constants.py 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. TYPE = "general.type"
  17. ARCHITECTURE = "general.architecture"
  18. QUANTIZATION_VERSION = "general.quantization_version"
  19. ALIGNMENT = "general.alignment"
  20. FILE_TYPE = "general.file_type"
  21. # Authorship Metadata
  22. NAME = "general.name"
  23. AUTHOR = "general.author"
  24. VERSION = "general.version"
  25. ORGANIZATION = "general.organization"
  26. FINETUNE = "general.finetune"
  27. BASENAME = "general.basename"
  28. DESCRIPTION = "general.description"
  29. QUANTIZED_BY = "general.quantized_by"
  30. SIZE_LABEL = "general.size_label"
  31. # Licensing details
  32. LICENSE = "general.license"
  33. LICENSE_NAME = "general.license.name"
  34. LICENSE_LINK = "general.license.link"
  35. # Typically represents the converted GGUF repo (Unless native)
  36. URL = "general.url" # Model Website/Paper
  37. DOI = "general.doi"
  38. UUID = "general.uuid"
  39. REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...)
  40. # Model Source during conversion
  41. SOURCE_URL = "general.source.url" # Model Website/Paper
  42. SOURCE_DOI = "general.source.doi"
  43. SOURCE_UUID = "general.source.uuid"
  44. SOURCE_REPO_URL = "general.source.repo_url" # Model Source Repository (git/svn/etc...)
  45. # Base Model Source. There can be more than one source if it's a merged
  46. # model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in
  47. # tracing linage of models as it is finetuned or merged over time.
  48. BASE_MODEL_COUNT = "general.base_model.count"
  49. BASE_MODEL_NAME = "general.base_model.{id}.name"
  50. BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
  51. BASE_MODEL_VERSION = "general.base_model.{id}.version"
  52. BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
  53. BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
  54. BASE_MODEL_DOI = "general.base_model.{id}.doi"
  55. BASE_MODEL_UUID = "general.base_model.{id}.uuid"
  56. BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
  57. # Array based KV stores
  58. TAGS = "general.tags"
  59. LANGUAGES = "general.languages"
  60. DATASETS = "general.datasets"
  61. class LLM:
  62. VOCAB_SIZE = "{arch}.vocab_size"
  63. CONTEXT_LENGTH = "{arch}.context_length"
  64. EMBEDDING_LENGTH = "{arch}.embedding_length"
  65. BLOCK_COUNT = "{arch}.block_count"
  66. LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
  67. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  68. EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
  69. EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
  70. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  71. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  72. EXPERT_COUNT = "{arch}.expert_count"
  73. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  74. EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
  75. EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
  76. POOLING_TYPE = "{arch}.pooling_type"
  77. LOGIT_SCALE = "{arch}.logit_scale"
  78. DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
  79. ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
  80. FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
  81. class Attention:
  82. HEAD_COUNT = "{arch}.attention.head_count"
  83. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  84. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  85. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  86. KEY_LENGTH = "{arch}.attention.key_length"
  87. VALUE_LENGTH = "{arch}.attention.value_length"
  88. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  89. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  90. CAUSAL = "{arch}.attention.causal"
  91. Q_LORA_RANK = "{arch}.attention.q_lora_rank"
  92. KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
  93. REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
  94. SLIDING_WINDOW = "{arch}.attention.sliding_window"
  95. class Rope:
  96. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  97. FREQ_BASE = "{arch}.rope.freq_base"
  98. SCALING_TYPE = "{arch}.rope.scaling.type"
  99. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  100. SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
  101. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  102. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  103. SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
  104. class Split:
  105. LLM_KV_SPLIT_NO = "split.no"
  106. LLM_KV_SPLIT_COUNT = "split.count"
  107. LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
  108. class SSM:
  109. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  110. INNER_SIZE = "{arch}.ssm.inner_size"
  111. STATE_SIZE = "{arch}.ssm.state_size"
  112. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  113. class Tokenizer:
  114. MODEL = "tokenizer.ggml.model"
  115. PRE = "tokenizer.ggml.pre"
  116. LIST = "tokenizer.ggml.tokens"
  117. TOKEN_TYPE = "tokenizer.ggml.token_type"
  118. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  119. SCORES = "tokenizer.ggml.scores"
  120. MERGES = "tokenizer.ggml.merges"
  121. BOS_ID = "tokenizer.ggml.bos_token_id"
  122. EOS_ID = "tokenizer.ggml.eos_token_id"
  123. UNK_ID = "tokenizer.ggml.unknown_token_id"
  124. SEP_ID = "tokenizer.ggml.seperator_token_id"
  125. PAD_ID = "tokenizer.ggml.padding_token_id"
  126. CLS_ID = "tokenizer.ggml.cls_token_id"
  127. MASK_ID = "tokenizer.ggml.mask_token_id"
  128. ADD_BOS = "tokenizer.ggml.add_bos_token"
  129. ADD_EOS = "tokenizer.ggml.add_eos_token"
  130. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  131. REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
  132. PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
  133. HF_JSON = "tokenizer.huggingface.json"
  134. RWKV = "tokenizer.rwkv.world"
  135. CHAT_TEMPLATE = "tokenizer.chat_template"
  136. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  137. CHAT_TEMPLATES = "tokenizer.chat_templates"
  138. # FIM/Infill special tokens constants
  139. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  140. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  141. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  142. EOT_ID = "tokenizer.ggml.eot_token_id"
  143. class Adapter:
  144. TYPE = "adapter.type"
  145. LORA_ALPHA = "adapter.lora.alpha"
  146. #
  147. # recommended mapping of model tensor names for storage in gguf
  148. #
  149. class GGUFType:
  150. MODEL = "model"
  151. ADAPTER = "adapter"
  152. class MODEL_ARCH(IntEnum):
  153. LLAMA = auto()
  154. FALCON = auto()
  155. BAICHUAN = auto()
  156. GROK = auto()
  157. GPT2 = auto()
  158. GPTJ = auto()
  159. GPTNEOX = auto()
  160. MPT = auto()
  161. STARCODER = auto()
  162. REFACT = auto()
  163. BERT = auto()
  164. NOMIC_BERT = auto()
  165. JINA_BERT_V2 = auto()
  166. BLOOM = auto()
  167. STABLELM = auto()
  168. QWEN = auto()
  169. QWEN2 = auto()
  170. QWEN2MOE = auto()
  171. PHI2 = auto()
  172. PHI3 = auto()
  173. PLAMO = auto()
  174. CODESHELL = auto()
  175. ORION = auto()
  176. INTERNLM2 = auto()
  177. MINICPM = auto()
  178. GEMMA = auto()
  179. GEMMA2 = auto()
  180. STARCODER2 = auto()
  181. MAMBA = auto()
  182. XVERSE = auto()
  183. COMMAND_R = auto()
  184. DBRX = auto()
  185. OLMO = auto()
  186. OPENELM = auto()
  187. ARCTIC = auto()
  188. DEEPSEEK2 = auto()
  189. CHATGLM = auto()
  190. BITNET = auto()
  191. T5 = auto()
  192. JAIS = auto()
  193. class MODEL_TENSOR(IntEnum):
  194. TOKEN_EMBD = auto()
  195. TOKEN_EMBD_NORM = auto()
  196. TOKEN_TYPES = auto()
  197. POS_EMBD = auto()
  198. OUTPUT = auto()
  199. OUTPUT_NORM = auto()
  200. ROPE_FREQS = auto()
  201. ROPE_FACTORS_LONG = auto()
  202. ROPE_FACTORS_SHORT = auto()
  203. ATTN_Q = auto()
  204. ATTN_K = auto()
  205. ATTN_V = auto()
  206. ATTN_QKV = auto()
  207. ATTN_OUT = auto()
  208. ATTN_NORM = auto()
  209. ATTN_NORM_2 = auto()
  210. ATTN_OUT_NORM = auto()
  211. ATTN_POST_NORM = auto()
  212. ATTN_ROT_EMBD = auto()
  213. FFN_GATE_INP = auto()
  214. FFN_GATE_INP_SHEXP = auto()
  215. FFN_NORM = auto()
  216. FFN_PRE_NORM = auto()
  217. FFN_POST_NORM = auto()
  218. FFN_GATE = auto()
  219. FFN_DOWN = auto()
  220. FFN_UP = auto()
  221. FFN_ACT = auto()
  222. FFN_NORM_EXP = auto()
  223. FFN_GATE_EXP = auto()
  224. FFN_DOWN_EXP = auto()
  225. FFN_UP_EXP = auto()
  226. FFN_GATE_SHEXP = auto()
  227. FFN_DOWN_SHEXP = auto()
  228. FFN_UP_SHEXP = auto()
  229. ATTN_Q_NORM = auto()
  230. ATTN_K_NORM = auto()
  231. LAYER_OUT_NORM = auto()
  232. SSM_IN = auto()
  233. SSM_CONV1D = auto()
  234. SSM_X = auto()
  235. SSM_DT = auto()
  236. SSM_A = auto()
  237. SSM_D = auto()
  238. SSM_OUT = auto()
  239. ATTN_Q_A = auto()
  240. ATTN_Q_B = auto()
  241. ATTN_KV_A_MQA = auto()
  242. ATTN_KV_B = auto()
  243. ATTN_Q_A_NORM = auto()
  244. ATTN_KV_A_NORM = auto()
  245. FFN_SUB_NORM = auto()
  246. ATTN_SUB_NORM = auto()
  247. DEC_ATTN_NORM = auto()
  248. DEC_ATTN_Q = auto()
  249. DEC_ATTN_K = auto()
  250. DEC_ATTN_V = auto()
  251. DEC_ATTN_OUT = auto()
  252. DEC_ATTN_REL_B = auto()
  253. DEC_CROSS_ATTN_NORM = auto()
  254. DEC_CROSS_ATTN_Q = auto()
  255. DEC_CROSS_ATTN_K = auto()
  256. DEC_CROSS_ATTN_V = auto()
  257. DEC_CROSS_ATTN_OUT = auto()
  258. DEC_CROSS_ATTN_REL_B = auto()
  259. DEC_FFN_NORM = auto()
  260. DEC_FFN_GATE = auto()
  261. DEC_FFN_DOWN = auto()
  262. DEC_FFN_UP = auto()
  263. DEC_OUTPUT_NORM = auto()
  264. ENC_ATTN_NORM = auto()
  265. ENC_ATTN_Q = auto()
  266. ENC_ATTN_K = auto()
  267. ENC_ATTN_V = auto()
  268. ENC_ATTN_OUT = auto()
  269. ENC_ATTN_REL_B = auto()
  270. ENC_FFN_NORM = auto()
  271. ENC_FFN_GATE = auto()
  272. ENC_FFN_DOWN = auto()
  273. ENC_FFN_UP = auto()
  274. ENC_OUTPUT_NORM = auto()
  275. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  276. MODEL_ARCH.LLAMA: "llama",
  277. MODEL_ARCH.FALCON: "falcon",
  278. MODEL_ARCH.BAICHUAN: "baichuan",
  279. MODEL_ARCH.GROK: "grok",
  280. MODEL_ARCH.GPT2: "gpt2",
  281. MODEL_ARCH.GPTJ: "gptj",
  282. MODEL_ARCH.GPTNEOX: "gptneox",
  283. MODEL_ARCH.MPT: "mpt",
  284. MODEL_ARCH.STARCODER: "starcoder",
  285. MODEL_ARCH.REFACT: "refact",
  286. MODEL_ARCH.BERT: "bert",
  287. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  288. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  289. MODEL_ARCH.BLOOM: "bloom",
  290. MODEL_ARCH.STABLELM: "stablelm",
  291. MODEL_ARCH.QWEN: "qwen",
  292. MODEL_ARCH.QWEN2: "qwen2",
  293. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  294. MODEL_ARCH.PHI2: "phi2",
  295. MODEL_ARCH.PHI3: "phi3",
  296. MODEL_ARCH.PLAMO: "plamo",
  297. MODEL_ARCH.CODESHELL: "codeshell",
  298. MODEL_ARCH.ORION: "orion",
  299. MODEL_ARCH.INTERNLM2: "internlm2",
  300. MODEL_ARCH.MINICPM: "minicpm",
  301. MODEL_ARCH.GEMMA: "gemma",
  302. MODEL_ARCH.GEMMA2: "gemma2",
  303. MODEL_ARCH.STARCODER2: "starcoder2",
  304. MODEL_ARCH.MAMBA: "mamba",
  305. MODEL_ARCH.XVERSE: "xverse",
  306. MODEL_ARCH.COMMAND_R: "command-r",
  307. MODEL_ARCH.DBRX: "dbrx",
  308. MODEL_ARCH.OLMO: "olmo",
  309. MODEL_ARCH.OPENELM: "openelm",
  310. MODEL_ARCH.ARCTIC: "arctic",
  311. MODEL_ARCH.DEEPSEEK2: "deepseek2",
  312. MODEL_ARCH.CHATGLM: "chatglm",
  313. MODEL_ARCH.BITNET: "bitnet",
  314. MODEL_ARCH.T5: "t5",
  315. MODEL_ARCH.JAIS: "jais",
  316. }
  317. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  318. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  319. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  320. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  321. MODEL_TENSOR.POS_EMBD: "position_embd",
  322. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  323. MODEL_TENSOR.OUTPUT: "output",
  324. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  325. MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
  326. MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
  327. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  328. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  329. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  330. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  331. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  332. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  333. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  334. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  335. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  336. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  337. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  338. MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
  339. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  340. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  341. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  342. MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
  343. MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
  344. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  345. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  346. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  347. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  348. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  349. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  350. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  351. MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
  352. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  353. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  354. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  355. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  356. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  357. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  358. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  359. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  360. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  361. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  362. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  363. MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
  364. MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
  365. MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
  366. MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
  367. MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
  368. MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
  369. MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
  370. MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
  371. MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
  372. MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
  373. MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
  374. MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
  375. MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
  376. MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
  377. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
  378. MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
  379. MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
  380. MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
  381. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
  382. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
  383. MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
  384. MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
  385. MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
  386. MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
  387. MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
  388. MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
  389. MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
  390. MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
  391. MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
  392. MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
  393. MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
  394. MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
  395. MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
  396. MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
  397. MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
  398. MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
  399. }
  400. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  401. MODEL_ARCH.LLAMA: [
  402. MODEL_TENSOR.TOKEN_EMBD,
  403. MODEL_TENSOR.OUTPUT_NORM,
  404. MODEL_TENSOR.OUTPUT,
  405. MODEL_TENSOR.ROPE_FREQS,
  406. MODEL_TENSOR.ATTN_NORM,
  407. MODEL_TENSOR.ATTN_Q,
  408. MODEL_TENSOR.ATTN_K,
  409. MODEL_TENSOR.ATTN_V,
  410. MODEL_TENSOR.ATTN_OUT,
  411. MODEL_TENSOR.ATTN_ROT_EMBD,
  412. MODEL_TENSOR.FFN_GATE_INP,
  413. MODEL_TENSOR.FFN_NORM,
  414. MODEL_TENSOR.FFN_GATE,
  415. MODEL_TENSOR.FFN_DOWN,
  416. MODEL_TENSOR.FFN_UP,
  417. MODEL_TENSOR.FFN_GATE_EXP,
  418. MODEL_TENSOR.FFN_DOWN_EXP,
  419. MODEL_TENSOR.FFN_UP_EXP,
  420. ],
  421. MODEL_ARCH.GROK: [
  422. MODEL_TENSOR.TOKEN_EMBD,
  423. MODEL_TENSOR.OUTPUT_NORM,
  424. MODEL_TENSOR.OUTPUT,
  425. MODEL_TENSOR.ROPE_FREQS,
  426. MODEL_TENSOR.ATTN_NORM,
  427. MODEL_TENSOR.ATTN_Q,
  428. MODEL_TENSOR.ATTN_K,
  429. MODEL_TENSOR.ATTN_V,
  430. MODEL_TENSOR.ATTN_OUT,
  431. MODEL_TENSOR.ATTN_ROT_EMBD,
  432. MODEL_TENSOR.ATTN_OUT_NORM,
  433. MODEL_TENSOR.FFN_GATE_INP,
  434. MODEL_TENSOR.FFN_NORM,
  435. MODEL_TENSOR.FFN_GATE,
  436. MODEL_TENSOR.FFN_DOWN,
  437. MODEL_TENSOR.FFN_UP,
  438. MODEL_TENSOR.FFN_GATE_EXP,
  439. MODEL_TENSOR.FFN_DOWN_EXP,
  440. MODEL_TENSOR.FFN_UP_EXP,
  441. MODEL_TENSOR.LAYER_OUT_NORM,
  442. ],
  443. MODEL_ARCH.GPTNEOX: [
  444. MODEL_TENSOR.TOKEN_EMBD,
  445. MODEL_TENSOR.OUTPUT_NORM,
  446. MODEL_TENSOR.OUTPUT,
  447. MODEL_TENSOR.ATTN_NORM,
  448. MODEL_TENSOR.ATTN_QKV,
  449. MODEL_TENSOR.ATTN_OUT,
  450. MODEL_TENSOR.FFN_NORM,
  451. MODEL_TENSOR.FFN_DOWN,
  452. MODEL_TENSOR.FFN_UP,
  453. ],
  454. MODEL_ARCH.FALCON: [
  455. MODEL_TENSOR.TOKEN_EMBD,
  456. MODEL_TENSOR.OUTPUT_NORM,
  457. MODEL_TENSOR.OUTPUT,
  458. MODEL_TENSOR.ATTN_NORM,
  459. MODEL_TENSOR.ATTN_NORM_2,
  460. MODEL_TENSOR.ATTN_QKV,
  461. MODEL_TENSOR.ATTN_OUT,
  462. MODEL_TENSOR.FFN_DOWN,
  463. MODEL_TENSOR.FFN_UP,
  464. ],
  465. MODEL_ARCH.BAICHUAN: [
  466. MODEL_TENSOR.TOKEN_EMBD,
  467. MODEL_TENSOR.OUTPUT_NORM,
  468. MODEL_TENSOR.OUTPUT,
  469. MODEL_TENSOR.ROPE_FREQS,
  470. MODEL_TENSOR.ATTN_NORM,
  471. MODEL_TENSOR.ATTN_Q,
  472. MODEL_TENSOR.ATTN_K,
  473. MODEL_TENSOR.ATTN_V,
  474. MODEL_TENSOR.ATTN_OUT,
  475. MODEL_TENSOR.ATTN_ROT_EMBD,
  476. MODEL_TENSOR.FFN_NORM,
  477. MODEL_TENSOR.FFN_GATE,
  478. MODEL_TENSOR.FFN_DOWN,
  479. MODEL_TENSOR.FFN_UP,
  480. ],
  481. MODEL_ARCH.STARCODER: [
  482. MODEL_TENSOR.TOKEN_EMBD,
  483. MODEL_TENSOR.POS_EMBD,
  484. MODEL_TENSOR.OUTPUT_NORM,
  485. MODEL_TENSOR.OUTPUT,
  486. MODEL_TENSOR.ATTN_NORM,
  487. MODEL_TENSOR.ATTN_QKV,
  488. MODEL_TENSOR.ATTN_OUT,
  489. MODEL_TENSOR.FFN_NORM,
  490. MODEL_TENSOR.FFN_DOWN,
  491. MODEL_TENSOR.FFN_UP,
  492. ],
  493. MODEL_ARCH.BERT: [
  494. MODEL_TENSOR.TOKEN_EMBD,
  495. MODEL_TENSOR.TOKEN_EMBD_NORM,
  496. MODEL_TENSOR.TOKEN_TYPES,
  497. MODEL_TENSOR.POS_EMBD,
  498. MODEL_TENSOR.OUTPUT_NORM,
  499. MODEL_TENSOR.ATTN_OUT_NORM,
  500. MODEL_TENSOR.ATTN_Q,
  501. MODEL_TENSOR.ATTN_K,
  502. MODEL_TENSOR.ATTN_V,
  503. MODEL_TENSOR.ATTN_OUT,
  504. MODEL_TENSOR.FFN_DOWN,
  505. MODEL_TENSOR.FFN_UP,
  506. MODEL_TENSOR.LAYER_OUT_NORM,
  507. ],
  508. MODEL_ARCH.NOMIC_BERT: [
  509. MODEL_TENSOR.TOKEN_EMBD,
  510. MODEL_TENSOR.TOKEN_EMBD_NORM,
  511. MODEL_TENSOR.TOKEN_TYPES,
  512. MODEL_TENSOR.POS_EMBD,
  513. MODEL_TENSOR.OUTPUT_NORM,
  514. MODEL_TENSOR.ATTN_OUT_NORM,
  515. MODEL_TENSOR.ATTN_QKV,
  516. MODEL_TENSOR.ATTN_OUT,
  517. MODEL_TENSOR.FFN_GATE,
  518. MODEL_TENSOR.FFN_DOWN,
  519. MODEL_TENSOR.FFN_UP,
  520. MODEL_TENSOR.LAYER_OUT_NORM,
  521. ],
  522. MODEL_ARCH.JINA_BERT_V2: [
  523. MODEL_TENSOR.TOKEN_EMBD,
  524. MODEL_TENSOR.TOKEN_EMBD_NORM,
  525. MODEL_TENSOR.TOKEN_TYPES,
  526. MODEL_TENSOR.ATTN_NORM_2,
  527. MODEL_TENSOR.ATTN_OUT_NORM,
  528. MODEL_TENSOR.ATTN_Q,
  529. MODEL_TENSOR.ATTN_Q_NORM,
  530. MODEL_TENSOR.ATTN_K,
  531. MODEL_TENSOR.ATTN_K_NORM,
  532. MODEL_TENSOR.ATTN_V,
  533. MODEL_TENSOR.ATTN_OUT,
  534. MODEL_TENSOR.FFN_UP,
  535. MODEL_TENSOR.FFN_GATE,
  536. MODEL_TENSOR.FFN_DOWN,
  537. MODEL_TENSOR.LAYER_OUT_NORM,
  538. ],
  539. MODEL_ARCH.MPT: [
  540. MODEL_TENSOR.TOKEN_EMBD,
  541. MODEL_TENSOR.OUTPUT_NORM,
  542. MODEL_TENSOR.OUTPUT,
  543. MODEL_TENSOR.ATTN_NORM,
  544. MODEL_TENSOR.ATTN_QKV,
  545. MODEL_TENSOR.ATTN_OUT,
  546. MODEL_TENSOR.FFN_NORM,
  547. MODEL_TENSOR.FFN_DOWN,
  548. MODEL_TENSOR.FFN_UP,
  549. MODEL_TENSOR.FFN_ACT,
  550. MODEL_TENSOR.ATTN_Q_NORM,
  551. MODEL_TENSOR.ATTN_K_NORM,
  552. MODEL_TENSOR.POS_EMBD,
  553. ],
  554. MODEL_ARCH.GPTJ: [
  555. MODEL_TENSOR.TOKEN_EMBD,
  556. MODEL_TENSOR.OUTPUT_NORM,
  557. MODEL_TENSOR.OUTPUT,
  558. MODEL_TENSOR.ATTN_NORM,
  559. MODEL_TENSOR.ATTN_Q,
  560. MODEL_TENSOR.ATTN_K,
  561. MODEL_TENSOR.ATTN_V,
  562. MODEL_TENSOR.ATTN_OUT,
  563. MODEL_TENSOR.FFN_DOWN,
  564. MODEL_TENSOR.FFN_UP,
  565. ],
  566. MODEL_ARCH.REFACT: [
  567. MODEL_TENSOR.TOKEN_EMBD,
  568. MODEL_TENSOR.OUTPUT_NORM,
  569. MODEL_TENSOR.OUTPUT,
  570. MODEL_TENSOR.ATTN_NORM,
  571. MODEL_TENSOR.ATTN_Q,
  572. MODEL_TENSOR.ATTN_K,
  573. MODEL_TENSOR.ATTN_V,
  574. MODEL_TENSOR.ATTN_OUT,
  575. MODEL_TENSOR.FFN_NORM,
  576. MODEL_TENSOR.FFN_GATE,
  577. MODEL_TENSOR.FFN_DOWN,
  578. MODEL_TENSOR.FFN_UP,
  579. ],
  580. MODEL_ARCH.BLOOM: [
  581. MODEL_TENSOR.TOKEN_EMBD,
  582. MODEL_TENSOR.TOKEN_EMBD_NORM,
  583. MODEL_TENSOR.OUTPUT_NORM,
  584. MODEL_TENSOR.OUTPUT,
  585. MODEL_TENSOR.ATTN_NORM,
  586. MODEL_TENSOR.ATTN_QKV,
  587. MODEL_TENSOR.ATTN_OUT,
  588. MODEL_TENSOR.FFN_NORM,
  589. MODEL_TENSOR.FFN_DOWN,
  590. MODEL_TENSOR.FFN_UP,
  591. ],
  592. MODEL_ARCH.STABLELM: [
  593. MODEL_TENSOR.TOKEN_EMBD,
  594. MODEL_TENSOR.OUTPUT_NORM,
  595. MODEL_TENSOR.OUTPUT,
  596. MODEL_TENSOR.ROPE_FREQS,
  597. MODEL_TENSOR.ATTN_NORM,
  598. MODEL_TENSOR.ATTN_Q,
  599. MODEL_TENSOR.ATTN_K,
  600. MODEL_TENSOR.ATTN_V,
  601. MODEL_TENSOR.ATTN_OUT,
  602. MODEL_TENSOR.FFN_NORM,
  603. MODEL_TENSOR.FFN_GATE,
  604. MODEL_TENSOR.FFN_DOWN,
  605. MODEL_TENSOR.FFN_UP,
  606. MODEL_TENSOR.ATTN_Q_NORM,
  607. MODEL_TENSOR.ATTN_K_NORM,
  608. ],
  609. MODEL_ARCH.QWEN: [
  610. MODEL_TENSOR.TOKEN_EMBD,
  611. MODEL_TENSOR.OUTPUT_NORM,
  612. MODEL_TENSOR.OUTPUT,
  613. MODEL_TENSOR.ROPE_FREQS,
  614. MODEL_TENSOR.ATTN_NORM,
  615. MODEL_TENSOR.ATTN_QKV,
  616. MODEL_TENSOR.ATTN_OUT,
  617. MODEL_TENSOR.ATTN_ROT_EMBD,
  618. MODEL_TENSOR.FFN_NORM,
  619. MODEL_TENSOR.FFN_GATE,
  620. MODEL_TENSOR.FFN_DOWN,
  621. MODEL_TENSOR.FFN_UP,
  622. ],
  623. MODEL_ARCH.QWEN2: [
  624. MODEL_TENSOR.TOKEN_EMBD,
  625. MODEL_TENSOR.OUTPUT_NORM,
  626. MODEL_TENSOR.OUTPUT,
  627. MODEL_TENSOR.ATTN_NORM,
  628. MODEL_TENSOR.ATTN_Q,
  629. MODEL_TENSOR.ATTN_K,
  630. MODEL_TENSOR.ATTN_V,
  631. MODEL_TENSOR.ATTN_OUT,
  632. MODEL_TENSOR.FFN_NORM,
  633. MODEL_TENSOR.FFN_GATE,
  634. MODEL_TENSOR.FFN_DOWN,
  635. MODEL_TENSOR.FFN_UP,
  636. ],
  637. MODEL_ARCH.QWEN2MOE: [
  638. MODEL_TENSOR.TOKEN_EMBD,
  639. MODEL_TENSOR.OUTPUT_NORM,
  640. MODEL_TENSOR.OUTPUT,
  641. MODEL_TENSOR.ATTN_NORM,
  642. MODEL_TENSOR.ATTN_Q,
  643. MODEL_TENSOR.ATTN_K,
  644. MODEL_TENSOR.ATTN_V,
  645. MODEL_TENSOR.ATTN_OUT,
  646. MODEL_TENSOR.FFN_NORM,
  647. MODEL_TENSOR.FFN_GATE_INP,
  648. MODEL_TENSOR.FFN_GATE_EXP,
  649. MODEL_TENSOR.FFN_DOWN_EXP,
  650. MODEL_TENSOR.FFN_UP_EXP,
  651. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  652. MODEL_TENSOR.FFN_GATE_SHEXP,
  653. MODEL_TENSOR.FFN_DOWN_SHEXP,
  654. MODEL_TENSOR.FFN_UP_SHEXP,
  655. ],
  656. MODEL_ARCH.PLAMO: [
  657. MODEL_TENSOR.TOKEN_EMBD,
  658. MODEL_TENSOR.OUTPUT_NORM,
  659. MODEL_TENSOR.OUTPUT,
  660. MODEL_TENSOR.ROPE_FREQS,
  661. MODEL_TENSOR.ATTN_NORM,
  662. MODEL_TENSOR.ATTN_Q,
  663. MODEL_TENSOR.ATTN_K,
  664. MODEL_TENSOR.ATTN_V,
  665. MODEL_TENSOR.ATTN_OUT,
  666. MODEL_TENSOR.ATTN_ROT_EMBD,
  667. MODEL_TENSOR.FFN_GATE,
  668. MODEL_TENSOR.FFN_DOWN,
  669. MODEL_TENSOR.FFN_UP,
  670. ],
  671. MODEL_ARCH.GPT2: [
  672. MODEL_TENSOR.TOKEN_EMBD,
  673. MODEL_TENSOR.POS_EMBD,
  674. MODEL_TENSOR.OUTPUT_NORM,
  675. MODEL_TENSOR.OUTPUT,
  676. MODEL_TENSOR.ATTN_NORM,
  677. MODEL_TENSOR.ATTN_QKV,
  678. MODEL_TENSOR.ATTN_OUT,
  679. MODEL_TENSOR.FFN_NORM,
  680. MODEL_TENSOR.FFN_DOWN,
  681. MODEL_TENSOR.FFN_UP,
  682. ],
  683. MODEL_ARCH.PHI2: [
  684. MODEL_TENSOR.TOKEN_EMBD,
  685. MODEL_TENSOR.OUTPUT_NORM,
  686. MODEL_TENSOR.OUTPUT,
  687. MODEL_TENSOR.ATTN_NORM,
  688. MODEL_TENSOR.ATTN_QKV,
  689. MODEL_TENSOR.ATTN_Q,
  690. MODEL_TENSOR.ATTN_K,
  691. MODEL_TENSOR.ATTN_V,
  692. MODEL_TENSOR.ATTN_OUT,
  693. MODEL_TENSOR.FFN_NORM,
  694. MODEL_TENSOR.FFN_DOWN,
  695. MODEL_TENSOR.FFN_UP,
  696. ],
  697. MODEL_ARCH.PHI3: [
  698. MODEL_TENSOR.TOKEN_EMBD,
  699. MODEL_TENSOR.OUTPUT_NORM,
  700. MODEL_TENSOR.OUTPUT,
  701. MODEL_TENSOR.ATTN_NORM,
  702. MODEL_TENSOR.ATTN_QKV,
  703. MODEL_TENSOR.ATTN_Q,
  704. MODEL_TENSOR.ATTN_K,
  705. MODEL_TENSOR.ATTN_V,
  706. MODEL_TENSOR.ATTN_OUT,
  707. MODEL_TENSOR.FFN_NORM,
  708. MODEL_TENSOR.FFN_DOWN,
  709. MODEL_TENSOR.FFN_UP,
  710. ],
  711. MODEL_ARCH.CODESHELL: [
  712. MODEL_TENSOR.TOKEN_EMBD,
  713. MODEL_TENSOR.POS_EMBD,
  714. MODEL_TENSOR.OUTPUT_NORM,
  715. MODEL_TENSOR.OUTPUT,
  716. MODEL_TENSOR.ATTN_NORM,
  717. MODEL_TENSOR.ATTN_QKV,
  718. MODEL_TENSOR.ATTN_OUT,
  719. MODEL_TENSOR.ATTN_ROT_EMBD,
  720. MODEL_TENSOR.FFN_NORM,
  721. MODEL_TENSOR.FFN_DOWN,
  722. MODEL_TENSOR.FFN_UP,
  723. ],
  724. MODEL_ARCH.ORION: [
  725. MODEL_TENSOR.TOKEN_EMBD,
  726. MODEL_TENSOR.OUTPUT_NORM,
  727. MODEL_TENSOR.OUTPUT,
  728. MODEL_TENSOR.ROPE_FREQS,
  729. MODEL_TENSOR.ATTN_NORM,
  730. MODEL_TENSOR.ATTN_Q,
  731. MODEL_TENSOR.ATTN_K,
  732. MODEL_TENSOR.ATTN_V,
  733. MODEL_TENSOR.ATTN_OUT,
  734. MODEL_TENSOR.ATTN_ROT_EMBD,
  735. MODEL_TENSOR.FFN_NORM,
  736. MODEL_TENSOR.FFN_GATE,
  737. MODEL_TENSOR.FFN_DOWN,
  738. MODEL_TENSOR.FFN_UP,
  739. ],
  740. MODEL_ARCH.INTERNLM2: [
  741. MODEL_TENSOR.TOKEN_EMBD,
  742. MODEL_TENSOR.OUTPUT_NORM,
  743. MODEL_TENSOR.OUTPUT,
  744. MODEL_TENSOR.ATTN_NORM,
  745. MODEL_TENSOR.ATTN_Q,
  746. MODEL_TENSOR.ATTN_K,
  747. MODEL_TENSOR.ATTN_V,
  748. MODEL_TENSOR.ATTN_OUT,
  749. MODEL_TENSOR.ATTN_ROT_EMBD,
  750. MODEL_TENSOR.FFN_NORM,
  751. MODEL_TENSOR.FFN_GATE,
  752. MODEL_TENSOR.FFN_DOWN,
  753. MODEL_TENSOR.FFN_UP,
  754. ],
  755. MODEL_ARCH.MINICPM: [
  756. MODEL_TENSOR.TOKEN_EMBD,
  757. MODEL_TENSOR.OUTPUT,
  758. MODEL_TENSOR.OUTPUT_NORM,
  759. MODEL_TENSOR.ROPE_FREQS,
  760. MODEL_TENSOR.ATTN_NORM,
  761. MODEL_TENSOR.ATTN_Q,
  762. MODEL_TENSOR.ATTN_K,
  763. MODEL_TENSOR.ATTN_V,
  764. MODEL_TENSOR.ATTN_OUT,
  765. MODEL_TENSOR.ATTN_ROT_EMBD,
  766. MODEL_TENSOR.FFN_GATE_INP,
  767. MODEL_TENSOR.FFN_NORM,
  768. MODEL_TENSOR.FFN_GATE,
  769. MODEL_TENSOR.FFN_DOWN,
  770. MODEL_TENSOR.FFN_UP,
  771. MODEL_TENSOR.FFN_GATE_EXP,
  772. MODEL_TENSOR.FFN_DOWN_EXP,
  773. MODEL_TENSOR.FFN_UP_EXP,
  774. ],
  775. MODEL_ARCH.GEMMA: [
  776. MODEL_TENSOR.TOKEN_EMBD,
  777. MODEL_TENSOR.OUTPUT_NORM,
  778. MODEL_TENSOR.ATTN_NORM,
  779. MODEL_TENSOR.ATTN_Q,
  780. MODEL_TENSOR.ATTN_K,
  781. MODEL_TENSOR.ATTN_V,
  782. MODEL_TENSOR.ATTN_OUT,
  783. MODEL_TENSOR.FFN_GATE,
  784. MODEL_TENSOR.FFN_DOWN,
  785. MODEL_TENSOR.FFN_UP,
  786. MODEL_TENSOR.FFN_NORM,
  787. ],
  788. MODEL_ARCH.GEMMA2: [
  789. MODEL_TENSOR.TOKEN_EMBD,
  790. MODEL_TENSOR.OUTPUT_NORM,
  791. MODEL_TENSOR.ATTN_Q,
  792. MODEL_TENSOR.ATTN_K,
  793. MODEL_TENSOR.ATTN_V,
  794. MODEL_TENSOR.ATTN_OUT,
  795. MODEL_TENSOR.FFN_GATE,
  796. MODEL_TENSOR.FFN_DOWN,
  797. MODEL_TENSOR.FFN_UP,
  798. MODEL_TENSOR.ATTN_NORM,
  799. MODEL_TENSOR.ATTN_POST_NORM,
  800. MODEL_TENSOR.FFN_PRE_NORM,
  801. MODEL_TENSOR.FFN_POST_NORM,
  802. ],
  803. MODEL_ARCH.STARCODER2: [
  804. MODEL_TENSOR.TOKEN_EMBD,
  805. MODEL_TENSOR.OUTPUT_NORM,
  806. MODEL_TENSOR.OUTPUT,
  807. MODEL_TENSOR.ROPE_FREQS,
  808. MODEL_TENSOR.ATTN_NORM,
  809. MODEL_TENSOR.ATTN_Q,
  810. MODEL_TENSOR.ATTN_K,
  811. MODEL_TENSOR.ATTN_V,
  812. MODEL_TENSOR.ATTN_OUT,
  813. MODEL_TENSOR.ATTN_ROT_EMBD,
  814. MODEL_TENSOR.FFN_NORM,
  815. MODEL_TENSOR.FFN_DOWN,
  816. MODEL_TENSOR.FFN_UP,
  817. ],
  818. MODEL_ARCH.MAMBA: [
  819. MODEL_TENSOR.TOKEN_EMBD,
  820. MODEL_TENSOR.OUTPUT_NORM,
  821. MODEL_TENSOR.OUTPUT,
  822. MODEL_TENSOR.ATTN_NORM,
  823. MODEL_TENSOR.SSM_IN,
  824. MODEL_TENSOR.SSM_CONV1D,
  825. MODEL_TENSOR.SSM_X,
  826. MODEL_TENSOR.SSM_DT,
  827. MODEL_TENSOR.SSM_A,
  828. MODEL_TENSOR.SSM_D,
  829. MODEL_TENSOR.SSM_OUT,
  830. ],
  831. MODEL_ARCH.XVERSE: [
  832. MODEL_TENSOR.TOKEN_EMBD,
  833. MODEL_TENSOR.OUTPUT_NORM,
  834. MODEL_TENSOR.OUTPUT,
  835. MODEL_TENSOR.ROPE_FREQS,
  836. MODEL_TENSOR.ATTN_NORM,
  837. MODEL_TENSOR.ATTN_Q,
  838. MODEL_TENSOR.ATTN_K,
  839. MODEL_TENSOR.ATTN_V,
  840. MODEL_TENSOR.ATTN_OUT,
  841. MODEL_TENSOR.ATTN_ROT_EMBD,
  842. MODEL_TENSOR.FFN_NORM,
  843. MODEL_TENSOR.FFN_GATE,
  844. MODEL_TENSOR.FFN_DOWN,
  845. MODEL_TENSOR.FFN_UP,
  846. ],
  847. MODEL_ARCH.COMMAND_R: [
  848. MODEL_TENSOR.TOKEN_EMBD,
  849. MODEL_TENSOR.OUTPUT_NORM,
  850. MODEL_TENSOR.ATTN_NORM,
  851. MODEL_TENSOR.ATTN_Q,
  852. MODEL_TENSOR.ATTN_K,
  853. MODEL_TENSOR.ATTN_V,
  854. MODEL_TENSOR.ATTN_OUT,
  855. MODEL_TENSOR.FFN_GATE,
  856. MODEL_TENSOR.FFN_DOWN,
  857. MODEL_TENSOR.FFN_UP,
  858. MODEL_TENSOR.ATTN_K_NORM,
  859. MODEL_TENSOR.ATTN_Q_NORM,
  860. ],
  861. MODEL_ARCH.DBRX: [
  862. MODEL_TENSOR.TOKEN_EMBD,
  863. MODEL_TENSOR.OUTPUT_NORM,
  864. MODEL_TENSOR.OUTPUT,
  865. MODEL_TENSOR.ATTN_NORM,
  866. MODEL_TENSOR.ATTN_QKV,
  867. MODEL_TENSOR.ATTN_OUT,
  868. MODEL_TENSOR.ATTN_OUT_NORM,
  869. MODEL_TENSOR.FFN_GATE_INP,
  870. MODEL_TENSOR.FFN_GATE_EXP,
  871. MODEL_TENSOR.FFN_DOWN_EXP,
  872. MODEL_TENSOR.FFN_UP_EXP,
  873. ],
  874. MODEL_ARCH.OLMO: [
  875. MODEL_TENSOR.TOKEN_EMBD,
  876. MODEL_TENSOR.OUTPUT,
  877. MODEL_TENSOR.ATTN_Q,
  878. MODEL_TENSOR.ATTN_K,
  879. MODEL_TENSOR.ATTN_V,
  880. MODEL_TENSOR.ATTN_OUT,
  881. MODEL_TENSOR.FFN_GATE,
  882. MODEL_TENSOR.FFN_DOWN,
  883. MODEL_TENSOR.FFN_UP,
  884. ],
  885. MODEL_ARCH.OPENELM: [
  886. MODEL_TENSOR.TOKEN_EMBD,
  887. MODEL_TENSOR.OUTPUT_NORM,
  888. MODEL_TENSOR.ATTN_NORM,
  889. MODEL_TENSOR.ATTN_QKV,
  890. MODEL_TENSOR.ATTN_Q_NORM,
  891. MODEL_TENSOR.ATTN_K_NORM,
  892. MODEL_TENSOR.ATTN_OUT,
  893. MODEL_TENSOR.FFN_NORM,
  894. MODEL_TENSOR.FFN_GATE,
  895. MODEL_TENSOR.FFN_DOWN,
  896. MODEL_TENSOR.FFN_UP,
  897. ],
  898. MODEL_ARCH.ARCTIC: [
  899. MODEL_TENSOR.TOKEN_EMBD,
  900. MODEL_TENSOR.OUTPUT_NORM,
  901. MODEL_TENSOR.OUTPUT,
  902. MODEL_TENSOR.ROPE_FREQS,
  903. MODEL_TENSOR.ATTN_NORM,
  904. MODEL_TENSOR.ATTN_Q,
  905. MODEL_TENSOR.ATTN_K,
  906. MODEL_TENSOR.ATTN_V,
  907. MODEL_TENSOR.ATTN_OUT,
  908. MODEL_TENSOR.ATTN_ROT_EMBD,
  909. MODEL_TENSOR.FFN_GATE_INP,
  910. MODEL_TENSOR.FFN_NORM,
  911. MODEL_TENSOR.FFN_GATE,
  912. MODEL_TENSOR.FFN_DOWN,
  913. MODEL_TENSOR.FFN_UP,
  914. MODEL_TENSOR.FFN_NORM_EXP,
  915. MODEL_TENSOR.FFN_GATE_EXP,
  916. MODEL_TENSOR.FFN_DOWN_EXP,
  917. MODEL_TENSOR.FFN_UP_EXP,
  918. ],
  919. MODEL_ARCH.DEEPSEEK2: [
  920. MODEL_TENSOR.TOKEN_EMBD,
  921. MODEL_TENSOR.OUTPUT_NORM,
  922. MODEL_TENSOR.OUTPUT,
  923. MODEL_TENSOR.ROPE_FREQS,
  924. MODEL_TENSOR.ATTN_NORM,
  925. MODEL_TENSOR.ATTN_Q,
  926. MODEL_TENSOR.ATTN_Q_A,
  927. MODEL_TENSOR.ATTN_Q_B,
  928. MODEL_TENSOR.ATTN_KV_A_MQA,
  929. MODEL_TENSOR.ATTN_KV_B,
  930. MODEL_TENSOR.ATTN_Q_A_NORM,
  931. MODEL_TENSOR.ATTN_KV_A_NORM,
  932. MODEL_TENSOR.ATTN_OUT,
  933. MODEL_TENSOR.ATTN_ROT_EMBD,
  934. MODEL_TENSOR.FFN_GATE_INP,
  935. MODEL_TENSOR.FFN_NORM,
  936. MODEL_TENSOR.FFN_GATE,
  937. MODEL_TENSOR.FFN_DOWN,
  938. MODEL_TENSOR.FFN_UP,
  939. MODEL_TENSOR.FFN_GATE_EXP,
  940. MODEL_TENSOR.FFN_DOWN_EXP,
  941. MODEL_TENSOR.FFN_UP_EXP,
  942. MODEL_TENSOR.FFN_GATE_SHEXP,
  943. MODEL_TENSOR.FFN_DOWN_SHEXP,
  944. MODEL_TENSOR.FFN_UP_SHEXP,
  945. ],
  946. MODEL_ARCH.CHATGLM : [
  947. MODEL_TENSOR.TOKEN_EMBD,
  948. MODEL_TENSOR.ROPE_FREQS,
  949. MODEL_TENSOR.OUTPUT_NORM,
  950. MODEL_TENSOR.OUTPUT,
  951. MODEL_TENSOR.ATTN_NORM,
  952. MODEL_TENSOR.ATTN_QKV,
  953. MODEL_TENSOR.ATTN_OUT,
  954. MODEL_TENSOR.FFN_NORM,
  955. MODEL_TENSOR.FFN_DOWN,
  956. MODEL_TENSOR.FFN_UP,
  957. ],
  958. MODEL_ARCH.BITNET: [
  959. MODEL_TENSOR.ATTN_Q,
  960. MODEL_TENSOR.ATTN_K,
  961. MODEL_TENSOR.ATTN_V,
  962. MODEL_TENSOR.TOKEN_EMBD,
  963. MODEL_TENSOR.OUTPUT_NORM,
  964. MODEL_TENSOR.ATTN_NORM,
  965. MODEL_TENSOR.ATTN_OUT,
  966. MODEL_TENSOR.FFN_NORM,
  967. MODEL_TENSOR.FFN_GATE,
  968. MODEL_TENSOR.FFN_DOWN,
  969. MODEL_TENSOR.FFN_UP,
  970. MODEL_TENSOR.ATTN_SUB_NORM,
  971. MODEL_TENSOR.FFN_SUB_NORM,
  972. ],
  973. MODEL_ARCH.T5: [
  974. MODEL_TENSOR.TOKEN_EMBD,
  975. MODEL_TENSOR.OUTPUT,
  976. MODEL_TENSOR.DEC_ATTN_NORM,
  977. MODEL_TENSOR.DEC_ATTN_Q,
  978. MODEL_TENSOR.DEC_ATTN_K,
  979. MODEL_TENSOR.DEC_ATTN_V,
  980. MODEL_TENSOR.DEC_ATTN_OUT,
  981. MODEL_TENSOR.DEC_ATTN_REL_B,
  982. MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
  983. MODEL_TENSOR.DEC_CROSS_ATTN_Q,
  984. MODEL_TENSOR.DEC_CROSS_ATTN_K,
  985. MODEL_TENSOR.DEC_CROSS_ATTN_V,
  986. MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
  987. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
  988. MODEL_TENSOR.DEC_FFN_NORM,
  989. MODEL_TENSOR.DEC_FFN_GATE,
  990. MODEL_TENSOR.DEC_FFN_DOWN,
  991. MODEL_TENSOR.DEC_FFN_UP,
  992. MODEL_TENSOR.DEC_OUTPUT_NORM,
  993. MODEL_TENSOR.ENC_ATTN_NORM,
  994. MODEL_TENSOR.ENC_ATTN_Q,
  995. MODEL_TENSOR.ENC_ATTN_K,
  996. MODEL_TENSOR.ENC_ATTN_V,
  997. MODEL_TENSOR.ENC_ATTN_OUT,
  998. MODEL_TENSOR.ENC_ATTN_REL_B,
  999. MODEL_TENSOR.ENC_FFN_NORM,
  1000. MODEL_TENSOR.ENC_FFN_GATE,
  1001. MODEL_TENSOR.ENC_FFN_DOWN,
  1002. MODEL_TENSOR.ENC_FFN_UP,
  1003. MODEL_TENSOR.ENC_OUTPUT_NORM,
  1004. ],
  1005. MODEL_ARCH.JAIS: [
  1006. MODEL_TENSOR.TOKEN_EMBD,
  1007. MODEL_TENSOR.OUTPUT_NORM,
  1008. MODEL_TENSOR.OUTPUT,
  1009. MODEL_TENSOR.ATTN_NORM,
  1010. MODEL_TENSOR.ATTN_QKV,
  1011. MODEL_TENSOR.ATTN_OUT,
  1012. MODEL_TENSOR.FFN_NORM,
  1013. MODEL_TENSOR.FFN_DOWN,
  1014. MODEL_TENSOR.FFN_GATE,
  1015. MODEL_TENSOR.FFN_UP,
  1016. ],
  1017. # TODO
  1018. }
  1019. # tensors that will not be serialized
  1020. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  1021. MODEL_ARCH.LLAMA: [
  1022. MODEL_TENSOR.ROPE_FREQS,
  1023. MODEL_TENSOR.ATTN_ROT_EMBD,
  1024. ],
  1025. MODEL_ARCH.BAICHUAN: [
  1026. MODEL_TENSOR.ROPE_FREQS,
  1027. MODEL_TENSOR.ATTN_ROT_EMBD,
  1028. ],
  1029. MODEL_ARCH.QWEN: [
  1030. MODEL_TENSOR.ROPE_FREQS,
  1031. MODEL_TENSOR.ATTN_ROT_EMBD,
  1032. ],
  1033. MODEL_ARCH.CODESHELL: [
  1034. MODEL_TENSOR.ROPE_FREQS,
  1035. MODEL_TENSOR.ATTN_ROT_EMBD,
  1036. ],
  1037. MODEL_ARCH.ORION: [
  1038. MODEL_TENSOR.ROPE_FREQS,
  1039. MODEL_TENSOR.ATTN_ROT_EMBD,
  1040. ],
  1041. MODEL_ARCH.STARCODER2: [
  1042. MODEL_TENSOR.ROPE_FREQS,
  1043. MODEL_TENSOR.ATTN_ROT_EMBD,
  1044. ],
  1045. MODEL_ARCH.XVERSE: [
  1046. MODEL_TENSOR.ROPE_FREQS,
  1047. MODEL_TENSOR.ATTN_ROT_EMBD,
  1048. ],
  1049. MODEL_ARCH.DEEPSEEK2: [
  1050. MODEL_TENSOR.ROPE_FREQS,
  1051. MODEL_TENSOR.ATTN_ROT_EMBD,
  1052. ],
  1053. MODEL_ARCH.CHATGLM: [
  1054. MODEL_TENSOR.ROPE_FREQS,
  1055. ],
  1056. }
  1057. #
  1058. # types
  1059. #
  1060. class TokenType(IntEnum):
  1061. NORMAL = 1
  1062. UNKNOWN = 2
  1063. CONTROL = 3
  1064. USER_DEFINED = 4
  1065. UNUSED = 5
  1066. BYTE = 6
  1067. class RopeScalingType(Enum):
  1068. NONE = 'none'
  1069. LINEAR = 'linear'
  1070. YARN = 'yarn'
  1071. class PoolingType(IntEnum):
  1072. NONE = 0
  1073. MEAN = 1
  1074. CLS = 2
  1075. class GGMLQuantizationType(IntEnum):
  1076. F32 = 0
  1077. F16 = 1
  1078. Q4_0 = 2
  1079. Q4_1 = 3
  1080. Q5_0 = 6
  1081. Q5_1 = 7
  1082. Q8_0 = 8
  1083. Q8_1 = 9
  1084. Q2_K = 10
  1085. Q3_K = 11
  1086. Q4_K = 12
  1087. Q5_K = 13
  1088. Q6_K = 14
  1089. Q8_K = 15
  1090. IQ2_XXS = 16
  1091. IQ2_XS = 17
  1092. IQ3_XXS = 18
  1093. IQ1_S = 19
  1094. IQ4_NL = 20
  1095. IQ3_S = 21
  1096. IQ2_S = 22
  1097. IQ4_XS = 23
  1098. I8 = 24
  1099. I16 = 25
  1100. I32 = 26
  1101. I64 = 27
  1102. F64 = 28
  1103. IQ1_M = 29
  1104. BF16 = 30
  1105. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  1106. # from llama_ftype in llama.h
  1107. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  1108. class LlamaFileType(IntEnum):
  1109. ALL_F32 = 0
  1110. MOSTLY_F16 = 1 # except 1d tensors
  1111. MOSTLY_Q4_0 = 2 # except 1d tensors
  1112. MOSTLY_Q4_1 = 3 # except 1d tensors
  1113. MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  1114. # MOSTLY_Q4_2 = 5 # support has been removed
  1115. # MOSTLY_Q4_3 = 6 # support has been removed
  1116. MOSTLY_Q8_0 = 7 # except 1d tensors
  1117. MOSTLY_Q5_0 = 8 # except 1d tensors
  1118. MOSTLY_Q5_1 = 9 # except 1d tensors
  1119. MOSTLY_Q2_K = 10 # except 1d tensors
  1120. MOSTLY_Q3_K_S = 11 # except 1d tensors
  1121. MOSTLY_Q3_K_M = 12 # except 1d tensors
  1122. MOSTLY_Q3_K_L = 13 # except 1d tensors
  1123. MOSTLY_Q4_K_S = 14 # except 1d tensors
  1124. MOSTLY_Q4_K_M = 15 # except 1d tensors
  1125. MOSTLY_Q5_K_S = 16 # except 1d tensors
  1126. MOSTLY_Q5_K_M = 17 # except 1d tensors
  1127. MOSTLY_Q6_K = 18 # except 1d tensors
  1128. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  1129. MOSTLY_IQ2_XS = 20 # except 1d tensors
  1130. MOSTLY_Q2_K_S = 21 # except 1d tensors
  1131. MOSTLY_IQ3_XS = 22 # except 1d tensors
  1132. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  1133. MOSTLY_IQ1_S = 24 # except 1d tensors
  1134. MOSTLY_IQ4_NL = 25 # except 1d tensors
  1135. MOSTLY_IQ3_S = 26 # except 1d tensors
  1136. MOSTLY_IQ3_M = 27 # except 1d tensors
  1137. MOSTLY_IQ2_S = 28 # except 1d tensors
  1138. MOSTLY_IQ2_M = 29 # except 1d tensors
  1139. MOSTLY_IQ4_XS = 30 # except 1d tensors
  1140. MOSTLY_IQ1_M = 31 # except 1d tensors
  1141. MOSTLY_BF16 = 32 # except 1d tensors
  1142. GUESSED = 1024 # not specified in the model file
  1143. class GGUFEndian(IntEnum):
  1144. LITTLE = 0
  1145. BIG = 1
  1146. class GGUFValueType(IntEnum):
  1147. UINT8 = 0
  1148. INT8 = 1
  1149. UINT16 = 2
  1150. INT16 = 3
  1151. UINT32 = 4
  1152. INT32 = 5
  1153. FLOAT32 = 6
  1154. BOOL = 7
  1155. STRING = 8
  1156. ARRAY = 9
  1157. UINT64 = 10
  1158. INT64 = 11
  1159. FLOAT64 = 12
  1160. @staticmethod
  1161. def get_type(val: Any) -> GGUFValueType:
  1162. if isinstance(val, (str, bytes, bytearray)):
  1163. return GGUFValueType.STRING
  1164. elif isinstance(val, list):
  1165. return GGUFValueType.ARRAY
  1166. elif isinstance(val, float):
  1167. return GGUFValueType.FLOAT32
  1168. elif isinstance(val, bool):
  1169. return GGUFValueType.BOOL
  1170. elif isinstance(val, int):
  1171. return GGUFValueType.INT32
  1172. # TODO: need help with 64-bit types in Python
  1173. else:
  1174. raise ValueError(f"Unknown type: {type(val)}")
  1175. # Items here are (block size, type size)
  1176. QK_K = 256
  1177. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  1178. GGMLQuantizationType.F32: (1, 4),
  1179. GGMLQuantizationType.F16: (1, 2),
  1180. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  1181. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  1182. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  1183. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  1184. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  1185. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  1186. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  1187. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  1188. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  1189. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  1190. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  1191. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  1192. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  1193. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  1194. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  1195. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  1196. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  1197. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  1198. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  1199. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  1200. GGMLQuantizationType.I8: (1, 1),
  1201. GGMLQuantizationType.I16: (1, 2),
  1202. GGMLQuantizationType.I32: (1, 4),
  1203. GGMLQuantizationType.I64: (1, 8),
  1204. GGMLQuantizationType.F64: (1, 8),
  1205. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  1206. GGMLQuantizationType.BF16: (1, 2),
  1207. }
  1208. # Aliases for backward compatibility.
  1209. # general
  1210. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  1211. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  1212. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  1213. KEY_GENERAL_NAME = Keys.General.NAME
  1214. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  1215. KEY_GENERAL_URL = Keys.General.URL
  1216. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  1217. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  1218. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  1219. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  1220. # LLM
  1221. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  1222. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  1223. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  1224. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  1225. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  1226. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  1227. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  1228. # attention
  1229. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  1230. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  1231. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  1232. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  1233. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  1234. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  1235. # RoPE
  1236. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  1237. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  1238. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  1239. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  1240. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  1241. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  1242. # SSM
  1243. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  1244. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  1245. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  1246. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  1247. # tokenization
  1248. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  1249. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  1250. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  1251. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  1252. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  1253. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  1254. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  1255. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  1256. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  1257. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  1258. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  1259. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  1260. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  1261. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  1262. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  1263. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  1264. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  1265. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  1266. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID