main.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861
  1. #include "common.h"
  2. #include "console.h"
  3. #include "llama.h"
  4. #include "build-info.h"
  5. #include "grammar-parser.h"
  6. #include <cassert>
  7. #include <cinttypes>
  8. #include <cmath>
  9. #include <cstdio>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <fstream>
  13. #include <iostream>
  14. #include <sstream>
  15. #include <string>
  16. #include <vector>
  17. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  18. #include <signal.h>
  19. #include <unistd.h>
  20. #elif defined (_WIN32)
  21. #define WIN32_LEAN_AND_MEAN
  22. #ifndef NOMINMAX
  23. #define NOMINMAX
  24. #endif
  25. #include <windows.h>
  26. #include <signal.h>
  27. #endif
  28. #if defined(_MSC_VER)
  29. #pragma warning(disable: 4244 4267) // possible loss of data
  30. #endif
  31. static llama_context ** g_ctx;
  32. static llama_model ** g_model;
  33. static gpt_params * g_params;
  34. static std::vector<llama_token> * g_input_tokens;
  35. static std::ostringstream * g_output_ss;
  36. static std::vector<llama_token> * g_output_tokens;
  37. static bool is_interacting = false;
  38. static void write_logfile(
  39. const llama_context * ctx, const gpt_params & params, const llama_model * model,
  40. const std::vector<llama_token> & input_tokens, const std::string & output,
  41. const std::vector<llama_token> & output_tokens
  42. ) {
  43. if (params.logdir.empty()) {
  44. return;
  45. }
  46. const std::string timestamp = get_sortable_timestamp();
  47. const bool success = create_directory_with_parents(params.logdir);
  48. if (!success) {
  49. fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
  50. __func__, params.logdir.c_str());
  51. return;
  52. }
  53. const std::string logfile_path = params.logdir + timestamp + ".yml";
  54. FILE * logfile = fopen(logfile_path.c_str(), "w");
  55. if (logfile == NULL) {
  56. fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
  57. return;
  58. }
  59. fprintf(logfile, "binary: main\n");
  60. char model_desc[128];
  61. llama_model_desc(model, model_desc, sizeof(model_desc));
  62. dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
  63. fprintf(logfile, "\n");
  64. fprintf(logfile, "######################\n");
  65. fprintf(logfile, "# Generation Results #\n");
  66. fprintf(logfile, "######################\n");
  67. fprintf(logfile, "\n");
  68. dump_string_yaml_multiline(logfile, "output", output.c_str());
  69. dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
  70. llama_dump_timing_info_yaml(logfile, ctx);
  71. fclose(logfile);
  72. }
  73. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  74. static void sigint_handler(int signo) {
  75. if (signo == SIGINT) {
  76. if (!is_interacting) {
  77. is_interacting = true;
  78. } else {
  79. console::cleanup();
  80. printf("\n");
  81. llama_print_timings(*g_ctx);
  82. write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
  83. _exit(130);
  84. }
  85. }
  86. }
  87. #endif
  88. int main(int argc, char ** argv) {
  89. gpt_params params;
  90. g_params = &params;
  91. if (!gpt_params_parse(argc, argv, params)) {
  92. return 1;
  93. }
  94. #ifndef LOG_DISABLE_LOGS
  95. log_set_target(log_filename_generator("main", "log"));
  96. LOG_TEE("Log start\n");
  97. log_dump_cmdline(argc, argv);
  98. #endif // LOG_DISABLE_LOGS
  99. // TODO: Dump params ?
  100. //LOG("Params perplexity: %s\n", LOG_TOSTR(params.perplexity));
  101. // save choice to use color for later
  102. // (note for later: this is a slightly awkward choice)
  103. console::init(params.simple_io, params.use_color);
  104. atexit([]() { console::cleanup(); });
  105. if (params.perplexity) {
  106. printf("\n************\n");
  107. printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
  108. printf("************\n\n");
  109. return 0;
  110. }
  111. if (params.embedding) {
  112. printf("\n************\n");
  113. printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
  114. printf("************\n\n");
  115. return 0;
  116. }
  117. if (params.rope_freq_base != 10000.0) {
  118. LOG_TEE("%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base);
  119. }
  120. if (params.rope_freq_scale != 1.0) {
  121. LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
  122. }
  123. LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
  124. if (params.seed == LLAMA_DEFAULT_SEED) {
  125. params.seed = time(NULL);
  126. }
  127. LOG_TEE("%s: seed = %u\n", __func__, params.seed);
  128. std::mt19937 rng(params.seed);
  129. if (params.random_prompt) {
  130. params.prompt = gpt_random_prompt(rng);
  131. }
  132. LOG("%s: llama backend init\n", __func__);
  133. llama_backend_init(params.numa);
  134. llama_model * model;
  135. llama_context * ctx;
  136. llama_context * ctx_guidance = NULL;
  137. g_model = &model;
  138. g_ctx = &ctx;
  139. // load the model and apply lora adapter, if any
  140. LOG("%s: load the model and apply lora adapter, if any\n", __func__);
  141. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  142. if (params.cfg_scale > 1.f) {
  143. struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
  144. ctx_guidance = llama_new_context_with_model(model, lparams);
  145. }
  146. if (model == NULL) {
  147. LOG_TEE("%s: error: unable to load model\n", __func__);
  148. return 1;
  149. }
  150. const int n_ctx_train = llama_n_ctx_train(ctx);
  151. if (params.n_ctx > n_ctx_train) {
  152. LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
  153. __func__, n_ctx_train, params.n_ctx);
  154. } else if (params.n_ctx < 8) {
  155. LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
  156. params.n_ctx = 8;
  157. }
  158. // print system information
  159. {
  160. LOG_TEE("\n");
  161. LOG_TEE("system_info: n_threads = %d / %d | %s\n",
  162. params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
  163. }
  164. // export the cgraph and exit
  165. if (params.export_cgraph) {
  166. llama_eval_export(ctx, "llama.ggml");
  167. llama_free(ctx);
  168. llama_free_model(model);
  169. return 0;
  170. }
  171. std::string path_session = params.path_prompt_cache;
  172. std::vector<llama_token> session_tokens;
  173. if (!path_session.empty()) {
  174. LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
  175. // fopen to check for existing session
  176. FILE * fp = std::fopen(path_session.c_str(), "rb");
  177. if (fp != NULL) {
  178. std::fclose(fp);
  179. session_tokens.resize(params.n_ctx);
  180. size_t n_token_count_out = 0;
  181. if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
  182. LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
  183. return 1;
  184. }
  185. session_tokens.resize(n_token_count_out);
  186. llama_set_rng_seed(ctx, params.seed);
  187. LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
  188. } else {
  189. LOG_TEE("%s: session file does not exist, will create\n", __func__);
  190. }
  191. }
  192. const bool add_bos = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
  193. LOG("add_bos: %d\n", add_bos);
  194. std::vector<llama_token> embd_inp;
  195. if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
  196. LOG("tokenize the prompt\n");
  197. embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
  198. } else {
  199. LOG("use session tokens\n");
  200. embd_inp = session_tokens;
  201. }
  202. LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
  203. LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
  204. // Should not run without any tokens
  205. if (embd_inp.empty()) {
  206. embd_inp.push_back(llama_token_bos(ctx));
  207. LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
  208. }
  209. // Tokenize negative prompt
  210. std::vector<llama_token> guidance_inp;
  211. int guidance_offset = 0;
  212. int original_prompt_len = 0;
  213. if (ctx_guidance) {
  214. LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
  215. guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
  216. LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
  217. std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
  218. LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
  219. original_prompt_len = original_inp.size();
  220. guidance_offset = (int)guidance_inp.size() - original_prompt_len;
  221. LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
  222. LOG("guidance_offset: %s", log_tostr(guidance_offset));
  223. }
  224. const int n_ctx = llama_n_ctx(ctx);
  225. LOG("n_ctx: %d\n", n_ctx);
  226. if ((int) embd_inp.size() > n_ctx - 4) {
  227. LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
  228. return 1;
  229. }
  230. // debug message about similarity of saved session, if applicable
  231. size_t n_matching_session_tokens = 0;
  232. if (!session_tokens.empty()) {
  233. for (llama_token id : session_tokens) {
  234. if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
  235. break;
  236. }
  237. n_matching_session_tokens++;
  238. }
  239. if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
  240. LOG_TEE("%s: using full prompt from session file\n", __func__);
  241. } else if (n_matching_session_tokens >= embd_inp.size()) {
  242. LOG_TEE("%s: session file has exact match for prompt!\n", __func__);
  243. } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
  244. LOG_TEE("%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
  245. __func__, n_matching_session_tokens, embd_inp.size());
  246. } else {
  247. LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n",
  248. __func__, n_matching_session_tokens, embd_inp.size());
  249. }
  250. }
  251. LOGLN(
  252. "recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu, embd_inp.size() %zu",
  253. log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size());
  254. // if we will use the cache for the full prompt without reaching the end of the cache, force
  255. // reevaluation of the last token token to recalculate the cached logits
  256. if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
  257. LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1);
  258. session_tokens.resize(embd_inp.size() - 1);
  259. }
  260. // number of tokens to keep when resetting context
  261. if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
  262. params.n_keep = (int)embd_inp.size();
  263. }
  264. // prefix & suffix for instruct mode
  265. const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos);
  266. const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
  267. LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
  268. LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
  269. // in instruct mode, we inject a prefix and a suffix to each input by the user
  270. if (params.instruct) {
  271. params.interactive_first = true;
  272. params.antiprompt.push_back("### Instruction:\n\n");
  273. }
  274. // enable interactive mode if interactive start is specified
  275. if (params.interactive_first) {
  276. params.interactive = true;
  277. }
  278. if (params.verbose_prompt) {
  279. LOG_TEE("\n");
  280. LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
  281. LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  282. for (int i = 0; i < (int) embd_inp.size(); i++) {
  283. LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
  284. }
  285. if (ctx_guidance) {
  286. LOG_TEE("\n");
  287. LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
  288. LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
  289. for (int i = 0; i < (int) guidance_inp.size(); i++) {
  290. LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
  291. }
  292. }
  293. if (params.n_keep > 0) {
  294. LOG_TEE("%s: static prompt based on n_keep: '", __func__);
  295. for (int i = 0; i < params.n_keep; i++) {
  296. LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
  297. }
  298. LOG_TEE("'\n");
  299. }
  300. LOG_TEE("\n");
  301. }
  302. if (params.interactive) {
  303. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  304. struct sigaction sigint_action;
  305. sigint_action.sa_handler = sigint_handler;
  306. sigemptyset (&sigint_action.sa_mask);
  307. sigint_action.sa_flags = 0;
  308. sigaction(SIGINT, &sigint_action, NULL);
  309. #elif defined (_WIN32)
  310. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  311. return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
  312. };
  313. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  314. #endif
  315. LOG_TEE("%s: interactive mode on.\n", __func__);
  316. if (!params.antiprompt.empty()) {
  317. for (const auto & antiprompt : params.antiprompt) {
  318. LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
  319. }
  320. }
  321. if (params.input_prefix_bos) {
  322. LOG_TEE("Input prefix with BOS\n");
  323. }
  324. if (!params.input_prefix.empty()) {
  325. LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
  326. }
  327. if (!params.input_suffix.empty()) {
  328. LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
  329. }
  330. }
  331. LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
  332. params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
  333. LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
  334. LOG_TEE("\n\n");
  335. struct llama_grammar * grammar = NULL;
  336. grammar_parser::parse_state parsed_grammar;
  337. if (!params.grammar.empty()) {
  338. parsed_grammar = grammar_parser::parse(params.grammar.c_str());
  339. // will be empty (default) if there are parse errors
  340. if (parsed_grammar.rules.empty()) {
  341. return 1;
  342. }
  343. LOG_TEE("%s: grammar:\n", __func__);
  344. grammar_parser::print_grammar(stderr, parsed_grammar);
  345. LOG_TEE("\n");
  346. {
  347. auto it = params.logit_bias.find(llama_token_eos(ctx));
  348. if (it != params.logit_bias.end() && it->second == -INFINITY) {
  349. LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
  350. }
  351. }
  352. std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
  353. grammar = llama_grammar_init(
  354. grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
  355. }
  356. // TODO: replace with ring-buffer
  357. std::vector<llama_token> last_tokens(n_ctx);
  358. std::fill(last_tokens.begin(), last_tokens.end(), 0);
  359. if (params.interactive) {
  360. const char *control_message;
  361. if (params.multiline_input) {
  362. control_message = " - To return control to LLaMa, end your input with '\\'.\n"
  363. " - To return control without starting a new line, end your input with '/'.\n";
  364. } else {
  365. control_message = " - Press Return to return control to LLaMa.\n"
  366. " - To return control without starting a new line, end your input with '/'.\n"
  367. " - If you want to submit another line, end your input with '\\'.\n";
  368. }
  369. LOG_TEE("== Running in interactive mode. ==\n");
  370. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  371. LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
  372. #endif
  373. LOG_TEE( "%s\n", control_message);
  374. is_interacting = params.interactive_first;
  375. }
  376. bool is_antiprompt = false;
  377. bool input_echo = true;
  378. bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
  379. int n_past = 0;
  380. int n_remain = params.n_predict;
  381. int n_consumed = 0;
  382. int n_session_consumed = 0;
  383. int n_past_guidance = 0;
  384. std::vector<int> input_tokens; g_input_tokens = &input_tokens;
  385. std::vector<int> output_tokens; g_output_tokens = &output_tokens;
  386. std::ostringstream output_ss; g_output_ss = &output_ss;
  387. // the first thing we will do is to output the prompt, so set color accordingly
  388. console::set_display(console::prompt);
  389. std::vector<llama_token> embd;
  390. std::vector<llama_token> embd_guidance;
  391. const int n_vocab = llama_n_vocab(ctx);
  392. std::vector<llama_token_data> candidates;
  393. candidates.reserve(n_vocab);
  394. while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
  395. // predict
  396. if (!embd.empty()) {
  397. // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
  398. // --prompt or --file which uses the same value.
  399. int max_embd_size = n_ctx - 4;
  400. // Ensure the input doesn't exceed the context size by truncating embd if necessary.
  401. if ((int) embd.size() > max_embd_size) {
  402. const int skipped_tokens = (int) embd.size() - max_embd_size;
  403. embd.resize(max_embd_size);
  404. console::set_display(console::error);
  405. printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
  406. console::set_display(console::reset);
  407. fflush(stdout);
  408. }
  409. // infinite text generation via context swapping
  410. // if we run out of context:
  411. // - take the n_keep first tokens from the original prompt (via n_past)
  412. // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
  413. if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
  414. if (params.n_predict == -2) {
  415. LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
  416. break;
  417. }
  418. const int n_left = n_past - params.n_keep;
  419. LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d\n", n_past, n_left, n_ctx, params.n_keep);
  420. // always keep the first token - BOS
  421. n_past = std::max(1, params.n_keep);
  422. n_past_guidance = std::max(1, params.n_keep + guidance_offset);
  423. LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
  424. // insert n_left/2 tokens at the start of embd from last_tokens
  425. embd.insert(embd.begin(), last_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_tokens.end() - embd.size());
  426. LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
  427. LOG("clear session path\n");
  428. path_session.clear();
  429. }
  430. // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
  431. if (n_session_consumed < (int) session_tokens.size()) {
  432. size_t i = 0;
  433. for ( ; i < embd.size(); i++) {
  434. if (embd[i] != session_tokens[n_session_consumed]) {
  435. session_tokens.resize(n_session_consumed);
  436. break;
  437. }
  438. n_past++;
  439. n_session_consumed++;
  440. if (n_session_consumed >= (int) session_tokens.size()) {
  441. ++i;
  442. break;
  443. }
  444. }
  445. if (i > 0) {
  446. embd.erase(embd.begin(), embd.begin() + i);
  447. }
  448. }
  449. // evaluate tokens in batches
  450. // embd is typically prepared beforehand to fit within a batch, but not always
  451. if (ctx_guidance) {
  452. int input_size = 0;
  453. llama_token * input_buf = NULL;
  454. if (n_past_guidance < (int) guidance_inp.size()) {
  455. // Guidance context should have the same data with these modifications:
  456. //
  457. // * Replace the initial prompt
  458. // * Shift everything by guidance_offset
  459. embd_guidance = guidance_inp;
  460. if (embd.begin() + original_prompt_len < embd.end()) {
  461. embd_guidance.insert(
  462. embd_guidance.end(),
  463. embd.begin() + original_prompt_len,
  464. embd.end()
  465. );
  466. }
  467. input_buf = embd_guidance.data();
  468. input_size = embd_guidance.size();
  469. LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
  470. } else {
  471. input_buf = embd.data();
  472. input_size = embd.size();
  473. }
  474. for (int i = 0; i < input_size; i += params.n_batch) {
  475. int n_eval = std::min(input_size - i, params.n_batch);
  476. if (llama_eval(ctx_guidance, input_buf + i, n_eval, n_past_guidance, params.n_threads)) {
  477. LOG_TEE("%s : failed to eval\n", __func__);
  478. return 1;
  479. }
  480. n_past_guidance += n_eval;
  481. }
  482. }
  483. for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
  484. int n_eval = (int) embd.size() - i;
  485. if (n_eval > params.n_batch) {
  486. n_eval = params.n_batch;
  487. }
  488. LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
  489. if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
  490. LOG_TEE("%s : failed to eval\n", __func__);
  491. return 1;
  492. }
  493. n_past += n_eval;
  494. LOG("n_past = %d\n", n_past);
  495. }
  496. if (!embd.empty() && !path_session.empty()) {
  497. session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
  498. n_session_consumed = session_tokens.size();
  499. }
  500. }
  501. embd.clear();
  502. embd_guidance.clear();
  503. if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
  504. // optionally save the session on first sample (for faster prompt loading next time)
  505. if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
  506. need_to_save_session = false;
  507. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  508. LOG("saved session to %s\n", path_session.c_str());
  509. }
  510. const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
  511. last_tokens.erase(last_tokens.begin());
  512. last_tokens.push_back(id);
  513. LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
  514. embd.push_back(id);
  515. // echo this to console
  516. input_echo = true;
  517. // decrement remaining sampling budget
  518. --n_remain;
  519. LOG("n_remain: %d\n", n_remain);
  520. } else {
  521. // some user input remains from prompt or interaction, forward it to processing
  522. LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
  523. while ((int) embd_inp.size() > n_consumed) {
  524. embd.push_back(embd_inp[n_consumed]);
  525. last_tokens.erase(last_tokens.begin());
  526. last_tokens.push_back(embd_inp[n_consumed]);
  527. ++n_consumed;
  528. if ((int) embd.size() >= params.n_batch) {
  529. break;
  530. }
  531. }
  532. }
  533. // display text
  534. if (input_echo) {
  535. for (auto id : embd) {
  536. const std::string token_str = llama_token_to_piece(ctx, id);
  537. printf("%s", token_str.c_str());
  538. if (embd.size() > 1) {
  539. input_tokens.push_back(id);
  540. } else {
  541. output_tokens.push_back(id);
  542. output_ss << token_str;
  543. }
  544. }
  545. fflush(stdout);
  546. }
  547. // reset color to default if we there is no pending user input
  548. if (input_echo && (int) embd_inp.size() == n_consumed) {
  549. console::set_display(console::reset);
  550. }
  551. // if not currently processing queued inputs;
  552. if ((int) embd_inp.size() <= n_consumed) {
  553. // check for reverse prompt
  554. if (!params.antiprompt.empty()) {
  555. std::string last_output;
  556. for (auto id : last_tokens) {
  557. last_output += llama_token_to_piece(ctx, id);
  558. }
  559. is_antiprompt = false;
  560. // Check if each of the reverse prompts appears at the end of the output.
  561. // If we're not running interactively, the reverse prompt might be tokenized with some following characters
  562. // so we'll compensate for that by widening the search window a bit.
  563. for (std::string & antiprompt : params.antiprompt) {
  564. size_t extra_padding = params.interactive ? 0 : 2;
  565. size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
  566. ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
  567. : 0;
  568. if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
  569. if (params.interactive) {
  570. is_interacting = true;
  571. console::set_display(console::user_input);
  572. }
  573. is_antiprompt = true;
  574. fflush(stdout);
  575. break;
  576. }
  577. }
  578. if (is_antiprompt) {
  579. LOG("found antiprompt: %s\n", last_output.c_str());
  580. }
  581. }
  582. // deal with end of text token in interactive mode
  583. if (last_tokens.back() == llama_token_eos(ctx)) {
  584. LOG("found EOS token\n");
  585. if (params.interactive) {
  586. if (!params.antiprompt.empty()) {
  587. // tokenize and inject first reverse prompt
  588. const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
  589. embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
  590. is_antiprompt = true;
  591. }
  592. is_interacting = true;
  593. printf("\n");
  594. console::set_display(console::user_input);
  595. fflush(stdout);
  596. } else if (params.instruct) {
  597. is_interacting = true;
  598. }
  599. }
  600. if (n_past > 0 && is_interacting) {
  601. LOG("waiting for user input\n");
  602. if (params.instruct) {
  603. printf("\n> ");
  604. }
  605. if (params.input_prefix_bos) {
  606. LOG("adding input prefix BOS token\n");
  607. embd_inp.push_back(llama_token_bos(ctx));
  608. }
  609. std::string buffer;
  610. if (!params.input_prefix.empty()) {
  611. LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
  612. buffer += params.input_prefix;
  613. printf("%s", buffer.c_str());
  614. }
  615. std::string line;
  616. bool another_line = true;
  617. do {
  618. another_line = console::readline(line, params.multiline_input);
  619. buffer += line;
  620. } while (another_line);
  621. // done taking input, reset color
  622. console::set_display(console::reset);
  623. // Add tokens to embd only if the input buffer is non-empty
  624. // Entering a empty line lets the user pass control back
  625. if (buffer.length() > 1) {
  626. // append input suffix if any
  627. if (!params.input_suffix.empty()) {
  628. LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
  629. buffer += params.input_suffix;
  630. printf("%s", params.input_suffix.c_str());
  631. }
  632. LOG("buffer: '%s'\n", buffer.c_str());
  633. const size_t original_size = embd_inp.size();
  634. // instruct mode: insert instruction prefix
  635. if (params.instruct && !is_antiprompt) {
  636. LOG("inserting instruction prefix\n");
  637. n_consumed = embd_inp.size();
  638. embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
  639. }
  640. const auto line_inp = ::llama_tokenize(ctx, buffer, false);
  641. LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
  642. embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
  643. // instruct mode: insert response suffix
  644. if (params.instruct) {
  645. LOG("inserting instruction suffix\n");
  646. embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
  647. }
  648. for (size_t i = original_size; i < embd_inp.size(); ++i) {
  649. const llama_token token = embd_inp[i];
  650. output_tokens.push_back(token);
  651. output_ss << llama_token_to_piece(ctx, token);
  652. }
  653. n_remain -= line_inp.size();
  654. LOG("n_remain: %d\n", n_remain);
  655. } else {
  656. LOG("empty line, passing control back\n");
  657. }
  658. input_echo = false; // do not echo this again
  659. }
  660. if (n_past > 0) {
  661. if (is_interacting) {
  662. // reset grammar state if we're restarting generation
  663. if (grammar != NULL) {
  664. llama_grammar_free(grammar);
  665. std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
  666. grammar = llama_grammar_init(
  667. grammar_rules.data(), grammar_rules.size(),
  668. parsed_grammar.symbol_ids.at("root"));
  669. }
  670. }
  671. is_interacting = false;
  672. }
  673. }
  674. // end of text token
  675. if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !(params.instruct || params.interactive)) {
  676. LOG_TEE(" [end of text]\n");
  677. break;
  678. }
  679. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
  680. // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
  681. if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
  682. n_remain = params.n_predict;
  683. is_interacting = true;
  684. }
  685. }
  686. if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
  687. LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
  688. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  689. }
  690. llama_print_timings(ctx);
  691. write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
  692. if (ctx_guidance) { llama_free(ctx_guidance); }
  693. llama_free(ctx);
  694. llama_free_model(model);
  695. if (grammar != NULL) {
  696. llama_grammar_free(grammar);
  697. }
  698. llama_backend_free();
  699. #ifndef LOG_DISABLE_LOGS
  700. LOG_TEE("Log end\n")
  701. #endif // LOG_DISABLE_LOGS
  702. return 0;
  703. }