) {
  1765. max = MAX(max, x[i]);
  1766. }
  1767. if (!max) { // all zero
  1768. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1769. return 0.f;
  1770. }
  1771. float iscale = nmax / max;
  1772. for (int i = 0; i < n; ++i) {
  1773. L[i] = nearest_int(iscale * x[i]);
  1774. }
  1775. float scale = 1/iscale;
  1776. float best_mse = 0;
  1777. for (int i = 0; i < n; ++i) {
  1778. float diff = x[i] - scale*L[i];
  1779. float w = quant_weights[i];
  1780. best_mse += w*diff*diff;
  1781. }
  1782. for (int is = -4; is <= 4; ++is) {
  1783. if (is == 0) continue;
  1784. float iscale_is = (0.1f*is + nmax)/max;
  1785. float scale_is = 1/iscale_is;
  1786. float mse = 0;
  1787. for (int i = 0; i < n; ++i) {
  1788. int l = nearest_int(iscale_is*x[i]);
  1789. l = MIN(nmax, l);
  1790. float diff = x[i] - scale_is*l;
  1791. float w = quant_weights[i];
  1792. mse += w*diff*diff;
  1793. }
  1794. if (mse < best_mse) {
  1795. best_mse = mse;
  1796. iscale = iscale_is;
  1797. }
  1798. }
  1799. float sumlx = 0;
  1800. float suml2 = 0;
  1801. for (int i = 0; i < n; ++i) {
  1802. int l = nearest_int(iscale * x[i]);
  1803. l = MIN(nmax, l);
  1804. L[i] = l;
  1805. float w = quant_weights[i];
  1806. sumlx += w*x[i]*l;
  1807. suml2 += w*l*l;
  1808. }
  1809. for (int itry = 0; itry < 5; ++itry) {
  1810. int n_changed = 0;
  1811. for (int i = 0; i < n; ++i) {
  1812. float w = quant_weights[i];
  1813. float slx = sumlx - w*x[i]*L[i];
  1814. float sl2 = suml2 - w*L[i]*L[i];
  1815. if (slx > 0 && sl2 > 0) {
  1816. int new_l = nearest_int(x[i] * sl2 / slx);
  1817. new_l = MIN(nmax, new_l);
  1818. if (new_l != L[i]) {
  1819. slx += w*x[i]*new_l;
  1820. sl2 += w*new_l*new_l;
  1821. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1822. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1823. ++n_changed;
  1824. }
  1825. }
  1826. }
  1827. }
  1828. if (!n_changed) {
  1829. break;
  1830. }
  1831. }
  1832. return sumlx/suml2;
  1833. }
  1834. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1835. GGML_ASSERT(quant_weights);
  1836. assert(k % QK_K == 0);
  1837. const int nb = k / QK_K;
  1838. const bool requantize = true;
  1839. uint8_t L[QK_K];
  1840. uint8_t Laux[16];
  1841. float mins[QK_K/16];
  1842. float scales[QK_K/16];
  1843. float sw[QK_K/16];
  1844. float weight[16];
  1845. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1846. for (int i = 0; i < nb; i++) {
  1847. memset(sw, 0, QK_K/16*sizeof(float));
  1848. float sumx2 = 0;
  1849. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1850. float sigma2 = sumx2/QK_K;
  1851. for (int j = 0; j < QK_K/16; ++j) {
  1852. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1853. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1854. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1855. scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1856. }
  1857. float dm, mm;
  1858. dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1859. mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1860. y[i].d = GGML_FP32_TO_FP16(dm);
  1861. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1862. dm = GGML_FP16_TO_FP32(y[i].d);
  1863. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1864. for (int j = 0; j < QK_K/16; ++j) {
  1865. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1866. }
  1867. if (requantize) {
  1868. for (int j = 0; j < QK_K/16; ++j) {
  1869. const float d = dm * (y[i].scales[j] & 0xF);
  1870. if (!d) continue;
  1871. const float m = mm * (y[i].scales[j] >> 4);
  1872. for (int ii = 0; ii < 16; ++ii) {
  1873. int l = nearest_int((x[16*j + ii] + m)/d);
  1874. l = MAX(0, MIN(3, l));
  1875. L[16*j + ii] = l;
  1876. }
  1877. }
  1878. }
  1879. for (int j = 0; j < QK_K; j += 128) {
  1880. for (int l = 0; l < 32; ++l) {
  1881. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1882. }
  1883. }
  1884. x += QK_K;
  1885. }
  1886. }
  1887. size_t quantize_q2_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  1888. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1889. if (!quant_weights) {
  1890. quantize_row_q2_K_reference(src, dst, (int64_t)nrow*n_per_row);
  1891. }
  1892. else {
  1893. char * qrow = (char *)dst;
  1894. for (int64_t row = 0; row < nrow; ++row) {
  1895. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1896. src += n_per_row;
  1897. qrow += row_size;
  1898. }
  1899. }
  1900. return nrow * row_size;
  1901. }
  1902. //========================= 3-bit (de)-quantization
  1903. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int64_t k) {
  1904. assert(k % QK_K == 0);
  1905. const int nb = k / QK_K;
  1906. int8_t L[QK_K];
  1907. float scales[QK_K / 16];
  1908. for (int i = 0; i < nb; i++) {
  1909. float max_scale = 0;
  1910. float amax = 0;
  1911. for (int j = 0; j < QK_K/16; ++j) {
  1912. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1913. float scale = fabsf(scales[j]);
  1914. if (scale > amax) {
  1915. amax = scale; max_scale = scales[j];
  1916. }
  1917. }
  1918. memset(y[i].scales, 0, 12);
  1919. if (max_scale) {
  1920. float iscale = -32.f/max_scale;
  1921. for (int j = 0; j < QK_K/16; ++j) {
  1922. int8_t l = nearest_int(iscale*scales[j]);
  1923. l = MAX(-32, MIN(31, l)) + 32;
  1924. if (j < 8) {
  1925. y[i].scales[j] = l & 0xF;
  1926. } else {
  1927. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1928. }
  1929. l >>= 4;
  1930. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1931. }
  1932. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1933. } else {
  1934. y[i].d = GGML_FP32_TO_FP16(0.f);
  1935. }
  1936. int8_t sc;
  1937. for (int j = 0; j < QK_K/16; ++j) {
  1938. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1939. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1940. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1941. if (!d) {
  1942. continue;
  1943. }
  1944. for (int ii = 0; ii < 16; ++ii) {
  1945. int l = nearest_int(x[16*j + ii]/d);
  1946. l = MAX(-4, MIN(3, l));
  1947. L[16*j + ii] = l + 4;
  1948. }
  1949. }
  1950. memset(y[i].hmask, 0, QK_K/8);
  1951. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1952. int m = 0;
  1953. uint8_t hm = 1;
  1954. for (int j = 0; j < QK_K; ++j) {
  1955. if (L[j] > 3) {
  1956. y[i].hmask[m] |= hm;
  1957. L[j] -= 4;
  1958. }
  1959. if (++m == QK_K/8) {
  1960. m = 0; hm <<= 1;
  1961. }
  1962. }
  1963. for (int j = 0; j < QK_K; j += 128) {
  1964. for (int l = 0; l < 32; ++l) {
  1965. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1966. }
  1967. }
  1968. x += QK_K;
  1969. }
  1970. }
  1971. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) {
  1972. assert(k % QK_K == 0);
  1973. const int nb = k / QK_K;
  1974. const uint32_t kmask1 = 0x03030303;
  1975. const uint32_t kmask2 = 0x0f0f0f0f;
  1976. uint32_t aux[4];
  1977. const int8_t * scales = (const int8_t*)aux;
  1978. for (int i = 0; i < nb; i++) {
  1979. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1980. const uint8_t * restrict q = x[i].qs;
  1981. const uint8_t * restrict hm = x[i].hmask;
  1982. uint8_t m = 1;
  1983. memcpy(aux, x[i].scales, 12);
  1984. uint32_t tmp = aux[2];
  1985. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1986. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1987. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1988. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1989. int is = 0;
  1990. float dl;
  1991. for (int n = 0; n < QK_K; n += 128) {
  1992. int shift = 0;
  1993. for (int j = 0; j < 4; ++j) {
  1994. dl = d_all * (scales[is++] - 32);
  1995. for (int l = 0; l < 16; ++l) {
  1996. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  1997. }
  1998. dl = d_all * (scales[is++] - 32);
  1999. for (int l = 0; l < 16; ++l) {
  2000. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  2001. }
  2002. shift += 2;
  2003. m <<= 1;
  2004. }
  2005. q += 32;
  2006. }
  2007. }
  2008. }
  2009. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) {
  2010. quantize_row_q3_K_reference(x, vy, k);
  2011. }
  2012. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int64_t n_per_row, const float * restrict quant_weights) {
  2013. assert(n_per_row % QK_K == 0);
  2014. const int nb = n_per_row / QK_K;
  2015. int8_t L[QK_K];
  2016. float scales[QK_K / 16];
  2017. float weight[16];
  2018. float sw[QK_K / 16];
  2019. int8_t Ls[QK_K / 16];
  2020. for (int i = 0; i < nb; i++) {
  2021. float sumx2 = 0;
  2022. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  2023. float sigma2 = 2*sumx2/QK_K;
  2024. for (int j = 0; j < QK_K/16; ++j) {
  2025. if (quant_weights) {
  2026. const float * qw = quant_weights + QK_K * i + 16*j;
  2027. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  2028. } else {
  2029. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  2030. }
  2031. float sumw = 0;
  2032. for (int l = 0; l < 16; ++l) sumw += weight[l];
  2033. sw[j] = sumw;
  2034. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  2035. }
  2036. memset(y[i].scales, 0, 12);
  2037. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  2038. for (int j = 0; j < QK_K/16; ++j) {
  2039. int l = Ls[j];
  2040. if (j < 8) {
  2041. y[i].scales[j] = l & 0xF;
  2042. } else {
  2043. y[i].scales[j-8] |= ((l & 0xF) << 4);
  2044. }
  2045. l >>= 4;
  2046. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  2047. }
  2048. y[i].d = GGML_FP32_TO_FP16(d_block);
  2049. int8_t sc;
  2050. for (int j = 0; j < QK_K/16; ++j) {
  2051. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  2052. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  2053. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2054. if (!d) {
  2055. continue;
  2056. }
  2057. for (int ii = 0; ii < 16; ++ii) {
  2058. int l = nearest_int(x[16*j + ii]/d);
  2059. l = MAX(-4, MIN(3, l));
  2060. L[16*j + ii] = l + 4;
  2061. }
  2062. }
  2063. memset(y[i].hmask, 0, QK_K/8);
  2064. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  2065. int m = 0;
  2066. uint8_t hm = 1;
  2067. for (int j = 0; j < QK_K; ++j) {
  2068. if (L[j] > 3) {
  2069. y[i].hmask[m] |= hm;
  2070. L[j] -= 4;
  2071. }
  2072. if (++m == QK_K/8) {
  2073. m = 0; hm <<= 1;
  2074. }
  2075. }
  2076. for (int j = 0; j < QK_K; j += 128) {
  2077. for (int l = 0; l < 32; ++l) {
  2078. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  2079. }
  2080. }
  2081. x += QK_K;
  2082. }
  2083. }
  2084. size_t quantize_q3_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2085. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  2086. if (!quant_weights) {
  2087. quantize_row_q3_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2088. }
  2089. else {
  2090. char * qrow = (char *)dst;
  2091. for (int64_t row = 0; row < nrow; ++row) {
  2092. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  2093. src += n_per_row;
  2094. qrow += row_size;
  2095. }
  2096. }
  2097. return nrow * row_size;
  2098. }
  2099. // ====================== 4-bit (de)-quantization
  2100. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int64_t k) {
  2101. assert(k % QK_K == 0);
  2102. const int nb = k / QK_K;
  2103. uint8_t L[QK_K];
  2104. uint8_t Laux[32];
  2105. float weights[32];
  2106. float mins[QK_K/32];
  2107. float scales[QK_K/32];
  2108. for (int i = 0; i < nb; i++) {
  2109. float max_scale = 0; // as we are deducting the min, scales are always positive
  2110. float max_min = 0;
  2111. for (int j = 0; j < QK_K/32; ++j) {
  2112. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2113. float sum_x2 = 0;
  2114. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2115. float av_x = sqrtf(sum_x2/32);
  2116. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2117. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  2118. float scale = scales[j];
  2119. if (scale > max_scale) {
  2120. max_scale = scale;
  2121. }
  2122. float min = mins[j];
  2123. if (min > max_min) {
  2124. max_min = min;
  2125. }
  2126. }
  2127. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2128. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2129. for (int j = 0; j < QK_K/32; ++j) {
  2130. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2131. uint8_t lm = nearest_int(inv_min*mins[j]);
  2132. ls = MIN(63, ls);
  2133. lm = MIN(63, lm);
  2134. if (j < 4) {
  2135. y[i].scales[j] = ls;
  2136. y[i].scales[j+4] = lm;
  2137. } else {
  2138. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2139. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2140. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2141. }
  2142. }
  2143. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2144. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2145. uint8_t sc, m;
  2146. for (int j = 0; j < QK_K/32; ++j) {
  2147. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2148. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2149. if (!d) continue;
  2150. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2151. for (int ii = 0; ii < 32; ++ii) {
  2152. int l = nearest_int((x[32*j + ii] + dm)/d);
  2153. l = MAX(0, MIN(15, l));
  2154. L[32*j + ii] = l;
  2155. }
  2156. }
  2157. uint8_t * q = y[i].qs;
  2158. for (int j = 0; j < QK_K; j += 64) {
  2159. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2160. q += 32;
  2161. }
  2162. x += QK_K;
  2163. }
  2164. }
  2165. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int64_t k) {
  2166. assert(k % QK_K == 0);
  2167. const int nb = k / QK_K;
  2168. for (int i = 0; i < nb; i++) {
  2169. const uint8_t * q = x[i].qs;
  2170. const float d = GGML_FP16_TO_FP32(x[i].d);
  2171. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2172. int is = 0;
  2173. uint8_t sc, m;
  2174. for (int j = 0; j < QK_K; j += 64) {
  2175. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2176. const float d1 = d * sc; const float m1 = min * m;
  2177. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2178. const float d2 = d * sc; const float m2 = min * m;
  2179. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  2180. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  2181. q += 32; is += 2;
  2182. }
  2183. }
  2184. }
  2185. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) {
  2186. assert(k % QK_K == 0);
  2187. block_q4_K * restrict y = vy;
  2188. quantize_row_q4_K_reference(x, y, k);
  2189. }
  2190. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2191. assert(n_per_row % QK_K == 0);
  2192. const int64_t nb = n_per_row / QK_K;
  2193. uint8_t L[QK_K];
  2194. uint8_t Laux[32];
  2195. uint8_t Ls[QK_K/32];
  2196. uint8_t Lm[QK_K/32];
  2197. float weights[32];
  2198. float sw[QK_K/32];
  2199. float mins[QK_K/32];
  2200. float scales[QK_K/32];
  2201. for (int i = 0; i < nb; i++) {
  2202. float sum_x2 = 0;
  2203. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2204. float sigma2 = 2*sum_x2/QK_K;
  2205. float av_x = sqrtf(sigma2);
  2206. for (int j = 0; j < QK_K/32; ++j) {
  2207. if (quant_weights) {
  2208. const float * qw = quant_weights + QK_K*i + 32*j;
  2209. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2210. } else {
  2211. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2212. }
  2213. float sumw = 0;
  2214. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2215. sw[j] = sumw;
  2216. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2217. }
  2218. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2219. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2220. for (int j = 0; j < QK_K/32; ++j) {
  2221. uint8_t ls = Ls[j];
  2222. uint8_t lm = Lm[j];
  2223. if (j < 4) {
  2224. y[i].scales[j] = ls;
  2225. y[i].scales[j+4] = lm;
  2226. } else {
  2227. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2228. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2229. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2230. }
  2231. }
  2232. y[i].d = GGML_FP32_TO_FP16(d_block);
  2233. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2234. uint8_t sc, m;
  2235. for (int j = 0; j < QK_K/32; ++j) {
  2236. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2237. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2238. if (!d) continue;
  2239. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2240. for (int ii = 0; ii < 32; ++ii) {
  2241. int l = nearest_int((x[32*j + ii] + dm)/d);
  2242. l = MAX(0, MIN(15, l));
  2243. L[32*j + ii] = l;
  2244. }
  2245. }
  2246. uint8_t * q = y[i].qs;
  2247. for (int j = 0; j < QK_K; j += 64) {
  2248. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2249. q += 32;
  2250. }
  2251. x += QK_K;
  2252. }
  2253. }
  2254. size_t quantize_q4_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2255. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2256. if (!quant_weights) {
  2257. quantize_row_q4_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2258. }
  2259. else {
  2260. char * qrow = (char *)dst;
  2261. for (int64_t row = 0; row < nrow; ++row) {
  2262. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2263. src += n_per_row;
  2264. qrow += row_size;
  2265. }
  2266. }
  2267. return nrow * row_size;
  2268. }
  2269. // ====================== 5-bit (de)-quantization
  2270. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int64_t k) {
  2271. assert(k % QK_K == 0);
  2272. const int64_t nb = k / QK_K;
  2273. uint8_t L[QK_K];
  2274. float mins[QK_K/32];
  2275. float scales[QK_K/32];
  2276. float weights[32];
  2277. uint8_t Laux[32];
  2278. for (int i = 0; i < nb; i++) {
  2279. float max_scale = 0; // as we are deducting the min, scales are always positive
  2280. float max_min = 0;
  2281. for (int j = 0; j < QK_K/32; ++j) {
  2282. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2283. float sum_x2 = 0;
  2284. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2285. float av_x = sqrtf(sum_x2/32);
  2286. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2287. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2288. float scale = scales[j];
  2289. if (scale > max_scale) {
  2290. max_scale = scale;
  2291. }
  2292. float min = mins[j];
  2293. if (min > max_min) {
  2294. max_min = min;
  2295. }
  2296. }
  2297. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2298. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2299. for (int j = 0; j < QK_K/32; ++j) {
  2300. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2301. uint8_t lm = nearest_int(inv_min*mins[j]);
  2302. ls = MIN(63, ls);
  2303. lm = MIN(63, lm);
  2304. if (j < 4) {
  2305. y[i].scales[j] = ls;
  2306. y[i].scales[j+4] = lm;
  2307. } else {
  2308. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2309. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2310. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2311. }
  2312. }
  2313. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2314. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2315. uint8_t sc, m;
  2316. for (int j = 0; j < QK_K/32; ++j) {
  2317. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2318. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2319. if (!d) continue;
  2320. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2321. for (int ii = 0; ii < 32; ++ii) {
  2322. int l = nearest_int((x[32*j + ii] + dm)/d);
  2323. l = MAX(0, MIN(31, l));
  2324. L[32*j + ii] = l;
  2325. }
  2326. }
  2327. uint8_t * restrict qh = y[i].qh;
  2328. uint8_t * restrict ql = y[i].qs;
  2329. memset(qh, 0, QK_K/8);
  2330. uint8_t m1 = 1, m2 = 2;
  2331. for (int n = 0; n < QK_K; n += 64) {
  2332. for (int j = 0; j < 32; ++j) {
  2333. int l1 = L[n + j];
  2334. if (l1 > 15) {
  2335. l1 -= 16; qh[j] |= m1;
  2336. }
  2337. int l2 = L[n + j + 32];
  2338. if (l2 > 15) {
  2339. l2 -= 16; qh[j] |= m2;
  2340. }
  2341. ql[j] = l1 | (l2 << 4);
  2342. }
  2343. m1 <<= 2; m2 <<= 2;
  2344. ql += 32;
  2345. }
  2346. x += QK_K;
  2347. }
  2348. }
  2349. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int64_t k) {
  2350. assert(k % QK_K == 0);
  2351. const int64_t nb = k / QK_K;
  2352. for (int i = 0; i < nb; i++) {
  2353. const uint8_t * ql = x[i].qs;
  2354. const uint8_t * qh = x[i].qh;
  2355. const float d = GGML_FP16_TO_FP32(x[i].d);
  2356. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2357. int is = 0;
  2358. uint8_t sc, m;
  2359. uint8_t u1 = 1, u2 = 2;
  2360. for (int j = 0; j < QK_K; j += 64) {
  2361. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2362. const float d1 = d * sc; const float m1 = min * m;
  2363. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2364. const float d2 = d * sc; const float m2 = min * m;
  2365. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2366. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2367. ql += 32; is += 2;
  2368. u1 <<= 2; u2 <<= 2;
  2369. }
  2370. }
  2371. }
  2372. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) {
  2373. assert(k % QK_K == 0);
  2374. block_q5_K * restrict y = vy;
  2375. quantize_row_q5_K_reference(x, y, k);
  2376. }
  2377. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2378. assert(n_per_row % QK_K == 0);
  2379. const int64_t nb = n_per_row / QK_K;
  2380. uint8_t L[QK_K];
  2381. uint8_t Laux[32];
  2382. uint8_t Ls[QK_K/32];
  2383. uint8_t Lm[QK_K/32];
  2384. float mins[QK_K/32];
  2385. float scales[QK_K/32];
  2386. float sw[QK_K/32];
  2387. float weights[32];
  2388. for (int i = 0; i < nb; i++) {
  2389. float sum_x2 = 0;
  2390. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2391. float sigma2 = 2*sum_x2/QK_K;
  2392. float av_x = sqrtf(sigma2);
  2393. for (int j = 0; j < QK_K/32; ++j) {
  2394. if (quant_weights) {
  2395. const float * qw = quant_weights + QK_K*i + 32*j;
  2396. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2397. } else {
  2398. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2399. }
  2400. float sumw = 0;
  2401. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2402. sw[j] = sumw;
  2403. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2404. }
  2405. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2406. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2407. for (int j = 0; j < QK_K/32; ++j) {
  2408. uint8_t ls = Ls[j];
  2409. uint8_t lm = Lm[j];
  2410. ls = MIN(63, ls);
  2411. lm = MIN(63, lm);
  2412. if (j < 4) {
  2413. y[i].scales[j] = ls;
  2414. y[i].scales[j+4] = lm;
  2415. } else {
  2416. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2417. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2418. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2419. }
  2420. }
  2421. y[i].d = GGML_FP32_TO_FP16(d_block);
  2422. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2423. uint8_t sc, m;
  2424. for (int j = 0; j < QK_K/32; ++j) {
  2425. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2426. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2427. if (!d) continue;
  2428. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2429. for (int ii = 0; ii < 32; ++ii) {
  2430. int l = nearest_int((x[32*j + ii] + dm)/d);
  2431. l = MAX(0, MIN(31, l));
  2432. L[32*j + ii] = l;
  2433. }
  2434. }
  2435. uint8_t * restrict qh = y[i].qh;
  2436. uint8_t * restrict ql = y[i].qs;
  2437. memset(qh, 0, QK_K/8);
  2438. uint8_t m1 = 1, m2 = 2;
  2439. for (int n = 0; n < QK_K; n += 64) {
  2440. for (int j = 0; j < 32; ++j) {
  2441. int l1 = L[n + j];
  2442. if (l1 > 15) {
  2443. l1 -= 16; qh[j] |= m1;
  2444. }
  2445. int l2 = L[n + j + 32];
  2446. if (l2 > 15) {
  2447. l2 -= 16; qh[j] |= m2;
  2448. }
  2449. ql[j] = l1 | (l2 << 4);
  2450. }
  2451. m1 <<= 2; m2 <<= 2;
  2452. ql += 32;
  2453. }
  2454. x += QK_K;
  2455. }
  2456. }
  2457. size_t quantize_q5_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2458. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2459. if (!quant_weights) {
  2460. quantize_row_q5_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2461. }
  2462. else {
  2463. char * qrow = (char *)dst;
  2464. for (int64_t row = 0; row < nrow; ++row) {
  2465. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2466. src += n_per_row;
  2467. qrow += row_size;
  2468. }
  2469. }
  2470. return nrow * row_size;
  2471. }
  2472. // ====================== 6-bit (de)-quantization
  2473. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int64_t k) {
  2474. assert(k % QK_K == 0);
  2475. const int64_t nb = k / QK_K;
  2476. int8_t L[QK_K];
  2477. float scales[QK_K/16];
  2478. for (int i = 0; i < nb; i++) {
  2479. float max_scale = 0;
  2480. float max_abs_scale = 0;
  2481. for (int ib = 0; ib < QK_K/16; ++ib) {
  2482. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2483. scales[ib] = scale;
  2484. const float abs_scale = fabsf(scale);
  2485. if (abs_scale > max_abs_scale) {
  2486. max_abs_scale = abs_scale;
  2487. max_scale = scale;
  2488. }
  2489. }
  2490. if (max_abs_scale < GROUP_MAX_EPS) {
  2491. memset(&y[i], 0, sizeof(block_q6_K));
  2492. y[i].d = GGML_FP32_TO_FP16(0.f);
  2493. x += QK_K;
  2494. continue;
  2495. }
  2496. float iscale = -128.f/max_scale;
  2497. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2498. for (int ib = 0; ib < QK_K/16; ++ib) {
  2499. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2500. }
  2501. for (int j = 0; j < QK_K/16; ++j) {
  2502. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2503. if (!d) {
  2504. continue;
  2505. }
  2506. for (int ii = 0; ii < 16; ++ii) {
  2507. int l = nearest_int(x[16*j + ii]/d);
  2508. l = MAX(-32, MIN(31, l));
  2509. L[16*j + ii] = l + 32;
  2510. }
  2511. }
  2512. uint8_t * restrict ql = y[i].ql;
  2513. uint8_t * restrict qh = y[i].qh;
  2514. for (int j = 0; j < QK_K; j += 128) {
  2515. for (int l = 0; l < 32; ++l) {
  2516. const uint8_t q1 = L[j + l + 0] & 0xF;
  2517. const uint8_t q2 = L[j + l + 32] & 0xF;
  2518. const uint8_t q3 = L[j + l + 64] & 0xF;
  2519. const uint8_t q4 = L[j + l + 96] & 0xF;
  2520. ql[l+ 0] = q1 | (q3 << 4);
  2521. ql[l+32] = q2 | (q4 << 4);
  2522. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2523. }
  2524. ql += 64;
  2525. qh += 32;
  2526. }
  2527. x += QK_K;
  2528. }
  2529. }
  2530. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int64_t k) {
  2531. assert(k % QK_K == 0);
  2532. const int64_t nb = k / QK_K;
  2533. for (int i = 0; i < nb; i++) {
  2534. const float d = GGML_FP16_TO_FP32(x[i].d);
  2535. const uint8_t * restrict ql = x[i].ql;
  2536. const uint8_t * restrict qh = x[i].qh;
  2537. const int8_t * restrict sc = x[i].scales;
  2538. for (int n = 0; n < QK_K; n += 128) {
  2539. for (int l = 0; l < 32; ++l) {
  2540. int is = l/16;
  2541. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2542. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2543. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2544. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2545. y[l + 0] = d * sc[is + 0] * q1;
  2546. y[l + 32] = d * sc[is + 2] * q2;
  2547. y[l + 64] = d * sc[is + 4] * q3;
  2548. y[l + 96] = d * sc[is + 6] * q4;
  2549. }
  2550. y += 128;
  2551. ql += 64;
  2552. qh += 32;
  2553. sc += 8;
  2554. }
  2555. }
  2556. }
  2557. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) {
  2558. assert(k % QK_K == 0);
  2559. block_q6_K * restrict y = vy;
  2560. quantize_row_q6_K_reference(x, y, k);
  2561. }
  2562. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2563. assert(n_per_row % QK_K == 0);
  2564. const int64_t nb = n_per_row / QK_K;
  2565. int8_t L[QK_K];
  2566. float scales[QK_K/16];
  2567. //float weights[16];
  2568. for (int i = 0; i < nb; i++) {
  2569. //float sum_x2 = 0;
  2570. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2571. //float sigma2 = sum_x2/QK_K;
  2572. float max_scale = 0;
  2573. float max_abs_scale = 0;
  2574. for (int ib = 0; ib < QK_K/16; ++ib) {
  2575. float scale;
  2576. if (quant_weights) {
  2577. const float * qw = quant_weights + QK_K*i + 16*ib;
  2578. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2579. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2580. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2581. } else {
  2582. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2583. }
  2584. scales[ib] = scale;
  2585. const float abs_scale = fabsf(scale);
  2586. if (abs_scale > max_abs_scale) {
  2587. max_abs_scale = abs_scale;
  2588. max_scale = scale;
  2589. }
  2590. }
  2591. if (max_abs_scale < GROUP_MAX_EPS) {
  2592. memset(&y[i], 0, sizeof(block_q6_K));
  2593. y[i].d = GGML_FP32_TO_FP16(0.f);
  2594. x += QK_K;
  2595. continue;
  2596. }
  2597. float iscale = -128.f/max_scale;
  2598. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2599. for (int ib = 0; ib < QK_K/16; ++ib) {
  2600. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2601. }
  2602. for (int j = 0; j < QK_K/16; ++j) {
  2603. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2604. if (!d) {
  2605. continue;
  2606. }
  2607. for (int ii = 0; ii < 16; ++ii) {
  2608. int l = nearest_int(x[16*j + ii]/d);
  2609. l = MAX(-32, MIN(31, l));
  2610. L[16*j + ii] = l + 32;
  2611. }
  2612. }
  2613. uint8_t * restrict ql = y[i].ql;
  2614. uint8_t * restrict qh = y[i].qh;
  2615. for (int j = 0; j < QK_K; j += 128) {
  2616. for (int l = 0; l < 32; ++l) {
  2617. const uint8_t q1 = L[j + l + 0] & 0xF;
  2618. const uint8_t q2 = L[j + l + 32] & 0xF;
  2619. const uint8_t q3 = L[j + l + 64] & 0xF;
  2620. const uint8_t q4 = L[j + l + 96] & 0xF;
  2621. ql[l+ 0] = q1 | (q3 << 4);
  2622. ql[l+32] = q2 | (q4 << 4);
  2623. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2624. }
  2625. ql += 64;
  2626. qh += 32;
  2627. }
  2628. x += QK_K;
  2629. }
  2630. }
  2631. size_t quantize_q6_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2632. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2633. if (!quant_weights) {
  2634. quantize_row_q6_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2635. }
  2636. else {
  2637. char * qrow = (char *)dst;
  2638. for (int64_t row = 0; row < nrow; ++row) {
  2639. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2640. src += n_per_row;
  2641. qrow += row_size;
  2642. }
  2643. }
  2644. return nrow * row_size;
  2645. }
  2646. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2647. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2648. if (!quant_weights) {
  2649. quantize_row_q4_0_reference(x, y, n_per_row);
  2650. return;
  2651. }
  2652. float weight[QK4_0];
  2653. int8_t L[QK4_0];
  2654. float sum_x2 = 0;
  2655. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2656. float sigma2 = sum_x2/n_per_row;
  2657. const int64_t nb = n_per_row/QK4_0;
  2658. for (int ib = 0; ib < nb; ++ib) {
  2659. const float * xb = x + QK4_0 * ib;
  2660. const float * qw = quant_weights + QK4_0 * ib;
  2661. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2662. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2663. y[ib].d = GGML_FP32_TO_FP16(d);
  2664. for (int j = 0; j < 16; ++j) {
  2665. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2666. }
  2667. }
  2668. }
  2669. size_t quantize_q4_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2670. if (!quant_weights) {
  2671. quantize_row_q4_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2672. return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2673. }
  2674. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2675. char * qrow = (char *)dst;
  2676. for (int64_t row = 0; row < nrow; ++row) {
  2677. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2678. src += n_per_row;
  2679. qrow += row_size;
  2680. }
  2681. return nrow * row_size;
  2682. }
  2683. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2684. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2685. if (!quant_weights) {
  2686. quantize_row_q4_1_reference(x, y, n_per_row);
  2687. return;
  2688. }
  2689. float weight[QK4_1];
  2690. uint8_t L[QK4_1], Laux[QK4_1];
  2691. float sum_x2 = 0;
  2692. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2693. float sigma2 = sum_x2/n_per_row;
  2694. const int64_t nb = n_per_row/QK4_1;
  2695. for (int ib = 0; ib < nb; ++ib) {
  2696. const float * xb = x + QK4_1 * ib;
  2697. const float * qw = quant_weights + QK4_1 * ib;
  2698. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2699. float min;
  2700. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2701. y[ib].d = GGML_FP32_TO_FP16(d);
  2702. y[ib].m = GGML_FP32_TO_FP16(-min);
  2703. for (int j = 0; j < 16; ++j) {
  2704. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2705. }
  2706. }
  2707. }
  2708. size_t quantize_q4_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2709. if (!quant_weights) {
  2710. quantize_row_q4_1_reference(src, dst, (int64_t)nrow*n_per_row);
  2711. return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2712. }
  2713. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2714. char * qrow = (char *)dst;
  2715. for (int64_t row = 0; row < nrow; ++row) {
  2716. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2717. src += n_per_row;
  2718. qrow += row_size;
  2719. }
  2720. return nrow * row_size;
  2721. }
  2722. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2723. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2724. if (!quant_weights) {
  2725. quantize_row_q5_0_reference(x, y, n_per_row);
  2726. return;
  2727. }
  2728. float weight[QK5_0];
  2729. int8_t L[QK5_0];
  2730. float sum_x2 = 0;
  2731. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2732. float sigma2 = sum_x2/n_per_row;
  2733. const int64_t nb = n_per_row/QK5_0;
  2734. for (int ib = 0; ib < nb; ++ib) {
  2735. const float * xb = x + QK5_0 * ib;
  2736. const float * qw = quant_weights + QK5_0 * ib;
  2737. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2738. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2739. y[ib].d = GGML_FP32_TO_FP16(d);
  2740. uint32_t qh = 0;
  2741. for (int j = 0; j < 16; ++j) {
  2742. const uint8_t xi0 = L[j];
  2743. const uint8_t xi1 = L[j+16];
  2744. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2745. // get the 5-th bit and store it in qh at the right position
  2746. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2747. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2748. }
  2749. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2750. }
  2751. }
  2752. size_t quantize_q5_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2753. if (!quant_weights) {
  2754. quantize_row_q5_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2755. return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2756. }
  2757. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2758. char * qrow = (char *)dst;
  2759. for (int64_t row = 0; row < nrow; ++row) {
  2760. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2761. src += n_per_row;
  2762. qrow += row_size;
  2763. }
  2764. return nrow * row_size;
  2765. }
  2766. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2767. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2768. if (!quant_weights) {
  2769. quantize_row_q5_1_reference(x, y, n_per_row);
  2770. return;
  2771. }
  2772. float weight[QK5_1];
  2773. uint8_t L[QK5_1], Laux[QK5_1];
  2774. float sum_x2 = 0;
  2775. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2776. float sigma2 = sum_x2/n_per_row;
  2777. const int64_t nb = n_per_row/QK5_1;
  2778. for (int ib = 0; ib < nb; ++ib) {
  2779. const float * xb = x + QK5_1 * ib;
  2780. const float * qw = quant_weights + QK5_1 * ib;
  2781. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2782. float min;
  2783. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2784. y[ib].d = GGML_FP32_TO_FP16(d);
  2785. y[ib].m = GGML_FP32_TO_FP16(-min);
  2786. uint32_t qh = 0;
  2787. for (int j = 0; j < 16; ++j) {
  2788. const uint8_t xi0 = L[j];
  2789. const uint8_t xi1 = L[j+16];
  2790. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2791. // get the 5-th bit and store it in qh at the right position
  2792. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2793. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2794. }
  2795. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2796. }
  2797. }
  2798. size_t quantize_q5_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2799. if (!quant_weights) {
  2800. quantize_row_q5_1_reference(src, dst, (int64_t)nrow*n_per_row);
  2801. return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2802. }
  2803. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2804. char * qrow = (char *)dst;
  2805. for (int64_t row = 0; row < nrow; ++row) {
  2806. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2807. src += n_per_row;
  2808. qrow += row_size;
  2809. }
  2810. return nrow * row_size;
  2811. }
  2812. size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2813. (void)quant_weights; // not used
  2814. const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
  2815. quantize_row_q8_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2816. return nrow * row_size;
  2817. }
  2818. // ====================== "True" 2-bit (de)-quantization
  2819. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) {
  2820. assert(k % QK_K == 0);
  2821. const int64_t nb = k / QK_K;
  2822. uint32_t aux32[2];
  2823. const uint8_t * aux8 = (const uint8_t *)aux32;
  2824. for (int i = 0; i < nb; i++) {
  2825. const float d = GGML_FP16_TO_FP32(x[i].d);
  2826. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2827. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  2828. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  2829. for (int l = 0; l < 4; ++l) {
  2830. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  2831. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  2832. for (int j = 0; j < 8; ++j) {
  2833. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2834. }
  2835. y += 8;
  2836. }
  2837. }
  2838. }
  2839. }
  2840. // ====================== 2.3125 bpw (de)-quantization
  2841. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int64_t k) {
  2842. assert(k % QK_K == 0);
  2843. const int64_t nb = k / QK_K;
  2844. float db[2];
  2845. for (int i = 0; i < nb; i++) {
  2846. const float d = GGML_FP16_TO_FP32(x[i].d);
  2847. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2848. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2849. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2850. for (int l = 0; l < 4; ++l) {
  2851. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  2852. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  2853. for (int j = 0; j < 8; ++j) {
  2854. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2855. }
  2856. y += 8;
  2857. }
  2858. }
  2859. }
  2860. }
  2861. // ====================== 2.5625 bpw (de)-quantization
  2862. void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int64_t k) {
  2863. assert(k % QK_K == 0);
  2864. const int64_t nb = k / QK_K;
  2865. float db[2];
  2866. for (int i = 0; i < nb; i++) {
  2867. const float d = GGML_FP16_TO_FP32(x[i].d);
  2868. const uint8_t * qs = x[i].qs;
  2869. const uint8_t * qh = x[i].qh;
  2870. const uint8_t * signs = qs + QK_K/8;
  2871. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2872. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2873. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2874. for (int l = 0; l < 4; ++l) {
  2875. const float dl = db[l/2];
  2876. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  2877. for (int j = 0; j < 8; ++j) {
  2878. y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
  2879. }
  2880. y += 8;
  2881. }
  2882. qs += 4;
  2883. signs += 4;
  2884. }
  2885. }
  2886. }
  2887. // ====================== 3.0625 bpw (de)-quantization
  2888. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int64_t k) {
  2889. assert(k % QK_K == 0);
  2890. const int64_t nb = k / QK_K;
  2891. uint32_t aux32;
  2892. for (int i = 0; i < nb; i++) {
  2893. const float d = GGML_FP16_TO_FP32(x[i].d);
  2894. const uint8_t * qs = x[i].qs;
  2895. const uint8_t * scales_and_signs = qs + QK_K/4;
  2896. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2897. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  2898. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  2899. for (int l = 0; l < 4; ++l) {
  2900. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  2901. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  2902. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  2903. for (int j = 0; j < 4; ++j) {
  2904. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2905. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2906. }
  2907. y += 8;
  2908. }
  2909. qs += 8;
  2910. }
  2911. }
  2912. }
  2913. // ====================== 3.3125 bpw (de)-quantization
  2914. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int64_t k) {
  2915. assert(k % QK_K == 0);
  2916. const int64_t nb = k / QK_K;
  2917. for (int i = 0; i < nb; i++) {
  2918. const float d = GGML_FP16_TO_FP32(x[i].d);
  2919. const uint8_t * qs = x[i].qs;
  2920. const uint8_t * qh = x[i].qh;
  2921. const uint8_t * signs = x[i].signs;
  2922. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  2923. const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  2924. const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4));
  2925. for (int l = 0; l < 4; ++l) {
  2926. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  2927. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  2928. for (int j = 0; j < 4; ++j) {
  2929. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2930. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2931. }
  2932. y += 8;
  2933. }
  2934. qs += 8;
  2935. signs += 4;
  2936. for (int l = 0; l < 4; ++l) {
  2937. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  2938. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  2939. for (int j = 0; j < 4; ++j) {
  2940. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2941. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2942. }
  2943. y += 8;
  2944. }
  2945. qh += 2;
  2946. qs += 8;
  2947. signs += 4;
  2948. }
  2949. }
  2950. }
  2951. // ====================== 1.5625 bpw (de)-quantization
  2952. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int64_t k) {
  2953. assert(k % QK_K == 0);
  2954. const int64_t nb = k / QK_K;
  2955. for (int i = 0; i < nb; i++) {
  2956. const float d = GGML_FP16_TO_FP32(x[i].d);
  2957. const uint8_t * qs = x[i].qs;
  2958. const uint16_t * qh = x[i].qh;
  2959. for (int ib = 0; ib < QK_K/32; ++ib) {
  2960. const float dl = d * (2*((qh[ib] >> 12) & 7) + 1);
  2961. const float delta = qh[ib] & 0x8000 ? -IQ1S_DELTA : IQ1S_DELTA;
  2962. for (int l = 0; l < 4; ++l) {
  2963. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  2964. for (int j = 0; j < 8; ++j) {
  2965. y[j] = dl * (grid[j] + delta);
  2966. }
  2967. y += 8;
  2968. }
  2969. qs += 4;
  2970. }
  2971. }
  2972. }
  2973. void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int64_t k) {
  2974. assert(k % QK_K == 0);
  2975. const int64_t nb = k / QK_K;
  2976. float delta[4];
  2977. uint16_t idx[4];
  2978. iq1m_scale_t scale;
  2979. for (int i = 0; i < nb; i++) {
  2980. const uint16_t * sc = (const uint16_t *)x[i].scales;
  2981. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  2982. const float d = GGML_FP16_TO_FP32(scale.f16);
  2983. const uint8_t * qs = x[i].qs;
  2984. const uint8_t * qh = x[i].qh;
  2985. for (int ib = 0; ib < QK_K/32; ++ib) {
  2986. const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1);
  2987. const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1);
  2988. idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
  2989. idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
  2990. idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
  2991. idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
  2992. delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  2993. delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  2994. delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  2995. delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  2996. for (int l = 0; l < 2; ++l) {
  2997. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  2998. for (int j = 0; j < 8; ++j) {
  2999. y[j] = dl1 * (grid[j] + delta[l]);
  3000. }
  3001. y += 8;
  3002. }
  3003. for (int l = 2; l < 4; ++l) {
  3004. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3005. for (int j = 0; j < 8; ++j) {
  3006. y[j] = dl2 * (grid[j] + delta[l]);
  3007. }
  3008. y += 8;
  3009. }
  3010. qs += 4;
  3011. qh += 2;
  3012. }
  3013. }
  3014. }
  3015. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  3016. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int64_t k) {
  3017. assert(k % QK4_NL == 0);
  3018. const int64_t nb = k / QK4_NL;
  3019. for (int i = 0; i < nb; i++) {
  3020. const uint8_t * qs = x[i].qs;
  3021. const float d = GGML_FP16_TO_FP32(x[i].d);
  3022. for (int j = 0; j < QK4_NL/2; ++j) {
  3023. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  3024. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  3025. }
  3026. y += QK4_NL;
  3027. qs += QK4_NL/2;
  3028. }
  3029. }
  3030. void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int64_t k) {
  3031. assert(k % QK_K == 0);
  3032. const int64_t nb = k / QK_K;
  3033. for (int i = 0; i < nb; i++) {
  3034. const uint8_t * qs = x[i].qs;
  3035. const float d = GGML_FP16_TO_FP32(x[i].d);
  3036. for (int ib = 0; ib < QK_K/32; ++ib) {
  3037. const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
  3038. const float dl = d * (ls - 32);
  3039. for (int j = 0; j < 16; ++j) {
  3040. y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
  3041. y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4];
  3042. }
  3043. y += 32;
  3044. qs += 16;
  3045. }
  3046. }
  3047. }
  3048. //===================================== Q8_K ==============================================
  3049. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int64_t k) {
  3050. assert(k % QK_K == 0);
  3051. const int64_t nb = k / QK_K;
  3052. for (int i = 0; i < nb; i++) {
  3053. float max = 0;
  3054. float amax = 0;
  3055. for (int j = 0; j < QK_K; ++j) {
  3056. float ax = fabsf(x[j]);
  3057. if (ax > amax) {
  3058. amax = ax; max = x[j];
  3059. }
  3060. }
  3061. if (!amax) {
  3062. y[i].d = 0;
  3063. memset(y[i].qs, 0, QK_K);
  3064. x += QK_K;
  3065. continue;
  3066. }
  3067. //const float iscale = -128.f/max;
  3068. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3069. const float iscale = -127.f/max;
  3070. for (int j = 0; j < QK_K; ++j) {
  3071. int v = nearest_int(iscale*x[j]);
  3072. y[i].qs[j] = MIN(127, v);
  3073. }
  3074. for (int j = 0; j < QK_K/16; ++j) {
  3075. int sum = 0;
  3076. for (int ii = 0; ii < 16; ++ii) {
  3077. sum += y[i].qs[j*16 + ii];
  3078. }
  3079. y[i].bsums[j] = sum;
  3080. }
  3081. y[i].d = 1/iscale;
  3082. x += QK_K;
  3083. }
  3084. }
  3085. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int64_t k) {
  3086. assert(k % QK_K == 0);
  3087. const int64_t nb = k / QK_K;
  3088. for (int i = 0; i < nb; i++) {
  3089. for (int j = 0; j < QK_K; ++j) {
  3090. *y++ = x[i].d * x[i].qs[j];
  3091. }
  3092. }
  3093. }
  3094. void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) {
  3095. quantize_row_q8_K_reference(x, y, k);
  3096. }
  3097. //===================================== Dot ptoducts =================================
  3098. //
  3099. // Helper functions
  3100. //
  3101. #if __AVX__ || __AVX2__ || __AVX512F__
  3102. // shuffles to pick the required scales in dot products
  3103. static inline __m256i get_scale_shuffle_q3k(int i) {
  3104. static const uint8_t k_shuffle[128] = {
  3105. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3106. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3107. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3108. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3109. };
  3110. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3111. }
  3112. static inline __m256i get_scale_shuffle_k4(int i) {
  3113. static const uint8_t k_shuffle[256] = {
  3114. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3115. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3116. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3117. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3118. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3119. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3120. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3121. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3122. };
  3123. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3124. }
  3125. static inline __m128i get_scale_shuffle(int i) {
  3126. static const uint8_t k_shuffle[128] = {
  3127. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3128. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3129. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3130. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3131. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3132. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3133. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3134. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3135. };
  3136. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3137. }
  3138. #elif defined(__loongarch_asx)
  3139. // shuffles to pick the required scales in dot products
  3140. static inline __m256i get_scale_shuffle_q3k(int i) {
  3141. static const uint8_t k_shuffle[128] = {
  3142. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3143. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3144. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3145. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3146. };
  3147. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3148. }
  3149. static inline __m256i get_scale_shuffle_k4(int i) {
  3150. static const uint8_t k_shuffle[256] = {
  3151. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3152. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3153. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3154. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3155. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3156. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3157. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3158. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3159. };
  3160. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3161. }
  3162. static inline __m128i get_scale_shuffle(int i) {
  3163. static const uint8_t k_shuffle[128] = {
  3164. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3165. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3166. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3167. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3168. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3169. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3170. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3171. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3172. };
  3173. return __lsx_vld((const __m128i*)k_shuffle + i, 0);
  3174. }
  3175. #endif
  3176. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3177. const int qk = QK8_0;
  3178. const int nb = n / qk;
  3179. assert(n % qk == 0);
  3180. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3181. assert((nrc == 2) || (nrc == 1));
  3182. #else
  3183. assert(nrc == 1);
  3184. #endif
  3185. UNUSED(nrc);
  3186. UNUSED(bx);
  3187. UNUSED(by);
  3188. UNUSED(bs);
  3189. const block_q4_0 * restrict x = vx;
  3190. const block_q8_0 * restrict y = vy;
  3191. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3192. if (nrc == 2) {
  3193. const block_q4_0 * restrict vx0 = vx;
  3194. const block_q4_0 * restrict vx1 = (const block_q4_0 *) ((const uint8_t*)vx + bx);
  3195. const block_q8_0 * restrict vy0 = vy;
  3196. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  3197. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3198. for (int i = 0; i < nb; i++) {
  3199. const block_q4_0 * restrict b_x0 = &vx0[i];
  3200. const block_q4_0 * restrict b_x1 = &vx1[i];
  3201. const block_q8_0 * restrict b_y0 = &vy0[i];
  3202. const block_q8_0 * restrict b_y1 = &vy1[i];
  3203. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3204. const int8x16_t s8b = vdupq_n_s8(0x8);
  3205. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3206. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3207. // 4-bit -> 8-bit
  3208. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3209. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3210. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3211. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3212. // sub 8
  3213. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3214. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3215. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3216. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3217. // load y
  3218. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3219. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3220. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3221. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3222. float32_t _scale[4] = { GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3223. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3224. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3225. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3226. float32x4_t scale = vld1q_f32(_scale);
  3227. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3228. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3229. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3230. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3231. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3232. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3233. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3234. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3235. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3236. l1, r1)), l2, r2)), l3, r3))), scale);
  3237. }
  3238. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3239. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3240. vst1_f32(s, vget_low_f32(sumv2));
  3241. vst1_f32(s + bs, vget_high_f32(sumv2));
  3242. return;
  3243. }
  3244. #endif
  3245. #if defined(__ARM_FEATURE_SVE)
  3246. const svbool_t ptrueh = svptrue_pat_b8(SV_VL16);
  3247. const svbool_t ptruel = svnot_b_z(svptrue_b8(), ptrueh);
  3248. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  3249. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  3250. assert(nb % 2 == 0); // TODO: handle odd nb
  3251. for (int i = 0; i < nb; i += 2) {
  3252. const block_q4_0 * restrict x0 = &x[i + 0];
  3253. const block_q4_0 * restrict x1 = &x[i + 1];
  3254. const block_q8_0 * restrict y0 = &y[i + 0];
  3255. const block_q8_0 * restrict y1 = &y[i + 1];
  3256. // load x
  3257. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  3258. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  3259. // 4-bit -> 8-bit
  3260. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(ptruel, svand_n_u8_m(ptrueh, qx0r, 0x0F), 0x04));
  3261. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(ptruel, svand_n_u8_m(ptrueh, qx1r, 0x0F), 0x04));
  3262. // sub 8
  3263. const svint8_t qx0s = svsub_n_s8_x(svptrue_b8(), qx0, 8);
  3264. const svint8_t qx1s = svsub_n_s8_x(svptrue_b8(), qx1, 8);
  3265. // load y
  3266. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  3267. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  3268. // dot product
  3269. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3270. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3271. }
  3272. *s = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  3273. #elif defined(__ARM_NEON)
  3274. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3275. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3276. assert(nb % 2 == 0); // TODO: handle odd nb
  3277. for (int i = 0; i < nb; i += 2) {
  3278. const block_q4_0 * restrict x0 = &x[i + 0];
  3279. const block_q4_0 * restrict x1 = &x[i + 1];
  3280. const block_q8_0 * restrict y0 = &y[i + 0];
  3281. const block_q8_0 * restrict y1 = &y[i + 1];
  3282. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3283. const int8x16_t s8b = vdupq_n_s8(0x8);
  3284. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3285. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3286. // 4-bit -> 8-bit
  3287. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3288. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3289. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3290. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3291. // sub 8
  3292. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3293. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3294. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3295. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3296. // load y
  3297. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3298. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3299. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3300. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3301. // dot product into int32x4_t
  3302. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3303. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3304. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3305. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3306. }
  3307. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3308. #elif defined(__AVX2__)
  3309. // Initialize accumulator with zeros
  3310. __m256 acc = _mm256_setzero_ps();
  3311. // Main loop
  3312. for (int i = 0; i < nb; ++i) {
  3313. /* Compute combined scale for the block */
  3314. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3315. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3316. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3317. const __m256i off = _mm256_set1_epi8( 8 );
  3318. qx = _mm256_sub_epi8( qx, off );
  3319. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3320. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3321. /* Multiply q with scale and accumulate */
  3322. acc = _mm256_fmadd_ps( d, q, acc );
  3323. }
  3324. *s = hsum_float_8(acc);
  3325. #elif defined(__AVX__)
  3326. // Initialize accumulator with zeros
  3327. __m256 acc = _mm256_setzero_ps();
  3328. // Main loop
  3329. for (int i = 0; i < nb; ++i) {
  3330. // Compute combined scale for the block
  3331. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3332. const __m128i lowMask = _mm_set1_epi8(0xF);
  3333. const __m128i off = _mm_set1_epi8(8);
  3334. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  3335. __m128i bx_0 = _mm_and_si128(lowMask, tmp);
  3336. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3337. bx_0 = _mm_sub_epi8(bx_0, off);
  3338. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3339. bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  3340. by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3341. bx_0 = _mm_sub_epi8(bx_0, off);
  3342. const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
  3343. // Convert int32_t to float
  3344. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  3345. // Apply the scale, and accumulate
  3346. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  3347. }
  3348. *s = hsum_float_8(acc);
  3349. #elif defined(__SSSE3__)
  3350. // set constants
  3351. const __m128i lowMask = _mm_set1_epi8(0xF);
  3352. const __m128i off = _mm_set1_epi8(8);
  3353. // Initialize accumulator with zeros
  3354. __m128 acc_0 = _mm_setzero_ps();
  3355. __m128 acc_1 = _mm_setzero_ps();
  3356. __m128 acc_2 = _mm_setzero_ps();
  3357. __m128 acc_3 = _mm_setzero_ps();
  3358. // First round without accumulation
  3359. {
  3360. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3361. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3362. // Compute combined scale for the block 0 and 1
  3363. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3364. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  3365. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3366. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  3367. bx_0 = _mm_sub_epi8(bx_0, off);
  3368. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3369. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3370. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  3371. bx_1 = _mm_sub_epi8(bx_1, off);
  3372. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3373. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  3374. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  3375. // Compute combined scale for the block 2 and 3
  3376. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3377. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  3378. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3379. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  3380. bx_2 = _mm_sub_epi8(bx_2, off);
  3381. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3382. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3383. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  3384. bx_3 = _mm_sub_epi8(bx_3, off);
  3385. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3386. // Convert int32_t to float
  3387. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3388. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3389. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3390. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3391. // Apply the scale
  3392. acc_0 = _mm_mul_ps( d_0_1, p0 );
  3393. acc_1 = _mm_mul_ps( d_0_1, p1 );
  3394. acc_2 = _mm_mul_ps( d_2_3, p2 );
  3395. acc_3 = _mm_mul_ps( d_2_3, p3 );
  3396. }
  3397. assert(nb % 2 == 0); // TODO: handle odd nb
  3398. // Main loop
  3399. for (int i = 2; i < nb; i+=2) {
  3400. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  3401. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  3402. // Compute combined scale for the block 0 and 1
  3403. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3404. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  3405. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3406. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3407. bx_0 = _mm_sub_epi8(bx_0, off);
  3408. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3409. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3410. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3411. bx_1 = _mm_sub_epi8(bx_1, off);
  3412. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3413. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3414. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3415. // Compute combined scale for the block 2 and 3
  3416. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3417. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  3418. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3419. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  3420. bx_2 = _mm_sub_epi8(bx_2, off);
  3421. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3422. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3423. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  3424. bx_3 = _mm_sub_epi8(bx_3, off);
  3425. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3426. // Convert int32_t to float
  3427. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3428. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3429. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3430. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3431. // Apply the scale
  3432. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3433. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3434. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3435. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3436. // Acummulate
  3437. acc_0 = _mm_add_ps(p0_d, acc_0);
  3438. acc_1 = _mm_add_ps(p1_d, acc_1);
  3439. acc_2 = _mm_add_ps(p2_d, acc_2);
  3440. acc_3 = _mm_add_ps(p3_d, acc_3);
  3441. }
  3442. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3443. #elif defined(__riscv_v_intrinsic)
  3444. float sumf = 0.0;
  3445. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3446. for (int i = 0; i < nb; i++) {
  3447. // load elements
  3448. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3449. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3450. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3451. // mask and store lower part of x, and then upper part
  3452. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3453. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3454. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3455. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3456. // subtract offset
  3457. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3458. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3459. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3460. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3461. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3462. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3463. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3464. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3465. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3466. }
  3467. *s = sumf;
  3468. #elif defined(__POWER9_VECTOR__)
  3469. const vector signed char lowMask = vec_splats((signed char)0xF);
  3470. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3471. const vector signed char v8 = vec_splats((signed char)0x8);
  3472. vector float vsumf0 = vec_splats(0.0f);
  3473. #pragma GCC unroll 4
  3474. for (int i = 0; i < nb; i++) {
  3475. __builtin_prefetch(x[i].qs, 0, 1);
  3476. __builtin_prefetch(y[i].qs, 0, 1);
  3477. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3478. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  3479. vector float vd = vec_mul(vxd, vyd);
  3480. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  3481. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  3482. vector signed char q8y1 = vec_xl(16, y[i].qs);
  3483. vector signed char q4x0 = vec_and(qxs, lowMask);
  3484. vector signed char q4x1 = vec_sr(qxs, v4);
  3485. q4x0 = vec_sub(q4x0, v8);
  3486. q4x1 = vec_sub(q4x1, v8);
  3487. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  3488. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  3489. qv0 = vec_add(qv0, qv1);
  3490. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  3491. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3492. }
  3493. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3494. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3495. *s = vec_extract(vsumf0, 0);
  3496. #elif defined(__loongarch_asx)
  3497. // Initialize accumulator with zeros
  3498. __m256 acc = (__m256)__lasx_xvldi(0);
  3499. // Main loop
  3500. for (int i = 0; i < nb; ++i) {
  3501. /* Compute combined scale for the block */
  3502. const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3503. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3504. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3505. const __m256i off = __lasx_xvreplgr2vr_b( 8 );
  3506. qx = __lasx_xvsub_b( qx, off );
  3507. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  3508. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3509. /* Multiply q with scale and accumulate */
  3510. acc = __lasx_xvfmadd_s( d, q, acc );
  3511. }
  3512. *s = hsum_float_8(acc);
  3513. #elif defined(__loongarch_sx)
  3514. // set constants
  3515. const __m128i low_mask = __lsx_vreplgr2vr_b(0xF);
  3516. const __m128i off = __lsx_vreplgr2vr_b(8);
  3517. // Initialize accumulator with zeros
  3518. __m128 acc_0 = __lsx_vldi(0);
  3519. __m128 acc_1 = __lsx_vldi(0);
  3520. __m128 acc_2 = __lsx_vldi(0);
  3521. __m128 acc_3 = __lsx_vldi(0);
  3522. // First round without accumulation
  3523. {
  3524. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3525. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3526. // Compute combined scale for the block 0 and 1
  3527. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3528. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[0].qs, 0);
  3529. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  3530. __m128i by_0 = __lsx_vld((const __m128i *)y[0].qs, 0);
  3531. bx_0 = __lsx_vsub_b(bx_0, off);
  3532. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3533. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  3534. __m128i by_1 = __lsx_vld((const __m128i *)(y[0].qs + 16), 0);
  3535. bx_1 = __lsx_vsub_b(bx_1, off);
  3536. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3537. // Compute combined scale for the block 2 and 3
  3538. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3539. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[1].qs, 0);
  3540. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  3541. __m128i by_2 = __lsx_vld((const __m128i *)y[1].qs, 0);
  3542. bx_2 = __lsx_vsub_b(bx_2, off);
  3543. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3544. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  3545. __m128i by_3 = __lsx_vld((const __m128i *)(y[1].qs + 16), 0);
  3546. bx_3 = __lsx_vsub_b(bx_3, off);
  3547. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3548. // Convert int32_t to float
  3549. __m128 p0 = __lsx_vffint_s_w(i32_0);
  3550. __m128 p1 = __lsx_vffint_s_w(i32_1);
  3551. __m128 p2 = __lsx_vffint_s_w(i32_2);
  3552. __m128 p3 = __lsx_vffint_s_w(i32_3);
  3553. // Apply the scale
  3554. acc_0 = __lsx_vfmul_s( d_0_1, p0 );
  3555. acc_1 = __lsx_vfmul_s( d_0_1, p1 );
  3556. acc_2 = __lsx_vfmul_s( d_2_3, p2 );
  3557. acc_3 = __lsx_vfmul_s( d_2_3, p3 );
  3558. }
  3559. assert(nb % 2 == 0); // TODO: handle odd nb
  3560. // Main loop
  3561. for (int i = 2; i < nb; i+=2) {
  3562. // Compute combined scale for the block 0 and 1
  3563. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3564. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[i].qs, 0);
  3565. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  3566. __m128i by_0 = __lsx_vld((const __m128i *)y[i].qs, 0);
  3567. bx_0 = __lsx_vsub_b(bx_0, off);
  3568. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3569. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  3570. __m128i by_1 = __lsx_vld((const __m128i *)(y[i].qs + 16), 0);
  3571. bx_1 = __lsx_vsub_b(bx_1, off);
  3572. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3573. //_mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3574. //_mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3575. // Compute combined scale for the block 2 and 3
  3576. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3577. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[i + 1].qs, 0);
  3578. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  3579. __m128i by_2 = __lsx_vld((const __m128i *)y[i + 1].qs, 0);
  3580. bx_2 = __lsx_vsub_b(bx_2, off);
  3581. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3582. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  3583. __m128i by_3 = __lsx_vld((const __m128i *)(y[i + 1].qs + 16), 0);
  3584. bx_3 = __lsx_vsub_b(bx_3, off);
  3585. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3586. // Convert int32_t to float
  3587. __m128 p0 = __lsx_vffint_s_w(i32_0);
  3588. __m128 p1 = __lsx_vffint_s_w(i32_1);
  3589. __m128 p2 = __lsx_vffint_s_w(i32_2);
  3590. __m128 p3 = __lsx_vffint_s_w(i32_3);
  3591. // Apply the scale
  3592. __m128 p0_d = __lsx_vfmul_s( d_0_1, p0 );
  3593. __m128 p1_d = __lsx_vfmul_s( d_0_1, p1 );
  3594. __m128 p2_d = __lsx_vfmul_s( d_2_3, p2 );
  3595. __m128 p3_d = __lsx_vfmul_s( d_2_3, p3 );
  3596. // Acummulate
  3597. acc_0 = __lsx_vfadd_s(p0_d, acc_0);
  3598. acc_1 = __lsx_vfadd_s(p1_d, acc_1);
  3599. acc_2 = __lsx_vfadd_s(p2_d, acc_2);
  3600. acc_3 = __lsx_vfadd_s(p3_d, acc_3);
  3601. }
  3602. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3603. #else
  3604. // scalar
  3605. float sumf = 0.0;
  3606. for (int i = 0; i < nb; i++) {
  3607. int sumi = 0;
  3608. for (int j = 0; j < qk/2; ++j) {
  3609. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  3610. const int v1 = (x[i].qs[j] >> 4) - 8;
  3611. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3612. }
  3613. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3614. }
  3615. *s = sumf;
  3616. #endif
  3617. }
  3618. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3619. const int qk = QK8_1;
  3620. const int nb = n / qk;
  3621. assert(n % qk == 0);
  3622. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3623. assert((nrc == 2) || (nrc == 1));
  3624. #else
  3625. assert(nrc == 1);
  3626. #endif
  3627. UNUSED(nrc);
  3628. UNUSED(bx);
  3629. UNUSED(by);
  3630. UNUSED(bs);
  3631. const block_q4_1 * restrict x = vx;
  3632. const block_q8_1 * restrict y = vy;
  3633. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3634. if (nrc == 2) {
  3635. const block_q4_1 * restrict vx0 = vx;
  3636. const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx);
  3637. const block_q8_1 * restrict vy0 = vy;
  3638. const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by);
  3639. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3640. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3641. for (int i = 0; i < nb; i++) {
  3642. const block_q4_1 * restrict b_x0 = &vx0[i];
  3643. const block_q4_1 * restrict b_x1 = &vx1[i];
  3644. const block_q8_1 * restrict b_y0 = &vy0[i];
  3645. const block_q8_1 * restrict b_y1 = &vy1[i];
  3646. float32_t summs_t[4] = {GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
  3647. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
  3648. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
  3649. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)};
  3650. summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
  3651. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3652. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3653. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3654. // 4-bit -> 8-bit
  3655. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3656. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3657. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3658. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3659. // load y
  3660. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3661. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3662. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3663. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3664. // mmla into int32x4_t
  3665. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d,
  3666. GGML_FP16_TO_FP32(b_x0->d)*b_y1->d,
  3667. GGML_FP16_TO_FP32(b_x1->d)*b_y0->d,
  3668. GGML_FP16_TO_FP32(b_x1->d)*b_y1->d};
  3669. float32x4_t scale = vld1q_f32(_scale);
  3670. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3671. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3672. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3673. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3674. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3675. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3676. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3677. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3678. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3679. l1, r1)), l2, r2)), l3, r3))), scale);
  3680. }
  3681. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3682. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3683. sumv2 = vaddq_f32(sumv2, summs0);
  3684. vst1_f32(s, vget_low_f32(sumv2));
  3685. vst1_f32(s + bs, vget_high_f32(sumv2));
  3686. return;
  3687. }
  3688. #endif
  3689. // TODO: add WASM SIMD
  3690. #if defined(__ARM_NEON)
  3691. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3692. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3693. float summs = 0;
  3694. assert(nb % 2 == 0); // TODO: handle odd nb
  3695. for (int i = 0; i < nb; i += 2) {
  3696. const block_q4_1 * restrict x0 = &x[i + 0];
  3697. const block_q4_1 * restrict x1 = &x[i + 1];
  3698. const block_q8_1 * restrict y0 = &y[i + 0];
  3699. const block_q8_1 * restrict y1 = &y[i + 1];
  3700. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  3701. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3702. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3703. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3704. // 4-bit -> 8-bit
  3705. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3706. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3707. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3708. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3709. // load y
  3710. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3711. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3712. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3713. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3714. // dot product into int32x4_t
  3715. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3716. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3717. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3718. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3719. }
  3720. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3721. #elif defined(__AVX2__) || defined(__AVX__)
  3722. // Initialize accumulator with zeros
  3723. __m256 acc = _mm256_setzero_ps();
  3724. float summs = 0;
  3725. // Main loop
  3726. for (int i = 0; i < nb; ++i) {
  3727. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3728. const float d1 = GGML_FP16_TO_FP32(y[i].d);
  3729. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  3730. const __m256 d0v = _mm256_set1_ps( d0 );
  3731. const __m256 d1v = _mm256_set1_ps( d1 );
  3732. // Compute combined scales
  3733. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3734. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3735. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3736. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  3737. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3738. // Accumulate d0*d1*x*y
  3739. #if defined(__AVX2__)
  3740. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  3741. #else
  3742. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  3743. #endif
  3744. }
  3745. *s = hsum_float_8(acc) + summs;
  3746. #elif defined(__riscv_v_intrinsic)
  3747. float sumf = 0.0;
  3748. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3749. for (int i = 0; i < nb; i++) {
  3750. // load elements
  3751. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3752. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3753. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3754. // mask and store lower part of x, and then upper part
  3755. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3756. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3757. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3758. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3759. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3760. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3761. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3762. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3763. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3764. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3765. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  3766. }
  3767. *s = sumf;
  3768. #elif defined(__POWER9_VECTOR__)
  3769. const vector signed char lowMask = vec_splats((signed char)0xF);
  3770. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3771. vector float vsumf0 = vec_splats(0.0f);
  3772. #pragma GCC unroll 4
  3773. for (int i = 0; i < nb; i++) {
  3774. __builtin_prefetch(x[i].qs, 0, 1);
  3775. __builtin_prefetch(y[i].qs, 0, 1);
  3776. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3777. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  3778. vector float vd = vec_mul(vxd, vyd);
  3779. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m));
  3780. vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.0f, 0.0f, 0.0f};
  3781. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  3782. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  3783. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  3784. vector signed char q8y1 = vec_xl(16, y[i].qs);
  3785. vector signed char q4x0 = vec_and(qxs, lowMask);
  3786. vector signed char q4x1 = vec_sr(qxs, v4);
  3787. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  3788. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  3789. qv0 = vec_add(qv0, qv1);
  3790. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  3791. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3792. }
  3793. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3794. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3795. *s = vec_extract(vsumf0, 0);
  3796. #elif defined(__loongarch_asx)
  3797. // Initialize accumulator with zeros
  3798. __m256 acc = (__m256)__lasx_xvldi(0);
  3799. float summs = 0;
  3800. // Main loop
  3801. for (int i = 0; i < nb; ++i) {
  3802. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3803. const float d1 = GGML_FP16_TO_FP32(y[i].d);
  3804. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  3805. const __m256 d0v = __lasx_xvreplfr2vr_s( d0 );
  3806. const __m256 d1v = __lasx_xvreplfr2vr_s( d1 );
  3807. // Compute combined scales
  3808. const __m256 d0d1 = __lasx_xvfmul_s( d0v, d1v );
  3809. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3810. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3811. const __m256i qy = __lasx_xvld( (const __m256i *)y[i].qs, 0);
  3812. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3813. // Accumulate d0*d1*x*y
  3814. acc = __lasx_xvfmadd_s( d0d1, xy, acc );
  3815. }
  3816. *s = hsum_float_8(acc) + summs;
  3817. #else
  3818. // scalar
  3819. float sumf = 0.0;
  3820. for (int i = 0; i < nb; i++) {
  3821. int sumi = 0;
  3822. for (int j = 0; j < qk/2; ++j) {
  3823. const int v0 = (x[i].qs[j] & 0x0F);
  3824. const int v1 = (x[i].qs[j] >> 4);
  3825. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3826. }
  3827. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  3828. }
  3829. *s = sumf;
  3830. #endif
  3831. }
  3832. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3833. const int qk = QK8_0;
  3834. const int nb = n / qk;
  3835. assert(n % qk == 0);
  3836. assert(qk == QK5_0);
  3837. assert(nrc == 1);
  3838. UNUSED(nrc);
  3839. UNUSED(bx);
  3840. UNUSED(by);
  3841. UNUSED(bs);
  3842. const block_q5_0 * restrict x = vx;
  3843. const block_q8_0 * restrict y = vy;
  3844. #if defined(__ARM_NEON)
  3845. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3846. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3847. uint32_t qh0;
  3848. uint32_t qh1;
  3849. uint64_t tmp0[4];
  3850. uint64_t tmp1[4];
  3851. assert(nb % 2 == 0); // TODO: handle odd nb
  3852. for (int i = 0; i < nb; i += 2) {
  3853. const block_q5_0 * restrict x0 = &x[i];
  3854. const block_q5_0 * restrict x1 = &x[i + 1];
  3855. const block_q8_0 * restrict y0 = &y[i];
  3856. const block_q8_0 * restrict y1 = &y[i + 1];
  3857. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3858. // extract the 5th bit via lookup table ((!b) << 4)
  3859. memcpy(&qh0, x0->qh, sizeof(qh0));
  3860. memcpy(&qh1, x1->qh, sizeof(qh1));
  3861. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  3862. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  3863. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  3864. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  3865. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  3866. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  3867. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  3868. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  3869. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  3870. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  3871. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  3872. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  3873. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3874. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3875. // 4-bit -> 8-bit
  3876. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3877. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3878. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3879. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3880. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3881. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  3882. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  3883. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  3884. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  3885. // load y
  3886. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3887. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3888. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3889. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3890. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  3891. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  3892. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3893. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  3894. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  3895. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3896. }
  3897. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3898. #elif defined(__wasm_simd128__)
  3899. v128_t sumv = wasm_f32x4_splat(0.0f);
  3900. uint32_t qh;
  3901. uint64_t tmp[4];
  3902. // TODO: check if unrolling this is better
  3903. for (int i = 0; i < nb; ++i) {
  3904. const block_q5_0 * restrict x0 = &x[i];
  3905. const block_q8_0 * restrict y0 = &y[i];
  3906. const v128_t m4b = wasm_i8x16_splat(0x0F);
  3907. // extract the 5th bit
  3908. memcpy(&qh, x0->qh, sizeof(qh));
  3909. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  3910. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  3911. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  3912. tmp[3] = table_b2b_1[(qh >> 24) ];
  3913. const v128_t qhl = wasm_v128_load(tmp + 0);
  3914. const v128_t qhh = wasm_v128_load(tmp + 2);
  3915. const v128_t v0 = wasm_v128_load(x0->qs);
  3916. // 4-bit -> 8-bit
  3917. const v128_t v0l = wasm_v128_and (v0, m4b);
  3918. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  3919. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3920. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  3921. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  3922. // load y
  3923. const v128_t v1l = wasm_v128_load(y0->qs);
  3924. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  3925. // int8x16 -> int16x8
  3926. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  3927. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  3928. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  3929. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  3930. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  3931. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  3932. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  3933. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  3934. // dot product
  3935. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  3936. wasm_i32x4_add(
  3937. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  3938. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  3939. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  3940. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  3941. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  3942. }
  3943. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  3944. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  3945. #elif defined(__AVX2__)
  3946. // Initialize accumulator with zeros
  3947. __m256 acc = _mm256_setzero_ps();
  3948. // Main loop
  3949. for (int i = 0; i < nb; i++) {
  3950. /* Compute combined scale for the block */
  3951. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3952. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3953. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3954. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  3955. qx = _mm256_or_si256(qx, bxhi);
  3956. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3957. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3958. /* Multiply q with scale and accumulate */
  3959. acc = _mm256_fmadd_ps(d, q, acc);
  3960. }
  3961. *s = hsum_float_8(acc);
  3962. #elif defined(__AVX__)
  3963. // Initialize accumulator with zeros
  3964. __m256 acc = _mm256_setzero_ps();
  3965. __m128i mask = _mm_set1_epi8((char)0xF0);
  3966. // Main loop
  3967. for (int i = 0; i < nb; i++) {
  3968. /* Compute combined scale for the block */
  3969. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3970. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  3971. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3972. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  3973. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  3974. bxhil = _mm_andnot_si128(bxhil, mask);
  3975. bxhih = _mm_andnot_si128(bxhih, mask);
  3976. __m128i bxl = _mm256_castsi256_si128(bx_0);
  3977. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  3978. bxl = _mm_or_si128(bxl, bxhil);
  3979. bxh = _mm_or_si128(bxh, bxhih);
  3980. bx_0 = MM256_SET_M128I(bxh, bxl);
  3981. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3982. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  3983. /* Multiply q with scale and accumulate */
  3984. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  3985. }
  3986. *s = hsum_float_8(acc);
  3987. #elif defined(__riscv_v_intrinsic)
  3988. float sumf = 0.0;
  3989. uint32_t qh;
  3990. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3991. // These temporary registers are for masking and shift operations
  3992. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  3993. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  3994. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  3995. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  3996. for (int i = 0; i < nb; i++) {
  3997. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  3998. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  3999. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  4000. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  4001. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4002. // ((qh & (1u << (j + 16))) >> (j + 12));
  4003. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  4004. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  4005. // narrowing
  4006. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  4007. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4008. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  4009. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4010. // load
  4011. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4012. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4013. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4014. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4015. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4016. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4017. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4018. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4019. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4020. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  4021. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  4022. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4023. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4024. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4025. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4026. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4027. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4028. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4029. }
  4030. *s = sumf;
  4031. #elif defined(__POWER9_VECTOR__)
  4032. const vector signed char lowMask = vec_splats((signed char)0xF);
  4033. const vector unsigned char v4 = vec_splats((unsigned char)4);
  4034. vector float vsumf0 = vec_splats(0.0f);
  4035. #pragma GCC unroll 4
  4036. for (int i = 0; i < nb; ++i) {
  4037. __builtin_prefetch(x[i].qs, 0, 1);
  4038. __builtin_prefetch(y[i].qs, 0, 1);
  4039. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4040. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4041. vector float vd = vec_mul(vxd, vyd);
  4042. vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[i].qh[0]]), (uint64_t)(table_b2b_1[x[i].qh[1]])};
  4043. vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[i].qh[2]]), (uint64_t)(table_b2b_1[x[i].qh[3]])};
  4044. vector signed char qh0 = (vector signed char)aux64x2_0;
  4045. vector signed char qh1 = (vector signed char)aux64x2_1;
  4046. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  4047. vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0);
  4048. vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1);
  4049. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4050. vector signed char q8y1 = vec_xl( 16, y[i].qs);
  4051. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  4052. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  4053. qv0 = vec_add(qv0, qv1);
  4054. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  4055. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4056. }
  4057. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4058. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4059. *s = vec_extract(vsumf0, 0);
  4060. #elif defined(__loongarch_asx)
  4061. // Initialize accumulator with zeros
  4062. __m256 acc = (__m256)__lasx_xvldi(0);
  4063. // Main loop
  4064. for (int i = 0; i < nb; i++) {
  4065. /* Compute combined scale for the block */
  4066. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); //FIXME
  4067. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4068. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4069. bxhi = __lasx_xvandn_v(bxhi, __lasx_xvreplgr2vr_b((char)0xF0));
  4070. qx = __lasx_xvor_v(qx, bxhi);
  4071. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4072. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4073. /* Multiply q with scale and accumulate */
  4074. acc = __lasx_xvfmadd_s(d, q, acc);
  4075. }
  4076. *s = hsum_float_8(acc);
  4077. #else
  4078. // scalar
  4079. float sumf = 0.0;
  4080. for (int i = 0; i < nb; i++) {
  4081. uint32_t qh;
  4082. memcpy(&qh, x[i].qh, sizeof(qh));
  4083. int sumi = 0;
  4084. for (int j = 0; j < qk/2; ++j) {
  4085. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4086. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  4087. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  4088. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  4089. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4090. }
  4091. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4092. }
  4093. *s = sumf;
  4094. #endif
  4095. }
  4096. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4097. const int qk = QK8_1;
  4098. const int nb = n / qk;
  4099. assert(n % qk == 0);
  4100. assert(qk == QK5_1);
  4101. assert(nrc == 1);
  4102. UNUSED(nrc);
  4103. UNUSED(bx);
  4104. UNUSED(by);
  4105. UNUSED(bs);
  4106. const block_q5_1 * restrict x = vx;
  4107. const block_q8_1 * restrict y = vy;
  4108. #if defined(__ARM_NEON)
  4109. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4110. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4111. float summs0 = 0.0f;
  4112. float summs1 = 0.0f;
  4113. uint32_t qh0;
  4114. uint32_t qh1;
  4115. uint64_t tmp0[4];
  4116. uint64_t tmp1[4];
  4117. assert(nb % 2 == 0); // TODO: handle odd nb
  4118. for (int i = 0; i < nb; i += 2) {
  4119. const block_q5_1 * restrict x0 = &x[i];
  4120. const block_q5_1 * restrict x1 = &x[i + 1];
  4121. const block_q8_1 * restrict y0 = &y[i];
  4122. const block_q8_1 * restrict y1 = &y[i + 1];
  4123. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4124. summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4125. summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  4126. // extract the 5th bit via lookup table ((b) << 4)
  4127. memcpy(&qh0, x0->qh, sizeof(qh0));
  4128. memcpy(&qh1, x1->qh, sizeof(qh1));
  4129. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  4130. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  4131. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  4132. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  4133. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  4134. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  4135. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  4136. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  4137. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4138. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4139. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4140. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4141. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4142. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4143. // 4-bit -> 8-bit
  4144. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4145. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4146. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4147. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4148. // add high bit
  4149. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  4150. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  4151. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  4152. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  4153. // load y
  4154. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4155. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4156. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4157. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4158. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4159. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4160. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4161. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4162. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4163. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4164. }
  4165. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  4166. #elif defined(__wasm_simd128__)
  4167. v128_t sumv = wasm_f32x4_splat(0.0f);
  4168. float summs = 0.0f;
  4169. uint32_t qh;
  4170. uint64_t tmp[4];
  4171. // TODO: check if unrolling this is better
  4172. for (int i = 0; i < nb; ++i) {
  4173. const block_q5_1 * restrict x0 = &x[i];
  4174. const block_q8_1 * restrict y0 = &y[i];
  4175. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4176. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4177. // extract the 5th bit
  4178. memcpy(&qh, x0->qh, sizeof(qh));
  4179. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  4180. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  4181. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  4182. tmp[3] = table_b2b_0[(qh >> 24) ];
  4183. const v128_t qhl = wasm_v128_load(tmp + 0);
  4184. const v128_t qhh = wasm_v128_load(tmp + 2);
  4185. const v128_t v0 = wasm_v128_load(x0->qs);
  4186. // 4-bit -> 8-bit
  4187. const v128_t v0l = wasm_v128_and (v0, m4b);
  4188. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4189. // add high bit
  4190. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  4191. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  4192. // load y
  4193. const v128_t v1l = wasm_v128_load(y0->qs);
  4194. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4195. // int8x16 -> int16x8
  4196. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4197. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4198. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4199. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4200. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4201. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4202. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4203. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4204. // dot product
  4205. sumv = wasm_f32x4_add(sumv,
  4206. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  4207. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4208. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4209. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4210. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4211. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4212. }
  4213. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4214. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  4215. #elif defined(__AVX2__)
  4216. // Initialize accumulator with zeros
  4217. __m256 acc = _mm256_setzero_ps();
  4218. float summs = 0.0f;
  4219. // Main loop
  4220. for (int i = 0; i < nb; i++) {
  4221. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4222. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4223. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4224. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4225. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  4226. qx = _mm256_or_si256(qx, bxhi);
  4227. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d));
  4228. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4229. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4230. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  4231. }
  4232. *s = hsum_float_8(acc) + summs;
  4233. #elif defined(__AVX__)
  4234. // Initialize accumulator with zeros
  4235. __m256 acc = _mm256_setzero_ps();
  4236. __m128i mask = _mm_set1_epi8(0x10);
  4237. float summs = 0.0f;
  4238. // Main loop
  4239. for (int i = 0; i < nb; i++) {
  4240. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4241. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4242. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4243. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4244. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4245. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4246. bxhil = _mm_and_si128(bxhil, mask);
  4247. bxhih = _mm_and_si128(bxhih, mask);
  4248. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4249. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4250. bxl = _mm_or_si128(bxl, bxhil);
  4251. bxh = _mm_or_si128(bxh, bxhih);
  4252. bx_0 = MM256_SET_M128I(bxh, bxl);
  4253. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d));
  4254. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4255. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  4256. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  4257. }
  4258. *s = hsum_float_8(acc) + summs;
  4259. #elif defined(__riscv_v_intrinsic)
  4260. float sumf = 0.0;
  4261. uint32_t qh;
  4262. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4263. // temporary registers for shift operations
  4264. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4265. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4266. for (int i = 0; i < nb; i++) {
  4267. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4268. // load qh
  4269. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  4270. // ((qh >> (j + 0)) << 4) & 0x10;
  4271. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  4272. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4273. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  4274. // ((qh >> (j + 12)) ) & 0x10;
  4275. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  4276. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  4277. // narrowing
  4278. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  4279. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4280. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  4281. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4282. // load
  4283. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4284. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4285. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4286. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4287. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4288. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4289. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4290. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4291. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4292. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4293. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4294. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4295. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4296. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4297. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4298. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  4299. }
  4300. *s = sumf;
  4301. #elif defined(__POWER9_VECTOR__)
  4302. const vector signed char lowMask = vec_splats((signed char)0xF);
  4303. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4304. vector float vsumf0 = vec_splats(0.0f);
  4305. #pragma GCC unroll 4
  4306. for (int i = 0; i < nb; ++i) {
  4307. __builtin_prefetch(x[i].qs, 0, 1);
  4308. __builtin_prefetch(y[i].qs, 0, 1);
  4309. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4310. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4311. vector float vd = vec_mul(vxd, vyd);
  4312. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m));
  4313. vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.f, 0.f, 0.f};
  4314. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  4315. vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[i].qh[0]]), (uint64_t)(table_b2b_0[x[i].qh[1]])};
  4316. vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[i].qh[2]]), (uint64_t)(table_b2b_0[x[i].qh[3]])};
  4317. vector signed char qh0 = (vector signed char)aux64x2_0;
  4318. vector signed char qh1 = (vector signed char)aux64x2_1;
  4319. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  4320. vector signed char q5x0 = vec_or(vec_and(qxs, lowMask), qh0);
  4321. vector signed char q5x1 = vec_or(vec_sr(qxs, v4), qh1);
  4322. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4323. vector signed char q8y1 = vec_xl( 16, y[i].qs);
  4324. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  4325. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  4326. qv0 = vec_add(qv0, qv1);
  4327. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  4328. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4329. }
  4330. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4331. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4332. *s = vec_extract(vsumf0, 0);
  4333. #elif defined(__loongarch_asx)
  4334. // Initialize accumulator with zeros
  4335. __m256 acc = (__m256)__lasx_xvldi(0);
  4336. float summs = 0.0f;
  4337. // Main loop
  4338. for (int i = 0; i < nb; i++) {
  4339. const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d));
  4340. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4341. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4342. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4343. bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10));
  4344. qx = __lasx_xvor_v(qx, bxhi);
  4345. const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[i].d));
  4346. const __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4347. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4348. acc = __lasx_xvfmadd_s(q, __lasx_xvfmul_s(dx, dy), acc);
  4349. }
  4350. *s = hsum_float_8(acc) + summs;
  4351. #else
  4352. // scalar
  4353. float sumf = 0.0;
  4354. for (int i = 0; i < nb; i++) {
  4355. uint32_t qh;
  4356. memcpy(&qh, x[i].qh, sizeof(qh));
  4357. int sumi = 0;
  4358. for (int j = 0; j < qk/2; ++j) {
  4359. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  4360. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  4361. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  4362. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  4363. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4364. }
  4365. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  4366. }
  4367. *s = sumf;
  4368. #endif
  4369. }
  4370. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4371. const int qk = QK8_0;
  4372. const int nb = n / qk;
  4373. assert(n % qk == 0);
  4374. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4375. assert((nrc == 2) || (nrc == 1));
  4376. #else
  4377. assert(nrc == 1);
  4378. #endif
  4379. UNUSED(nrc);
  4380. UNUSED(bx);
  4381. UNUSED(by);
  4382. UNUSED(bs);
  4383. const block_q8_0 * restrict x = vx;
  4384. const block_q8_0 * restrict y = vy;
  4385. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4386. if (nrc == 2) {
  4387. const block_q8_0 * restrict vx0 = vx;
  4388. const block_q8_0 * restrict vx1 = (const block_q8_0 *) ((const uint8_t*)vx + bx);
  4389. const block_q8_0 * restrict vy0 = vy;
  4390. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  4391. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4392. for (int i = 0; i < nb; i++) {
  4393. const block_q8_0 * restrict b_x0 = &vx0[i];
  4394. const block_q8_0 * restrict b_y0 = &vy0[i];
  4395. const block_q8_0 * restrict b_x1 = &vx1[i];
  4396. const block_q8_0 * restrict b_y1 = &vy1[i];
  4397. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4398. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4399. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4400. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4401. // load y
  4402. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4403. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4404. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4405. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4406. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4407. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4408. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4409. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4410. float32x4_t scale = vld1q_f32(_scale);
  4411. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4412. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4413. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4414. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4415. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4416. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4417. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4418. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4419. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4420. l1, r1)), l2, r2)), l3, r3))), scale);
  4421. }
  4422. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4423. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4424. vst1_f32(s, vget_low_f32(sumv2));
  4425. vst1_f32(s + bs, vget_high_f32(sumv2));
  4426. return;
  4427. }
  4428. #endif
  4429. #if defined(__ARM_FEATURE_SVE)
  4430. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  4431. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  4432. assert(nb % 2 == 0); // TODO: handle odd nb
  4433. for (int i = 0; i < nb; i += 2) {
  4434. const block_q8_0 * restrict x0 = &x[i + 0];
  4435. const block_q8_0 * restrict x1 = &x[i + 1];
  4436. const block_q8_0 * restrict y0 = &y[i + 0];
  4437. const block_q8_0 * restrict y1 = &y[i + 1];
  4438. // load x
  4439. const svint8_t qx0 = svld1_s8(svptrue_b8(), x0->qs);
  4440. const svint8_t qx1 = svld1_s8(svptrue_b8(), x1->qs);
  4441. // load y
  4442. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  4443. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  4444. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4445. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4446. }
  4447. *s = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  4448. #elif defined(__ARM_NEON)
  4449. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4450. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4451. assert(nb % 2 == 0); // TODO: handle odd nb
  4452. for (int i = 0; i < nb; i += 2) {
  4453. const block_q8_0 * restrict x0 = &x[i + 0];
  4454. const block_q8_0 * restrict x1 = &x[i + 1];
  4455. const block_q8_0 * restrict y0 = &y[i + 0];
  4456. const block_q8_0 * restrict y1 = &y[i + 1];
  4457. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4458. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4459. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4460. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4461. // load y
  4462. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4463. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4464. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4465. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4466. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4467. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4468. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4469. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4470. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4471. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4472. }
  4473. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4474. #elif defined(__AVX2__) || defined(__AVX__)
  4475. // Initialize accumulator with zeros
  4476. __m256 acc = _mm256_setzero_ps();
  4477. // Main loop
  4478. for (int i = 0; i < nb; ++i) {
  4479. // Compute combined scale for the block
  4480. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4481. __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  4482. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4483. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4484. // Multiply q with scale and accumulate
  4485. #if defined(__AVX2__)
  4486. acc = _mm256_fmadd_ps( d, q, acc );
  4487. #else
  4488. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4489. #endif
  4490. }
  4491. *s = hsum_float_8(acc);
  4492. #elif defined(__riscv_v_intrinsic)
  4493. float sumf = 0.0;
  4494. size_t vl = __riscv_vsetvl_e8m1(qk);
  4495. for (int i = 0; i < nb; i++) {
  4496. // load elements
  4497. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
  4498. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  4499. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4500. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4501. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4502. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4503. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4504. }
  4505. *s = sumf;
  4506. #elif defined(__POWER9_VECTOR__)
  4507. vector float vsumf0 = vec_splats(0.0f);
  4508. #pragma GCC unroll 4
  4509. for (int i = 0; i < nb; i++) {
  4510. __builtin_prefetch(x[i].qs, 0, 1);
  4511. __builtin_prefetch(y[i].qs, 0, 1);
  4512. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4513. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4514. vector float vd = vec_mul(vxd, vyd);
  4515. vector signed char q8x0 = vec_xl( 0, x[i].qs);
  4516. vector signed char q8x1 = vec_xl(16, x[i].qs);
  4517. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4518. vector signed char q8y1 = vec_xl(16, y[i].qs);
  4519. vector signed short qv0 = vec_mule(q8x0, q8y0);
  4520. vector signed short qv1 = vec_mulo(q8x0, q8y0);
  4521. vector signed short qv2 = vec_mule(q8x1, q8y1);
  4522. vector signed short qv3 = vec_mulo(q8x1, q8y1);
  4523. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackh(qv1));
  4524. vector signed int vsumi1 = vec_add(vec_unpackl(qv0), vec_unpackl(qv1));
  4525. vector signed int vsumi2 = vec_add(vec_unpackh(qv2), vec_unpackh(qv3));
  4526. vector signed int vsumi3 = vec_add(vec_unpackl(qv2), vec_unpackl(qv3));
  4527. vsumi0 = vec_add(vsumi0, vsumi2);
  4528. vsumi1 = vec_add(vsumi1, vsumi3);
  4529. vsumi0 = vec_add(vsumi0, vsumi1);
  4530. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4531. }
  4532. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4533. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4534. *s = vec_extract(vsumf0, 0);
  4535. #elif defined(__loongarch_asx)
  4536. // Initialize accumulator with zeros
  4537. __m256 acc = (__m256)__lasx_xvldi(0);
  4538. // Main loop
  4539. for (int i = 0; i < nb; ++i) {
  4540. // Compute combined scale for the block
  4541. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4542. __m256i qx = __lasx_xvld((const __m256i *)x[i].qs, 0);
  4543. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4544. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4545. // Multiply q with scale and accumulate
  4546. acc = __lasx_xvfmadd_s( d, q, acc );
  4547. }
  4548. *s = hsum_float_8(acc);
  4549. #else
  4550. // scalar
  4551. float sumf = 0.0;
  4552. for (int i = 0; i < nb; i++) {
  4553. int sumi = 0;
  4554. for (int j = 0; j < qk; j++) {
  4555. sumi += x[i].qs[j]*y[i].qs[j];
  4556. }
  4557. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4558. }
  4559. *s = sumf;
  4560. #endif
  4561. }
  4562. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4563. assert(nrc == 1);
  4564. UNUSED(nrc);
  4565. UNUSED(bx);
  4566. UNUSED(by);
  4567. UNUSED(bs);
  4568. const block_q2_K * restrict x = vx;
  4569. const block_q8_K * restrict y = vy;
  4570. const int nb = n / QK_K;
  4571. #ifdef __ARM_NEON
  4572. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4573. const uint8x16_t m4 = vdupq_n_u8(0xF);
  4574. const int32x4_t vzero = vdupq_n_s32(0);
  4575. ggml_int8x16x2_t q2bytes;
  4576. uint8_t aux[16];
  4577. float sum = 0;
  4578. for (int i = 0; i < nb; ++i) {
  4579. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4580. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4581. const uint8_t * restrict q2 = x[i].qs;
  4582. const int8_t * restrict q8 = y[i].qs;
  4583. const uint8_t * restrict sc = x[i].scales;
  4584. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  4585. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  4586. vst1q_u8(aux, scales);
  4587. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  4588. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  4589. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  4590. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  4591. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  4592. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  4593. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  4594. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  4595. int isum = 0;
  4596. int is = 0;
  4597. // We use this macro instead of a function call because for some reason
  4598. // the code runs 2-3% slower, even if the function is declared inline
  4599. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  4600. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  4601. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  4602. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  4603. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  4604. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  4605. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  4606. MULTIPLY_ACCUM_WITH_SCALE((index));
  4607. for (int j = 0; j < QK_K/128; ++j) {
  4608. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  4609. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4610. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  4611. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  4612. MULTIPLY_ACCUM_WITH_SCALE(0);
  4613. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  4614. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  4615. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  4616. is += 8;
  4617. }
  4618. sum += d * isum;
  4619. }
  4620. *s = sum;
  4621. #elif defined __AVX2__
  4622. const __m256i m3 = _mm256_set1_epi8(3);
  4623. const __m128i m4 = _mm_set1_epi8(0xF);
  4624. __m256 acc = _mm256_setzero_ps();
  4625. for (int i = 0; i < nb; ++i) {
  4626. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4627. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4628. const uint8_t * restrict q2 = x[i].qs;
  4629. const int8_t * restrict q8 = y[i].qs;
  4630. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4631. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  4632. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4633. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  4634. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  4635. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  4636. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  4637. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4638. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4639. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4640. __m256i sumi = _mm256_setzero_si256();
  4641. for (int j = 0; j < QK_K/128; ++j) {
  4642. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  4643. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4644. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4645. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4646. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4647. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  4648. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  4649. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  4650. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  4651. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4652. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4653. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  4654. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  4655. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  4656. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  4657. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  4658. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  4659. p0 = _mm256_add_epi32(p0, p1);
  4660. p2 = _mm256_add_epi32(p2, p3);
  4661. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  4662. }
  4663. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4664. }
  4665. *s = hsum_float_8(acc);
  4666. #elif defined __AVX__
  4667. const __m128i m3 = _mm_set1_epi8(0x3);
  4668. const __m128i m4 = _mm_set1_epi8(0xF);
  4669. const __m128i m2 = _mm_set1_epi8(0x2);
  4670. __m256 acc = _mm256_setzero_ps();
  4671. for (int i = 0; i < nb; ++i) {
  4672. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4673. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4674. const uint8_t * restrict q2 = x[i].qs;
  4675. const int8_t * restrict q8 = y[i].qs;
  4676. // load mins and scales from block_q2_K.scales[QK_K/16]
  4677. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4678. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  4679. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4680. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  4681. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  4682. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  4683. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  4684. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  4685. // sumf += -dmin * summs in 32bits*8
  4686. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  4687. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  4688. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  4689. const __m128i scales[2] = { scales_0, scales_1 };
  4690. __m128i sumi_0 = _mm_setzero_si128();
  4691. __m128i sumi_1 = _mm_setzero_si128();
  4692. for (int j = 0; j < QK_K/128; ++j) {
  4693. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  4694. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4695. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4696. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4697. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4698. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4699. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4700. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4701. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4702. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  4703. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4704. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4705. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4706. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4707. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4708. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4709. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  4710. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4711. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4712. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4713. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  4714. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  4715. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  4716. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  4717. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  4718. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  4719. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  4720. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  4721. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  4722. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  4723. __m128i shuffle = _mm_set1_epi16(0x0100);
  4724. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  4725. shuffle = _mm_add_epi16(shuffle, m2);
  4726. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  4727. shuffle = _mm_add_epi16(shuffle, m2);
  4728. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  4729. shuffle = _mm_add_epi16(shuffle, m2);
  4730. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  4731. shuffle = _mm_add_epi16(shuffle, m2);
  4732. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  4733. shuffle = _mm_add_epi16(shuffle, m2);
  4734. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  4735. shuffle = _mm_add_epi16(shuffle, m2);
  4736. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  4737. shuffle = _mm_add_epi16(shuffle, m2);
  4738. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  4739. p0 = _mm_add_epi32(p0, p1);
  4740. p2 = _mm_add_epi32(p2, p3);
  4741. p4 = _mm_add_epi32(p4, p5);
  4742. p6 = _mm_add_epi32(p6, p7);
  4743. // isum in 32bits*4*2
  4744. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  4745. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  4746. }
  4747. // sumf += dall * isum - dmin * summs in 32bits
  4748. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4749. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  4750. }
  4751. *s = hsum_float_8(acc);
  4752. #elif defined __riscv_v_intrinsic
  4753. float sumf = 0;
  4754. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4755. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  4756. for (int i = 0; i < nb; ++i) {
  4757. const uint8_t * q2 = x[i].qs;
  4758. const int8_t * q8 = y[i].qs;
  4759. const uint8_t * sc = x[i].scales;
  4760. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4761. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4762. size_t vl = 16;
  4763. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  4764. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  4765. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  4766. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  4767. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  4768. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  4769. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  4770. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4771. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  4772. vl = 32;
  4773. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4774. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  4775. uint8_t is=0;
  4776. int isum=0;
  4777. for (int j = 0; j < QK_K/128; ++j) {
  4778. // load Q2
  4779. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  4780. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  4781. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  4782. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  4783. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  4784. // duplicate scale elements for product
  4785. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  4786. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  4787. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  4788. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  4789. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  4790. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  4791. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  4792. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  4793. // load Q8
  4794. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4795. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4796. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  4797. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  4798. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  4799. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  4800. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  4801. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  4802. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  4803. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  4804. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  4805. q2+=32; q8+=128; is=8;
  4806. }
  4807. sumf += dall * isum;
  4808. }
  4809. *s = sumf;
  4810. #elif defined(__POWER9_VECTOR__)
  4811. const vector signed char lowMask = vec_splats((signed char)0x3);
  4812. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  4813. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  4814. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  4815. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4816. vector float vsumf0 = vec_splats(0.0f);
  4817. vector float vsumf1 = vec_splats(0.0f);
  4818. vector float vsumf2 = vec_splats(0.0f);
  4819. vector float vsumf3 = vec_splats(0.0f);
  4820. for (int i = 0; i < nb; ++i) {
  4821. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4822. vector float vyd = vec_splats(y[i].d);
  4823. vector float vd = vec_mul(vxd, vyd);
  4824. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  4825. vector float vdmin = vec_mul(vxmin, vyd);
  4826. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  4827. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  4828. vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales);
  4829. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  4830. q2xmins = vec_sr(q2xmins, v4);
  4831. vector signed short q2xmins0 = vec_unpackh(q2xmins);
  4832. vector signed short q2xmins1 = vec_unpackl(q2xmins);
  4833. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  4834. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  4835. vector signed int prod2 = vec_mule(q2xmins1, q8ysums1);
  4836. vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1);
  4837. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  4838. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  4839. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  4840. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  4841. vector signed int vsumi0 = vec_splats((int32_t)0);
  4842. vector signed int vsumi1 = vec_splats((int32_t)0);
  4843. vector signed int vsumi2 = vec_splats((int32_t)0);
  4844. vector signed int vsumi3 = vec_splats((int32_t)0);
  4845. vector signed int vsumi4 = vec_splats((int32_t)0);
  4846. vector signed int vsumi5 = vec_splats((int32_t)0);
  4847. vector signed int vsumi6 = vec_splats((int32_t)0);
  4848. vector signed int vsumi7 = vec_splats((int32_t)0);
  4849. for (int j = 0; j < QK_K/128; ++j) {
  4850. __builtin_prefetch(q2, 0, 1);
  4851. __builtin_prefetch(q8, 0, 1);
  4852. vector signed char qxs0 = (vector signed char)vec_xl( 0, q2);
  4853. vector signed char qxs1 = (vector signed char)vec_xl(16, q2);
  4854. q2 += 32;
  4855. vector signed char q2x00 = vec_and(qxs0, lowMask);
  4856. vector signed char q2x01 = vec_and(vec_sr(qxs0, v2), lowMask);
  4857. vector signed char q2x02 = vec_and(vec_sr(qxs0, v4), lowMask);
  4858. vector signed char q2x03 = vec_and(vec_sr(qxs0, v6), lowMask);
  4859. vector signed char q2x10 = vec_and(qxs1, lowMask);
  4860. vector signed char q2x11 = vec_and(vec_sr(qxs1, v2), lowMask);
  4861. vector signed char q2x12 = vec_and(vec_sr(qxs1, v4), lowMask);
  4862. vector signed char q2x13 = vec_and(vec_sr(qxs1, v6), lowMask);
  4863. vector signed char q8y00 = vec_xl( 0, q8);
  4864. vector signed char q8y10 = vec_xl( 16, q8);
  4865. vector signed char q8y01 = vec_xl( 32, q8);
  4866. vector signed char q8y11 = vec_xl( 48, q8);
  4867. vector signed char q8y02 = vec_xl( 64, q8);
  4868. vector signed char q8y12 = vec_xl( 80, q8);
  4869. vector signed char q8y03 = vec_xl( 96, q8);
  4870. vector signed char q8y13 = vec_xl(112, q8);
  4871. q8 += 128;
  4872. vector signed short qv0 = vec_add(vec_mule(q2x00, q8y00), vec_mulo(q2x00, q8y00));
  4873. vector signed short qv1 = vec_add(vec_mule(q2x01, q8y01), vec_mulo(q2x01, q8y01));
  4874. vector signed short qv2 = vec_add(vec_mule(q2x02, q8y02), vec_mulo(q2x02, q8y02));
  4875. vector signed short qv3 = vec_add(vec_mule(q2x03, q8y03), vec_mulo(q2x03, q8y03));
  4876. vector signed short qv4 = vec_add(vec_mule(q2x10, q8y10), vec_mulo(q2x10, q8y10));
  4877. vector signed short qv5 = vec_add(vec_mule(q2x11, q8y11), vec_mulo(q2x11, q8y11));
  4878. vector signed short qv6 = vec_add(vec_mule(q2x12, q8y12), vec_mulo(q2x12, q8y12));
  4879. vector signed short qv7 = vec_add(vec_mule(q2x13, q8y13), vec_mulo(q2x13, q8y13));
  4880. vector signed short vscales_h = vec_unpackh(vscales);
  4881. vector signed short vs0 = vec_splat(vscales_h, 0);
  4882. vector signed short vs1 = vec_splat(vscales_h, 1);
  4883. vector signed short vs2 = vec_splat(vscales_h, 2);
  4884. vector signed short vs3 = vec_splat(vscales_h, 3);
  4885. vector signed short vs4 = vec_splat(vscales_h, 4);
  4886. vector signed short vs5 = vec_splat(vscales_h, 5);
  4887. vector signed short vs6 = vec_splat(vscales_h, 6);
  4888. vector signed short vs7 = vec_splat(vscales_h, 7);
  4889. vscales = vec_sld(vscales, vscales, 8);
  4890. qv0 = vec_mul(qv0, vs0);
  4891. qv1 = vec_mul(qv1, vs2);
  4892. qv2 = vec_mul(qv2, vs4);
  4893. qv3 = vec_mul(qv3, vs6);
  4894. qv0 = vec_madd(qv4, vs1, qv0);
  4895. qv1 = vec_madd(qv5, vs3, qv1);
  4896. qv2 = vec_madd(qv6, vs5, qv2);
  4897. qv3 = vec_madd(qv7, vs7, qv3);
  4898. vsumi0 = vec_add(vec_unpackh(qv0), vsumi0);
  4899. vsumi1 = vec_add(vec_unpackh(qv1), vsumi1);
  4900. vsumi2 = vec_add(vec_unpackh(qv2), vsumi2);
  4901. vsumi3 = vec_add(vec_unpackh(qv3), vsumi3);
  4902. vsumi4 = vec_add(vec_unpackl(qv0), vsumi4);
  4903. vsumi5 = vec_add(vec_unpackl(qv1), vsumi5);
  4904. vsumi6 = vec_add(vec_unpackl(qv2), vsumi6);
  4905. vsumi7 = vec_add(vec_unpackl(qv3), vsumi7);
  4906. }
  4907. vsumi0 = vec_add(vsumi0, vsumi4);
  4908. vsumi1 = vec_add(vsumi1, vsumi5);
  4909. vsumi2 = vec_add(vsumi2, vsumi6);
  4910. vsumi3 = vec_add(vsumi3, vsumi7);
  4911. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4912. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4913. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4914. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4915. }
  4916. vsumf0 = vec_add(vsumf0, vsumf2);
  4917. vsumf1 = vec_add(vsumf1, vsumf3);
  4918. vsumf0 = vec_add(vsumf0, vsumf1);
  4919. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4920. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4921. *s = vec_extract(vsumf0, 0);
  4922. #elif defined __loongarch_asx
  4923. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  4924. const __m128i m4 = __lsx_vreplgr2vr_b(0xF);
  4925. __m256 acc = (__m256)__lasx_xvldi(0);
  4926. for (int i = 0; i < nb; ++i) {
  4927. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4928. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4929. const uint8_t * restrict q2 = x[i].qs;
  4930. const int8_t * restrict q8 = y[i].qs;
  4931. const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  4932. const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
  4933. const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
  4934. const __m256i mins = lasx_ext8_16(mins8);
  4935. const __m256i prod = lasx_madd_h(mins, __lasx_xvld((const __m256i*)y[i].bsums, 0));
  4936. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(dmin), __lasx_xvffint_s_w(prod), acc);
  4937. const __m256i all_scales = lasx_ext8_16(scales8);
  4938. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  4939. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  4940. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  4941. __m256i sumi = __lasx_xvldi(0);
  4942. for (int j = 0; j < QK_K/128; ++j) {
  4943. const __m256i q2bits = __lasx_xvld((const __m256i*)q2, 0); q2 += 32;
  4944. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4945. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4946. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4947. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4948. const __m256i q2_0 = __lasx_xvand_v(q2bits, m3);
  4949. const __m256i q2_1 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 2), m3);
  4950. const __m256i q2_2 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 4), m3);
  4951. const __m256i q2_3 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 6), m3);
  4952. __m256i p0 = lasx_maddubs_h(q2_0, q8_0);
  4953. __m256i p1 = lasx_maddubs_h(q2_1, q8_1);
  4954. __m256i p2 = lasx_maddubs_h(q2_2, q8_2);
  4955. __m256i p3 = lasx_maddubs_h(q2_3, q8_3);
  4956. p0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(0)), p0);
  4957. p1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(1)), p1);
  4958. p2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(2)), p2);
  4959. p3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(3)), p3);
  4960. p0 = __lasx_xvadd_w(p0, p1);
  4961. p2 = __lasx_xvadd_w(p2, p3);
  4962. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p0, p2));
  4963. }
  4964. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  4965. }
  4966. *s = hsum_float_8(acc);
  4967. #else
  4968. float sumf = 0;
  4969. for (int i = 0; i < nb; ++i) {
  4970. const uint8_t * q2 = x[i].qs;
  4971. const int8_t * q8 = y[i].qs;
  4972. const uint8_t * sc = x[i].scales;
  4973. int summs = 0;
  4974. for (int j = 0; j < 16; ++j) {
  4975. summs += y[i].bsums[j] * (sc[j] >> 4);
  4976. }
  4977. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4978. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4979. int isum = 0;
  4980. int is = 0;
  4981. int d;
  4982. for (int k = 0; k < QK_K/128; ++k) {
  4983. int shift = 0;
  4984. for (int j = 0; j < 4; ++j) {
  4985. d = sc[is++] & 0xF;
  4986. int isuml = 0;
  4987. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4988. isum += d * isuml;
  4989. d = sc[is++] & 0xF;
  4990. isuml = 0;
  4991. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4992. isum += d * isuml;
  4993. shift += 2;
  4994. q8 += 32;
  4995. }
  4996. q2 += 32;
  4997. }
  4998. sumf += dall * isum - dmin * summs;
  4999. }
  5000. *s = sumf;
  5001. #endif
  5002. }
  5003. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5004. assert(n % QK_K == 0);
  5005. assert(nrc == 1);
  5006. UNUSED(nrc);
  5007. UNUSED(bx);
  5008. UNUSED(by);
  5009. UNUSED(bs);
  5010. const uint32_t kmask1 = 0x03030303;
  5011. const uint32_t kmask2 = 0x0f0f0f0f;
  5012. const block_q3_K * restrict x = vx;
  5013. const block_q8_K * restrict y = vy;
  5014. const int nb = n / QK_K;
  5015. #ifdef __ARM_NEON
  5016. uint32_t aux[3];
  5017. uint32_t utmp[4];
  5018. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5019. const int32x4_t vzero = vdupq_n_s32(0);
  5020. const uint8x16_t m0 = vdupq_n_u8(1);
  5021. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  5022. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  5023. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  5024. const int8_t m32 = 32;
  5025. ggml_int8x16x4_t q3bytes;
  5026. float sum = 0;
  5027. for (int i = 0; i < nb; ++i) {
  5028. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5029. const uint8_t * restrict q3 = x[i].qs;
  5030. const uint8_t * restrict qh = x[i].hmask;
  5031. const int8_t * restrict q8 = y[i].qs;
  5032. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  5033. ggml_uint8x16x4_t q3h;
  5034. int32_t isum = 0;
  5035. // Set up scales
  5036. memcpy(aux, x[i].scales, 12);
  5037. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5038. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5039. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5040. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5041. int8_t * scale = (int8_t *)utmp;
  5042. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  5043. for (int j = 0; j < QK_K/128; ++j) {
  5044. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  5045. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5046. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5047. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  5048. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  5049. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  5050. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  5051. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5052. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5053. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5054. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5055. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  5056. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  5057. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  5058. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  5059. scale += 4;
  5060. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  5061. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  5062. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  5063. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  5064. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5065. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5066. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5067. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5068. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  5069. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  5070. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  5071. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  5072. scale += 4;
  5073. if (j == 0) {
  5074. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  5075. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  5076. }
  5077. }
  5078. sum += d * isum;
  5079. }
  5080. *s = sum;
  5081. #elif defined __AVX2__
  5082. const __m256i m3 = _mm256_set1_epi8(3);
  5083. const __m256i mone = _mm256_set1_epi8(1);
  5084. const __m128i m32 = _mm_set1_epi8(32);
  5085. __m256 acc = _mm256_setzero_ps();
  5086. uint32_t aux[3];
  5087. for (int i = 0; i < nb; ++i) {
  5088. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5089. const uint8_t * restrict q3 = x[i].qs;
  5090. const int8_t * restrict q8 = y[i].qs;
  5091. // Set up scales
  5092. memcpy(aux, x[i].scales, 12);
  5093. __m128i scales128 = _mm_set_epi32(
  5094. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5095. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5096. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5097. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5098. scales128 = _mm_sub_epi8(scales128, m32);
  5099. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  5100. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5101. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5102. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5103. // high bit
  5104. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  5105. // integer accumulator
  5106. __m256i sumi = _mm256_setzero_si256();
  5107. int bit = 0;
  5108. int is = 0;
  5109. for (int j = 0; j < QK_K/128; ++j) {
  5110. // load low 2 bits
  5111. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  5112. // prepare low and high bits
  5113. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  5114. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5115. ++bit;
  5116. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  5117. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5118. ++bit;
  5119. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  5120. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5121. ++bit;
  5122. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  5123. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5124. ++bit;
  5125. // load Q8 quants
  5126. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5127. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5128. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5129. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5130. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5131. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5132. // and 2 if the high bit was set)
  5133. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5134. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5135. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  5136. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  5137. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5138. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5139. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  5140. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  5141. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5142. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5143. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5144. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5145. // multiply with scales
  5146. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5147. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5148. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5149. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5150. // accumulate
  5151. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5152. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  5153. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  5154. }
  5155. // multiply with block scale and accumulate
  5156. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5157. }
  5158. *s = hsum_float_8(acc);
  5159. #elif defined __AVX__
  5160. const __m128i m3 = _mm_set1_epi8(3);
  5161. const __m128i mone = _mm_set1_epi8(1);
  5162. const __m128i m32 = _mm_set1_epi8(32);
  5163. const __m128i m2 = _mm_set1_epi8(2);
  5164. __m256 acc = _mm256_setzero_ps();
  5165. const uint32_t *aux;
  5166. for (int i = 0; i < nb; ++i) {
  5167. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5168. const uint8_t * restrict q3 = x[i].qs;
  5169. const int8_t * restrict q8 = y[i].qs;
  5170. // Set up scales
  5171. aux = (const uint32_t *)x[i].scales;
  5172. __m128i scales128 = _mm_set_epi32(
  5173. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5174. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5175. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5176. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5177. scales128 = _mm_sub_epi8(scales128, m32);
  5178. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  5179. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  5180. const __m128i scales[2] = { scales_0, scales_1 };
  5181. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  5182. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  5183. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  5184. // integer accumulator
  5185. __m128i sumi_0 = _mm_setzero_si128();
  5186. __m128i sumi_1 = _mm_setzero_si128();
  5187. for (int j = 0; j < QK_K/128; ++j) {
  5188. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  5189. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5190. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5191. // prepare low and high bits
  5192. const int bit = j << 2;
  5193. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  5194. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  5195. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5196. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5197. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5198. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5199. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5200. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5201. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5202. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5203. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5204. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5205. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5206. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5207. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5208. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5209. // load Q8 quants from block_q8_K.qs[QK_K]
  5210. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5211. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5212. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5213. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5214. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5215. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5216. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5217. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5218. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5219. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5220. // and 2 if the high bit was set)
  5221. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5222. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5223. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5224. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5225. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5226. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5227. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5228. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5229. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5230. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5231. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5232. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5233. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5234. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5235. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5236. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5237. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5238. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5239. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5240. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5241. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5242. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5243. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5244. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5245. // multiply with scales
  5246. __m128i shuffle = _mm_set1_epi16(0x0100);
  5247. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5248. shuffle = _mm_add_epi16(shuffle, m2);
  5249. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5250. shuffle = _mm_add_epi16(shuffle, m2);
  5251. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5252. shuffle = _mm_add_epi16(shuffle, m2);
  5253. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5254. shuffle = _mm_add_epi16(shuffle, m2);
  5255. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5256. shuffle = _mm_add_epi16(shuffle, m2);
  5257. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5258. shuffle = _mm_add_epi16(shuffle, m2);
  5259. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5260. shuffle = _mm_add_epi16(shuffle, m2);
  5261. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5262. // accumulate
  5263. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5264. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5265. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5266. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5267. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5268. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5269. }
  5270. // multiply with block scale and accumulate
  5271. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5272. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5273. }
  5274. *s = hsum_float_8(acc);
  5275. #elif defined __riscv_v_intrinsic
  5276. uint32_t aux[3];
  5277. uint32_t utmp[4];
  5278. float sumf = 0;
  5279. for (int i = 0; i < nb; ++i) {
  5280. const uint8_t * restrict q3 = x[i].qs;
  5281. const uint8_t * restrict qh = x[i].hmask;
  5282. const int8_t * restrict q8 = y[i].qs;
  5283. memcpy(aux, x[i].scales, 12);
  5284. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5285. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5286. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5287. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5288. int8_t * scale = (int8_t *)utmp;
  5289. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5290. size_t vl = 32;
  5291. uint8_t m = 1;
  5292. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5293. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5294. int sum_t = 0;
  5295. for (int j = 0; j < QK_K; j += 128) {
  5296. vl = 32;
  5297. // load Q3
  5298. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5299. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5300. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5301. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5302. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5303. // compute mask for subtraction
  5304. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5305. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5306. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
  5307. m <<= 1;
  5308. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5309. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5310. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
  5311. m <<= 1;
  5312. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5313. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5314. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
  5315. m <<= 1;
  5316. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5317. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  5318. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
  5319. m <<= 1;
  5320. // load Q8 and take product with Q3
  5321. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5322. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5323. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5324. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5325. vl = 16;
  5326. // retrieve lane to multiply with scale
  5327. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  5328. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  5329. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  5330. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  5331. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  5332. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  5333. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  5334. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  5335. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  5336. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  5337. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  5338. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  5339. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5340. q3 += 32; q8 += 128; scale += 8;
  5341. }
  5342. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5343. sumf += d*sum_t;
  5344. }
  5345. *s = sumf;
  5346. #elif defined(__POWER9_VECTOR__)
  5347. const vector signed char lowMask = vec_splats((signed char)0x3);
  5348. const vector signed char v1 = vec_splats((signed char)0x1);
  5349. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5350. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5351. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5352. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5353. const vector signed char off = vec_splats((signed char)0x20);
  5354. vector float vsumf0 = vec_splats(0.0f);
  5355. vector float vsumf1 = vec_splats(0.0f);
  5356. vector float vsumf2 = vec_splats(0.0f);
  5357. vector float vsumf3 = vec_splats(0.0f);
  5358. for (int i = 0; i < nb; ++i) {
  5359. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5360. vector float vyd = vec_splats(y[i].d);
  5361. vector float vd = vec_mul(vxd, vyd);
  5362. uint32_t aux[3];
  5363. uint32_t utmp[4];
  5364. memcpy(aux, x[i].scales, 12);
  5365. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5366. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5367. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5368. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5369. vector signed char vscales = (vector signed char)vec_xl( 0, utmp);
  5370. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask);
  5371. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask);
  5372. vscales = vec_sub(vscales, off);
  5373. vector signed int vsumi0 = vec_splats((int32_t)0);
  5374. vector signed int vsumi1 = vec_splats((int32_t)0);
  5375. vector signed int vsumi2 = vec_splats((int32_t)0);
  5376. vector signed int vsumi3 = vec_splats((int32_t)0);
  5377. vector signed int vsumi4 = vec_splats((int32_t)0);
  5378. vector signed int vsumi5 = vec_splats((int32_t)0);
  5379. vector signed int vsumi6 = vec_splats((int32_t)0);
  5380. vector signed int vsumi7 = vec_splats((int32_t)0);
  5381. const uint8_t * restrict q3 = x[i].qs;
  5382. const int8_t * restrict q8 = y[i].qs;
  5383. for (int j = 0; j < QK_K/128; ++j) {
  5384. __builtin_prefetch(q3, 0, 1);
  5385. __builtin_prefetch(q8, 0, 1);
  5386. vector signed char qxs0 = (vector signed char)vec_xl( 0, q3);
  5387. vector signed char qxs1 = (vector signed char)vec_xl(16, q3);
  5388. q3 += 32;
  5389. //the low 2 bits
  5390. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5391. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  5392. vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask);
  5393. vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask);
  5394. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5395. vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask);
  5396. vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask);
  5397. vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask);
  5398. //the 3rd bit
  5399. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  5400. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2);
  5401. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  5402. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2);
  5403. vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2);
  5404. vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2);
  5405. vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2);
  5406. vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2);
  5407. qxhs0 = vec_sr(qxhs0, v4);
  5408. qxhs1 = vec_sr(qxhs1, v4);
  5409. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  5410. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  5411. vector signed char q3x02 = vec_sub(qxs02, qxh02);
  5412. vector signed char q3x03 = vec_sub(qxs03, qxh03);
  5413. vector signed char q3x10 = vec_sub(qxs10, qxh10);
  5414. vector signed char q3x11 = vec_sub(qxs11, qxh11);
  5415. vector signed char q3x12 = vec_sub(qxs12, qxh12);
  5416. vector signed char q3x13 = vec_sub(qxs13, qxh13);
  5417. vector signed char q8y00 = vec_xl( 0, q8);
  5418. vector signed char q8y10 = vec_xl( 16, q8);
  5419. vector signed char q8y01 = vec_xl( 32, q8);
  5420. vector signed char q8y11 = vec_xl( 48, q8);
  5421. vector signed char q8y02 = vec_xl( 64, q8);
  5422. vector signed char q8y12 = vec_xl( 80, q8);
  5423. vector signed char q8y03 = vec_xl( 96, q8);
  5424. vector signed char q8y13 = vec_xl(112, q8);
  5425. q8 += 128;
  5426. vector signed short vscales_h = vec_unpackh(vscales);
  5427. vector signed short vs0 = vec_splat(vscales_h, 0);
  5428. vector signed short vs1 = vec_splat(vscales_h, 1);
  5429. vector signed short vs2 = vec_splat(vscales_h, 2);
  5430. vector signed short vs3 = vec_splat(vscales_h, 3);
  5431. vector signed short vs4 = vec_splat(vscales_h, 4);
  5432. vector signed short vs5 = vec_splat(vscales_h, 5);
  5433. vector signed short vs6 = vec_splat(vscales_h, 6);
  5434. vector signed short vs7 = vec_splat(vscales_h, 7);
  5435. vscales = vec_sld(vscales, vscales, 8);
  5436. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  5437. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  5438. vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02));
  5439. vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03));
  5440. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  5441. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  5442. vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12));
  5443. vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13));
  5444. vector signed int vsum0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  5445. vector signed int vsum1 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2));
  5446. vector signed int vsum2 = vec_add(vec_mule(qv02, vs4), vec_mulo(qv02, vs4));
  5447. vector signed int vsum3 = vec_add(vec_mule(qv03, vs6), vec_mulo(qv03, vs6));
  5448. vector signed int vsum4 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1));
  5449. vector signed int vsum5 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3));
  5450. vector signed int vsum6 = vec_add(vec_mule(qv12, vs5), vec_mulo(qv12, vs5));
  5451. vector signed int vsum7 = vec_add(vec_mule(qv13, vs7), vec_mulo(qv13, vs7));
  5452. vsumi0 = vec_add(vsum0, vsumi0);
  5453. vsumi1 = vec_add(vsum1, vsumi1);
  5454. vsumi2 = vec_add(vsum2, vsumi2);
  5455. vsumi3 = vec_add(vsum3, vsumi3);
  5456. vsumi4 = vec_add(vsum4, vsumi4);
  5457. vsumi5 = vec_add(vsum5, vsumi5);
  5458. vsumi6 = vec_add(vsum6, vsumi6);
  5459. vsumi7 = vec_add(vsum7, vsumi7);
  5460. }
  5461. vsumi0 = vec_add(vsumi0, vsumi4);
  5462. vsumi1 = vec_add(vsumi1, vsumi5);
  5463. vsumi2 = vec_add(vsumi2, vsumi6);
  5464. vsumi3 = vec_add(vsumi3, vsumi7);
  5465. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5466. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5467. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5468. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5469. }
  5470. vsumf0 = vec_add(vsumf0, vsumf2);
  5471. vsumf1 = vec_add(vsumf1, vsumf3);
  5472. vsumf0 = vec_add(vsumf0, vsumf1);
  5473. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5474. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5475. *s = vec_extract(vsumf0, 0);
  5476. #elif defined __loongarch_asx
  5477. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  5478. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  5479. const __m128i m32 = __lsx_vreplgr2vr_b(32);
  5480. __m256 acc = (__m256)__lasx_xvldi(0);
  5481. uint32_t aux[3];
  5482. for (int i = 0; i < nb; ++i) {
  5483. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5484. const uint8_t * restrict q3 = x[i].qs;
  5485. const int8_t * restrict q8 = y[i].qs;
  5486. // Set up scales
  5487. memcpy(aux, x[i].scales, 12);
  5488. __m128i scales128 = lsx_set_w(
  5489. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5490. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5491. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5492. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5493. scales128 = __lsx_vsub_b(scales128, m32);
  5494. const __m256i all_scales = lasx_ext8_16(scales128);
  5495. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  5496. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  5497. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  5498. // high bit
  5499. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].hmask, 0);
  5500. // integer accumulator
  5501. __m256i sumi = __lasx_xvldi(0);
  5502. int bit = 0;
  5503. int is = 0;
  5504. __m256i xvbit;
  5505. for (int j = 0; j < QK_K/128; ++j) {
  5506. // load low 2 bits
  5507. const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32;
  5508. xvbit = __lasx_xvreplgr2vr_h(bit);
  5509. // prepare low and high bits
  5510. const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3);
  5511. const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5512. ++bit;
  5513. xvbit = __lasx_xvreplgr2vr_h(bit);
  5514. const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3);
  5515. const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5516. ++bit;
  5517. xvbit = __lasx_xvreplgr2vr_h(bit);
  5518. const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3);
  5519. const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5520. ++bit;
  5521. xvbit = __lasx_xvreplgr2vr_h(bit);
  5522. const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3);
  5523. const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5524. ++bit;
  5525. // load Q8 quants
  5526. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5527. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5528. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5529. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5530. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h,
  5531. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5532. // and 2 if the high bit was set)
  5533. __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0);
  5534. __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1);
  5535. __m256i q8s_2 = lasx_maddubs_h(q3h_2, q8_2);
  5536. __m256i q8s_3 = lasx_maddubs_h(q3h_3, q8_3);
  5537. __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0);
  5538. __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1);
  5539. __m256i p16_2 = lasx_maddubs_h(q3l_2, q8_2);
  5540. __m256i p16_3 = lasx_maddubs_h(q3l_3, q8_3);
  5541. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  5542. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  5543. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  5544. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  5545. // multiply with scales
  5546. p16_0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5547. p16_1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5548. p16_2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5549. p16_3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5550. // accumulate
  5551. p16_0 = __lasx_xvadd_w(p16_0, p16_1);
  5552. p16_2 = __lasx_xvadd_w(p16_2, p16_3);
  5553. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_2));
  5554. }
  5555. // multiply with block scale and accumulate
  5556. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);//FIXME
  5557. }
  5558. *s = hsum_float_8(acc);
  5559. #else
  5560. // scalar version
  5561. // This function is written like this so the compiler can manage to vectorize most of it
  5562. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  5563. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  5564. // The ideal situation would be if we could just write the code once, and the compiler would
  5565. // automatically produce the best possible set of machine instructions, instead of us having to manually
  5566. // write vectorized versions for AVX, ARM_NEON, etc.
  5567. int8_t aux8[QK_K];
  5568. int16_t aux16[8];
  5569. float sums [8];
  5570. int32_t aux32[8];
  5571. memset(sums, 0, 8*sizeof(float));
  5572. uint32_t auxs[4];
  5573. const int8_t * scales = (const int8_t*)auxs;
  5574. float sumf = 0;
  5575. for (int i = 0; i < nb; ++i) {
  5576. const uint8_t * restrict q3 = x[i].qs;
  5577. const uint8_t * restrict hm = x[i].hmask;
  5578. const int8_t * restrict q8 = y[i].qs;
  5579. memset(aux32, 0, 8*sizeof(int32_t));
  5580. int8_t * restrict a = aux8;
  5581. uint8_t m = 1;
  5582. for (int j = 0; j < QK_K; j += 128) {
  5583. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  5584. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5585. a += 32; m <<= 1;
  5586. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  5587. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5588. a += 32; m <<= 1;
  5589. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  5590. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5591. a += 32; m <<= 1;
  5592. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  5593. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5594. a += 32; m <<= 1;
  5595. q3 += 32;
  5596. }
  5597. a = aux8;
  5598. memcpy(auxs, x[i].scales, 12);
  5599. uint32_t tmp = auxs[2];
  5600. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  5601. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  5602. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  5603. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  5604. for (int j = 0; j < QK_K/16; ++j) {
  5605. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5606. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5607. q8 += 8; a += 8;
  5608. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5609. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5610. q8 += 8; a += 8;
  5611. }
  5612. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5613. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5614. }
  5615. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5616. *s = sumf;
  5617. #endif
  5618. }
  5619. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5620. assert(n % QK_K == 0);
  5621. assert(nrc == 1);
  5622. UNUSED(nrc);
  5623. UNUSED(bx);
  5624. UNUSED(by);
  5625. UNUSED(bs);
  5626. const block_q4_K * restrict x = vx;
  5627. const block_q8_K * restrict y = vy;
  5628. const int nb = n / QK_K;
  5629. static const uint32_t kmask1 = 0x3f3f3f3f;
  5630. static const uint32_t kmask2 = 0x0f0f0f0f;
  5631. static const uint32_t kmask3 = 0x03030303;
  5632. uint32_t utmp[4];
  5633. #ifdef __ARM_NEON
  5634. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5635. const int32x4_t mzero = vdupq_n_s32(0);
  5636. ggml_int8x16x2_t q4bytes;
  5637. ggml_int8x16x2_t q8bytes;
  5638. float sumf = 0;
  5639. for (int i = 0; i < nb; ++i) {
  5640. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5641. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5642. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5643. memcpy(utmp, x[i].scales, 12);
  5644. uint32x2_t mins8 = { 0 };
  5645. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  5646. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  5647. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5648. utmp[0] &= kmask1;
  5649. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  5650. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5651. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5652. sumf -= dmin * vaddvq_s32(prod);
  5653. const uint8_t * scales = (const uint8_t *)utmp;
  5654. const uint8_t * restrict q4 = x[i].qs;
  5655. const int8_t * restrict q8 = y[i].qs;
  5656. int32_t sumi1 = 0;
  5657. int32_t sumi2 = 0;
  5658. for (int j = 0; j < QK_K/64; ++j) {
  5659. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  5660. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5661. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5662. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5663. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5664. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  5665. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5666. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5667. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5668. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5669. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  5670. }
  5671. sumf += d * (sumi1 + sumi2);
  5672. }
  5673. *s = sumf;
  5674. #elif defined __AVX2__
  5675. const __m256i m4 = _mm256_set1_epi8(0xF);
  5676. __m256 acc = _mm256_setzero_ps();
  5677. __m128 acc_m = _mm_setzero_ps();
  5678. for (int i = 0; i < nb; ++i) {
  5679. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5680. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5681. memcpy(utmp, x[i].scales, 12);
  5682. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5683. const uint32_t uaux = utmp[1] & kmask1;
  5684. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5685. utmp[2] = uaux;
  5686. utmp[0] &= kmask1;
  5687. const uint8_t * restrict q4 = x[i].qs;
  5688. const int8_t * restrict q8 = y[i].qs;
  5689. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5690. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5691. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5692. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5693. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  5694. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  5695. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  5696. __m256i sumi = _mm256_setzero_si256();
  5697. for (int j = 0; j < QK_K/64; ++j) {
  5698. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  5699. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  5700. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5701. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5702. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5703. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5704. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5705. p16l = _mm256_madd_epi16(scale_l, p16l);
  5706. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5707. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5708. p16h = _mm256_madd_epi16(scale_h, p16h);
  5709. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  5710. sumi = _mm256_add_epi32(sumi, sumj);
  5711. }
  5712. __m256 vd = _mm256_set1_ps(d);
  5713. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5714. }
  5715. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5716. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5717. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5718. #elif defined __AVX__
  5719. const __m128i m4 = _mm_set1_epi8(0xF);
  5720. const __m128i m2 = _mm_set1_epi8(0x2);
  5721. __m256 acc = _mm256_setzero_ps();
  5722. __m128 acc_m = _mm_setzero_ps();
  5723. for (int i = 0; i < nb; ++i) {
  5724. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5725. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5726. const uint8_t * restrict q4 = x[i].qs;
  5727. const int8_t * restrict q8 = y[i].qs;
  5728. memcpy(utmp, x[i].scales, 12);
  5729. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5730. const uint32_t uaux = utmp[1] & kmask1;
  5731. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5732. utmp[2] = uaux;
  5733. utmp[0] &= kmask1;
  5734. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5735. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5736. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5737. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5738. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5739. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5740. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5741. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  5742. __m128i sumi_0 = _mm_setzero_si128();
  5743. __m128i sumi_1 = _mm_setzero_si128();
  5744. __m128i shuffle = _mm_set1_epi16(0x0100);
  5745. for (int j = 0; j < QK_K/64; ++j) {
  5746. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  5747. shuffle = _mm_add_epi16(shuffle, m2);
  5748. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  5749. shuffle = _mm_add_epi16(shuffle, m2);
  5750. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5751. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  5752. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5753. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5754. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  5755. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5756. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5757. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  5758. p16l = _mm_madd_epi16(scale_l, p16l);
  5759. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  5760. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5761. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  5762. p16l = _mm_madd_epi16(scale_l, p16l);
  5763. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  5764. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5765. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  5766. p16h = _mm_madd_epi16(scale_h, p16h);
  5767. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  5768. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5769. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  5770. p16h = _mm_madd_epi16(scale_h, p16h);
  5771. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  5772. }
  5773. __m256 vd = _mm256_set1_ps(d);
  5774. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5775. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5776. }
  5777. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5778. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5779. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5780. #elif defined __riscv_v_intrinsic
  5781. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5782. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5783. float sumf = 0;
  5784. for (int i = 0; i < nb; ++i) {
  5785. size_t vl = 8;
  5786. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5787. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5788. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5789. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5790. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5791. memcpy(utmp, x[i].scales, 12);
  5792. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5793. const uint32_t uaux = utmp[1] & kmask1;
  5794. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5795. utmp[2] = uaux;
  5796. utmp[0] &= kmask1;
  5797. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5798. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5799. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5800. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5801. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5802. const uint8_t * restrict q4 = x[i].qs;
  5803. const int8_t * restrict q8 = y[i].qs;
  5804. vl = 32;
  5805. int32_t sum_1 = 0;
  5806. int32_t sum_2 = 0;
  5807. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5808. for (int j = 0; j < QK_K/64; ++j) {
  5809. // load Q4
  5810. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5811. // load Q8 and multiply it with lower Q4 nibble
  5812. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5813. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5814. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  5815. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  5816. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  5817. // load Q8 and multiply it with upper Q4 nibble
  5818. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5819. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5820. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  5821. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  5822. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  5823. q4 += 32; q8 += 64;
  5824. }
  5825. sumf += d*(sum_1 + sum_2);
  5826. }
  5827. *s = sumf;
  5828. #elif defined(__POWER9_VECTOR__)
  5829. const vector signed char lowMask = vec_splats((signed char)0xF);
  5830. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5831. vector float vsumf0 = vec_splats(0.0f);
  5832. vector float vsumf1 = vec_splats(0.0f);
  5833. vector float vsumf2 = vec_splats(0.0f);
  5834. vector float vsumf3 = vec_splats(0.0f);
  5835. for (int i = 0; i < nb; ++i) {
  5836. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5837. vector float vyd = vec_splats(y[i].d);
  5838. vector float vd = vec_mul(vxd, vyd);
  5839. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5840. vector float vdmin = vec_mul(vxmin, vyd);
  5841. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  5842. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  5843. memcpy(utmp, x[i].scales, 12);
  5844. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5845. const uint32_t uaux = utmp[1] & kmask1;
  5846. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5847. utmp[2] = uaux;
  5848. utmp[0] &= kmask1;
  5849. vector signed char utmps = (vector signed char)vec_xl( 0, utmp);
  5850. vector signed short vscales = vec_unpackh(utmps);
  5851. vector signed short q4xmins = vec_unpackl(utmps);
  5852. vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins);
  5853. vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins);
  5854. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  5855. vector signed int prod1 = vec_mule(q4xmins1, q8ysums1);
  5856. vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0);
  5857. vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1);
  5858. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5859. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5860. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  5861. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  5862. vector signed int vsumi0 = vec_splats((int32_t)0);
  5863. vector signed int vsumi1 = vec_splats((int32_t)0);
  5864. vector signed int vsumi2 = vec_splats((int32_t)0);
  5865. vector signed int vsumi3 = vec_splats((int32_t)0);
  5866. vector signed int vsumi4 = vec_splats((int32_t)0);
  5867. vector signed int vsumi5 = vec_splats((int32_t)0);
  5868. vector signed int vsumi6 = vec_splats((int32_t)0);
  5869. vector signed int vsumi7 = vec_splats((int32_t)0);
  5870. const uint8_t * restrict q4 = x[i].qs;
  5871. const int8_t * restrict q8 = y[i].qs;
  5872. for (int j = 0; j < QK_K/64; j+=2) {
  5873. __builtin_prefetch(q4, 0, 1);
  5874. __builtin_prefetch(q8, 0, 1);
  5875. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  5876. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  5877. vector signed char qxs2 = (vector signed char)vec_xl(32, q4);
  5878. vector signed char qxs3 = (vector signed char)vec_xl(48, q4);
  5879. q4 += 64;
  5880. vector signed char q4x00 = vec_and(qxs0, lowMask);
  5881. vector signed char q4x01 = vec_sr(qxs0, v4);
  5882. vector signed char q4x10 = vec_and(qxs1, lowMask);
  5883. vector signed char q4x11 = vec_sr(qxs1, v4);
  5884. vector signed char q4x20 = vec_and(qxs2, lowMask);
  5885. vector signed char q4x21 = vec_sr(qxs2, v4);
  5886. vector signed char q4x30 = vec_and(qxs3, lowMask);
  5887. vector signed char q4x31 = vec_sr(qxs3, v4);
  5888. vector signed char q8y00 = vec_xl( 0, q8);
  5889. vector signed char q8y10 = vec_xl( 16, q8);
  5890. vector signed char q8y01 = vec_xl( 32, q8);
  5891. vector signed char q8y11 = vec_xl( 48, q8);
  5892. vector signed char q8y20 = vec_xl( 64, q8);
  5893. vector signed char q8y30 = vec_xl( 80, q8);
  5894. vector signed char q8y21 = vec_xl( 96, q8);
  5895. vector signed char q8y31 = vec_xl(112, q8);
  5896. q8 += 128;
  5897. vector signed short qv00 = vec_add(vec_mule(q4x00, q8y00), vec_mulo(q4x00, q8y00));
  5898. vector signed short qv01 = vec_add(vec_mule(q4x01, q8y01), vec_mulo(q4x01, q8y01));
  5899. vector signed short qv10 = vec_add(vec_mule(q4x10, q8y10), vec_mulo(q4x10, q8y10));
  5900. vector signed short qv11 = vec_add(vec_mule(q4x11, q8y11), vec_mulo(q4x11, q8y11));
  5901. vector signed short qv20 = vec_add(vec_mule(q4x20, q8y20), vec_mulo(q4x20, q8y20));
  5902. vector signed short qv21 = vec_add(vec_mule(q4x21, q8y21), vec_mulo(q4x21, q8y21));
  5903. vector signed short qv30 = vec_add(vec_mule(q4x30, q8y30), vec_mulo(q4x30, q8y30));
  5904. vector signed short qv31 = vec_add(vec_mule(q4x31, q8y31), vec_mulo(q4x31, q8y31));
  5905. vector signed short vs0 = vec_splat(vscales, 0);
  5906. vector signed short vs1 = vec_splat(vscales, 1);
  5907. vector signed short vs2 = vec_splat(vscales, 2);
  5908. vector signed short vs3 = vec_splat(vscales, 3);
  5909. vscales = vec_sld(vscales, vscales, 8);
  5910. qv00 = vec_add(qv00, qv10);
  5911. qv10 = vec_add(qv01, qv11);
  5912. qv20 = vec_add(qv20, qv30);
  5913. qv30 = vec_add(qv21, qv31);
  5914. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  5915. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  5916. vsumi2 = vec_add(vec_mule(qv10, vs1), vsumi2);
  5917. vsumi3 = vec_add(vec_mulo(qv10, vs1), vsumi3);
  5918. vsumi4 = vec_add(vec_mule(qv20, vs2), vsumi4);
  5919. vsumi5 = vec_add(vec_mulo(qv20, vs2), vsumi5);
  5920. vsumi6 = vec_add(vec_mule(qv30, vs3), vsumi6);
  5921. vsumi7 = vec_add(vec_mulo(qv30, vs3), vsumi7);
  5922. }
  5923. vsumi0 = vec_add(vsumi0, vsumi4);
  5924. vsumi1 = vec_add(vsumi1, vsumi5);
  5925. vsumi2 = vec_add(vsumi2, vsumi6);
  5926. vsumi3 = vec_add(vsumi3, vsumi7);
  5927. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5928. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5929. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5930. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5931. }
  5932. vsumf0 = vec_add(vsumf0, vsumf2);
  5933. vsumf1 = vec_add(vsumf1, vsumf3);
  5934. vsumf0 = vec_add(vsumf0, vsumf1);
  5935. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5936. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5937. *s = vec_extract(vsumf0, 0);
  5938. #elif defined __loongarch_asx
  5939. GGML_UNUSED(kmask1);
  5940. GGML_UNUSED(kmask2);
  5941. GGML_UNUSED(kmask3);
  5942. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  5943. __m256 acc = (__m256)__lasx_xvldi(0);
  5944. __m128 acc_m = (__m128)__lsx_vldi(0);
  5945. for (int i = 0; i < nb; ++i) {
  5946. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5947. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5948. memcpy(utmp, x[i].scales, 12);
  5949. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5950. const uint32_t uaux = utmp[1] & kmask1;
  5951. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5952. utmp[2] = uaux;
  5953. utmp[0] &= kmask1;
  5954. const uint8_t * restrict q4 = x[i].qs;
  5955. const int8_t * restrict q8 = y[i].qs;
  5956. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  5957. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  5958. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  5959. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  5960. acc_m = __lsx_vfmadd_s(__lsx_vreplfr2vr_s(dmin), __lsx_vffint_s_w(prod), acc_m);
  5961. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  5962. const __m256i scales = lasx_insertf128(sc128, sc128);
  5963. __m256i sumi = __lasx_xvldi(0);
  5964. for (int j = 0; j < QK_K/64; ++j) {
  5965. const __m256i scale_l = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  5966. const __m256i scale_h = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  5967. const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  5968. const __m256i q4l = __lasx_xvand_v(q4bits, m4);
  5969. const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4);
  5970. const __m256i q8l = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5971. __m256i p16l = lasx_maddubs_h(q4l, q8l);
  5972. p16l = lasx_madd_h(scale_l, p16l);
  5973. const __m256i q8h = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5974. __m256i p16h = lasx_maddubs_h(q4h, q8h);
  5975. p16h = lasx_madd_h(scale_h, p16h);
  5976. const __m256i sumj = __lasx_xvadd_w(p16l, p16h);
  5977. sumi = __lasx_xvadd_w(sumi, sumj);
  5978. }
  5979. __m256 vd = __lasx_xvreplfr2vr_s(d);
  5980. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  5981. }
  5982. acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
  5983. __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
  5984. acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
  5985. ft_union fi;
  5986. fi.i = __lsx_vpickve2gr_w(acc_m, 0);
  5987. *s = hsum_float_8(acc) + fi.f ;
  5988. #else
  5989. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5990. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5991. int8_t aux8[QK_K];
  5992. int16_t aux16[8];
  5993. float sums [8];
  5994. int32_t aux32[8];
  5995. memset(sums, 0, 8*sizeof(float));
  5996. float sumf = 0;
  5997. for (int i = 0; i < nb; ++i) {
  5998. const uint8_t * restrict q4 = x[i].qs;
  5999. const int8_t * restrict q8 = y[i].qs;
  6000. memset(aux32, 0, 8*sizeof(int32_t));
  6001. int8_t * restrict a = aux8;
  6002. for (int j = 0; j < QK_K/64; ++j) {
  6003. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6004. a += 32;
  6005. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6006. a += 32; q4 += 32;
  6007. }
  6008. memcpy(utmp, x[i].scales, 12);
  6009. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6010. const uint32_t uaux = utmp[1] & kmask1;
  6011. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6012. utmp[2] = uaux;
  6013. utmp[0] &= kmask1;
  6014. int sumi = 0;
  6015. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6016. a = aux8;
  6017. int is = 0;
  6018. for (int j = 0; j < QK_K/32; ++j) {
  6019. int32_t scale = scales[is++];
  6020. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6021. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6022. q8 += 8; a += 8;
  6023. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6024. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6025. q8 += 8; a += 8;
  6026. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6027. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6028. q8 += 8; a += 8;
  6029. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6030. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6031. q8 += 8; a += 8;
  6032. }
  6033. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6034. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6035. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6036. sumf -= dmin * sumi;
  6037. }
  6038. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6039. *s = sumf;
  6040. #endif
  6041. }
  6042. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6043. assert(n % QK_K == 0);
  6044. assert(nrc == 1);
  6045. UNUSED(nrc);
  6046. UNUSED(bx);
  6047. UNUSED(by);
  6048. UNUSED(bs);
  6049. const block_q5_K * restrict x = vx;
  6050. const block_q8_K * restrict y = vy;
  6051. const int nb = n / QK_K;
  6052. static const uint32_t kmask1 = 0x3f3f3f3f;
  6053. static const uint32_t kmask2 = 0x0f0f0f0f;
  6054. static const uint32_t kmask3 = 0x03030303;
  6055. uint32_t utmp[4];
  6056. #ifdef __ARM_NEON
  6057. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6058. const uint8x16_t mone = vdupq_n_u8(1);
  6059. const uint8x16_t mtwo = vdupq_n_u8(2);
  6060. const int32x4_t mzero = vdupq_n_s32(0);
  6061. ggml_int8x16x4_t q5bytes;
  6062. float sumf = 0;
  6063. for (int i = 0; i < nb; ++i) {
  6064. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6065. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6066. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6067. memcpy(utmp, x[i].scales, 12);
  6068. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6069. const uint32_t uaux = utmp[1] & kmask1;
  6070. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6071. utmp[2] = uaux;
  6072. utmp[0] &= kmask1;
  6073. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  6074. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  6075. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6076. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6077. int32_t sumi_mins = vaddvq_s32(prod);
  6078. const uint8_t * scales = (const uint8_t *)utmp;
  6079. const uint8_t * restrict q5 = x[i].qs;
  6080. const uint8_t * restrict qh = x[i].qh;
  6081. const int8_t * restrict q8 = y[i].qs;
  6082. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  6083. ggml_uint8x16x4_t q5h;
  6084. int32_t sumi = 0;
  6085. for (int j = 0; j < QK_K/64; ++j) {
  6086. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  6087. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6088. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6089. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6090. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  6091. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  6092. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  6093. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  6094. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  6095. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  6096. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  6097. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  6098. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  6099. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  6100. }
  6101. sumf += d * sumi - dmin * sumi_mins;
  6102. }
  6103. *s = sumf;
  6104. #elif defined __AVX2__
  6105. const __m256i m4 = _mm256_set1_epi8(0xF);
  6106. const __m128i mzero = _mm_setzero_si128();
  6107. const __m256i mone = _mm256_set1_epi8(1);
  6108. __m256 acc = _mm256_setzero_ps();
  6109. float summs = 0.f;
  6110. for (int i = 0; i < nb; ++i) {
  6111. const uint8_t * restrict q5 = x[i].qs;
  6112. const int8_t * restrict q8 = y[i].qs;
  6113. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6114. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6115. memcpy(utmp, x[i].scales, 12);
  6116. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6117. const uint32_t uaux = utmp[1] & kmask1;
  6118. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6119. utmp[2] = uaux;
  6120. utmp[0] &= kmask1;
  6121. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6122. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6123. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6124. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6125. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6126. summs += dmin * _mm_extract_epi32(hsum, 0);
  6127. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6128. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6129. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  6130. __m256i hmask = mone;
  6131. __m256i sumi = _mm256_setzero_si256();
  6132. int bit = 0;
  6133. for (int j = 0; j < QK_K/64; ++j) {
  6134. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6135. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6136. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  6137. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6138. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6139. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  6140. hmask = _mm256_slli_epi16(hmask, 1);
  6141. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6142. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6143. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  6144. hmask = _mm256_slli_epi16(hmask, 1);
  6145. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6146. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6147. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  6148. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  6149. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6150. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6151. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6152. }
  6153. __m256 vd = _mm256_set1_ps(d);
  6154. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6155. }
  6156. *s = hsum_float_8(acc) + summs;
  6157. #elif defined __AVX__
  6158. const __m128i m4 = _mm_set1_epi8(0xF);
  6159. const __m128i mzero = _mm_setzero_si128();
  6160. const __m128i mone = _mm_set1_epi8(1);
  6161. const __m128i m2 = _mm_set1_epi8(2);
  6162. __m256 acc = _mm256_setzero_ps();
  6163. float summs = 0.f;
  6164. for (int i = 0; i < nb; ++i) {
  6165. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6166. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6167. const uint8_t * restrict q5 = x[i].qs;
  6168. const int8_t * restrict q8 = y[i].qs;
  6169. memcpy(utmp, x[i].scales, 12);
  6170. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6171. const uint32_t uaux = utmp[1] & kmask1;
  6172. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6173. utmp[2] = uaux;
  6174. utmp[0] &= kmask1;
  6175. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6176. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6177. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6178. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6179. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6180. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6181. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6182. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6183. summs += dmin * _mm_extract_epi32(hsum, 0);
  6184. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  6185. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  6186. __m128i hmask = mone;
  6187. __m128i sumi_0 = _mm_setzero_si128();
  6188. __m128i sumi_1 = _mm_setzero_si128();
  6189. int bit = 0;
  6190. __m128i shuffle = _mm_set1_epi16(0x0100);
  6191. for (int j = 0; j < QK_K/64; ++j) {
  6192. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6193. shuffle = _mm_add_epi16(shuffle, m2);
  6194. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6195. shuffle = _mm_add_epi16(shuffle, m2);
  6196. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6197. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6198. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  6199. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  6200. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6201. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6202. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6203. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6204. hmask = _mm_slli_epi16(hmask, 1);
  6205. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6206. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6207. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  6208. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  6209. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6210. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  6211. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  6212. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  6213. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6214. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6215. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6216. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6217. hmask = _mm_slli_epi16(hmask, 1);
  6218. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6219. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6220. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  6221. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  6222. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  6223. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  6224. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6225. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6226. }
  6227. __m256 vd = _mm256_set1_ps(d);
  6228. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6229. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6230. }
  6231. *s = hsum_float_8(acc) + summs;
  6232. #elif defined __riscv_v_intrinsic
  6233. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6234. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6235. float sumf = 0;
  6236. float sums = 0.0;
  6237. size_t vl;
  6238. for (int i = 0; i < nb; ++i) {
  6239. vl = 8;
  6240. const uint8_t * restrict q5 = x[i].qs;
  6241. const uint8_t * restrict hm = x[i].qh;
  6242. const int8_t * restrict q8 = y[i].qs;
  6243. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6244. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6245. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6246. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6247. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6248. memcpy(utmp, x[i].scales, 12);
  6249. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6250. const uint32_t uaux = utmp[1] & kmask1;
  6251. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6252. utmp[2] = uaux;
  6253. utmp[0] &= kmask1;
  6254. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6255. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6256. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6257. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6258. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6259. vl = 32;
  6260. int32_t aux32 = 0;
  6261. int is = 0;
  6262. uint8_t m = 1;
  6263. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6264. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  6265. for (int j = 0; j < QK_K/64; ++j) {
  6266. // load Q5 and Q8
  6267. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  6268. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  6269. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  6270. // compute mask for addition
  6271. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  6272. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6273. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  6274. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
  6275. m <<= 1;
  6276. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  6277. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6278. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  6279. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
  6280. m <<= 1;
  6281. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  6282. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  6283. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  6284. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  6285. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  6286. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  6287. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  6288. q5 += 32; q8 += 64;
  6289. }
  6290. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  6291. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  6292. }
  6293. *s = sumf+sums;
  6294. #elif defined(__POWER9_VECTOR__)
  6295. const vector signed char lowMask = vec_splats((signed char)0xF);
  6296. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  6297. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6298. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6299. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6300. vector float vsumf0 = vec_splats(0.0f);
  6301. vector float vsumf1 = vec_splats(0.0f);
  6302. vector float vsumf2 = vec_splats(0.0f);
  6303. vector float vsumf3 = vec_splats(0.0f);
  6304. for (int i = 0; i < nb; ++i) {
  6305. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6306. vector float vyd = vec_splats(y[i].d);
  6307. vector float vd = vec_mul(vxd, vyd);
  6308. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  6309. vector float vdmin = vec_mul(vxmin, vyd);
  6310. memcpy(utmp, x[i].scales, 12);
  6311. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6312. const uint32_t uaux = utmp[1] & kmask1;
  6313. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6314. utmp[2] = uaux;
  6315. utmp[0] &= kmask1;
  6316. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  6317. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  6318. vector signed char utmps = (vector signed char)vec_xl( 0, utmp);
  6319. vector signed short vscales = vec_unpackh(utmps);
  6320. vector signed short q5xmins = vec_unpackl(utmps);
  6321. vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins);
  6322. vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins);
  6323. vector signed int prod0 = vec_mule(q5xmins0, q8ysums0);
  6324. vector signed int prod1 = vec_mule(q5xmins1, q8ysums1);
  6325. vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0);
  6326. vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1);
  6327. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  6328. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  6329. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  6330. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  6331. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  6332. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh);
  6333. vector signed int vsumi0 = vec_splats((int32_t)0);
  6334. vector signed int vsumi1 = vec_splats((int32_t)0);
  6335. vector signed int vsumi2 = vec_splats((int32_t)0);
  6336. vector signed int vsumi3 = vec_splats((int32_t)0);
  6337. const uint8_t * restrict q5 = x[i].qs;
  6338. const int8_t * restrict q8 = y[i].qs;
  6339. for (int j = 0; j < QK_K/64; ++j) {
  6340. __builtin_prefetch(q5, 0, 1);
  6341. __builtin_prefetch(q8, 0, 1);
  6342. vector signed char qxs0 = (vector signed char)vec_xl( 0, q5);
  6343. vector signed char qxs1 = (vector signed char)vec_xl(16, q5);
  6344. q5 += 32;
  6345. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6346. vector signed char qxs01 = vec_sr(qxs0, v4);
  6347. vector signed char qxs10 = vec_and(qxs1, lowMask);
  6348. vector signed char qxs11 = vec_sr(qxs1, v4);
  6349. vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4);
  6350. vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3);
  6351. vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4);
  6352. vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3);
  6353. qxhs0 = vec_sr(qxhs0, v2);
  6354. qxhs1 = vec_sr(qxhs1, v2);
  6355. vector signed char q5x00 = vec_or(q5h00, qxs00);
  6356. vector signed char q5x01 = vec_or(q5h01, qxs01);
  6357. vector signed char q5x10 = vec_or(q5h10, qxs10);
  6358. vector signed char q5x11 = vec_or(q5h11, qxs11);
  6359. vector signed char q8y00 = vec_xl( 0, q8);
  6360. vector signed char q8y10 = vec_xl(16, q8);
  6361. vector signed char q8y01 = vec_xl(32, q8);
  6362. vector signed char q8y11 = vec_xl(48, q8);
  6363. q8 += 64;
  6364. vector signed short qv00 = vec_add(vec_mule(q5x00, q8y00), vec_mulo(q5x00, q8y00));
  6365. vector signed short qv01 = vec_add(vec_mule(q5x01, q8y01), vec_mulo(q5x01, q8y01));
  6366. vector signed short qv10 = vec_add(vec_mule(q5x10, q8y10), vec_mulo(q5x10, q8y10));
  6367. vector signed short qv11 = vec_add(vec_mule(q5x11, q8y11), vec_mulo(q5x11, q8y11));
  6368. vector signed short vs0 = vec_splat(vscales, 0);
  6369. vector signed short vs1 = vec_splat(vscales, 1);
  6370. vscales = vec_sld(vscales, vscales, 12);
  6371. qv00 = vec_add(qv00, qv10);
  6372. qv01 = vec_add(qv01, qv11);
  6373. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  6374. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  6375. vsumi2 = vec_add(vec_mule(qv01, vs1), vsumi2);
  6376. vsumi3 = vec_add(vec_mulo(qv01, vs1), vsumi3);
  6377. }
  6378. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6379. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6380. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6381. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6382. }
  6383. vsumf0 = vec_add(vsumf0, vsumf2);
  6384. vsumf1 = vec_add(vsumf1, vsumf3);
  6385. vsumf0 = vec_add(vsumf0, vsumf1);
  6386. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6387. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6388. *s = vec_extract(vsumf0, 0);
  6389. #elif defined __loongarch_asx
  6390. GGML_UNUSED(kmask1);
  6391. GGML_UNUSED(kmask2);
  6392. GGML_UNUSED(kmask3);
  6393. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  6394. const __m128i mzero = __lsx_vldi(0);
  6395. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  6396. __m256 acc = (__m256)__lasx_xvldi(0);
  6397. float summs = 0.f;
  6398. for (int i = 0; i < nb; ++i) {
  6399. const uint8_t * restrict q5 = x[i].qs;
  6400. const int8_t * restrict q8 = y[i].qs;
  6401. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6402. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6403. memcpy(utmp, x[i].scales, 12);
  6404. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6405. const uint32_t uaux = utmp[1] & kmask1;
  6406. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6407. utmp[2] = uaux;
  6408. utmp[0] &= kmask1;
  6409. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  6410. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  6411. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  6412. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  6413. const __m128i hsum = lsx_hadd_w(lsx_hadd_w(prod, mzero), mzero);
  6414. summs += dmin * __lsx_vpickve2gr_w(hsum, 0); //TODO check
  6415. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  6416. const __m256i scales = lasx_insertf128(sc128, sc128);
  6417. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].qh, 0);
  6418. __m256i hmask = mone;
  6419. __m256i sumi = __lasx_xvldi(0);
  6420. int bit = 0;
  6421. __m256i xvbit;
  6422. for (int j = 0; j < QK_K/64; ++j) {
  6423. const __m256i scale_0 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  6424. const __m256i scale_1 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  6425. const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32;
  6426. xvbit = __lasx_xvreplgr2vr_h(bit++);
  6427. const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
  6428. const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  6429. const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0);
  6430. hmask = __lasx_xvslli_h(hmask, 1);
  6431. xvbit = __lasx_xvreplgr2vr_h(bit++);
  6432. const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
  6433. const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  6434. const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1);
  6435. hmask = __lasx_xvslli_h(hmask, 1);
  6436. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6437. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6438. __m256i p16_0 = lasx_maddubs_h(q5_0, q8_0);
  6439. __m256i p16_1 = lasx_maddubs_h(q5_1, q8_1);
  6440. p16_0 = lasx_madd_h(scale_0, p16_0);
  6441. p16_1 = lasx_madd_h(scale_1, p16_1);
  6442. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  6443. }
  6444. __m256 vd = __lasx_xvreplfr2vr_s(d);
  6445. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  6446. }
  6447. *s = hsum_float_8(acc) + summs;
  6448. #else
  6449. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6450. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6451. int8_t aux8[QK_K];
  6452. int16_t aux16[8];
  6453. float sums [8];
  6454. int32_t aux32[8];
  6455. memset(sums, 0, 8*sizeof(float));
  6456. float sumf = 0;
  6457. for (int i = 0; i < nb; ++i) {
  6458. const uint8_t * restrict q4 = x[i].qs;
  6459. const uint8_t * restrict hm = x[i].qh;
  6460. const int8_t * restrict q8 = y[i].qs;
  6461. memset(aux32, 0, 8*sizeof(int32_t));
  6462. int8_t * restrict a = aux8;
  6463. uint8_t m = 1;
  6464. for (int j = 0; j < QK_K/64; ++j) {
  6465. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6466. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6467. a += 32; m <<= 1;
  6468. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6469. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6470. a += 32; m <<= 1;
  6471. q4 += 32;
  6472. }
  6473. memcpy(utmp, x[i].scales, 12);
  6474. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6475. const uint32_t uaux = utmp[1] & kmask1;
  6476. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6477. utmp[2] = uaux;
  6478. utmp[0] &= kmask1;
  6479. int sumi = 0;
  6480. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6481. a = aux8;
  6482. int is = 0;
  6483. for (int j = 0; j < QK_K/32; ++j) {
  6484. int32_t scale = scales[is++];
  6485. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6486. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6487. q8 += 8; a += 8;
  6488. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6489. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6490. q8 += 8; a += 8;
  6491. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6492. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6493. q8 += 8; a += 8;
  6494. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6495. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6496. q8 += 8; a += 8;
  6497. }
  6498. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6499. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6500. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6501. sumf -= dmin * sumi;
  6502. }
  6503. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6504. *s = sumf;
  6505. #endif
  6506. }
  6507. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6508. assert(n % QK_K == 0);
  6509. assert(nrc == 1);
  6510. UNUSED(nrc);
  6511. UNUSED(bx);
  6512. UNUSED(by);
  6513. UNUSED(bs);
  6514. const block_q6_K * restrict x = vx;
  6515. const block_q8_K * restrict y = vy;
  6516. const int nb = n / QK_K;
  6517. #ifdef __ARM_NEON
  6518. float sum = 0;
  6519. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6520. const int32x4_t vzero = vdupq_n_s32(0);
  6521. //const int8x16_t m32s = vdupq_n_s8(32);
  6522. const uint8x16_t mone = vdupq_n_u8(3);
  6523. ggml_int8x16x4_t q6bytes;
  6524. ggml_uint8x16x4_t q6h;
  6525. for (int i = 0; i < nb; ++i) {
  6526. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6527. const uint8_t * restrict q6 = x[i].ql;
  6528. const uint8_t * restrict qh = x[i].qh;
  6529. const int8_t * restrict q8 = y[i].qs;
  6530. const int8_t * restrict scale = x[i].scales;
  6531. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  6532. const int8x16_t scales = vld1q_s8(scale);
  6533. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  6534. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  6535. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  6536. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  6537. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  6538. int32_t isum_mins = vaddvq_s32(prod);
  6539. int32_t isum = 0;
  6540. for (int j = 0; j < QK_K/128; ++j) {
  6541. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  6542. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  6543. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6544. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6545. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6546. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  6547. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6548. shifted = vshrq_n_u8(qhbits.val[1], 2);
  6549. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6550. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6551. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6552. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  6553. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  6554. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  6555. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  6556. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  6557. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  6558. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6559. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6560. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6561. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6562. scale += 4;
  6563. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6564. shifted = vshrq_n_u8(qhbits.val[0], 4);
  6565. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6566. shifted = vshrq_n_u8(qhbits.val[1], 4);
  6567. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6568. shifted = vshrq_n_u8(qhbits.val[0], 6);
  6569. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6570. shifted = vshrq_n_u8(qhbits.val[1], 6);
  6571. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6572. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  6573. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  6574. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  6575. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  6576. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  6577. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  6578. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  6579. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  6580. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6581. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6582. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6583. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6584. scale += 4;
  6585. }
  6586. //sum += isum * d_all * y[i].d;
  6587. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  6588. }
  6589. *s = sum;
  6590. #elif defined __AVX2__
  6591. const __m256i m4 = _mm256_set1_epi8(0xF);
  6592. const __m256i m2 = _mm256_set1_epi8(3);
  6593. const __m256i m32s = _mm256_set1_epi8(32);
  6594. __m256 acc = _mm256_setzero_ps();
  6595. for (int i = 0; i < nb; ++i) {
  6596. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6597. const uint8_t * restrict q4 = x[i].ql;
  6598. const uint8_t * restrict qh = x[i].qh;
  6599. const int8_t * restrict q8 = y[i].qs;
  6600. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6601. __m256i sumi = _mm256_setzero_si256();
  6602. int is = 0;
  6603. for (int j = 0; j < QK_K/128; ++j) {
  6604. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  6605. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  6606. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  6607. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  6608. is += 4;
  6609. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6610. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6611. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  6612. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  6613. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  6614. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  6615. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  6616. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6617. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  6618. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  6619. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  6620. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6621. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6622. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6623. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6624. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6625. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6626. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  6627. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  6628. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6629. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6630. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  6631. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  6632. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6633. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6634. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  6635. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  6636. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6637. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6638. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  6639. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  6640. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6641. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  6642. }
  6643. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6644. }
  6645. *s = hsum_float_8(acc);
  6646. #elif defined __AVX__
  6647. const __m128i m4 = _mm_set1_epi8(0xF);
  6648. const __m128i m3 = _mm_set1_epi8(3);
  6649. const __m128i m32s = _mm_set1_epi8(32);
  6650. const __m128i m2 = _mm_set1_epi8(2);
  6651. __m256 acc = _mm256_setzero_ps();
  6652. for (int i = 0; i < nb; ++i) {
  6653. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6654. const uint8_t * restrict q4 = x[i].ql;
  6655. const uint8_t * restrict qh = x[i].qh;
  6656. const int8_t * restrict q8 = y[i].qs;
  6657. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6658. __m128i sumi_0 = _mm_setzero_si128();
  6659. __m128i sumi_1 = _mm_setzero_si128();
  6660. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  6661. for (int j = 0; j < QK_K/128; ++j) {
  6662. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6663. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6664. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  6665. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  6666. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  6667. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  6668. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  6669. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  6670. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  6671. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  6672. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6673. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6674. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6675. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6676. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  6677. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  6678. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  6679. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  6680. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  6681. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  6682. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  6683. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  6684. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6685. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6686. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6687. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6688. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6689. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6690. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6691. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6692. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  6693. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  6694. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  6695. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  6696. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  6697. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  6698. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  6699. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  6700. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  6701. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  6702. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  6703. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  6704. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  6705. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  6706. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  6707. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  6708. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  6709. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  6710. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  6711. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  6712. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  6713. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  6714. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  6715. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  6716. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6717. shuffle = _mm_add_epi8(shuffle, m2);
  6718. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6719. shuffle = _mm_add_epi8(shuffle, m2);
  6720. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  6721. shuffle = _mm_add_epi8(shuffle, m2);
  6722. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  6723. shuffle = _mm_add_epi8(shuffle, m2);
  6724. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  6725. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  6726. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  6727. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  6728. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  6729. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  6730. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  6731. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  6732. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6733. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6734. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  6735. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  6736. }
  6737. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6738. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  6739. }
  6740. *s = hsum_float_8(acc);
  6741. #elif defined __riscv_v_intrinsic
  6742. float sumf = 0;
  6743. for (int i = 0; i < nb; ++i) {
  6744. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6745. const uint8_t * restrict q6 = x[i].ql;
  6746. const uint8_t * restrict qh = x[i].qh;
  6747. const int8_t * restrict q8 = y[i].qs;
  6748. const int8_t * restrict scale = x[i].scales;
  6749. size_t vl;
  6750. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6751. int sum_t = 0;
  6752. int is = 0;
  6753. for (int j = 0; j < QK_K/128; ++j) {
  6754. vl = 32;
  6755. // load qh
  6756. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  6757. // load Q6
  6758. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  6759. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  6760. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  6761. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  6762. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  6763. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  6764. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  6765. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  6766. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  6767. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  6768. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  6769. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  6770. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  6771. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  6772. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  6773. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  6774. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  6775. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  6776. // load Q8 and take product
  6777. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  6778. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6779. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  6780. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  6781. vl = 16;
  6782. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  6783. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  6784. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  6785. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  6786. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  6787. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  6788. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  6789. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  6790. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  6791. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  6792. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  6793. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  6794. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  6795. q6 += 64; qh += 32; q8 += 128; is=8;
  6796. }
  6797. sumf += d * sum_t;
  6798. }
  6799. *s = sumf;
  6800. #elif defined(__POWER9_VECTOR__)
  6801. const vector signed char lowMask = vec_splats((signed char)0xF);
  6802. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6803. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6804. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6805. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  6806. const vector signed char off = vec_splats((signed char)0x20);
  6807. vector float vsumf0 = vec_splats(0.0f);
  6808. vector float vsumf1 = vec_splats(0.0f);
  6809. vector float vsumf2 = vec_splats(0.0f);
  6810. vector float vsumf3 = vec_splats(0.0f);
  6811. for (int i = 0; i < nb; ++i) {
  6812. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6813. vector float vyd = vec_splats(y[i].d);
  6814. vector float vd = vec_mul(vxd, vyd);
  6815. vector signed int vsumi0 = vec_splats((int32_t)0);
  6816. vector signed int vsumi1 = vec_splats((int32_t)0);
  6817. vector signed int vsumi2 = vec_splats((int32_t)0);
  6818. vector signed int vsumi3 = vec_splats((int32_t)0);
  6819. vector signed int vsumi4 = vec_splats((int32_t)0);
  6820. vector signed int vsumi5 = vec_splats((int32_t)0);
  6821. vector signed int vsumi6 = vec_splats((int32_t)0);
  6822. vector signed int vsumi7 = vec_splats((int32_t)0);
  6823. const uint8_t * restrict q6 = x[i].ql;
  6824. const uint8_t * restrict qh = x[i].qh;
  6825. const int8_t * restrict qs = x[i].scales;
  6826. const int8_t * restrict q8 = y[i].qs;
  6827. for (int j = 0; j < QK_K/128; ++j) {
  6828. __builtin_prefetch(q6, 0, 0);
  6829. __builtin_prefetch(qh, 0, 0);
  6830. __builtin_prefetch(q8, 0, 0);
  6831. vector signed char qxs0 = (vector signed char)vec_xl( 0, q6);
  6832. vector signed char qxs1 = (vector signed char)vec_xl(16, q6);
  6833. vector signed char qxs2 = (vector signed char)vec_xl(32, q6);
  6834. vector signed char qxs3 = (vector signed char)vec_xl(48, q6);
  6835. q6 += 64;
  6836. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6837. vector signed char qxs01 = vec_sr(qxs0, v4);
  6838. vector signed char qxs10 = vec_and(qxs1, lowMask);
  6839. vector signed char qxs11 = vec_sr(qxs1, v4);
  6840. vector signed char qxs20 = vec_and(qxs2, lowMask);
  6841. vector signed char qxs21 = vec_sr(qxs2, v4);
  6842. vector signed char qxs30 = vec_and(qxs3, lowMask);
  6843. vector signed char qxs31 = vec_sr(qxs3, v4);
  6844. vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh);
  6845. vector signed char qxhs1 = (vector signed char)vec_xl(16, qh);
  6846. qh += 32;
  6847. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  6848. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  6849. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4);
  6850. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4);
  6851. vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  6852. vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  6853. vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4);
  6854. vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4);
  6855. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  6856. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  6857. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  6858. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  6859. vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off);
  6860. vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off);
  6861. vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off);
  6862. vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off);
  6863. vector signed char q8y00 = vec_xl( 0, q8);
  6864. vector signed char q8y10 = vec_xl( 16, q8);
  6865. vector signed char q8y20 = vec_xl( 32, q8);
  6866. vector signed char q8y30 = vec_xl( 48, q8);
  6867. vector signed char q8y01 = vec_xl( 64, q8);
  6868. vector signed char q8y11 = vec_xl( 80, q8);
  6869. vector signed char q8y21 = vec_xl( 96, q8);
  6870. vector signed char q8y31 = vec_xl(112, q8);
  6871. q8 += 128;
  6872. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  6873. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  6874. vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20));
  6875. vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30));
  6876. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  6877. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  6878. vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21));
  6879. vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31));
  6880. vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8));
  6881. qs += 8;
  6882. vector signed short vs0 = vec_splat(vscales, 0);
  6883. vector signed short vs1 = vec_splat(vscales, 1);
  6884. vector signed short vs2 = vec_splat(vscales, 2);
  6885. vector signed short vs3 = vec_splat(vscales, 3);
  6886. vector signed short vs4 = vec_splat(vscales, 4);
  6887. vector signed short vs5 = vec_splat(vscales, 5);
  6888. vector signed short vs6 = vec_splat(vscales, 6);
  6889. vector signed short vs7 = vec_splat(vscales, 7);
  6890. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  6891. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  6892. vsumi2 = vec_add(vec_mule(qv01, vs4), vsumi2);
  6893. vsumi3 = vec_add(vec_mulo(qv01, vs4), vsumi3);
  6894. vsumi4 = vec_add(vec_mule(qv10, vs1), vsumi4);
  6895. vsumi5 = vec_add(vec_mulo(qv10, vs1), vsumi5);
  6896. vsumi6 = vec_add(vec_mule(qv11, vs5), vsumi6);
  6897. vsumi7 = vec_add(vec_mulo(qv11, vs5), vsumi7);
  6898. vsumi0 = vec_add(vec_mule(qv20, vs2), vsumi0);
  6899. vsumi1 = vec_add(vec_mulo(qv20, vs2), vsumi1);
  6900. vsumi2 = vec_add(vec_mule(qv21, vs6), vsumi2);
  6901. vsumi3 = vec_add(vec_mulo(qv21, vs6), vsumi3);
  6902. vsumi4 = vec_add(vec_mule(qv30, vs3), vsumi4);
  6903. vsumi5 = vec_add(vec_mulo(qv30, vs3), vsumi5);
  6904. vsumi6 = vec_add(vec_mule(qv31, vs7), vsumi6);
  6905. vsumi7 = vec_add(vec_mulo(qv31, vs7), vsumi7);
  6906. }
  6907. vsumi0 = vec_add(vsumi0, vsumi4);
  6908. vsumi1 = vec_add(vsumi1, vsumi5);
  6909. vsumi2 = vec_add(vsumi2, vsumi6);
  6910. vsumi3 = vec_add(vsumi3, vsumi7);
  6911. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6912. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6913. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6914. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6915. }
  6916. vsumf0 = vec_add(vsumf0, vsumf2);
  6917. vsumf1 = vec_add(vsumf1, vsumf3);
  6918. vsumf0 = vec_add(vsumf0, vsumf1);
  6919. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6920. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6921. *s = vec_extract(vsumf0, 0);
  6922. #elif defined __loongarch_asx
  6923. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  6924. const __m256i m2 = __lasx_xvreplgr2vr_b(3);
  6925. const __m256i m32s = __lasx_xvreplgr2vr_b(32);
  6926. __m256 acc = (__m256)__lasx_xvldi(0);
  6927. for (int i = 0; i < nb; ++i) {
  6928. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6929. const uint8_t * restrict q4 = x[i].ql;
  6930. const uint8_t * restrict qh = x[i].qh;
  6931. const int8_t * restrict q8 = y[i].qs;
  6932. const __m128i scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  6933. __m256i sumi = __lasx_xvldi(0);
  6934. int is = 0;
  6935. for (int j = 0; j < QK_K/128; ++j) {
  6936. const __m128i scale_0 = lsx_shuffle_b(scales, get_scale_shuffle(is + 0));
  6937. const __m128i scale_1 = lsx_shuffle_b(scales, get_scale_shuffle(is + 1));
  6938. const __m128i scale_2 = lsx_shuffle_b(scales, get_scale_shuffle(is + 2));
  6939. const __m128i scale_3 = lsx_shuffle_b(scales, get_scale_shuffle(is + 3));
  6940. is += 4;
  6941. const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  6942. const __m256i q4bits2 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  6943. const __m256i q4bitsH = __lasx_xvld((const __m256i*)qh, 0); qh += 32;
  6944. const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(q4bitsH, m2), 4);
  6945. const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 2), m2), 4);
  6946. const __m256i q4h_2 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 4), m2), 4);
  6947. const __m256i q4h_3 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 6), m2), 4);
  6948. const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0);
  6949. const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(q4bits2, m4), q4h_1);
  6950. const __m256i q4_2 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_2);
  6951. const __m256i q4_3 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits2, 4), m4), q4h_3);
  6952. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6953. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6954. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6955. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6956. __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0);
  6957. __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1);
  6958. __m256i q8s_2 = lasx_maddubs_h(m32s, q8_2);
  6959. __m256i q8s_3 = lasx_maddubs_h(m32s, q8_3);
  6960. __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0);
  6961. __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1);
  6962. __m256i p16_2 = lasx_maddubs_h(q4_2, q8_2);
  6963. __m256i p16_3 = lasx_maddubs_h(q4_3, q8_3);
  6964. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  6965. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  6966. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  6967. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  6968. p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0);
  6969. p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1);
  6970. p16_2 = lasx_madd_h(lasx_ext8_16(scale_2), p16_2);
  6971. p16_3 = lasx_madd_h(lasx_ext8_16(scale_3), p16_3);
  6972. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  6973. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_2, p16_3));
  6974. }
  6975. acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  6976. }
  6977. *s = hsum_float_8(acc);
  6978. #else
  6979. int8_t aux8[QK_K];
  6980. int16_t aux16[8];
  6981. float sums [8];
  6982. int32_t aux32[8];
  6983. memset(sums, 0, 8*sizeof(float));
  6984. float sumf = 0;
  6985. for (int i = 0; i < nb; ++i) {
  6986. const uint8_t * restrict q4 = x[i].ql;
  6987. const uint8_t * restrict qh = x[i].qh;
  6988. const int8_t * restrict q8 = y[i].qs;
  6989. memset(aux32, 0, 8*sizeof(int32_t));
  6990. int8_t * restrict a = aux8;
  6991. for (int j = 0; j < QK_K; j += 128) {
  6992. for (int l = 0; l < 32; ++l) {
  6993. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  6994. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  6995. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  6996. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  6997. }
  6998. a += 128;
  6999. q4 += 64;
  7000. qh += 32;
  7001. }
  7002. a = aux8;
  7003. int is = 0;
  7004. for (int j = 0; j < QK_K/16; ++j) {
  7005. int scale = x[i].scales[is++];
  7006. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7007. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7008. q8 += 8; a += 8;
  7009. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7010. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7011. q8 += 8; a += 8;
  7012. }
  7013. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7014. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7015. }
  7016. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7017. *s = sumf;
  7018. #endif
  7019. }
  7020. #if defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx)
  7021. static const int8_t keven_signs_q2xs[1024] = {
  7022. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  7023. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  7024. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  7025. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  7026. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  7027. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  7028. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  7029. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  7030. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  7031. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  7032. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  7033. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  7034. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  7035. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  7036. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  7037. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  7038. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  7039. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  7040. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  7041. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  7042. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  7043. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  7044. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  7045. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  7046. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  7047. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  7048. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  7049. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  7050. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  7051. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  7052. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  7053. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  7054. };
  7055. #endif
  7056. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7057. assert(n % QK_K == 0);
  7058. assert(nrc == 1);
  7059. UNUSED(nrc);
  7060. UNUSED(bx);
  7061. UNUSED(by);
  7062. UNUSED(bs);
  7063. const block_iq2_xxs * restrict x = vx;
  7064. const block_q8_K * restrict y = vy;
  7065. const int nb = n / QK_K;
  7066. #if defined(__ARM_NEON)
  7067. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7068. uint32_t aux32[4];
  7069. const uint8_t * aux8 = (const uint8_t *)aux32;
  7070. ggml_int8x16x4_t q2u;
  7071. ggml_int8x16x4_t q2s;
  7072. ggml_int8x16x4_t q8b;
  7073. float sumf = 0;
  7074. for (int i = 0; i < nb; ++i) {
  7075. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7076. const uint16_t * restrict q2 = x[i].qs;
  7077. const int8_t * restrict q8 = y[i].qs;
  7078. float sumf1 = 0, sumf2 = 0;
  7079. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7080. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7081. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7082. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  7083. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  7084. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  7085. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  7086. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7087. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7088. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  7089. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  7090. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7091. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7092. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7093. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7094. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  7095. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  7096. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  7097. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  7098. }
  7099. sumf += d*(sumf1 + sumf2);
  7100. }
  7101. *s = 0.25f * sumf;
  7102. #elif defined(__AVX2__)
  7103. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7104. uint32_t aux32[4];
  7105. const uint8_t * aux8 = (const uint8_t *)aux32;
  7106. __m256 accumf = _mm256_setzero_ps();
  7107. for (int i = 0; i < nb; ++i) {
  7108. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7109. const uint16_t * restrict q2 = x[i].qs;
  7110. const int8_t * restrict q8 = y[i].qs;
  7111. __m256i sumi1 = _mm256_setzero_si256();
  7112. __m256i sumi2 = _mm256_setzero_si256();
  7113. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7114. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7115. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7116. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7117. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7118. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7119. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7120. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7121. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7122. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7123. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7124. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7125. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7126. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7127. const uint16_t ls1 = aux32[1] >> 28;
  7128. const uint16_t ls2 = aux32[3] >> 28;
  7129. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7130. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7131. sumi1 = _mm256_add_epi32(sumi1, p1);
  7132. sumi2 = _mm256_add_epi32(sumi2, p2);
  7133. }
  7134. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7135. }
  7136. *s = 0.125f * hsum_float_8(accumf);
  7137. #elif defined(__POWER9_VECTOR__)
  7138. vector float vsumf0 = vec_splats(0.0f);
  7139. vector float vsumf1 = vec_splats(0.0f);
  7140. vector float vsumf2 = vec_splats(0.0f);
  7141. vector float vsumf3 = vec_splats(0.0f);
  7142. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7143. for (int i = 0; i < nb; ++i) {
  7144. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7145. vector float vyd = vec_splats(y[i].d);
  7146. vector float vd = vec_mul(vxd, vyd);
  7147. vector signed int vsumi0 = vec_splats((int32_t)0);
  7148. vector signed int vsumi1 = vec_splats((int32_t)0);
  7149. vector signed int vsumi2 = vec_splats((int32_t)0);
  7150. vector signed int vsumi3 = vec_splats((int32_t)0);
  7151. vector signed int vsumi4 = vec_splats((int32_t)0);
  7152. vector signed int vsumi5 = vec_splats((int32_t)0);
  7153. vector signed int vsumi6 = vec_splats((int32_t)0);
  7154. vector signed int vsumi7 = vec_splats((int32_t)0);
  7155. const uint16_t * restrict q2 = x[i].qs;
  7156. const int8_t * restrict q8 = y[i].qs;
  7157. for (int j = 0; j < QK_K/32; j += 2) {
  7158. __builtin_prefetch(q2, 0, 1);
  7159. __builtin_prefetch(q8, 0, 1);
  7160. uint32_t aux32[4];
  7161. const uint8_t * aux8 = (const uint8_t *)aux32;
  7162. memcpy(aux32, q2, 4*sizeof(uint32_t));
  7163. q2 += 8;
  7164. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])};
  7165. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])};
  7166. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])};
  7167. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])};
  7168. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))};
  7169. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))};
  7170. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))};
  7171. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))};
  7172. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  7173. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  7174. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  7175. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  7176. vector signed char q8y0 = vec_xl( 0, q8);
  7177. vector signed char q8y1 = vec_xl(16, q8);
  7178. vector signed char q8y2 = vec_xl(32, q8);
  7179. vector signed char q8y3 = vec_xl(48, q8);
  7180. q8 += 64;
  7181. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7182. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7183. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7184. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7185. const uint16_t ls0 = aux32[1] >> 28;
  7186. const uint16_t ls1 = aux32[3] >> 28;
  7187. vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1));
  7188. vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1));
  7189. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  7190. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  7191. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  7192. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  7193. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  7194. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  7195. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  7196. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  7197. }
  7198. vsumi0 = vec_add(vsumi0, vsumi4);
  7199. vsumi1 = vec_add(vsumi1, vsumi5);
  7200. vsumi2 = vec_add(vsumi2, vsumi6);
  7201. vsumi3 = vec_add(vsumi3, vsumi7);
  7202. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7203. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7204. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7205. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7206. }
  7207. vsumf0 = vec_add(vsumf0, vsumf2);
  7208. vsumf1 = vec_add(vsumf1, vsumf3);
  7209. vsumf0 = vec_add(vsumf0, vsumf1);
  7210. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7211. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7212. *s = 0.125f * vec_extract(vsumf0, 0);
  7213. #elif defined(__loongarch_asx)
  7214. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7215. uint32_t aux32[4];
  7216. const uint8_t * aux8 = (const uint8_t *)aux32;
  7217. __m256 accumf = (__m256)__lasx_xvldi(0);
  7218. for (int i = 0; i < nb; ++i) {
  7219. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7220. const uint16_t * restrict q2 = x[i].qs;
  7221. const int8_t * restrict q8 = y[i].qs;
  7222. __m256i sumi1 = __lasx_xvldi(0);
  7223. __m256i sumi2 = __lasx_xvldi(0);
  7224. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7225. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7226. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7227. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7228. const __m256i q2_1 = lasx_set_d(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7229. const __m256i q2_2 = lasx_set_d(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7230. const __m256i s2_1 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7231. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7232. const __m256i s2_2 = lasx_set_d(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7233. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7234. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  7235. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  7236. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7237. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7238. const uint16_t ls1 = aux32[1] >> 28;
  7239. const uint16_t ls2 = aux32[3] >> 28;
  7240. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7241. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7242. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7243. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7244. }
  7245. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7246. }
  7247. *s = 0.125f * hsum_float_8(accumf);
  7248. #else
  7249. uint32_t aux32[2];
  7250. const uint8_t * aux8 = (const uint8_t *)aux32;
  7251. float sumf = 0.f;
  7252. for (int i = 0; i < nb; ++i) {
  7253. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7254. const uint16_t * restrict q2 = x[i].qs;
  7255. const int8_t * restrict q8 = y[i].qs;
  7256. int32_t bsum = 0;
  7257. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7258. memcpy(aux32, q2, 2*sizeof(uint32_t));
  7259. q2 += 4;
  7260. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  7261. int32_t sumi = 0;
  7262. for (int l = 0; l < 4; ++l) {
  7263. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  7264. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  7265. for (int j = 0; j < 8; ++j) {
  7266. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7267. }
  7268. q8 += 8;
  7269. }
  7270. bsum += sumi * ls;
  7271. }
  7272. sumf += d * bsum;
  7273. }
  7274. *s = 0.125f * sumf;
  7275. #endif
  7276. }
  7277. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7278. assert(n % QK_K == 0);
  7279. assert(nrc == 1);
  7280. UNUSED(nrc);
  7281. UNUSED(bx);
  7282. UNUSED(by);
  7283. UNUSED(bs);
  7284. const block_iq2_xs * restrict x = vx;
  7285. const block_q8_K * restrict y = vy;
  7286. const int nb = n / QK_K;
  7287. #if defined(__ARM_NEON)
  7288. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7289. ggml_int8x16x4_t q2u;
  7290. ggml_int8x16x4_t q2s;
  7291. ggml_int8x16x4_t q8b;
  7292. int32x4x4_t scales32;
  7293. float sumf = 0;
  7294. for (int i = 0; i < nb; ++i) {
  7295. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7296. const uint16_t * restrict q2 = x[i].qs;
  7297. const int8_t * restrict q8 = y[i].qs;
  7298. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  7299. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  7300. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  7301. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  7302. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  7303. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  7304. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  7305. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  7306. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  7307. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  7308. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  7309. int32x4_t sumi = vdupq_n_s32(0);
  7310. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  7311. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7312. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  7313. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  7314. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  7315. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  7316. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  7317. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  7318. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  7319. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  7320. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7321. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7322. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7323. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7324. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  7325. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  7326. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  7327. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  7328. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  7329. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  7330. q2 += 8;
  7331. }
  7332. sumf += d*vaddvq_s32(sumi);
  7333. }
  7334. *s = 0.125f * sumf;
  7335. #elif defined(__AVX2__)
  7336. const __m256i mone = _mm256_set1_epi8(1);
  7337. static const char block_sign_shuffle_mask_1[32] = {
  7338. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7339. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7340. };
  7341. static const char block_sign_shuffle_mask_2[32] = {
  7342. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7343. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7344. };
  7345. static const uint8_t bit_selector_mask_bytes[32] = {
  7346. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7347. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7348. };
  7349. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  7350. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  7351. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  7352. static const uint8_t k_bit_helper[32] = {
  7353. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7354. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7355. };
  7356. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  7357. const __m256i m511 = _mm256_set1_epi16(511);
  7358. const __m128i m4 = _mm_set1_epi8(0xf);
  7359. const __m128i m1 = _mm_set1_epi8(1);
  7360. uint64_t aux64;
  7361. // somewhat hacky, but gives a significant boost in performance
  7362. __m256i aux_gindex;
  7363. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7364. __m256 accumf = _mm256_setzero_ps();
  7365. for (int i = 0; i < nb; ++i) {
  7366. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7367. const uint16_t * restrict q2 = x[i].qs;
  7368. const int8_t * restrict q8 = y[i].qs;
  7369. memcpy(&aux64, x[i].scales, 8);
  7370. __m128i stmp = _mm_set1_epi64x(aux64);
  7371. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  7372. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  7373. __m256i sumi1 = _mm256_setzero_si256();
  7374. __m256i sumi2 = _mm256_setzero_si256();
  7375. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7376. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  7377. aux_gindex = _mm256_and_si256(q2_data, m511);
  7378. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  7379. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  7380. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  7381. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  7382. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  7383. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7384. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7385. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7386. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7387. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7388. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7389. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7390. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7391. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7392. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7393. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7394. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7395. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  7396. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  7397. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  7398. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  7399. __m256i signs;
  7400. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  7401. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7402. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  7403. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  7404. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7405. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  7406. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  7407. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7408. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  7409. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  7410. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7411. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  7412. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7413. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7414. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  7415. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  7416. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  7417. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  7418. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  7419. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  7420. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  7421. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  7422. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  7423. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  7424. }
  7425. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7426. }
  7427. *s = 0.125f * hsum_float_8(accumf);
  7428. #elif defined(__loongarch_asx)
  7429. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  7430. static const char block_sign_shuffle_mask_1[32] = {
  7431. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7432. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7433. };
  7434. static const char block_sign_shuffle_mask_2[32] = {
  7435. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7436. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7437. };
  7438. static const uint8_t bit_selector_mask_bytes[32] = {
  7439. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7440. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7441. };
  7442. const __m256i bit_selector_mask = __lasx_xvld((const __m256i*)bit_selector_mask_bytes, 0);
  7443. const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0);
  7444. const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0);
  7445. static const uint8_t k_bit_helper[32] = {
  7446. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7447. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7448. };
  7449. const __m256i bit_helper = __lasx_xvld((const __m256i*)k_bit_helper, 0);
  7450. const __m256i m511 = __lasx_xvreplgr2vr_h(511);
  7451. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  7452. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  7453. uint64_t aux64;
  7454. // somewhat hacky, but gives a significant boost in performance
  7455. __m256i aux_gindex;
  7456. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7457. __m256 accumf = (__m256)__lasx_xvldi(0);
  7458. for (int i = 0; i < nb; ++i) {
  7459. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7460. const uint16_t * restrict q2 = x[i].qs;
  7461. const int8_t * restrict q8 = y[i].qs;
  7462. memcpy(&aux64, x[i].scales, 8);
  7463. __m128i stmp = __lsx_vreplgr2vr_d(aux64);
  7464. stmp = __lsx_vilvl_b( __lsx_vand_v(__lsx_vsrli_h(stmp, 4), m4), __lsx_vand_v(stmp, m4));
  7465. const __m128i scales = __lsx_vadd_b(__lsx_vslli_h(stmp, 1), m1);
  7466. __m256i sumi1 = __lasx_xvldi(0);
  7467. __m256i sumi2 = __lasx_xvldi(0);
  7468. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7469. const __m256i q2_data = __lasx_xvld((const __m256i*)q2, 0); q2 += 16;
  7470. aux_gindex = __lasx_xvand_v(q2_data, m511);
  7471. const __m256i partial_sign_bits = __lasx_xvsrli_h(q2_data, 9);
  7472. const __m256i partial_sign_bits_upper = __lasx_xvsrli_h(q2_data, 13);
  7473. const __m256i partial_sign_bits_for_counting = __lasx_xvxor_v(partial_sign_bits, partial_sign_bits_upper);
  7474. const __m256i odd_bits = lasx_shuffle_b(bit_helper, partial_sign_bits_for_counting);
  7475. const __m256i full_sign_bits = __lasx_xvor_v(partial_sign_bits, odd_bits);
  7476. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7477. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7478. const __m256i q8_3 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7479. const __m256i q8_4 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7480. const __m256i q2_1 = lasx_set_d(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7481. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7482. const __m256i q2_2 = lasx_set_d(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7483. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7484. const __m256i q2_3 = lasx_set_d(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7485. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7486. const __m256i q2_4 = lasx_set_d(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7487. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7488. const __m128i full_signs_l = lasx_extracti128(full_sign_bits, 0);
  7489. const __m128i full_signs_h = lasx_extracti128(full_sign_bits, 1);
  7490. const __m256i full_signs_1 = lasx_insertf128(full_signs_l, full_signs_l);
  7491. const __m256i full_signs_2 = lasx_insertf128(full_signs_h, full_signs_h);
  7492. __m256i signs;
  7493. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_1);
  7494. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7495. const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1);
  7496. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_2);
  7497. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7498. const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2);
  7499. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_1);
  7500. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7501. const __m256i q8s_3 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_3);
  7502. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_2);
  7503. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7504. const __m256i q8s_4 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_4);
  7505. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7506. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7507. const __m256i dot3 = lasx_maddubs_h(q2_3, q8s_3);
  7508. const __m256i dot4 = lasx_maddubs_h(q2_4, q8s_4);
  7509. const __m256i sc1 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+0)));
  7510. const __m256i sc2 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+1)));
  7511. const __m256i sc3 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+2)));
  7512. const __m256i sc4 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+3)));
  7513. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot1, sc1));
  7514. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot2, sc2));
  7515. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot3, sc3));
  7516. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot4, sc4));
  7517. }
  7518. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7519. }
  7520. *s = 0.125f * hsum_float_8(accumf);
  7521. #elif defined(__POWER9_VECTOR__)
  7522. vector float vsumf0 = vec_splats(0.0f);
  7523. vector float vsumf1 = vec_splats(0.0f);
  7524. vector float vsumf2 = vec_splats(0.0f);
  7525. vector float vsumf3 = vec_splats(0.0f);
  7526. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7527. for (int i = 0; i < nb; ++i) {
  7528. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7529. vector float vyd = vec_splats(y[i].d);
  7530. vector float vd = vec_mul(vxd, vyd);
  7531. vector signed int vsumi0 = vec_splats((int32_t)0);
  7532. vector signed int vsumi1 = vec_splats((int32_t)0);
  7533. vector signed int vsumi2 = vec_splats((int32_t)0);
  7534. vector signed int vsumi3 = vec_splats((int32_t)0);
  7535. vector signed int vsumi4 = vec_splats((int32_t)0);
  7536. vector signed int vsumi5 = vec_splats((int32_t)0);
  7537. vector signed int vsumi6 = vec_splats((int32_t)0);
  7538. vector signed int vsumi7 = vec_splats((int32_t)0);
  7539. const uint16_t * restrict q2 = x[i].qs;
  7540. const uint8_t * restrict sc = x[i].scales;
  7541. const int8_t * restrict q8 = y[i].qs;
  7542. for (int j = 0; j < QK_K/64; ++j) {
  7543. __builtin_prefetch(q2, 0, 1);
  7544. __builtin_prefetch(q8, 0, 1);
  7545. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))};
  7546. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))};
  7547. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))};
  7548. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))};
  7549. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))};
  7550. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))};
  7551. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))};
  7552. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))};
  7553. q2 += 8;
  7554. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  7555. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  7556. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  7557. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  7558. vector signed char q8y0 = vec_xl( 0, q8);
  7559. vector signed char q8y1 = vec_xl(16, q8);
  7560. vector signed char q8y2 = vec_xl(32, q8);
  7561. vector signed char q8y3 = vec_xl(48, q8);
  7562. q8 += 64;
  7563. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7564. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7565. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7566. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7567. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  7568. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  7569. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  7570. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  7571. sc += 2;
  7572. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  7573. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  7574. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  7575. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  7576. vsumi0 = vec_add(vec_mule(qv0, vscales0), vsumi0);
  7577. vsumi1 = vec_add(vec_mule(qv1, vscales1), vsumi1);
  7578. vsumi2 = vec_add(vec_mule(qv2, vscales2), vsumi2);
  7579. vsumi3 = vec_add(vec_mule(qv3, vscales3), vsumi3);
  7580. vsumi4 = vec_add(vec_mulo(qv0, vscales0), vsumi4);
  7581. vsumi5 = vec_add(vec_mulo(qv1, vscales1), vsumi5);
  7582. vsumi6 = vec_add(vec_mulo(qv2, vscales2), vsumi6);
  7583. vsumi7 = vec_add(vec_mulo(qv3, vscales3), vsumi7);
  7584. }
  7585. vsumi0 = vec_add(vsumi0, vsumi4);
  7586. vsumi1 = vec_add(vsumi1, vsumi5);
  7587. vsumi2 = vec_add(vsumi2, vsumi6);
  7588. vsumi3 = vec_add(vsumi3, vsumi7);
  7589. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7590. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7591. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7592. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7593. }
  7594. vsumf0 = vec_add(vsumf0, vsumf2);
  7595. vsumf1 = vec_add(vsumf1, vsumf3);
  7596. vsumf0 = vec_add(vsumf0, vsumf1);
  7597. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7598. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7599. *s = 0.125f * vec_extract(vsumf0, 0);
  7600. #else
  7601. float sumf = 0.f;
  7602. for (int i = 0; i < nb; ++i) {
  7603. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7604. const uint16_t * restrict q2 = x[i].qs;
  7605. const uint8_t * restrict sc = x[i].scales;
  7606. const int8_t * restrict q8 = y[i].qs;
  7607. int32_t bsum = 0;
  7608. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7609. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  7610. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  7611. int32_t sumi = 0;
  7612. for (int l = 0; l < 2; ++l) {
  7613. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7614. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7615. for (int j = 0; j < 8; ++j) {
  7616. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7617. }
  7618. q8 += 8;
  7619. }
  7620. bsum += sumi * ls1;
  7621. sumi = 0;
  7622. for (int l = 2; l < 4; ++l) {
  7623. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7624. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7625. for (int j = 0; j < 8; ++j) {
  7626. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7627. }
  7628. q8 += 8;
  7629. }
  7630. bsum += sumi * ls2;
  7631. q2 += 4;
  7632. }
  7633. sumf += d * bsum;
  7634. }
  7635. *s = 0.125f * sumf;
  7636. #endif
  7637. }
  7638. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7639. assert(n % QK_K == 0);
  7640. assert(nrc == 1);
  7641. UNUSED(nrc);
  7642. UNUSED(bx);
  7643. UNUSED(by);
  7644. UNUSED(bs);
  7645. const block_iq2_s * restrict x = vx;
  7646. const block_q8_K * restrict y = vy;
  7647. const int nb = n / QK_K;
  7648. #if defined(__ARM_NEON)
  7649. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7650. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7651. };
  7652. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7653. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  7654. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7655. const uint8x16_t m1 = vdupq_n_u8(1);
  7656. const int32x4_t vzero = vdupq_n_s32(0);
  7657. uint8x16x2_t vs;
  7658. ggml_int8x16x4_t q2s;
  7659. ggml_int8x16x4_t q8b;
  7660. float sumf = 0;
  7661. for (int i = 0; i < nb; ++i) {
  7662. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7663. const uint8_t * restrict qs = x[i].qs;
  7664. const uint8_t * restrict qh = x[i].qh;
  7665. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7666. const int8_t * restrict q8 = y[i].qs;
  7667. int sumi1 = 0, sumi2 = 0;
  7668. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7669. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7670. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  7671. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  7672. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  7673. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  7674. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  7675. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  7676. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  7677. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  7678. qs += 8;
  7679. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  7680. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7681. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7682. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7683. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7684. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  7685. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  7686. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  7687. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7688. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7689. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7690. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7691. signs += 4;
  7692. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  7693. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  7694. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  7695. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  7696. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  7697. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  7698. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  7699. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  7700. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  7701. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  7702. }
  7703. sumf += d*(sumi1 + sumi2);
  7704. }
  7705. *s = 0.125f * sumf;
  7706. #elif defined(__AVX2__)
  7707. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7708. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7709. };
  7710. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7711. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7712. };
  7713. const __m128i m4 = _mm_set1_epi8(0xf);
  7714. const __m128i m1 = _mm_set1_epi8(1);
  7715. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7716. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7717. uint64_t aux64;
  7718. __m256 accumf = _mm256_setzero_ps();
  7719. for (int i = 0; i < nb; ++i) {
  7720. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7721. const uint8_t * restrict qs = x[i].qs;
  7722. const uint8_t * restrict qh = x[i].qh;
  7723. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7724. const int8_t * restrict q8 = y[i].qs;
  7725. memcpy(&aux64, x[i].scales, 8);
  7726. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  7727. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  7728. __m256i sumi1 = _mm256_setzero_si256();
  7729. __m256i sumi2 = _mm256_setzero_si256();
  7730. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7731. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7732. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7733. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  7734. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  7735. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  7736. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  7737. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  7738. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  7739. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  7740. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  7741. qs += 8;
  7742. __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  7743. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7744. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7745. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7746. aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  7747. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7748. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7749. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7750. signs += 4;
  7751. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  7752. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  7753. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  7754. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  7755. sumi1 = _mm256_add_epi32(sumi1, p1);
  7756. sumi2 = _mm256_add_epi32(sumi2, p2);
  7757. }
  7758. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7759. }
  7760. *s = 0.125f * hsum_float_8(accumf);
  7761. #elif defined(__POWER9_VECTOR__)
  7762. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7763. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7764. };
  7765. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7766. vector float vsumf0 = vec_splats(0.0f);
  7767. vector float vsumf1 = vec_splats(0.0f);
  7768. vector float vsumf2 = vec_splats(0.0f);
  7769. vector float vsumf3 = vec_splats(0.0f);
  7770. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  7771. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  7772. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  7773. for (int i = 0; i < nb; ++i) {
  7774. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7775. vector float vyd = vec_splats(y[i].d);
  7776. vector float vd = vec_mul(vxd, vyd);
  7777. vector signed int vsumi0 = vec_splats((int32_t)0);
  7778. vector signed int vsumi1 = vec_splats((int32_t)0);
  7779. vector signed int vsumi2 = vec_splats((int32_t)0);
  7780. vector signed int vsumi3 = vec_splats((int32_t)0);
  7781. vector signed int vsumi4 = vec_splats((int32_t)0);
  7782. vector signed int vsumi5 = vec_splats((int32_t)0);
  7783. vector signed int vsumi6 = vec_splats((int32_t)0);
  7784. vector signed int vsumi7 = vec_splats((int32_t)0);
  7785. const uint8_t * restrict q2 = x[i].qs;
  7786. const uint8_t * restrict qh = x[i].qh;
  7787. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7788. const uint8_t * restrict sc = x[i].scales;
  7789. const int8_t * restrict q8 = y[i].qs;
  7790. for (int j = 0; j < QK_K/32; j += 2) {
  7791. __builtin_prefetch(q2, 0, 1);
  7792. __builtin_prefetch(q8, 0, 1);
  7793. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))};
  7794. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))};
  7795. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))};
  7796. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))};
  7797. q2 += 8;
  7798. qh += 2;
  7799. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  7800. vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  7801. signs += 4;
  7802. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  7803. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  7804. vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0);
  7805. vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1);
  7806. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  7807. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  7808. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  7809. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  7810. vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0);
  7811. vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1);
  7812. vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2);
  7813. vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3);
  7814. vector signed char q8y0 = vec_xl( 0, q8);
  7815. vector signed char q8y1 = vec_xl(16, q8);
  7816. vector signed char q8y2 = vec_xl(32, q8);
  7817. vector signed char q8y3 = vec_xl(48, q8);
  7818. q8 += 64;
  7819. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7820. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7821. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7822. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7823. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  7824. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  7825. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  7826. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  7827. sc += 2;
  7828. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  7829. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  7830. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  7831. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  7832. vsumi0 = vec_add(vec_mule(qv0, vscales0), vsumi0);
  7833. vsumi1 = vec_add(vec_mule(qv1, vscales1), vsumi1);
  7834. vsumi2 = vec_add(vec_mule(qv2, vscales2), vsumi2);
  7835. vsumi3 = vec_add(vec_mule(qv3, vscales3), vsumi3);
  7836. vsumi4 = vec_add(vec_mulo(qv0, vscales0), vsumi4);
  7837. vsumi5 = vec_add(vec_mulo(qv1, vscales1), vsumi5);
  7838. vsumi6 = vec_add(vec_mulo(qv2, vscales2), vsumi6);
  7839. vsumi7 = vec_add(vec_mulo(qv3, vscales3), vsumi7);
  7840. }
  7841. vsumi0 = vec_add(vsumi0, vsumi4);
  7842. vsumi1 = vec_add(vsumi1, vsumi5);
  7843. vsumi2 = vec_add(vsumi2, vsumi6);
  7844. vsumi3 = vec_add(vsumi3, vsumi7);
  7845. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7846. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7847. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7848. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7849. }
  7850. vsumf0 = vec_add(vsumf0, vsumf2);
  7851. vsumf1 = vec_add(vsumf1, vsumf3);
  7852. vsumf0 = vec_add(vsumf0, vsumf1);
  7853. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7854. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7855. *s = 0.125f * vec_extract(vsumf0, 0);
  7856. #elif defined(__loongarch_asx)
  7857. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7858. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7859. };
  7860. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7861. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7862. };
  7863. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  7864. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  7865. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  7866. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  7867. uint64_t aux64;
  7868. __m256 accumf = (__m256)__lasx_xvldi(0);
  7869. for (int i = 0; i < nb; ++i) {
  7870. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7871. const uint8_t * restrict qs = x[i].qs;
  7872. const uint8_t * restrict qh = x[i].qh;
  7873. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7874. const int8_t * restrict q8 = y[i].qs;
  7875. __m128i tmp1;
  7876. memcpy(&aux64, x[i].scales, 8);
  7877. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64, 0);
  7878. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64 >> 4, 1);
  7879. const __m128i scales8 = __lsx_vadd_b(__lsx_vslli_h(__lsx_vand_v(tmp1, m4), 1), m1);
  7880. const __m256i scales16 = lasx_ext8_16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  7881. __m256i sumi1 = __lasx_xvldi(0);
  7882. __m256i sumi2 = __lasx_xvldi(0);
  7883. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7884. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7885. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7886. const __m256i q2_1 = lasx_set_d(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  7887. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  7888. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  7889. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  7890. const __m256i q2_2 = lasx_set_d(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  7891. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  7892. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  7893. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  7894. qs += 8;
  7895. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | ((uint32_t) signs[1] << 16));
  7896. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  7897. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  7898. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  7899. aux256 = __lasx_xvreplgr2vr_w(signs[2] | ((uint32_t) signs[3] << 16));
  7900. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  7901. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  7902. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  7903. signs += 4;
  7904. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  7905. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  7906. const __m256i p1 = lasx_madd_h(dot1, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+0)));
  7907. const __m256i p2 = lasx_madd_h(dot2, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+1)));
  7908. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7909. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7910. }
  7911. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7912. }
  7913. *s = 0.125f * hsum_float_8(accumf);
  7914. #else
  7915. float sumf = 0;
  7916. for (int i = 0; i < nb; i++) {
  7917. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7918. const int8_t * q8 = y[i].qs;
  7919. const uint8_t * qs = x[i].qs;
  7920. const uint8_t * qh = x[i].qh;
  7921. const uint8_t * signs = qs + QK_K/8;
  7922. int bsum = 0;
  7923. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7924. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  7925. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  7926. int sumi1 = 0, sumi2 = 0;
  7927. for (int l = 0; l < 2; ++l) {
  7928. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7929. for (int j = 0; j < 8; ++j) {
  7930. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7931. }
  7932. q8 += 8;
  7933. }
  7934. for (int l = 2; l < 4; ++l) {
  7935. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7936. for (int j = 0; j < 8; ++j) {
  7937. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7938. }
  7939. q8 += 8;
  7940. }
  7941. bsum += ls1 * sumi1 + ls2 * sumi2;
  7942. qs += 4;
  7943. signs += 4;
  7944. }
  7945. sumf += d * bsum;
  7946. }
  7947. *s = 0.125f * sumf;
  7948. #endif
  7949. }
  7950. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7951. assert(n % QK_K == 0);
  7952. assert(nrc == 1);
  7953. UNUSED(nrc);
  7954. UNUSED(bx);
  7955. UNUSED(by);
  7956. UNUSED(bs);
  7957. const block_iq3_xxs * restrict x = vx;
  7958. const block_q8_K * restrict y = vy;
  7959. const int nb = n / QK_K;
  7960. #if defined(__ARM_NEON)
  7961. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7962. uint32_t aux32[2];
  7963. ggml_int8x16x4_t q3s;
  7964. ggml_int8x16x4_t q8b;
  7965. float sumf = 0;
  7966. for (int i = 0; i < nb; ++i) {
  7967. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7968. const uint8_t * restrict q3 = x[i].qs;
  7969. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7970. const int8_t * restrict q8 = y[i].qs;
  7971. float sumf1 = 0, sumf2 = 0;
  7972. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7973. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7974. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  7975. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  7976. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  7977. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  7978. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  7979. q3 += 16;
  7980. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  7981. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  7982. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7983. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7984. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  7985. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  7986. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  7987. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  7988. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7989. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7990. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  7991. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  7992. }
  7993. sumf += d*(sumf1 + sumf2);
  7994. }
  7995. *s = 0.5f * sumf;
  7996. #elif defined(__AVX2__)
  7997. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7998. uint32_t aux32[2];
  7999. __m256 accumf = _mm256_setzero_ps();
  8000. for (int i = 0; i < nb; ++i) {
  8001. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8002. const uint8_t * restrict q3 = x[i].qs;
  8003. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8004. const int8_t * restrict q8 = y[i].qs;
  8005. __m256i sumi1 = _mm256_setzero_si256();
  8006. __m256i sumi2 = _mm256_setzero_si256();
  8007. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8008. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8009. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8010. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8011. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8012. q3 += 8;
  8013. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8014. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8015. q3 += 8;
  8016. memcpy(aux32, gas, 8); gas += 8;
  8017. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  8018. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8019. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8020. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8021. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  8022. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  8023. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8024. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8025. const uint16_t ls1 = aux32[0] >> 28;
  8026. const uint16_t ls2 = aux32[1] >> 28;
  8027. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8028. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8029. sumi1 = _mm256_add_epi32(sumi1, p1);
  8030. sumi2 = _mm256_add_epi32(sumi2, p2);
  8031. }
  8032. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8033. }
  8034. *s = 0.25f * hsum_float_8(accumf);
  8035. #elif defined(__POWER9_VECTOR__)
  8036. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8037. vector float vsumf0 = vec_splats(0.0f);
  8038. vector float vsumf1 = vec_splats(0.0f);
  8039. vector float vsumf2 = vec_splats(0.0f);
  8040. vector float vsumf3 = vec_splats(0.0f);
  8041. for (int i = 0; i < nb; ++i) {
  8042. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8043. vector float vyd = vec_splats(y[i].d);
  8044. vector float vd = vec_mul(vxd, vyd);
  8045. vector signed int vsumi0 = vec_splats((int32_t)0);
  8046. vector signed int vsumi1 = vec_splats((int32_t)0);
  8047. vector signed int vsumi2 = vec_splats((int32_t)0);
  8048. vector signed int vsumi3 = vec_splats((int32_t)0);
  8049. vector signed int vsumi4 = vec_splats((int32_t)0);
  8050. vector signed int vsumi5 = vec_splats((int32_t)0);
  8051. vector signed int vsumi6 = vec_splats((int32_t)0);
  8052. vector signed int vsumi7 = vec_splats((int32_t)0);
  8053. const uint8_t * restrict q3 = x[i].qs;
  8054. const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4);
  8055. const int8_t * restrict q8 = y[i].qs;
  8056. #pragma GCC unroll 1
  8057. for (int j = 0; j < QK_K/32; j += 2) {
  8058. __builtin_prefetch(q3, 0, 1);
  8059. __builtin_prefetch(q8, 0, 1);
  8060. vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
  8061. vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
  8062. vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
  8063. vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
  8064. q3 += 16;
  8065. vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])};
  8066. vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])};
  8067. vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])};
  8068. vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])};
  8069. vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0);
  8070. vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1);
  8071. vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2);
  8072. vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3);
  8073. vector signed char q8y0 = vec_xl( 0, q8);
  8074. vector signed char q8y1 = vec_xl(16, q8);
  8075. vector signed char q8y2 = vec_xl(32, q8);
  8076. vector signed char q8y3 = vec_xl(48, q8);
  8077. q8 += 64;
  8078. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  8079. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  8080. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  8081. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  8082. const uint16_t ls0 = (uint16_t)(signs[0] >> 28);
  8083. const uint16_t ls1 = (uint16_t)(signs[1] >> 28);
  8084. signs += 2;
  8085. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8086. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8087. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  8088. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  8089. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  8090. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  8091. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  8092. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  8093. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  8094. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  8095. }
  8096. vsumi0 = vec_add(vsumi0, vsumi4);
  8097. vsumi1 = vec_add(vsumi1, vsumi5);
  8098. vsumi2 = vec_add(vsumi2, vsumi6);
  8099. vsumi3 = vec_add(vsumi3, vsumi7);
  8100. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8101. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8102. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8103. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8104. }
  8105. vsumf0 = vec_add(vsumf0, vsumf2);
  8106. vsumf1 = vec_add(vsumf1, vsumf3);
  8107. vsumf0 = vec_add(vsumf0, vsumf1);
  8108. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8109. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8110. *s = 0.25f * vec_extract(vsumf0, 0);
  8111. #elif defined(__loongarch_asx)
  8112. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8113. uint32_t aux32[2];
  8114. __m256 accumf = (__m256)__lasx_xvldi(0);
  8115. for (int i = 0; i < nb; ++i) {
  8116. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8117. const uint8_t * restrict q3 = x[i].qs;
  8118. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8119. const int8_t * restrict q8 = y[i].qs;
  8120. __m256i sumi1 = __lasx_xvldi(0);
  8121. __m256i sumi2 = __lasx_xvldi(0);
  8122. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8123. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8124. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8125. const __m256i q2_1 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8126. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8127. q3 += 8;
  8128. const __m256i q2_2 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8129. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8130. q3 += 8;
  8131. memcpy(aux32, gas, 8); gas += 8;
  8132. const __m256i s2_1 = lasx_set_d(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  8133. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8134. const __m256i s2_2 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8135. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8136. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  8137. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  8138. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  8139. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  8140. const uint16_t ls1 = aux32[0] >> 28;
  8141. const uint16_t ls2 = aux32[1] >> 28;
  8142. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  8143. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  8144. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8145. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8146. }
  8147. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8148. }
  8149. *s = 0.25f * hsum_float_8(accumf);
  8150. #else
  8151. uint32_t aux32;
  8152. float sumf = 0.f;
  8153. for (int i = 0; i < nb; ++i) {
  8154. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8155. const uint8_t * restrict q3 = x[i].qs;
  8156. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8157. const int8_t * restrict q8 = y[i].qs;
  8158. int32_t bsum = 0;
  8159. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8160. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  8161. const uint32_t ls = 2*(aux32 >> 28) + 1;
  8162. int32_t sumi = 0;
  8163. for (int l = 0; l < 4; ++l) {
  8164. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  8165. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  8166. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  8167. for (int j = 0; j < 4; ++j) {
  8168. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  8169. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  8170. }
  8171. q8 += 8;
  8172. }
  8173. q3 += 8;
  8174. bsum += sumi * ls;
  8175. }
  8176. sumf += d * bsum;
  8177. }
  8178. *s = 0.25f * sumf;
  8179. #endif
  8180. }
  8181. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8182. assert(n % QK_K == 0);
  8183. assert(nrc == 1);
  8184. UNUSED(nrc);
  8185. UNUSED(bx);
  8186. UNUSED(by);
  8187. UNUSED(bs);
  8188. const block_iq3_s * restrict x = vx;
  8189. const block_q8_K * restrict y = vy;
  8190. const int nb = n / QK_K;
  8191. #if defined(__ARM_NEON)
  8192. typedef union {
  8193. uint16x8_t vec_index;
  8194. uint16_t index[8];
  8195. } vec_index_t;
  8196. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8197. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8198. };
  8199. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8200. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  8201. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  8202. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  8203. const int16x8_t hshift = vld1q_s16(k_shift);
  8204. const uint16x8_t m256 = vdupq_n_u16(256);
  8205. const uint8x16_t m1 = vdupq_n_u8(1);
  8206. uint8x16x2_t vs;
  8207. ggml_int8x16x4_t q3s;
  8208. ggml_int8x16x4_t q8b;
  8209. vec_index_t idx;
  8210. uint32_t scales32[2];
  8211. const uint8_t * scales8 = (const uint8_t *)scales32;
  8212. float sumf = 0;
  8213. for (int i = 0; i < nb; ++i) {
  8214. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8215. const uint8_t * restrict qs = x[i].qs;
  8216. const uint8_t * restrict qh = x[i].qh;
  8217. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8218. const int8_t * restrict q8 = y[i].qs;
  8219. memcpy(scales32, x[i].scales, 4);
  8220. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  8221. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  8222. int sumi1 = 0, sumi2 = 0;
  8223. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8224. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8225. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  8226. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  8227. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  8228. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  8229. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  8230. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  8231. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  8232. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  8233. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  8234. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  8235. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  8236. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  8237. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8238. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8239. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  8240. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  8241. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  8242. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  8243. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  8244. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8245. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8246. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  8247. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  8248. signs += 4;
  8249. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  8250. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  8251. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  8252. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  8253. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  8254. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  8255. }
  8256. sumf += d*(sumi1 + sumi2);
  8257. }
  8258. *s = sumf;
  8259. #elif defined(__AVX2__)
  8260. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8261. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8262. };
  8263. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8264. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8265. };
  8266. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  8267. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  8268. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  8269. const __m256i idx_mask = _mm256_set1_epi32(256);
  8270. typedef union {
  8271. __m256i vec[2];
  8272. uint32_t index[16];
  8273. } index_t;
  8274. index_t idx;
  8275. __m256 accumf = _mm256_setzero_ps();
  8276. for (int i = 0; i < nb; ++i) {
  8277. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8278. const uint8_t * restrict qs = x[i].qs;
  8279. const uint8_t * restrict qh = x[i].qh;
  8280. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8281. const int8_t * restrict q8 = y[i].qs;
  8282. __m256i sumi1 = _mm256_setzero_si256();
  8283. __m256i sumi2 = _mm256_setzero_si256();
  8284. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8285. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8286. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8287. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  8288. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  8289. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  8290. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  8291. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  8292. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  8293. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  8294. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  8295. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  8296. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  8297. const __m256i q2_1 = _mm256_set_epi32(
  8298. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  8299. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  8300. );
  8301. const __m256i q2_2 = _mm256_set_epi32(
  8302. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  8303. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  8304. );
  8305. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  8306. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8307. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  8308. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  8309. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  8310. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8311. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  8312. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  8313. signs += 4;
  8314. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8315. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8316. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8317. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8318. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8319. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8320. sumi1 = _mm256_add_epi32(sumi1, p1);
  8321. sumi2 = _mm256_add_epi32(sumi2, p2);
  8322. }
  8323. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8324. }
  8325. *s = hsum_float_8(accumf);
  8326. #elif defined(__POWER9_VECTOR__)
  8327. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8328. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8329. };
  8330. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8331. vector float vsumf0 = vec_splats(0.0f);
  8332. vector float vsumf1 = vec_splats(0.0f);
  8333. vector float vsumf2 = vec_splats(0.0f);
  8334. vector float vsumf3 = vec_splats(0.0f);
  8335. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  8336. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  8337. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  8338. for (int i = 0; i < nb; ++i) {
  8339. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8340. vector float vyd = vec_splats(y[i].d);
  8341. vector float vd = vec_mul(vxd, vyd);
  8342. const uint8_t * restrict q3 = x[i].qs;
  8343. const uint8_t * restrict qh = x[i].qh;
  8344. const uint16_t * restrict signs = (const uint16_t *)(x[i].signs);
  8345. const uint8_t * restrict sc = x[i].scales;
  8346. const int8_t * restrict q8 = y[i].qs;
  8347. vector signed int vsumi0 = vec_splats((int32_t)0);
  8348. vector signed int vsumi1 = vec_splats((int32_t)0);
  8349. vector signed int vsumi2 = vec_splats((int32_t)0);
  8350. vector signed int vsumi3 = vec_splats((int32_t)0);
  8351. vector signed int vsumi4 = vec_splats((int32_t)0);
  8352. vector signed int vsumi5 = vec_splats((int32_t)0);
  8353. vector signed int vsumi6 = vec_splats((int32_t)0);
  8354. vector signed int vsumi7 = vec_splats((int32_t)0);
  8355. for (int j = 0; j < QK_K/32; j += 2) {
  8356. __builtin_prefetch(q3, 0, 1);
  8357. __builtin_prefetch(q8, 0, 1);
  8358. vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)],
  8359. iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]};
  8360. vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)],
  8361. iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]};
  8362. vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)],
  8363. iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]};
  8364. vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)],
  8365. iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]};
  8366. q3 += 16;
  8367. qh += 2;
  8368. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  8369. vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  8370. signs += 4;
  8371. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  8372. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  8373. vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0);
  8374. vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1);
  8375. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  8376. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  8377. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  8378. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  8379. vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0);
  8380. vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1);
  8381. vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2);
  8382. vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3);
  8383. vector signed char q8y0 = vec_xl( 0, q8);
  8384. vector signed char q8y1 = vec_xl(16, q8);
  8385. vector signed char q8y2 = vec_xl(32, q8);
  8386. vector signed char q8y3 = vec_xl(48, q8);
  8387. q8 += 64;
  8388. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  8389. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  8390. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  8391. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  8392. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8393. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8394. sc ++;
  8395. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8396. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8397. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  8398. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  8399. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  8400. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  8401. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  8402. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  8403. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  8404. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  8405. }
  8406. vsumi0 = vec_add(vsumi0, vsumi4);
  8407. vsumi1 = vec_add(vsumi1, vsumi5);
  8408. vsumi2 = vec_add(vsumi2, vsumi6);
  8409. vsumi3 = vec_add(vsumi3, vsumi7);
  8410. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8411. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8412. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8413. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8414. }
  8415. vsumf0 = vec_add(vsumf0, vsumf2);
  8416. vsumf1 = vec_add(vsumf1, vsumf3);
  8417. vsumf0 = vec_add(vsumf0, vsumf1);
  8418. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8419. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8420. *s = vec_extract(vsumf0, 0);
  8421. #elif defined(__loongarch_asx)
  8422. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8423. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8424. };
  8425. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8426. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8427. };
  8428. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  8429. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  8430. __m256i idx_shift = lasx_set_w(1, 2, 3, 4, 5, 6, 7, 8);
  8431. const __m256i idx_mask = __lasx_xvreplgr2vr_w(256);
  8432. typedef union {
  8433. __m256i vec[2];
  8434. uint32_t index[16];
  8435. } index_t;
  8436. index_t idx;
  8437. __m256 accumf = (__m256)__lasx_xvldi(0);
  8438. for (int i = 0; i < nb; ++i) {
  8439. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8440. const uint8_t * restrict qs = x[i].qs;
  8441. const uint8_t * restrict qh = x[i].qh;
  8442. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8443. const int8_t * restrict q8 = y[i].qs;
  8444. __m256i sumi1 = __lasx_xvldi(0);
  8445. __m256i sumi2 = __lasx_xvldi(0);
  8446. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8447. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8448. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8449. const __m256i idx_l = lasx_extu8_16(__lsx_vld(qs, 0)); qs += 16;
  8450. idx.vec[0] = __lasx_xvreplgr2vr_w(qh[ib32+0]);
  8451. idx.vec[1] = __lasx_xvreplgr2vr_w(qh[ib32+1]);
  8452. idx.vec[0] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[0], idx_shift), idx_mask);
  8453. idx.vec[1] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[1], idx_shift), idx_mask);
  8454. idx.vec[0] = __lasx_xvor_v(idx.vec[0], lasx_ext16_32(lasx_extracti128(idx_l, 0)));
  8455. idx.vec[1] = __lasx_xvor_v(idx.vec[1], lasx_ext16_32(lasx_extracti128(idx_l, 1)));
  8456. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  8457. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  8458. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  8459. const __m256i q2_1 = lasx_set_w(
  8460. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  8461. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  8462. );
  8463. const __m256i q2_2 = lasx_set_w(
  8464. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  8465. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  8466. );
  8467. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | (signs[1] << 16));
  8468. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8469. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  8470. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  8471. aux256 = __lasx_xvreplgr2vr_w(signs[2] | (signs[3] << 16));
  8472. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8473. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  8474. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  8475. signs += 4;
  8476. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  8477. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  8478. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8479. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8480. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  8481. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  8482. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8483. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8484. }
  8485. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8486. }
  8487. *s = hsum_float_8(accumf);
  8488. #else
  8489. float sumf = 0.f;
  8490. for (int i = 0; i < nb; ++i) {
  8491. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8492. const uint8_t * restrict qs = x[i].qs;
  8493. const uint8_t * restrict qh = x[i].qh;
  8494. const uint8_t * restrict signs = x[i].signs;
  8495. const int8_t * restrict q8 = y[i].qs;
  8496. int32_t bsum = 0;
  8497. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8498. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  8499. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  8500. int32_t sumi = 0;
  8501. for (int l = 0; l < 4; ++l) {
  8502. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  8503. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  8504. for (int j = 0; j < 4; ++j) {
  8505. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8506. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8507. }
  8508. q8 += 8;
  8509. }
  8510. qs += 8;
  8511. signs += 4;
  8512. bsum += sumi * ls1;
  8513. sumi = 0;
  8514. for (int l = 0; l < 4; ++l) {
  8515. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  8516. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  8517. for (int j = 0; j < 4; ++j) {
  8518. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8519. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8520. }
  8521. q8 += 8;
  8522. }
  8523. qs += 8;
  8524. signs += 4;
  8525. bsum += sumi * ls2;
  8526. }
  8527. sumf += d * bsum;
  8528. }
  8529. *s = sumf;
  8530. #endif
  8531. }
  8532. #if defined(__AVX2__)
  8533. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  8534. const __m256i ax = _mm256_sign_epi8(x, x);
  8535. const __m256i sy = _mm256_sign_epi8(y, x);
  8536. return _mm256_maddubs_epi16(ax, sy);
  8537. }
  8538. #elif defined(__loongarch_asx)
  8539. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  8540. const __m256i ax = __lasx_xvsigncov_b(x, x);
  8541. const __m256i sy = __lasx_xvsigncov_b(x, y);
  8542. __m256i tmp1, tmp2, tmp3;
  8543. tmp1 = __lasx_xvmulwev_h_bu_b(ax, sy);
  8544. tmp2 = __lasx_xvmulwod_h_bu_b(ax, sy);
  8545. tmp3 = __lasx_xvadd_h(tmp1, tmp2);
  8546. return __lasx_xvsat_h(tmp3, 15);
  8547. }
  8548. #endif
  8549. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8550. assert(n % QK_K == 0);
  8551. assert(nrc == 1);
  8552. UNUSED(nrc);
  8553. UNUSED(bx);
  8554. UNUSED(by);
  8555. UNUSED(bs);
  8556. const block_iq1_s * restrict x = vx;
  8557. const block_q8_K * restrict y = vy;
  8558. const int nb = n / QK_K;
  8559. #if defined __ARM_NEON
  8560. ggml_int8x16x4_t q1b;
  8561. ggml_int8x16x4_t q8b;
  8562. float sumf = 0;
  8563. for (int i = 0; i < nb; ++i) {
  8564. const int8_t * q8 = y[i].qs;
  8565. const uint8_t * qs = x[i].qs;
  8566. const uint16_t * qh = x[i].qh;
  8567. int sumi1 = 0, sumi2 = 0, sumi3 = 0;
  8568. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8569. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
  8570. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
  8571. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
  8572. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
  8573. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
  8574. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
  8575. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
  8576. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
  8577. qs += 8;
  8578. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8579. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
  8580. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
  8581. const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8582. const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8583. sumi1 += vaddvq_s32(p1) * ls1;
  8584. sumi2 += vaddvq_s32(p2) * ls2;
  8585. sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
  8586. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
  8587. }
  8588. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
  8589. }
  8590. *s = sumf;
  8591. #elif defined __AVX2__
  8592. __m256 accum = _mm256_setzero_ps();
  8593. float accum1 = 0;
  8594. for (int i = 0; i < nb; ++i) {
  8595. const int8_t * q8 = y[i].qs;
  8596. const uint8_t * qs = x[i].qs;
  8597. const uint16_t * qh = x[i].qh;
  8598. __m256i sumi = _mm256_setzero_si256();
  8599. int sumi1 = 0;
  8600. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8601. const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
  8602. iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  8603. const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
  8604. iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  8605. qs += 8;
  8606. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8607. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8608. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  8609. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  8610. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8611. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8612. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
  8613. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
  8614. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
  8615. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  8616. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  8617. }
  8618. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8619. accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
  8620. accum1 += d * sumi1;
  8621. }
  8622. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  8623. #elif defined(__POWER9_VECTOR__)
  8624. const vector unsigned char v0 = vec_splats((unsigned char)0x0);
  8625. const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
  8626. vector float vsumf0 = vec_splats(0.0f);
  8627. vector float vsumf1 = vec_splats(0.0f);
  8628. vector float vsumf2 = vec_splats(0.0f);
  8629. vector float vsumf3 = vec_splats(0.0f);
  8630. for (int i = 0; i < nb; ++i) {
  8631. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8632. vector float vyd = vec_splats(y[i].d);
  8633. vector float vd = vec_mul(vxd, vyd);
  8634. vector signed int vsumi0 = vec_splats((int32_t)0);
  8635. vector signed int vsumi1 = vec_splats((int32_t)0);
  8636. vector signed int vsumi2 = vec_splats((int32_t)0);
  8637. vector signed int vsumi3 = vec_splats((int32_t)0);
  8638. vector signed int vsumi4 = vec_splats((int32_t)0);
  8639. vector signed int vsumi5 = vec_splats((int32_t)0);
  8640. vector signed int vsumi6 = vec_splats((int32_t)0);
  8641. vector signed int vsumi7 = vec_splats((int32_t)0);
  8642. vector signed int vsumi8 = vec_splats((int32_t)0);
  8643. const uint8_t * restrict q1 = x[i].qs;
  8644. const uint16_t * restrict qh = x[i].qh;
  8645. const int8_t * restrict q8 = y[i].qs;
  8646. const int16_t * restrict qs = y[i].bsums;
  8647. for (int j = 0; j < QK_K/32; j += 2) {
  8648. __builtin_prefetch(q1, 0, 1);
  8649. __builtin_prefetch(qh, 0, 1);
  8650. __builtin_prefetch(q8, 0, 1);
  8651. vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))};
  8652. vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))};
  8653. vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))};
  8654. vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))};
  8655. q1 += 8;
  8656. vector signed char q1x0 = (vector signed char)aux64x2_0;
  8657. vector signed char q1x1 = (vector signed char)aux64x2_1;
  8658. vector signed char q1x2 = (vector signed char)aux64x2_2;
  8659. vector signed char q1x3 = (vector signed char)aux64x2_3;
  8660. vector signed char q8y0 = vec_xl( 0, q8);
  8661. vector signed char q8y1 = vec_xl(16, q8);
  8662. vector signed char q8y2 = vec_xl(32, q8);
  8663. vector signed char q8y3 = vec_xl(48, q8);
  8664. q8 += 64;
  8665. vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0));
  8666. vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1));
  8667. vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2));
  8668. vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3));
  8669. const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7);
  8670. const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7);
  8671. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8672. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8673. vector signed short vscales = vec_sld(vscales23, vscales01, 8);
  8674. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  8675. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  8676. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  8677. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  8678. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  8679. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  8680. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  8681. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  8682. vector signed short q8ysums = vec_xl_len(qs, 8);
  8683. qs += 4;
  8684. q8ysums = vec_mergeh(q8ysums, (vector signed short)v0);
  8685. vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8);
  8686. qh += 2;
  8687. vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0);
  8688. vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel);
  8689. vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8);
  8690. }
  8691. vsumi0 = vec_add(vsumi0, vsumi4);
  8692. vsumi1 = vec_add(vsumi1, vsumi5);
  8693. vsumi2 = vec_add(vsumi2, vsumi6);
  8694. vsumi3 = vec_add(vsumi3, vsumi7);
  8695. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8696. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8697. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8698. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8699. vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0);
  8700. }
  8701. vsumf0 = vec_add(vsumf0, vsumf2);
  8702. vsumf1 = vec_add(vsumf1, vsumf3);
  8703. vsumf0 = vec_add(vsumf0, vsumf1);
  8704. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8705. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8706. *s = vec_extract(vsumf0, 0);
  8707. #elif defined(__loongarch_asx)
  8708. __m256 accum = (__m256)__lasx_xvldi(0);
  8709. float accum1 = 0;
  8710. for (int i = 0; i < nb; ++i) {
  8711. const int8_t * q8 = y[i].qs;
  8712. const uint8_t * qs = x[i].qs;
  8713. const uint16_t * qh = x[i].qh;
  8714. __m256i sumi = __lasx_xvldi(0);
  8715. int sumi1 = 0;
  8716. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8717. __m256i q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)], 0);
  8718. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], 1);
  8719. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], 2);
  8720. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], 3);
  8721. __m256i q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)], 0);
  8722. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], 1);
  8723. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], 2);
  8724. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], 3);
  8725. qs += 8;
  8726. const __m256i q8b_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  8727. const __m256i q8b_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  8728. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  8729. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  8730. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8731. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8732. __m256i tmp1, tmp5, tmp6;
  8733. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  8734. tmp5 = __lasx_xvmulwev_w_h(dot1, tmp1);
  8735. tmp6 = __lasx_xvmulwod_w_h(dot1, tmp1);
  8736. const __m256i p1 = __lasx_xvadd_w(tmp5, tmp6);
  8737. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  8738. tmp5 = __lasx_xvmulwev_w_h(dot2, tmp1);
  8739. tmp6 = __lasx_xvmulwod_w_h(dot2, tmp1);
  8740. const __m256i p2 = __lasx_xvadd_w(tmp5, tmp6);
  8741. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p1, p2));
  8742. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  8743. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  8744. }
  8745. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8746. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum);
  8747. accum1 += d * sumi1;
  8748. }
  8749. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  8750. #else
  8751. float sumf = 0;
  8752. for (int i = 0; i < nb; i++) {
  8753. const int8_t * q8 = y[i].qs;
  8754. const uint8_t * qs = x[i].qs;
  8755. const uint16_t * qh = x[i].qh;
  8756. int sumi = 0, sumi1 = 0;
  8757. for (int ib = 0; ib < QK_K/32; ++ib) {
  8758. const int ls = 2*((qh[ib] >> 12) & 7) + 1;
  8759. const int delta = qh[ib] & 0x8000 ? -1 : 1;
  8760. int lsum = 0;
  8761. for (int l = 0; l < 4; ++l) {
  8762. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  8763. for (int j = 0; j < 8; ++j) {
  8764. lsum += q8[j] * grid[j];
  8765. }
  8766. q8 += 8;
  8767. }
  8768. sumi += ls * lsum;
  8769. sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
  8770. qs += 4;
  8771. }
  8772. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
  8773. }
  8774. *s = sumf;
  8775. #endif
  8776. }
  8777. void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8778. assert(n % QK_K == 0);
  8779. assert(nrc == 1);
  8780. UNUSED(nrc);
  8781. UNUSED(bx);
  8782. UNUSED(by);
  8783. UNUSED(bs);
  8784. const block_iq1_m * restrict x = vx;
  8785. const block_q8_K * restrict y = vy;
  8786. const int nb = n / QK_K;
  8787. iq1m_scale_t scale;
  8788. #if defined __ARM_NEON
  8789. const int32x4_t mask = vdupq_n_s32(0x7);
  8790. const int32x4_t mone = vdupq_n_s32(1);
  8791. const int32x4_t mzero = vdupq_n_s32(0);
  8792. ggml_int8x16x4_t deltas;
  8793. deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
  8794. deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
  8795. deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
  8796. deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
  8797. ggml_int8x16x4_t q1b;
  8798. ggml_int8x16x4_t q8b;
  8799. uint32_t aux32;
  8800. const uint8_t * aux8 = (const uint8_t *)&aux32;
  8801. float sumf = 0;
  8802. for (int i = 0; i < nb; ++i) {
  8803. const int8_t * q8 = y[i].qs;
  8804. const uint8_t * qs = x[i].qs;
  8805. const uint8_t * qh = x[i].qh;
  8806. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8807. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8808. int32x4_t sumi1 = mzero;
  8809. int32x4_t sumi2 = mzero;
  8810. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8811. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
  8812. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
  8813. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
  8814. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
  8815. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
  8816. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
  8817. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
  8818. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
  8819. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8820. const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
  8821. const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
  8822. const int32x4_t p12 = vpaddq_s32(p1, p2);
  8823. const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
  8824. aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
  8825. const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
  8826. const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
  8827. const int32x4_t p34 = vpaddq_s32(p3, p4);
  8828. int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
  8829. scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
  8830. sumi1 = vmlaq_s32(sumi1, scales_4, p12);
  8831. sumi2 = vmlaq_s32(sumi2, scales_4, p34);
  8832. qs += 8; qh += 4;
  8833. }
  8834. sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  8835. }
  8836. *s = sumf;
  8837. #elif defined __AVX2__
  8838. const __m256i mask = _mm256_set1_epi16(0x7);
  8839. const __m256i mone = _mm256_set1_epi16(1);
  8840. __m256 accum1 = _mm256_setzero_ps();
  8841. __m256 accum2 = _mm256_setzero_ps();
  8842. for (int i = 0; i < nb; ++i) {
  8843. const int8_t * q8 = y[i].qs;
  8844. const uint8_t * qs = x[i].qs;
  8845. const uint8_t * qh = x[i].qh;
  8846. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8847. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8848. __m256i sumi1 = _mm256_setzero_si256();
  8849. __m256i sumi2 = _mm256_setzero_si256();
  8850. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8851. const __m256i q1b_1 = _mm256_set_epi64x(
  8852. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
  8853. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
  8854. );
  8855. const __m256i q1b_2 = _mm256_set_epi64x(
  8856. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
  8857. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
  8858. );
  8859. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8860. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8861. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  8862. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  8863. const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8864. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  8865. qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8866. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8867. const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8868. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  8869. qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8870. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8871. const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
  8872. const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
  8873. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
  8874. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
  8875. scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
  8876. scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
  8877. const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
  8878. const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
  8879. const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
  8880. const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
  8881. sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
  8882. sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
  8883. qs += 8; qh += 4;
  8884. }
  8885. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  8886. accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
  8887. accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
  8888. }
  8889. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  8890. #else
  8891. int sum1[2], sum2[2], delta[4];
  8892. float sumf = 0;
  8893. for (int i = 0; i < nb; i++) {
  8894. const int8_t * q8 = y[i].qs;
  8895. const uint8_t * qs = x[i].qs;
  8896. const uint8_t * qh = x[i].qh;
  8897. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8898. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8899. int sumi1 = 0, sumi2 = 0;
  8900. for (int ib = 0; ib < QK_K/32; ++ib) {
  8901. delta[0] = qh[0] & 0x08 ? -1 : 1;
  8902. delta[1] = qh[0] & 0x80 ? -1 : 1;
  8903. delta[2] = qh[1] & 0x08 ? -1 : 1;
  8904. delta[3] = qh[1] & 0x80 ? -1 : 1;
  8905. sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
  8906. for (int l = 0; l < 4; ++l) {
  8907. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
  8908. int lsum1 = 0, lsum2 = 0;
  8909. for (int j = 0; j < 8; ++j) {
  8910. lsum1 += q8[j] * grid[j];
  8911. lsum2 += q8[j];
  8912. }
  8913. q8 += 8;
  8914. sum1[l/2] += lsum1;
  8915. sum2[l/2] += lsum2*delta[l];
  8916. }
  8917. const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
  8918. const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
  8919. sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
  8920. sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
  8921. qs += 4;
  8922. qh += 2;
  8923. }
  8924. sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  8925. }
  8926. *s = sumf;
  8927. #endif
  8928. }
  8929. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8930. assert(nrc == 1);
  8931. UNUSED(nrc);
  8932. UNUSED(bx);
  8933. UNUSED(by);
  8934. UNUSED(bs);
  8935. assert(n % QK4_NL == 0);
  8936. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  8937. const block_iq4_nl * restrict x = vx;
  8938. const block_q8_0 * restrict y = vy;
  8939. const int nb = n / QK4_NL;
  8940. #if defined __ARM_NEON
  8941. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  8942. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  8943. uint8x16x2_t q4bits;
  8944. int8x16x4_t q4b;
  8945. int8x16x4_t q8b;
  8946. int32x4_t prod_1, prod_2;
  8947. float sumf = 0;
  8948. for (int ib = 0; ib < nb; ib += 2) {
  8949. q4bits.val[0] = vld1q_u8(x[ib+0].qs);
  8950. q4bits.val[1] = vld1q_u8(x[ib+1].qs);
  8951. q8b.val[0] = vld1q_s8(y[ib+0].qs);
  8952. q8b.val[1] = vld1q_s8(y[ib+0].qs + 16);
  8953. q8b.val[2] = vld1q_s8(y[ib+1].qs);
  8954. q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
  8955. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  8956. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  8957. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  8958. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  8959. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  8960. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  8961. sumf +=
  8962. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
  8963. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
  8964. }
  8965. *s = sumf;
  8966. #elif defined __AVX2__
  8967. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8968. const __m128i m4b = _mm_set1_epi8(0x0f);
  8969. const __m256i mone = _mm256_set1_epi16(1);
  8970. __m256 accum1 = _mm256_setzero_ps();
  8971. __m256 accum2 = _mm256_setzero_ps();
  8972. for (int ib = 0; ib < nb; ib += 2) {
  8973. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
  8974. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
  8975. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
  8976. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
  8977. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  8978. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  8979. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  8980. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  8981. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8982. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8983. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  8984. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  8985. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  8986. _mm256_cvtepi32_ps(p_1), accum1);
  8987. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  8988. _mm256_cvtepi32_ps(p_2), accum2);
  8989. y += 2;
  8990. x += 2;
  8991. }
  8992. *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
  8993. #elif defined(__POWER9_VECTOR__)
  8994. const vector signed char lowMask = vec_splats((signed char)0xF);
  8995. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  8996. vector float vsumf0 = vec_splats(0.0f);
  8997. vector float vsumf1 = vec_splats(0.0f);
  8998. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  8999. #pragma GCC unroll 4
  9000. for (int ib = 0; ib < nb; ++ib) {
  9001. __builtin_prefetch(x[ib].qs, 0, 1);
  9002. __builtin_prefetch(y[ib].qs, 0, 1);
  9003. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  9004. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  9005. vector float vd = vec_mul(vxd, vyd);
  9006. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  9007. vector signed char q4x0 = vec_and(qxs, lowMask);
  9008. vector signed char q4x1 = vec_sr(qxs, v4);
  9009. q4x0 = vec_perm(values, values, (vector unsigned char)q4x0);
  9010. q4x1 = vec_perm(values, values, (vector unsigned char)q4x1);
  9011. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  9012. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  9013. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  9014. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  9015. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  9016. vector signed int vsumi1 = vec_add(vec_unpackh(qv1), vec_unpackl(qv1));
  9017. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9018. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9019. }
  9020. vsumf0 = vec_add(vsumf0, vsumf1);
  9021. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9022. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9023. *s = vec_extract(vsumf0, 0);
  9024. #elif defined (__loongarch_asx)
  9025. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  9026. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  9027. const __m256i mone = __lasx_xvreplgr2vr_h(1);
  9028. __m256 accum1 = (__m256)__lasx_xvldi(0);
  9029. __m256 accum2 = (__m256)__lasx_xvldi(0);
  9030. for (int ib = 0; ib < nb; ib += 2) {
  9031. const __m128i q4bits_1 = __lsx_vld((const __m128i*)x[0].qs, 0);
  9032. const __m128i q4bits_2 = __lsx_vld((const __m128i*)x[1].qs, 0);
  9033. const __m256i q8b_1 = __lasx_xvld((const __m256i *)y[0].qs, 0);
  9034. const __m256i q8b_2 = __lasx_xvld((const __m256i *)y[1].qs, 0);
  9035. const __m256i q4b_1 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b)),
  9036. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_1, m4b)));
  9037. const __m256i q4b_2 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b)),
  9038. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_2, m4b)));
  9039. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9040. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9041. const __m256i p_1 = lasx_madd_h(p16_1, mone);
  9042. const __m256i p_2 = lasx_madd_h(p16_2, mone);
  9043. accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  9044. __lasx_xvffint_s_w(p_1), accum1);
  9045. accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  9046. __lasx_xvffint_s_w(p_2), accum2);
  9047. y += 2;
  9048. x += 2;
  9049. }
  9050. *s = hsum_float_8(__lasx_xvfadd_s(accum1, accum2));
  9051. #else
  9052. float sumf = 0;
  9053. for (int ib = 0; ib < nb; ++ib) {
  9054. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  9055. int sumi1 = 0, sumi2 = 0;
  9056. for (int j = 0; j < QK4_NL/2; ++j) {
  9057. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  9058. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  9059. }
  9060. sumf += d * (sumi1 + sumi2);
  9061. }
  9062. *s = sumf;
  9063. #endif
  9064. }
  9065. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9066. assert(nrc == 1);
  9067. UNUSED(nrc);
  9068. UNUSED(bx);
  9069. UNUSED(by);
  9070. UNUSED(bs);
  9071. assert(n % QK_K == 0);
  9072. const block_iq4_xs * restrict x = vx;
  9073. const block_q8_K * restrict y = vy;
  9074. const int nb = n / QK_K;
  9075. #if defined __ARM_NEON
  9076. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  9077. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  9078. ggml_uint8x16x2_t q4bits;
  9079. ggml_int8x16x4_t q4b;
  9080. ggml_int8x16x4_t q8b;
  9081. int32x4_t prod_1, prod_2;
  9082. float sumf = 0;
  9083. for (int ibl = 0; ibl < nb; ++ibl) {
  9084. const int8_t * q8 = y[ibl].qs;
  9085. const uint8_t * q4 = x[ibl].qs;
  9086. uint16_t h = x[ibl].scales_h;
  9087. int sumi1 = 0, sumi2 = 0;
  9088. for (int ib = 0; ib < QK_K/64; ++ib) {
  9089. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  9090. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9091. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  9092. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  9093. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  9094. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  9095. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  9096. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  9097. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  9098. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  9099. h >>= 4;
  9100. sumi1 += vaddvq_s32(prod_1) * ls1;
  9101. sumi2 += vaddvq_s32(prod_2) * ls2;
  9102. }
  9103. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  9104. }
  9105. *s = sumf;
  9106. #elif defined __AVX2__
  9107. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9108. const __m128i m4b = _mm_set1_epi8(0x0f);
  9109. __m256 accum = _mm256_setzero_ps();
  9110. for (int ibl = 0; ibl < nb; ++ibl) {
  9111. const uint8_t * qs = x[ibl].qs;
  9112. const int8_t * q8 = y[ibl].qs;
  9113. uint16_t sh = x[ibl].scales_h;
  9114. __m256i sumi1 = _mm256_setzero_si256();
  9115. __m256i sumi2 = _mm256_setzero_si256();
  9116. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9117. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  9118. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  9119. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9120. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9121. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  9122. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  9123. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  9124. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  9125. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9126. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9127. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  9128. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  9129. sh >>= 4;
  9130. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  9131. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  9132. sumi1 = _mm256_add_epi32(p_1, sumi1);
  9133. sumi2 = _mm256_add_epi32(p_2, sumi2);
  9134. }
  9135. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  9136. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  9137. }
  9138. *s = hsum_float_8(accum);
  9139. #elif defined(__POWER9_VECTOR__)
  9140. const vector signed char lowMask = vec_splats((signed char)0xF);
  9141. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  9142. vector float vsumf0 = vec_splats(0.0f);
  9143. vector float vsumf1 = vec_splats(0.0f);
  9144. vector float vsumf2 = vec_splats(0.0f);
  9145. vector float vsumf3 = vec_splats(0.0f);
  9146. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  9147. for (int ibl = 0; ibl < nb; ++ibl) {
  9148. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d));
  9149. vector float vyd = vec_splats(y[ibl].d);
  9150. vector float vd = vec_mul(vxd, vyd);
  9151. vector signed int vsumi0 = vec_splats((int32_t)0);
  9152. vector signed int vsumi1 = vec_splats((int32_t)0);
  9153. vector signed int vsumi2 = vec_splats((int32_t)0);
  9154. vector signed int vsumi3 = vec_splats((int32_t)0);
  9155. vector signed int vsumi4 = vec_splats((int32_t)0);
  9156. vector signed int vsumi5 = vec_splats((int32_t)0);
  9157. vector signed int vsumi6 = vec_splats((int32_t)0);
  9158. vector signed int vsumi7 = vec_splats((int32_t)0);
  9159. uint16_t h = x[ibl].scales_h;
  9160. const uint8_t * restrict q4 = x[ibl].qs;
  9161. const uint8_t * restrict sc = x[ibl].scales_l;
  9162. const int8_t * restrict q8 = y[ibl].qs;
  9163. for (int ib = 0; ib < QK_K/64; ib ++ ) {
  9164. __builtin_prefetch(q4, 0, 1);
  9165. __builtin_prefetch(q8, 0, 1);
  9166. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  9167. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  9168. q4 += 32;
  9169. vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask);
  9170. vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4);
  9171. vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask);
  9172. vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4);
  9173. q4x00 = vec_perm(values, values, (vector unsigned char)q4x00);
  9174. q4x01 = vec_perm(values, values, (vector unsigned char)q4x01);
  9175. q4x10 = vec_perm(values, values, (vector unsigned char)q4x10);
  9176. q4x11 = vec_perm(values, values, (vector unsigned char)q4x11);
  9177. vector signed char q8y0 = vec_xl( 0, q8);
  9178. vector signed char q8y1 = vec_xl(16, q8);
  9179. vector signed char q8y2 = vec_xl(32, q8);
  9180. vector signed char q8y3 = vec_xl(48, q8);
  9181. q8 += 64;
  9182. vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0));
  9183. vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1));
  9184. vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2));
  9185. vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3));
  9186. const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32);
  9187. const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32);
  9188. h >>= 4;
  9189. sc ++;
  9190. vector signed short vscales01 = vec_splats((int16_t)ls0);
  9191. vector signed short vscales23 = vec_splats((int16_t)ls1);
  9192. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  9193. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  9194. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  9195. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  9196. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  9197. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  9198. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  9199. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  9200. }
  9201. vsumi0 = vec_add(vsumi0, vsumi4);
  9202. vsumi1 = vec_add(vsumi1, vsumi5);
  9203. vsumi2 = vec_add(vsumi2, vsumi6);
  9204. vsumi3 = vec_add(vsumi3, vsumi7);
  9205. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9206. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9207. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9208. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9209. }
  9210. vsumf0 = vec_add(vsumf0, vsumf2);
  9211. vsumf1 = vec_add(vsumf1, vsumf3);
  9212. vsumf0 = vec_add(vsumf0, vsumf1);
  9213. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9214. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9215. *s = vec_extract(vsumf0, 0);
  9216. #elif defined(__loongarch_asx)
  9217. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  9218. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  9219. __m256 accum = (__m256)__lasx_xvldi(0);
  9220. __m256i tmp1;
  9221. __m128i tmp0, tmp2, tmp3, tmp4, mask_8f, mask;
  9222. mask_8f = __lsx_vreplgr2vr_b(0x8f);
  9223. for (int ibl = 0; ibl < nb; ++ibl) {
  9224. const uint8_t * qs = x[ibl].qs;
  9225. const int8_t * q8 = y[ibl].qs;
  9226. uint16_t sh = x[ibl].scales_h;
  9227. __m256i sumi1 = __lasx_xvldi(0);
  9228. __m256i sumi2 = __lasx_xvldi(0);
  9229. __m128i zero = __lsx_vldi(0);
  9230. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9231. const __m128i q4bits_1 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  9232. const __m128i q4bits_2 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  9233. const __m256i q8b_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9234. const __m256i q8b_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9235. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b), mask_8f);
  9236. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9237. mask = __lsx_vsle_b(zero, tmp2);
  9238. tmp3 = __lsx_vand_v(tmp0, mask);
  9239. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  9240. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_1, m4b), mask_8f);
  9241. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9242. mask = __lsx_vsle_b(zero, tmp2);
  9243. tmp4 = __lsx_vand_v(tmp0, mask);
  9244. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  9245. const __m256i q4b_1 = lasx_insertf128(tmp3, tmp4);
  9246. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b), mask_8f);
  9247. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9248. mask = __lsx_vsle_b(zero, tmp2);
  9249. tmp3 = __lsx_vand_v(tmp0, mask);
  9250. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  9251. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_2, m4b), mask_8f);
  9252. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9253. mask = __lsx_vsle_b(zero, tmp2);
  9254. tmp4 = __lsx_vand_v(tmp0, mask);
  9255. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  9256. const __m256i q4b_2 = lasx_insertf128(tmp3, tmp4);
  9257. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9258. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9259. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  9260. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  9261. sh >>= 4;
  9262. __m256i tmp5, tmp6;
  9263. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  9264. tmp5 = __lasx_xvmulwev_w_h(p16_1, tmp1);
  9265. tmp6 = __lasx_xvmulwod_w_h(p16_1, tmp1);
  9266. const __m256i p_1 = __lasx_xvadd_w(tmp5, tmp6);
  9267. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  9268. tmp5 = __lasx_xvmulwev_w_h(p16_2, tmp1);
  9269. tmp6 = __lasx_xvmulwod_w_h(p16_2, tmp1);
  9270. const __m256i p_2 = __lasx_xvadd_w(tmp5, tmp6);
  9271. sumi1 = __lasx_xvadd_w(p_1, sumi1);
  9272. sumi2 = __lasx_xvadd_w(p_2, sumi2);
  9273. }
  9274. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  9275. __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum);
  9276. }
  9277. *s = hsum_float_8(accum);
  9278. #else
  9279. float sumf = 0;
  9280. for (int ibl = 0; ibl < nb; ++ibl) {
  9281. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  9282. uint16_t h = x[ibl].scales_h;
  9283. const uint8_t * qs = x[ibl].qs;
  9284. const int8_t * q8 = y[ibl].qs;
  9285. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9286. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  9287. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  9288. h >>= 4;
  9289. const float d1 = d4d8*(ls1 - 32);
  9290. const float d2 = d4d8*(ls2 - 32);
  9291. int sumi1 = 0, sumi2 = 0;
  9292. for (int j = 0; j < 16; ++j) {
  9293. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  9294. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  9295. }
  9296. sumf += d1 * (sumi1 + sumi2);
  9297. qs += 16;
  9298. q8 += 32;
  9299. sumi1 = sumi2 = 0;
  9300. for (int j = 0; j < 16; ++j) {
  9301. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  9302. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  9303. }
  9304. sumf += d2 * (sumi1 + sumi2);
  9305. qs += 16;
  9306. q8 += 32;
  9307. }
  9308. }
  9309. *s = sumf;
  9310. #endif
  9311. }
  9312. // ================================ IQ2 quantization =============================================
  9313. typedef struct {
  9314. uint64_t * grid;
  9315. int * map;
  9316. uint16_t * neighbours;
  9317. } iq2_entry_t;
  9318. static iq2_entry_t iq2_data[4] = {
  9319. {NULL, NULL, NULL},
  9320. {NULL, NULL, NULL},
  9321. {NULL, NULL, NULL},
  9322. {NULL, NULL, NULL},
  9323. };
  9324. static inline int iq2_data_index(enum ggml_type type) {
  9325. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9326. return type == GGML_TYPE_IQ2_XXS ? 0 :
  9327. type == GGML_TYPE_IQ2_XS ? 1 :
  9328. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
  9329. }
  9330. static inline int iq2_grid_size(enum ggml_type type) {
  9331. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9332. return type == GGML_TYPE_IQ2_XXS ? 256 :
  9333. type == GGML_TYPE_IQ2_XS ? 512 :
  9334. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
  9335. }
  9336. static int iq2_compare_func(const void * left, const void * right) {
  9337. const int * l = (const int *)left;
  9338. const int * r = (const int *)right;
  9339. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  9340. }
  9341. void iq2xs_init_impl(enum ggml_type type) {
  9342. const int gindex = iq2_data_index(type);
  9343. const int grid_size = iq2_grid_size(type);
  9344. if (iq2_data[gindex].grid) {
  9345. return;
  9346. }
  9347. static const uint16_t kgrid_2bit_256[256] = {
  9348. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  9349. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  9350. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  9351. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  9352. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  9353. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  9354. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  9355. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  9356. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  9357. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  9358. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  9359. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  9360. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  9361. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  9362. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  9363. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  9364. };
  9365. static const uint16_t kgrid_2bit_512[512] = {
  9366. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  9367. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  9368. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  9369. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  9370. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  9371. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  9372. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  9373. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  9374. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  9375. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  9376. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  9377. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  9378. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  9379. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  9380. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  9381. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  9382. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  9383. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  9384. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  9385. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  9386. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  9387. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  9388. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  9389. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  9390. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  9391. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  9392. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  9393. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  9394. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  9395. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  9396. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  9397. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  9398. };
  9399. static const uint16_t kgrid_1bit_2048[NGRID_IQ1S] = {
  9400. 0, 2, 5, 8, 10, 17, 21, 32, 34, 40, 42, 69, 81, 84, 86, 101,
  9401. 128, 130, 136, 138, 149, 160, 162, 168, 170, 260, 261, 273, 276, 278, 281, 282,
  9402. 293, 321, 326, 329, 338, 341, 346, 353, 356, 358, 360, 389, 401, 404, 406, 421,
  9403. 512, 514, 520, 522, 533, 544, 546, 552, 554, 581, 593, 601, 612, 617, 640, 642,
  9404. 648, 650, 657, 661, 665, 672, 674, 680, 682, 1041, 1044, 1046, 1061, 1089, 1097, 1109,
  9405. 1114, 1124, 1125, 1169, 1177, 1189, 1281, 1284, 1285, 1286, 1301, 1304, 1306, 1321, 1344, 1349,
  9406. 1354, 1360, 1361, 1364, 1365, 1366, 1369, 1376, 1378, 1381, 1384, 1386, 1409, 1425, 1429, 1432,
  9407. 1434, 1441, 1444, 1445, 1446, 1449, 1556, 1561, 1601, 1604, 1616, 1618, 1621, 1624, 1632, 1633,
  9408. 1638, 1641, 1669, 1681, 1684, 1689, 2048, 2050, 2056, 2058, 2069, 2080, 2082, 2088, 2090, 2117,
  9409. 2129, 2134, 2149, 2176, 2178, 2184, 2186, 2197, 2208, 2210, 2216, 2218, 2309, 2321, 2324, 2329,
  9410. 2340, 2341, 2369, 2384, 2385, 2389, 2401, 2404, 2409, 2449, 2452, 2454, 2457, 2469, 2560, 2562,
  9411. 2568, 2570, 2581, 2592, 2594, 2600, 2602, 2629, 2641, 2649, 2657, 2661, 2688, 2690, 2693, 2696,
  9412. 2698, 2709, 2720, 2722, 2728, 2730, 4112, 4113, 4116, 4121, 4132, 4133, 4161, 4164, 4176, 4181,
  9413. 4184, 4193, 4196, 4197, 4201, 4241, 4244, 4246, 4257, 4261, 4353, 4356, 4358, 4361, 4368, 4370,
  9414. 4373, 4376, 4385, 4388, 4393, 4421, 4426, 4432, 4433, 4434, 4436, 4437, 4438, 4441, 4448, 4453,
  9415. 4484, 4498, 4501, 4513, 4516, 4625, 4628, 4630, 4645, 4672, 4678, 4681, 4690, 4693, 4696, 4698,
  9416. 4708, 4710, 4741, 4753, 4756, 4758, 4773, 5121, 5126, 5129, 5140, 5141, 5144, 5145, 5153, 5158,
  9417. 5185, 5189, 5190, 5192, 5194, 5201, 5204, 5205, 5206, 5209, 5218, 5221, 5224, 5252, 5257, 5264,
  9418. 5268, 5269, 5272, 5273, 5274, 5281, 5284, 5285, 5289, 5378, 5381, 5386, 5393, 5396, 5397, 5398,
  9419. 5401, 5408, 5410, 5413, 5416, 5418, 5441, 5444, 5445, 5446, 5457, 5458, 5460, 5461, 5462, 5465,
  9420. 5466, 5473, 5476, 5477, 5478, 5481, 5504, 5506, 5508, 5509, 5512, 5514, 5520, 5521, 5524, 5525,
  9421. 5526, 5529, 5530, 5536, 5538, 5541, 5633, 5636, 5637, 5638, 5653, 5654, 5656, 5658, 5665, 5670,
  9422. 5696, 5698, 5700, 5701, 5704, 5706, 5713, 5717, 5718, 5720, 5721, 5729, 5732, 5733, 5736, 5737,
  9423. 5738, 5766, 5770, 5778, 5781, 5796, 5801, 6161, 6166, 6181, 6209, 6212, 6214, 6217, 6224, 6229,
  9424. 6232, 6234, 6240, 6241, 6244, 6246, 6249, 6277, 6289, 6292, 6309, 6416, 6418, 6421, 6426, 6433,
  9425. 6437, 6466, 6468, 6469, 6472, 6481, 6484, 6485, 6486, 6489, 6490, 6496, 6501, 6506, 6537, 6545,
  9426. 6546, 6549, 6552, 6561, 6566, 6569, 6665, 6678, 6692, 6694, 6724, 6726, 6729, 6736, 6738, 6741,
  9427. 6744, 6753, 6758, 6761, 6789, 6801, 6806, 6810, 8192, 8194, 8200, 8202, 8213, 8224, 8226, 8229,
  9428. 8232, 8234, 8261, 8273, 8281, 8289, 8293, 8320, 8322, 8328, 8330, 8341, 8352, 8354, 8357, 8360,
  9429. 8362, 8453, 8465, 8468, 8473, 8485, 8514, 8516, 8521, 8533, 8536, 8538, 8545, 8548, 8549, 8550,
  9430. 8581, 8592, 8598, 8601, 8613, 8705, 8712, 8714, 8721, 8725, 8736, 8738, 8744, 8746, 8773, 8785,
  9431. 8790, 8793, 8805, 8833, 8840, 8842, 8849, 8853, 8864, 8866, 8872, 8874, 9221, 9236, 9238, 9241,
  9432. 9253, 9284, 9285, 9286, 9289, 9298, 9301, 9304, 9306, 9318, 9349, 9361, 9364, 9369, 9377, 9381,
  9433. 9481, 9493, 9505, 9513, 9536, 9541, 9544, 9553, 9556, 9557, 9561, 9570, 9573, 9576, 9609, 9616,
  9434. 9620, 9621, 9624, 9626, 9633, 9636, 9638, 9641, 9733, 9744, 9746, 9753, 9765, 9793, 9801, 9813,
  9435. 9824, 9825, 9833, 9860, 9862, 9872, 9882, 10240, 10242, 10248, 10250, 10261, 10272, 10274, 10280, 10282,
  9436. 10309, 10321, 10324, 10341, 10368, 10370, 10376, 10378, 10400, 10402, 10408, 10410, 10505, 10513, 10516, 10521,
  9437. 10533, 10566, 10569, 10578, 10581, 10593, 10596, 10598, 10601, 10629, 10640, 10646, 10649, 10660, 10661, 10752,
  9438. 10754, 10760, 10762, 10784, 10786, 10792, 10794, 10821, 10833, 10838, 10841, 10853, 10880, 10882, 10888, 10890,
  9439. 10901, 10912, 10914, 10920, 10922, 16389, 16401, 16406, 16421, 16457, 16466, 16469, 16472, 16474, 16481, 16484,
  9440. 16486, 16532, 16537, 16545, 16550, 16640, 16641, 16644, 16646, 16649, 16658, 16661, 16662, 16664, 16666, 16673,
  9441. 16678, 16681, 16709, 16712, 16714, 16721, 16724, 16725, 16726, 16729, 16730, 16741, 16744, 16746, 16769, 16772,
  9442. 16774, 16784, 16786, 16789, 16800, 16801, 16802, 16901, 16913, 16916, 16918, 16933, 16961, 16978, 16981, 16986,
  9443. 16996, 17001, 17033, 17044, 17061, 17409, 17429, 17433, 17449, 17477, 17480, 17482, 17489, 17492, 17493, 17494,
  9444. 17505, 17506, 17509, 17512, 17514, 17537, 17542, 17545, 17552, 17554, 17557, 17568, 17569, 17577, 17665, 17666,
  9445. 17669, 17674, 17681, 17684, 17685, 17686, 17689, 17696, 17701, 17706, 17729, 17732, 17733, 17734, 17737, 17744,
  9446. 17745, 17748, 17749, 17750, 17752, 17753, 17761, 17764, 17765, 17766, 17769, 17794, 17796, 17797, 17800, 17809,
  9447. 17812, 17813, 17814, 17817, 17818, 17829, 17832, 17834, 17921, 17925, 17929, 17940, 17941, 17944, 17946, 17953,
  9448. 17956, 17961, 17984, 17986, 17989, 17992, 18000, 18001, 18002, 18005, 18006, 18009, 18018, 18021, 18024, 18049,
  9449. 18053, 18058, 18068, 18069, 18081, 18084, 18086, 18437, 18449, 18453, 18458, 18469, 18498, 18505, 18512, 18517,
  9450. 18520, 18529, 18532, 18534, 18537, 18565, 18577, 18580, 18582, 18585, 18597, 18689, 18693, 18694, 18698, 18704,
  9451. 18708, 18709, 18712, 18721, 18724, 18726, 18752, 18757, 18762, 18769, 18770, 18772, 18773, 18774, 18777, 18784,
  9452. 18786, 18789, 18790, 18794, 18822, 18825, 18834, 18837, 18838, 18840, 18849, 18852, 18854, 18857, 18966, 19012,
  9453. 19014, 19017, 19029, 19032, 19034, 19044, 19049, 19092, 19109, 20481, 20484, 20485, 20486, 20489, 20498, 20501,
  9454. 20506, 20513, 20516, 20521, 20544, 20549, 20552, 20561, 20564, 20565, 20566, 20569, 20581, 20584, 20614, 20617,
  9455. 20629, 20632, 20640, 20641, 20646, 20649, 20741, 20744, 20745, 20746, 20753, 20756, 20757, 20758, 20760, 20761,
  9456. 20768, 20773, 20774, 20776, 20778, 20801, 20804, 20805, 20806, 20809, 20816, 20817, 20818, 20820, 20821, 20822,
  9457. 20824, 20825, 20826, 20833, 20836, 20837, 20838, 20841, 20866, 20869, 20881, 20884, 20885, 20886, 20889, 20896,
  9458. 20901, 20906, 20993, 20998, 21010, 21013, 21018, 21025, 21028, 21058, 21061, 21066, 21073, 21076, 21077, 21078,
  9459. 21081, 21090, 21093, 21125, 21136, 21138, 21141, 21145, 21146, 21156, 21508, 21509, 21521, 21524, 21525, 21526,
  9460. 21528, 21529, 21537, 21541, 21544, 21546, 21569, 21572, 21573, 21574, 21577, 21578, 21584, 21585, 21588, 21589,
  9461. 21590, 21592, 21593, 21594, 21601, 21602, 21604, 21605, 21606, 21609, 21632, 21640, 21642, 21649, 21652, 21653,
  9462. 21654, 21657, 21665, 21668, 21669, 21674, 21761, 21762, 21764, 21765, 21766, 21769, 21776, 21777, 21778, 21780,
  9463. 21781, 21782, 21785, 21786, 21793, 21796, 21797, 21798, 21801, 21824, 21825, 21826, 21828, 21829, 21830, 21832,
  9464. 21833, 21840, 21841, 21842, 21844, 21845, 21846, 21848, 21849, 21850, 21856, 21857, 21860, 21861, 21862, 21864,
  9465. 21865, 21866, 21889, 21892, 21893, 21897, 21898, 21904, 21905, 21908, 21909, 21910, 21912, 21913, 21921, 21924,
  9466. 21925, 21926, 21929, 22016, 22017, 22018, 22020, 22022, 22024, 22025, 22033, 22036, 22037, 22040, 22041, 22048,
  9467. 22049, 22050, 22052, 22053, 22054, 22056, 22057, 22081, 22085, 22086, 22088, 22089, 22090, 22096, 22097, 22098,
  9468. 22100, 22101, 22102, 22104, 22105, 22106, 22113, 22116, 22117, 22121, 22146, 22149, 22150, 22152, 22153, 22154,
  9469. 22161, 22165, 22170, 22178, 22181, 22182, 22184, 22185, 22532, 22533, 22534, 22537, 22544, 22549, 22552, 22561,
  9470. 22570, 22597, 22600, 22602, 22609, 22612, 22613, 22614, 22616, 22617, 22624, 22626, 22628, 22629, 22658, 22665,
  9471. 22672, 22674, 22677, 22680, 22689, 22697, 22785, 22786, 22789, 22794, 22801, 22804, 22805, 22806, 22809, 22821,
  9472. 22849, 22852, 22853, 22854, 22857, 22864, 22865, 22866, 22868, 22869, 22870, 22872, 22873, 22874, 22881, 22884,
  9473. 22885, 22886, 22889, 22913, 22917, 22921, 22929, 22932, 22933, 22934, 22936, 22937, 22949, 23044, 23048, 23061,
  9474. 23066, 23072, 23077, 23078, 23081, 23109, 23112, 23113, 23121, 23125, 23126, 23128, 23129, 23138, 23141, 23144,
  9475. 23146, 23169, 23178, 23186, 23189, 23190, 23192, 23194, 23201, 24581, 24596, 24598, 24601, 24613, 24644, 24656,
  9476. 24661, 24662, 24664, 24666, 24673, 24676, 24678, 24681, 24705, 24726, 24741, 24833, 24836, 24838, 24841, 24850,
  9477. 24853, 24865, 24866, 24870, 24873, 24901, 24905, 24913, 24917, 24918, 24921, 24933, 24934, 24938, 24964, 24970,
  9478. 24978, 24981, 24993, 24998, 25001, 25105, 25110, 25113, 25152, 25153, 25158, 25173, 25174, 25176, 25184, 25221,
  9479. 25233, 25238, 25253, 25617, 25618, 25621, 25622, 25626, 25633, 25638, 25641, 25664, 25666, 25669, 25672, 25674,
  9480. 25681, 25684, 25685, 25686, 25689, 25690, 25696, 25698, 25701, 25732, 25733, 25737, 25744, 25746, 25748, 25749,
  9481. 25750, 25752, 25754, 25761, 25764, 25769, 25861, 25864, 25866, 25873, 25877, 25878, 25881, 25924, 25925, 25926,
  9482. 25929, 25936, 25937, 25940, 25941, 25942, 25945, 25953, 25956, 25957, 25958, 25961, 25990, 25993, 25994, 26001,
  9483. 26005, 26006, 26009, 26010, 26018, 26021, 26022, 26024, 26114, 26121, 26133, 26144, 26150, 26152, 26153, 26176,
  9484. 26181, 26184, 26186, 26193, 26196, 26197, 26198, 26200, 26202, 26208, 26213, 26216, 26240, 26242, 26245, 26250,
  9485. 26260, 26262, 26264, 26265, 26272, 26276, 26278, 26282, 26646, 26649, 26661, 26689, 26706, 26709, 26714, 26721,
  9486. 26729, 26757, 26769, 26776, 26790, 26881, 26884, 26896, 26901, 26913, 26916, 26918, 26921, 26944, 26945, 26949,
  9487. 26950, 26952, 26961, 26964, 26965, 26966, 26969, 26976, 26981, 26986, 27010, 27012, 27018, 27029, 27041, 27044,
  9488. 27045, 27049, 27153, 27158, 27160, 27201, 27204, 27209, 27216, 27221, 27224, 27226, 27236, 27237, 27241, 27270,
  9489. 27284, 27288, 27290, 27302, 32768, 32770, 32776, 32778, 32800, 32802, 32808, 32810, 32837, 32848, 32849, 32852,
  9490. 32854, 32857, 32869, 32896, 32898, 32904, 32906, 32917, 32928, 32930, 32936, 32938, 33029, 33041, 33044, 33046,
  9491. 33049, 33061, 33089, 33092, 33097, 33104, 33106, 33109, 33110, 33112, 33113, 33124, 33126, 33129, 33157, 33161,
  9492. 33172, 33174, 33177, 33189, 33280, 33282, 33288, 33290, 33301, 33312, 33314, 33320, 33322, 33361, 33364, 33369,
  9493. 33381, 33408, 33410, 33416, 33418, 33429, 33440, 33442, 33448, 33450, 33812, 33817, 33857, 33860, 33873, 33877,
  9494. 33882, 33889, 33892, 33897, 33940, 33945, 34049, 34057, 34066, 34069, 34074, 34086, 34089, 34112, 34113, 34117,
  9495. 34120, 34129, 34132, 34133, 34134, 34137, 34138, 34149, 34150, 34152, 34154, 34177, 34180, 34182, 34185, 34192,
  9496. 34194, 34197, 34200, 34214, 34321, 34326, 34329, 34341, 34369, 34372, 34377, 34378, 34384, 34389, 34393, 34394,
  9497. 34401, 34406, 34410, 34437, 34449, 34458, 34468, 34816, 34818, 34824, 34826, 34837, 34848, 34850, 34856, 34858,
  9498. 34881, 34885, 34897, 34900, 34905, 34917, 34921, 34944, 34946, 34952, 34954, 34965, 34976, 34978, 34984, 34986,
  9499. 35077, 35078, 35089, 35092, 35094, 35109, 35137, 35140, 35142, 35145, 35152, 35154, 35157, 35162, 35169, 35172,
  9500. 35205, 35222, 35225, 35237, 35328, 35330, 35336, 35338, 35349, 35360, 35362, 35368, 35370, 35397, 35409, 35412,
  9501. 35414, 35456, 35458, 35464, 35466, 35477, 35488, 35490, 35496, 35498, 36869, 36881, 36886, 36888, 36889, 36901,
  9502. 36929, 36934, 36937, 36949, 36952, 36954, 36969, 36970, 36997, 37009, 37012, 37014, 37017, 37029, 37121, 37124,
  9503. 37126, 37129, 37136, 37141, 37144, 37146, 37153, 37156, 37158, 37161, 37184, 37189, 37200, 37201, 37204, 37205,
  9504. 37206, 37209, 37218, 37221, 37252, 37254, 37266, 37269, 37272, 37281, 37284, 37286, 37289, 37381, 37393, 37396,
  9505. 37401, 37413, 37444, 37446, 37449, 37456, 37458, 37461, 37464, 37478, 37481, 37509, 37524, 37526, 37545, 37889,
  9506. 37892, 37894, 37904, 37909, 37912, 37926, 37952, 37962, 37969, 37972, 37973, 37974, 37976, 37977, 37984, 37985,
  9507. 37986, 37989, 38020, 38022, 38034, 38036, 38037, 38040, 38049, 38057, 38144, 38149, 38152, 38154, 38160, 38161,
  9508. 38164, 38165, 38166, 38169, 38177, 38181, 38185, 38186, 38209, 38212, 38213, 38214, 38217, 38224, 38225, 38226,
  9509. 38228, 38229, 38230, 38232, 38233, 38234, 38241, 38244, 38245, 38246, 38249, 38273, 38277, 38280, 38289, 38290,
  9510. 38292, 38293, 38294, 38297, 38298, 38304, 38306, 38309, 38312, 38314, 38401, 38404, 38416, 38421, 38425, 38432,
  9511. 38438, 38441, 38469, 38472, 38473, 38481, 38482, 38485, 38486, 38489, 38501, 38504, 38530, 38532, 38537, 38538,
  9512. 38546, 38548, 38549, 38564, 38566, 38569, 38917, 38934, 38937, 38949, 38977, 38982, 38992, 38994, 38997, 38998,
  9513. 39002, 39012, 39013, 39045, 39057, 39062, 39065, 39077, 39172, 39174, 39177, 39184, 39186, 39189, 39192, 39194,
  9514. 39200, 39201, 39204, 39206, 39232, 39234, 39237, 39240, 39242, 39249, 39252, 39253, 39254, 39257, 39266, 39269,
  9515. 39270, 39274, 39297, 39300, 39312, 39314, 39317, 39322, 39329, 39334, 39429, 39445, 39461, 39492, 39494, 39497,
  9516. 39504, 39509, 39512, 39521, 39557, 39569, 39572, 39573, 39574, 40960, 40962, 40968, 40970, 40981, 40992, 40994,
  9517. 41000, 41002, 41029, 41041, 41044, 41046, 41049, 41088, 41090, 41096, 41098, 41109, 41120, 41122, 41128, 41130,
  9518. 41221, 41225, 41233, 41236, 41238, 41241, 41242, 41286, 41289, 41297, 41301, 41304, 41306, 41313, 41316, 41349,
  9519. 41360, 41362, 41366, 41369, 41474, 41480, 41482, 41488, 41497, 41506, 41512, 41514, 41541, 41553, 41558, 41561,
  9520. 41573, 41600, 41602, 41608, 41610, 41621, 41632, 41634, 41640, 41642, 42009, 42021, 42049, 42052, 42064, 42068,
  9521. 42069, 42072, 42074, 42081, 42085, 42086, 42088, 42089, 42117, 42246, 42249, 42256, 42258, 42261, 42264, 42278,
  9522. 42281, 42306, 42309, 42321, 42324, 42325, 42326, 42329, 42341, 42346, 42369, 42372, 42373, 42374, 42377, 42386,
  9523. 42389, 42392, 42501, 42513, 42518, 42522, 42529, 42533, 42564, 42566, 42570, 42578, 42581, 42582, 42584, 42592,
  9524. 42594, 42630, 42640, 42645, 42646, 42649, 42657, 42660, 42662, 43008, 43010, 43016, 43018, 43040, 43042, 43048,
  9525. 43050, 43089, 43092, 43094, 43097, 43136, 43138, 43144, 43146, 43157, 43168, 43170, 43176, 43178, 43269, 43284,
  9526. 43289, 43297, 43301, 43329, 43344, 43349, 43354, 43361, 43366, 43369, 43408, 43414, 43520, 43522, 43528, 43530,
  9527. 43552, 43554, 43560, 43562, 43601, 43604, 43606, 43648, 43650, 43656, 43658, 43669, 43680, 43682, 43688, 43690,
  9528. };
  9529. static const uint16_t kgrid_2bit_1024[1024] = {
  9530. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  9531. 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160,
  9532. 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328,
  9533. 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514,
  9534. 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660,
  9535. 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093,
  9536. 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176,
  9537. 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348,
  9538. 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537,
  9539. 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050,
  9540. 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133,
  9541. 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373,
  9542. 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100,
  9543. 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182,
  9544. 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357,
  9545. 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434,
  9546. 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641,
  9547. 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145,
  9548. 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253,
  9549. 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442,
  9550. 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700,
  9551. 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225,
  9552. 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562,
  9553. 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257,
  9554. 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512,
  9555. 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840,
  9556. 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297,
  9557. 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600,
  9558. 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
  9559. 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
  9560. 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
  9561. 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
  9562. 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
  9563. 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
  9564. 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
  9565. 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
  9566. 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
  9567. 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
  9568. 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
  9569. 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
  9570. 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
  9571. 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
  9572. 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
  9573. 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
  9574. 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
  9575. 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
  9576. 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
  9577. 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
  9578. 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
  9579. 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
  9580. 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
  9581. 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
  9582. 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
  9583. 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
  9584. 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
  9585. 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
  9586. 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
  9587. 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
  9588. 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
  9589. 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
  9590. 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
  9591. 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
  9592. 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
  9593. 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
  9594. };
  9595. const int kmap_size = 43692;
  9596. //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  9597. const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
  9598. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  9599. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
  9600. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
  9601. uint64_t * kgrid_q2xs;
  9602. int * kmap_q2xs;
  9603. uint16_t * kneighbors_q2xs;
  9604. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  9605. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  9606. for (int k = 0; k < grid_size; ++k) {
  9607. int8_t * pos = (int8_t *)(the_grid + k);
  9608. for (int i = 0; i < 8; ++i) {
  9609. int l = (kgrid[k] >> 2*i) & 0x3;
  9610. pos[i] = 2*l + 1;
  9611. }
  9612. }
  9613. kgrid_q2xs = the_grid;
  9614. iq2_data[gindex].grid = the_grid;
  9615. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  9616. iq2_data[gindex].map = kmap_q2xs;
  9617. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  9618. uint64_t aux64;
  9619. uint8_t * aux8 = (uint8_t *)&aux64;
  9620. for (int i = 0; i < grid_size; ++i) {
  9621. aux64 = kgrid_q2xs[i];
  9622. uint16_t index = 0;
  9623. for (int k=0; k<8; ++k) {
  9624. uint16_t q = (aux8[k] - 1)/2;
  9625. index |= (q << 2*k);
  9626. }
  9627. kmap_q2xs[index] = i;
  9628. }
  9629. int8_t pos[8];
  9630. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  9631. int num_neighbors = 0, num_not_in_map = 0;
  9632. for (int i = 0; i < kmap_size; ++i) {
  9633. if (kmap_q2xs[i] >= 0) continue;
  9634. ++num_not_in_map;
  9635. for (int k = 0; k < 8; ++k) {
  9636. int l = (i >> 2*k) & 0x3;
  9637. pos[k] = 2*l + 1;
  9638. }
  9639. for (int j = 0; j < grid_size; ++j) {
  9640. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  9641. int d2 = 0;
  9642. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  9643. dist2[2*j+0] = d2;
  9644. dist2[2*j+1] = j;
  9645. }
  9646. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  9647. int n = 0; int d2 = dist2[0];
  9648. int nhave = 1;
  9649. for (int j = 0; j < grid_size; ++j) {
  9650. if (dist2[2*j] > d2) {
  9651. if (nhave == nwant) break;
  9652. d2 = dist2[2*j];
  9653. ++nhave;
  9654. }
  9655. ++n;
  9656. }
  9657. num_neighbors += n;
  9658. }
  9659. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  9660. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  9661. iq2_data[gindex].neighbours = kneighbors_q2xs;
  9662. int counter = 0;
  9663. for (int i = 0; i < kmap_size; ++i) {
  9664. if (kmap_q2xs[i] >= 0) continue;
  9665. for (int k = 0; k < 8; ++k) {
  9666. int l = (i >> 2*k) & 0x3;
  9667. pos[k] = 2*l + 1;
  9668. }
  9669. for (int j = 0; j < grid_size; ++j) {
  9670. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  9671. int d2 = 0;
  9672. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  9673. dist2[2*j+0] = d2;
  9674. dist2[2*j+1] = j;
  9675. }
  9676. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  9677. kmap_q2xs[i] = -(counter + 1);
  9678. int d2 = dist2[0];
  9679. uint16_t * start = &kneighbors_q2xs[counter++];
  9680. int n = 0, nhave = 1;
  9681. for (int j = 0; j < grid_size; ++j) {
  9682. if (dist2[2*j] > d2) {
  9683. if (nhave == nwant) break;
  9684. d2 = dist2[2*j];
  9685. ++nhave;
  9686. }
  9687. kneighbors_q2xs[counter++] = dist2[2*j+1];
  9688. ++n;
  9689. }
  9690. *start = n;
  9691. }
  9692. free(dist2);
  9693. }
  9694. void iq2xs_free_impl(enum ggml_type type) {
  9695. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9696. const int gindex = iq2_data_index(type);
  9697. if (iq2_data[gindex].grid) {
  9698. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  9699. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  9700. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  9701. }
  9702. }
  9703. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  9704. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  9705. int num_neighbors = neighbours[0];
  9706. GGML_ASSERT(num_neighbors > 0);
  9707. float best_d2 = FLT_MAX;
  9708. int grid_index = -1;
  9709. for (int j = 1; j <= num_neighbors; ++j) {
  9710. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  9711. float d2 = 0;
  9712. for (int i = 0; i < 8; ++i) {
  9713. float q = pg[i];
  9714. float diff = scale*q - xval[i];
  9715. d2 += weight[i]*diff*diff;
  9716. }
  9717. if (d2 < best_d2) {
  9718. best_d2 = d2; grid_index = neighbours[j];
  9719. }
  9720. }
  9721. GGML_ASSERT(grid_index >= 0);
  9722. const int8_t * pg = (const int8_t *)(grid + grid_index);
  9723. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  9724. return grid_index;
  9725. }
  9726. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  9727. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  9728. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  9729. const int * kmap_q2xs = iq2_data[gindex].map;
  9730. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  9731. GGML_ASSERT(quant_weights && "missing quantization weights");
  9732. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  9733. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  9734. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  9735. GGML_ASSERT(n%QK_K == 0);
  9736. const int kMaxQ = 3;
  9737. const int64_t nbl = n/QK_K;
  9738. block_iq2_xxs * y = vy;
  9739. float scales[QK_K/32];
  9740. float weight[32];
  9741. float xval[32];
  9742. int8_t L[32];
  9743. int8_t Laux[32];
  9744. float waux[32];
  9745. uint8_t block_signs[4];
  9746. uint32_t q2[2*(QK_K/32)];
  9747. for (int ibl = 0; ibl < nbl; ++ibl) {
  9748. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  9749. memset(q2, 0, QK_K/4);
  9750. float max_scale = 0;
  9751. const float * xbl = x + QK_K*ibl;
  9752. float sumx2 = 0;
  9753. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9754. float sigma2 = sumx2/QK_K;
  9755. for (int ib = 0; ib < QK_K/32; ++ib) {
  9756. const float * xb = xbl + 32*ib;
  9757. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  9758. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9759. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  9760. for (int k = 0; k < 4; ++k) {
  9761. int nflip = 0;
  9762. uint8_t s = 0;
  9763. for (int i = 0; i < 8; ++i) {
  9764. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  9765. else {
  9766. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  9767. }
  9768. }
  9769. if (nflip%2) {
  9770. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  9771. for (int i = 1; i < 8; ++i) {
  9772. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  9773. if (ax < min) {
  9774. min = ax; imin = i;
  9775. }
  9776. }
  9777. xval[8*k+imin] = -xval[8*k+imin];
  9778. s ^= (1 << imin);
  9779. }
  9780. block_signs[k] = s & 127;
  9781. }
  9782. float max = xval[0];
  9783. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  9784. if (max < GROUP_MAX_EPS) {
  9785. scales[ib] = 0;
  9786. memset(L, 0, 32);
  9787. continue;
  9788. }
  9789. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  9790. float eff_max = scale*kMaxQ;
  9791. float best = 0;
  9792. for (int is = -6; is <= 6; ++is) {
  9793. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  9794. float this_scale = 1/id;
  9795. for (int k = 0; k < 4; ++k) {
  9796. for (int i = 0; i < 8; ++i) {
  9797. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  9798. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  9799. }
  9800. uint16_t u = 0;
  9801. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  9802. int grid_index = kmap_q2xs[u];
  9803. if (grid_index < 0) {
  9804. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9805. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  9806. }
  9807. }
  9808. float sumqx = 0, sumq2 = 0;
  9809. for (int i = 0; i < 32; ++i) {
  9810. float w = weight[i];
  9811. float q = 2*Laux[i] + 1;
  9812. sumqx += w*xval[i]*q;
  9813. sumq2 += w*q*q;
  9814. }
  9815. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9816. scale = sumqx/sumq2; best = scale*sumqx;
  9817. memcpy(L, Laux, 32);
  9818. }
  9819. }
  9820. if (scale > 0) {
  9821. float id = 1/scale;
  9822. for (int k = 0; k < 4; ++k) {
  9823. uint16_t u = 0;
  9824. for (int i = 0; i < 8; ++i) {
  9825. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  9826. l = MAX(0, MIN(kMaxQ-1, l));
  9827. u |= (l << 2*i);
  9828. }
  9829. int grid_index = kmap_q2xs[u];
  9830. if (grid_index < 0) {
  9831. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9832. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  9833. }
  9834. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  9835. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  9836. }
  9837. float sumqx = 0, sumq2 = 0;
  9838. for (int i = 0; i < 32; ++i) {
  9839. float w = weight[i];
  9840. float q = 2*L[i] + 1;
  9841. sumqx += w*xval[i]*q;
  9842. sumq2 += w*q*q;
  9843. }
  9844. if (sumq2 > 0) scale = sumqx/sumq2;
  9845. }
  9846. if (scale < 0) {
  9847. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  9848. // and correspondingly flip quant signs.
  9849. scale = -scale;
  9850. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  9851. }
  9852. for (int k = 0; k < 4; ++k) {
  9853. uint16_t u = 0;
  9854. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  9855. int grid_index = kmap_q2xs[u];
  9856. if (grid_index < 0) {
  9857. printf("Oops: found point %u not on grid:", u);
  9858. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  9859. printf("\n");
  9860. GGML_ASSERT(false);
  9861. }
  9862. q2[2*ib+0] |= ((uint32_t) grid_index << 8*k);
  9863. q2[2*ib+1] |= (block_signs[k] << 7*k);
  9864. }
  9865. GGML_ASSERT(scale >= 0);
  9866. scales[ib] = scale;
  9867. max_scale = MAX(max_scale, scale);
  9868. }
  9869. if (!max_scale) {
  9870. memset(y[ibl].qs, 0, QK_K/4);
  9871. continue;
  9872. }
  9873. float d = max_scale/31;
  9874. y[ibl].d = GGML_FP32_TO_FP16(d);
  9875. float id = 1/d;
  9876. for (int ib = 0; ib < QK_K/32; ++ib) {
  9877. int l = nearest_int(0.5f*(id*scales[ib]-1));
  9878. l = MAX(0, MIN(15, l));
  9879. q2[2*ib+1] |= ((uint32_t)l << 28);
  9880. }
  9881. memcpy(y[ibl].qs, q2, QK_K/4);
  9882. }
  9883. }
  9884. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  9885. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  9886. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  9887. const int * kmap_q2xs = iq2_data[gindex].map;
  9888. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  9889. GGML_ASSERT(quant_weights && "missing quantization weights");
  9890. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  9891. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  9892. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  9893. GGML_ASSERT(n%QK_K == 0);
  9894. const int kMaxQ = 3;
  9895. const int64_t nbl = n/QK_K;
  9896. block_iq2_xs * y = vy;
  9897. float scales[QK_K/16];
  9898. float weight[16];
  9899. float xval[16];
  9900. int8_t L[16];
  9901. int8_t Laux[16];
  9902. float waux[16];
  9903. bool is_on_grid[2];
  9904. bool is_on_grid_aux[2];
  9905. uint8_t block_signs[2];
  9906. uint16_t q2[2*(QK_K/16)];
  9907. for (int ibl = 0; ibl < nbl; ++ibl) {
  9908. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  9909. memset(q2, 0, QK_K/4);
  9910. memset(y[ibl].scales, 0, QK_K/32);
  9911. float max_scale = 0;
  9912. const float * xbl = x + QK_K*ibl;
  9913. float sumx2 = 0;
  9914. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9915. float sigma2 = sumx2/QK_K;
  9916. for (int ib = 0; ib < QK_K/16; ++ib) {
  9917. const float * xb = xbl + 16*ib;
  9918. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  9919. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9920. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  9921. for (int k = 0; k < 2; ++k) {
  9922. int nflip = 0;
  9923. uint8_t s = 0;
  9924. for (int i = 0; i < 8; ++i) {
  9925. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  9926. else {
  9927. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  9928. }
  9929. }
  9930. if (nflip%2) {
  9931. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  9932. for (int i = 1; i < 8; ++i) {
  9933. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  9934. if (ax < min) {
  9935. min = ax; imin = i;
  9936. }
  9937. }
  9938. xval[8*k+imin] = -xval[8*k+imin];
  9939. s ^= (1 << imin);
  9940. }
  9941. block_signs[k] = s & 127;
  9942. }
  9943. float max = xval[0];
  9944. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  9945. if (max < GROUP_MAX_EPS) {
  9946. scales[ib] = 0;
  9947. memset(L, 0, 16);
  9948. continue;
  9949. }
  9950. float best = 0;
  9951. float scale = max/(2*kMaxQ-1);
  9952. is_on_grid[0] = is_on_grid[1] = true;
  9953. for (int is = -9; is <= 9; ++is) {
  9954. float id = (2*kMaxQ-1+is*0.1f)/max;
  9955. float this_scale = 1/id;
  9956. for (int k = 0; k < 2; ++k) {
  9957. for (int i = 0; i < 8; ++i) {
  9958. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  9959. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  9960. }
  9961. uint16_t u = 0;
  9962. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  9963. int grid_index = kmap_q2xs[u];
  9964. is_on_grid_aux[k] = true;
  9965. if (grid_index < 0) {
  9966. is_on_grid_aux[k] = false;
  9967. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9968. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  9969. }
  9970. }
  9971. float sumqx = 0, sumq2 = 0;
  9972. for (int i = 0; i < 16; ++i) {
  9973. float w = weight[i];
  9974. float q = 2*Laux[i] + 1;
  9975. sumqx += w*xval[i]*q;
  9976. sumq2 += w*q*q;
  9977. }
  9978. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9979. scale = sumqx/sumq2; best = scale*sumqx;
  9980. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  9981. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  9982. }
  9983. }
  9984. int n_not_ongrid = 0;
  9985. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  9986. if (n_not_ongrid > 0 && scale > 0) {
  9987. float id = 1/scale;
  9988. for (int k = 0; k < 2; ++k) {
  9989. if (is_on_grid[k]) continue;
  9990. uint16_t u = 0;
  9991. for (int i = 0; i < 8; ++i) {
  9992. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  9993. l = MAX(0, MIN(kMaxQ-1, l));
  9994. u |= (l << 2*i);
  9995. L[8*k + i] = l;
  9996. }
  9997. int grid_index = kmap_q2xs[u];
  9998. if (grid_index < 0) {
  9999. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10000. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  10001. }
  10002. }
  10003. float sumqx = 0, sumq2 = 0;
  10004. for (int i = 0; i < 16; ++i) {
  10005. float w = weight[i];
  10006. float q = 2*L[i] + 1;
  10007. sumqx += w*xval[i]*q;
  10008. sumq2 += w*q*q;
  10009. }
  10010. if (sumq2 > 0) scale = sumqx/sumq2;
  10011. }
  10012. if (scale < 0) {
  10013. scale = -scale;
  10014. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10015. }
  10016. for (int k = 0; k < 2; ++k) {
  10017. uint16_t u = 0;
  10018. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  10019. int grid_index = kmap_q2xs[u];
  10020. if (grid_index < 0) {
  10021. printf("Oops: found point %u not on grid:", u);
  10022. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  10023. printf("\n");
  10024. GGML_ASSERT(false);
  10025. }
  10026. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  10027. }
  10028. GGML_ASSERT(scale >= 0);
  10029. scales[ib] = scale;
  10030. max_scale = MAX(max_scale, scale);
  10031. }
  10032. if (!max_scale) {
  10033. memset(y[ibl].qs, 0, QK_K/4);
  10034. continue;
  10035. }
  10036. float d = max_scale/31;
  10037. y[ibl].d = GGML_FP32_TO_FP16(d);
  10038. float id = 1/d;
  10039. for (int ib = 0; ib < QK_K/16; ++ib) {
  10040. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10041. l = MAX(0, MIN(15, l));
  10042. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  10043. else y[ibl].scales[ib/2] |= (l << 4);
  10044. }
  10045. memcpy(y[ibl].qs, q2, QK_K/4);
  10046. }
  10047. }
  10048. size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10049. GGML_ASSERT(n_per_row%QK_K == 0);
  10050. int64_t nblock = n_per_row/QK_K;
  10051. char * qrow = (char *)dst;
  10052. for (int64_t row = 0; row < nrow; ++row) {
  10053. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  10054. src += n_per_row;
  10055. qrow += nblock*sizeof(block_iq2_xxs);
  10056. }
  10057. return nrow * nblock * sizeof(block_iq2_xxs);
  10058. }
  10059. size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10060. GGML_ASSERT(n_per_row%QK_K == 0);
  10061. int64_t nblock = n_per_row/QK_K;
  10062. char * qrow = (char *)dst;
  10063. for (int64_t row = 0; row < nrow; ++row) {
  10064. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  10065. src += n_per_row;
  10066. qrow += nblock*sizeof(block_iq2_xs);
  10067. }
  10068. return nrow * nblock * sizeof(block_iq2_xs);
  10069. }
  10070. //
  10071. // ============================================= 3-bit using D4 lattice
  10072. //
  10073. typedef struct {
  10074. uint32_t * grid;
  10075. int * map;
  10076. uint16_t * neighbours;
  10077. } iq3_entry_t;
  10078. static iq3_entry_t iq3_data[2] = {
  10079. {NULL, NULL, NULL},
  10080. {NULL, NULL, NULL},
  10081. };
  10082. static inline int iq3_data_index(int grid_size) {
  10083. (void)grid_size;
  10084. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  10085. return grid_size == 256 ? 0 : 1;
  10086. }
  10087. static int iq3_compare_func(const void * left, const void * right) {
  10088. const int * l = (const int *)left;
  10089. const int * r = (const int *)right;
  10090. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  10091. }
  10092. void iq3xs_init_impl(int grid_size) {
  10093. const int gindex = iq3_data_index(grid_size);
  10094. if (iq3_data[gindex].grid) {
  10095. return;
  10096. }
  10097. static const uint16_t kgrid_256[256] = {
  10098. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  10099. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  10100. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  10101. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  10102. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  10103. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  10104. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  10105. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  10106. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  10107. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  10108. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  10109. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  10110. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  10111. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  10112. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  10113. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  10114. };
  10115. static const uint16_t kgrid_512[512] = {
  10116. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  10117. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  10118. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  10119. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  10120. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  10121. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  10122. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  10123. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  10124. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  10125. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  10126. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  10127. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  10128. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  10129. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  10130. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  10131. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  10132. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  10133. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  10134. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  10135. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  10136. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  10137. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  10138. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  10139. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  10140. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  10141. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  10142. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  10143. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  10144. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  10145. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  10146. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  10147. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  10148. };
  10149. const int kmap_size = 4096;
  10150. const int nwant = grid_size == 256 ? 2 : 3;
  10151. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  10152. uint32_t * kgrid_q3xs;
  10153. int * kmap_q3xs;
  10154. uint16_t * kneighbors_q3xs;
  10155. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  10156. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  10157. for (int k = 0; k < grid_size; ++k) {
  10158. int8_t * pos = (int8_t *)(the_grid + k);
  10159. for (int i = 0; i < 4; ++i) {
  10160. int l = (kgrid[k] >> 3*i) & 0x7;
  10161. pos[i] = 2*l + 1;
  10162. }
  10163. }
  10164. kgrid_q3xs = the_grid;
  10165. iq3_data[gindex].grid = the_grid;
  10166. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  10167. iq3_data[gindex].map = kmap_q3xs;
  10168. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  10169. uint32_t aux32;
  10170. uint8_t * aux8 = (uint8_t *)&aux32;
  10171. for (int i = 0; i < grid_size; ++i) {
  10172. aux32 = kgrid_q3xs[i];
  10173. uint16_t index = 0;
  10174. for (int k=0; k<4; ++k) {
  10175. uint16_t q = (aux8[k] - 1)/2;
  10176. index |= (q << 3*k);
  10177. }
  10178. kmap_q3xs[index] = i;
  10179. }
  10180. int8_t pos[4];
  10181. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  10182. int num_neighbors = 0, num_not_in_map = 0;
  10183. for (int i = 0; i < kmap_size; ++i) {
  10184. if (kmap_q3xs[i] >= 0) continue;
  10185. ++num_not_in_map;
  10186. for (int k = 0; k < 4; ++k) {
  10187. int l = (i >> 3*k) & 0x7;
  10188. pos[k] = 2*l + 1;
  10189. }
  10190. for (int j = 0; j < grid_size; ++j) {
  10191. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  10192. int d2 = 0;
  10193. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10194. dist2[2*j+0] = d2;
  10195. dist2[2*j+1] = j;
  10196. }
  10197. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  10198. int n = 0; int d2 = dist2[0];
  10199. int nhave = 1;
  10200. for (int j = 0; j < grid_size; ++j) {
  10201. if (dist2[2*j] > d2) {
  10202. if (nhave == nwant) break;
  10203. d2 = dist2[2*j];
  10204. ++nhave;
  10205. }
  10206. ++n;
  10207. }
  10208. num_neighbors += n;
  10209. }
  10210. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  10211. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  10212. iq3_data[gindex].neighbours = kneighbors_q3xs;
  10213. int counter = 0;
  10214. for (int i = 0; i < kmap_size; ++i) {
  10215. if (kmap_q3xs[i] >= 0) continue;
  10216. for (int k = 0; k < 4; ++k) {
  10217. int l = (i >> 3*k) & 0x7;
  10218. pos[k] = 2*l + 1;
  10219. }
  10220. for (int j = 0; j < grid_size; ++j) {
  10221. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  10222. int d2 = 0;
  10223. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10224. dist2[2*j+0] = d2;
  10225. dist2[2*j+1] = j;
  10226. }
  10227. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  10228. kmap_q3xs[i] = -(counter + 1);
  10229. int d2 = dist2[0];
  10230. uint16_t * start = &kneighbors_q3xs[counter++];
  10231. int n = 0, nhave = 1;
  10232. for (int j = 0; j < grid_size; ++j) {
  10233. if (dist2[2*j] > d2) {
  10234. if (nhave == nwant) break;
  10235. d2 = dist2[2*j];
  10236. ++nhave;
  10237. }
  10238. kneighbors_q3xs[counter++] = dist2[2*j+1];
  10239. ++n;
  10240. }
  10241. *start = n;
  10242. }
  10243. free(dist2);
  10244. }
  10245. void iq3xs_free_impl(int grid_size) {
  10246. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  10247. const int gindex = iq3_data_index(grid_size);
  10248. if (iq3_data[gindex].grid) {
  10249. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  10250. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  10251. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  10252. }
  10253. }
  10254. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  10255. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  10256. int num_neighbors = neighbours[0];
  10257. GGML_ASSERT(num_neighbors > 0);
  10258. float best_d2 = FLT_MAX;
  10259. int grid_index = -1;
  10260. for (int j = 1; j <= num_neighbors; ++j) {
  10261. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10262. float d2 = 0;
  10263. for (int i = 0; i < 4; ++i) {
  10264. float q = pg[i];
  10265. float diff = scale*q - xval[i];
  10266. d2 += weight[i]*diff*diff;
  10267. }
  10268. if (d2 < best_d2) {
  10269. best_d2 = d2; grid_index = neighbours[j];
  10270. }
  10271. }
  10272. GGML_ASSERT(grid_index >= 0);
  10273. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10274. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  10275. return grid_index;
  10276. }
  10277. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int64_t n,
  10278. const float * restrict quant_weights) {
  10279. const int gindex = iq3_data_index(grid_size);
  10280. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  10281. const int * kmap_q3xs = iq3_data[gindex].map;
  10282. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  10283. //GGML_ASSERT(quant_weights && "missing quantization weights");
  10284. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  10285. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  10286. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  10287. GGML_ASSERT(n%QK_K == 0);
  10288. const int kMaxQ = 8;
  10289. const int64_t nbl = n/QK_K;
  10290. ggml_fp16_t * dh;
  10291. uint8_t * qs;
  10292. int block_size;
  10293. if (grid_size == 256) {
  10294. block_iq3_xxs * y = vy;
  10295. dh = &y->d;
  10296. qs = y->qs;
  10297. block_size = sizeof(block_iq3_xxs);
  10298. } else {
  10299. block_iq3_s * y = vy;
  10300. dh = &y->d;
  10301. qs = y->qs;
  10302. block_size = sizeof(block_iq3_s);
  10303. }
  10304. int quant_size = block_size - sizeof(ggml_fp16_t);
  10305. float scales[QK_K/32];
  10306. float weight[32];
  10307. float xval[32];
  10308. int8_t L[32];
  10309. int8_t Laux[32];
  10310. float waux[32];
  10311. bool is_on_grid[8];
  10312. bool is_on_grid_aux[8];
  10313. uint8_t block_signs[8];
  10314. uint8_t q3[3*(QK_K/8)+QK_K/32];
  10315. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  10316. uint8_t * qh = q3 + 3*(QK_K/8);
  10317. for (int ibl = 0; ibl < nbl; ++ibl) {
  10318. dh[0] = GGML_FP32_TO_FP16(0.f);
  10319. memset(q3, 0, 3*QK_K/8+QK_K/32);
  10320. float max_scale = 0;
  10321. const float * xbl = x + QK_K*ibl;
  10322. float sumx2 = 0;
  10323. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10324. float sigma2 = 2*sumx2/QK_K;
  10325. for (int ib = 0; ib < QK_K/32; ++ib) {
  10326. const float * xb = xbl + 32*ib;
  10327. if (quant_weights) {
  10328. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  10329. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10330. } else {
  10331. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  10332. }
  10333. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  10334. for (int k = 0; k < 4; ++k) {
  10335. int nflip = 0;
  10336. uint8_t s = 0;
  10337. for (int i = 0; i < 8; ++i) {
  10338. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10339. else {
  10340. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10341. }
  10342. }
  10343. if (nflip%2) {
  10344. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10345. for (int i = 1; i < 8; ++i) {
  10346. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10347. if (ax < min) {
  10348. min = ax; imin = i;
  10349. }
  10350. }
  10351. xval[8*k+imin] = -xval[8*k+imin];
  10352. s ^= (1 << imin);
  10353. }
  10354. block_signs[k] = s & 127;
  10355. }
  10356. float max = xval[0];
  10357. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  10358. if (max < GROUP_MAX_EPS_IQ3_XXS) {
  10359. scales[ib] = 0;
  10360. memset(L, 0, 32);
  10361. continue;
  10362. }
  10363. float best = 0;
  10364. float scale = max/(2*kMaxQ-1);
  10365. for (int is = -15; is <= 15; ++is) {
  10366. float id = (2*kMaxQ-1+is*0.2f)/max;
  10367. float this_scale = 1/id;
  10368. for (int k = 0; k < 8; ++k) {
  10369. for (int i = 0; i < 4; ++i) {
  10370. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10371. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10372. }
  10373. uint16_t u = 0;
  10374. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  10375. int grid_index = kmap_q3xs[u];
  10376. is_on_grid_aux[k] = true;
  10377. if (grid_index < 0) {
  10378. is_on_grid_aux[k] = false;
  10379. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10380. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  10381. }
  10382. }
  10383. float sumqx = 0, sumq2 = 0;
  10384. for (int i = 0; i < 32; ++i) {
  10385. float w = weight[i];
  10386. float q = 2*Laux[i] + 1;
  10387. sumqx += w*xval[i]*q;
  10388. sumq2 += w*q*q;
  10389. }
  10390. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10391. scale = sumqx/sumq2; best = scale*sumqx;
  10392. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  10393. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10394. }
  10395. }
  10396. int n_not_ongrid = 0;
  10397. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10398. if (n_not_ongrid > 0 && scale > 0) {
  10399. float id = 1/scale;
  10400. for (int k = 0; k < 8; ++k) {
  10401. if (is_on_grid[k]) continue;
  10402. uint16_t u = 0;
  10403. for (int i = 0; i < 4; ++i) {
  10404. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10405. l = MAX(0, MIN(kMaxQ-1, l));
  10406. u |= (l << 3*i);
  10407. }
  10408. int grid_index = kmap_q3xs[u];
  10409. if (grid_index < 0) {
  10410. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10411. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  10412. }
  10413. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  10414. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  10415. }
  10416. float sumqx = 0, sumq2 = 0;
  10417. for (int i = 0; i < 32; ++i) {
  10418. float w = weight[i];
  10419. float q = 2*L[i] + 1;
  10420. sumqx += w*xval[i]*q;
  10421. sumq2 += w*q*q;
  10422. }
  10423. if (sumq2 > 0) scale = sumqx/sumq2;
  10424. }
  10425. if (scale < 0) {
  10426. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  10427. // and correspondingly flip quant signs.
  10428. scale = -scale;
  10429. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10430. }
  10431. for (int k = 0; k < 8; ++k) {
  10432. uint16_t u = 0;
  10433. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  10434. int grid_index = kmap_q3xs[u];
  10435. if (grid_index < 0) {
  10436. printf("Oops: found point %u not on grid:", u);
  10437. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  10438. printf("\n");
  10439. GGML_ASSERT(false);
  10440. }
  10441. if (grid_size == 256) {
  10442. q3[8*ib+k] = grid_index;
  10443. } else {
  10444. q3[8*ib+k] = grid_index & 255;
  10445. qh[ib] |= ((grid_index >> 8) << k);
  10446. }
  10447. }
  10448. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  10449. GGML_ASSERT(scale >= 0);
  10450. scales[ib] = scale;
  10451. max_scale = MAX(max_scale, scale);
  10452. }
  10453. if (!max_scale) {
  10454. memset(qs, 0, quant_size);
  10455. dh += block_size/sizeof(ggml_fp16_t);
  10456. qs += block_size;
  10457. continue;
  10458. }
  10459. float d = max_scale/31;
  10460. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  10461. float id = 1/d;
  10462. for (int ib = 0; ib < QK_K/32; ++ib) {
  10463. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10464. l = MAX(0, MIN(15, l));
  10465. scales_and_signs[ib] |= ((uint32_t)l << 28);
  10466. }
  10467. memcpy(qs, q3, quant_size);
  10468. dh += block_size/sizeof(ggml_fp16_t);
  10469. qs += block_size;
  10470. }
  10471. }
  10472. size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10473. GGML_ASSERT(n_per_row%QK_K == 0);
  10474. int64_t nblock = n_per_row/QK_K;
  10475. char * qrow = (char *)dst;
  10476. for (int64_t row = 0; row < nrow; ++row) {
  10477. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  10478. src += n_per_row;
  10479. qrow += nblock*sizeof(block_iq3_xxs);
  10480. }
  10481. return nrow * nblock * sizeof(block_iq3_xxs);
  10482. }
  10483. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int64_t k) {
  10484. assert(k % QK_K == 0);
  10485. block_iq3_xxs * restrict y = vy;
  10486. quantize_row_iq3_xxs_reference(x, y, k);
  10487. }
  10488. void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int64_t k) {
  10489. assert(k % QK_K == 0);
  10490. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  10491. }
  10492. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  10493. const float * restrict quant_weights,
  10494. float * scales,
  10495. float * weight,
  10496. float * xval,
  10497. int8_t * L,
  10498. int8_t * Laux,
  10499. float * waux,
  10500. bool * is_on_grid,
  10501. bool * is_on_grid_aux,
  10502. uint8_t * block_signs) {
  10503. const int gindex = iq3_data_index(512);
  10504. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  10505. const int * kmap_q3xs = iq3_data[gindex].map;
  10506. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  10507. //GGML_ASSERT(quant_weights && "missing quantization weights");
  10508. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  10509. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  10510. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  10511. GGML_ASSERT(n%QK_K == 0);
  10512. const int kMaxQ = 8;
  10513. const int64_t nbl = n/QK_K;
  10514. block_iq3_s * y = vy;
  10515. const int bs4 = block_size/4;
  10516. const int bs8 = block_size/8;
  10517. for (int ibl = 0; ibl < nbl; ++ibl) {
  10518. memset(&y[ibl], 0, sizeof(block_iq3_s));
  10519. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10520. uint8_t * qs = y[ibl].qs;
  10521. uint8_t * qh = y[ibl].qh;
  10522. uint8_t * signs = y[ibl].signs;
  10523. float max_scale = 0;
  10524. const float * xbl = x + QK_K*ibl;
  10525. float sumx2 = 0;
  10526. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10527. float sigma2 = 2*sumx2/QK_K;
  10528. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  10529. const float * xb = xbl + block_size*ib;
  10530. if (quant_weights) {
  10531. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  10532. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10533. } else {
  10534. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  10535. }
  10536. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  10537. for (int k = 0; k < bs8; ++k) {
  10538. uint8_t s = 0;
  10539. for (int i = 0; i < 8; ++i) {
  10540. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10541. else {
  10542. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  10543. }
  10544. }
  10545. block_signs[k] = s;
  10546. }
  10547. float max = xval[0];
  10548. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  10549. if (!max) {
  10550. scales[ib] = 0;
  10551. continue;
  10552. }
  10553. float best = 0;
  10554. float scale = max/(2*kMaxQ-1);
  10555. for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
  10556. for (int is = -9; is <= 9; ++is) {
  10557. float id = (2*kMaxQ-1+is*0.2f)/max;
  10558. float this_scale = 1/id;
  10559. for (int k = 0; k < bs4; ++k) {
  10560. for (int i = 0; i < 4; ++i) {
  10561. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10562. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10563. }
  10564. uint16_t u = 0;
  10565. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  10566. int grid_index = kmap_q3xs[u];
  10567. is_on_grid_aux[k] = true;
  10568. if (grid_index < 0) {
  10569. is_on_grid_aux[k] = false;
  10570. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10571. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  10572. }
  10573. }
  10574. float sumqx = 0, sumq2 = 0;
  10575. for (int i = 0; i < block_size; ++i) {
  10576. float w = weight[i];
  10577. float q = 2*Laux[i] + 1;
  10578. sumqx += w*xval[i]*q;
  10579. sumq2 += w*q*q;
  10580. }
  10581. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10582. scale = sumqx/sumq2; best = scale*sumqx;
  10583. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  10584. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10585. }
  10586. }
  10587. int n_not_ongrid = 0;
  10588. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10589. if (n_not_ongrid > 0 && scale > 0) {
  10590. float id = 1/scale;
  10591. for (int k = 0; k < bs4; ++k) {
  10592. //if (is_on_grid[k]) continue;
  10593. uint16_t u = 0;
  10594. for (int i = 0; i < 4; ++i) {
  10595. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10596. l = MAX(0, MIN(kMaxQ-1, l));
  10597. u |= (l << 3*i);
  10598. }
  10599. int grid_index = kmap_q3xs[u];
  10600. if (grid_index < 0) {
  10601. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10602. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  10603. }
  10604. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  10605. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  10606. }
  10607. float sumqx = 0, sumq2 = 0;
  10608. for (int i = 0; i < block_size; ++i) {
  10609. float w = weight[i];
  10610. float q = 2*L[i] + 1;
  10611. sumqx += w*xval[i]*q;
  10612. sumq2 += w*q*q;
  10613. }
  10614. if (sumq2 > 0) scale = sumqx/sumq2;
  10615. }
  10616. if (scale < 0) {
  10617. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  10618. // and correspondingly flip quant signs.
  10619. scale = -scale;
  10620. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  10621. }
  10622. for (int k = 0; k < bs4; ++k) {
  10623. uint16_t u = 0;
  10624. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  10625. int grid_index = kmap_q3xs[u];
  10626. if (grid_index < 0) {
  10627. printf("Oops: found point %u not on grid:", u);
  10628. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  10629. printf("\n");
  10630. GGML_ASSERT(false);
  10631. }
  10632. qs[k] = grid_index & 255;
  10633. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  10634. }
  10635. qs += bs4;
  10636. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  10637. signs += bs8;
  10638. GGML_ASSERT(scale >= 0);
  10639. scales[ib] = scale;
  10640. max_scale = MAX(max_scale, scale);
  10641. }
  10642. if (!max_scale) {
  10643. continue;
  10644. }
  10645. float d = max_scale/31;
  10646. y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
  10647. float id = 1/d;
  10648. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  10649. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  10650. l1 = MAX(0, MIN(15, l1));
  10651. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  10652. l2 = MAX(0, MIN(15, l2));
  10653. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  10654. }
  10655. }
  10656. }
  10657. #define IQ3S_BLOCK_SIZE 32
  10658. size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10659. GGML_ASSERT(n_per_row%QK_K == 0);
  10660. int64_t nblock = n_per_row/QK_K;
  10661. float scales[QK_K/IQ3S_BLOCK_SIZE];
  10662. float weight[IQ3S_BLOCK_SIZE];
  10663. float xval[IQ3S_BLOCK_SIZE];
  10664. int8_t L[IQ3S_BLOCK_SIZE];
  10665. int8_t Laux[IQ3S_BLOCK_SIZE];
  10666. float waux[IQ3S_BLOCK_SIZE];
  10667. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  10668. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  10669. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  10670. char * qrow = (char *)dst;
  10671. for (int64_t row = 0; row < nrow; ++row) {
  10672. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  10673. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  10674. src += n_per_row;
  10675. qrow += nblock*sizeof(block_iq3_s);
  10676. }
  10677. return nrow * nblock * sizeof(block_iq3_s);
  10678. }
  10679. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int64_t k) {
  10680. assert(k % QK_K == 0);
  10681. block_iq3_s * restrict y = vy;
  10682. quantize_row_iq3_s_reference(x, y, k);
  10683. }
  10684. void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int64_t k) {
  10685. assert(k % QK_K == 0);
  10686. quantize_iq3_s(x, y, 1, k, NULL);
  10687. }
  10688. // =================================== 1.5 bpw ===================================================
  10689. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  10690. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  10691. int num_neighbors = neighbours[0];
  10692. GGML_ASSERT(num_neighbors > 0);
  10693. float best_score = -FLT_MAX;
  10694. int grid_index = -1;
  10695. for (int j = 1; j <= num_neighbors; ++j) {
  10696. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10697. float sumqx = 0, sumq2 = 0;
  10698. for (int i = 0; i < 8; ++i) {
  10699. float q = (pg[i] - 3)/2;
  10700. float w = weight[i];
  10701. sumqx += w*q*xval[i];
  10702. sumq2 += w*q*q;
  10703. }
  10704. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  10705. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  10706. grid_index = neighbours[j];
  10707. }
  10708. }
  10709. if (grid_index < 0) {
  10710. for (int i = 0; i < ngrid; ++i) {
  10711. const int8_t * grid_i = (const int8_t *)(grid + i);
  10712. float sumqx = 0, sumq2 = 0;
  10713. for (int j = 0; j < 8; ++j) {
  10714. float w = weight[j];
  10715. float q = (grid_i[j] - 3)/2;
  10716. sumqx += w*q*xval[j];
  10717. sumq2 += w*q*q;
  10718. }
  10719. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  10720. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  10721. grid_index = i;
  10722. }
  10723. }
  10724. }
  10725. if (grid_index < 0) {
  10726. printf("Oops, did not find grid point\n");
  10727. printf("Have %d neighbours\n", num_neighbors);
  10728. for (int j = 1; j <= num_neighbors; ++j) {
  10729. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10730. float sumqx = 0, sumq2 = 0;
  10731. for (int i = 0; i < 8; ++i) {
  10732. float q = (pg[i] - 3)/2;
  10733. float w = weight[i];
  10734. sumqx += w*q*xval[i];
  10735. sumq2 += w*q*q;
  10736. }
  10737. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  10738. }
  10739. }
  10740. GGML_ASSERT(grid_index >= 0);
  10741. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  10742. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  10743. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  10744. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10745. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  10746. return grid_index;
  10747. }
  10748. static int iq1_find_best_neighbour2(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  10749. const float * restrict xval, const float * restrict weight, float scale, const float * restrict xg, int8_t * restrict L, int ngrid) {
  10750. int num_neighbors = neighbours[0];
  10751. GGML_ASSERT(num_neighbors > 0);
  10752. float best_score = FLT_MAX;
  10753. int grid_index = -1;
  10754. for (int j = 1; j <= num_neighbors; ++j) {
  10755. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10756. float d2 = 0;
  10757. for (int i = 0; i < 8; ++i) {
  10758. float q = xg[(pg[i] - 1)/2];
  10759. float w = weight[i];
  10760. float diff = scale*q - xval[i];
  10761. d2 += w*diff*diff;
  10762. }
  10763. if (d2 < best_score) {
  10764. best_score = d2;
  10765. grid_index = neighbours[j];
  10766. }
  10767. }
  10768. if (grid_index < 0) {
  10769. for (int i = 0; i < ngrid; ++i) {
  10770. const int8_t * grid_i = (const int8_t *)(grid + i);
  10771. float d2 = 0;
  10772. for (int j = 0; j < 8; ++j) {
  10773. float w = weight[j];
  10774. float q = xg[(grid_i[j] - 1)/2];
  10775. float diff = scale*q - xval[i];
  10776. d2 += w*diff*diff;
  10777. }
  10778. if (d2 < best_score) {
  10779. best_score = d2;
  10780. grid_index = i;
  10781. }
  10782. }
  10783. }
  10784. if (grid_index < 0) {
  10785. printf("Oops, did not find grid point\n");
  10786. printf("Have %d neighbours\n", num_neighbors);
  10787. for (int j = 1; j <= num_neighbors; ++j) {
  10788. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10789. float sumqx = 0, sumq2 = 0;
  10790. for (int i = 0; i < 8; ++i) {
  10791. float q = xg[(pg[i] - 1)/2];
  10792. float w = weight[i];
  10793. sumqx += w*q*xval[i];
  10794. sumq2 += w*q*q;
  10795. }
  10796. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  10797. }
  10798. }
  10799. GGML_ASSERT(grid_index >= 0);
  10800. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10801. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  10802. return grid_index;
  10803. }
  10804. static int iq1_sort_helper(const void * left, const void * right) {
  10805. const float * l = left;
  10806. const float * r = right;
  10807. return *l < *r ? -1 : *l > *r ? 1 : 0;
  10808. }
  10809. #define IQ1S_BLOCK_SIZE 32
  10810. #define IQ1M_BLOCK_SIZE 16
  10811. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  10812. float * scales,
  10813. float * weight,
  10814. float * sumx,
  10815. float * sumw,
  10816. float * pairs,
  10817. int8_t * L,
  10818. uint16_t * index,
  10819. int8_t * shifts) {
  10820. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  10821. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10822. const int * kmap_q2xs = iq2_data[gindex].map;
  10823. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10824. GGML_ASSERT(quant_weights && "missing quantization weights");
  10825. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10826. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10827. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10828. GGML_ASSERT(n%QK_K == 0);
  10829. block_iq1_s * y = vy;
  10830. const int64_t nbl = n/QK_K;
  10831. const int block_size = IQ1S_BLOCK_SIZE;
  10832. const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
  10833. const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
  10834. int * idx = (int *)(pairs + 1);
  10835. for (int ibl = 0; ibl < nbl; ++ibl) {
  10836. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10837. memset(y[ibl].qs, 0, QK_K/8);
  10838. memset(y[ibl].qh, 0, QK_K/16);
  10839. float max_scale = 0;
  10840. const float * xbl = x + QK_K*ibl;
  10841. float sumx2 = 0;
  10842. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10843. float sigma2 = 2*sumx2/QK_K;
  10844. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  10845. const float * xb = xbl + block_size*ib;
  10846. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  10847. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10848. float max = fabsf(xb[0]);
  10849. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  10850. if (max < GROUP_MAX_EPS_IQ1_S) {
  10851. scales[ib] = 0;
  10852. memset(L, 1, block_size);
  10853. continue;
  10854. }
  10855. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  10856. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  10857. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  10858. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  10859. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  10860. // for each possible and score for each split.
  10861. for (int j = 0; j < block_size; ++j) {
  10862. pairs[2*j] = xb[j];
  10863. idx[2*j] = j;
  10864. }
  10865. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  10866. {
  10867. sumx[0] = sumw[0] = 0;
  10868. for (int j = 0; j < block_size; ++j) {
  10869. int i = idx[2*j];
  10870. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  10871. sumw[j+1] = sumw[j] + weight[i];
  10872. }
  10873. }
  10874. float best_score = -FLT_MIN, scale = max;
  10875. int besti1 = -1, besti2 = -1, best_shift = 0;
  10876. for (int i1 = 0; i1 <= block_size; ++i1) {
  10877. for (int i2 = i1; i2 <= block_size; ++i2) {
  10878. float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
  10879. float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
  10880. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  10881. scale = sumqx/sumq2; best_score = scale*sumqx;
  10882. besti1 = i1; besti2 = i2; best_shift = 1;
  10883. }
  10884. sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
  10885. sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
  10886. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  10887. scale = sumqx/sumq2; best_score = scale*sumqx;
  10888. besti1 = i1; besti2 = i2; best_shift = -1;
  10889. }
  10890. }
  10891. }
  10892. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
  10893. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  10894. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  10895. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  10896. if (scale < 0) {
  10897. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  10898. scale = -scale; best_shift = -best_shift;
  10899. }
  10900. bool all_on_grid = true;
  10901. const float * xx = best_shift == 1 ? x_p : x_m;
  10902. for (int k = 0; k < block_size/8; ++k) {
  10903. uint16_t u = 0;
  10904. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  10905. int grid_index = kmap_q2xs[u];
  10906. if (grid_index < 0) {
  10907. all_on_grid = false;
  10908. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10909. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  10910. GGML_ASSERT(grid_index >= 0);
  10911. }
  10912. index[k] = grid_index;
  10913. }
  10914. if (!all_on_grid) {
  10915. float sumqx = 0, sumq2 = 0;
  10916. for (int k = 0; k < block_size/8; ++k) {
  10917. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  10918. for (int j = 0; j < 8; ++j) {
  10919. float w = weight[8*k + j];
  10920. float q = xx[(pg[j] - 1)/2];
  10921. sumqx += w*q*xb[8*k+j];
  10922. sumq2 += w*q*q;
  10923. }
  10924. }
  10925. if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
  10926. }
  10927. uint16_t h = 0;
  10928. for (int k = 0; k < block_size/8; ++k) {
  10929. y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
  10930. h |= (index[k] >> 8) << 3*k;
  10931. }
  10932. y[ibl].qh[ib] = h;
  10933. GGML_ASSERT(scale >= 0);
  10934. scales[ib] = scale;
  10935. shifts[ib] = best_shift;
  10936. max_scale = MAX(max_scale, scale);
  10937. }
  10938. if (!max_scale) {
  10939. continue;
  10940. }
  10941. float d = max_scale/15;
  10942. y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
  10943. float id = 1/d;
  10944. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  10945. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10946. l = MAX(0, MIN(7, l));
  10947. if (shifts[ib] == -1) l |= 8;
  10948. y[ibl].qh[ib] |= (l << 12);
  10949. }
  10950. }
  10951. }
  10952. size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10953. GGML_ASSERT(n_per_row%QK_K == 0);
  10954. float scales[QK_K/IQ1S_BLOCK_SIZE];
  10955. float weight[IQ1S_BLOCK_SIZE];
  10956. int8_t L[IQ1S_BLOCK_SIZE];
  10957. float sumx[IQ1S_BLOCK_SIZE+1];
  10958. float sumw[IQ1S_BLOCK_SIZE+1];
  10959. float pairs[2*IQ1S_BLOCK_SIZE];
  10960. uint16_t index[IQ1S_BLOCK_SIZE/8];
  10961. int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
  10962. int64_t nblock = n_per_row/QK_K;
  10963. char * qrow = (char *)dst;
  10964. for (int64_t row = 0; row < nrow; ++row) {
  10965. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
  10966. src += n_per_row;
  10967. qrow += nblock*sizeof(block_iq1_s);
  10968. }
  10969. return nrow * nblock * sizeof(block_iq1_s);
  10970. }
  10971. static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  10972. float * scales,
  10973. float * weight,
  10974. float * pairs,
  10975. int8_t * L,
  10976. uint16_t * index,
  10977. int8_t * shifts) {
  10978. const int gindex = iq2_data_index(GGML_TYPE_IQ1_M);
  10979. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10980. const int * kmap_q2xs = iq2_data[gindex].map;
  10981. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10982. //GGML_ASSERT(quant_weights && "missing quantization weights");
  10983. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10984. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10985. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10986. GGML_ASSERT(n%QK_K == 0);
  10987. block_iq1_m * y = vy;
  10988. const int64_t nbl = n/QK_K;
  10989. const int block_size = IQ1M_BLOCK_SIZE;
  10990. const float x_p[3] = {-1 + IQ1M_DELTA, IQ1M_DELTA, 1 + IQ1M_DELTA};
  10991. const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA};
  10992. const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88};
  10993. int * idx = (int *)(pairs + 1);
  10994. float sumqx[4], sumq2[4];
  10995. iq1m_scale_t s;
  10996. const float * xx;
  10997. for (int ibl = 0; ibl < nbl; ++ibl) {
  10998. memset(y[ibl].qs, 0, QK_K/8);
  10999. memset(y[ibl].qh, 0, QK_K/16);
  11000. memset(y[ibl].scales, 0, QK_K/32);
  11001. float max_scale = 0;
  11002. const float * xbl = x + QK_K*ibl;
  11003. float sumx2 = 0;
  11004. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11005. float sigma2 = 2*sumx2/QK_K;
  11006. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11007. const float * xb = xbl + block_size*ib;
  11008. if (quant_weights) {
  11009. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11010. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11011. } else {
  11012. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11013. }
  11014. float max = fabsf(xb[0]);
  11015. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  11016. if (max < GROUP_MAX_EPS_IQ1_M) {
  11017. scales[ib] = 0;
  11018. memset(L, 1, block_size);
  11019. continue;
  11020. }
  11021. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  11022. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  11023. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  11024. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  11025. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  11026. // for each possible and score for each split.
  11027. for (int j = 0; j < block_size; ++j) {
  11028. pairs[2*j] = xb[j];
  11029. idx[2*j] = j;
  11030. }
  11031. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  11032. float best_score = -FLT_MIN, scale = max;
  11033. int besti1 = -1, besti2 = -1, best_k = -1;
  11034. // 0: +, +
  11035. // 1: +, -
  11036. // 2: -, +
  11037. // 3: -, -
  11038. for (int i1 = 0; i1 <= block_size; ++i1) {
  11039. for (int i2 = i1; i2 <= block_size; ++i2) {
  11040. memset(sumqx, 0, 4*sizeof(float));
  11041. memset(sumq2, 0, 4*sizeof(float));
  11042. for (int j = 0; j < i1; ++j) {
  11043. int i = idx[2*j];
  11044. if (i < block_size/2) {
  11045. sumqx[0] += weight[i]*x_p[0]*xb[i];
  11046. sumqx[1] += weight[i]*x_p[0]*xb[i];
  11047. sumqx[2] += weight[i]*x_m[0]*xb[i];
  11048. sumqx[3] += weight[i]*x_m[0]*xb[i];
  11049. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  11050. sumq2[1] += weight[i]*x_p[0]*x_p[0];
  11051. sumq2[2] += weight[i]*x_m[0]*x_m[0];
  11052. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  11053. } else {
  11054. sumqx[0] += weight[i]*x_p[0]*xb[i];
  11055. sumqx[2] += weight[i]*x_p[0]*xb[i];
  11056. sumqx[1] += weight[i]*x_m[0]*xb[i];
  11057. sumqx[3] += weight[i]*x_m[0]*xb[i];
  11058. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  11059. sumq2[2] += weight[i]*x_p[0]*x_p[0];
  11060. sumq2[1] += weight[i]*x_m[0]*x_m[0];
  11061. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  11062. }
  11063. }
  11064. for (int j = i1; j < i2; ++j) {
  11065. int i = idx[2*j];
  11066. if (i < block_size/2) {
  11067. sumqx[0] += weight[i]*x_p[1]*xb[i];
  11068. sumqx[1] += weight[i]*x_p[1]*xb[i];
  11069. sumqx[2] += weight[i]*x_m[1]*xb[i];
  11070. sumqx[3] += weight[i]*x_m[1]*xb[i];
  11071. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  11072. sumq2[1] += weight[i]*x_p[1]*x_p[1];
  11073. sumq2[2] += weight[i]*x_m[1]*x_m[1];
  11074. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  11075. } else {
  11076. sumqx[0] += weight[i]*x_p[1]*xb[i];
  11077. sumqx[2] += weight[i]*x_p[1]*xb[i];
  11078. sumqx[1] += weight[i]*x_m[1]*xb[i];
  11079. sumqx[3] += weight[i]*x_m[1]*xb[i];
  11080. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  11081. sumq2[2] += weight[i]*x_p[1]*x_p[1];
  11082. sumq2[1] += weight[i]*x_m[1]*x_m[1];
  11083. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  11084. }
  11085. }
  11086. for (int j = i2; j < block_size; ++j) {
  11087. int i = idx[2*j];
  11088. if (i < block_size/2) {
  11089. sumqx[0] += weight[i]*x_p[2]*xb[i];
  11090. sumqx[1] += weight[i]*x_p[2]*xb[i];
  11091. sumqx[2] += weight[i]*x_m[2]*xb[i];
  11092. sumqx[3] += weight[i]*x_m[2]*xb[i];
  11093. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  11094. sumq2[1] += weight[i]*x_p[2]*x_p[2];
  11095. sumq2[2] += weight[i]*x_m[2]*x_m[2];
  11096. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  11097. } else {
  11098. sumqx[0] += weight[i]*x_p[2]*xb[i];
  11099. sumqx[2] += weight[i]*x_p[2]*xb[i];
  11100. sumqx[1] += weight[i]*x_m[2]*xb[i];
  11101. sumqx[3] += weight[i]*x_m[2]*xb[i];
  11102. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  11103. sumq2[2] += weight[i]*x_p[2]*x_p[2];
  11104. sumq2[1] += weight[i]*x_m[2]*x_m[2];
  11105. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  11106. }
  11107. }
  11108. for (int k = 0; k < 4; ++k) {
  11109. if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) {
  11110. scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k];
  11111. besti1 = i1; besti2 = i2; best_k = k;
  11112. }
  11113. }
  11114. }
  11115. }
  11116. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0);
  11117. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  11118. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  11119. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  11120. if (scale < 0) {
  11121. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  11122. scale = -scale;
  11123. best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0;
  11124. }
  11125. bool all_on_grid = true;
  11126. for (int k = 0; k < block_size/8; ++k) {
  11127. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  11128. else xx = best_k%2 == 0 ? x_p : x_m;
  11129. uint16_t u = 0;
  11130. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  11131. int grid_index = kmap_q2xs[u];
  11132. if (grid_index < 0) {
  11133. all_on_grid = false;
  11134. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11135. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  11136. GGML_ASSERT(grid_index >= 0);
  11137. }
  11138. index[k] = grid_index;
  11139. }
  11140. if (!all_on_grid) {
  11141. float sumqx_f = 0, sumq2_f = 0;
  11142. for (int k = 0; k < block_size/8; ++k) {
  11143. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  11144. else xx = best_k%2 == 0 ? x_p : x_m;
  11145. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  11146. for (int j = 0; j < 8; ++j) {
  11147. float w = weight[8*k + j];
  11148. float q = xx[(pg[j] - 1)/2];
  11149. sumqx_f += w*q*xb[8*k+j];
  11150. sumq2_f += w*q*q;
  11151. }
  11152. }
  11153. if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f;
  11154. }
  11155. y[ibl].qs[2*ib + 0] = index[0] & 255;
  11156. y[ibl].qs[2*ib + 1] = index[1] & 255;
  11157. y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
  11158. GGML_ASSERT(scale >= 0);
  11159. scales[ib] = scale;
  11160. shifts[ib] = best_k;
  11161. max_scale = MAX(max_scale, scale);
  11162. }
  11163. if (!max_scale) {
  11164. continue;
  11165. }
  11166. uint16_t * sc = (uint16_t *)y[ibl].scales;
  11167. float d = max_scale/15;
  11168. float id = 1/d;
  11169. float sumqx_f = 0, sumq2_f = 0;
  11170. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11171. int l = nearest_int(0.5f*(id*scales[ib+0]-1));
  11172. l = MAX(0, MIN(7, l));
  11173. sc[ib/4] |= (l << 3*(ib%4));
  11174. y[ibl].qh[ib] |= masks[shifts[ib]];
  11175. const float * xb = xbl + block_size*ib;
  11176. if (quant_weights) {
  11177. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11178. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11179. } else {
  11180. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11181. }
  11182. for (int k = 0; k < block_size/8; ++k) {
  11183. if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m;
  11184. else xx = shifts[ib]%2 == 0 ? x_p : x_m;
  11185. const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700));
  11186. for (int j = 0; j < 8; ++j) {
  11187. float w = weight[8*k + j];
  11188. float q = xx[(pg[j] - 1)/2]*(2*l+1);
  11189. sumqx_f += w*q*xb[8*k+j];
  11190. sumq2_f += w*q*q;
  11191. }
  11192. }
  11193. }
  11194. if (sumq2_f > 0) d = sumqx_f/sumq2_f;
  11195. s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed.
  11196. sc[0] |= ((s.u16 & 0x000f) << 12);
  11197. sc[1] |= ((s.u16 & 0x00f0) << 8);
  11198. sc[2] |= ((s.u16 & 0x0f00) << 4);
  11199. sc[3] |= ((s.u16 & 0xf000) << 0);
  11200. }
  11201. }
  11202. size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11203. GGML_ASSERT(n_per_row%QK_K == 0);
  11204. float scales[QK_K/IQ1M_BLOCK_SIZE];
  11205. float weight[IQ1M_BLOCK_SIZE];
  11206. int8_t L[IQ1M_BLOCK_SIZE];
  11207. float pairs[2*IQ1M_BLOCK_SIZE];
  11208. uint16_t index[IQ1M_BLOCK_SIZE/8];
  11209. int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
  11210. int64_t nblock = n_per_row/QK_K;
  11211. char * qrow = (char *)dst;
  11212. for (int64_t row = 0; row < nrow; ++row) {
  11213. quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts);
  11214. src += n_per_row;
  11215. qrow += nblock*sizeof(block_iq1_m);
  11216. }
  11217. return nrow * nblock * sizeof(block_iq1_m);
  11218. }
  11219. // ============================ 4-bit non-linear quants
  11220. static inline int best_index_int8(int n, const int8_t * val, float x) {
  11221. if (x <= val[0]) return 0;
  11222. if (x >= val[n-1]) return n-1;
  11223. int ml = 0, mu = n-1;
  11224. while (mu-ml > 1) {
  11225. int mav = (ml+mu)/2;
  11226. if (x < val[mav]) mu = mav; else ml = mav;
  11227. }
  11228. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  11229. }
  11230. static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
  11231. ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
  11232. float * scales, float * weight, uint8_t * L,
  11233. const int8_t * values,
  11234. const float * quant_weights,
  11235. const int ntry) {
  11236. float sigma2 = 0;
  11237. for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
  11238. sigma2 *= 2.f/super_block_size;
  11239. memset(q4, 0, super_block_size/2);
  11240. dh[0] = GGML_FP32_TO_FP16(0.f);
  11241. float max_scale = 0, amax_scale = 0;
  11242. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  11243. const float * xb = x + ib*block_size;
  11244. uint8_t * Lb = L + ib*block_size;
  11245. if (quant_weights) {
  11246. const float * qw = quant_weights + ib*block_size;
  11247. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  11248. } else {
  11249. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  11250. }
  11251. float amax = 0, max = 0;
  11252. for (int j = 0; j < block_size; ++j) {
  11253. float ax = fabsf(xb[j]);
  11254. if (ax > amax) {
  11255. amax = ax; max = xb[j];
  11256. }
  11257. }
  11258. if (amax < GROUP_MAX_EPS) {
  11259. scales[ib] = 0;
  11260. continue;
  11261. }
  11262. float d = ntry > 0 ? -max/values[0] : max/values[0];
  11263. float id = 1/d;
  11264. float sumqx = 0, sumq2 = 0;
  11265. for (int j = 0; j < block_size; ++j) {
  11266. float al = id*xb[j];
  11267. int l = best_index_int8(16, values, al);
  11268. Lb[j] = l;
  11269. float q = values[l];
  11270. float w = weight[j];
  11271. sumqx += w*q*xb[j];
  11272. sumq2 += w*q*q;
  11273. }
  11274. d = sumqx/sumq2;
  11275. float best = d*sumqx;
  11276. for (int itry = -ntry; itry <= ntry; ++itry) {
  11277. id = (itry + values[0])/max;
  11278. sumqx = sumq2 = 0;
  11279. for (int j = 0; j < block_size; ++j) {
  11280. float al = id*xb[j];
  11281. int l = best_index_int8(16, values, al);
  11282. float q = values[l];
  11283. float w = weight[j];
  11284. sumqx += w*q*xb[j];
  11285. sumq2 += w*q*q;
  11286. }
  11287. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11288. d = sumqx/sumq2; best = d * sumqx;
  11289. }
  11290. }
  11291. scales[ib] = d;
  11292. float abs_d = fabsf(d);
  11293. if (abs_d > amax_scale) {
  11294. amax_scale = abs_d; max_scale = d;
  11295. }
  11296. }
  11297. if (super_block_size/block_size > 1) {
  11298. int nb = super_block_size/block_size;
  11299. memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
  11300. float d = -max_scale/32;
  11301. dh[0] = GGML_FP32_TO_FP16(d);
  11302. float id = d ? 1/d : 0.f;
  11303. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  11304. int l = nearest_int(id*scales[ib]);
  11305. l = MAX(-32, MIN(31, l));
  11306. float dl = d * l;
  11307. float idl = dl ? 1/dl : 0.f;
  11308. uint8_t * Lb = L + ib*block_size;
  11309. const float * xb = x + ib*block_size;
  11310. for (int j = 0; j < block_size; ++j) {
  11311. Lb[j] = best_index_int8(16, values, idl*xb[j]);
  11312. }
  11313. l += 32;
  11314. uint8_t l_l = l & 0xf;
  11315. uint8_t l_h = l >> 4;
  11316. if (ib%2 == 0) scales_l[ib/2] = l_l;
  11317. else scales_l[ib/2] |= (l_l << 4);
  11318. scales_h[ib/8] |= (l_h << 2*(ib%8));
  11319. }
  11320. } else {
  11321. dh[0] = GGML_FP32_TO_FP16(scales[0]);
  11322. if (ntry > 0) {
  11323. float id = scales[0] ? 1/scales[0] : 0;
  11324. for (int j = 0; j < super_block_size; ++j) {
  11325. L[j] = best_index_int8(16, values, id*x[j]);
  11326. }
  11327. }
  11328. }
  11329. for (int i = 0; i < super_block_size/32; ++i) {
  11330. for (int j = 0; j < 16; ++j) {
  11331. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  11332. }
  11333. }
  11334. }
  11335. size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11336. GGML_ASSERT(n_per_row%QK4_NL == 0);
  11337. int64_t nblock = n_per_row/QK4_NL;
  11338. char * qrow = (char *)dst;
  11339. uint8_t L[QK4_NL];
  11340. float weight[QK4_NL];
  11341. uint16_t unused_h;
  11342. uint8_t * unused_l = NULL;
  11343. float scale;
  11344. for (int64_t row = 0; row < nrow; ++row) {
  11345. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  11346. for (int ibl = 0; ibl < nblock; ++ibl) {
  11347. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  11348. quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  11349. &scale, weight, L, kvalues_iq4nl, qw, 7);
  11350. }
  11351. src += n_per_row;
  11352. qrow += nblock*sizeof(block_iq4_nl);
  11353. }
  11354. return nrow * nblock * sizeof(block_iq4_nl);
  11355. }
  11356. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int64_t k) {
  11357. GGML_ASSERT(k%QK4_NL == 0);
  11358. int64_t nblock = k/QK4_NL;
  11359. uint8_t L[QK4_NL];
  11360. float weight[QK4_NL];
  11361. uint16_t unused_h;
  11362. uint8_t * unused_l = NULL;
  11363. float scale;
  11364. block_iq4_nl * iq4 = (block_iq4_nl *)vy;
  11365. for (int ibl = 0; ibl < nblock; ++ibl) {
  11366. quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  11367. &scale, weight, L, kvalues_iq4nl, NULL, -1);
  11368. }
  11369. }
  11370. void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int64_t k) {
  11371. assert(k % QK4_NL == 0);
  11372. quantize_row_iq4_nl(x, y, k);
  11373. }
  11374. size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11375. GGML_ASSERT(n_per_row%QK_K == 0);
  11376. int64_t nblock = n_per_row/QK_K;
  11377. char * qrow = (char *)dst;
  11378. uint8_t L[QK_K];
  11379. float weight[32];
  11380. float scales[QK_K/32];
  11381. for (int64_t row = 0; row < nrow; ++row) {
  11382. block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
  11383. for (int ibl = 0; ibl < nblock; ++ibl) {
  11384. const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
  11385. quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
  11386. scales, weight, L, kvalues_iq4nl, qw, 7);
  11387. }
  11388. src += n_per_row;
  11389. qrow += nblock*sizeof(block_iq4_xs);
  11390. }
  11391. return nrow * nblock * sizeof(block_iq4_xs);
  11392. }
  11393. void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int64_t k) {
  11394. assert(k % QK_K == 0);
  11395. block_iq4_xs * restrict y = vy;
  11396. quantize_row_iq4_xs_reference(x, y, k);
  11397. }
  11398. void quantize_row_iq4_xs_reference(const float * restrict x, block_iq4_xs * restrict y, int64_t k) {
  11399. assert(k % QK_K == 0);
  11400. quantize_iq4_xs(x, y, 1, k, NULL);
  11401. }
  11402. // =============================== 2.5625 bpw
  11403. static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  11404. const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
  11405. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11406. const int * kmap_q2xs = iq2_data[gindex].map;
  11407. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11408. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11409. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11410. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11411. GGML_ASSERT(n%QK_K == 0);
  11412. const int kMaxQ = 3;
  11413. const int64_t nbl = n/QK_K;
  11414. block_iq2_s * y = vy;
  11415. float scales[QK_K/16];
  11416. float weight[16];
  11417. float xval[16];
  11418. int8_t L[16];
  11419. int8_t Laux[16];
  11420. float waux[16];
  11421. bool is_on_grid[2];
  11422. bool is_on_grid_aux[2];
  11423. uint8_t block_signs[2];
  11424. for (int ibl = 0; ibl < nbl; ++ibl) {
  11425. memset(&y[ibl], 0, sizeof(block_iq2_s));
  11426. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11427. float max_scale = 0;
  11428. const float * xbl = x + QK_K*ibl;
  11429. float sumx2 = 0;
  11430. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11431. float sigma2 = 2*sumx2/QK_K;
  11432. for (int ib = 0; ib < QK_K/16; ++ib) {
  11433. const float * xb = xbl + 16*ib;
  11434. if (quant_weights) {
  11435. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  11436. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11437. } else {
  11438. for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
  11439. }
  11440. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  11441. for (int k = 0; k < 2; ++k) {
  11442. uint8_t s = 0;
  11443. for (int i = 0; i < 8; ++i) {
  11444. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11445. else {
  11446. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  11447. }
  11448. }
  11449. block_signs[k] = s;
  11450. }
  11451. float max = xval[0];
  11452. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  11453. if (max < GROUP_MAX_EPS_IQ2_S) {
  11454. scales[ib] = 0;
  11455. continue;
  11456. }
  11457. float best = 0;
  11458. float scale = max/(2*kMaxQ-1);
  11459. is_on_grid[0] = is_on_grid[1] = true;
  11460. for (int is = -9; is <= 9; ++is) {
  11461. float id = (2*kMaxQ-1+is*0.1f)/max;
  11462. float this_scale = 1/id;
  11463. for (int k = 0; k < 2; ++k) {
  11464. for (int i = 0; i < 8; ++i) {
  11465. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11466. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11467. }
  11468. uint16_t u = 0;
  11469. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  11470. int grid_index = kmap_q2xs[u];
  11471. is_on_grid_aux[k] = true;
  11472. if (grid_index < 0) {
  11473. is_on_grid_aux[k] = false;
  11474. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11475. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  11476. }
  11477. }
  11478. float sumqx = 0, sumq2 = 0;
  11479. for (int i = 0; i < 16; ++i) {
  11480. float w = weight[i];
  11481. float q = 2*Laux[i] + 1;
  11482. sumqx += w*xval[i]*q;
  11483. sumq2 += w*q*q;
  11484. }
  11485. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11486. scale = sumqx/sumq2; best = scale*sumqx;
  11487. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  11488. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11489. }
  11490. }
  11491. int n_not_ongrid = 0;
  11492. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11493. if (n_not_ongrid > 0 && scale > 0) {
  11494. float id = 1/scale;
  11495. for (int k = 0; k < 2; ++k) {
  11496. if (is_on_grid[k]) continue;
  11497. uint16_t u = 0;
  11498. for (int i = 0; i < 8; ++i) {
  11499. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11500. l = MAX(0, MIN(kMaxQ-1, l));
  11501. u |= (l << 2*i);
  11502. L[8*k + i] = l;
  11503. }
  11504. int grid_index = kmap_q2xs[u];
  11505. if (grid_index < 0) {
  11506. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11507. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  11508. }
  11509. }
  11510. float sumqx = 0, sumq2 = 0;
  11511. for (int i = 0; i < 16; ++i) {
  11512. float w = weight[i];
  11513. float q = 2*L[i] + 1;
  11514. sumqx += w*xval[i]*q;
  11515. sumq2 += w*q*q;
  11516. }
  11517. if (sumq2 > 0) scale = sumqx/sumq2;
  11518. }
  11519. if (scale < 0) {
  11520. scale = -scale;
  11521. for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
  11522. }
  11523. for (int k = 0; k < 2; ++k) {
  11524. uint16_t u = 0;
  11525. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  11526. int grid_index = kmap_q2xs[u];
  11527. if (grid_index < 0) {
  11528. printf("Oops: found point %u not on grid:", u);
  11529. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  11530. printf("\n");
  11531. GGML_ASSERT(false);
  11532. }
  11533. const int i8 = 2*ib + k;
  11534. y[ibl].qs[i8] = grid_index & 255;
  11535. y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
  11536. y[ibl].qs[QK_K/8 + i8] = block_signs[k];
  11537. }
  11538. GGML_ASSERT(scale >= 0);
  11539. scales[ib] = scale;
  11540. max_scale = MAX(max_scale, scale);
  11541. }
  11542. if (!max_scale) {
  11543. continue;
  11544. }
  11545. float d = max_scale/31;
  11546. y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
  11547. float id = 1/d;
  11548. for (int ib = 0; ib < QK_K/16; ++ib) {
  11549. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11550. l = MAX(0, MIN(15, l));
  11551. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  11552. else y[ibl].scales[ib/2] |= (l << 4);
  11553. }
  11554. }
  11555. }
  11556. size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11557. GGML_ASSERT(n_per_row%QK_K == 0);
  11558. int64_t nblock = n_per_row/QK_K;
  11559. char * qrow = (char *)dst;
  11560. for (int64_t row = 0; row < nrow; ++row) {
  11561. quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
  11562. src += n_per_row;
  11563. qrow += nblock*sizeof(block_iq2_s);
  11564. }
  11565. return nrow * nblock * sizeof(block_iq2_s);
  11566. }
  11567. void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int64_t k) {
  11568. assert(k % QK_K == 0);
  11569. quantize_iq2_s(x, y, 1, k, NULL);
  11570. }
  11571. void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k) {
  11572. assert(k % QK_K == 0);
  11573. block_iq2_s * restrict y = vy;
  11574. quantize_row_iq2_s_reference(x, y, k);
  11575. }
  11576. static bool validate_float(float f, size_t i) {
  11577. if (isinf(f)) {
  11578. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  11579. return false;
  11580. }
  11581. if (isnan(f)) {
  11582. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  11583. return false;
  11584. }
  11585. return true;
  11586. }
  11587. static bool isinf_fp16(ggml_fp16_t f) {
  11588. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
  11589. }
  11590. static bool isnan_fp16(ggml_fp16_t f) {
  11591. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
  11592. }
  11593. static bool validate_fp16(ggml_fp16_t f, size_t i) {
  11594. if (isinf_fp16(f)) {
  11595. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  11596. return false;
  11597. }
  11598. if (isnan_fp16(f)) {
  11599. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  11600. return false;
  11601. }
  11602. return true;
  11603. }
  11604. #define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
  11605. const type * q = (const type *) (data); \
  11606. for (size_t i = 0; i < (nb); ++i) { \
  11607. if (!validate_fp16(q[i].d, i)) { \
  11608. return false; \
  11609. } \
  11610. }
  11611. #define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
  11612. const type * q = (const type *) (data); \
  11613. for (size_t i = 0; i < (nb); ++i) { \
  11614. if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
  11615. return false; \
  11616. } \
  11617. }
  11618. bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
  11619. if (type < 0 || type >= GGML_TYPE_COUNT) {
  11620. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  11621. return false;
  11622. }
  11623. if (nbytes % ggml_type_size(type) != 0) {
  11624. fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type);
  11625. return false;
  11626. }
  11627. const size_t nb = nbytes/ggml_type_size(type);
  11628. switch (type) {
  11629. case GGML_TYPE_BF16:
  11630. {
  11631. int nans = 0;
  11632. int infs = 0;
  11633. const unsigned short * f = (const unsigned short *) data;
  11634. for (size_t i = 0; i < nb; ++i) {
  11635. nans += (f[i] & 0x7fff) > 0x7f80;
  11636. infs += (f[i] & 0x7fff) == 0x7f80;
  11637. }
  11638. if (nans) {
  11639. fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb);
  11640. return false;
  11641. }
  11642. if (infs) {
  11643. fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb);
  11644. return false;
  11645. }
  11646. } break;
  11647. case GGML_TYPE_F16:
  11648. {
  11649. const ggml_fp16_t * f = (const ggml_fp16_t *) data;
  11650. size_t i = 0;
  11651. #if defined(__AVX2__)
  11652. for (; i + 15 < nb; i += 16) {
  11653. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  11654. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
  11655. __m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
  11656. int mask = _mm256_movemask_epi8(cmp);
  11657. if (mask) {
  11658. for (size_t j = 0; j < 16; ++j) {
  11659. if (!validate_fp16(f[i + j], i + j)) {
  11660. return false;
  11661. }
  11662. }
  11663. GGML_UNREACHABLE();
  11664. }
  11665. }
  11666. #elif defined(__ARM_NEON)
  11667. for (; i + 7 < nb; i += 8) {
  11668. uint16x8_t v = vld1q_u16(f + i);
  11669. uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
  11670. uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
  11671. uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
  11672. if (mask) {
  11673. for (size_t j = 0; j < 8; ++j) {
  11674. if (!validate_fp16(f[i + j], i + j)) {
  11675. return false;
  11676. }
  11677. }
  11678. GGML_UNREACHABLE();
  11679. }
  11680. }
  11681. #endif
  11682. for (; i < nb; ++i) {
  11683. if (!validate_fp16(f[i], i)) {
  11684. return false;
  11685. }
  11686. }
  11687. } break;
  11688. case GGML_TYPE_F32:
  11689. {
  11690. const float * f = (const float *) data;
  11691. size_t i = 0;
  11692. #if defined(__AVX2__)
  11693. for (; i + 7 < nb; i += 8) {
  11694. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  11695. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
  11696. __m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
  11697. int mask = _mm256_movemask_epi8(cmp);
  11698. if (mask) {
  11699. for (size_t j = 0; j < 8; ++j) {
  11700. if (!validate_float(f[i + j], i + j)) {
  11701. return false;
  11702. }
  11703. }
  11704. GGML_UNREACHABLE();
  11705. }
  11706. }
  11707. #elif defined(__ARM_NEON)
  11708. for (; i + 3 < nb; i += 4) {
  11709. uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
  11710. uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
  11711. uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
  11712. uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
  11713. if (mask) {
  11714. for (size_t j = 0; j < 4; ++j) {
  11715. if (!validate_float(f[i + j], i + j)) {
  11716. return false;
  11717. }
  11718. }
  11719. GGML_UNREACHABLE();
  11720. }
  11721. }
  11722. #endif
  11723. for (; i < nb; ++i) {
  11724. if (!validate_float(f[i], i)) {
  11725. return false;
  11726. }
  11727. }
  11728. } break;
  11729. case GGML_TYPE_F64:
  11730. {
  11731. const double * f = (const double *) data;
  11732. for (size_t i = 0; i < nb; ++i) {
  11733. if (!validate_float(f[i], i)) {
  11734. return false;
  11735. }
  11736. }
  11737. } break;
  11738. case GGML_TYPE_Q4_0:
  11739. {
  11740. VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
  11741. } break;
  11742. case GGML_TYPE_Q4_1:
  11743. {
  11744. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
  11745. } break;
  11746. case GGML_TYPE_Q5_0:
  11747. {
  11748. VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
  11749. } break;
  11750. case GGML_TYPE_Q5_1:
  11751. {
  11752. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
  11753. } break;
  11754. case GGML_TYPE_Q8_0:
  11755. {
  11756. VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
  11757. } break;
  11758. case GGML_TYPE_Q2_K:
  11759. {
  11760. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
  11761. } break;
  11762. case GGML_TYPE_Q3_K:
  11763. {
  11764. VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
  11765. } break;
  11766. case GGML_TYPE_Q4_K:
  11767. {
  11768. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
  11769. } break;
  11770. case GGML_TYPE_Q5_K:
  11771. {
  11772. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
  11773. } break;
  11774. case GGML_TYPE_Q6_K:
  11775. {
  11776. VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
  11777. } break;
  11778. case GGML_TYPE_Q8_K:
  11779. {
  11780. const block_q8_K * q = (const block_q8_K *) data;
  11781. for (size_t i = 0; i < nb; ++i) {
  11782. if (!validate_float(q[i].d, i)) {
  11783. return false;
  11784. }
  11785. }
  11786. } break;
  11787. case GGML_TYPE_IQ1_S:
  11788. {
  11789. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
  11790. } break;
  11791. case GGML_TYPE_IQ1_M:
  11792. {
  11793. const block_iq1_m * q = (const block_iq1_m *) data;
  11794. for (size_t i = 0; i < nb; ++i) {
  11795. iq1m_scale_t scale;
  11796. const uint16_t * sc = (const uint16_t *)q[i].scales;
  11797. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  11798. if (!validate_fp16(scale.f16, i)) {
  11799. return false;
  11800. }
  11801. }
  11802. } break;
  11803. case GGML_TYPE_IQ2_XXS:
  11804. {
  11805. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
  11806. } break;
  11807. case GGML_TYPE_IQ2_XS:
  11808. {
  11809. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
  11810. } break;
  11811. case GGML_TYPE_IQ2_S:
  11812. {
  11813. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
  11814. } break;
  11815. case GGML_TYPE_IQ3_XXS:
  11816. {
  11817. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
  11818. } break;
  11819. case GGML_TYPE_IQ3_S:
  11820. {
  11821. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
  11822. } break;
  11823. case GGML_TYPE_IQ4_XS:
  11824. {
  11825. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
  11826. } break;
  11827. case GGML_TYPE_IQ4_NL:
  11828. {
  11829. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
  11830. } break;
  11831. case GGML_TYPE_I8:
  11832. case GGML_TYPE_I16:
  11833. case GGML_TYPE_I32:
  11834. case GGML_TYPE_I64:
  11835. // nothing to validate
  11836. break;
  11837. default:
  11838. {
  11839. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  11840. return false;
  11841. }
  11842. }
  11843. return true;
  11844. }