ggml.c 313 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  68. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  69. #ifndef __FMA__
  70. #define __FMA__
  71. #endif
  72. #ifndef __F16C__
  73. #define __F16C__
  74. #endif
  75. #ifndef __SSE3__
  76. #define __SSE3__
  77. #endif
  78. #endif
  79. #ifdef __HAIKU__
  80. #define static_assert(cond, msg) _Static_assert(cond, msg)
  81. #endif
  82. #define GGML_MLOCK_SUPPORT 0
  83. #ifdef __has_include
  84. #if __has_include(<sys/mman.h>)
  85. #undef GGML_MLOCK_SUPPORT
  86. #define GGML_MLOCK_SUPPORT 1
  87. #include <sys/mman.h>
  88. #endif
  89. #endif
  90. /*#define GGML_PERF*/
  91. #define GGML_DEBUG 0
  92. #define GGML_GELU_FP16
  93. #define GGML_SILU_FP16
  94. #define GGML_SOFT_MAX_UNROLL 4
  95. #define GGML_VEC_DOT_UNROLL 2
  96. #ifdef GGML_USE_ACCELERATE
  97. // uncomment to use vDSP for soft max computation
  98. // note: not sure if it is actually faster
  99. //#define GGML_SOFT_MAX_ACCELERATE
  100. #endif
  101. #if UINTPTR_MAX == 0xFFFFFFFF
  102. #define GGML_MEM_ALIGN 4
  103. #else
  104. #define GGML_MEM_ALIGN 16
  105. #endif
  106. #define UNUSED(x) (void)(x)
  107. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  108. #define GGML_ASSERT(x) \
  109. do { \
  110. if (!(x)) { \
  111. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  112. abort(); \
  113. } \
  114. } while (0)
  115. #ifdef GGML_USE_ACCELERATE
  116. #include <Accelerate/Accelerate.h>
  117. #elif GGML_USE_OPENBLAS
  118. #include <cblas.h>
  119. #endif
  120. #undef MIN
  121. #undef MAX
  122. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  123. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  124. // floating point type used to accumulate sums
  125. typedef double ggml_float;
  126. // 16-bit float
  127. // on Arm, we use __fp16
  128. // on x86, we use uint16_t
  129. #ifdef __ARM_NEON
  130. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  131. //
  132. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  133. //
  134. #include <arm_neon.h>
  135. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  136. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  137. #define GGML_FP16_TO_FP32(x) ((float) (x))
  138. #define GGML_FP32_TO_FP16(x) (x)
  139. #else
  140. #ifdef __wasm_simd128__
  141. #include <wasm_simd128.h>
  142. #else
  143. #ifdef __POWER9_VECTOR__
  144. #include <altivec.h>
  145. #undef bool
  146. #define bool _Bool
  147. #else
  148. #include <immintrin.h>
  149. #endif
  150. #endif
  151. #ifdef __F16C__
  152. #ifdef _MSC_VER
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  155. #else
  156. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  157. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  158. #endif
  159. #elif defined(__POWER9_VECTOR__)
  160. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  161. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  162. /* the inline asm below is about 12% faster than the lookup method */
  163. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  164. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  165. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  166. register float f;
  167. register double d;
  168. __asm__(
  169. "mtfprd %0,%2\n"
  170. "xscvhpdp %0,%0\n"
  171. "frsp %1,%0\n" :
  172. /* temp */ "=d"(d),
  173. /* out */ "=f"(f):
  174. /* in */ "r"(h));
  175. return f;
  176. }
  177. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  178. register double d;
  179. register ggml_fp16_t r;
  180. __asm__( /* xscvdphp can work on double or single precision */
  181. "xscvdphp %0,%2\n"
  182. "mffprd %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=r"(r):
  185. /* in */ "f"(f));
  186. return r;
  187. }
  188. #else
  189. // FP16 <-> FP32
  190. // ref: https://github.com/Maratyszcza/FP16
  191. static inline float fp32_from_bits(uint32_t w) {
  192. union {
  193. uint32_t as_bits;
  194. float as_value;
  195. } fp32;
  196. fp32.as_bits = w;
  197. return fp32.as_value;
  198. }
  199. static inline uint32_t fp32_to_bits(float f) {
  200. union {
  201. float as_value;
  202. uint32_t as_bits;
  203. } fp32;
  204. fp32.as_value = f;
  205. return fp32.as_bits;
  206. }
  207. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  208. const uint32_t w = (uint32_t) h << 16;
  209. const uint32_t sign = w & UINT32_C(0x80000000);
  210. const uint32_t two_w = w + w;
  211. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  212. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  213. const float exp_scale = 0x1.0p-112f;
  214. #else
  215. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  216. #endif
  217. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  218. const uint32_t magic_mask = UINT32_C(126) << 23;
  219. const float magic_bias = 0.5f;
  220. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  221. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  222. const uint32_t result = sign |
  223. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  224. return fp32_from_bits(result);
  225. }
  226. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  227. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  228. const float scale_to_inf = 0x1.0p+112f;
  229. const float scale_to_zero = 0x1.0p-110f;
  230. #else
  231. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  232. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  233. #endif
  234. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  235. const uint32_t w = fp32_to_bits(f);
  236. const uint32_t shl1_w = w + w;
  237. const uint32_t sign = w & UINT32_C(0x80000000);
  238. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  239. if (bias < UINT32_C(0x71000000)) {
  240. bias = UINT32_C(0x71000000);
  241. }
  242. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  243. const uint32_t bits = fp32_to_bits(base);
  244. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  245. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  246. const uint32_t nonsign = exp_bits + mantissa_bits;
  247. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  248. }
  249. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  250. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  251. #endif // __F16C__
  252. #endif // __ARM_NEON
  253. //
  254. // global data
  255. //
  256. // precomputed gelu table for f16 (128 KB)
  257. static ggml_fp16_t table_gelu_f16[1 << 16];
  258. // precomputed silu table for f16 (128 KB)
  259. static ggml_fp16_t table_silu_f16[1 << 16];
  260. // precomputed exp table for f16 (128 KB)
  261. static ggml_fp16_t table_exp_f16[1 << 16];
  262. // precomputed f32 table for f16 (256 KB)
  263. static float table_f32_f16[1 << 16];
  264. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  265. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  266. // This is also true for POWER9.
  267. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  268. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  269. uint16_t s;
  270. memcpy(&s, &f, sizeof(uint16_t));
  271. return table_f32_f16[s];
  272. }
  273. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  274. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  275. #endif
  276. // note: do not use these inside ggml.c
  277. // these are meant to be used via the ggml.h API
  278. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  279. return (float) GGML_FP16_TO_FP32(x);
  280. }
  281. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. //
  285. // timing
  286. //
  287. #if defined(_MSC_VER) || defined(__MINGW32__)
  288. static int64_t timer_freq;
  289. void ggml_time_init(void) {
  290. LARGE_INTEGER frequency;
  291. QueryPerformanceFrequency(&frequency);
  292. timer_freq = frequency.QuadPart;
  293. }
  294. int64_t ggml_time_ms(void) {
  295. LARGE_INTEGER t;
  296. QueryPerformanceCounter(&t);
  297. return (t.QuadPart * 1000) / timer_freq;
  298. }
  299. int64_t ggml_time_us(void) {
  300. LARGE_INTEGER t;
  301. QueryPerformanceCounter(&t);
  302. return (t.QuadPart * 1000000) / timer_freq;
  303. }
  304. #else
  305. void ggml_time_init(void) {}
  306. int64_t ggml_time_ms(void) {
  307. struct timespec ts;
  308. clock_gettime(CLOCK_MONOTONIC, &ts);
  309. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  310. }
  311. int64_t ggml_time_us(void) {
  312. struct timespec ts;
  313. clock_gettime(CLOCK_MONOTONIC, &ts);
  314. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  315. }
  316. #endif
  317. int64_t ggml_cycles(void) {
  318. return clock();
  319. }
  320. int64_t ggml_cycles_per_ms(void) {
  321. return CLOCKS_PER_SEC/1000;
  322. }
  323. #ifdef GGML_PERF
  324. #define ggml_perf_time_ms() ggml_time_ms()
  325. #define ggml_perf_time_us() ggml_time_us()
  326. #define ggml_perf_cycles() ggml_cycles()
  327. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  328. #else
  329. #define ggml_perf_time_ms() 0
  330. #define ggml_perf_time_us() 0
  331. #define ggml_perf_cycles() 0
  332. #define ggml_perf_cycles_per_ms() 0
  333. #endif
  334. //
  335. // cache line
  336. //
  337. #if defined(__cpp_lib_hardware_interference_size)
  338. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  339. #else
  340. #if defined(__POWER9_VECTOR__)
  341. #define CACHE_LINE_SIZE 128
  342. #else
  343. #define CACHE_LINE_SIZE 64
  344. #endif
  345. #endif
  346. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  347. //
  348. // quantization
  349. //
  350. #define QK 32
  351. // AVX routines provided by GH user Const-me
  352. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  353. #if __AVX2__ || __AVX512F__
  354. // Unpack 32 4-bit fields into 32 bytes
  355. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  356. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  357. {
  358. // Load 16 bytes from memory
  359. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  360. // Expand bytes into uint16_t values
  361. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  362. // Unpack values into individual bytes
  363. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  364. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  365. __m256i low = _mm256_and_si256( lowMask, bytes );
  366. high = _mm256_slli_epi16( high, 4 );
  367. bytes = _mm256_or_si256( low, high );
  368. return bytes;
  369. }
  370. static inline __m128i packNibbles( __m256i bytes )
  371. {
  372. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  373. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  374. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  375. __m256i low = _mm256_and_si256( lowByte, bytes );
  376. high = _mm256_srli_epi16( high, 4 );
  377. bytes = _mm256_or_si256( low, high );
  378. // Compress uint16_t lanes into bytes
  379. __m128i r0 = _mm256_castsi256_si128( bytes );
  380. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  381. return _mm_packus_epi16( r0, r1 );
  382. }
  383. #endif
  384. // method 5
  385. // blocks of QK elements
  386. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  387. typedef struct {
  388. float d; // delta
  389. uint8_t qs[QK / 2]; // nibbles / quants
  390. } block_q4_0;
  391. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  392. // method 4
  393. // blocks of QK elements
  394. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  395. typedef struct {
  396. float d;
  397. float m;
  398. uint8_t qs[QK / 2]; // nibbles / quants
  399. } block_q4_1;
  400. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  401. // reference implementation for deterministic creation of model files
  402. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  403. assert(k % QK == 0);
  404. const int nb = k / QK;
  405. uint8_t pp[QK/2];
  406. for (int i = 0; i < nb; i++) {
  407. float amax = 0.0f; // absolute max
  408. for (int l = 0; l < QK; l++) {
  409. const float v = x[i*QK + l];
  410. amax = MAX(amax, fabsf(v));
  411. }
  412. const float d = amax / ((1 << 3) - 1);
  413. const float id = d ? 1.0f/d : 0.0f;
  414. y[i].d = d;
  415. for (int l = 0; l < QK; l += 2) {
  416. const float v0 = x[i*QK + l + 0]*id;
  417. const float v1 = x[i*QK + l + 1]*id;
  418. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  419. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  420. assert(vi0 >= 0 && vi0 < 16);
  421. assert(vi1 >= 0 && vi1 < 16);
  422. pp[l/2] = vi0 | (vi1 << 4);
  423. }
  424. memcpy(y[i].qs, pp, sizeof(pp));
  425. }
  426. }
  427. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  428. assert(k % QK == 0);
  429. const int nb = k / QK;
  430. block_q4_0 * restrict y = vy;
  431. #if defined(__POWER9_VECTOR__)
  432. const vector float v85 = vec_splats(8.5f);
  433. for (int i = 0; i < nb; i++) {
  434. float amax = 0.0f; // absolute max
  435. vector float srcv [8];
  436. vector float asrcv[8];
  437. vector float amaxv[8];
  438. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  439. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  440. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  441. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  442. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  443. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  444. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  445. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  446. amax = MAX(
  447. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  448. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  449. const float d = amax / ((1 << 3) - 1);
  450. const float id = d ? 1.0/d : 0.0;
  451. y[i].d = d;
  452. const vector float vid = vec_splats(id);
  453. uint8_t * restrict pb = y[i].qs;
  454. for (int l = 0; l < 8; l++) {
  455. const vector float vf = vec_madd(srcv[l], vid, v85);
  456. const vector signed int vi = vec_signed(vf);
  457. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  458. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  459. }
  460. }
  461. #elif __ARM_NEON
  462. uint8_t pp[QK/2];
  463. for (int i = 0; i < nb; i++) {
  464. float amax = 0.0f; // absolute max
  465. float32x4_t srcv [8];
  466. float32x4_t asrcv[8];
  467. float32x4_t amaxv[8];
  468. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  469. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  470. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  471. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  472. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  473. amax = MAX(
  474. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  475. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  476. const float d = amax / ((1 << 3) - 1);
  477. const float id = d ? 1.0f/d : 0.0f;
  478. y[i].d = d;
  479. for (int l = 0; l < 8; l++) {
  480. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  481. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  482. const int32x4_t vi = vcvtq_s32_f32(vf);
  483. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  484. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  485. }
  486. memcpy(y[i].qs, pp, sizeof(pp));
  487. }
  488. #elif defined(__AVX2__)
  489. for (int i = 0; i < nb; i++) {
  490. // Load elements into 4 AVX vectors
  491. __m256 v0 = _mm256_loadu_ps( x );
  492. __m256 v1 = _mm256_loadu_ps( x + 8 );
  493. __m256 v2 = _mm256_loadu_ps( x + 16 );
  494. __m256 v3 = _mm256_loadu_ps( x + 24 );
  495. x += 32;
  496. // Compute max(abs(e)) for the block
  497. const __m256 signBit = _mm256_set1_ps( -0.0f );
  498. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  499. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  500. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  501. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  502. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  503. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  504. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  505. const float maxScalar = _mm_cvtss_f32( max4 );
  506. // Quantize these floats
  507. const float d = maxScalar / 7.0f;
  508. y[i].d = d;
  509. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  510. const __m256 mul = _mm256_set1_ps( id );
  511. // Apply the multiplier
  512. v0 = _mm256_mul_ps( v0, mul );
  513. v1 = _mm256_mul_ps( v1, mul );
  514. v2 = _mm256_mul_ps( v2, mul );
  515. v3 = _mm256_mul_ps( v3, mul );
  516. // Round to nearest integer
  517. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  518. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  519. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  520. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  521. // Convert floats to integers
  522. __m256i i0 = _mm256_cvtps_epi32( v0 );
  523. __m256i i1 = _mm256_cvtps_epi32( v1 );
  524. __m256i i2 = _mm256_cvtps_epi32( v2 );
  525. __m256i i3 = _mm256_cvtps_epi32( v3 );
  526. // Convert int32 to int16
  527. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  528. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  529. // Convert int16 to int8
  530. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  531. // We got our precious signed bytes, but the order is now wrong
  532. // These AVX2 pack instructions process 16-byte pieces independently
  533. // The following instruction is fixing the order
  534. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  535. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  536. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  537. const __m256i off = _mm256_set1_epi8( 8 );
  538. i0 = _mm256_add_epi8( i0, off );
  539. // Compress the vector into 4 bit/value, and store
  540. __m128i res = packNibbles( i0 );
  541. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  542. }
  543. #elif defined(__wasm_simd128__)
  544. uint8_t pp[QK/2];
  545. for (int i = 0; i < nb; i++) {
  546. float amax = 0.0f; // absolute max
  547. v128_t srcv [8];
  548. v128_t asrcv[8];
  549. v128_t amaxv[8];
  550. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  551. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  552. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  553. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  554. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  555. amax = MAX(
  556. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  557. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  558. const float d = amax / ((1 << 3) - 1);
  559. const float id = d ? 1.0/d : 0.0;
  560. y[i].d = d;
  561. for (int l = 0; l < 8; l++) {
  562. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  563. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  564. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  565. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  566. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  567. }
  568. memcpy(y[i].qs, pp, sizeof(pp));
  569. }
  570. #else
  571. // scalar
  572. quantize_row_q4_0_reference(x, y, k);
  573. #endif
  574. }
  575. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  576. assert(k % QK == 0);
  577. const int nb = k / QK;
  578. block_q4_1 * restrict y = vy;
  579. uint8_t pp[QK/2];
  580. for (int i = 0; i < nb; i++) {
  581. float min = FLT_MAX;
  582. float max = -FLT_MAX;
  583. for (int l = 0; l < QK; l++) {
  584. const float v = x[i*QK + l];
  585. if (v < min) min = v;
  586. if (v > max) max = v;
  587. }
  588. const float d = (max - min) / ((1 << 4) - 1);
  589. const float id = d ? 1.0f/d : 0.0f;
  590. y[i].d = d;
  591. y[i].m = min;
  592. for (int l = 0; l < QK; l += 2) {
  593. const float v0 = (x[i*QK + l + 0] - min)*id;
  594. const float v1 = (x[i*QK + l + 1] - min)*id;
  595. const uint8_t vi0 = roundf(v0);
  596. const uint8_t vi1 = roundf(v1);
  597. assert(vi0 >= 0 && vi0 < 16);
  598. assert(vi1 >= 0 && vi1 < 16);
  599. pp[l/2] = vi0 | (vi1 << 4);
  600. }
  601. memcpy(y[i].qs, pp, sizeof(pp));
  602. }
  603. }
  604. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  605. assert(k % QK == 0);
  606. #if defined(__AVX2__)
  607. const int nb = k / QK;
  608. block_q4_1 * restrict y = vy;
  609. for (int i = 0; i < nb; i++) {
  610. // Load elements into 4 AVX vectors
  611. __m256 v0 = _mm256_loadu_ps( x );
  612. __m256 v1 = _mm256_loadu_ps( x + 8 );
  613. __m256 v2 = _mm256_loadu_ps( x + 16 );
  614. __m256 v3 = _mm256_loadu_ps( x + 24 );
  615. x += 32;
  616. // Compute max for the block
  617. __m256 vmax;
  618. vmax = _mm256_max_ps( v0, v1 );
  619. vmax = _mm256_max_ps( vmax, v2 );
  620. vmax = _mm256_max_ps( vmax, v3 );
  621. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  622. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  623. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  624. const float maxScalar = _mm_cvtss_f32( max4 );
  625. // Compute min for the block
  626. __m256 vmin;
  627. vmin = _mm256_min_ps( v0, v1 );
  628. vmin = _mm256_min_ps( vmin, v2 );
  629. vmin = _mm256_min_ps( vmin, v3 );
  630. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  631. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  632. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  633. const float minScalar = _mm_cvtss_f32( min4 );
  634. // Quantize these floats
  635. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  636. const float id = d ? 1.0f/d : 0.0f;
  637. y[i].m = minScalar;
  638. y[i].d = d;
  639. // x = (x-min)*id
  640. const __m256 mul = _mm256_set1_ps( id );
  641. const __m256 off = _mm256_set1_ps( minScalar );
  642. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  643. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  644. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  645. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  646. // Round to nearest integer
  647. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  648. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  649. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  650. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  651. // Convert floats to integers
  652. __m256i i0 = _mm256_cvtps_epi32( v0 );
  653. __m256i i1 = _mm256_cvtps_epi32( v1 );
  654. __m256i i2 = _mm256_cvtps_epi32( v2 );
  655. __m256i i3 = _mm256_cvtps_epi32( v3 );
  656. // Convert int32 to int16
  657. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  658. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  659. // Convert int16 to int8
  660. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  661. // We got our precious signed bytes, but the order is now wrong
  662. // These AVX2 pack instructions process 16-byte pieces independently
  663. // The following instruction is fixing the order
  664. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  665. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  666. // Compress the vector into 4 bit/value, and store
  667. __m128i res = packNibbles( i0 );
  668. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  669. }
  670. #else
  671. // scalar
  672. quantize_row_q4_1_reference(x, vy, k);
  673. #endif
  674. }
  675. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  676. assert(k % QK == 0);
  677. const int nb = k / QK;
  678. const block_q4_0 * restrict x = vx;
  679. #if defined(__AVX2__)
  680. for (int i = 0; i < nb; i++) {
  681. // scale factor
  682. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  683. const uint8_t * restrict pp = x[i].qs;
  684. for (int l = 0; l < QK; l += 32) {
  685. // Load 32x4-bit integers into 32x8-bit integers
  686. __m256i vx8 = bytesFromNibbles(pp+l/2);
  687. // Subtract 8 from the integers
  688. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  689. // Convert to 16-bit int
  690. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  691. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  692. // Convert to 32-bit int -> float 32
  693. const __m256 vf[4] = {
  694. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  695. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  696. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  697. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  698. };
  699. // Scale and store
  700. for (int j = 0; j < 4; j++) {
  701. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  702. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  703. }
  704. }
  705. }
  706. #elif defined(__ARM_NEON)
  707. for (int i = 0; i < nb; i++) {
  708. const float32x4_t vd = vdupq_n_f32(x[i].d);
  709. const uint8_t * restrict pp = x[i].qs;
  710. for (int l = 0; l < QK; l += 16) {
  711. // Load 16x4-bit integers into 8x8-bit integers
  712. const uint8x8_t v8 = vld1_u8(pp + l/2);
  713. // Expand 4-bit qs to 8-bit bytes
  714. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  715. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  716. // Convert to signed 8-bit integers
  717. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  718. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  719. // Subtract 8 from each byte
  720. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  721. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  722. // Interleave and combine
  723. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  724. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  725. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  726. // convert to 2x int16x8_t
  727. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  728. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  729. // convert to 4x float32x4_t
  730. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  731. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  732. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  733. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  734. // Multiply by d
  735. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  736. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  737. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  738. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  739. // Store
  740. vst1q_f32(y + i*QK + l + 0, r0);
  741. vst1q_f32(y + i*QK + l + 4, r1);
  742. vst1q_f32(y + i*QK + l + 8, r2);
  743. vst1q_f32(y + i*QK + l + 12, r3);
  744. }
  745. }
  746. #else
  747. // scalar
  748. for (int i = 0; i < nb; i++) {
  749. const float d = x[i].d;
  750. const uint8_t * restrict pp = x[i].qs;
  751. for (int l = 0; l < QK; l += 2) {
  752. const uint8_t vi = pp[l/2];
  753. const int8_t vi0 = vi & 0xf;
  754. const int8_t vi1 = vi >> 4;
  755. const float v0 = (vi0 - 8)*d;
  756. const float v1 = (vi1 - 8)*d;
  757. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  758. y[i*QK + l + 0] = v0;
  759. y[i*QK + l + 1] = v1;
  760. assert(!isnan(y[i*QK + l + 0]));
  761. assert(!isnan(y[i*QK + l + 1]));
  762. }
  763. }
  764. #endif
  765. }
  766. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  767. assert(k % QK == 0);
  768. const int nb = k / QK;
  769. const block_q4_1 * restrict x = vx;
  770. #if defined(__AVX2__)
  771. for (int i = 0; i < nb; i++) {
  772. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  773. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  774. const uint8_t * restrict pp = x[i].qs;
  775. for (int l = 0; l < QK; l += 32) {
  776. // Load 32x4-bit integers into 32x8-bit integers
  777. __m256i vx8 = bytesFromNibbles(pp+l/2);
  778. // Convert to 16-bit int
  779. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  780. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  781. // Convert to 32-bit int -> float 32
  782. const __m256 vf[4] = {
  783. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  784. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  785. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  786. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  787. };
  788. // Scale, add m and store
  789. for (int j = 0; j < 4; j++) {
  790. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  791. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  792. }
  793. }
  794. }
  795. #else
  796. for (int i = 0; i < nb; i++) {
  797. const float d = x[i].d;
  798. const float m = x[i].m;
  799. const uint8_t * restrict pp = x[i].qs;
  800. for (int l = 0; l < QK; l += 2) {
  801. const uint8_t vi = pp[l/2];
  802. const int8_t vi0 = vi & 0xf;
  803. const int8_t vi1 = vi >> 4;
  804. const float v0 = vi0*d + m;
  805. const float v1 = vi1*d + m;
  806. y[i*QK + l + 0] = v0;
  807. y[i*QK + l + 1] = v1;
  808. assert(!isnan(y[i*QK + l + 0]));
  809. assert(!isnan(y[i*QK + l + 1]));
  810. }
  811. }
  812. #endif
  813. }
  814. //
  815. // simd mappings
  816. //
  817. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  818. // we then implement the fundamental computation operations below using only these macros
  819. // adding support for new architectures requires to define the corresponding SIMD macros
  820. //
  821. // GGML_F32_STEP / GGML_F16_STEP
  822. // number of elements to process in a single step
  823. //
  824. // GGML_F32_EPR / GGML_F16_EPR
  825. // number of elements to fit in a single register
  826. //
  827. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  828. #define GGML_SIMD
  829. // F32 NEON
  830. #define GGML_F32_STEP 16
  831. #define GGML_F32_EPR 4
  832. #define GGML_F32x4 float32x4_t
  833. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  834. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  835. #define GGML_F32x4_LOAD vld1q_f32
  836. #define GGML_F32x4_STORE vst1q_f32
  837. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  838. #define GGML_F32x4_ADD vaddq_f32
  839. #define GGML_F32x4_MUL vmulq_f32
  840. #if defined(__ARM_FEATURE_QRDMX)
  841. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  842. #else
  843. #define GGML_F32x4_REDUCE_ONE(x) \
  844. (vgetq_lane_f32(x, 0) + \
  845. vgetq_lane_f32(x, 1) + \
  846. vgetq_lane_f32(x, 2) + \
  847. vgetq_lane_f32(x, 3))
  848. #endif
  849. #define GGML_F32x4_REDUCE(res, x) \
  850. { \
  851. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  852. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  853. } \
  854. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  855. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  856. } \
  857. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  858. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  859. } \
  860. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  861. }
  862. #define GGML_F32_VEC GGML_F32x4
  863. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  864. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  865. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  866. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  867. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  868. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  869. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  870. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  871. // F16 NEON
  872. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  873. #define GGML_F16_STEP 32
  874. #define GGML_F16_EPR 8
  875. #define GGML_F16x8 float16x8_t
  876. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  877. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  878. #define GGML_F16x8_LOAD vld1q_f16
  879. #define GGML_F16x8_STORE vst1q_f16
  880. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  881. #define GGML_F16x8_ADD vaddq_f16
  882. #define GGML_F16x8_MUL vmulq_f16
  883. #define GGML_F16x8_REDUCE(res, x) \
  884. { \
  885. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  886. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  887. } \
  888. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  889. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  890. } \
  891. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  892. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  893. } \
  894. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  895. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  896. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  897. }
  898. #define GGML_F16_VEC GGML_F16x8
  899. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  900. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  901. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  902. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  903. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  904. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  905. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  906. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  907. #else
  908. // if FP16 vector arithmetic is not supported, we use FP32 instead
  909. // and take advantage of the vcvt_ functions to convert to/from FP16
  910. #define GGML_F16_STEP 16
  911. #define GGML_F16_EPR 4
  912. #define GGML_F32Cx4 float32x4_t
  913. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  914. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  915. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  916. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  917. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  918. #define GGML_F32Cx4_ADD vaddq_f32
  919. #define GGML_F32Cx4_MUL vmulq_f32
  920. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  921. #define GGML_F16_VEC GGML_F32Cx4
  922. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  923. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  924. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  925. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  926. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  927. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  928. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  929. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  930. #endif
  931. #elif defined(__AVX__)
  932. #define GGML_SIMD
  933. // F32 AVX
  934. #define GGML_F32_STEP 32
  935. #define GGML_F32_EPR 8
  936. #define GGML_F32x8 __m256
  937. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  938. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  939. #define GGML_F32x8_LOAD _mm256_loadu_ps
  940. #define GGML_F32x8_STORE _mm256_storeu_ps
  941. #if defined(__FMA__)
  942. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  943. #else
  944. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  945. #endif
  946. #define GGML_F32x8_ADD _mm256_add_ps
  947. #define GGML_F32x8_MUL _mm256_mul_ps
  948. #define GGML_F32x8_REDUCE(res, x) \
  949. { \
  950. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  951. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  952. } \
  953. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  954. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  955. } \
  956. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  957. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  958. } \
  959. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  960. _mm256_extractf128_ps(x[0], 1)); \
  961. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  962. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  963. }
  964. // TODO: is this optimal ?
  965. #define GGML_F32_VEC GGML_F32x8
  966. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  967. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  968. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  969. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  970. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  971. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  972. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  973. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  974. // F16 AVX
  975. #define GGML_F16_STEP 32
  976. #define GGML_F16_EPR 8
  977. // F16 arithmetic is not supported by AVX, so we use F32 instead
  978. #define GGML_F32Cx8 __m256
  979. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  980. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  981. #if defined(__F16C__)
  982. // the _mm256_cvt intrinsics require F16C
  983. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  984. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  985. #else
  986. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  987. float tmp[8];
  988. for (int i = 0; i < 8; i++)
  989. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  990. return _mm256_loadu_ps(tmp);
  991. }
  992. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  993. float arr[8];
  994. _mm256_storeu_ps(arr, y);
  995. for (int i = 0; i < 8; i++)
  996. x[i] = GGML_FP16_TO_FP32(arr[i]);
  997. }
  998. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  999. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1000. #endif
  1001. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1002. #define GGML_F32Cx8_ADD _mm256_add_ps
  1003. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1004. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1005. #define GGML_F16_VEC GGML_F32Cx8
  1006. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1007. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1008. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1009. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1010. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1011. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1012. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1013. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1014. #elif defined(__POWER9_VECTOR__)
  1015. #define GGML_SIMD
  1016. // F32 POWER9
  1017. #define GGML_F32_STEP 32
  1018. #define GGML_F32_EPR 4
  1019. #define GGML_F32x4 vector float
  1020. #define GGML_F32x4_ZERO 0.0f
  1021. #define GGML_F32x4_SET1 vec_splats
  1022. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1023. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1024. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1025. #define GGML_F32x4_ADD vec_add
  1026. #define GGML_F32x4_MUL vec_mul
  1027. #define GGML_F32x4_REDUCE(res, x) \
  1028. { \
  1029. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1030. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1031. } \
  1032. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1033. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1034. } \
  1035. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1036. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1037. } \
  1038. res = vec_extract(x[0], 0) + \
  1039. vec_extract(x[0], 1) + \
  1040. vec_extract(x[0], 2) + \
  1041. vec_extract(x[0], 3); \
  1042. }
  1043. #define GGML_F32_VEC GGML_F32x4
  1044. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1045. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1046. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1047. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1048. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1049. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1050. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1051. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1052. // F16 POWER9
  1053. #define GGML_F16_STEP GGML_F32_STEP
  1054. #define GGML_F16_EPR GGML_F32_EPR
  1055. #define GGML_F16_VEC GGML_F32x4
  1056. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1057. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1058. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1059. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1060. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1061. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1062. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1063. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1064. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1065. #define GGML_F16_VEC_STORE(p, r, i) \
  1066. if (i & 0x1) \
  1067. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1068. r[i - GGML_ENDIAN_BYTE(0)]), \
  1069. 0, p - GGML_F16_EPR)
  1070. #elif defined(__wasm_simd128__)
  1071. #define GGML_SIMD
  1072. // F32 WASM
  1073. #define GGML_F32_STEP 16
  1074. #define GGML_F32_EPR 4
  1075. #define GGML_F32x4 v128_t
  1076. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1077. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1078. #define GGML_F32x4_LOAD wasm_v128_load
  1079. #define GGML_F32x4_STORE wasm_v128_store
  1080. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1081. #define GGML_F32x4_ADD wasm_f32x4_add
  1082. #define GGML_F32x4_MUL wasm_f32x4_mul
  1083. #define GGML_F32x4_REDUCE(res, x) \
  1084. { \
  1085. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1086. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1087. } \
  1088. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1089. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1090. } \
  1091. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1092. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1093. } \
  1094. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1095. wasm_f32x4_extract_lane(x[0], 1) + \
  1096. wasm_f32x4_extract_lane(x[0], 2) + \
  1097. wasm_f32x4_extract_lane(x[0], 3); \
  1098. }
  1099. #define GGML_F32_VEC GGML_F32x4
  1100. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1101. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1102. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1103. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1104. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1105. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1106. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1107. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1108. // F16 WASM
  1109. #define GGML_F16_STEP 16
  1110. #define GGML_F16_EPR 4
  1111. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1112. float tmp[4];
  1113. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1114. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1115. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1116. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1117. return wasm_v128_load(tmp);
  1118. }
  1119. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1120. float tmp[4];
  1121. wasm_v128_store(tmp, x);
  1122. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1123. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1124. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1125. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1126. }
  1127. #define GGML_F16x4 v128_t
  1128. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1129. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1130. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1131. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1132. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1133. #define GGML_F16x4_ADD wasm_f32x4_add
  1134. #define GGML_F16x4_MUL wasm_f32x4_mul
  1135. #define GGML_F16x4_REDUCE(res, x) \
  1136. { \
  1137. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1138. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1139. } \
  1140. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1141. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1142. } \
  1143. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1144. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1145. } \
  1146. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1147. wasm_f32x4_extract_lane(x[0], 1) + \
  1148. wasm_f32x4_extract_lane(x[0], 2) + \
  1149. wasm_f32x4_extract_lane(x[0], 3); \
  1150. }
  1151. #define GGML_F16_VEC GGML_F16x4
  1152. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1153. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1154. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1155. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1156. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1157. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1158. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1159. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1160. #elif defined(__SSE3__)
  1161. #define GGML_SIMD
  1162. // F32 SSE
  1163. #define GGML_F32_STEP 32
  1164. #define GGML_F32_EPR 4
  1165. #define GGML_F32x4 __m128
  1166. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1167. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1168. #define GGML_F32x4_LOAD _mm_loadu_ps
  1169. #define GGML_F32x4_STORE _mm_storeu_ps
  1170. #if defined(__FMA__)
  1171. // TODO: Does this work?
  1172. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1173. #else
  1174. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1175. #endif
  1176. #define GGML_F32x4_ADD _mm_add_ps
  1177. #define GGML_F32x4_MUL _mm_mul_ps
  1178. #define GGML_F32x4_REDUCE(res, x) \
  1179. { \
  1180. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1181. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1182. } \
  1183. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1184. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1185. } \
  1186. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1187. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1188. } \
  1189. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1190. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1191. }
  1192. // TODO: is this optimal ?
  1193. #define GGML_F32_VEC GGML_F32x4
  1194. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1195. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1196. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1197. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1198. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1199. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1200. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1201. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1202. // F16 SSE
  1203. #define GGML_F16_STEP 32
  1204. #define GGML_F16_EPR 4
  1205. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1206. float tmp[4];
  1207. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1208. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1209. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1210. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1211. return _mm_loadu_ps(tmp);
  1212. }
  1213. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1214. float arr[4];
  1215. _mm_storeu_ps(arr, y);
  1216. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1217. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1218. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1219. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1220. }
  1221. #define GGML_F32Cx4 __m128
  1222. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1223. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1224. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1225. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1226. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1227. #define GGML_F32Cx4_ADD _mm_add_ps
  1228. #define GGML_F32Cx4_MUL _mm_mul_ps
  1229. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1230. #define GGML_F16_VEC GGML_F32Cx4
  1231. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1232. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1233. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1234. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1235. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1236. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1237. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1238. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1239. #endif
  1240. // GGML_F32_ARR / GGML_F16_ARR
  1241. // number of registers to use per step
  1242. #ifdef GGML_SIMD
  1243. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1244. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1245. #endif
  1246. //
  1247. // fundamental operations
  1248. //
  1249. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1250. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1251. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1252. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1253. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1254. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1255. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1256. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1257. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1258. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1259. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1260. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1261. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1262. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1263. #ifdef GGML_SIMD
  1264. float sumf = 0.0f;
  1265. const int np = (n & ~(GGML_F32_STEP - 1));
  1266. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1267. GGML_F32_VEC ax[GGML_F32_ARR];
  1268. GGML_F32_VEC ay[GGML_F32_ARR];
  1269. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1270. for (int j = 0; j < GGML_F32_ARR; j++) {
  1271. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1272. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1273. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1274. }
  1275. }
  1276. // reduce sum0..sum3 to sum0
  1277. GGML_F32_VEC_REDUCE(sumf, sum);
  1278. // leftovers
  1279. for (int i = np; i < n; ++i) {
  1280. sumf += x[i]*y[i];
  1281. }
  1282. #else
  1283. // scalar
  1284. ggml_float sumf = 0.0;
  1285. for (int i = 0; i < n; ++i) {
  1286. sumf += (ggml_float)(x[i]*y[i]);
  1287. }
  1288. #endif
  1289. *s = sumf;
  1290. }
  1291. #if __AVX512F__ && QK == 32
  1292. static inline __m512 dot_q4_0_oneblock_avx512(
  1293. __m512 acc,
  1294. const block_q4_0 * restrict x,
  1295. const block_q4_0 * restrict y,
  1296. int i
  1297. ) {
  1298. // Compute combined scale for the block
  1299. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1300. __m256i bx = bytesFromNibbles( x[i].qs );
  1301. __m256i by = bytesFromNibbles( y[i].qs );
  1302. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1303. const __m256i off = _mm256_set1_epi8( 8 );
  1304. bx = _mm256_sub_epi8( bx, off );
  1305. by = _mm256_sub_epi8( by, off );
  1306. // Sign-extend 16 signed bytes into int16_t
  1307. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1308. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1309. // Compute products of int16_t integers, add pairwise
  1310. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1311. // Convert int32_t to float
  1312. __m512 p = _mm512_cvtepi32_ps( i64 );
  1313. // Apply the scale, and accumulate
  1314. return _mm512_fmadd_ps( d, p, acc );
  1315. }
  1316. #endif
  1317. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1318. ggml_float sumf = 0.0;
  1319. #if defined(GGML_SIMD)
  1320. const int np = (n & ~(GGML_F16_STEP - 1));
  1321. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1322. GGML_F16_VEC ax[GGML_F16_ARR];
  1323. GGML_F16_VEC ay[GGML_F16_ARR];
  1324. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1325. for (int j = 0; j < GGML_F16_ARR; j++) {
  1326. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1327. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1328. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1329. }
  1330. }
  1331. // reduce sum0..sum3 to sum0
  1332. GGML_F16_VEC_REDUCE(sumf, sum);
  1333. // leftovers
  1334. for (int i = np; i < n; ++i) {
  1335. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1336. }
  1337. #else
  1338. for (int i = 0; i < n; ++i) {
  1339. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1340. }
  1341. #endif
  1342. *s = sumf;
  1343. }
  1344. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1345. const int nb = n / QK;
  1346. assert(n % QK == 0);
  1347. assert(nb % 2 == 0);
  1348. const block_q4_0 * restrict x = vx;
  1349. const block_q4_0 * restrict y = vy;
  1350. ggml_float sumf = 0.0;
  1351. #if defined(__ARM_NEON)
  1352. float sum0 = 0.0f;
  1353. float sum1 = 0.0f;
  1354. for (int i = 0; i < nb; i += 2) {
  1355. const block_q4_0 * restrict x0 = &x[i + 0];
  1356. const block_q4_0 * restrict y0 = &y[i + 0];
  1357. const block_q4_0 * restrict x1 = &x[i + 1];
  1358. const block_q4_0 * restrict y1 = &y[i + 1];
  1359. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1360. const int8x16_t s8b = vdupq_n_s8(0x8);
  1361. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1362. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1363. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1364. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1365. // 4-bit -> 8-bit
  1366. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1367. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1368. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1369. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1370. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1371. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1372. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1373. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1374. // sub 8
  1375. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1376. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1377. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1378. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1379. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1380. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1381. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1382. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1383. #if defined(__ARM_FEATURE_DOTPROD)
  1384. // dot product into int16x8_t
  1385. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1386. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1387. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1388. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1389. // scalar
  1390. #if defined(__ARM_FEATURE_QRDMX)
  1391. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1392. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1393. #else
  1394. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1395. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1396. #endif
  1397. #else
  1398. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1399. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1400. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1401. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1402. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1403. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1404. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1405. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1406. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1407. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1408. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1409. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1410. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1411. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1412. // scalar
  1413. #if defined(__ARM_FEATURE_QRDMX)
  1414. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1415. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1416. #else
  1417. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1418. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1419. #endif
  1420. #endif
  1421. }
  1422. sumf = (ggml_float)(sum0 + sum1);
  1423. #elif defined(__AVX512F__)
  1424. // Initialize accumulator with zeros
  1425. __m512 acc0 = _mm512_setzero_ps();
  1426. __m512 acc1 = _mm512_setzero_ps();
  1427. const int superblock_size = 8;
  1428. const int superblock_count = nb / superblock_size;
  1429. const int remainder = nb % superblock_size;
  1430. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1431. int i = superblock_ix * superblock_size;
  1432. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1433. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1434. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1435. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1436. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1437. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1438. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1439. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1440. }
  1441. // Remainders
  1442. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1443. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1444. }
  1445. // Horizontal sum of all lanes of the accumulator
  1446. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1447. #elif defined(__AVX2__)
  1448. // Initialize accumulator with zeros
  1449. __m256 acc = _mm256_setzero_ps();
  1450. // Main loop
  1451. for (int i = 0; i < nb; ++i) {
  1452. // Compute combined scale for the block
  1453. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1454. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1455. __m256i bx = bytesFromNibbles( x[i].qs );
  1456. __m256i by = bytesFromNibbles( y[i].qs );
  1457. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1458. const __m256i off = _mm256_set1_epi8( 8 );
  1459. bx = _mm256_sub_epi8( bx, off );
  1460. by = _mm256_sub_epi8( by, off );
  1461. // Sign-extend first 16 signed bytes into int16_t
  1462. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1463. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1464. // Compute products of int16_t integers, add pairwise
  1465. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1466. // Sign-extend last 16 signed bytes into int16_t vectors
  1467. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1468. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1469. // Accumulate products of int16_t integers
  1470. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1471. // Convert int32_t to float
  1472. __m256 p = _mm256_cvtepi32_ps( i32 );
  1473. // Apply the scale, and accumulate
  1474. acc = _mm256_fmadd_ps( d, p, acc );
  1475. }
  1476. // Return horizontal sum of the acc vector
  1477. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1478. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1479. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1480. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1481. sumf = _mm_cvtss_f32( res );
  1482. #elif defined(__wasm_simd128__)
  1483. // wasm simd
  1484. float sum0 = 0.0f;
  1485. float sum1 = 0.0f;
  1486. for (int i = 0; i < nb; i += 2) {
  1487. const block_q4_0 * restrict x0 = &px[i + 0];
  1488. const block_q4_0 * restrict y0 = &py[i + 0];
  1489. const block_q4_0 * restrict x1 = &px[i + 1];
  1490. const block_q4_0 * restrict y1 = &py[i + 1];
  1491. const v128_t m4b = wasm_u8x16_splat(0xf);
  1492. const v128_t s8b = wasm_i8x16_splat(0x8);
  1493. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1494. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1495. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1496. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1497. // 4-bit -> 8-bit
  1498. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1499. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1500. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1501. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1502. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1503. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1504. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1505. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1506. // sub 8
  1507. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1508. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1509. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1510. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1511. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1512. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1513. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1514. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1515. // dot product into int16x8_t
  1516. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1517. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1518. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1519. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1520. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1521. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1522. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1523. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1524. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1525. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1526. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1527. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1528. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1529. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1530. sum0 += x0->d * y0->d * (
  1531. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1532. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1533. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1534. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1535. sum1 += x1->d * y1->d * (
  1536. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1537. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1538. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1539. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1540. }
  1541. sumf = sum0 + sum1;
  1542. #else
  1543. // scalar
  1544. for (int i = 0; i < nb; i++) {
  1545. const float d0 = x[i].d;
  1546. const float d1 = y[i].d;
  1547. const uint8_t * restrict p0 = x[i].qs;
  1548. const uint8_t * restrict p1 = y[i].qs;
  1549. for (int j = 0; j < QK/2; j++) {
  1550. const uint8_t v0 = p0[j];
  1551. const uint8_t v1 = p1[j];
  1552. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1553. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1554. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1555. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1556. sumf += f0*f2 + f1*f3;
  1557. }
  1558. }
  1559. #endif
  1560. *s = sumf;
  1561. }
  1562. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1563. const int nb = n / QK;
  1564. const block_q4_1 * restrict x = vx;
  1565. const block_q4_1 * restrict y = vy;
  1566. float sumf = 0.0;
  1567. #if defined(__AVX2__)
  1568. // Initialize accumulator with zeros
  1569. __m256 acc = _mm256_setzero_ps();
  1570. // Accumulator for constant offsets
  1571. float acc_offset = 0.0f;
  1572. // Main loop
  1573. for (int i = 0; i < nb; ++i) {
  1574. const float * d0 = &x[i].d;
  1575. const float * d1 = &y[i].d;
  1576. const float * m0 = &x[i].m;
  1577. const float * m1 = &y[i].m;
  1578. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1579. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1580. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1581. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1582. // Compute combined scale for the block
  1583. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1584. // Compute cross scales for the block
  1585. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1586. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1587. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1588. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1589. __m256i bx = bytesFromNibbles( x[i].qs );
  1590. __m256i by = bytesFromNibbles( y[i].qs );
  1591. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1592. // Sign-extend first 16 signed bytes into int16_t
  1593. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1594. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1595. // Compute products of int16_t integers, add pairwise
  1596. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1597. // Sign-extend last 16 signed bytes into int16_t vectors
  1598. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1599. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1600. // Accumulate products of int16_t integers
  1601. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1602. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1603. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1604. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1605. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1606. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1607. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1608. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1609. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1610. // Convert int32_t to float
  1611. __m256 p = _mm256_cvtepi32_ps( i32 );
  1612. // Apply the scale, and accumulate
  1613. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1614. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1615. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1616. // acc_offset += m0*m1 (for each entry in the block)
  1617. acc_offset += (*m0)*(*m1);
  1618. }
  1619. // Return horizontal sum of the acc vector
  1620. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1621. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1622. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1623. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1624. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1625. #elif defined(__ARM_NEON)
  1626. float sum00 = 0.0f;
  1627. float sum01 = 0.0f;
  1628. float sum10 = 0.0f;
  1629. float sum11 = 0.0f;
  1630. for (int i = 0; i < nb; ++i) {
  1631. const block_q4_1 * restrict x0 = &x[i + 0];
  1632. const block_q4_1 * restrict y0 = &y[i + 0];
  1633. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1634. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1635. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1636. // and with 0xf
  1637. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1638. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1639. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1640. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1641. // dot product into uint16x8_t
  1642. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1643. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1644. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1645. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1646. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1647. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1648. sum00 += x0->m*y0->m;
  1649. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1650. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1651. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1652. }
  1653. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1654. #else
  1655. // scalar
  1656. for (int i = 0; i < nb; i++) {
  1657. const float d0 = x[i].d;
  1658. const float d1 = y[i].d;
  1659. const float m0 = x[i].m;
  1660. const float m1 = y[i].m;
  1661. const uint8_t * restrict p0 = x[i].qs;
  1662. const uint8_t * restrict p1 = y[i].qs;
  1663. for (int j = 0; j < QK/2; j++) {
  1664. const uint8_t v0 = p0[j];
  1665. const uint8_t v1 = p1[j];
  1666. const float f0 = d0*(v0 & 0xf) + m0;
  1667. const float f1 = d0*(v0 >> 4) + m0;
  1668. const float f2 = d1*(v1 & 0xf) + m1;
  1669. const float f3 = d1*(v1 >> 4) + m1;
  1670. sumf += f0*f2 + f1*f3;
  1671. }
  1672. }
  1673. #endif
  1674. *s = sumf;
  1675. }
  1676. // compute GGML_VEC_DOT_UNROLL dot products at once
  1677. // xs - x row stride in bytes
  1678. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1679. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1680. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1681. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1682. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1683. }
  1684. #if defined(GGML_SIMD)
  1685. const int np = (n & ~(GGML_F16_STEP - 1));
  1686. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1687. GGML_F16_VEC ax[GGML_F16_ARR];
  1688. GGML_F16_VEC ay[GGML_F16_ARR];
  1689. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1690. for (int j = 0; j < GGML_F16_ARR; j++) {
  1691. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1692. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1693. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1694. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1695. }
  1696. }
  1697. }
  1698. // reduce sum0..sum3 to sum0
  1699. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1700. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1701. }
  1702. // leftovers
  1703. for (int i = np; i < n; ++i) {
  1704. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1705. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1706. }
  1707. }
  1708. #else
  1709. for (int i = 0; i < n; ++i) {
  1710. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1711. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1712. }
  1713. }
  1714. #endif
  1715. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1716. s[i] = sumf[i];
  1717. }
  1718. }
  1719. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1720. #if defined(GGML_SIMD)
  1721. const int np = (n & ~(GGML_F32_STEP - 1));
  1722. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1723. GGML_F32_VEC ax[GGML_F32_ARR];
  1724. GGML_F32_VEC ay[GGML_F32_ARR];
  1725. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1726. for (int j = 0; j < GGML_F32_ARR; j++) {
  1727. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1728. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1729. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1730. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1731. }
  1732. }
  1733. // leftovers
  1734. for (int i = np; i < n; ++i) {
  1735. y[i] += x[i]*v;
  1736. }
  1737. #else
  1738. // scalar
  1739. for (int i = 0; i < n; ++i) {
  1740. y[i] += x[i]*v;
  1741. }
  1742. #endif
  1743. }
  1744. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1745. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1746. #if defined(GGML_SIMD)
  1747. const int np = (n & ~(GGML_F32_STEP - 1));
  1748. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1749. GGML_F32_VEC ay[GGML_F32_ARR];
  1750. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1751. for (int j = 0; j < GGML_F32_ARR; j++) {
  1752. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1753. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1754. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1755. }
  1756. }
  1757. // leftovers
  1758. for (int i = np; i < n; ++i) {
  1759. y[i] *= v;
  1760. }
  1761. #else
  1762. // scalar
  1763. for (int i = 0; i < n; ++i) {
  1764. y[i] *= v;
  1765. }
  1766. #endif
  1767. }
  1768. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1769. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1770. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1771. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1772. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1773. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1774. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1775. static const float GELU_COEF_A = 0.044715f;
  1776. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1777. inline static float ggml_gelu_f32(float x) {
  1778. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1779. }
  1780. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1781. const uint16_t * i16 = (const uint16_t *) x;
  1782. for (int i = 0; i < n; ++i) {
  1783. y[i] = table_gelu_f16[i16[i]];
  1784. }
  1785. }
  1786. #ifdef GGML_GELU_FP16
  1787. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1788. uint16_t t;
  1789. for (int i = 0; i < n; ++i) {
  1790. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1791. memcpy(&t, &fp16, sizeof(uint16_t));
  1792. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1793. }
  1794. }
  1795. #else
  1796. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1797. for (int i = 0; i < n; ++i) {
  1798. y[i] = ggml_gelu_f32(x[i]);
  1799. }
  1800. }
  1801. #endif
  1802. // Sigmoid Linear Unit (SiLU) function
  1803. inline static float ggml_silu_f32(float x) {
  1804. return x/(1.0f + expf(-x));
  1805. }
  1806. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1807. const uint16_t * i16 = (const uint16_t *) x;
  1808. for (int i = 0; i < n; ++i) {
  1809. y[i] = table_silu_f16[i16[i]];
  1810. }
  1811. }
  1812. #ifdef GGML_SILU_FP16
  1813. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1814. uint16_t t;
  1815. for (int i = 0; i < n; ++i) {
  1816. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1817. memcpy(&t, &fp16, sizeof(uint16_t));
  1818. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1819. }
  1820. }
  1821. #else
  1822. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1823. for (int i = 0; i < n; ++i) {
  1824. y[i] = ggml_silu_f32(x[i]);
  1825. }
  1826. }
  1827. #endif
  1828. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1829. #ifndef GGML_USE_ACCELERATE
  1830. ggml_float sum = 0.0;
  1831. for (int i = 0; i < n; ++i) {
  1832. sum += (ggml_float)x[i];
  1833. }
  1834. *s = sum;
  1835. #else
  1836. vDSP_sve(x, 1, s, n);
  1837. #endif
  1838. }
  1839. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1840. #ifndef GGML_USE_ACCELERATE
  1841. float max = -INFINITY;
  1842. for (int i = 0; i < n; ++i) {
  1843. max = MAX(max, x[i]);
  1844. }
  1845. *s = max;
  1846. #else
  1847. vDSP_maxv(x, 1, s, n);
  1848. #endif
  1849. }
  1850. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1851. ggml_vec_norm_f32(n, s, x);
  1852. *s = 1.f/(*s);
  1853. }
  1854. //
  1855. // logging
  1856. //
  1857. #if (GGML_DEBUG >= 1)
  1858. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1859. #else
  1860. #define GGML_PRINT_DEBUG(...)
  1861. #endif
  1862. #if (GGML_DEBUG >= 5)
  1863. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1864. #else
  1865. #define GGML_PRINT_DEBUG_5(...)
  1866. #endif
  1867. #if (GGML_DEBUG >= 10)
  1868. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1869. #else
  1870. #define GGML_PRINT_DEBUG_10(...)
  1871. #endif
  1872. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1873. //
  1874. // data types
  1875. //
  1876. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1877. QK,
  1878. QK,
  1879. 1,
  1880. 1,
  1881. 1,
  1882. 1,
  1883. 1,
  1884. };
  1885. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1886. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1887. sizeof(block_q4_0),
  1888. sizeof(block_q4_1),
  1889. sizeof(int8_t ),
  1890. sizeof(int16_t),
  1891. sizeof(int32_t),
  1892. sizeof(ggml_fp16_t),
  1893. sizeof(float ),
  1894. };
  1895. // don't forget to update the array above when adding new types
  1896. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1897. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1898. "NONE",
  1899. "DUP",
  1900. "ADD",
  1901. "SUB",
  1902. "MUL",
  1903. "DIV",
  1904. "SQR",
  1905. "SQRT",
  1906. "SUM",
  1907. "MEAN",
  1908. "REPEAT",
  1909. "ABS",
  1910. "SGN",
  1911. "NEG",
  1912. "STEP",
  1913. "RELU",
  1914. "GELU",
  1915. "SILU",
  1916. "NORM",
  1917. "RMS_NORM",
  1918. "MUL_MAT",
  1919. "SCALE",
  1920. "CPY",
  1921. "RESHAPE",
  1922. "VIEW",
  1923. "PERMUTE",
  1924. "TRANSPOSE",
  1925. "GET_ROWS",
  1926. "DIAG_MASK_INF",
  1927. "SOFT_MAX",
  1928. "ROPE",
  1929. "CONV_1D_1S",
  1930. "CONV_1D_2S",
  1931. "FLASH_ATTN",
  1932. "FLASH_FF",
  1933. };
  1934. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1935. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1936. "none",
  1937. "x",
  1938. "x+y",
  1939. "x-y",
  1940. "x*y",
  1941. "x/y",
  1942. "x^2",
  1943. "√x",
  1944. "Σx",
  1945. "Σx/n",
  1946. "repeat(x)",
  1947. "abs(x)",
  1948. "sgn(x)",
  1949. "-x",
  1950. "step(x)",
  1951. "relu(x)",
  1952. "gelu(x)",
  1953. "silu(x)",
  1954. "norm(x)",
  1955. "rms_norm(x)",
  1956. "X*Y",
  1957. "x*v",
  1958. "x-\\>y",
  1959. "reshape(x)",
  1960. "view(x)",
  1961. "permute(x)",
  1962. "transpose(x)",
  1963. "get_rows(x)",
  1964. "diag_mask_inf(x)",
  1965. "soft_max(x)",
  1966. "rope(x)",
  1967. "conv_1d_1s(x)",
  1968. "conv_1d_2s(x)",
  1969. "flash_attn(x)",
  1970. "flash_ff(x)",
  1971. };
  1972. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1973. //
  1974. // ggml object
  1975. //
  1976. struct ggml_object {
  1977. size_t offs;
  1978. size_t size;
  1979. struct ggml_object * next;
  1980. char padding[8];
  1981. };
  1982. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1983. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1984. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1985. //
  1986. // ggml context
  1987. //
  1988. struct ggml_context {
  1989. size_t mem_size;
  1990. void * mem_buffer;
  1991. bool mem_buffer_owned;
  1992. bool mem_buffer_mlocked;
  1993. int n_objects;
  1994. struct ggml_object * objects_begin;
  1995. struct ggml_object * objects_end;
  1996. struct ggml_scratch scratch;
  1997. struct ggml_scratch scratch_save;
  1998. };
  1999. struct ggml_context_container {
  2000. bool used;
  2001. struct ggml_context context;
  2002. };
  2003. //
  2004. // compute types
  2005. //
  2006. enum ggml_task_type {
  2007. GGML_TASK_INIT = 0,
  2008. GGML_TASK_COMPUTE,
  2009. GGML_TASK_FINALIZE,
  2010. };
  2011. struct ggml_compute_params {
  2012. enum ggml_task_type type;
  2013. int ith, nth;
  2014. // work buffer for all threads
  2015. size_t wsize;
  2016. void * wdata;
  2017. };
  2018. //
  2019. // ggml state
  2020. //
  2021. struct ggml_state {
  2022. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2023. };
  2024. // global state
  2025. static struct ggml_state g_state;
  2026. static atomic_int g_state_barrier = 0;
  2027. // barrier via spin lock
  2028. inline static void ggml_critical_section_start(void) {
  2029. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2030. while (processing > 0) {
  2031. // wait for other threads to finish
  2032. atomic_fetch_sub(&g_state_barrier, 1);
  2033. sched_yield(); // TODO: reconsider this
  2034. processing = atomic_fetch_add(&g_state_barrier, 1);
  2035. }
  2036. }
  2037. // TODO: make this somehow automatically executed
  2038. // some sort of "sentry" mechanism
  2039. inline static void ggml_critical_section_end(void) {
  2040. atomic_fetch_sub(&g_state_barrier, 1);
  2041. }
  2042. ////////////////////////////////////////////////////////////////////////////////
  2043. void ggml_print_object(const struct ggml_object * obj) {
  2044. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2045. obj->offs, obj->size, (const void *) obj->next);
  2046. }
  2047. void ggml_print_objects(const struct ggml_context * ctx) {
  2048. struct ggml_object * obj = ctx->objects_begin;
  2049. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2050. while (obj != NULL) {
  2051. ggml_print_object(obj);
  2052. obj = obj->next;
  2053. }
  2054. GGML_PRINT("%s: --- end ---\n", __func__);
  2055. }
  2056. int ggml_nelements(const struct ggml_tensor * tensor) {
  2057. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2058. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2059. }
  2060. int ggml_nrows(const struct ggml_tensor * tensor) {
  2061. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2062. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2063. }
  2064. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2065. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2066. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2067. }
  2068. int ggml_blck_size(enum ggml_type type) {
  2069. return GGML_BLCK_SIZE[type];
  2070. }
  2071. size_t ggml_type_size(enum ggml_type type) {
  2072. return GGML_TYPE_SIZE[type];
  2073. }
  2074. float ggml_type_sizef(enum ggml_type type) {
  2075. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2076. }
  2077. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2078. return GGML_TYPE_SIZE[tensor->type];
  2079. }
  2080. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2081. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2082. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2083. }
  2084. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2085. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2086. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2087. }
  2088. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2089. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2090. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2091. }
  2092. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2093. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2094. return
  2095. (t0->ne[0] == t1->ne[0]) &&
  2096. (t0->ne[2] == t1->ne[2]) &&
  2097. (t0->ne[3] == t1->ne[3]);
  2098. }
  2099. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2100. return tensor->nb[0] > tensor->nb[1];
  2101. }
  2102. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2103. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2104. return
  2105. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2106. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2107. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2108. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2109. }
  2110. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2111. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2112. return
  2113. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2114. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2115. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2116. }
  2117. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2118. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2119. return
  2120. (t0->ne[0] == t1->ne[0] ) &&
  2121. (t0->ne[1] == t1->ne[1] ) &&
  2122. (t0->ne[2] == t1->ne[2] ) &&
  2123. (t0->ne[3] == t1->ne[3] );
  2124. }
  2125. // check if t1 can be represented as a repeatition of t0
  2126. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2127. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2128. return
  2129. (t1->ne[0]%t0->ne[0] == 0) &&
  2130. (t1->ne[1]%t0->ne[1] == 0) &&
  2131. (t1->ne[2]%t0->ne[2] == 0) &&
  2132. (t1->ne[3]%t0->ne[3] == 0);
  2133. }
  2134. static inline int ggml_up32(int n) {
  2135. return (n + 31) & ~31;
  2136. }
  2137. static inline int ggml_up64(int n) {
  2138. return (n + 63) & ~63;
  2139. }
  2140. static inline int ggml_up(int n, int m) {
  2141. // assert m is a power of 2
  2142. GGML_ASSERT((m & (m - 1)) == 0);
  2143. return (n + m - 1) & ~(m - 1);
  2144. }
  2145. // assert that pointer is aligned to GGML_MEM_ALIGN
  2146. #define ggml_assert_aligned(ptr) \
  2147. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2148. ////////////////////////////////////////////////////////////////////////////////
  2149. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2150. // make this function thread safe
  2151. ggml_critical_section_start();
  2152. static bool is_first_call = true;
  2153. if (is_first_call) {
  2154. // initialize GELU, SILU and EXP F32 tables
  2155. {
  2156. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2157. ggml_fp16_t ii;
  2158. for (int i = 0; i < (1 << 16); ++i) {
  2159. uint16_t ui = i;
  2160. memcpy(&ii, &ui, sizeof(ii));
  2161. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2162. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2163. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2164. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2165. }
  2166. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2167. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2168. }
  2169. // initialize g_state
  2170. {
  2171. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2172. g_state = (struct ggml_state) {
  2173. /*.contexts =*/ { { 0 } },
  2174. };
  2175. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2176. g_state.contexts[i].used = false;
  2177. }
  2178. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2179. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2180. }
  2181. is_first_call = false;
  2182. }
  2183. // find non-used context in g_state
  2184. struct ggml_context * ctx = NULL;
  2185. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2186. if (!g_state.contexts[i].used) {
  2187. g_state.contexts[i].used = true;
  2188. ctx = &g_state.contexts[i].context;
  2189. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2190. break;
  2191. }
  2192. }
  2193. if (ctx == NULL) {
  2194. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2195. ggml_critical_section_end();
  2196. return NULL;
  2197. }
  2198. *ctx = (struct ggml_context) {
  2199. /*.mem_size =*/ params.mem_size,
  2200. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2201. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2202. /*.mem_buffer_mlocked =*/ false,
  2203. /*.n_objects =*/ 0,
  2204. /*.objects_begin =*/ NULL,
  2205. /*.objects_end =*/ NULL,
  2206. /*.scratch =*/ { 0, 0, NULL, },
  2207. /*.scratch_save =*/ { 0, 0, NULL, },
  2208. };
  2209. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2210. ggml_assert_aligned(ctx->mem_buffer);
  2211. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2212. ggml_critical_section_end();
  2213. return ctx;
  2214. }
  2215. void ggml_free(struct ggml_context * ctx) {
  2216. // make this function thread safe
  2217. ggml_critical_section_start();
  2218. bool found = false;
  2219. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2220. if (&g_state.contexts[i].context == ctx) {
  2221. g_state.contexts[i].used = false;
  2222. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2223. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2224. #if GGML_MLOCK_SUPPORT
  2225. if (ctx->mem_buffer_mlocked) {
  2226. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2227. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2228. }
  2229. }
  2230. #endif
  2231. if (ctx->mem_buffer_owned) {
  2232. free(ctx->mem_buffer);
  2233. }
  2234. found = true;
  2235. break;
  2236. }
  2237. }
  2238. if (!found) {
  2239. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2240. }
  2241. ggml_critical_section_end();
  2242. }
  2243. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2244. return ctx->objects_end->offs + ctx->objects_end->size;
  2245. }
  2246. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2247. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2248. ctx->scratch = scratch;
  2249. return result;
  2250. }
  2251. bool ggml_mlock_supported(void) {
  2252. return GGML_MLOCK_SUPPORT;
  2253. }
  2254. #if GGML_MLOCK_SUPPORT
  2255. #ifdef __APPLE__
  2256. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2257. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2258. #else
  2259. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2260. #endif
  2261. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2262. if (ctx->mem_buffer_mlocked) {
  2263. return true;
  2264. }
  2265. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2266. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2267. ctx->mem_size, strerror(errno));
  2268. GGML_ASSERT(ret >= 0);
  2269. return false;
  2270. }
  2271. ctx->mem_buffer_mlocked = true;
  2272. return true;
  2273. }
  2274. #else // GGML_MLOCK_SUPPORT
  2275. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2276. *err_p = strdup("can't mlock because it's not supported on this system");
  2277. return false;
  2278. }
  2279. #endif // GGML_MLOCK_SUPPORT
  2280. ////////////////////////////////////////////////////////////////////////////////
  2281. struct ggml_tensor * ggml_new_tensor_impl(
  2282. struct ggml_context * ctx,
  2283. enum ggml_type type,
  2284. int n_dims,
  2285. const int* ne,
  2286. void* data) {
  2287. // always insert objects at the end of the context's memory pool
  2288. struct ggml_object * obj_cur = ctx->objects_end;
  2289. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2290. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2291. const size_t cur_end = cur_offs + cur_size;
  2292. size_t size_needed = 0;
  2293. if (data == NULL) {
  2294. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2295. for (int i = 1; i < n_dims; i++) {
  2296. size_needed *= ne[i];
  2297. }
  2298. // align to GGML_MEM_ALIGN
  2299. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2300. }
  2301. char * const mem_buffer = ctx->mem_buffer;
  2302. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2303. if (ctx->scratch.data == NULL || data != NULL) {
  2304. size_needed += sizeof(struct ggml_tensor);
  2305. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2306. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2307. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2308. assert(false);
  2309. return NULL;
  2310. }
  2311. *obj_new = (struct ggml_object) {
  2312. .offs = cur_end + GGML_OBJECT_SIZE,
  2313. .size = size_needed,
  2314. .next = NULL,
  2315. };
  2316. } else {
  2317. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2318. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2319. assert(false);
  2320. return NULL;
  2321. }
  2322. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2323. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2324. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2325. assert(false);
  2326. return NULL;
  2327. }
  2328. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2329. *obj_new = (struct ggml_object) {
  2330. .offs = cur_end + GGML_OBJECT_SIZE,
  2331. .size = sizeof(struct ggml_tensor),
  2332. .next = NULL,
  2333. };
  2334. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2335. ctx->scratch.offs += size_needed;
  2336. }
  2337. if (obj_cur != NULL) {
  2338. obj_cur->next = obj_new;
  2339. } else {
  2340. // this is the first object in this context
  2341. ctx->objects_begin = obj_new;
  2342. }
  2343. ctx->objects_end = obj_new;
  2344. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2345. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2346. ggml_assert_aligned(result);
  2347. *result = (struct ggml_tensor) {
  2348. /*.type =*/ type,
  2349. /*.n_dims =*/ n_dims,
  2350. /*.ne =*/ { 1, 1, 1, 1 },
  2351. /*.nb =*/ { 0, 0, 0, 0 },
  2352. /*.op =*/ GGML_OP_NONE,
  2353. /*.is_param =*/ false,
  2354. /*.grad =*/ NULL,
  2355. /*.src0 =*/ NULL,
  2356. /*.src1 =*/ NULL,
  2357. /*.opt =*/ { NULL },
  2358. /*.n_tasks =*/ 0,
  2359. /*.perf_runs =*/ 0,
  2360. /*.perf_cycles =*/ 0,
  2361. /*.perf_time_us =*/ 0,
  2362. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2363. /*.pad =*/ { 0 },
  2364. };
  2365. ggml_assert_aligned(result->data);
  2366. for (int i = 0; i < n_dims; i++) {
  2367. result->ne[i] = ne[i];
  2368. }
  2369. result->nb[0] = GGML_TYPE_SIZE[type];
  2370. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2371. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2372. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2373. }
  2374. ctx->n_objects++;
  2375. return result;
  2376. }
  2377. struct ggml_tensor * ggml_new_tensor(
  2378. struct ggml_context * ctx,
  2379. enum ggml_type type,
  2380. int n_dims,
  2381. const int * ne) {
  2382. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2383. }
  2384. struct ggml_tensor * ggml_new_tensor_1d(
  2385. struct ggml_context * ctx,
  2386. enum ggml_type type,
  2387. int ne0) {
  2388. return ggml_new_tensor(ctx, type, 1, &ne0);
  2389. }
  2390. struct ggml_tensor * ggml_new_tensor_2d(
  2391. struct ggml_context * ctx,
  2392. enum ggml_type type,
  2393. int ne0,
  2394. int ne1) {
  2395. const int ne[2] = { ne0, ne1 };
  2396. return ggml_new_tensor(ctx, type, 2, ne);
  2397. }
  2398. struct ggml_tensor * ggml_new_tensor_3d(
  2399. struct ggml_context * ctx,
  2400. enum ggml_type type,
  2401. int ne0,
  2402. int ne1,
  2403. int ne2) {
  2404. const int ne[3] = { ne0, ne1, ne2 };
  2405. return ggml_new_tensor(ctx, type, 3, ne);
  2406. }
  2407. struct ggml_tensor * ggml_new_tensor_4d(
  2408. struct ggml_context * ctx,
  2409. enum ggml_type type,
  2410. int ne0,
  2411. int ne1,
  2412. int ne2,
  2413. int ne3) {
  2414. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2415. return ggml_new_tensor(ctx, type, 4, ne);
  2416. }
  2417. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2418. ctx->scratch_save = ctx->scratch;
  2419. ctx->scratch.data = NULL;
  2420. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2421. ctx->scratch = ctx->scratch_save;
  2422. ggml_set_i32(result, value);
  2423. return result;
  2424. }
  2425. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2426. ctx->scratch_save = ctx->scratch;
  2427. ctx->scratch.data = NULL;
  2428. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2429. ctx->scratch = ctx->scratch_save;
  2430. ggml_set_f32(result, value);
  2431. return result;
  2432. }
  2433. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2434. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2435. }
  2436. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2437. memset(tensor->data, 0, ggml_nbytes(tensor));
  2438. return tensor;
  2439. }
  2440. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2441. const int n = ggml_nrows(tensor);
  2442. const int nc = tensor->ne[0];
  2443. const size_t n1 = tensor->nb[1];
  2444. char * const data = tensor->data;
  2445. switch (tensor->type) {
  2446. case GGML_TYPE_Q4_0:
  2447. {
  2448. GGML_ASSERT(false);
  2449. } break;
  2450. case GGML_TYPE_Q4_1:
  2451. {
  2452. GGML_ASSERT(false);
  2453. } break;
  2454. case GGML_TYPE_I8:
  2455. {
  2456. assert(tensor->nb[0] == sizeof(int8_t));
  2457. for (int i = 0; i < n; i++) {
  2458. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2459. }
  2460. } break;
  2461. case GGML_TYPE_I16:
  2462. {
  2463. assert(tensor->nb[0] == sizeof(int16_t));
  2464. for (int i = 0; i < n; i++) {
  2465. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2466. }
  2467. } break;
  2468. case GGML_TYPE_I32:
  2469. {
  2470. assert(tensor->nb[0] == sizeof(int32_t));
  2471. for (int i = 0; i < n; i++) {
  2472. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2473. }
  2474. } break;
  2475. case GGML_TYPE_F16:
  2476. {
  2477. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2478. for (int i = 0; i < n; i++) {
  2479. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2480. }
  2481. } break;
  2482. case GGML_TYPE_F32:
  2483. {
  2484. assert(tensor->nb[0] == sizeof(float));
  2485. for (int i = 0; i < n; i++) {
  2486. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2487. }
  2488. } break;
  2489. case GGML_TYPE_COUNT:
  2490. {
  2491. GGML_ASSERT(false);
  2492. } break;
  2493. }
  2494. return tensor;
  2495. }
  2496. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2497. const int n = ggml_nrows(tensor);
  2498. const int nc = tensor->ne[0];
  2499. const size_t n1 = tensor->nb[1];
  2500. char * const data = tensor->data;
  2501. switch (tensor->type) {
  2502. case GGML_TYPE_Q4_0:
  2503. {
  2504. GGML_ASSERT(false);
  2505. } break;
  2506. case GGML_TYPE_Q4_1:
  2507. {
  2508. GGML_ASSERT(false);
  2509. } break;
  2510. case GGML_TYPE_I8:
  2511. {
  2512. assert(tensor->nb[0] == sizeof(int8_t));
  2513. for (int i = 0; i < n; i++) {
  2514. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2515. }
  2516. } break;
  2517. case GGML_TYPE_I16:
  2518. {
  2519. assert(tensor->nb[0] == sizeof(int16_t));
  2520. for (int i = 0; i < n; i++) {
  2521. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2522. }
  2523. } break;
  2524. case GGML_TYPE_I32:
  2525. {
  2526. assert(tensor->nb[0] == sizeof(int32_t));
  2527. for (int i = 0; i < n; i++) {
  2528. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2529. }
  2530. } break;
  2531. case GGML_TYPE_F16:
  2532. {
  2533. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2534. for (int i = 0; i < n; i++) {
  2535. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2536. }
  2537. } break;
  2538. case GGML_TYPE_F32:
  2539. {
  2540. assert(tensor->nb[0] == sizeof(float));
  2541. for (int i = 0; i < n; i++) {
  2542. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2543. }
  2544. } break;
  2545. case GGML_TYPE_COUNT:
  2546. {
  2547. GGML_ASSERT(false);
  2548. } break;
  2549. }
  2550. return tensor;
  2551. }
  2552. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2553. switch (tensor->type) {
  2554. case GGML_TYPE_Q4_0:
  2555. {
  2556. GGML_ASSERT(false);
  2557. } break;
  2558. case GGML_TYPE_Q4_1:
  2559. {
  2560. GGML_ASSERT(false);
  2561. } break;
  2562. case GGML_TYPE_I8:
  2563. {
  2564. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2565. return ((int8_t *)(tensor->data))[i];
  2566. } break;
  2567. case GGML_TYPE_I16:
  2568. {
  2569. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2570. return ((int16_t *)(tensor->data))[i];
  2571. } break;
  2572. case GGML_TYPE_I32:
  2573. {
  2574. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2575. return ((int32_t *)(tensor->data))[i];
  2576. } break;
  2577. case GGML_TYPE_F16:
  2578. {
  2579. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2580. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2581. } break;
  2582. case GGML_TYPE_F32:
  2583. {
  2584. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2585. return ((float *)(tensor->data))[i];
  2586. } break;
  2587. case GGML_TYPE_COUNT:
  2588. {
  2589. GGML_ASSERT(false);
  2590. } break;
  2591. }
  2592. return 0.0f;
  2593. }
  2594. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2595. switch (tensor->type) {
  2596. case GGML_TYPE_Q4_0:
  2597. {
  2598. GGML_ASSERT(false);
  2599. } break;
  2600. case GGML_TYPE_Q4_1:
  2601. {
  2602. GGML_ASSERT(false);
  2603. } break;
  2604. case GGML_TYPE_I8:
  2605. {
  2606. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2607. ((int8_t *)(tensor->data))[i] = value;
  2608. } break;
  2609. case GGML_TYPE_I16:
  2610. {
  2611. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2612. ((int16_t *)(tensor->data))[i] = value;
  2613. } break;
  2614. case GGML_TYPE_I32:
  2615. {
  2616. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2617. ((int32_t *)(tensor->data))[i] = value;
  2618. } break;
  2619. case GGML_TYPE_F16:
  2620. {
  2621. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2622. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2623. } break;
  2624. case GGML_TYPE_F32:
  2625. {
  2626. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2627. ((float *)(tensor->data))[i] = value;
  2628. } break;
  2629. case GGML_TYPE_COUNT:
  2630. {
  2631. GGML_ASSERT(false);
  2632. } break;
  2633. }
  2634. }
  2635. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2636. switch (tensor->type) {
  2637. case GGML_TYPE_Q4_0:
  2638. {
  2639. GGML_ASSERT(false);
  2640. } break;
  2641. case GGML_TYPE_Q4_1:
  2642. {
  2643. GGML_ASSERT(false);
  2644. } break;
  2645. case GGML_TYPE_I8:
  2646. {
  2647. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2648. return ((int8_t *)(tensor->data))[i];
  2649. } break;
  2650. case GGML_TYPE_I16:
  2651. {
  2652. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2653. return ((int16_t *)(tensor->data))[i];
  2654. } break;
  2655. case GGML_TYPE_I32:
  2656. {
  2657. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2658. return ((int32_t *)(tensor->data))[i];
  2659. } break;
  2660. case GGML_TYPE_F16:
  2661. {
  2662. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2663. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2664. } break;
  2665. case GGML_TYPE_F32:
  2666. {
  2667. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2668. return ((float *)(tensor->data))[i];
  2669. } break;
  2670. case GGML_TYPE_COUNT:
  2671. {
  2672. GGML_ASSERT(false);
  2673. } break;
  2674. }
  2675. return 0.0f;
  2676. }
  2677. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2678. switch (tensor->type) {
  2679. case GGML_TYPE_Q4_0:
  2680. {
  2681. GGML_ASSERT(false);
  2682. } break;
  2683. case GGML_TYPE_Q4_1:
  2684. {
  2685. GGML_ASSERT(false);
  2686. } break;
  2687. case GGML_TYPE_I8:
  2688. {
  2689. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2690. ((int8_t *)(tensor->data))[i] = value;
  2691. } break;
  2692. case GGML_TYPE_I16:
  2693. {
  2694. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2695. ((int16_t *)(tensor->data))[i] = value;
  2696. } break;
  2697. case GGML_TYPE_I32:
  2698. {
  2699. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2700. ((int32_t *)(tensor->data))[i] = value;
  2701. } break;
  2702. case GGML_TYPE_F16:
  2703. {
  2704. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2705. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2706. } break;
  2707. case GGML_TYPE_F32:
  2708. {
  2709. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2710. ((float *)(tensor->data))[i] = value;
  2711. } break;
  2712. case GGML_TYPE_COUNT:
  2713. {
  2714. GGML_ASSERT(false);
  2715. } break;
  2716. }
  2717. }
  2718. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2719. return tensor->data;
  2720. }
  2721. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2722. assert(tensor->type == GGML_TYPE_F32);
  2723. return (float *)(tensor->data);
  2724. }
  2725. struct ggml_tensor * ggml_view_tensor(
  2726. struct ggml_context * ctx,
  2727. const struct ggml_tensor * src) {
  2728. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2729. }
  2730. ////////////////////////////////////////////////////////////////////////////////
  2731. // ggml_dup
  2732. struct ggml_tensor * ggml_dup_impl(
  2733. struct ggml_context * ctx,
  2734. struct ggml_tensor * a,
  2735. bool inplace) {
  2736. bool is_node = false;
  2737. if (!inplace && (a->grad)) {
  2738. is_node = true;
  2739. }
  2740. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2741. result->op = GGML_OP_DUP;
  2742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2743. result->src0 = a;
  2744. result->src1 = NULL;
  2745. return result;
  2746. }
  2747. struct ggml_tensor * ggml_dup(
  2748. struct ggml_context * ctx,
  2749. struct ggml_tensor * a) {
  2750. return ggml_dup_impl(ctx, a, false);
  2751. }
  2752. struct ggml_tensor * ggml_dup_inplace(
  2753. struct ggml_context * ctx,
  2754. struct ggml_tensor * a) {
  2755. return ggml_dup_impl(ctx, a, true);
  2756. }
  2757. // ggml_add
  2758. struct ggml_tensor * ggml_add_impl(
  2759. struct ggml_context * ctx,
  2760. struct ggml_tensor * a,
  2761. struct ggml_tensor * b,
  2762. bool inplace) {
  2763. GGML_ASSERT(ggml_are_same_shape(a, b));
  2764. bool is_node = false;
  2765. if (!inplace && (a->grad || b->grad)) {
  2766. is_node = true;
  2767. }
  2768. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2769. result->op = GGML_OP_ADD;
  2770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2771. result->src0 = a;
  2772. result->src1 = b;
  2773. return result;
  2774. }
  2775. struct ggml_tensor * ggml_add(
  2776. struct ggml_context * ctx,
  2777. struct ggml_tensor * a,
  2778. struct ggml_tensor * b) {
  2779. return ggml_add_impl(ctx, a, b, false);
  2780. }
  2781. struct ggml_tensor * ggml_add_inplace(
  2782. struct ggml_context * ctx,
  2783. struct ggml_tensor * a,
  2784. struct ggml_tensor * b) {
  2785. return ggml_add_impl(ctx, a, b, true);
  2786. }
  2787. // ggml_sub
  2788. struct ggml_tensor * ggml_sub_impl(
  2789. struct ggml_context * ctx,
  2790. struct ggml_tensor * a,
  2791. struct ggml_tensor * b,
  2792. bool inplace) {
  2793. GGML_ASSERT(ggml_are_same_shape(a, b));
  2794. bool is_node = false;
  2795. if (!inplace && (a->grad || b->grad)) {
  2796. is_node = true;
  2797. }
  2798. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2799. result->op = GGML_OP_SUB;
  2800. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2801. result->src0 = a;
  2802. result->src1 = b;
  2803. return result;
  2804. }
  2805. struct ggml_tensor * ggml_sub(
  2806. struct ggml_context * ctx,
  2807. struct ggml_tensor * a,
  2808. struct ggml_tensor * b) {
  2809. return ggml_sub_impl(ctx, a, b, false);
  2810. }
  2811. struct ggml_tensor * ggml_sub_inplace(
  2812. struct ggml_context * ctx,
  2813. struct ggml_tensor * a,
  2814. struct ggml_tensor * b) {
  2815. return ggml_sub_impl(ctx, a, b, true);
  2816. }
  2817. // ggml_mul
  2818. struct ggml_tensor * ggml_mul_impl(
  2819. struct ggml_context * ctx,
  2820. struct ggml_tensor * a,
  2821. struct ggml_tensor * b,
  2822. bool inplace) {
  2823. GGML_ASSERT(ggml_are_same_shape(a, b));
  2824. bool is_node = false;
  2825. if (!inplace && (a->grad || b->grad)) {
  2826. is_node = true;
  2827. }
  2828. if (inplace) {
  2829. GGML_ASSERT(is_node == false);
  2830. }
  2831. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2832. result->op = GGML_OP_MUL;
  2833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2834. result->src0 = a;
  2835. result->src1 = b;
  2836. return result;
  2837. }
  2838. struct ggml_tensor * ggml_mul(
  2839. struct ggml_context * ctx,
  2840. struct ggml_tensor * a,
  2841. struct ggml_tensor * b) {
  2842. return ggml_mul_impl(ctx, a, b, false);
  2843. }
  2844. struct ggml_tensor * ggml_mul_inplace(
  2845. struct ggml_context * ctx,
  2846. struct ggml_tensor * a,
  2847. struct ggml_tensor * b) {
  2848. return ggml_mul_impl(ctx, a, b, true);
  2849. }
  2850. // ggml_div
  2851. struct ggml_tensor * ggml_div_impl(
  2852. struct ggml_context * ctx,
  2853. struct ggml_tensor * a,
  2854. struct ggml_tensor * b,
  2855. bool inplace) {
  2856. GGML_ASSERT(ggml_are_same_shape(a, b));
  2857. bool is_node = false;
  2858. if (!inplace && (a->grad || b->grad)) {
  2859. is_node = true;
  2860. }
  2861. if (inplace) {
  2862. GGML_ASSERT(is_node == false);
  2863. }
  2864. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2865. result->op = GGML_OP_DIV;
  2866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2867. result->src0 = a;
  2868. result->src1 = b;
  2869. return result;
  2870. }
  2871. struct ggml_tensor * ggml_div(
  2872. struct ggml_context * ctx,
  2873. struct ggml_tensor * a,
  2874. struct ggml_tensor * b) {
  2875. return ggml_div_impl(ctx, a, b, false);
  2876. }
  2877. struct ggml_tensor * ggml_div_inplace(
  2878. struct ggml_context * ctx,
  2879. struct ggml_tensor * a,
  2880. struct ggml_tensor * b) {
  2881. return ggml_div_impl(ctx, a, b, true);
  2882. }
  2883. // ggml_sqr
  2884. struct ggml_tensor * ggml_sqr_impl(
  2885. struct ggml_context * ctx,
  2886. struct ggml_tensor * a,
  2887. bool inplace) {
  2888. bool is_node = false;
  2889. if (!inplace && (a->grad)) {
  2890. is_node = true;
  2891. }
  2892. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2893. result->op = GGML_OP_SQR;
  2894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2895. result->src0 = a;
  2896. result->src1 = NULL;
  2897. return result;
  2898. }
  2899. struct ggml_tensor * ggml_sqr(
  2900. struct ggml_context * ctx,
  2901. struct ggml_tensor * a) {
  2902. return ggml_sqr_impl(ctx, a, false);
  2903. }
  2904. struct ggml_tensor * ggml_sqr_inplace(
  2905. struct ggml_context * ctx,
  2906. struct ggml_tensor * a) {
  2907. return ggml_sqr_impl(ctx, a, true);
  2908. }
  2909. // ggml_sqrt
  2910. struct ggml_tensor * ggml_sqrt_impl(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a,
  2913. bool inplace) {
  2914. bool is_node = false;
  2915. if (!inplace && (a->grad)) {
  2916. is_node = true;
  2917. }
  2918. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2919. result->op = GGML_OP_SQRT;
  2920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2921. result->src0 = a;
  2922. result->src1 = NULL;
  2923. return result;
  2924. }
  2925. struct ggml_tensor * ggml_sqrt(
  2926. struct ggml_context * ctx,
  2927. struct ggml_tensor * a) {
  2928. return ggml_sqrt_impl(ctx, a, false);
  2929. }
  2930. struct ggml_tensor * ggml_sqrt_inplace(
  2931. struct ggml_context * ctx,
  2932. struct ggml_tensor * a) {
  2933. return ggml_sqrt_impl(ctx, a, true);
  2934. }
  2935. // ggml_sum
  2936. struct ggml_tensor * ggml_sum(
  2937. struct ggml_context * ctx,
  2938. struct ggml_tensor * a) {
  2939. bool is_node = false;
  2940. if (a->grad) {
  2941. is_node = true;
  2942. }
  2943. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2944. result->op = GGML_OP_SUM;
  2945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2946. result->src0 = a;
  2947. result->src1 = NULL;
  2948. return result;
  2949. }
  2950. // ggml_mean
  2951. struct ggml_tensor * ggml_mean(
  2952. struct ggml_context * ctx,
  2953. struct ggml_tensor * a) {
  2954. bool is_node = false;
  2955. if (a->grad) {
  2956. GGML_ASSERT(false); // TODO: implement
  2957. is_node = true;
  2958. }
  2959. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2960. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2961. result->op = GGML_OP_MEAN;
  2962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2963. result->src0 = a;
  2964. result->src1 = NULL;
  2965. return result;
  2966. }
  2967. // ggml_repeat
  2968. struct ggml_tensor * ggml_repeat(
  2969. struct ggml_context * ctx,
  2970. struct ggml_tensor * a,
  2971. struct ggml_tensor * b) {
  2972. GGML_ASSERT(ggml_can_repeat(a, b));
  2973. bool is_node = false;
  2974. if (a->grad) {
  2975. is_node = true;
  2976. }
  2977. if (ggml_are_same_shape(a, b) && !is_node) {
  2978. return a;
  2979. }
  2980. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2981. result->op = GGML_OP_REPEAT;
  2982. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2983. result->src0 = a;
  2984. result->src1 = b;
  2985. return result;
  2986. }
  2987. // ggml_abs
  2988. struct ggml_tensor * ggml_abs_impl(
  2989. struct ggml_context * ctx,
  2990. struct ggml_tensor * a,
  2991. bool inplace) {
  2992. bool is_node = false;
  2993. if (!inplace && (a->grad)) {
  2994. is_node = true;
  2995. }
  2996. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2997. result->op = GGML_OP_ABS;
  2998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2999. result->src0 = a;
  3000. result->src1 = NULL;
  3001. return result;
  3002. }
  3003. struct ggml_tensor * ggml_abs(
  3004. struct ggml_context * ctx,
  3005. struct ggml_tensor * a) {
  3006. return ggml_abs_impl(ctx, a, false);
  3007. }
  3008. struct ggml_tensor * ggml_abs_inplace(
  3009. struct ggml_context * ctx,
  3010. struct ggml_tensor * a) {
  3011. return ggml_abs_impl(ctx, a, true);
  3012. }
  3013. // ggml_sgn
  3014. struct ggml_tensor * ggml_sgn_impl(
  3015. struct ggml_context * ctx,
  3016. struct ggml_tensor * a,
  3017. bool inplace) {
  3018. bool is_node = false;
  3019. if (!inplace && (a->grad)) {
  3020. is_node = true;
  3021. }
  3022. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3023. result->op = GGML_OP_SGN;
  3024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3025. result->src0 = a;
  3026. result->src1 = NULL;
  3027. return result;
  3028. }
  3029. struct ggml_tensor * ggml_sgn(
  3030. struct ggml_context * ctx,
  3031. struct ggml_tensor * a) {
  3032. return ggml_sgn_impl(ctx, a, false);
  3033. }
  3034. struct ggml_tensor * ggml_sgn_inplace(
  3035. struct ggml_context * ctx,
  3036. struct ggml_tensor * a) {
  3037. return ggml_sgn_impl(ctx, a, true);
  3038. }
  3039. // ggml_neg
  3040. struct ggml_tensor * ggml_neg_impl(
  3041. struct ggml_context * ctx,
  3042. struct ggml_tensor * a,
  3043. bool inplace) {
  3044. bool is_node = false;
  3045. if (!inplace && (a->grad)) {
  3046. is_node = true;
  3047. }
  3048. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3049. result->op = GGML_OP_NEG;
  3050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3051. result->src0 = a;
  3052. result->src1 = NULL;
  3053. return result;
  3054. }
  3055. struct ggml_tensor * ggml_neg(
  3056. struct ggml_context * ctx,
  3057. struct ggml_tensor * a) {
  3058. return ggml_neg_impl(ctx, a, false);
  3059. }
  3060. struct ggml_tensor * ggml_neg_inplace(
  3061. struct ggml_context * ctx,
  3062. struct ggml_tensor * a) {
  3063. return ggml_neg_impl(ctx, a, true);
  3064. }
  3065. // ggml_step
  3066. struct ggml_tensor * ggml_step_impl(
  3067. struct ggml_context * ctx,
  3068. struct ggml_tensor * a,
  3069. bool inplace) {
  3070. bool is_node = false;
  3071. if (!inplace && (a->grad)) {
  3072. is_node = true;
  3073. }
  3074. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3075. result->op = GGML_OP_STEP;
  3076. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3077. result->src0 = a;
  3078. result->src1 = NULL;
  3079. return result;
  3080. }
  3081. struct ggml_tensor * ggml_step(
  3082. struct ggml_context * ctx,
  3083. struct ggml_tensor * a) {
  3084. return ggml_step_impl(ctx, a, false);
  3085. }
  3086. struct ggml_tensor * ggml_step_inplace(
  3087. struct ggml_context * ctx,
  3088. struct ggml_tensor * a) {
  3089. return ggml_step_impl(ctx, a, true);
  3090. }
  3091. // ggml_relu
  3092. struct ggml_tensor * ggml_relu_impl(
  3093. struct ggml_context * ctx,
  3094. struct ggml_tensor * a,
  3095. bool inplace) {
  3096. bool is_node = false;
  3097. if (!inplace && (a->grad)) {
  3098. is_node = true;
  3099. }
  3100. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3101. result->op = GGML_OP_RELU;
  3102. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3103. result->src0 = a;
  3104. result->src1 = NULL;
  3105. return result;
  3106. }
  3107. struct ggml_tensor * ggml_relu(
  3108. struct ggml_context * ctx,
  3109. struct ggml_tensor * a) {
  3110. return ggml_relu_impl(ctx, a, false);
  3111. }
  3112. struct ggml_tensor * ggml_relu_inplace(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a) {
  3115. return ggml_relu_impl(ctx, a, true);
  3116. }
  3117. // ggml_gelu
  3118. struct ggml_tensor * ggml_gelu_impl(
  3119. struct ggml_context * ctx,
  3120. struct ggml_tensor * a,
  3121. bool inplace) {
  3122. bool is_node = false;
  3123. if (!inplace && (a->grad)) {
  3124. is_node = true;
  3125. }
  3126. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3127. result->op = GGML_OP_GELU;
  3128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3129. result->src0 = a;
  3130. result->src1 = NULL;
  3131. return result;
  3132. }
  3133. struct ggml_tensor * ggml_gelu(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a) {
  3136. return ggml_gelu_impl(ctx, a, false);
  3137. }
  3138. struct ggml_tensor * ggml_gelu_inplace(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a) {
  3141. return ggml_gelu_impl(ctx, a, true);
  3142. }
  3143. // ggml_silu
  3144. struct ggml_tensor * ggml_silu_impl(
  3145. struct ggml_context * ctx,
  3146. struct ggml_tensor * a,
  3147. bool inplace) {
  3148. bool is_node = false;
  3149. if (!inplace && (a->grad)) {
  3150. is_node = true;
  3151. }
  3152. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3153. result->op = GGML_OP_SILU;
  3154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3155. result->src0 = a;
  3156. result->src1 = NULL;
  3157. return result;
  3158. }
  3159. struct ggml_tensor * ggml_silu(
  3160. struct ggml_context * ctx,
  3161. struct ggml_tensor * a) {
  3162. return ggml_silu_impl(ctx, a, false);
  3163. }
  3164. struct ggml_tensor * ggml_silu_inplace(
  3165. struct ggml_context * ctx,
  3166. struct ggml_tensor * a) {
  3167. return ggml_silu_impl(ctx, a, true);
  3168. }
  3169. // ggml_norm
  3170. struct ggml_tensor * ggml_norm_impl(
  3171. struct ggml_context * ctx,
  3172. struct ggml_tensor * a,
  3173. bool inplace) {
  3174. bool is_node = false;
  3175. if (!inplace && (a->grad)) {
  3176. GGML_ASSERT(false); // TODO: implement backward
  3177. is_node = true;
  3178. }
  3179. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3180. result->op = GGML_OP_NORM;
  3181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3182. result->src0 = a;
  3183. result->src1 = NULL; // TODO: maybe store epsilon here?
  3184. return result;
  3185. }
  3186. struct ggml_tensor * ggml_norm(
  3187. struct ggml_context * ctx,
  3188. struct ggml_tensor * a) {
  3189. return ggml_norm_impl(ctx, a, false);
  3190. }
  3191. struct ggml_tensor * ggml_norm_inplace(
  3192. struct ggml_context * ctx,
  3193. struct ggml_tensor * a) {
  3194. return ggml_norm_impl(ctx, a, true);
  3195. }
  3196. struct ggml_tensor * ggml_rms_norm_impl(
  3197. struct ggml_context * ctx,
  3198. struct ggml_tensor * a,
  3199. bool inplace) {
  3200. bool is_node = false;
  3201. if (!inplace && (a->grad)) {
  3202. GGML_ASSERT(false); // TODO: implement backward
  3203. is_node = true;
  3204. }
  3205. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3206. result->op = GGML_OP_RMS_NORM;
  3207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3208. result->src0 = a;
  3209. result->src1 = NULL; // TODO: maybe store epsilon here?
  3210. return result;
  3211. }
  3212. struct ggml_tensor * ggml_rms_norm(
  3213. struct ggml_context * ctx,
  3214. struct ggml_tensor * a) {
  3215. return ggml_rms_norm_impl(ctx, a, false);
  3216. }
  3217. struct ggml_tensor * ggml_rms_norm_inplace(
  3218. struct ggml_context * ctx,
  3219. struct ggml_tensor * a) {
  3220. return ggml_rms_norm_impl(ctx, a, true);
  3221. }
  3222. // ggml_mul_mat
  3223. struct ggml_tensor * ggml_mul_mat(
  3224. struct ggml_context * ctx,
  3225. struct ggml_tensor * a,
  3226. struct ggml_tensor * b) {
  3227. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3228. GGML_ASSERT(!ggml_is_transposed(a));
  3229. bool is_node = false;
  3230. if (a->grad || b->grad) {
  3231. is_node = true;
  3232. }
  3233. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3234. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3235. result->op = GGML_OP_MUL_MAT;
  3236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3237. result->src0 = a;
  3238. result->src1 = b;
  3239. return result;
  3240. }
  3241. // ggml_scale
  3242. struct ggml_tensor * ggml_scale_impl(
  3243. struct ggml_context * ctx,
  3244. struct ggml_tensor * a,
  3245. struct ggml_tensor * b,
  3246. bool inplace) {
  3247. GGML_ASSERT(ggml_is_scalar(b));
  3248. GGML_ASSERT(ggml_is_padded_1d(a));
  3249. bool is_node = false;
  3250. if (!inplace && (a->grad || b->grad)) {
  3251. GGML_ASSERT(false); // TODO: implement backward
  3252. is_node = true;
  3253. }
  3254. // TODO: when implement backward, fix this:
  3255. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3256. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3257. result->op = GGML_OP_SCALE;
  3258. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3259. result->src0 = a;
  3260. result->src1 = b;
  3261. return result;
  3262. }
  3263. struct ggml_tensor * ggml_scale(
  3264. struct ggml_context * ctx,
  3265. struct ggml_tensor * a,
  3266. struct ggml_tensor * b) {
  3267. return ggml_scale_impl(ctx, a, b, false);
  3268. }
  3269. struct ggml_tensor * ggml_scale_inplace(
  3270. struct ggml_context * ctx,
  3271. struct ggml_tensor * a,
  3272. struct ggml_tensor * b) {
  3273. return ggml_scale_impl(ctx, a, b, true);
  3274. }
  3275. // ggml_cpy
  3276. struct ggml_tensor * ggml_cpy_impl(
  3277. struct ggml_context * ctx,
  3278. struct ggml_tensor * a,
  3279. struct ggml_tensor * b,
  3280. bool inplace) {
  3281. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3282. bool is_node = false;
  3283. if (!inplace && (a->grad || b->grad)) {
  3284. GGML_ASSERT(false); // TODO: implement backward
  3285. is_node = true;
  3286. }
  3287. // make a view of the destination
  3288. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3289. result->op = GGML_OP_CPY;
  3290. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3291. result->src0 = a;
  3292. result->src1 = b;
  3293. return result;
  3294. }
  3295. struct ggml_tensor * ggml_cpy(
  3296. struct ggml_context * ctx,
  3297. struct ggml_tensor * a,
  3298. struct ggml_tensor * b) {
  3299. return ggml_cpy_impl(ctx, a, b, false);
  3300. }
  3301. struct ggml_tensor * ggml_cpy_inplace(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a,
  3304. struct ggml_tensor * b) {
  3305. return ggml_cpy_impl(ctx, a, b, true);
  3306. }
  3307. // ggml_reshape
  3308. struct ggml_tensor * ggml_reshape(
  3309. struct ggml_context * ctx,
  3310. struct ggml_tensor * a,
  3311. struct ggml_tensor * b) {
  3312. GGML_ASSERT(ggml_is_contiguous(a));
  3313. GGML_ASSERT(ggml_is_contiguous(b));
  3314. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3315. bool is_node = false;
  3316. if (a->grad || b->grad) {
  3317. GGML_ASSERT(false); // TODO: implement backward
  3318. is_node = true;
  3319. }
  3320. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3321. result->op = GGML_OP_RESHAPE;
  3322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3323. result->src0 = a;
  3324. result->src1 = NULL;
  3325. return result;
  3326. }
  3327. struct ggml_tensor * ggml_reshape_2d(
  3328. struct ggml_context * ctx,
  3329. struct ggml_tensor * a,
  3330. int ne0,
  3331. int ne1) {
  3332. GGML_ASSERT(ggml_is_contiguous(a));
  3333. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3334. bool is_node = false;
  3335. if (a->grad) {
  3336. GGML_ASSERT(false); // TODO: implement backward
  3337. is_node = true;
  3338. }
  3339. const int ne[2] = { ne0, ne1 };
  3340. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3341. result->op = GGML_OP_RESHAPE;
  3342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3343. result->src0 = a;
  3344. result->src1 = NULL;
  3345. return result;
  3346. }
  3347. struct ggml_tensor * ggml_reshape_3d(
  3348. struct ggml_context * ctx,
  3349. struct ggml_tensor * a,
  3350. int ne0,
  3351. int ne1,
  3352. int ne2) {
  3353. GGML_ASSERT(ggml_is_contiguous(a));
  3354. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3355. bool is_node = false;
  3356. if (a->grad) {
  3357. GGML_ASSERT(false); // TODO: implement backward
  3358. is_node = true;
  3359. }
  3360. const int ne[3] = { ne0, ne1, ne2 };
  3361. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3362. result->op = GGML_OP_RESHAPE;
  3363. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3364. result->src0 = a;
  3365. result->src1 = NULL;
  3366. return result;
  3367. }
  3368. // ggml_view_1d
  3369. struct ggml_tensor * ggml_view_1d(
  3370. struct ggml_context * ctx,
  3371. struct ggml_tensor * a,
  3372. int ne0,
  3373. size_t offset) {
  3374. if (a->grad) {
  3375. GGML_ASSERT(false); // gradient propagation is not supported
  3376. }
  3377. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3378. result->op = GGML_OP_VIEW;
  3379. result->grad = NULL;
  3380. result->src0 = a;
  3381. result->src1 = NULL; // TODO: maybe store the offset here?
  3382. return result;
  3383. }
  3384. // ggml_view_2d
  3385. struct ggml_tensor * ggml_view_2d(
  3386. struct ggml_context * ctx,
  3387. struct ggml_tensor * a,
  3388. int ne0,
  3389. int ne1,
  3390. size_t nb1,
  3391. size_t offset) {
  3392. if (a->grad) {
  3393. GGML_ASSERT(false); // gradient propagation is not supported
  3394. }
  3395. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3396. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3397. result->nb[1] = nb1;
  3398. result->nb[2] = result->nb[1]*ne1;
  3399. result->nb[3] = result->nb[2];
  3400. result->op = GGML_OP_VIEW;
  3401. result->grad = NULL;
  3402. result->src0 = a;
  3403. result->src1 = NULL; // TODO: maybe store the offset here?
  3404. return result;
  3405. }
  3406. // ggml_permute
  3407. struct ggml_tensor * ggml_permute(
  3408. struct ggml_context * ctx,
  3409. struct ggml_tensor * a,
  3410. int axis0,
  3411. int axis1,
  3412. int axis2,
  3413. int axis3) {
  3414. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3415. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3416. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3417. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3418. GGML_ASSERT(axis0 != axis1);
  3419. GGML_ASSERT(axis0 != axis2);
  3420. GGML_ASSERT(axis0 != axis3);
  3421. GGML_ASSERT(axis1 != axis2);
  3422. GGML_ASSERT(axis1 != axis3);
  3423. GGML_ASSERT(axis2 != axis3);
  3424. bool is_node = false;
  3425. if (a->grad) {
  3426. GGML_ASSERT(false); // TODO: implement backward
  3427. is_node = true;
  3428. }
  3429. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3430. int ne[GGML_MAX_DIMS];
  3431. int nb[GGML_MAX_DIMS];
  3432. ne[axis0] = a->ne[0];
  3433. ne[axis1] = a->ne[1];
  3434. ne[axis2] = a->ne[2];
  3435. ne[axis3] = a->ne[3];
  3436. nb[axis0] = a->nb[0];
  3437. nb[axis1] = a->nb[1];
  3438. nb[axis2] = a->nb[2];
  3439. nb[axis3] = a->nb[3];
  3440. result->ne[0] = ne[0];
  3441. result->ne[1] = ne[1];
  3442. result->ne[2] = ne[2];
  3443. result->ne[3] = ne[3];
  3444. result->nb[0] = nb[0];
  3445. result->nb[1] = nb[1];
  3446. result->nb[2] = nb[2];
  3447. result->nb[3] = nb[3];
  3448. result->op = GGML_OP_PERMUTE;
  3449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3450. result->src0 = a;
  3451. result->src1 = NULL; // TODO: maybe store the permutation here?
  3452. return result;
  3453. }
  3454. // ggml_transpose
  3455. struct ggml_tensor * ggml_transpose(
  3456. struct ggml_context * ctx,
  3457. struct ggml_tensor * a) {
  3458. bool is_node = false;
  3459. if (a->grad) {
  3460. GGML_ASSERT(false); // TODO: implement backward
  3461. is_node = true;
  3462. }
  3463. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3464. result->ne[0] = a->ne[1];
  3465. result->ne[1] = a->ne[0];
  3466. result->nb[0] = a->nb[1];
  3467. result->nb[1] = a->nb[0];
  3468. result->op = GGML_OP_TRANSPOSE;
  3469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3470. result->src0 = a;
  3471. result->src1 = NULL;
  3472. return result;
  3473. }
  3474. // ggml_get_rows
  3475. struct ggml_tensor * ggml_get_rows(
  3476. struct ggml_context * ctx,
  3477. struct ggml_tensor * a,
  3478. struct ggml_tensor * b) {
  3479. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3480. bool is_node = false;
  3481. if (a->grad || b->grad) {
  3482. GGML_ASSERT(false); // TODO: implement backward
  3483. is_node = true;
  3484. }
  3485. // TODO: implement non F32 return
  3486. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3487. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3488. result->op = GGML_OP_GET_ROWS;
  3489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3490. result->src0 = a;
  3491. result->src1 = b;
  3492. return result;
  3493. }
  3494. // ggml_diag_mask_inf
  3495. struct ggml_tensor * ggml_diag_mask_inf(
  3496. struct ggml_context * ctx,
  3497. struct ggml_tensor * a,
  3498. int n_past) {
  3499. bool is_node = false;
  3500. if (a->grad) {
  3501. GGML_ASSERT(false); // TODO: implement backward
  3502. is_node = true;
  3503. }
  3504. // TODO: when implement backward, fix this:
  3505. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3506. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3507. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3508. result->op = GGML_OP_DIAG_MASK_INF;
  3509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3510. result->src0 = a;
  3511. result->src1 = b;
  3512. return result;
  3513. }
  3514. // ggml_soft_max
  3515. struct ggml_tensor * ggml_soft_max(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a) {
  3518. bool is_node = false;
  3519. if (a->grad) {
  3520. GGML_ASSERT(false); // TODO: implement backward
  3521. is_node = true;
  3522. }
  3523. // TODO: when implement backward, fix this:
  3524. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3525. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3526. result->op = GGML_OP_SOFT_MAX;
  3527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3528. result->src0 = a;
  3529. result->src1 = NULL;
  3530. return result;
  3531. }
  3532. // ggml_rope
  3533. struct ggml_tensor * ggml_rope(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a,
  3536. int n_past,
  3537. int n_dims,
  3538. int mode) {
  3539. GGML_ASSERT(n_past >= 0);
  3540. bool is_node = false;
  3541. if (a->grad) {
  3542. GGML_ASSERT(false); // TODO: implement backward
  3543. is_node = true;
  3544. }
  3545. // TODO: when implement backward, fix this:
  3546. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3547. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3548. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3549. ((int32_t *) b->data)[0] = n_past;
  3550. ((int32_t *) b->data)[1] = n_dims;
  3551. ((int32_t *) b->data)[2] = mode;
  3552. result->op = GGML_OP_ROPE;
  3553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3554. result->src0 = a;
  3555. result->src1 = b;
  3556. return result;
  3557. }
  3558. // ggml_conv_1d_1s
  3559. struct ggml_tensor * ggml_conv_1d_1s(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a,
  3562. struct ggml_tensor * b) {
  3563. GGML_ASSERT(ggml_is_matrix(b));
  3564. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3565. GGML_ASSERT(a->ne[3] == 1);
  3566. bool is_node = false;
  3567. if (a->grad || b->grad) {
  3568. GGML_ASSERT(false); // TODO: implement backward
  3569. is_node = true;
  3570. }
  3571. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3572. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3573. result->op = GGML_OP_CONV_1D_1S;
  3574. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3575. result->src0 = a;
  3576. result->src1 = b;
  3577. return result;
  3578. }
  3579. // ggml_conv_1d_2s
  3580. struct ggml_tensor * ggml_conv_1d_2s(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a,
  3583. struct ggml_tensor * b) {
  3584. GGML_ASSERT(ggml_is_matrix(b));
  3585. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3586. GGML_ASSERT(a->ne[3] == 1);
  3587. bool is_node = false;
  3588. if (a->grad || b->grad) {
  3589. GGML_ASSERT(false); // TODO: implement backward
  3590. is_node = true;
  3591. }
  3592. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3593. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3594. result->op = GGML_OP_CONV_1D_2S;
  3595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3596. result->src0 = a;
  3597. result->src1 = b;
  3598. return result;
  3599. }
  3600. // ggml_flash_attn
  3601. struct ggml_tensor * ggml_flash_attn(
  3602. struct ggml_context * ctx,
  3603. struct ggml_tensor * q,
  3604. struct ggml_tensor * k,
  3605. struct ggml_tensor * v,
  3606. bool masked) {
  3607. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3608. // TODO: check if vT can be multiplied by (k*qT)
  3609. bool is_node = false;
  3610. if (q->grad || k->grad || v->grad) {
  3611. GGML_ASSERT(false); // TODO: implement backward
  3612. is_node = true;
  3613. }
  3614. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3615. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3616. result->op = GGML_OP_FLASH_ATTN;
  3617. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3618. result->src0 = q;
  3619. result->src1 = k;
  3620. result->opt[0] = v;
  3621. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3622. return result;
  3623. }
  3624. // ggml_flash_ff
  3625. struct ggml_tensor * ggml_flash_ff(
  3626. struct ggml_context * ctx,
  3627. struct ggml_tensor * a,
  3628. struct ggml_tensor * b0,
  3629. struct ggml_tensor * b1,
  3630. struct ggml_tensor * c0,
  3631. struct ggml_tensor * c1) {
  3632. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3633. // TODO: more checks
  3634. bool is_node = false;
  3635. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3636. GGML_ASSERT(false); // TODO: implement backward
  3637. is_node = true;
  3638. }
  3639. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3640. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3641. result->op = GGML_OP_FLASH_FF;
  3642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3643. result->src0 = a;
  3644. result->src1 = b0;
  3645. result->opt[0] = b1;
  3646. result->opt[1] = c0;
  3647. result->opt[2] = c1;
  3648. return result;
  3649. }
  3650. ////////////////////////////////////////////////////////////////////////////////
  3651. void ggml_set_param(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * tensor) {
  3654. tensor->is_param = true;
  3655. GGML_ASSERT(tensor->grad == NULL);
  3656. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3657. }
  3658. // ggml_compute_forward_dup
  3659. static void ggml_compute_forward_dup_f16(
  3660. const struct ggml_compute_params * params,
  3661. const struct ggml_tensor * src0,
  3662. struct ggml_tensor * dst) {
  3663. GGML_ASSERT(params->ith == 0);
  3664. GGML_ASSERT(ggml_is_contiguous(dst));
  3665. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3667. return;
  3668. }
  3669. const int ne00 = src0->ne[0];
  3670. const int ne01 = src0->ne[1];
  3671. const int ne02 = src0->ne[2];
  3672. const int ne03 = src0->ne[3];
  3673. const size_t nb00 = src0->nb[0];
  3674. const size_t nb01 = src0->nb[1];
  3675. const size_t nb02 = src0->nb[2];
  3676. const size_t nb03 = src0->nb[3];
  3677. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3678. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3679. return;
  3680. }
  3681. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3682. if (dst->type == GGML_TYPE_F16) {
  3683. size_t id = 0;
  3684. const size_t rs = ne00*nb00;
  3685. for (int i03 = 0; i03 < ne03; i03++) {
  3686. for (int i02 = 0; i02 < ne02; i02++) {
  3687. for (int i01 = 0; i01 < ne01; i01++) {
  3688. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3689. char * dst_ptr = (char *) dst->data + id*rs;
  3690. memcpy(dst_ptr, src0_ptr, rs);
  3691. id++;
  3692. }
  3693. }
  3694. }
  3695. } else if (dst->type == GGML_TYPE_F32) {
  3696. size_t id = 0;
  3697. float * dst_ptr = (float *) dst->data;
  3698. for (int i03 = 0; i03 < ne03; i03++) {
  3699. for (int i02 = 0; i02 < ne02; i02++) {
  3700. for (int i01 = 0; i01 < ne01; i01++) {
  3701. for (int i00 = 0; i00 < ne00; i00++) {
  3702. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3703. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3704. id++;
  3705. }
  3706. }
  3707. }
  3708. }
  3709. } else {
  3710. GGML_ASSERT(false); // TODO: implement
  3711. }
  3712. } else {
  3713. //printf("%s: this is not optimal - fix me\n", __func__);
  3714. if (dst->type == GGML_TYPE_F32) {
  3715. size_t id = 0;
  3716. float * dst_ptr = (float *) dst->data;
  3717. for (int i03 = 0; i03 < ne03; i03++) {
  3718. for (int i02 = 0; i02 < ne02; i02++) {
  3719. for (int i01 = 0; i01 < ne01; i01++) {
  3720. for (int i00 = 0; i00 < ne00; i00++) {
  3721. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3722. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3723. id++;
  3724. }
  3725. }
  3726. }
  3727. }
  3728. } else if (dst->type == GGML_TYPE_F16) {
  3729. size_t id = 0;
  3730. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3731. for (int i03 = 0; i03 < ne03; i03++) {
  3732. for (int i02 = 0; i02 < ne02; i02++) {
  3733. for (int i01 = 0; i01 < ne01; i01++) {
  3734. for (int i00 = 0; i00 < ne00; i00++) {
  3735. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3736. dst_ptr[id] = *src0_ptr;
  3737. id++;
  3738. }
  3739. }
  3740. }
  3741. }
  3742. } else {
  3743. GGML_ASSERT(false); // TODO: implement
  3744. }
  3745. }
  3746. }
  3747. static void ggml_compute_forward_dup_f32(
  3748. const struct ggml_compute_params * params,
  3749. const struct ggml_tensor * src0,
  3750. struct ggml_tensor * dst) {
  3751. GGML_ASSERT(params->ith == 0);
  3752. GGML_ASSERT(ggml_is_contiguous(dst));
  3753. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3754. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3755. return;
  3756. }
  3757. const int ne00 = src0->ne[0];
  3758. const int ne01 = src0->ne[1];
  3759. const int ne02 = src0->ne[2];
  3760. const int ne03 = src0->ne[3];
  3761. const size_t nb00 = src0->nb[0];
  3762. const size_t nb01 = src0->nb[1];
  3763. const size_t nb02 = src0->nb[2];
  3764. const size_t nb03 = src0->nb[3];
  3765. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3766. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3767. return;
  3768. }
  3769. if (src0->nb[0] == sizeof(float)) {
  3770. if (dst->type == GGML_TYPE_F32) {
  3771. size_t id = 0;
  3772. const size_t rs = ne00*nb00;
  3773. for (int i03 = 0; i03 < ne03; i03++) {
  3774. for (int i02 = 0; i02 < ne02; i02++) {
  3775. for (int i01 = 0; i01 < ne01; i01++) {
  3776. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3777. char * dst_ptr = (char *) dst->data + id*rs;
  3778. memcpy(dst_ptr, src0_ptr, rs);
  3779. id++;
  3780. }
  3781. }
  3782. }
  3783. } else if (dst->type == GGML_TYPE_F16) {
  3784. size_t id = 0;
  3785. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3786. for (int i03 = 0; i03 < ne03; i03++) {
  3787. for (int i02 = 0; i02 < ne02; i02++) {
  3788. for (int i01 = 0; i01 < ne01; i01++) {
  3789. for (int i00 = 0; i00 < ne00; i00++) {
  3790. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3791. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3792. id++;
  3793. }
  3794. }
  3795. }
  3796. }
  3797. } else {
  3798. GGML_ASSERT(false); // TODO: implement
  3799. }
  3800. } else {
  3801. //printf("%s: this is not optimal - fix me\n", __func__);
  3802. if (dst->type == GGML_TYPE_F32) {
  3803. size_t id = 0;
  3804. float * dst_ptr = (float *) dst->data;
  3805. for (int i03 = 0; i03 < ne03; i03++) {
  3806. for (int i02 = 0; i02 < ne02; i02++) {
  3807. for (int i01 = 0; i01 < ne01; i01++) {
  3808. for (int i00 = 0; i00 < ne00; i00++) {
  3809. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3810. dst_ptr[id] = *src0_ptr;
  3811. id++;
  3812. }
  3813. }
  3814. }
  3815. }
  3816. } else if (dst->type == GGML_TYPE_F16) {
  3817. size_t id = 0;
  3818. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3819. for (int i03 = 0; i03 < ne03; i03++) {
  3820. for (int i02 = 0; i02 < ne02; i02++) {
  3821. for (int i01 = 0; i01 < ne01; i01++) {
  3822. for (int i00 = 0; i00 < ne00; i00++) {
  3823. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3824. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3825. id++;
  3826. }
  3827. }
  3828. }
  3829. }
  3830. } else {
  3831. GGML_ASSERT(false); // TODO: implement
  3832. }
  3833. }
  3834. }
  3835. static void ggml_compute_forward_dup(
  3836. const struct ggml_compute_params * params,
  3837. const struct ggml_tensor * src0,
  3838. struct ggml_tensor * dst) {
  3839. switch (src0->type) {
  3840. case GGML_TYPE_F16:
  3841. {
  3842. ggml_compute_forward_dup_f16(params, src0, dst);
  3843. } break;
  3844. case GGML_TYPE_F32:
  3845. {
  3846. ggml_compute_forward_dup_f32(params, src0, dst);
  3847. } break;
  3848. case GGML_TYPE_Q4_0:
  3849. case GGML_TYPE_Q4_1:
  3850. case GGML_TYPE_I8:
  3851. case GGML_TYPE_I16:
  3852. case GGML_TYPE_I32:
  3853. case GGML_TYPE_COUNT:
  3854. {
  3855. GGML_ASSERT(false);
  3856. } break;
  3857. }
  3858. }
  3859. // ggml_compute_forward_add
  3860. static void ggml_compute_forward_add_f32(
  3861. const struct ggml_compute_params * params,
  3862. const struct ggml_tensor * src0,
  3863. const struct ggml_tensor * src1,
  3864. struct ggml_tensor * dst) {
  3865. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3866. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3867. return;
  3868. }
  3869. const int ith = params->ith;
  3870. const int nth = params->nth;
  3871. const int n = ggml_nrows(src0);
  3872. const int nc = src0->ne[0];
  3873. const size_t nb00 = src0->nb[0];
  3874. const size_t nb01 = src0->nb[1];
  3875. const size_t nb10 = src1->nb[0];
  3876. const size_t nb11 = src1->nb[1];
  3877. const size_t nb0 = dst->nb[0];
  3878. const size_t nb1 = dst->nb[1];
  3879. GGML_ASSERT( nb0 == sizeof(float));
  3880. GGML_ASSERT(nb00 == sizeof(float));
  3881. if (nb10 == sizeof(float)) {
  3882. const int j0 = (n/nth)*ith;
  3883. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3884. for (int j = j0; j < j1; j++) {
  3885. ggml_vec_add_f32(nc,
  3886. (float *) ((char *) dst->data + j*nb1),
  3887. (float *) ((char *) src0->data + j*nb01),
  3888. (float *) ((char *) src1->data + j*nb11));
  3889. }
  3890. } else {
  3891. // src1 is not contiguous
  3892. for (int j = ith; j < n; j += nth) {
  3893. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3894. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3895. for (int i = 0; i < nc; i++) {
  3896. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3897. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3898. }
  3899. }
  3900. }
  3901. }
  3902. static void ggml_compute_forward_add(
  3903. const struct ggml_compute_params * params,
  3904. const struct ggml_tensor * src0,
  3905. const struct ggml_tensor * src1,
  3906. struct ggml_tensor * dst) {
  3907. switch (src0->type) {
  3908. case GGML_TYPE_F32:
  3909. {
  3910. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3911. } break;
  3912. case GGML_TYPE_Q4_0:
  3913. case GGML_TYPE_Q4_1:
  3914. case GGML_TYPE_I8:
  3915. case GGML_TYPE_I16:
  3916. case GGML_TYPE_I32:
  3917. case GGML_TYPE_F16:
  3918. case GGML_TYPE_COUNT:
  3919. {
  3920. GGML_ASSERT(false);
  3921. } break;
  3922. }
  3923. }
  3924. // ggml_compute_forward_sub
  3925. static void ggml_compute_forward_sub_f32(
  3926. const struct ggml_compute_params * params,
  3927. const struct ggml_tensor * src0,
  3928. const struct ggml_tensor * src1,
  3929. struct ggml_tensor * dst) {
  3930. assert(params->ith == 0);
  3931. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3932. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3933. return;
  3934. }
  3935. const int n = ggml_nrows(src0);
  3936. const int nc = src0->ne[0];
  3937. assert( dst->nb[0] == sizeof(float));
  3938. assert(src0->nb[0] == sizeof(float));
  3939. assert(src1->nb[0] == sizeof(float));
  3940. for (int i = 0; i < n; i++) {
  3941. ggml_vec_sub_f32(nc,
  3942. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3943. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3944. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3945. }
  3946. }
  3947. static void ggml_compute_forward_sub(
  3948. const struct ggml_compute_params * params,
  3949. const struct ggml_tensor * src0,
  3950. const struct ggml_tensor * src1,
  3951. struct ggml_tensor * dst) {
  3952. switch (src0->type) {
  3953. case GGML_TYPE_F32:
  3954. {
  3955. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3956. } break;
  3957. case GGML_TYPE_Q4_0:
  3958. case GGML_TYPE_Q4_1:
  3959. case GGML_TYPE_I8:
  3960. case GGML_TYPE_I16:
  3961. case GGML_TYPE_I32:
  3962. case GGML_TYPE_F16:
  3963. case GGML_TYPE_COUNT:
  3964. {
  3965. GGML_ASSERT(false);
  3966. } break;
  3967. }
  3968. }
  3969. // ggml_compute_forward_mul
  3970. static void ggml_compute_forward_mul_f32(
  3971. const struct ggml_compute_params * params,
  3972. const struct ggml_tensor * src0,
  3973. const struct ggml_tensor * src1,
  3974. struct ggml_tensor * dst) {
  3975. assert(params->ith == 0);
  3976. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3978. return;
  3979. }
  3980. const int n = ggml_nrows(src0);
  3981. const int nc = src0->ne[0];
  3982. assert( dst->nb[0] == sizeof(float));
  3983. assert(src0->nb[0] == sizeof(float));
  3984. assert(src1->nb[0] == sizeof(float));
  3985. for (int i = 0; i < n; i++) {
  3986. ggml_vec_mul_f32(nc,
  3987. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3988. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3989. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3990. }
  3991. }
  3992. static void ggml_compute_forward_mul(
  3993. const struct ggml_compute_params * params,
  3994. const struct ggml_tensor * src0,
  3995. const struct ggml_tensor * src1,
  3996. struct ggml_tensor * dst) {
  3997. switch (src0->type) {
  3998. case GGML_TYPE_F32:
  3999. {
  4000. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4001. } break;
  4002. case GGML_TYPE_Q4_0:
  4003. case GGML_TYPE_Q4_1:
  4004. case GGML_TYPE_I8:
  4005. case GGML_TYPE_I16:
  4006. case GGML_TYPE_I32:
  4007. case GGML_TYPE_F16:
  4008. case GGML_TYPE_COUNT:
  4009. {
  4010. GGML_ASSERT(false);
  4011. } break;
  4012. }
  4013. }
  4014. // ggml_compute_forward_div
  4015. static void ggml_compute_forward_div_f32(
  4016. const struct ggml_compute_params * params,
  4017. const struct ggml_tensor * src0,
  4018. const struct ggml_tensor * src1,
  4019. struct ggml_tensor * dst) {
  4020. assert(params->ith == 0);
  4021. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4023. return;
  4024. }
  4025. const int n = ggml_nrows(src0);
  4026. const int nc = src0->ne[0];
  4027. assert( dst->nb[0] == sizeof(float));
  4028. assert(src0->nb[0] == sizeof(float));
  4029. assert(src1->nb[0] == sizeof(float));
  4030. for (int i = 0; i < n; i++) {
  4031. ggml_vec_div_f32(nc,
  4032. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4033. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4034. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4035. }
  4036. }
  4037. static void ggml_compute_forward_div(
  4038. const struct ggml_compute_params * params,
  4039. const struct ggml_tensor * src0,
  4040. const struct ggml_tensor * src1,
  4041. struct ggml_tensor * dst) {
  4042. switch (src0->type) {
  4043. case GGML_TYPE_F32:
  4044. {
  4045. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4046. } break;
  4047. case GGML_TYPE_Q4_0:
  4048. case GGML_TYPE_Q4_1:
  4049. case GGML_TYPE_I8:
  4050. case GGML_TYPE_I16:
  4051. case GGML_TYPE_I32:
  4052. case GGML_TYPE_F16:
  4053. case GGML_TYPE_COUNT:
  4054. {
  4055. GGML_ASSERT(false);
  4056. } break;
  4057. }
  4058. }
  4059. // ggml_compute_forward_sqr
  4060. static void ggml_compute_forward_sqr_f32(
  4061. const struct ggml_compute_params * params,
  4062. const struct ggml_tensor * src0,
  4063. struct ggml_tensor * dst) {
  4064. assert(params->ith == 0);
  4065. assert(ggml_are_same_shape(src0, dst));
  4066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4067. return;
  4068. }
  4069. const int n = ggml_nrows(src0);
  4070. const int nc = src0->ne[0];
  4071. assert( dst->nb[0] == sizeof(float));
  4072. assert(src0->nb[0] == sizeof(float));
  4073. for (int i = 0; i < n; i++) {
  4074. ggml_vec_sqr_f32(nc,
  4075. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4076. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4077. }
  4078. }
  4079. static void ggml_compute_forward_sqr(
  4080. const struct ggml_compute_params * params,
  4081. const struct ggml_tensor * src0,
  4082. struct ggml_tensor * dst) {
  4083. switch (src0->type) {
  4084. case GGML_TYPE_F32:
  4085. {
  4086. ggml_compute_forward_sqr_f32(params, src0, dst);
  4087. } break;
  4088. case GGML_TYPE_Q4_0:
  4089. case GGML_TYPE_Q4_1:
  4090. case GGML_TYPE_I8:
  4091. case GGML_TYPE_I16:
  4092. case GGML_TYPE_I32:
  4093. case GGML_TYPE_F16:
  4094. case GGML_TYPE_COUNT:
  4095. {
  4096. GGML_ASSERT(false);
  4097. } break;
  4098. }
  4099. }
  4100. // ggml_compute_forward_sqrt
  4101. static void ggml_compute_forward_sqrt_f32(
  4102. const struct ggml_compute_params * params,
  4103. const struct ggml_tensor * src0,
  4104. struct ggml_tensor * dst) {
  4105. assert(params->ith == 0);
  4106. assert(ggml_are_same_shape(src0, dst));
  4107. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4108. return;
  4109. }
  4110. const int n = ggml_nrows(src0);
  4111. const int nc = src0->ne[0];
  4112. assert( dst->nb[0] == sizeof(float));
  4113. assert(src0->nb[0] == sizeof(float));
  4114. for (int i = 0; i < n; i++) {
  4115. ggml_vec_sqrt_f32(nc,
  4116. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4117. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4118. }
  4119. }
  4120. static void ggml_compute_forward_sqrt(
  4121. const struct ggml_compute_params * params,
  4122. const struct ggml_tensor * src0,
  4123. struct ggml_tensor * dst) {
  4124. switch (src0->type) {
  4125. case GGML_TYPE_F32:
  4126. {
  4127. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4128. } break;
  4129. case GGML_TYPE_Q4_0:
  4130. case GGML_TYPE_Q4_1:
  4131. case GGML_TYPE_I8:
  4132. case GGML_TYPE_I16:
  4133. case GGML_TYPE_I32:
  4134. case GGML_TYPE_F16:
  4135. case GGML_TYPE_COUNT:
  4136. {
  4137. GGML_ASSERT(false);
  4138. } break;
  4139. }
  4140. }
  4141. // ggml_compute_forward_sum
  4142. static void ggml_compute_forward_sum_f32(
  4143. const struct ggml_compute_params * params,
  4144. const struct ggml_tensor * src0,
  4145. struct ggml_tensor * dst) {
  4146. assert(params->ith == 0);
  4147. assert(ggml_is_scalar(dst));
  4148. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4149. return;
  4150. }
  4151. assert(ggml_is_scalar(dst));
  4152. assert(src0->nb[0] == sizeof(float));
  4153. const int ne00 = src0->ne[0];
  4154. const int ne01 = src0->ne[1];
  4155. const int ne02 = src0->ne[2];
  4156. const int ne03 = src0->ne[3];
  4157. const size_t nb01 = src0->nb[1];
  4158. const size_t nb02 = src0->nb[2];
  4159. const size_t nb03 = src0->nb[3];
  4160. for (int i03 = 0; i03 < ne03; i03++) {
  4161. for (int i02 = 0; i02 < ne02; i02++) {
  4162. for (int i01 = 0; i01 < ne01; i01++) {
  4163. ggml_vec_sum_f32(ne00,
  4164. (float *) (dst->data),
  4165. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4166. }
  4167. }
  4168. }
  4169. }
  4170. static void ggml_compute_forward_sum(
  4171. const struct ggml_compute_params * params,
  4172. const struct ggml_tensor * src0,
  4173. struct ggml_tensor * dst) {
  4174. switch (src0->type) {
  4175. case GGML_TYPE_F32:
  4176. {
  4177. ggml_compute_forward_sum_f32(params, src0, dst);
  4178. } break;
  4179. case GGML_TYPE_Q4_0:
  4180. case GGML_TYPE_Q4_1:
  4181. case GGML_TYPE_I8:
  4182. case GGML_TYPE_I16:
  4183. case GGML_TYPE_I32:
  4184. case GGML_TYPE_F16:
  4185. case GGML_TYPE_COUNT:
  4186. {
  4187. GGML_ASSERT(false);
  4188. } break;
  4189. }
  4190. }
  4191. // ggml_compute_forward_mean
  4192. static void ggml_compute_forward_mean_f32(
  4193. const struct ggml_compute_params * params,
  4194. const struct ggml_tensor * src0,
  4195. struct ggml_tensor * dst) {
  4196. assert(params->ith == 0);
  4197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4198. return;
  4199. }
  4200. assert(src0->nb[0] == sizeof(float));
  4201. const int ne00 = src0->ne[0];
  4202. const int ne01 = src0->ne[1];
  4203. const int ne02 = src0->ne[2];
  4204. const int ne03 = src0->ne[3];
  4205. const size_t nb01 = src0->nb[1];
  4206. const size_t nb02 = src0->nb[2];
  4207. const size_t nb03 = src0->nb[3];
  4208. const int ne0 = dst->ne[0];
  4209. const int ne1 = dst->ne[1];
  4210. const int ne2 = dst->ne[2];
  4211. const int ne3 = dst->ne[3];
  4212. assert(ne0 == 1);
  4213. assert(ne1 == ne01);
  4214. assert(ne2 == ne02);
  4215. assert(ne3 == ne03);
  4216. UNUSED(ne0);
  4217. UNUSED(ne1);
  4218. UNUSED(ne2);
  4219. UNUSED(ne3);
  4220. const size_t nb1 = dst->nb[1];
  4221. const size_t nb2 = dst->nb[2];
  4222. const size_t nb3 = dst->nb[3];
  4223. for (int i03 = 0; i03 < ne03; i03++) {
  4224. for (int i02 = 0; i02 < ne02; i02++) {
  4225. for (int i01 = 0; i01 < ne01; i01++) {
  4226. ggml_vec_sum_f32(ne00,
  4227. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4228. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4229. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4230. }
  4231. }
  4232. }
  4233. }
  4234. static void ggml_compute_forward_mean(
  4235. const struct ggml_compute_params * params,
  4236. const struct ggml_tensor * src0,
  4237. struct ggml_tensor * dst) {
  4238. switch (src0->type) {
  4239. case GGML_TYPE_F32:
  4240. {
  4241. ggml_compute_forward_mean_f32(params, src0, dst);
  4242. } break;
  4243. case GGML_TYPE_Q4_0:
  4244. case GGML_TYPE_Q4_1:
  4245. case GGML_TYPE_I8:
  4246. case GGML_TYPE_I16:
  4247. case GGML_TYPE_I32:
  4248. case GGML_TYPE_F16:
  4249. case GGML_TYPE_COUNT:
  4250. {
  4251. GGML_ASSERT(false);
  4252. } break;
  4253. }
  4254. }
  4255. // ggml_compute_forward_repeat
  4256. static void ggml_compute_forward_repeat_f32(
  4257. const struct ggml_compute_params * params,
  4258. const struct ggml_tensor * src0,
  4259. struct ggml_tensor * dst) {
  4260. assert(params->ith == 0);
  4261. assert(ggml_can_repeat(src0, dst));
  4262. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4263. return;
  4264. }
  4265. // TODO: implement support for rank > 2 tensors
  4266. assert(src0->ne[2] == 1);
  4267. assert(src0->ne[3] == 1);
  4268. assert( dst->ne[2] == 1);
  4269. assert( dst->ne[3] == 1);
  4270. const int nc = dst->ne[0];
  4271. const int nr = dst->ne[1];
  4272. const int nc0 = src0->ne[0];
  4273. const int nr0 = src0->ne[1];
  4274. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4275. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4276. // TODO: support for transposed / permuted tensors
  4277. assert( dst->nb[0] == sizeof(float));
  4278. assert(src0->nb[0] == sizeof(float));
  4279. // TODO: maybe this is not optimal?
  4280. for (int i = 0; i < nrr; i++) {
  4281. for (int j = 0; j < ncr; j++) {
  4282. for (int k = 0; k < nr0; k++) {
  4283. ggml_vec_cpy_f32(nc0,
  4284. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4285. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4286. }
  4287. }
  4288. }
  4289. }
  4290. static void ggml_compute_forward_repeat(
  4291. const struct ggml_compute_params * params,
  4292. const struct ggml_tensor * src0,
  4293. struct ggml_tensor * dst) {
  4294. switch (src0->type) {
  4295. case GGML_TYPE_F32:
  4296. {
  4297. ggml_compute_forward_repeat_f32(params, src0, dst);
  4298. } break;
  4299. case GGML_TYPE_Q4_0:
  4300. case GGML_TYPE_Q4_1:
  4301. case GGML_TYPE_I8:
  4302. case GGML_TYPE_I16:
  4303. case GGML_TYPE_I32:
  4304. case GGML_TYPE_F16:
  4305. case GGML_TYPE_COUNT:
  4306. {
  4307. GGML_ASSERT(false);
  4308. } break;
  4309. }
  4310. }
  4311. // ggml_compute_forward_abs
  4312. static void ggml_compute_forward_abs_f32(
  4313. const struct ggml_compute_params * params,
  4314. const struct ggml_tensor * src0,
  4315. struct ggml_tensor * dst) {
  4316. assert(params->ith == 0);
  4317. assert(ggml_are_same_shape(src0, dst));
  4318. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4319. return;
  4320. }
  4321. const int n = ggml_nrows(src0);
  4322. const int nc = src0->ne[0];
  4323. assert(dst->nb[0] == sizeof(float));
  4324. assert(src0->nb[0] == sizeof(float));
  4325. for (int i = 0; i < n; i++) {
  4326. ggml_vec_abs_f32(nc,
  4327. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4328. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4329. }
  4330. }
  4331. static void ggml_compute_forward_abs(
  4332. const struct ggml_compute_params * params,
  4333. const struct ggml_tensor * src0,
  4334. struct ggml_tensor * dst) {
  4335. switch (src0->type) {
  4336. case GGML_TYPE_F32:
  4337. {
  4338. ggml_compute_forward_abs_f32(params, src0, dst);
  4339. } break;
  4340. case GGML_TYPE_Q4_0:
  4341. case GGML_TYPE_Q4_1:
  4342. case GGML_TYPE_I8:
  4343. case GGML_TYPE_I16:
  4344. case GGML_TYPE_I32:
  4345. case GGML_TYPE_F16:
  4346. case GGML_TYPE_COUNT:
  4347. {
  4348. GGML_ASSERT(false);
  4349. } break;
  4350. }
  4351. }
  4352. // ggml_compute_forward_sgn
  4353. static void ggml_compute_forward_sgn_f32(
  4354. const struct ggml_compute_params * params,
  4355. const struct ggml_tensor * src0,
  4356. struct ggml_tensor * dst) {
  4357. assert(params->ith == 0);
  4358. assert(ggml_are_same_shape(src0, dst));
  4359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4360. return;
  4361. }
  4362. const int n = ggml_nrows(src0);
  4363. const int nc = src0->ne[0];
  4364. assert(dst->nb[0] == sizeof(float));
  4365. assert(src0->nb[0] == sizeof(float));
  4366. for (int i = 0; i < n; i++) {
  4367. ggml_vec_sgn_f32(nc,
  4368. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4369. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4370. }
  4371. }
  4372. static void ggml_compute_forward_sgn(
  4373. const struct ggml_compute_params * params,
  4374. const struct ggml_tensor * src0,
  4375. struct ggml_tensor * dst) {
  4376. switch (src0->type) {
  4377. case GGML_TYPE_F32:
  4378. {
  4379. ggml_compute_forward_sgn_f32(params, src0, dst);
  4380. } break;
  4381. case GGML_TYPE_Q4_0:
  4382. case GGML_TYPE_Q4_1:
  4383. case GGML_TYPE_I8:
  4384. case GGML_TYPE_I16:
  4385. case GGML_TYPE_I32:
  4386. case GGML_TYPE_F16:
  4387. case GGML_TYPE_COUNT:
  4388. {
  4389. GGML_ASSERT(false);
  4390. } break;
  4391. }
  4392. }
  4393. // ggml_compute_forward_neg
  4394. static void ggml_compute_forward_neg_f32(
  4395. const struct ggml_compute_params * params,
  4396. const struct ggml_tensor * src0,
  4397. struct ggml_tensor * dst) {
  4398. assert(params->ith == 0);
  4399. assert(ggml_are_same_shape(src0, dst));
  4400. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4401. return;
  4402. }
  4403. const int n = ggml_nrows(src0);
  4404. const int nc = src0->ne[0];
  4405. assert(dst->nb[0] == sizeof(float));
  4406. assert(src0->nb[0] == sizeof(float));
  4407. for (int i = 0; i < n; i++) {
  4408. ggml_vec_neg_f32(nc,
  4409. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4410. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4411. }
  4412. }
  4413. static void ggml_compute_forward_neg(
  4414. const struct ggml_compute_params * params,
  4415. const struct ggml_tensor * src0,
  4416. struct ggml_tensor * dst) {
  4417. switch (src0->type) {
  4418. case GGML_TYPE_F32:
  4419. {
  4420. ggml_compute_forward_neg_f32(params, src0, dst);
  4421. } break;
  4422. case GGML_TYPE_Q4_0:
  4423. case GGML_TYPE_Q4_1:
  4424. case GGML_TYPE_I8:
  4425. case GGML_TYPE_I16:
  4426. case GGML_TYPE_I32:
  4427. case GGML_TYPE_F16:
  4428. case GGML_TYPE_COUNT:
  4429. {
  4430. GGML_ASSERT(false);
  4431. } break;
  4432. }
  4433. }
  4434. // ggml_compute_forward_step
  4435. static void ggml_compute_forward_step_f32(
  4436. const struct ggml_compute_params * params,
  4437. const struct ggml_tensor * src0,
  4438. struct ggml_tensor * dst) {
  4439. assert(params->ith == 0);
  4440. assert(ggml_are_same_shape(src0, dst));
  4441. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4442. return;
  4443. }
  4444. const int n = ggml_nrows(src0);
  4445. const int nc = src0->ne[0];
  4446. assert(dst->nb[0] == sizeof(float));
  4447. assert(src0->nb[0] == sizeof(float));
  4448. for (int i = 0; i < n; i++) {
  4449. ggml_vec_step_f32(nc,
  4450. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4451. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4452. }
  4453. }
  4454. static void ggml_compute_forward_step(
  4455. const struct ggml_compute_params * params,
  4456. const struct ggml_tensor * src0,
  4457. struct ggml_tensor * dst) {
  4458. switch (src0->type) {
  4459. case GGML_TYPE_F32:
  4460. {
  4461. ggml_compute_forward_step_f32(params, src0, dst);
  4462. } break;
  4463. case GGML_TYPE_Q4_0:
  4464. case GGML_TYPE_Q4_1:
  4465. case GGML_TYPE_I8:
  4466. case GGML_TYPE_I16:
  4467. case GGML_TYPE_I32:
  4468. case GGML_TYPE_F16:
  4469. case GGML_TYPE_COUNT:
  4470. {
  4471. GGML_ASSERT(false);
  4472. } break;
  4473. }
  4474. }
  4475. // ggml_compute_forward_relu
  4476. static void ggml_compute_forward_relu_f32(
  4477. const struct ggml_compute_params * params,
  4478. const struct ggml_tensor * src0,
  4479. struct ggml_tensor * dst) {
  4480. assert(params->ith == 0);
  4481. assert(ggml_are_same_shape(src0, dst));
  4482. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4483. return;
  4484. }
  4485. const int n = ggml_nrows(src0);
  4486. const int nc = src0->ne[0];
  4487. assert(dst->nb[0] == sizeof(float));
  4488. assert(src0->nb[0] == sizeof(float));
  4489. for (int i = 0; i < n; i++) {
  4490. ggml_vec_relu_f32(nc,
  4491. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4492. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4493. }
  4494. }
  4495. static void ggml_compute_forward_relu(
  4496. const struct ggml_compute_params * params,
  4497. const struct ggml_tensor * src0,
  4498. struct ggml_tensor * dst) {
  4499. switch (src0->type) {
  4500. case GGML_TYPE_F32:
  4501. {
  4502. ggml_compute_forward_relu_f32(params, src0, dst);
  4503. } break;
  4504. case GGML_TYPE_Q4_0:
  4505. case GGML_TYPE_Q4_1:
  4506. case GGML_TYPE_I8:
  4507. case GGML_TYPE_I16:
  4508. case GGML_TYPE_I32:
  4509. case GGML_TYPE_F16:
  4510. case GGML_TYPE_COUNT:
  4511. {
  4512. GGML_ASSERT(false);
  4513. } break;
  4514. }
  4515. }
  4516. // ggml_compute_forward_gelu
  4517. static void ggml_compute_forward_gelu_f32(
  4518. const struct ggml_compute_params * params,
  4519. const struct ggml_tensor * src0,
  4520. struct ggml_tensor * dst) {
  4521. GGML_ASSERT(ggml_is_contiguous(src0));
  4522. GGML_ASSERT(ggml_is_contiguous(dst));
  4523. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4524. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4525. return;
  4526. }
  4527. const int ith = params->ith;
  4528. const int nth = params->nth;
  4529. const int nc = src0->ne[0];
  4530. const int nr = ggml_nrows(src0);
  4531. // rows per thread
  4532. const int dr = (nr + nth - 1)/nth;
  4533. // row range for this thread
  4534. const int ir0 = dr*ith;
  4535. const int ir1 = MIN(ir0 + dr, nr);
  4536. for (int i1 = ir0; i1 < ir1; i1++) {
  4537. ggml_vec_gelu_f32(nc,
  4538. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4539. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4540. #ifndef NDEBUG
  4541. for (int k = 0; k < nc; k++) {
  4542. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4543. UNUSED(x);
  4544. assert(!isnan(x));
  4545. assert(!isinf(x));
  4546. }
  4547. #endif
  4548. }
  4549. }
  4550. static void ggml_compute_forward_gelu(
  4551. const struct ggml_compute_params * params,
  4552. const struct ggml_tensor * src0,
  4553. struct ggml_tensor * dst) {
  4554. switch (src0->type) {
  4555. case GGML_TYPE_F32:
  4556. {
  4557. ggml_compute_forward_gelu_f32(params, src0, dst);
  4558. } break;
  4559. case GGML_TYPE_Q4_0:
  4560. case GGML_TYPE_Q4_1:
  4561. case GGML_TYPE_I8:
  4562. case GGML_TYPE_I16:
  4563. case GGML_TYPE_I32:
  4564. case GGML_TYPE_F16:
  4565. case GGML_TYPE_COUNT:
  4566. {
  4567. GGML_ASSERT(false);
  4568. } break;
  4569. }
  4570. //printf("XXXXXXXX gelu\n");
  4571. }
  4572. // ggml_compute_forward_silu
  4573. static void ggml_compute_forward_silu_f32(
  4574. const struct ggml_compute_params * params,
  4575. const struct ggml_tensor * src0,
  4576. struct ggml_tensor * dst) {
  4577. GGML_ASSERT(ggml_is_contiguous(src0));
  4578. GGML_ASSERT(ggml_is_contiguous(dst));
  4579. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4580. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4581. return;
  4582. }
  4583. const int ith = params->ith;
  4584. const int nth = params->nth;
  4585. const int nc = src0->ne[0];
  4586. const int nr = ggml_nrows(src0);
  4587. // rows per thread
  4588. const int dr = (nr + nth - 1)/nth;
  4589. // row range for this thread
  4590. const int ir0 = dr*ith;
  4591. const int ir1 = MIN(ir0 + dr, nr);
  4592. for (int i1 = ir0; i1 < ir1; i1++) {
  4593. ggml_vec_silu_f32(nc,
  4594. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4595. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4596. #ifndef NDEBUG
  4597. for (int k = 0; k < nc; k++) {
  4598. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4599. UNUSED(x);
  4600. assert(!isnan(x));
  4601. assert(!isinf(x));
  4602. }
  4603. #endif
  4604. }
  4605. }
  4606. static void ggml_compute_forward_silu(
  4607. const struct ggml_compute_params * params,
  4608. const struct ggml_tensor * src0,
  4609. struct ggml_tensor * dst) {
  4610. switch (src0->type) {
  4611. case GGML_TYPE_F32:
  4612. {
  4613. ggml_compute_forward_silu_f32(params, src0, dst);
  4614. } break;
  4615. case GGML_TYPE_Q4_0:
  4616. case GGML_TYPE_Q4_1:
  4617. case GGML_TYPE_I8:
  4618. case GGML_TYPE_I16:
  4619. case GGML_TYPE_I32:
  4620. case GGML_TYPE_F16:
  4621. case GGML_TYPE_COUNT:
  4622. {
  4623. GGML_ASSERT(false);
  4624. } break;
  4625. }
  4626. }
  4627. // ggml_compute_forward_norm
  4628. static void ggml_compute_forward_norm_f32(
  4629. const struct ggml_compute_params * params,
  4630. const struct ggml_tensor * src0,
  4631. struct ggml_tensor * dst) {
  4632. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4633. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4634. return;
  4635. }
  4636. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4637. const int ith = params->ith;
  4638. const int nth = params->nth;
  4639. const int ne00 = src0->ne[0];
  4640. const int ne01 = src0->ne[1];
  4641. const int ne02 = src0->ne[2];
  4642. const int ne03 = src0->ne[3];
  4643. const size_t nb01 = src0->nb[1];
  4644. const size_t nb02 = src0->nb[2];
  4645. const size_t nb03 = src0->nb[3];
  4646. const size_t nb1 = dst->nb[1];
  4647. const size_t nb2 = dst->nb[2];
  4648. const size_t nb3 = dst->nb[3];
  4649. const float eps = 1e-5f; // TODO: make this a parameter
  4650. // TODO: optimize
  4651. for (int i03 = 0; i03 < ne03; i03++) {
  4652. for (int i02 = 0; i02 < ne02; i02++) {
  4653. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4654. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4655. ggml_float sum = 0.0;
  4656. for (int i00 = 0; i00 < ne00; i00++) {
  4657. sum += (ggml_float)x[i00];
  4658. }
  4659. float mean = sum/ne00;
  4660. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4661. ggml_float sum2 = 0.0;
  4662. for (int i00 = 0; i00 < ne00; i00++) {
  4663. float v = x[i00] - mean;
  4664. y[i00] = v;
  4665. sum2 += (ggml_float)(v*v);
  4666. }
  4667. float variance = sum2/ne00;
  4668. const float scale = 1.0f/sqrtf(variance + eps);
  4669. ggml_vec_scale_f32(ne00, y, scale);
  4670. }
  4671. }
  4672. }
  4673. }
  4674. static void ggml_compute_forward_norm(
  4675. const struct ggml_compute_params * params,
  4676. const struct ggml_tensor * src0,
  4677. struct ggml_tensor * dst) {
  4678. switch (src0->type) {
  4679. case GGML_TYPE_F32:
  4680. {
  4681. ggml_compute_forward_norm_f32(params, src0, dst);
  4682. } break;
  4683. case GGML_TYPE_Q4_0:
  4684. case GGML_TYPE_Q4_1:
  4685. case GGML_TYPE_I8:
  4686. case GGML_TYPE_I16:
  4687. case GGML_TYPE_I32:
  4688. case GGML_TYPE_F16:
  4689. case GGML_TYPE_COUNT:
  4690. {
  4691. GGML_ASSERT(false);
  4692. } break;
  4693. }
  4694. }
  4695. static void ggml_compute_forward_rms_norm_f32(
  4696. const struct ggml_compute_params * params,
  4697. const struct ggml_tensor * src0,
  4698. struct ggml_tensor * dst) {
  4699. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4700. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4701. return;
  4702. }
  4703. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4704. const int ith = params->ith;
  4705. const int nth = params->nth;
  4706. const int ne00 = src0->ne[0];
  4707. const int ne01 = src0->ne[1];
  4708. const int ne02 = src0->ne[2];
  4709. const int ne03 = src0->ne[3];
  4710. const size_t nb01 = src0->nb[1];
  4711. const size_t nb02 = src0->nb[2];
  4712. const size_t nb03 = src0->nb[3];
  4713. const size_t nb1 = dst->nb[1];
  4714. const size_t nb2 = dst->nb[2];
  4715. const size_t nb3 = dst->nb[3];
  4716. const float eps = 1e-6f; // TODO: make this a parameter
  4717. // TODO: optimize
  4718. for (int i03 = 0; i03 < ne03; i03++) {
  4719. for (int i02 = 0; i02 < ne02; i02++) {
  4720. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4721. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4722. ggml_float sum = 0.0;
  4723. for (int i00 = 0; i00 < ne00; i00++) {
  4724. sum += (ggml_float)(x[i00] * x[i00]);
  4725. }
  4726. float mean = sum/ne00;
  4727. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4728. memcpy(y, x, ne00 * sizeof(float));
  4729. // for (int i00 = 0; i00 < ne00; i00++) {
  4730. // y[i00] = x[i00];
  4731. // }
  4732. const float scale = 1.0f/sqrtf(mean + eps);
  4733. ggml_vec_scale_f32(ne00, y, scale);
  4734. }
  4735. }
  4736. }
  4737. }
  4738. static void ggml_compute_forward_rms_norm(
  4739. const struct ggml_compute_params * params,
  4740. const struct ggml_tensor * src0,
  4741. struct ggml_tensor * dst) {
  4742. switch (src0->type) {
  4743. case GGML_TYPE_F32:
  4744. {
  4745. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4746. } break;
  4747. case GGML_TYPE_Q4_0:
  4748. case GGML_TYPE_Q4_1:
  4749. case GGML_TYPE_I8:
  4750. case GGML_TYPE_I16:
  4751. case GGML_TYPE_I32:
  4752. case GGML_TYPE_F16:
  4753. case GGML_TYPE_COUNT:
  4754. {
  4755. GGML_ASSERT(false);
  4756. } break;
  4757. }
  4758. }
  4759. // ggml_compute_forward_mul_mat
  4760. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4761. // helper function to determine if it is better to use BLAS or not
  4762. // for large matrices, BLAS is faster
  4763. static bool ggml_compute_forward_mul_mat_use_blas(
  4764. const struct ggml_tensor * src0,
  4765. const struct ggml_tensor * src1,
  4766. struct ggml_tensor * dst) {
  4767. //const int ne00 = src0->ne[0];
  4768. //const int ne01 = src0->ne[1];
  4769. const int ne10 = src1->ne[0];
  4770. const int ne0 = dst->ne[0];
  4771. const int ne1 = dst->ne[1];
  4772. // TODO: find the optimal values for these
  4773. if (ggml_is_contiguous(src0) &&
  4774. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4775. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4776. return true;
  4777. }
  4778. return false;
  4779. }
  4780. #endif
  4781. static void ggml_compute_forward_mul_mat_f32(
  4782. const struct ggml_compute_params * params,
  4783. const struct ggml_tensor * src0,
  4784. const struct ggml_tensor * src1,
  4785. struct ggml_tensor * dst) {
  4786. int64_t t0 = ggml_perf_time_us();
  4787. UNUSED(t0);
  4788. const int ne00 = src0->ne[0];
  4789. const int ne01 = src0->ne[1];
  4790. const int ne02 = src0->ne[2];
  4791. const int ne03 = src0->ne[3];
  4792. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4793. const int ne10 = src1->ne[0];
  4794. #endif
  4795. const int ne11 = src1->ne[1];
  4796. #ifndef NDEBUG
  4797. const int ne12 = src1->ne[2];
  4798. const int ne13 = src1->ne[3];
  4799. const int ne0 = dst->ne[0];
  4800. const int ne1 = dst->ne[1];
  4801. const int ne2 = dst->ne[2];
  4802. const int ne3 = dst->ne[3];
  4803. const int nb00 = src0->nb[0];
  4804. #endif
  4805. const int nb01 = src0->nb[1];
  4806. const int nb02 = src0->nb[2];
  4807. const int nb03 = src0->nb[3];
  4808. #ifndef NDEBUG
  4809. const int nb10 = src1->nb[0];
  4810. #endif
  4811. const int nb11 = src1->nb[1];
  4812. const int nb12 = src1->nb[2];
  4813. const int nb13 = src1->nb[3];
  4814. const int nb0 = dst->nb[0];
  4815. const int nb1 = dst->nb[1];
  4816. const int nb2 = dst->nb[2];
  4817. const int nb3 = dst->nb[3];
  4818. const int ith = params->ith;
  4819. const int nth = params->nth;
  4820. assert(ne02 == ne12);
  4821. assert(ne03 == ne13);
  4822. assert(ne2 == ne12);
  4823. assert(ne3 == ne13);
  4824. // we don't support permuted src0 or src1
  4825. assert(nb00 == sizeof(float));
  4826. assert(nb10 == sizeof(float));
  4827. // dst cannot be transposed or permuted
  4828. assert(nb0 == sizeof(float));
  4829. assert(nb0 <= nb1);
  4830. assert(nb1 <= nb2);
  4831. assert(nb2 <= nb3);
  4832. assert(ne0 == ne01);
  4833. assert(ne1 == ne11);
  4834. assert(ne2 == ne02);
  4835. assert(ne3 == ne03);
  4836. // nb01 >= nb00 - src0 is not transposed
  4837. // compute by src0 rows
  4838. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4839. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4840. if (params->ith != 0) {
  4841. return;
  4842. }
  4843. if (params->type == GGML_TASK_INIT) {
  4844. return;
  4845. }
  4846. if (params->type == GGML_TASK_FINALIZE) {
  4847. return;
  4848. }
  4849. for (int i03 = 0; i03 < ne03; i03++) {
  4850. for (int i02 = 0; i02 < ne02; i02++) {
  4851. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4852. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4853. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4854. // zT = y * xT
  4855. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4856. ne11, ne01, ne10,
  4857. 1.0f, y, ne10,
  4858. x, ne10,
  4859. 0.0f, d, ne01);
  4860. }
  4861. }
  4862. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4863. return;
  4864. }
  4865. #endif
  4866. if (params->type == GGML_TASK_INIT) {
  4867. return;
  4868. }
  4869. if (params->type == GGML_TASK_FINALIZE) {
  4870. return;
  4871. }
  4872. // parallelize by src0 rows using ggml_vec_dot_f32
  4873. // total rows in src0
  4874. const int nr = ne01*ne02*ne03;
  4875. // rows per thread
  4876. const int dr = (nr + nth - 1)/nth;
  4877. // row range for this thread
  4878. const int ir0 = dr*ith;
  4879. const int ir1 = MIN(ir0 + dr, nr);
  4880. for (int ir = ir0; ir < ir1; ++ir) {
  4881. // src0 indices
  4882. const int i03 = ir/(ne02*ne01);
  4883. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4884. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4885. for (int ic = 0; ic < ne11; ++ic) {
  4886. // src1 indices
  4887. const int i13 = i03;
  4888. const int i12 = i02;
  4889. const int i11 = ic;
  4890. // dst indices
  4891. const int i0 = i01;
  4892. const int i1 = i11;
  4893. const int i2 = i02;
  4894. const int i3 = i03;
  4895. ggml_vec_dot_f32(ne00,
  4896. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4897. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4898. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4899. }
  4900. }
  4901. //int64_t t1 = ggml_perf_time_us();
  4902. //static int64_t acc = 0;
  4903. //acc += t1 - t0;
  4904. //if (t1 - t0 > 10) {
  4905. // printf("\n");
  4906. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4907. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4908. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4909. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4910. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4911. //}
  4912. }
  4913. static void ggml_compute_forward_mul_mat_f16_f32(
  4914. const struct ggml_compute_params * params,
  4915. const struct ggml_tensor * src0,
  4916. const struct ggml_tensor * src1,
  4917. struct ggml_tensor * dst) {
  4918. int64_t t0 = ggml_perf_time_us();
  4919. UNUSED(t0);
  4920. const int ne00 = src0->ne[0];
  4921. const int ne01 = src0->ne[1];
  4922. const int ne02 = src0->ne[2];
  4923. const int ne03 = src0->ne[3];
  4924. const int ne10 = src1->ne[0];
  4925. const int ne11 = src1->ne[1];
  4926. const int ne12 = src1->ne[2];
  4927. const int ne13 = src1->ne[3];
  4928. const int ne0 = dst->ne[0];
  4929. const int ne1 = dst->ne[1];
  4930. const int ne2 = dst->ne[2];
  4931. const int ne3 = dst->ne[3];
  4932. //const int ne = ne0*ne1*ne2*ne3;
  4933. const int nb00 = src0->nb[0];
  4934. const int nb01 = src0->nb[1];
  4935. const int nb02 = src0->nb[2];
  4936. const int nb03 = src0->nb[3];
  4937. const int nb10 = src1->nb[0];
  4938. const int nb11 = src1->nb[1];
  4939. const int nb12 = src1->nb[2];
  4940. const int nb13 = src1->nb[3];
  4941. const int nb0 = dst->nb[0];
  4942. const int nb1 = dst->nb[1];
  4943. const int nb2 = dst->nb[2];
  4944. const int nb3 = dst->nb[3];
  4945. const int ith = params->ith;
  4946. const int nth = params->nth;
  4947. GGML_ASSERT(ne02 == ne12);
  4948. GGML_ASSERT(ne03 == ne13);
  4949. GGML_ASSERT(ne2 == ne12);
  4950. GGML_ASSERT(ne3 == ne13);
  4951. // TODO: we don't support permuted src0
  4952. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4953. // dst cannot be transposed or permuted
  4954. GGML_ASSERT(nb0 == sizeof(float));
  4955. GGML_ASSERT(nb0 <= nb1);
  4956. GGML_ASSERT(nb1 <= nb2);
  4957. GGML_ASSERT(nb2 <= nb3);
  4958. GGML_ASSERT(ne0 == ne01);
  4959. GGML_ASSERT(ne1 == ne11);
  4960. GGML_ASSERT(ne2 == ne02);
  4961. GGML_ASSERT(ne3 == ne03);
  4962. // nb01 >= nb00 - src0 is not transposed
  4963. // compute by src0 rows
  4964. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4965. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4966. GGML_ASSERT(nb10 == sizeof(float));
  4967. if (params->ith != 0) {
  4968. return;
  4969. }
  4970. if (params->type == GGML_TASK_INIT) {
  4971. return;
  4972. }
  4973. if (params->type == GGML_TASK_FINALIZE) {
  4974. return;
  4975. }
  4976. float * const wdata = params->wdata;
  4977. for (int i03 = 0; i03 < ne03; i03++) {
  4978. for (int i02 = 0; i02 < ne02; i02++) {
  4979. {
  4980. size_t id = 0;
  4981. for (int i01 = 0; i01 < ne01; ++i01) {
  4982. for (int i00 = 0; i00 < ne00; ++i00) {
  4983. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4984. }
  4985. }
  4986. }
  4987. const float * x = wdata;
  4988. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4989. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4990. // zT = y * xT
  4991. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4992. ne11, ne01, ne10,
  4993. 1.0f, y, ne10,
  4994. x, ne10,
  4995. 0.0f, d, ne01);
  4996. }
  4997. }
  4998. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4999. return;
  5000. }
  5001. #endif
  5002. if (params->type == GGML_TASK_INIT) {
  5003. ggml_fp16_t * const wdata = params->wdata;
  5004. size_t id = 0;
  5005. for (int i13 = 0; i13 < ne13; ++i13) {
  5006. for (int i12 = 0; i12 < ne12; ++i12) {
  5007. for (int i11 = 0; i11 < ne11; ++i11) {
  5008. for (int i10 = 0; i10 < ne10; ++i10) {
  5009. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5010. }
  5011. }
  5012. }
  5013. }
  5014. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5015. return;
  5016. }
  5017. if (params->type == GGML_TASK_FINALIZE) {
  5018. return;
  5019. }
  5020. // fp16 -> half the size, so divide by 2
  5021. // TODO: do not support transposed src1
  5022. assert(nb10/2 == sizeof(ggml_fp16_t));
  5023. // parallelize by src0 rows using ggml_vec_dot_f16
  5024. // total rows in src0
  5025. const int nr = ne01*ne02*ne03;
  5026. // rows per thread
  5027. const int dr = (nr + nth - 1)/nth;
  5028. // row range for this thread
  5029. const int ir0 = dr*ith;
  5030. const int ir1 = MIN(ir0 + dr, nr);
  5031. ggml_fp16_t * wdata = params->wdata;
  5032. for (int ir = ir0; ir < ir1; ++ir) {
  5033. // src0 indices
  5034. const int i03 = ir/(ne02*ne01);
  5035. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5036. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5037. const int i13 = i03;
  5038. const int i12 = i02;
  5039. const int i0 = i01;
  5040. const int i2 = i02;
  5041. const int i3 = i03;
  5042. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5043. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5044. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5045. for (int ic = 0; ic < ne11; ++ic) {
  5046. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5047. }
  5048. }
  5049. //int64_t t1 = ggml_time_us();
  5050. //static int64_t acc = 0;
  5051. //acc += t1 - t0;
  5052. //if (t1 - t0 > 10) {
  5053. // printf("\n");
  5054. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5055. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5056. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5057. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5058. //}
  5059. }
  5060. typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
  5061. typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
  5062. typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
  5063. typedef struct {
  5064. dequantize_row_q_t dequantize_row_q;
  5065. quantize_row_q_t quantize_row_q;
  5066. vec_dot_q_t vec_dot_q;
  5067. } quantize_fns_t;
  5068. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5069. [GGML_TYPE_Q4_0] = {
  5070. .dequantize_row_q = dequantize_row_q4_0,
  5071. .quantize_row_q = quantize_row_q4_0,
  5072. .vec_dot_q = ggml_vec_dot_q4_0,
  5073. },
  5074. [GGML_TYPE_Q4_1] = {
  5075. .dequantize_row_q = dequantize_row_q4_1,
  5076. .quantize_row_q = quantize_row_q4_1,
  5077. .vec_dot_q = ggml_vec_dot_q4_1,
  5078. },
  5079. };
  5080. static void ggml_compute_forward_mul_mat_q_f32(
  5081. const struct ggml_compute_params * params,
  5082. const struct ggml_tensor * src0,
  5083. const struct ggml_tensor * src1,
  5084. struct ggml_tensor * dst) {
  5085. int64_t t0 = ggml_perf_time_us();
  5086. UNUSED(t0);
  5087. const int ne00 = src0->ne[0];
  5088. const int ne01 = src0->ne[1];
  5089. const int ne02 = src0->ne[2];
  5090. const int ne03 = src0->ne[3];
  5091. const int ne10 = src1->ne[0];
  5092. const int ne11 = src1->ne[1];
  5093. const int ne12 = src1->ne[2];
  5094. const int ne13 = src1->ne[3];
  5095. const int ne0 = dst->ne[0];
  5096. const int ne1 = dst->ne[1];
  5097. const int ne2 = dst->ne[2];
  5098. const int ne3 = dst->ne[3];
  5099. const int nb00 = src0->nb[0];
  5100. const int nb01 = src0->nb[1];
  5101. const int nb02 = src0->nb[2];
  5102. const int nb03 = src0->nb[3];
  5103. const int nb10 = src1->nb[0];
  5104. const int nb11 = src1->nb[1];
  5105. const int nb12 = src1->nb[2];
  5106. const int nb13 = src1->nb[3];
  5107. const int nb0 = dst->nb[0];
  5108. const int nb1 = dst->nb[1];
  5109. const int nb2 = dst->nb[2];
  5110. const int nb3 = dst->nb[3];
  5111. const int ith = params->ith;
  5112. const int nth = params->nth;
  5113. GGML_ASSERT(ne02 == ne12);
  5114. GGML_ASSERT(ne03 == ne13);
  5115. GGML_ASSERT(ne2 == ne12);
  5116. GGML_ASSERT(ne3 == ne13);
  5117. const enum ggml_type type = src0->type;
  5118. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5119. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5120. // we don't support permuted src0 or src1
  5121. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5122. GGML_ASSERT(nb10 == sizeof(float));
  5123. // dst cannot be transposed or permuted
  5124. GGML_ASSERT(nb0 == sizeof(float));
  5125. GGML_ASSERT(nb0 <= nb1);
  5126. GGML_ASSERT(nb1 <= nb2);
  5127. GGML_ASSERT(nb2 <= nb3);
  5128. GGML_ASSERT(ne0 == ne01);
  5129. GGML_ASSERT(ne1 == ne11);
  5130. GGML_ASSERT(ne2 == ne02);
  5131. GGML_ASSERT(ne3 == ne03);
  5132. // nb01 >= nb00 - src0 is not transposed
  5133. // compute by src0 rows
  5134. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5135. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5136. if (params->ith != 0) {
  5137. return;
  5138. }
  5139. if (params->type == GGML_TASK_INIT) {
  5140. return;
  5141. }
  5142. if (params->type == GGML_TASK_FINALIZE) {
  5143. return;
  5144. }
  5145. float * const wdata = params->wdata;
  5146. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5147. for (int i03 = 0; i03 < ne03; i03++) {
  5148. for (int i02 = 0; i02 < ne02; i02++) {
  5149. {
  5150. size_t id = 0;
  5151. for (int i01 = 0; i01 < ne01; ++i01) {
  5152. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5153. id += ne00;
  5154. }
  5155. }
  5156. const float * x = wdata;
  5157. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5158. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5159. // zT = y * xT
  5160. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5161. ne11, ne01, ne10,
  5162. 1.0f, y, ne10,
  5163. x, ne10,
  5164. 0.0f, d, ne01);
  5165. }
  5166. }
  5167. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5168. return;
  5169. }
  5170. #endif
  5171. if (params->type == GGML_TASK_INIT) {
  5172. char * wdata = params->wdata;
  5173. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5174. for (int i13 = 0; i13 < ne13; ++i13) {
  5175. for (int i12 = 0; i12 < ne12; ++i12) {
  5176. for (int i11 = 0; i11 < ne11; ++i11) {
  5177. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5178. wdata += row_size;
  5179. }
  5180. }
  5181. }
  5182. return;
  5183. }
  5184. if (params->type == GGML_TASK_FINALIZE) {
  5185. return;
  5186. }
  5187. // parallelize by src0 rows using ggml_vec_dot_q
  5188. // total rows in src0
  5189. const int nr = ne01*ne02*ne03;
  5190. // rows per thread
  5191. const int dr = (nr + nth - 1)/nth;
  5192. // row range for this thread
  5193. const int ir0 = dr*ith;
  5194. const int ir1 = MIN(ir0 + dr, nr);
  5195. void * wdata = params->wdata;
  5196. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5197. for (int ir = ir0; ir < ir1; ++ir) {
  5198. // src0 indices
  5199. const int i03 = ir/(ne02*ne01);
  5200. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5201. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5202. const int i13 = i03;
  5203. const int i12 = i02;
  5204. const int i0 = i01;
  5205. const int i2 = i02;
  5206. const int i3 = i03;
  5207. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5208. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5209. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5210. assert(ne00 % 32 == 0);
  5211. for (int ic = 0; ic < ne11; ++ic) {
  5212. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5213. }
  5214. }
  5215. //int64_t t1 = ggml_time_us();
  5216. //static int64_t acc = 0;
  5217. //acc += t1 - t0;
  5218. //if (t1 - t0 > 10) {
  5219. // printf("\n");
  5220. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5221. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5222. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5223. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5224. //}
  5225. }
  5226. static void ggml_compute_forward_mul_mat(
  5227. const struct ggml_compute_params * params,
  5228. const struct ggml_tensor * src0,
  5229. const struct ggml_tensor * src1,
  5230. struct ggml_tensor * dst) {
  5231. switch (src0->type) {
  5232. case GGML_TYPE_Q4_0:
  5233. case GGML_TYPE_Q4_1:
  5234. {
  5235. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5236. } break;
  5237. case GGML_TYPE_F16:
  5238. {
  5239. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5240. } break;
  5241. case GGML_TYPE_F32:
  5242. {
  5243. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5244. } break;
  5245. case GGML_TYPE_I8:
  5246. case GGML_TYPE_I16:
  5247. case GGML_TYPE_I32:
  5248. case GGML_TYPE_COUNT:
  5249. {
  5250. GGML_ASSERT(false);
  5251. } break;
  5252. }
  5253. #if 0
  5254. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5255. static int first = 8;
  5256. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5257. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5258. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5259. if (first) {
  5260. --first;
  5261. } else {
  5262. for (int k = 0; k < dst->ne[1]; ++k) {
  5263. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5264. for (int i = 0; i < 16; ++i) {
  5265. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5266. }
  5267. printf("\n");
  5268. }
  5269. printf("\n");
  5270. }
  5271. printf("\n");
  5272. exit(0);
  5273. }
  5274. } else {
  5275. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5276. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5277. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5278. }
  5279. #endif
  5280. }
  5281. // ggml_compute_forward_scale
  5282. static void ggml_compute_forward_scale_f32(
  5283. const struct ggml_compute_params * params,
  5284. const struct ggml_tensor * src0,
  5285. const struct ggml_tensor * src1,
  5286. struct ggml_tensor * dst) {
  5287. GGML_ASSERT(ggml_is_contiguous(src0));
  5288. GGML_ASSERT(ggml_is_contiguous(dst));
  5289. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5290. GGML_ASSERT(ggml_is_scalar(src1));
  5291. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5292. return;
  5293. }
  5294. // scale factor
  5295. const float v = *(float *) src1->data;
  5296. const int ith = params->ith;
  5297. const int nth = params->nth;
  5298. const int nc = src0->ne[0];
  5299. const int nr = ggml_nrows(src0);
  5300. // rows per thread
  5301. const int dr = (nr + nth - 1)/nth;
  5302. // row range for this thread
  5303. const int ir0 = dr*ith;
  5304. const int ir1 = MIN(ir0 + dr, nr);
  5305. for (int i1 = ir0; i1 < ir1; i1++) {
  5306. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5307. }
  5308. }
  5309. static void ggml_compute_forward_scale(
  5310. const struct ggml_compute_params * params,
  5311. const struct ggml_tensor * src0,
  5312. const struct ggml_tensor * src1,
  5313. struct ggml_tensor * dst) {
  5314. switch (src0->type) {
  5315. case GGML_TYPE_F32:
  5316. {
  5317. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5318. } break;
  5319. case GGML_TYPE_Q4_0:
  5320. case GGML_TYPE_Q4_1:
  5321. case GGML_TYPE_I8:
  5322. case GGML_TYPE_I16:
  5323. case GGML_TYPE_I32:
  5324. case GGML_TYPE_F16:
  5325. case GGML_TYPE_COUNT:
  5326. {
  5327. GGML_ASSERT(false);
  5328. } break;
  5329. }
  5330. }
  5331. // ggml_compute_forward_cpy
  5332. static void ggml_compute_forward_cpy(
  5333. const struct ggml_compute_params * params,
  5334. const struct ggml_tensor * src0,
  5335. struct ggml_tensor * dst) {
  5336. ggml_compute_forward_dup(params, src0, dst);
  5337. }
  5338. // ggml_compute_forward_reshape
  5339. static void ggml_compute_forward_reshape(
  5340. const struct ggml_compute_params * params,
  5341. const struct ggml_tensor * src0,
  5342. struct ggml_tensor * dst) {
  5343. // NOP
  5344. UNUSED(params);
  5345. UNUSED(src0);
  5346. UNUSED(dst);
  5347. }
  5348. // ggml_compute_forward_view
  5349. static void ggml_compute_forward_view(
  5350. const struct ggml_compute_params * params,
  5351. const struct ggml_tensor * src0) {
  5352. // NOP
  5353. UNUSED(params);
  5354. UNUSED(src0);
  5355. }
  5356. // ggml_compute_forward_permute
  5357. static void ggml_compute_forward_permute(
  5358. const struct ggml_compute_params * params,
  5359. const struct ggml_tensor * src0) {
  5360. // NOP
  5361. UNUSED(params);
  5362. UNUSED(src0);
  5363. }
  5364. // ggml_compute_forward_transpose
  5365. static void ggml_compute_forward_transpose(
  5366. const struct ggml_compute_params * params,
  5367. const struct ggml_tensor * src0) {
  5368. // NOP
  5369. UNUSED(params);
  5370. UNUSED(src0);
  5371. }
  5372. // ggml_compute_forward_get_rows
  5373. static void ggml_compute_forward_get_rows_q(
  5374. const struct ggml_compute_params * params,
  5375. const struct ggml_tensor * src0,
  5376. const struct ggml_tensor * src1,
  5377. struct ggml_tensor * dst) {
  5378. assert(params->ith == 0);
  5379. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5380. return;
  5381. }
  5382. const int nc = src0->ne[0];
  5383. const int nr = ggml_nelements(src1);
  5384. const enum ggml_type type = src0->type;
  5385. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5386. assert( dst->ne[0] == nc);
  5387. assert( dst->ne[1] == nr);
  5388. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5389. for (int i = 0; i < nr; ++i) {
  5390. const int r = ((int32_t *) src1->data)[i];
  5391. dequantize_row_q(
  5392. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5393. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5394. }
  5395. }
  5396. static void ggml_compute_forward_get_rows_f16(
  5397. const struct ggml_compute_params * params,
  5398. const struct ggml_tensor * src0,
  5399. const struct ggml_tensor * src1,
  5400. struct ggml_tensor * dst) {
  5401. assert(params->ith == 0);
  5402. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5403. return;
  5404. }
  5405. const int nc = src0->ne[0];
  5406. const int nr = ggml_nelements(src1);
  5407. assert( dst->ne[0] == nc);
  5408. assert( dst->ne[1] == nr);
  5409. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5410. for (int i = 0; i < nr; ++i) {
  5411. const int r = ((int32_t *) src1->data)[i];
  5412. for (int j = 0; j < nc; ++j) {
  5413. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5414. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5415. }
  5416. }
  5417. }
  5418. static void ggml_compute_forward_get_rows_f32(
  5419. const struct ggml_compute_params * params,
  5420. const struct ggml_tensor * src0,
  5421. const struct ggml_tensor * src1,
  5422. struct ggml_tensor * dst) {
  5423. assert(params->ith == 0);
  5424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5425. return;
  5426. }
  5427. const int nc = src0->ne[0];
  5428. const int nr = ggml_nelements(src1);
  5429. assert( dst->ne[0] == nc);
  5430. assert( dst->ne[1] == nr);
  5431. assert(src0->nb[0] == sizeof(float));
  5432. for (int i = 0; i < nr; ++i) {
  5433. const int r = ((int32_t *) src1->data)[i];
  5434. ggml_vec_cpy_f32(nc,
  5435. (float *) ((char *) dst->data + i*dst->nb[1]),
  5436. (float *) ((char *) src0->data + r*src0->nb[1]));
  5437. }
  5438. }
  5439. static void ggml_compute_forward_get_rows(
  5440. const struct ggml_compute_params * params,
  5441. const struct ggml_tensor * src0,
  5442. const struct ggml_tensor * src1,
  5443. struct ggml_tensor * dst) {
  5444. switch (src0->type) {
  5445. case GGML_TYPE_Q4_0:
  5446. case GGML_TYPE_Q4_1:
  5447. {
  5448. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5449. } break;
  5450. case GGML_TYPE_F16:
  5451. {
  5452. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5453. } break;
  5454. case GGML_TYPE_F32:
  5455. {
  5456. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5457. } break;
  5458. case GGML_TYPE_I8:
  5459. case GGML_TYPE_I16:
  5460. case GGML_TYPE_I32:
  5461. case GGML_TYPE_COUNT:
  5462. {
  5463. GGML_ASSERT(false);
  5464. } break;
  5465. }
  5466. //static bool first = true;
  5467. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5468. //if (first) {
  5469. // first = false;
  5470. //} else {
  5471. // for (int k = 0; k < dst->ne[1]; ++k) {
  5472. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5473. // for (int i = 0; i < 16; ++i) {
  5474. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5475. // }
  5476. // printf("\n");
  5477. // }
  5478. // printf("\n");
  5479. // }
  5480. // printf("\n");
  5481. // exit(0);
  5482. //}
  5483. }
  5484. // ggml_compute_forward_diag_mask_inf
  5485. static void ggml_compute_forward_diag_mask_inf_f32(
  5486. const struct ggml_compute_params * params,
  5487. const struct ggml_tensor * src0,
  5488. const struct ggml_tensor * src1,
  5489. struct ggml_tensor * dst) {
  5490. assert(params->ith == 0);
  5491. assert(src1->type == GGML_TYPE_I32);
  5492. assert(ggml_nelements(src1) == 1);
  5493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5494. return;
  5495. }
  5496. const int n_past = ((int32_t *) src1->data)[0];
  5497. // TODO: handle transposed/permuted matrices
  5498. const int n = ggml_nrows(src0);
  5499. const int nc = src0->ne[0];
  5500. const int nr = src0->ne[1];
  5501. const int nz = n/nr;
  5502. assert( dst->nb[0] == sizeof(float));
  5503. assert(src0->nb[0] == sizeof(float));
  5504. for (int k = 0; k < nz; k++) {
  5505. for (int j = 0; j < nr; j++) {
  5506. for (int i = n_past; i < nc; i++) {
  5507. if (i > n_past + j) {
  5508. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5509. }
  5510. }
  5511. }
  5512. }
  5513. }
  5514. static void ggml_compute_forward_diag_mask_inf(
  5515. const struct ggml_compute_params * params,
  5516. const struct ggml_tensor * src0,
  5517. const struct ggml_tensor * src1,
  5518. struct ggml_tensor * dst) {
  5519. switch (src0->type) {
  5520. case GGML_TYPE_F32:
  5521. {
  5522. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5523. } break;
  5524. case GGML_TYPE_Q4_0:
  5525. case GGML_TYPE_Q4_1:
  5526. case GGML_TYPE_I8:
  5527. case GGML_TYPE_I16:
  5528. case GGML_TYPE_I32:
  5529. case GGML_TYPE_F16:
  5530. case GGML_TYPE_COUNT:
  5531. {
  5532. GGML_ASSERT(false);
  5533. } break;
  5534. }
  5535. }
  5536. // ggml_compute_forward_soft_max
  5537. static void ggml_compute_forward_soft_max_f32(
  5538. const struct ggml_compute_params * params,
  5539. const struct ggml_tensor * src0,
  5540. struct ggml_tensor * dst) {
  5541. GGML_ASSERT(ggml_is_contiguous(src0));
  5542. GGML_ASSERT(ggml_is_contiguous(dst));
  5543. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5544. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5545. return;
  5546. }
  5547. // TODO: handle transposed/permuted matrices
  5548. const int ith = params->ith;
  5549. const int nth = params->nth;
  5550. const int nc = src0->ne[0];
  5551. const int nr = ggml_nrows(src0);
  5552. // rows per thread
  5553. const int dr = (nr + nth - 1)/nth;
  5554. // row range for this thread
  5555. const int ir0 = dr*ith;
  5556. const int ir1 = MIN(ir0 + dr, nr);
  5557. for (int i1 = ir0; i1 < ir1; i1++) {
  5558. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5559. #ifndef NDEBUG
  5560. for (int i = 0; i < nc; ++i) {
  5561. //printf("p[%d] = %f\n", i, p[i]);
  5562. assert(!isnan(p[i]));
  5563. }
  5564. #endif
  5565. float max = -INFINITY;
  5566. ggml_vec_max_f32(nc, &max, p);
  5567. ggml_float sum = 0.0;
  5568. uint16_t scvt;
  5569. for (int i = 0; i < nc; i++) {
  5570. if (p[i] == -INFINITY) {
  5571. p[i] = 0.0f;
  5572. } else {
  5573. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5574. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5575. memcpy(&scvt, &s, sizeof(scvt));
  5576. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5577. sum += (ggml_float)val;
  5578. p[i] = val;
  5579. }
  5580. }
  5581. assert(sum > 0.0);
  5582. sum = 1.0/sum;
  5583. ggml_vec_scale_f32(nc, p, sum);
  5584. #ifndef NDEBUG
  5585. for (int i = 0; i < nc; ++i) {
  5586. assert(!isnan(p[i]));
  5587. assert(!isinf(p[i]));
  5588. }
  5589. #endif
  5590. }
  5591. }
  5592. static void ggml_compute_forward_soft_max(
  5593. const struct ggml_compute_params * params,
  5594. const struct ggml_tensor * src0,
  5595. struct ggml_tensor * dst) {
  5596. switch (src0->type) {
  5597. case GGML_TYPE_F32:
  5598. {
  5599. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5600. } break;
  5601. case GGML_TYPE_Q4_0:
  5602. case GGML_TYPE_Q4_1:
  5603. case GGML_TYPE_I8:
  5604. case GGML_TYPE_I16:
  5605. case GGML_TYPE_I32:
  5606. case GGML_TYPE_F16:
  5607. case GGML_TYPE_COUNT:
  5608. {
  5609. GGML_ASSERT(false);
  5610. } break;
  5611. }
  5612. }
  5613. // ggml_compute_forward_rope
  5614. static void ggml_compute_forward_rope_f32(
  5615. const struct ggml_compute_params * params,
  5616. const struct ggml_tensor * src0,
  5617. const struct ggml_tensor * src1,
  5618. struct ggml_tensor * dst) {
  5619. assert(params->ith == 0);
  5620. assert(src1->type == GGML_TYPE_I32);
  5621. assert(ggml_nelements(src1) == 3);
  5622. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5623. return;
  5624. }
  5625. const int n_past = ((int32_t *) src1->data)[0];
  5626. const int n_dims = ((int32_t *) src1->data)[1];
  5627. const int mode = ((int32_t *) src1->data)[2];
  5628. //const int ne0 = src0->ne[0];
  5629. const int ne1 = src0->ne[1];
  5630. const int ne2 = src0->ne[2];
  5631. const int ne3 = src0->ne[3];
  5632. const int nb0 = src0->nb[0];
  5633. const int nb1 = src0->nb[1];
  5634. const int nb2 = src0->nb[2];
  5635. const int nb3 = src0->nb[3];
  5636. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5637. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5638. assert(nb0 == sizeof(float));
  5639. // TODO: optimize
  5640. for (int i3 = 0; i3 < ne3; i3++) {
  5641. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5642. const int p = (mode == 0 ? n_past + i2 : i2);
  5643. for (int i1 = 0; i1 < ne1; i1++) {
  5644. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5645. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5646. const float cos_theta = cosf(p*theta);
  5647. const float sin_theta = sinf(p*theta);
  5648. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5649. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5650. const float x0 = src[0];
  5651. const float x1 = src[1];
  5652. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5653. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5654. }
  5655. }
  5656. }
  5657. }
  5658. }
  5659. static void ggml_compute_forward_rope_f16(
  5660. const struct ggml_compute_params * params,
  5661. const struct ggml_tensor * src0,
  5662. const struct ggml_tensor * src1,
  5663. struct ggml_tensor * dst) {
  5664. assert(params->ith == 0);
  5665. assert(src1->type == GGML_TYPE_I32);
  5666. assert(ggml_nelements(src1) == 3);
  5667. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5668. return;
  5669. }
  5670. const int n_past = ((int32_t *) src1->data)[0];
  5671. const int n_dims = ((int32_t *) src1->data)[1];
  5672. const int mode = ((int32_t *) src1->data)[2];
  5673. //const int ne0 = src0->ne[0];
  5674. const int ne1 = src0->ne[1];
  5675. const int ne2 = src0->ne[2];
  5676. const int ne3 = src0->ne[3];
  5677. const int nb0 = src0->nb[0];
  5678. const int nb1 = src0->nb[1];
  5679. const int nb2 = src0->nb[2];
  5680. const int nb3 = src0->nb[3];
  5681. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5682. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5683. assert(nb0 == sizeof(ggml_fp16_t));
  5684. for (int i3 = 0; i3 < ne3; i3++) {
  5685. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5686. const int p = (mode == 0 ? n_past + i2 : i2);
  5687. for (int i1 = 0; i1 < ne1; i1++) {
  5688. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5689. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5690. const float cos_theta = cosf(p*theta);
  5691. const float sin_theta = sinf(p*theta);
  5692. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5693. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5694. const float x0 = ggml_fp16_to_fp32(src[0]);
  5695. const float x1 = ggml_fp16_to_fp32(src[1]);
  5696. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5697. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5698. }
  5699. }
  5700. }
  5701. }
  5702. }
  5703. static void ggml_compute_forward_rope(
  5704. const struct ggml_compute_params * params,
  5705. const struct ggml_tensor * src0,
  5706. const struct ggml_tensor * src1,
  5707. struct ggml_tensor * dst) {
  5708. switch (src0->type) {
  5709. case GGML_TYPE_F16:
  5710. {
  5711. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5712. } break;
  5713. case GGML_TYPE_F32:
  5714. {
  5715. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5716. } break;
  5717. case GGML_TYPE_Q4_0:
  5718. case GGML_TYPE_Q4_1:
  5719. case GGML_TYPE_I8:
  5720. case GGML_TYPE_I16:
  5721. case GGML_TYPE_I32:
  5722. case GGML_TYPE_COUNT:
  5723. {
  5724. GGML_ASSERT(false);
  5725. } break;
  5726. }
  5727. }
  5728. // ggml_compute_forward_conv_1d_1s
  5729. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5730. const struct ggml_compute_params * params,
  5731. const struct ggml_tensor * src0,
  5732. const struct ggml_tensor * src1,
  5733. struct ggml_tensor * dst) {
  5734. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5735. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5736. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5737. int64_t t0 = ggml_perf_time_us();
  5738. UNUSED(t0);
  5739. const int ne00 = src0->ne[0];
  5740. const int ne01 = src0->ne[1];
  5741. const int ne02 = src0->ne[2];
  5742. //const int ne03 = src0->ne[3];
  5743. const int ne10 = src1->ne[0];
  5744. const int ne11 = src1->ne[1];
  5745. //const int ne12 = src1->ne[2];
  5746. //const int ne13 = src1->ne[3];
  5747. //const int ne0 = dst->ne[0];
  5748. //const int ne1 = dst->ne[1];
  5749. //const int ne2 = dst->ne[2];
  5750. //const int ne3 = dst->ne[3];
  5751. //const int ne = ne0*ne1*ne2*ne3;
  5752. const int nb00 = src0->nb[0];
  5753. const int nb01 = src0->nb[1];
  5754. const int nb02 = src0->nb[2];
  5755. //const int nb03 = src0->nb[3];
  5756. const int nb10 = src1->nb[0];
  5757. const int nb11 = src1->nb[1];
  5758. //const int nb12 = src1->nb[2];
  5759. //const int nb13 = src1->nb[3];
  5760. //const int nb0 = dst->nb[0];
  5761. const int nb1 = dst->nb[1];
  5762. //const int nb2 = dst->nb[2];
  5763. //const int nb3 = dst->nb[3];
  5764. const int ith = params->ith;
  5765. const int nth = params->nth;
  5766. const int nk = ne00;
  5767. const int nh = nk/2;
  5768. const int ew0 = ggml_up32(ne01);
  5769. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5770. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5771. GGML_ASSERT(nb10 == sizeof(float));
  5772. if (params->type == GGML_TASK_INIT) {
  5773. // TODO: fix this memset (wsize is overestimated)
  5774. memset(params->wdata, 0, params->wsize);
  5775. // prepare kernel data (src0)
  5776. {
  5777. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5778. for (int i02 = 0; i02 < ne02; i02++) {
  5779. for (int i01 = 0; i01 < ne01; i01++) {
  5780. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5781. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5782. for (int i00 = 0; i00 < ne00; i00++) {
  5783. dst_data[i00*ew0 + i01] = src[i00];
  5784. }
  5785. }
  5786. }
  5787. }
  5788. // prepare source data (src1)
  5789. {
  5790. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5791. for (int i11 = 0; i11 < ne11; i11++) {
  5792. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5793. ggml_fp16_t * dst_data = wdata;
  5794. for (int i10 = 0; i10 < ne10; i10++) {
  5795. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5796. }
  5797. }
  5798. }
  5799. return;
  5800. }
  5801. if (params->type == GGML_TASK_FINALIZE) {
  5802. return;
  5803. }
  5804. // total rows in dst
  5805. const int nr = ne02;
  5806. // rows per thread
  5807. const int dr = (nr + nth - 1)/nth;
  5808. // row range for this thread
  5809. const int ir0 = dr*ith;
  5810. const int ir1 = MIN(ir0 + dr, nr);
  5811. for (int i1 = ir0; i1 < ir1; i1++) {
  5812. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5813. for (int i0 = 0; i0 < ne10; ++i0) {
  5814. dst_data[i0] = 0;
  5815. for (int k = -nh; k <= nh; k++) {
  5816. float v = 0.0f;
  5817. ggml_vec_dot_f16(ew0, &v,
  5818. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5819. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5820. dst_data[i0] += v;
  5821. }
  5822. }
  5823. }
  5824. }
  5825. static void ggml_compute_forward_conv_1d_1s_f32(
  5826. const struct ggml_compute_params * params,
  5827. const struct ggml_tensor * src0,
  5828. const struct ggml_tensor * src1,
  5829. struct ggml_tensor * dst) {
  5830. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5831. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5832. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5833. int64_t t0 = ggml_perf_time_us();
  5834. UNUSED(t0);
  5835. const int ne00 = src0->ne[0];
  5836. const int ne01 = src0->ne[1];
  5837. const int ne02 = src0->ne[2];
  5838. //const int ne03 = src0->ne[3];
  5839. const int ne10 = src1->ne[0];
  5840. const int ne11 = src1->ne[1];
  5841. //const int ne12 = src1->ne[2];
  5842. //const int ne13 = src1->ne[3];
  5843. //const int ne0 = dst->ne[0];
  5844. //const int ne1 = dst->ne[1];
  5845. //const int ne2 = dst->ne[2];
  5846. //const int ne3 = dst->ne[3];
  5847. //const int ne = ne0*ne1*ne2*ne3;
  5848. const int nb00 = src0->nb[0];
  5849. const int nb01 = src0->nb[1];
  5850. const int nb02 = src0->nb[2];
  5851. //const int nb03 = src0->nb[3];
  5852. const int nb10 = src1->nb[0];
  5853. const int nb11 = src1->nb[1];
  5854. //const int nb12 = src1->nb[2];
  5855. //const int nb13 = src1->nb[3];
  5856. //const int nb0 = dst->nb[0];
  5857. const int nb1 = dst->nb[1];
  5858. //const int nb2 = dst->nb[2];
  5859. //const int nb3 = dst->nb[3];
  5860. const int ith = params->ith;
  5861. const int nth = params->nth;
  5862. const int nk = ne00;
  5863. const int nh = nk/2;
  5864. const int ew0 = ggml_up32(ne01);
  5865. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5866. GGML_ASSERT(nb00 == sizeof(float));
  5867. GGML_ASSERT(nb10 == sizeof(float));
  5868. if (params->type == GGML_TASK_INIT) {
  5869. // TODO: fix this memset (wsize is overestimated)
  5870. memset(params->wdata, 0, params->wsize);
  5871. // prepare kernel data (src0)
  5872. {
  5873. float * const wdata = (float *) params->wdata + 0;
  5874. for (int i02 = 0; i02 < ne02; i02++) {
  5875. for (int i01 = 0; i01 < ne01; i01++) {
  5876. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5877. float * dst_data = wdata + i02*ew0*ne00;
  5878. for (int i00 = 0; i00 < ne00; i00++) {
  5879. dst_data[i00*ew0 + i01] = src[i00];
  5880. }
  5881. }
  5882. }
  5883. }
  5884. // prepare source data (src1)
  5885. {
  5886. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5887. for (int i11 = 0; i11 < ne11; i11++) {
  5888. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5889. float * dst_data = wdata;
  5890. for (int i10 = 0; i10 < ne10; i10++) {
  5891. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5892. }
  5893. }
  5894. }
  5895. return;
  5896. }
  5897. if (params->type == GGML_TASK_FINALIZE) {
  5898. return;
  5899. }
  5900. // total rows in dst
  5901. const int nr = ne02;
  5902. // rows per thread
  5903. const int dr = (nr + nth - 1)/nth;
  5904. // row range for this thread
  5905. const int ir0 = dr*ith;
  5906. const int ir1 = MIN(ir0 + dr, nr);
  5907. for (int i1 = ir0; i1 < ir1; i1++) {
  5908. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5909. for (int i0 = 0; i0 < ne10; ++i0) {
  5910. dst_data[i0] = 0;
  5911. for (int k = -nh; k <= nh; k++) {
  5912. float v = 0.0f;
  5913. ggml_vec_dot_f32(ew0, &v,
  5914. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5915. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5916. dst_data[i0] += v;
  5917. }
  5918. }
  5919. }
  5920. }
  5921. static void ggml_compute_forward_conv_1d_1s(
  5922. const struct ggml_compute_params * params,
  5923. const struct ggml_tensor * src0,
  5924. const struct ggml_tensor * src1,
  5925. struct ggml_tensor * dst) {
  5926. switch (src0->type) {
  5927. case GGML_TYPE_F16:
  5928. {
  5929. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  5930. } break;
  5931. case GGML_TYPE_F32:
  5932. {
  5933. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  5934. } break;
  5935. case GGML_TYPE_Q4_0:
  5936. case GGML_TYPE_Q4_1:
  5937. case GGML_TYPE_I8:
  5938. case GGML_TYPE_I16:
  5939. case GGML_TYPE_I32:
  5940. case GGML_TYPE_COUNT:
  5941. {
  5942. GGML_ASSERT(false);
  5943. } break;
  5944. }
  5945. }
  5946. // ggml_compute_forward_conv_1d_2s
  5947. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  5948. const struct ggml_compute_params * params,
  5949. const struct ggml_tensor * src0,
  5950. const struct ggml_tensor * src1,
  5951. struct ggml_tensor * dst) {
  5952. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5953. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5954. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5955. int64_t t0 = ggml_perf_time_us();
  5956. UNUSED(t0);
  5957. const int ne00 = src0->ne[0];
  5958. const int ne01 = src0->ne[1];
  5959. const int ne02 = src0->ne[2];
  5960. //const int ne03 = src0->ne[3];
  5961. const int ne10 = src1->ne[0];
  5962. const int ne11 = src1->ne[1];
  5963. //const int ne12 = src1->ne[2];
  5964. //const int ne13 = src1->ne[3];
  5965. //const int ne0 = dst->ne[0];
  5966. //const int ne1 = dst->ne[1];
  5967. //const int ne2 = dst->ne[2];
  5968. //const int ne3 = dst->ne[3];
  5969. //const int ne = ne0*ne1*ne2*ne3;
  5970. const int nb00 = src0->nb[0];
  5971. const int nb01 = src0->nb[1];
  5972. const int nb02 = src0->nb[2];
  5973. //const int nb03 = src0->nb[3];
  5974. const int nb10 = src1->nb[0];
  5975. const int nb11 = src1->nb[1];
  5976. //const int nb12 = src1->nb[2];
  5977. //const int nb13 = src1->nb[3];
  5978. //const int nb0 = dst->nb[0];
  5979. const int nb1 = dst->nb[1];
  5980. //const int nb2 = dst->nb[2];
  5981. //const int nb3 = dst->nb[3];
  5982. const int ith = params->ith;
  5983. const int nth = params->nth;
  5984. const int nk = ne00;
  5985. const int nh = nk/2;
  5986. const int ew0 = ggml_up32(ne01);
  5987. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5988. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5989. GGML_ASSERT(nb10 == sizeof(float));
  5990. if (params->type == GGML_TASK_INIT) {
  5991. // TODO: fix this memset (wsize is overestimated)
  5992. memset(params->wdata, 0, params->wsize);
  5993. // prepare kernel data (src0)
  5994. {
  5995. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5996. for (int i02 = 0; i02 < ne02; i02++) {
  5997. for (int i01 = 0; i01 < ne01; i01++) {
  5998. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5999. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6000. for (int i00 = 0; i00 < ne00; i00++) {
  6001. dst_data[i00*ew0 + i01] = src[i00];
  6002. }
  6003. }
  6004. }
  6005. }
  6006. // prepare source data (src1)
  6007. {
  6008. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6009. for (int i11 = 0; i11 < ne11; i11++) {
  6010. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6011. ggml_fp16_t * dst_data = wdata;
  6012. for (int i10 = 0; i10 < ne10; i10++) {
  6013. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6014. }
  6015. }
  6016. }
  6017. return;
  6018. }
  6019. if (params->type == GGML_TASK_FINALIZE) {
  6020. return;
  6021. }
  6022. // total rows in dst
  6023. const int nr = ne02;
  6024. // rows per thread
  6025. const int dr = (nr + nth - 1)/nth;
  6026. // row range for this thread
  6027. const int ir0 = dr*ith;
  6028. const int ir1 = MIN(ir0 + dr, nr);
  6029. for (int i1 = ir0; i1 < ir1; i1++) {
  6030. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6031. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6032. dst_data[i0/2] = 0;
  6033. for (int k = -nh; k <= nh; k++) {
  6034. float v = 0.0f;
  6035. ggml_vec_dot_f16(ew0, &v,
  6036. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6037. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6038. dst_data[i0/2] += v;
  6039. }
  6040. }
  6041. }
  6042. }
  6043. static void ggml_compute_forward_conv_1d_2s_f32(
  6044. const struct ggml_compute_params * params,
  6045. const struct ggml_tensor * src0,
  6046. const struct ggml_tensor * src1,
  6047. struct ggml_tensor * dst) {
  6048. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6049. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6050. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6051. int64_t t0 = ggml_perf_time_us();
  6052. UNUSED(t0);
  6053. const int ne00 = src0->ne[0];
  6054. const int ne01 = src0->ne[1];
  6055. const int ne02 = src0->ne[2];
  6056. //const int ne03 = src0->ne[3];
  6057. const int ne10 = src1->ne[0];
  6058. const int ne11 = src1->ne[1];
  6059. //const int ne12 = src1->ne[2];
  6060. //const int ne13 = src1->ne[3];
  6061. //const int ne0 = dst->ne[0];
  6062. //const int ne1 = dst->ne[1];
  6063. //const int ne2 = dst->ne[2];
  6064. //const int ne3 = dst->ne[3];
  6065. //const int ne = ne0*ne1*ne2*ne3;
  6066. const int nb00 = src0->nb[0];
  6067. const int nb01 = src0->nb[1];
  6068. const int nb02 = src0->nb[2];
  6069. //const int nb03 = src0->nb[3];
  6070. const int nb10 = src1->nb[0];
  6071. const int nb11 = src1->nb[1];
  6072. //const int nb12 = src1->nb[2];
  6073. //const int nb13 = src1->nb[3];
  6074. //const int nb0 = dst->nb[0];
  6075. const int nb1 = dst->nb[1];
  6076. //const int nb2 = dst->nb[2];
  6077. //const int nb3 = dst->nb[3];
  6078. const int ith = params->ith;
  6079. const int nth = params->nth;
  6080. const int nk = ne00;
  6081. const int nh = nk/2;
  6082. const int ew0 = ggml_up32(ne01);
  6083. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6084. GGML_ASSERT(nb00 == sizeof(float));
  6085. GGML_ASSERT(nb10 == sizeof(float));
  6086. if (params->type == GGML_TASK_INIT) {
  6087. // TODO: fix this memset (wsize is overestimated)
  6088. memset(params->wdata, 0, params->wsize);
  6089. // prepare kernel data (src0)
  6090. {
  6091. float * const wdata = (float *) params->wdata + 0;
  6092. for (int i02 = 0; i02 < ne02; i02++) {
  6093. for (int i01 = 0; i01 < ne01; i01++) {
  6094. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6095. float * dst_data = wdata + i02*ew0*ne00;
  6096. for (int i00 = 0; i00 < ne00; i00++) {
  6097. dst_data[i00*ew0 + i01] = src[i00];
  6098. }
  6099. }
  6100. }
  6101. }
  6102. // prepare source data (src1)
  6103. {
  6104. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6105. for (int i11 = 0; i11 < ne11; i11++) {
  6106. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6107. float * dst_data = wdata;
  6108. for (int i10 = 0; i10 < ne10; i10++) {
  6109. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6110. }
  6111. }
  6112. }
  6113. return;
  6114. }
  6115. if (params->type == GGML_TASK_FINALIZE) {
  6116. return;
  6117. }
  6118. // total rows in dst
  6119. const int nr = ne02;
  6120. // rows per thread
  6121. const int dr = (nr + nth - 1)/nth;
  6122. // row range for this thread
  6123. const int ir0 = dr*ith;
  6124. const int ir1 = MIN(ir0 + dr, nr);
  6125. for (int i1 = ir0; i1 < ir1; i1++) {
  6126. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6127. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6128. dst_data[i0/2] = 0;
  6129. for (int k = -nh; k <= nh; k++) {
  6130. float v = 0.0f;
  6131. ggml_vec_dot_f32(ew0, &v,
  6132. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6133. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6134. dst_data[i0/2] += v;
  6135. }
  6136. }
  6137. }
  6138. }
  6139. static void ggml_compute_forward_conv_1d_2s(
  6140. const struct ggml_compute_params * params,
  6141. const struct ggml_tensor * src0,
  6142. const struct ggml_tensor * src1,
  6143. struct ggml_tensor * dst) {
  6144. switch (src0->type) {
  6145. case GGML_TYPE_F16:
  6146. {
  6147. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6148. } break;
  6149. case GGML_TYPE_F32:
  6150. {
  6151. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6152. } break;
  6153. case GGML_TYPE_Q4_0:
  6154. case GGML_TYPE_Q4_1:
  6155. case GGML_TYPE_I8:
  6156. case GGML_TYPE_I16:
  6157. case GGML_TYPE_I32:
  6158. case GGML_TYPE_COUNT:
  6159. {
  6160. GGML_ASSERT(false);
  6161. } break;
  6162. }
  6163. }
  6164. // ggml_compute_forward_flash_attn
  6165. static void ggml_compute_forward_flash_attn_f32(
  6166. const struct ggml_compute_params * params,
  6167. const struct ggml_tensor * q,
  6168. const struct ggml_tensor * k,
  6169. const struct ggml_tensor * v,
  6170. const bool masked,
  6171. struct ggml_tensor * dst) {
  6172. int64_t t0 = ggml_perf_time_us();
  6173. UNUSED(t0);
  6174. const int neq0 = q->ne[0];
  6175. const int neq1 = q->ne[1];
  6176. const int neq2 = q->ne[2];
  6177. const int neq3 = q->ne[3];
  6178. const int nek0 = k->ne[0];
  6179. const int nek1 = k->ne[1];
  6180. //const int nek2 = k->ne[2];
  6181. //const int nek3 = k->ne[3];
  6182. //const int nev0 = v->ne[0];
  6183. const int nev1 = v->ne[1];
  6184. //const int nev2 = v->ne[2];
  6185. //const int nev3 = v->ne[3];
  6186. const int ne0 = dst->ne[0];
  6187. const int ne1 = dst->ne[1];
  6188. //const int ne2 = dst->ne[2];
  6189. //const int ne3 = dst->ne[3];
  6190. const int nbk0 = k->nb[0];
  6191. const int nbk1 = k->nb[1];
  6192. const int nbk2 = k->nb[2];
  6193. const int nbk3 = k->nb[3];
  6194. const int nbq0 = q->nb[0];
  6195. const int nbq1 = q->nb[1];
  6196. const int nbq2 = q->nb[2];
  6197. const int nbq3 = q->nb[3];
  6198. const int nbv0 = v->nb[0];
  6199. const int nbv1 = v->nb[1];
  6200. const int nbv2 = v->nb[2];
  6201. const int nbv3 = v->nb[3];
  6202. const int nb0 = dst->nb[0];
  6203. const int nb1 = dst->nb[1];
  6204. const int nb2 = dst->nb[2];
  6205. const int nb3 = dst->nb[3];
  6206. const int ith = params->ith;
  6207. const int nth = params->nth;
  6208. const int D = neq0;
  6209. const int N = neq1;
  6210. const int P = nek1 - N;
  6211. const int M = P + N;
  6212. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6213. GGML_ASSERT(ne0 == D);
  6214. GGML_ASSERT(ne1 == N);
  6215. GGML_ASSERT(P >= 0);
  6216. GGML_ASSERT(nbq0 == sizeof(float));
  6217. GGML_ASSERT(nbk0 == sizeof(float));
  6218. GGML_ASSERT(nbv0 == sizeof(float));
  6219. GGML_ASSERT(neq0 == D);
  6220. GGML_ASSERT(nek0 == D);
  6221. GGML_ASSERT(nev1 == D);
  6222. GGML_ASSERT(neq1 == N);
  6223. GGML_ASSERT(nek1 == N + P);
  6224. GGML_ASSERT(nev1 == D);
  6225. // dst cannot be transposed or permuted
  6226. GGML_ASSERT(nb0 == sizeof(float));
  6227. GGML_ASSERT(nb0 <= nb1);
  6228. GGML_ASSERT(nb1 <= nb2);
  6229. GGML_ASSERT(nb2 <= nb3);
  6230. if (params->type == GGML_TASK_INIT) {
  6231. return;
  6232. }
  6233. if (params->type == GGML_TASK_FINALIZE) {
  6234. return;
  6235. }
  6236. // parallelize by q rows using ggml_vec_dot_f32
  6237. // total rows in q
  6238. const int nr = neq1*neq2*neq3;
  6239. // rows per thread
  6240. const int dr = (nr + nth - 1)/nth;
  6241. // row range for this thread
  6242. const int ir0 = dr*ith;
  6243. const int ir1 = MIN(ir0 + dr, nr);
  6244. const float scale = 1.0f/sqrtf(D);
  6245. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6246. for (int ir = ir0; ir < ir1; ++ir) {
  6247. // q indices
  6248. const int iq3 = ir/(neq2*neq1);
  6249. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6250. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6251. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6252. for (int i = M; i < Mup; ++i) {
  6253. S[i] = -INFINITY;
  6254. }
  6255. for (int ic = 0; ic < nek1; ++ic) {
  6256. // k indices
  6257. const int ik3 = iq3;
  6258. const int ik2 = iq2;
  6259. const int ik1 = ic;
  6260. // S indices
  6261. const int i1 = ik1;
  6262. ggml_vec_dot_f32(neq0,
  6263. S + i1,
  6264. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6265. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6266. }
  6267. // scale
  6268. ggml_vec_scale_f32(nek1, S, scale);
  6269. if (masked) {
  6270. for (int i = P; i < M; i++) {
  6271. if (i > P + iq1) {
  6272. S[i] = -INFINITY;
  6273. }
  6274. }
  6275. }
  6276. // softmax
  6277. {
  6278. float max = -INFINITY;
  6279. ggml_vec_max_f32(M, &max, S);
  6280. ggml_float sum = 0.0;
  6281. {
  6282. #ifdef GGML_SOFT_MAX_ACCELERATE
  6283. max = -max;
  6284. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6285. vvexpf(S, S, &Mup);
  6286. ggml_vec_sum_f32(Mup, &sum, S);
  6287. #else
  6288. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6289. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6290. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6291. float * SS = S + i;
  6292. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6293. if (SS[j] == -INFINITY) {
  6294. SS[j] = 0.0f;
  6295. } else {
  6296. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6297. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6298. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6299. sump[j] += (ggml_float)val;
  6300. SS[j] = val;
  6301. }
  6302. }
  6303. }
  6304. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6305. sum += sump[i];
  6306. }
  6307. #endif
  6308. }
  6309. assert(sum > 0.0);
  6310. sum = 1.0/sum;
  6311. ggml_vec_scale_f32(M, S, sum);
  6312. #ifndef NDEBUG
  6313. for (int i = 0; i < M; ++i) {
  6314. assert(!isnan(S[i]));
  6315. assert(!isinf(S[i]));
  6316. }
  6317. #endif
  6318. }
  6319. for (int ic = 0; ic < nev1; ++ic) {
  6320. // dst indices
  6321. const int i1 = iq1;
  6322. const int i2 = iq2;
  6323. const int i3 = iq3;
  6324. ggml_vec_dot_f32(nek1,
  6325. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6326. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6327. S);
  6328. }
  6329. }
  6330. }
  6331. static void ggml_compute_forward_flash_attn_f16(
  6332. const struct ggml_compute_params * params,
  6333. const struct ggml_tensor * q,
  6334. const struct ggml_tensor * k,
  6335. const struct ggml_tensor * v,
  6336. const bool masked,
  6337. struct ggml_tensor * dst) {
  6338. int64_t t0 = ggml_perf_time_us();
  6339. UNUSED(t0);
  6340. const int neq0 = q->ne[0];
  6341. const int neq1 = q->ne[1];
  6342. const int neq2 = q->ne[2];
  6343. const int neq3 = q->ne[3];
  6344. const int nek0 = k->ne[0];
  6345. const int nek1 = k->ne[1];
  6346. //const int nek2 = k->ne[2];
  6347. //const int nek3 = k->ne[3];
  6348. //const int nev0 = v->ne[0];
  6349. const int nev1 = v->ne[1];
  6350. //const int nev2 = v->ne[2];
  6351. //const int nev3 = v->ne[3];
  6352. const int ne0 = dst->ne[0];
  6353. const int ne1 = dst->ne[1];
  6354. //const int ne2 = dst->ne[2];
  6355. //const int ne3 = dst->ne[3];
  6356. const int nbk0 = k->nb[0];
  6357. const int nbk1 = k->nb[1];
  6358. const int nbk2 = k->nb[2];
  6359. const int nbk3 = k->nb[3];
  6360. const int nbq0 = q->nb[0];
  6361. const int nbq1 = q->nb[1];
  6362. const int nbq2 = q->nb[2];
  6363. const int nbq3 = q->nb[3];
  6364. const int nbv0 = v->nb[0];
  6365. const int nbv1 = v->nb[1];
  6366. const int nbv2 = v->nb[2];
  6367. const int nbv3 = v->nb[3];
  6368. const int nb0 = dst->nb[0];
  6369. const int nb1 = dst->nb[1];
  6370. const int nb2 = dst->nb[2];
  6371. const int nb3 = dst->nb[3];
  6372. const int ith = params->ith;
  6373. const int nth = params->nth;
  6374. const int D = neq0;
  6375. const int N = neq1;
  6376. const int P = nek1 - N;
  6377. const int M = P + N;
  6378. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6379. GGML_ASSERT(ne0 == D);
  6380. GGML_ASSERT(ne1 == N);
  6381. GGML_ASSERT(P >= 0);
  6382. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6383. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6384. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6385. GGML_ASSERT(neq0 == D);
  6386. GGML_ASSERT(nek0 == D);
  6387. GGML_ASSERT(nev1 == D);
  6388. GGML_ASSERT(neq1 == N);
  6389. GGML_ASSERT(nek1 == N + P);
  6390. GGML_ASSERT(nev1 == D);
  6391. // dst cannot be transposed or permuted
  6392. GGML_ASSERT(nb0 == sizeof(float));
  6393. GGML_ASSERT(nb0 <= nb1);
  6394. GGML_ASSERT(nb1 <= nb2);
  6395. GGML_ASSERT(nb2 <= nb3);
  6396. if (params->type == GGML_TASK_INIT) {
  6397. return;
  6398. }
  6399. if (params->type == GGML_TASK_FINALIZE) {
  6400. return;
  6401. }
  6402. // parallelize by q rows using ggml_vec_dot_f32
  6403. // total rows in q
  6404. const int nr = neq1*neq2*neq3;
  6405. // rows per thread
  6406. const int dr = (nr + nth - 1)/nth;
  6407. // row range for this thread
  6408. const int ir0 = dr*ith;
  6409. const int ir1 = MIN(ir0 + dr, nr);
  6410. const float scale = 1.0f/sqrtf(D);
  6411. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6412. for (int ir = ir0; ir < ir1; ++ir) {
  6413. // q indices
  6414. const int iq3 = ir/(neq2*neq1);
  6415. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6416. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6417. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6418. for (int i = M; i < Mup; ++i) {
  6419. S[i] = -INFINITY;
  6420. }
  6421. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6422. for (int ic = 0; ic < nek1; ++ic) {
  6423. // k indices
  6424. const int ik3 = iq3;
  6425. const int ik2 = iq2;
  6426. const int ik1 = ic;
  6427. // S indices
  6428. const int i1 = ik1;
  6429. ggml_vec_dot_f16(neq0,
  6430. S + i1,
  6431. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6432. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6433. }
  6434. } else {
  6435. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6436. // k indices
  6437. const int ik3 = iq3;
  6438. const int ik2 = iq2;
  6439. const int ik1 = ic;
  6440. // S indices
  6441. const int i1 = ik1;
  6442. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6443. S + i1,
  6444. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6445. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6446. }
  6447. }
  6448. // scale
  6449. ggml_vec_scale_f32(nek1, S, scale);
  6450. if (masked) {
  6451. for (int i = P; i < M; i++) {
  6452. if (i > P + iq1) {
  6453. S[i] = -INFINITY;
  6454. }
  6455. }
  6456. }
  6457. // softmax
  6458. {
  6459. float max = -INFINITY;
  6460. ggml_vec_max_f32(M, &max, S);
  6461. ggml_float sum = 0.0;
  6462. {
  6463. #ifdef GGML_SOFT_MAX_ACCELERATE
  6464. max = -max;
  6465. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6466. vvexpf(S, S, &Mup);
  6467. ggml_vec_sum_f32(Mup, &sum, S);
  6468. #else
  6469. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6470. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6471. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6472. float * SS = S + i;
  6473. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6474. if (SS[j] == -INFINITY) {
  6475. SS[j] = 0.0f;
  6476. } else {
  6477. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6478. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6479. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6480. sump[j] += (ggml_float)val;
  6481. SS[j] = val;
  6482. }
  6483. }
  6484. }
  6485. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6486. sum += sump[i];
  6487. }
  6488. #endif
  6489. }
  6490. assert(sum > 0.0);
  6491. sum = 1.0/sum;
  6492. ggml_vec_scale_f32(M, S, sum);
  6493. #ifndef NDEBUG
  6494. for (int i = 0; i < M; ++i) {
  6495. assert(!isnan(S[i]));
  6496. assert(!isinf(S[i]));
  6497. }
  6498. #endif
  6499. }
  6500. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6501. for (int i = 0; i < M; i++) {
  6502. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6503. }
  6504. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6505. for (int ic = 0; ic < nev1; ++ic) {
  6506. // dst indices
  6507. const int i1 = iq1;
  6508. const int i2 = iq2;
  6509. const int i3 = iq3;
  6510. ggml_vec_dot_f16(nek1,
  6511. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6512. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6513. S16);
  6514. }
  6515. } else {
  6516. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6517. // dst indices
  6518. const int i1 = iq1;
  6519. const int i2 = iq2;
  6520. const int i3 = iq3;
  6521. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6522. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6523. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6524. S16);
  6525. }
  6526. }
  6527. }
  6528. }
  6529. static void ggml_compute_forward_flash_attn(
  6530. const struct ggml_compute_params * params,
  6531. const struct ggml_tensor * q,
  6532. const struct ggml_tensor * k,
  6533. const struct ggml_tensor * v,
  6534. const bool masked,
  6535. struct ggml_tensor * dst) {
  6536. switch (q->type) {
  6537. case GGML_TYPE_F16:
  6538. {
  6539. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6540. } break;
  6541. case GGML_TYPE_F32:
  6542. {
  6543. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6544. } break;
  6545. case GGML_TYPE_Q4_0:
  6546. case GGML_TYPE_Q4_1:
  6547. case GGML_TYPE_I8:
  6548. case GGML_TYPE_I16:
  6549. case GGML_TYPE_I32:
  6550. case GGML_TYPE_COUNT:
  6551. {
  6552. GGML_ASSERT(false);
  6553. } break;
  6554. }
  6555. }
  6556. // ggml_compute_forward_flash_ff
  6557. static void ggml_compute_forward_flash_ff_f16(
  6558. const struct ggml_compute_params * params,
  6559. const struct ggml_tensor * a, // F16
  6560. const struct ggml_tensor * b0, // F16 fc_w
  6561. const struct ggml_tensor * b1, // F32 fc_b
  6562. const struct ggml_tensor * c0, // F16 proj_w
  6563. const struct ggml_tensor * c1, // F32 proj_b
  6564. struct ggml_tensor * dst) {
  6565. int64_t t0 = ggml_perf_time_us();
  6566. UNUSED(t0);
  6567. const int nea0 = a->ne[0];
  6568. const int nea1 = a->ne[1];
  6569. const int nea2 = a->ne[2];
  6570. const int nea3 = a->ne[3];
  6571. const int neb00 = b0->ne[0];
  6572. const int neb01 = b0->ne[1];
  6573. //const int neb02 = b0->ne[2];
  6574. //const int neb03 = b0->ne[3];
  6575. const int neb10 = b1->ne[0];
  6576. const int neb11 = b1->ne[1];
  6577. //const int neb12 = b1->ne[2];
  6578. //const int neb13 = b1->ne[3];
  6579. const int nec00 = c0->ne[0];
  6580. const int nec01 = c0->ne[1];
  6581. //const int nec02 = c0->ne[2];
  6582. //const int nec03 = c0->ne[3];
  6583. const int nec10 = c1->ne[0];
  6584. const int nec11 = c1->ne[1];
  6585. //const int nec12 = c1->ne[2];
  6586. //const int nec13 = c1->ne[3];
  6587. const int ne0 = dst->ne[0];
  6588. const int ne1 = dst->ne[1];
  6589. const int ne2 = dst->ne[2];
  6590. //const int ne3 = dst->ne[3];
  6591. const int nba0 = a->nb[0];
  6592. const int nba1 = a->nb[1];
  6593. const int nba2 = a->nb[2];
  6594. const int nba3 = a->nb[3];
  6595. const int nbb00 = b0->nb[0];
  6596. const int nbb01 = b0->nb[1];
  6597. const int nbb02 = b0->nb[2];
  6598. const int nbb03 = b0->nb[3];
  6599. const int nbb10 = b1->nb[0];
  6600. //const int nbb11 = b1->nb[1];
  6601. //const int nbb12 = b1->nb[2];
  6602. //const int nbb13 = b1->nb[3];
  6603. const int nbc00 = c0->nb[0];
  6604. const int nbc01 = c0->nb[1];
  6605. const int nbc02 = c0->nb[2];
  6606. const int nbc03 = c0->nb[3];
  6607. const int nbc10 = c1->nb[0];
  6608. //const int nbc11 = c1->nb[1];
  6609. //const int nbc12 = c1->nb[2];
  6610. //const int nbc13 = c1->nb[3];
  6611. const int nb0 = dst->nb[0];
  6612. const int nb1 = dst->nb[1];
  6613. const int nb2 = dst->nb[2];
  6614. const int nb3 = dst->nb[3];
  6615. const int ith = params->ith;
  6616. const int nth = params->nth;
  6617. const int D = nea0;
  6618. //const int N = nea1;
  6619. const int M = neb01;
  6620. GGML_ASSERT(ne0 == nea0);
  6621. GGML_ASSERT(ne1 == nea1);
  6622. GGML_ASSERT(ne2 == nea2);
  6623. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6624. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6625. GGML_ASSERT(nbb10 == sizeof(float));
  6626. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6627. GGML_ASSERT(nbc10 == sizeof(float));
  6628. GGML_ASSERT(neb00 == D);
  6629. GGML_ASSERT(neb01 == M);
  6630. GGML_ASSERT(neb10 == M);
  6631. GGML_ASSERT(neb11 == 1);
  6632. GGML_ASSERT(nec00 == M);
  6633. GGML_ASSERT(nec01 == D);
  6634. GGML_ASSERT(nec10 == D);
  6635. GGML_ASSERT(nec11 == 1);
  6636. // dst cannot be transposed or permuted
  6637. GGML_ASSERT(nb0 == sizeof(float));
  6638. GGML_ASSERT(nb0 <= nb1);
  6639. GGML_ASSERT(nb1 <= nb2);
  6640. GGML_ASSERT(nb2 <= nb3);
  6641. if (params->type == GGML_TASK_INIT) {
  6642. return;
  6643. }
  6644. if (params->type == GGML_TASK_FINALIZE) {
  6645. return;
  6646. }
  6647. // parallelize by a rows using ggml_vec_dot_f32
  6648. // total rows in a
  6649. const int nr = nea1*nea2*nea3;
  6650. // rows per thread
  6651. const int dr = (nr + nth - 1)/nth;
  6652. // row range for this thread
  6653. const int ir0 = dr*ith;
  6654. const int ir1 = MIN(ir0 + dr, nr);
  6655. for (int ir = ir0; ir < ir1; ++ir) {
  6656. // a indices
  6657. const int ia3 = ir/(nea2*nea1);
  6658. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6659. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6660. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6661. for (int ic = 0; ic < neb01; ++ic) {
  6662. // b0 indices
  6663. const int ib03 = ia3;
  6664. const int ib02 = ia2;
  6665. const int ib01 = ic;
  6666. // S indices
  6667. const int i1 = ib01;
  6668. ggml_vec_dot_f16(nea0,
  6669. S + i1,
  6670. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6671. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6672. }
  6673. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6674. //ggml_vec_gelu_f32(neb01, S, S);
  6675. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6676. for (int i = 0; i < M; i++) {
  6677. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6678. }
  6679. ggml_vec_gelu_f16(neb01, S16, S16);
  6680. {
  6681. // dst indices
  6682. const int i1 = ia1;
  6683. const int i2 = ia2;
  6684. const int i3 = ia3;
  6685. for (int ic = 0; ic < nec01; ++ic) {
  6686. ggml_vec_dot_f16(neb01,
  6687. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6688. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6689. S16);
  6690. }
  6691. ggml_vec_add_f32(nec01,
  6692. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6693. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6694. (float *) c1->data);
  6695. }
  6696. }
  6697. }
  6698. static void ggml_compute_forward_flash_ff(
  6699. const struct ggml_compute_params * params,
  6700. const struct ggml_tensor * a,
  6701. const struct ggml_tensor * b0,
  6702. const struct ggml_tensor * b1,
  6703. const struct ggml_tensor * c0,
  6704. const struct ggml_tensor * c1,
  6705. struct ggml_tensor * dst) {
  6706. switch (b0->type) {
  6707. case GGML_TYPE_F16:
  6708. {
  6709. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6710. } break;
  6711. case GGML_TYPE_F32:
  6712. {
  6713. GGML_ASSERT(false); // TODO
  6714. } break;
  6715. case GGML_TYPE_Q4_0:
  6716. case GGML_TYPE_Q4_1:
  6717. case GGML_TYPE_I8:
  6718. case GGML_TYPE_I16:
  6719. case GGML_TYPE_I32:
  6720. case GGML_TYPE_COUNT:
  6721. {
  6722. GGML_ASSERT(false);
  6723. } break;
  6724. }
  6725. }
  6726. /////////////////////////////////
  6727. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6728. GGML_ASSERT(params);
  6729. switch (tensor->op) {
  6730. case GGML_OP_DUP:
  6731. {
  6732. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6733. } break;
  6734. case GGML_OP_ADD:
  6735. {
  6736. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6737. } break;
  6738. case GGML_OP_SUB:
  6739. {
  6740. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6741. } break;
  6742. case GGML_OP_MUL:
  6743. {
  6744. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6745. } break;
  6746. case GGML_OP_DIV:
  6747. {
  6748. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6749. } break;
  6750. case GGML_OP_SQR:
  6751. {
  6752. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6753. } break;
  6754. case GGML_OP_SQRT:
  6755. {
  6756. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6757. } break;
  6758. case GGML_OP_SUM:
  6759. {
  6760. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6761. } break;
  6762. case GGML_OP_MEAN:
  6763. {
  6764. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6765. } break;
  6766. case GGML_OP_REPEAT:
  6767. {
  6768. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6769. } break;
  6770. case GGML_OP_ABS:
  6771. {
  6772. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6773. } break;
  6774. case GGML_OP_SGN:
  6775. {
  6776. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6777. } break;
  6778. case GGML_OP_NEG:
  6779. {
  6780. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6781. } break;
  6782. case GGML_OP_STEP:
  6783. {
  6784. ggml_compute_forward_step(params, tensor->src0, tensor);
  6785. } break;
  6786. case GGML_OP_RELU:
  6787. {
  6788. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6789. } break;
  6790. case GGML_OP_GELU:
  6791. {
  6792. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6793. } break;
  6794. case GGML_OP_SILU:
  6795. {
  6796. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6797. } break;
  6798. case GGML_OP_NORM:
  6799. {
  6800. ggml_compute_forward_norm(params, tensor->src0, tensor);
  6801. } break;
  6802. case GGML_OP_RMS_NORM:
  6803. {
  6804. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  6805. } break;
  6806. case GGML_OP_MUL_MAT:
  6807. {
  6808. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  6809. } break;
  6810. case GGML_OP_SCALE:
  6811. {
  6812. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  6813. } break;
  6814. case GGML_OP_CPY:
  6815. {
  6816. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  6817. } break;
  6818. case GGML_OP_RESHAPE:
  6819. {
  6820. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  6821. } break;
  6822. case GGML_OP_VIEW:
  6823. {
  6824. ggml_compute_forward_view(params, tensor->src0);
  6825. } break;
  6826. case GGML_OP_PERMUTE:
  6827. {
  6828. ggml_compute_forward_permute(params, tensor->src0);
  6829. } break;
  6830. case GGML_OP_TRANSPOSE:
  6831. {
  6832. ggml_compute_forward_transpose(params, tensor->src0);
  6833. } break;
  6834. case GGML_OP_GET_ROWS:
  6835. {
  6836. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  6837. } break;
  6838. case GGML_OP_DIAG_MASK_INF:
  6839. {
  6840. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  6841. } break;
  6842. case GGML_OP_SOFT_MAX:
  6843. {
  6844. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  6845. } break;
  6846. case GGML_OP_ROPE:
  6847. {
  6848. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  6849. } break;
  6850. case GGML_OP_CONV_1D_1S:
  6851. {
  6852. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  6853. } break;
  6854. case GGML_OP_CONV_1D_2S:
  6855. {
  6856. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  6857. } break;
  6858. case GGML_OP_FLASH_ATTN:
  6859. {
  6860. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  6861. GGML_ASSERT(t == 0 || t == 1);
  6862. bool masked = t != 0;
  6863. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  6864. } break;
  6865. case GGML_OP_FLASH_FF:
  6866. {
  6867. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  6868. } break;
  6869. case GGML_OP_NONE:
  6870. {
  6871. // nop
  6872. } break;
  6873. case GGML_OP_COUNT:
  6874. {
  6875. GGML_ASSERT(false);
  6876. } break;
  6877. }
  6878. }
  6879. ////////////////////////////////////////////////////////////////////////////////
  6880. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  6881. struct ggml_tensor * src0 = tensor->src0;
  6882. struct ggml_tensor * src1 = tensor->src1;
  6883. switch (tensor->op) {
  6884. case GGML_OP_DUP:
  6885. {
  6886. if (src0->grad) {
  6887. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6888. }
  6889. } break;
  6890. case GGML_OP_ADD:
  6891. {
  6892. if (src0->grad) {
  6893. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6894. }
  6895. if (src1->grad) {
  6896. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  6897. }
  6898. } break;
  6899. case GGML_OP_SUB:
  6900. {
  6901. if (src0->grad) {
  6902. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6903. }
  6904. if (src1->grad) {
  6905. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  6906. }
  6907. } break;
  6908. case GGML_OP_MUL:
  6909. {
  6910. if (src0->grad) {
  6911. src0->grad =
  6912. ggml_add_impl(ctx,
  6913. src0->grad,
  6914. ggml_mul(ctx, src1, tensor->grad),
  6915. inplace);
  6916. }
  6917. if (src1->grad) {
  6918. src1->grad =
  6919. ggml_add_impl(ctx,
  6920. src1->grad,
  6921. ggml_mul(ctx, src0, tensor->grad),
  6922. inplace);
  6923. }
  6924. } break;
  6925. case GGML_OP_DIV:
  6926. {
  6927. if (src0->grad) {
  6928. src0->grad =
  6929. ggml_add_impl(ctx,
  6930. src0->grad,
  6931. ggml_div(ctx, tensor->grad, src1),
  6932. inplace);
  6933. }
  6934. if (src1->grad) {
  6935. src1->grad =
  6936. ggml_sub_impl(ctx,
  6937. src1->grad,
  6938. ggml_mul(ctx,
  6939. tensor->grad,
  6940. ggml_div(ctx, tensor, src1)),
  6941. inplace);
  6942. }
  6943. } break;
  6944. case GGML_OP_SQR:
  6945. {
  6946. if (src0->grad) {
  6947. src0->grad =
  6948. ggml_add_impl(ctx,
  6949. src0->grad,
  6950. ggml_mul(ctx,
  6951. ggml_mul(ctx, src0, tensor->grad),
  6952. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  6953. inplace);
  6954. }
  6955. } break;
  6956. case GGML_OP_SQRT:
  6957. {
  6958. if (src0->grad) {
  6959. src0->grad =
  6960. ggml_add_impl(ctx,
  6961. src0->grad,
  6962. ggml_div(ctx,
  6963. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  6964. tensor),
  6965. inplace);
  6966. }
  6967. } break;
  6968. case GGML_OP_SUM:
  6969. {
  6970. if (src0->grad) {
  6971. src0->grad =
  6972. ggml_add_impl(ctx,
  6973. src0->grad,
  6974. ggml_repeat(ctx, tensor->grad, src0->grad),
  6975. inplace);
  6976. }
  6977. } break;
  6978. case GGML_OP_MEAN:
  6979. {
  6980. GGML_ASSERT(false); // TODO: implement
  6981. } break;
  6982. case GGML_OP_REPEAT:
  6983. {
  6984. if (src0->grad) {
  6985. src0->grad =
  6986. ggml_add_impl(ctx,
  6987. src0->grad,
  6988. ggml_sum(ctx, tensor->grad),
  6989. inplace);
  6990. }
  6991. } break;
  6992. case GGML_OP_ABS:
  6993. {
  6994. if (src0->grad) {
  6995. src0->grad =
  6996. ggml_add_impl(ctx,
  6997. src0->grad,
  6998. ggml_mul(ctx,
  6999. ggml_sgn(ctx, src0),
  7000. tensor->grad),
  7001. inplace);
  7002. }
  7003. } break;
  7004. case GGML_OP_SGN:
  7005. {
  7006. if (src0->grad) {
  7007. // noop
  7008. }
  7009. } break;
  7010. case GGML_OP_NEG:
  7011. {
  7012. if (src0->grad) {
  7013. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7014. }
  7015. } break;
  7016. case GGML_OP_STEP:
  7017. {
  7018. if (src0->grad) {
  7019. // noop
  7020. }
  7021. } break;
  7022. case GGML_OP_RELU:
  7023. {
  7024. if (src0->grad) {
  7025. src0->grad = ggml_sub_impl(ctx,
  7026. src0->grad,
  7027. ggml_mul(ctx,
  7028. ggml_step(ctx, src0),
  7029. tensor->grad),
  7030. inplace);
  7031. }
  7032. } break;
  7033. case GGML_OP_GELU:
  7034. {
  7035. GGML_ASSERT(false); // TODO: not implemented
  7036. } break;
  7037. case GGML_OP_SILU:
  7038. {
  7039. GGML_ASSERT(false); // TODO: not implemented
  7040. } break;
  7041. case GGML_OP_NORM:
  7042. {
  7043. GGML_ASSERT(false); // TODO: not implemented
  7044. } break;
  7045. case GGML_OP_RMS_NORM:
  7046. {
  7047. GGML_ASSERT(false); // TODO: not implemented
  7048. } break;
  7049. case GGML_OP_MUL_MAT:
  7050. {
  7051. if (src0->grad) {
  7052. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7053. GGML_ASSERT(false);
  7054. }
  7055. if (src1->grad) {
  7056. src1->grad =
  7057. ggml_add_impl(ctx,
  7058. src1->grad,
  7059. // TODO: fix transpose, the node will break the graph connections
  7060. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7061. inplace);
  7062. }
  7063. } break;
  7064. case GGML_OP_SCALE:
  7065. {
  7066. GGML_ASSERT(false); // TODO: not implemented
  7067. } break;
  7068. case GGML_OP_CPY:
  7069. {
  7070. GGML_ASSERT(false); // TODO: not implemented
  7071. } break;
  7072. case GGML_OP_RESHAPE:
  7073. {
  7074. GGML_ASSERT(false); // TODO: not implemented
  7075. } break;
  7076. case GGML_OP_VIEW:
  7077. {
  7078. GGML_ASSERT(false); // not supported
  7079. } break;
  7080. case GGML_OP_PERMUTE:
  7081. {
  7082. GGML_ASSERT(false); // TODO: not implemented
  7083. } break;
  7084. case GGML_OP_TRANSPOSE:
  7085. {
  7086. GGML_ASSERT(false); // TODO: not implemented
  7087. } break;
  7088. case GGML_OP_GET_ROWS:
  7089. {
  7090. GGML_ASSERT(false); // TODO: not implemented
  7091. } break;
  7092. case GGML_OP_DIAG_MASK_INF:
  7093. {
  7094. GGML_ASSERT(false); // TODO: not implemented
  7095. } break;
  7096. case GGML_OP_SOFT_MAX:
  7097. {
  7098. GGML_ASSERT(false); // TODO: not implemented
  7099. } break;
  7100. case GGML_OP_ROPE:
  7101. {
  7102. GGML_ASSERT(false); // TODO: not implemented
  7103. } break;
  7104. case GGML_OP_CONV_1D_1S:
  7105. {
  7106. GGML_ASSERT(false); // TODO: not implemented
  7107. } break;
  7108. case GGML_OP_CONV_1D_2S:
  7109. {
  7110. GGML_ASSERT(false); // TODO: not implemented
  7111. } break;
  7112. case GGML_OP_FLASH_ATTN:
  7113. {
  7114. GGML_ASSERT(false); // not supported
  7115. } break;
  7116. case GGML_OP_FLASH_FF:
  7117. {
  7118. GGML_ASSERT(false); // not supported
  7119. } break;
  7120. case GGML_OP_NONE:
  7121. {
  7122. // nop
  7123. } break;
  7124. case GGML_OP_COUNT:
  7125. {
  7126. GGML_ASSERT(false);
  7127. } break;
  7128. }
  7129. }
  7130. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7131. if (node->grad == NULL) {
  7132. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7133. // it can also happen during forward pass, if the user performs computations with constants
  7134. if (node->op != GGML_OP_NONE) {
  7135. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7136. }
  7137. }
  7138. // check if already visited
  7139. for (int i = 0; i < cgraph->n_nodes; i++) {
  7140. if (cgraph->nodes[i] == node) {
  7141. return;
  7142. }
  7143. }
  7144. for (int i = 0; i < cgraph->n_leafs; i++) {
  7145. if (cgraph->leafs[i] == node) {
  7146. return;
  7147. }
  7148. }
  7149. if (node->src0) {
  7150. ggml_visit_parents(cgraph, node->src0);
  7151. }
  7152. if (node->src1) {
  7153. ggml_visit_parents(cgraph, node->src1);
  7154. }
  7155. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7156. if (node->opt[i]) {
  7157. ggml_visit_parents(cgraph, node->opt[i]);
  7158. }
  7159. }
  7160. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7161. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7162. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7163. cgraph->leafs[cgraph->n_leafs] = node;
  7164. cgraph->n_leafs++;
  7165. } else {
  7166. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7167. cgraph->nodes[cgraph->n_nodes] = node;
  7168. cgraph->grads[cgraph->n_nodes] = node->grad;
  7169. cgraph->n_nodes++;
  7170. }
  7171. }
  7172. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7173. if (!expand) {
  7174. cgraph->n_nodes = 0;
  7175. cgraph->n_leafs = 0;
  7176. }
  7177. const int n0 = cgraph->n_nodes;
  7178. UNUSED(n0);
  7179. ggml_visit_parents(cgraph, tensor);
  7180. const int n_new = cgraph->n_nodes - n0;
  7181. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7182. if (n_new > 0) {
  7183. // the last added node should always be starting point
  7184. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7185. }
  7186. }
  7187. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7188. ggml_build_forward_impl(cgraph, tensor, true);
  7189. }
  7190. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7191. struct ggml_cgraph result = {
  7192. /*.n_nodes =*/ 0,
  7193. /*.n_leafs =*/ 0,
  7194. /*.n_threads =*/ 0,
  7195. /*.work_size =*/ 0,
  7196. /*.work =*/ NULL,
  7197. /*.nodes =*/ { NULL },
  7198. /*.grads =*/ { NULL },
  7199. /*.leafs =*/ { NULL },
  7200. /*.perf_runs =*/ 0,
  7201. /*.perf_cycles =*/ 0,
  7202. /*.perf_time_us =*/ 0,
  7203. };
  7204. ggml_build_forward_impl(&result, tensor, false);
  7205. return result;
  7206. }
  7207. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7208. struct ggml_cgraph result = *gf;
  7209. GGML_ASSERT(gf->n_nodes > 0);
  7210. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7211. if (keep) {
  7212. for (int i = 0; i < gf->n_nodes; i++) {
  7213. struct ggml_tensor * node = gf->nodes[i];
  7214. if (node->grad) {
  7215. node->grad = ggml_dup_tensor(ctx, node);
  7216. gf->grads[i] = node->grad;
  7217. }
  7218. }
  7219. }
  7220. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7221. struct ggml_tensor * node = gf->nodes[i];
  7222. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7223. if (node->grad) {
  7224. ggml_compute_backward(ctx, node, keep);
  7225. }
  7226. }
  7227. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7228. struct ggml_tensor * node = gf->nodes[i];
  7229. if (node->is_param) {
  7230. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7231. ggml_build_forward_impl(&result, node->grad, true);
  7232. }
  7233. }
  7234. return result;
  7235. }
  7236. //
  7237. // thread data
  7238. //
  7239. // synchronization is done via busy loops
  7240. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7241. //
  7242. #ifdef __APPLE__
  7243. //#include <os/lock.h>
  7244. //
  7245. //typedef os_unfair_lock ggml_lock_t;
  7246. //
  7247. //#define ggml_lock_init(x) UNUSED(x)
  7248. //#define ggml_lock_destroy(x) UNUSED(x)
  7249. //#define ggml_lock_lock os_unfair_lock_lock
  7250. //#define ggml_lock_unlock os_unfair_lock_unlock
  7251. //
  7252. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7253. typedef int ggml_lock_t;
  7254. #define ggml_lock_init(x) UNUSED(x)
  7255. #define ggml_lock_destroy(x) UNUSED(x)
  7256. #define ggml_lock_lock(x) UNUSED(x)
  7257. #define ggml_lock_unlock(x) UNUSED(x)
  7258. #define GGML_LOCK_INITIALIZER 0
  7259. typedef pthread_t ggml_thread_t;
  7260. #define ggml_thread_create pthread_create
  7261. #define ggml_thread_join pthread_join
  7262. #else
  7263. //typedef pthread_spinlock_t ggml_lock_t;
  7264. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7265. //#define ggml_lock_destroy pthread_spin_destroy
  7266. //#define ggml_lock_lock pthread_spin_lock
  7267. //#define ggml_lock_unlock pthread_spin_unlock
  7268. typedef int ggml_lock_t;
  7269. #define ggml_lock_init(x) UNUSED(x)
  7270. #define ggml_lock_destroy(x) UNUSED(x)
  7271. #define ggml_lock_lock(x) UNUSED(x)
  7272. #define ggml_lock_unlock(x) UNUSED(x)
  7273. #define GGML_LOCK_INITIALIZER 0
  7274. typedef pthread_t ggml_thread_t;
  7275. #define ggml_thread_create pthread_create
  7276. #define ggml_thread_join pthread_join
  7277. #endif
  7278. struct ggml_compute_state_shared {
  7279. ggml_lock_t spin;
  7280. int n_threads;
  7281. // synchronization primitives
  7282. atomic_int n_ready;
  7283. atomic_bool has_work;
  7284. atomic_bool stop; // stop all threads
  7285. };
  7286. struct ggml_compute_state {
  7287. ggml_thread_t thrd;
  7288. struct ggml_compute_params params;
  7289. struct ggml_tensor * node;
  7290. struct ggml_compute_state_shared * shared;
  7291. };
  7292. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7293. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7294. const int n_threads = state->shared->n_threads;
  7295. while (true) {
  7296. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7297. atomic_store(&state->shared->has_work, false);
  7298. } else {
  7299. while (atomic_load(&state->shared->has_work)) {
  7300. if (atomic_load(&state->shared->stop)) {
  7301. return 0;
  7302. }
  7303. ggml_lock_lock (&state->shared->spin);
  7304. ggml_lock_unlock(&state->shared->spin);
  7305. }
  7306. }
  7307. atomic_fetch_sub(&state->shared->n_ready, 1);
  7308. // wait for work
  7309. while (!atomic_load(&state->shared->has_work)) {
  7310. if (atomic_load(&state->shared->stop)) {
  7311. return 0;
  7312. }
  7313. ggml_lock_lock (&state->shared->spin);
  7314. ggml_lock_unlock(&state->shared->spin);
  7315. }
  7316. // check if we should stop
  7317. if (atomic_load(&state->shared->stop)) {
  7318. break;
  7319. }
  7320. if (state->node) {
  7321. if (state->params.ith < state->params.nth) {
  7322. ggml_compute_forward(&state->params, state->node);
  7323. }
  7324. state->node = NULL;
  7325. } else {
  7326. break;
  7327. }
  7328. }
  7329. return 0;
  7330. }
  7331. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7332. const int n_threads = cgraph->n_threads;
  7333. struct ggml_compute_state_shared state_shared = {
  7334. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7335. /*.n_threads =*/ n_threads,
  7336. /*.n_ready =*/ 0,
  7337. /*.has_work =*/ false,
  7338. /*.stop =*/ false,
  7339. };
  7340. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7341. // create thread pool
  7342. if (n_threads > 1) {
  7343. ggml_lock_init(&state_shared.spin);
  7344. atomic_store(&state_shared.has_work, true);
  7345. for (int j = 0; j < n_threads - 1; j++) {
  7346. workers[j] = (struct ggml_compute_state) {
  7347. .thrd = 0,
  7348. .params = {
  7349. .type = GGML_TASK_COMPUTE,
  7350. .ith = j + 1,
  7351. .nth = n_threads,
  7352. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7353. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7354. },
  7355. .node = NULL,
  7356. .shared = &state_shared,
  7357. };
  7358. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7359. GGML_ASSERT(rc == 0);
  7360. UNUSED(rc);
  7361. }
  7362. }
  7363. // initialize tasks + work buffer
  7364. {
  7365. size_t work_size = 0;
  7366. // thread scheduling for the different operations
  7367. for (int i = 0; i < cgraph->n_nodes; i++) {
  7368. struct ggml_tensor * node = cgraph->nodes[i];
  7369. switch (node->op) {
  7370. case GGML_OP_DUP:
  7371. {
  7372. node->n_tasks = 1;
  7373. } break;
  7374. case GGML_OP_ADD:
  7375. {
  7376. node->n_tasks = n_threads;
  7377. } break;
  7378. case GGML_OP_SUB:
  7379. case GGML_OP_MUL:
  7380. case GGML_OP_DIV:
  7381. case GGML_OP_SQR:
  7382. case GGML_OP_SQRT:
  7383. case GGML_OP_SUM:
  7384. case GGML_OP_MEAN:
  7385. case GGML_OP_REPEAT:
  7386. case GGML_OP_ABS:
  7387. case GGML_OP_SGN:
  7388. case GGML_OP_NEG:
  7389. case GGML_OP_STEP:
  7390. case GGML_OP_RELU:
  7391. {
  7392. node->n_tasks = 1;
  7393. } break;
  7394. case GGML_OP_GELU:
  7395. {
  7396. node->n_tasks = n_threads;
  7397. } break;
  7398. case GGML_OP_SILU:
  7399. {
  7400. node->n_tasks = n_threads;
  7401. } break;
  7402. case GGML_OP_NORM:
  7403. case GGML_OP_RMS_NORM:
  7404. {
  7405. node->n_tasks = n_threads;
  7406. } break;
  7407. case GGML_OP_MUL_MAT:
  7408. {
  7409. node->n_tasks = n_threads;
  7410. // TODO: use different scheduling for different matrix sizes
  7411. //const int nr0 = ggml_nrows(node->src0);
  7412. //const int nr1 = ggml_nrows(node->src1);
  7413. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7414. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7415. size_t cur = 0;
  7416. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7417. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7418. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7419. node->n_tasks = 1; // TODO: this actually is doing nothing
  7420. // the threads are still spinning
  7421. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7422. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7423. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7424. //printf("cur = %zu\n", cur);
  7425. } else {
  7426. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7427. }
  7428. #else
  7429. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7430. #endif
  7431. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7432. cur = 0;
  7433. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7434. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7435. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7436. node->n_tasks = 1;
  7437. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7438. } else
  7439. #endif
  7440. {
  7441. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7442. }
  7443. } else {
  7444. GGML_ASSERT(false);
  7445. }
  7446. work_size = MAX(work_size, cur);
  7447. } break;
  7448. case GGML_OP_SCALE:
  7449. {
  7450. node->n_tasks = n_threads;
  7451. } break;
  7452. case GGML_OP_CPY:
  7453. case GGML_OP_RESHAPE:
  7454. case GGML_OP_VIEW:
  7455. case GGML_OP_PERMUTE:
  7456. case GGML_OP_TRANSPOSE:
  7457. case GGML_OP_GET_ROWS:
  7458. case GGML_OP_DIAG_MASK_INF:
  7459. {
  7460. node->n_tasks = 1;
  7461. } break;
  7462. case GGML_OP_SOFT_MAX:
  7463. {
  7464. node->n_tasks = n_threads;
  7465. } break;
  7466. case GGML_OP_ROPE:
  7467. {
  7468. node->n_tasks = 1;
  7469. } break;
  7470. case GGML_OP_CONV_1D_1S:
  7471. case GGML_OP_CONV_1D_2S:
  7472. {
  7473. node->n_tasks = n_threads;
  7474. GGML_ASSERT(node->src0->ne[3] == 1);
  7475. GGML_ASSERT(node->src1->ne[2] == 1);
  7476. GGML_ASSERT(node->src1->ne[3] == 1);
  7477. size_t cur = 0;
  7478. const int nk = node->src0->ne[0];
  7479. if (node->src0->type == GGML_TYPE_F16 &&
  7480. node->src1->type == GGML_TYPE_F32) {
  7481. cur = sizeof(ggml_fp16_t)*(
  7482. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7483. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7484. );
  7485. } else if (node->src0->type == GGML_TYPE_F32 &&
  7486. node->src1->type == GGML_TYPE_F32) {
  7487. cur = sizeof(float)*(
  7488. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7489. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7490. );
  7491. } else {
  7492. GGML_ASSERT(false);
  7493. }
  7494. work_size = MAX(work_size, cur);
  7495. } break;
  7496. case GGML_OP_FLASH_ATTN:
  7497. {
  7498. node->n_tasks = n_threads;
  7499. size_t cur = 0;
  7500. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7501. if (node->src1->type == GGML_TYPE_F32) {
  7502. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7503. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7504. }
  7505. if (node->src1->type == GGML_TYPE_F16) {
  7506. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7507. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7508. }
  7509. work_size = MAX(work_size, cur);
  7510. } break;
  7511. case GGML_OP_FLASH_FF:
  7512. {
  7513. node->n_tasks = n_threads;
  7514. size_t cur = 0;
  7515. if (node->src1->type == GGML_TYPE_F32) {
  7516. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7517. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7518. }
  7519. if (node->src1->type == GGML_TYPE_F16) {
  7520. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7521. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7522. }
  7523. work_size = MAX(work_size, cur);
  7524. } break;
  7525. case GGML_OP_NONE:
  7526. {
  7527. node->n_tasks = 1;
  7528. } break;
  7529. case GGML_OP_COUNT:
  7530. {
  7531. GGML_ASSERT(false);
  7532. } break;
  7533. }
  7534. }
  7535. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7536. GGML_ASSERT(false); // TODO: better handling
  7537. }
  7538. if (work_size > 0 && cgraph->work == NULL) {
  7539. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7540. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7541. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7542. }
  7543. }
  7544. const int64_t perf_start_cycles = ggml_perf_cycles();
  7545. const int64_t perf_start_time_us = ggml_perf_time_us();
  7546. for (int i = 0; i < cgraph->n_nodes; i++) {
  7547. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7548. struct ggml_tensor * node = cgraph->nodes[i];
  7549. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7550. //if (node->grad == NULL && node->perf_runs > 0) {
  7551. // continue;
  7552. //}
  7553. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7554. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7555. // INIT
  7556. struct ggml_compute_params params = {
  7557. /*.type =*/ GGML_TASK_INIT,
  7558. /*.ith =*/ 0,
  7559. /*.nth =*/ node->n_tasks,
  7560. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7561. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7562. };
  7563. ggml_compute_forward(&params, node);
  7564. // COMPUTE
  7565. if (node->n_tasks > 1) {
  7566. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7567. atomic_store(&state_shared.has_work, false);
  7568. }
  7569. while (atomic_load(&state_shared.has_work)) {
  7570. ggml_lock_lock (&state_shared.spin);
  7571. ggml_lock_unlock(&state_shared.spin);
  7572. }
  7573. // launch thread pool
  7574. for (int j = 0; j < n_threads - 1; j++) {
  7575. workers[j].params = (struct ggml_compute_params) {
  7576. .type = GGML_TASK_COMPUTE,
  7577. .ith = j + 1,
  7578. .nth = node->n_tasks,
  7579. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7580. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7581. };
  7582. workers[j].node = node;
  7583. }
  7584. atomic_fetch_sub(&state_shared.n_ready, 1);
  7585. while (atomic_load(&state_shared.n_ready) > 0) {
  7586. ggml_lock_lock (&state_shared.spin);
  7587. ggml_lock_unlock(&state_shared.spin);
  7588. }
  7589. atomic_store(&state_shared.has_work, true);
  7590. }
  7591. params.type = GGML_TASK_COMPUTE;
  7592. ggml_compute_forward(&params, node);
  7593. // wait for thread pool
  7594. if (node->n_tasks > 1) {
  7595. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7596. atomic_store(&state_shared.has_work, false);
  7597. }
  7598. while (atomic_load(&state_shared.has_work)) {
  7599. ggml_lock_lock (&state_shared.spin);
  7600. ggml_lock_unlock(&state_shared.spin);
  7601. }
  7602. atomic_fetch_sub(&state_shared.n_ready, 1);
  7603. while (atomic_load(&state_shared.n_ready) != 0) {
  7604. ggml_lock_lock (&state_shared.spin);
  7605. ggml_lock_unlock(&state_shared.spin);
  7606. }
  7607. }
  7608. // FINALIZE
  7609. if (node->n_tasks > 1) {
  7610. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7611. atomic_store(&state_shared.has_work, false);
  7612. }
  7613. while (atomic_load(&state_shared.has_work)) {
  7614. ggml_lock_lock (&state_shared.spin);
  7615. ggml_lock_unlock(&state_shared.spin);
  7616. }
  7617. // launch thread pool
  7618. for (int j = 0; j < n_threads - 1; j++) {
  7619. workers[j].params = (struct ggml_compute_params) {
  7620. .type = GGML_TASK_FINALIZE,
  7621. .ith = j + 1,
  7622. .nth = node->n_tasks,
  7623. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7624. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7625. };
  7626. workers[j].node = node;
  7627. }
  7628. atomic_fetch_sub(&state_shared.n_ready, 1);
  7629. while (atomic_load(&state_shared.n_ready) > 0) {
  7630. ggml_lock_lock (&state_shared.spin);
  7631. ggml_lock_unlock(&state_shared.spin);
  7632. }
  7633. atomic_store(&state_shared.has_work, true);
  7634. }
  7635. params.type = GGML_TASK_FINALIZE;
  7636. ggml_compute_forward(&params, node);
  7637. // wait for thread pool
  7638. if (node->n_tasks > 1) {
  7639. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7640. atomic_store(&state_shared.has_work, false);
  7641. }
  7642. while (atomic_load(&state_shared.has_work)) {
  7643. ggml_lock_lock (&state_shared.spin);
  7644. ggml_lock_unlock(&state_shared.spin);
  7645. }
  7646. atomic_fetch_sub(&state_shared.n_ready, 1);
  7647. while (atomic_load(&state_shared.n_ready) != 0) {
  7648. ggml_lock_lock (&state_shared.spin);
  7649. ggml_lock_unlock(&state_shared.spin);
  7650. }
  7651. }
  7652. // performance stats (node)
  7653. {
  7654. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7655. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7656. node->perf_runs++;
  7657. node->perf_cycles += perf_cycles_cur;
  7658. node->perf_time_us += perf_time_us_cur;
  7659. }
  7660. }
  7661. // join thread pool
  7662. if (n_threads > 1) {
  7663. atomic_store(&state_shared.stop, true);
  7664. atomic_store(&state_shared.has_work, true);
  7665. for (int j = 0; j < n_threads - 1; j++) {
  7666. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7667. GGML_ASSERT(rc == 0);
  7668. UNUSED(rc);
  7669. }
  7670. ggml_lock_destroy(&state_shared.spin);
  7671. }
  7672. // performance stats (graph)
  7673. {
  7674. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7675. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7676. cgraph->perf_runs++;
  7677. cgraph->perf_cycles += perf_cycles_cur;
  7678. cgraph->perf_time_us += perf_time_us_cur;
  7679. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7680. __func__, cgraph->perf_runs,
  7681. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7682. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7683. (double) perf_time_us_cur / 1000.0,
  7684. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7685. }
  7686. }
  7687. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7688. for (int i = 0; i < cgraph->n_nodes; i++) {
  7689. struct ggml_tensor * grad = cgraph->grads[i];
  7690. if (grad) {
  7691. ggml_set_zero(grad);
  7692. }
  7693. }
  7694. }
  7695. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7696. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7697. GGML_PRINT("=== GRAPH ===\n");
  7698. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7699. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7700. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7701. for (int i = 0; i < cgraph->n_nodes; i++) {
  7702. struct ggml_tensor * node = cgraph->nodes[i];
  7703. perf_total_per_op_us[node->op] += node->perf_time_us;
  7704. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7705. i,
  7706. node->ne[0], node->ne[1], node->ne[2],
  7707. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7708. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7709. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7710. (double) node->perf_time_us / 1000.0,
  7711. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7712. }
  7713. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7714. for (int i = 0; i < cgraph->n_leafs; i++) {
  7715. struct ggml_tensor * node = cgraph->leafs[i];
  7716. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7717. i,
  7718. node->ne[0], node->ne[1],
  7719. GGML_OP_LABEL[node->op]);
  7720. }
  7721. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7722. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7723. }
  7724. GGML_PRINT("========================================\n");
  7725. }
  7726. // check if node is part of the graph
  7727. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7728. if (cgraph == NULL) {
  7729. return true;
  7730. }
  7731. for (int i = 0; i < cgraph->n_nodes; i++) {
  7732. if (cgraph->nodes[i] == node) {
  7733. return true;
  7734. }
  7735. }
  7736. return false;
  7737. }
  7738. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7739. for (int i = 0; i < cgraph->n_nodes; i++) {
  7740. struct ggml_tensor * parent = cgraph->nodes[i];
  7741. if (parent->grad == node) {
  7742. return parent;
  7743. }
  7744. }
  7745. return NULL;
  7746. }
  7747. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7748. char color[16];
  7749. FILE * fp = fopen(filename, "w");
  7750. GGML_ASSERT(fp);
  7751. fprintf(fp, "digraph G {\n");
  7752. fprintf(fp, " newrank = true;\n");
  7753. fprintf(fp, " rankdir = LR;\n");
  7754. for (int i = 0; i < gb->n_nodes; i++) {
  7755. struct ggml_tensor * node = gb->nodes[i];
  7756. if (ggml_graph_get_parent(gb, node) != NULL) {
  7757. continue;
  7758. }
  7759. if (node->is_param) {
  7760. snprintf(color, sizeof(color), "yellow");
  7761. } else if (node->grad) {
  7762. if (ggml_graph_find(gf, node)) {
  7763. snprintf(color, sizeof(color), "green");
  7764. } else {
  7765. snprintf(color, sizeof(color), "lightblue");
  7766. }
  7767. } else {
  7768. snprintf(color, sizeof(color), "white");
  7769. }
  7770. fprintf(fp, " \"%p\" [ \
  7771. style = filled; fillcolor = %s; shape = record; \
  7772. label=\"%d [%d, %d] | <x>%s",
  7773. (void *) node, color,
  7774. i, node->ne[0], node->ne[1],
  7775. GGML_OP_SYMBOL[node->op]);
  7776. if (node->grad) {
  7777. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7778. } else {
  7779. fprintf(fp, "\"; ]\n");
  7780. }
  7781. }
  7782. for (int i = 0; i < gb->n_leafs; i++) {
  7783. struct ggml_tensor * node = gb->leafs[i];
  7784. snprintf(color, sizeof(color), "pink");
  7785. if (ggml_nelements(node) == 1) {
  7786. fprintf(fp, " \"%p\" [ \
  7787. style = filled; fillcolor = %s; shape = record; \
  7788. label=\"<x>%.1e\"; ]\n",
  7789. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  7790. } else {
  7791. fprintf(fp, " \"%p\" [ \
  7792. style = filled; fillcolor = %s; shape = record; \
  7793. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7794. (void *) node, color,
  7795. i, node->ne[0], node->ne[1]);
  7796. }
  7797. }
  7798. for (int i = 0; i < gb->n_nodes; i++) {
  7799. struct ggml_tensor * node = gb->nodes[i];
  7800. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  7801. if (node->src0) {
  7802. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  7803. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  7804. parent0 ? (void *) parent0 : (void *) node->src0,
  7805. parent0 ? "g" : "x",
  7806. parent ? (void *) parent : (void *) node,
  7807. parent ? "g" : "x",
  7808. parent ? "empty" : "vee",
  7809. parent ? "dashed" : "solid");
  7810. }
  7811. if (node->src1) {
  7812. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  7813. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  7814. parent1 ? (void *) parent1 : (void *) node->src1,
  7815. parent1 ? "g" : "x",
  7816. parent ? (void *) parent : (void *) node,
  7817. parent ? "g" : "x",
  7818. parent ? "empty" : "vee",
  7819. parent ? "dashed" : "solid");
  7820. }
  7821. }
  7822. for (int i = 0; i < gb->n_leafs; i++) {
  7823. struct ggml_tensor * node = gb->leafs[i];
  7824. if (node->src0) {
  7825. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  7826. (void *) node->src0, "x",
  7827. (void *) node, "x");
  7828. }
  7829. if (node->src1) {
  7830. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  7831. (void *) node->src1, "x",
  7832. (void *) node, "x");
  7833. }
  7834. }
  7835. fprintf(fp, "}\n");
  7836. fclose(fp);
  7837. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  7838. }
  7839. ////////////////////////////////////////////////////////////////////////////////
  7840. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  7841. int i = 0;
  7842. for (int p = 0; p < np; ++p) {
  7843. const int ne = ggml_nelements(ps[p]) ;
  7844. // TODO: add function to set tensor from array
  7845. for (int j = 0; j < ne; ++j) {
  7846. ggml_set_f32_1d(ps[p], j, x[i++]);
  7847. }
  7848. }
  7849. }
  7850. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  7851. int i = 0;
  7852. for (int p = 0; p < np; ++p) {
  7853. const int ne = ggml_nelements(ps[p]) ;
  7854. // TODO: add function to get all elements at once
  7855. for (int j = 0; j < ne; ++j) {
  7856. x[i++] = ggml_get_f32_1d(ps[p], j);
  7857. }
  7858. }
  7859. }
  7860. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  7861. int i = 0;
  7862. for (int p = 0; p < np; ++p) {
  7863. const int ne = ggml_nelements(ps[p]) ;
  7864. // TODO: add function to get all elements at once
  7865. for (int j = 0; j < ne; ++j) {
  7866. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  7867. }
  7868. }
  7869. }
  7870. //
  7871. // ADAM
  7872. //
  7873. // ref: https://arxiv.org/pdf/1412.6980.pdf
  7874. //
  7875. static enum ggml_opt_result ggml_opt_adam(
  7876. struct ggml_context * ctx,
  7877. struct ggml_opt_params params,
  7878. struct ggml_tensor * f,
  7879. struct ggml_cgraph * gf,
  7880. struct ggml_cgraph * gb) {
  7881. GGML_ASSERT(ggml_is_scalar(f));
  7882. gf->n_threads = params.n_threads;
  7883. gb->n_threads = params.n_threads;
  7884. // these will store the parameters we want to optimize
  7885. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  7886. int np = 0;
  7887. int nx = 0;
  7888. for (int i = 0; i < gf->n_nodes; ++i) {
  7889. if (gf->nodes[i]->is_param) {
  7890. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  7891. GGML_ASSERT(np < GGML_MAX_PARAMS);
  7892. ps[np++] = gf->nodes[i];
  7893. nx += ggml_nelements(gf->nodes[i]);
  7894. }
  7895. }
  7896. // constants
  7897. const float alpha = params.adam.alpha;
  7898. const float beta1 = params.adam.beta1;
  7899. const float beta2 = params.adam.beta2;
  7900. const float eps = params.adam.eps;
  7901. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  7902. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  7903. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  7904. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  7905. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  7906. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  7907. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  7908. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  7909. // initialize
  7910. ggml_vec_set_f32(nx, m, 0.0f);
  7911. ggml_vec_set_f32(nx, v, 0.0f);
  7912. // update view
  7913. ggml_opt_get_params(np, ps, x);
  7914. // compute the function value
  7915. ggml_graph_reset (gf);
  7916. ggml_set_f32 (f->grad, 1.0f);
  7917. ggml_graph_compute(ctx, gb);
  7918. float fx_prev = ggml_get_f32_1d(f, 0);
  7919. if (pf) {
  7920. pf[0] = fx_prev;
  7921. }
  7922. int n_no_improvement = 0;
  7923. float fx_best = fx_prev;
  7924. // run the optimizer
  7925. for (int t = 0; t < params.adam.n_iter; ++t) {
  7926. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  7927. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  7928. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  7929. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  7930. for (int i = 0; i < np; ++i) {
  7931. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  7932. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  7933. }
  7934. const int64_t t_start_wall = ggml_time_us();
  7935. const int64_t t_start_cpu = ggml_cycles();
  7936. UNUSED(t_start_wall);
  7937. UNUSED(t_start_cpu);
  7938. {
  7939. // update the gradient
  7940. ggml_opt_get_grad(np, ps, g1);
  7941. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  7942. ggml_vec_scale_f32(nx, m, beta1);
  7943. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  7944. // g2 = g1^2
  7945. ggml_vec_sqr_f32 (nx, g2, g1);
  7946. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  7947. ggml_vec_scale_f32(nx, v, beta2);
  7948. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  7949. // m^hat = m_t / (1 - beta1^t)
  7950. // v^hat = v_t / (1 - beta2^t)
  7951. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  7952. ggml_vec_cpy_f32 (nx, mh, m);
  7953. ggml_vec_cpy_f32 (nx, vh, v);
  7954. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  7955. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  7956. ggml_vec_sqrt_f32 (nx, vh, vh);
  7957. ggml_vec_acc1_f32 (nx, vh, eps);
  7958. ggml_vec_div_f32 (nx, mh, mh, vh);
  7959. ggml_vec_sub_f32 (nx, x, x, mh);
  7960. // update the parameters
  7961. ggml_opt_set_params(np, ps, x);
  7962. }
  7963. ggml_graph_reset (gf);
  7964. ggml_set_f32 (f->grad, 1.0f);
  7965. ggml_graph_compute(ctx, gb);
  7966. const float fx = ggml_get_f32_1d(f, 0);
  7967. // check convergence
  7968. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  7969. GGML_PRINT_DEBUG("converged\n");
  7970. return GGML_OPT_OK;
  7971. }
  7972. // delta-based convergence test
  7973. if (pf != NULL) {
  7974. // need at least params.past iterations to start checking for convergence
  7975. if (params.past <= t) {
  7976. const float rate = (pf[t%params.past] - fx)/fx;
  7977. if (fabsf(rate) < params.delta) {
  7978. return GGML_OPT_OK;
  7979. }
  7980. }
  7981. pf[t%params.past] = fx;
  7982. }
  7983. // check for improvement
  7984. if (params.max_no_improvement > 0) {
  7985. if (fx_best > fx) {
  7986. fx_best = fx;
  7987. n_no_improvement = 0;
  7988. } else {
  7989. ++n_no_improvement;
  7990. if (n_no_improvement >= params.max_no_improvement) {
  7991. return GGML_OPT_OK;
  7992. }
  7993. }
  7994. }
  7995. fx_prev = fx;
  7996. {
  7997. const int64_t t_end_cpu = ggml_cycles();
  7998. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  7999. UNUSED(t_end_cpu);
  8000. const int64_t t_end_wall = ggml_time_us();
  8001. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8002. UNUSED(t_end_wall);
  8003. }
  8004. }
  8005. return GGML_OPT_DID_NOT_CONVERGE;
  8006. }
  8007. //
  8008. // L-BFGS
  8009. //
  8010. // the L-BFGS implementation below is based on the following implementation:
  8011. //
  8012. // https://github.com/chokkan/liblbfgs
  8013. //
  8014. struct ggml_lbfgs_iteration_data {
  8015. float alpha;
  8016. float ys;
  8017. float * s;
  8018. float * y;
  8019. };
  8020. static enum ggml_opt_result linesearch_backtracking(
  8021. struct ggml_context * ctx,
  8022. const struct ggml_opt_params * params,
  8023. int nx,
  8024. float * x,
  8025. float * fx,
  8026. float * g,
  8027. float * d,
  8028. float * step,
  8029. const float * xp,
  8030. struct ggml_tensor * f,
  8031. struct ggml_cgraph * gf,
  8032. struct ggml_cgraph * gb,
  8033. const int np,
  8034. struct ggml_tensor * ps[]) {
  8035. int count = 0;
  8036. float width = 0.0f;
  8037. float dg = 0.0f;
  8038. float finit = 0.0f;
  8039. float dginit = 0.0f;
  8040. float dgtest = 0.0f;
  8041. const float dec = 0.5f;
  8042. const float inc = 2.1f;
  8043. if (*step <= 0.f) {
  8044. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8045. }
  8046. // compute the initial gradient in the search direction
  8047. ggml_vec_dot_f32(nx, &dginit, g, d);
  8048. // make sure that d points to a descent direction
  8049. if (0 < dginit) {
  8050. return GGML_LINESEARCH_FAIL;
  8051. }
  8052. // initialize local variables
  8053. finit = *fx;
  8054. dgtest = params->lbfgs.ftol*dginit;
  8055. while (true) {
  8056. ggml_vec_cpy_f32(nx, x, xp);
  8057. ggml_vec_mad_f32(nx, x, d, *step);
  8058. // evaluate the function and gradient values
  8059. {
  8060. ggml_opt_set_params(np, ps, x);
  8061. ggml_graph_reset (gf);
  8062. ggml_set_f32 (f->grad, 1.0f);
  8063. ggml_graph_compute(ctx, gb);
  8064. ggml_opt_get_grad(np, ps, g);
  8065. *fx = ggml_get_f32_1d(f, 0);
  8066. }
  8067. ++count;
  8068. if (*fx > finit + (*step)*dgtest) {
  8069. width = dec;
  8070. } else {
  8071. // Armijo condition is satisfied
  8072. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8073. return count;
  8074. }
  8075. ggml_vec_dot_f32(nx, &dg, g, d);
  8076. // check the Wolfe condition
  8077. if (dg < params->lbfgs.wolfe * dginit) {
  8078. width = inc;
  8079. } else {
  8080. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8081. // regular Wolfe conditions
  8082. return count;
  8083. }
  8084. if(dg > -params->lbfgs.wolfe*dginit) {
  8085. width = dec;
  8086. } else {
  8087. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8088. return count;
  8089. }
  8090. return count;
  8091. }
  8092. }
  8093. if (*step < params->lbfgs.min_step) {
  8094. return GGML_LINESEARCH_MINIMUM_STEP;
  8095. }
  8096. if (*step > params->lbfgs.max_step) {
  8097. return GGML_LINESEARCH_MAXIMUM_STEP;
  8098. }
  8099. if (params->lbfgs.max_linesearch <= count) {
  8100. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8101. }
  8102. (*step) *= width;
  8103. }
  8104. return GGML_LINESEARCH_FAIL;
  8105. }
  8106. static enum ggml_opt_result ggml_opt_lbfgs(
  8107. struct ggml_context * ctx,
  8108. struct ggml_opt_params params,
  8109. struct ggml_tensor * f,
  8110. struct ggml_cgraph * gf,
  8111. struct ggml_cgraph * gb) {
  8112. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8113. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8114. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8115. return GGML_OPT_INVALID_WOLFE;
  8116. }
  8117. }
  8118. gf->n_threads = params.n_threads;
  8119. gb->n_threads = params.n_threads;
  8120. const int m = params.lbfgs.m;
  8121. // these will store the parameters we want to optimize
  8122. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8123. int np = 0;
  8124. int nx = 0;
  8125. for (int i = 0; i < gf->n_nodes; ++i) {
  8126. if (gf->nodes[i]->is_param) {
  8127. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8128. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8129. ps[np++] = gf->nodes[i];
  8130. nx += ggml_nelements(gf->nodes[i]);
  8131. }
  8132. }
  8133. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8134. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8135. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8136. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8137. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8138. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8139. float fx = 0.0f; // cost function value
  8140. float xnorm = 0.0f; // ||x||
  8141. float gnorm = 0.0f; // ||g||
  8142. float step = 0.0f;
  8143. // initialize x from the graph nodes
  8144. ggml_opt_get_params(np, ps, x);
  8145. // the L-BFGS memory
  8146. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8147. for (int i = 0; i < m; ++i) {
  8148. lm[i].alpha = 0.0f;
  8149. lm[i].ys = 0.0f;
  8150. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8151. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8152. }
  8153. // evaluate the function value and its gradient
  8154. {
  8155. ggml_opt_set_params(np, ps, x);
  8156. ggml_graph_reset (gf);
  8157. ggml_set_f32 (f->grad, 1.0f);
  8158. ggml_graph_compute(ctx, gb);
  8159. ggml_opt_get_grad(np, ps, g);
  8160. fx = ggml_get_f32_1d(f, 0);
  8161. }
  8162. if (pf) {
  8163. pf[0] = fx;
  8164. }
  8165. float fx_best = fx;
  8166. // search direction = -gradient
  8167. ggml_vec_neg_f32(nx, d, g);
  8168. // ||x||, ||g||
  8169. ggml_vec_norm_f32(nx, &xnorm, x);
  8170. ggml_vec_norm_f32(nx, &gnorm, g);
  8171. if (xnorm < 1.0f) {
  8172. xnorm = 1.0f;
  8173. }
  8174. // already optimized
  8175. if (gnorm/xnorm <= params.lbfgs.eps) {
  8176. return GGML_OPT_OK;
  8177. }
  8178. // initial step
  8179. ggml_vec_norm_inv_f32(nx, &step, d);
  8180. int j = 0;
  8181. int k = 1;
  8182. int ls = 0;
  8183. int end = 0;
  8184. int bound = 0;
  8185. int n_no_improvement = 0;
  8186. float ys = 0.0f;
  8187. float yy = 0.0f;
  8188. float beta = 0.0f;
  8189. while (true) {
  8190. // store the current position and gradient vectors
  8191. ggml_vec_cpy_f32(nx, xp, x);
  8192. ggml_vec_cpy_f32(nx, gp, g);
  8193. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8194. if (ls < 0) {
  8195. // linesearch failed - go back to the previous point and return
  8196. ggml_vec_cpy_f32(nx, x, xp);
  8197. ggml_vec_cpy_f32(nx, g, gp);
  8198. return ls;
  8199. }
  8200. ggml_vec_norm_f32(nx, &xnorm, x);
  8201. ggml_vec_norm_f32(nx, &gnorm, g);
  8202. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8203. if (xnorm < 1.0f) {
  8204. xnorm = 1.0f;
  8205. }
  8206. if (gnorm/xnorm <= params.lbfgs.eps) {
  8207. // converged
  8208. return GGML_OPT_OK;
  8209. }
  8210. // delta-based convergence test
  8211. if (pf != NULL) {
  8212. // need at least params.past iterations to start checking for convergence
  8213. if (params.past <= k) {
  8214. const float rate = (pf[k%params.past] - fx)/fx;
  8215. if (fabsf(rate) < params.delta) {
  8216. return GGML_OPT_OK;
  8217. }
  8218. }
  8219. pf[k%params.past] = fx;
  8220. }
  8221. // check for improvement
  8222. if (params.max_no_improvement > 0) {
  8223. if (fx < fx_best) {
  8224. fx_best = fx;
  8225. n_no_improvement = 0;
  8226. } else {
  8227. n_no_improvement++;
  8228. if (n_no_improvement >= params.max_no_improvement) {
  8229. return GGML_OPT_OK;
  8230. }
  8231. }
  8232. }
  8233. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8234. // reached the maximum number of iterations
  8235. return GGML_OPT_DID_NOT_CONVERGE;
  8236. }
  8237. // update vectors s and y:
  8238. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8239. // y_{k+1} = g_{k+1} - g_{k}.
  8240. //
  8241. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8242. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8243. // compute scalars ys and yy:
  8244. // ys = y^t \cdot s -> 1 / \rho.
  8245. // yy = y^t \cdot y.
  8246. //
  8247. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8248. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8249. lm[end].ys = ys;
  8250. // find new search direction
  8251. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8252. bound = (m <= k) ? m : k;
  8253. k++;
  8254. end = (end + 1)%m;
  8255. // initialize search direction with -g
  8256. ggml_vec_neg_f32(nx, d, g);
  8257. j = end;
  8258. for (int i = 0; i < bound; ++i) {
  8259. j = (j + m - 1) % m;
  8260. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8261. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8262. lm[j].alpha /= lm[j].ys;
  8263. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8264. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8265. }
  8266. ggml_vec_scale_f32(nx, d, ys/yy);
  8267. for (int i = 0; i < bound; ++i) {
  8268. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8269. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8270. beta /= lm[j].ys;
  8271. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8272. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8273. j = (j + 1)%m;
  8274. }
  8275. step = 1.0;
  8276. }
  8277. return GGML_OPT_DID_NOT_CONVERGE;
  8278. }
  8279. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8280. struct ggml_opt_params result;
  8281. switch (type) {
  8282. case GGML_OPT_ADAM:
  8283. {
  8284. result = (struct ggml_opt_params) {
  8285. .type = GGML_OPT_ADAM,
  8286. .n_threads = 1,
  8287. .past = 0,
  8288. .delta = 1e-5f,
  8289. .max_no_improvement = 100,
  8290. .print_forward_graph = true,
  8291. .print_backward_graph = true,
  8292. .adam = {
  8293. .n_iter = 10000,
  8294. .alpha = 0.001f,
  8295. .beta1 = 0.9f,
  8296. .beta2 = 0.999f,
  8297. .eps = 1e-8f,
  8298. .eps_f = 1e-5f,
  8299. .eps_g = 1e-3f,
  8300. },
  8301. };
  8302. } break;
  8303. case GGML_OPT_LBFGS:
  8304. {
  8305. result = (struct ggml_opt_params) {
  8306. .type = GGML_OPT_LBFGS,
  8307. .n_threads = 1,
  8308. .past = 0,
  8309. .delta = 1e-5f,
  8310. .max_no_improvement = 0,
  8311. .print_forward_graph = true,
  8312. .print_backward_graph = true,
  8313. .lbfgs = {
  8314. .m = 6,
  8315. .n_iter = 100,
  8316. .max_linesearch = 20,
  8317. .eps = 1e-5f,
  8318. .ftol = 1e-4f,
  8319. .wolfe = 0.9f,
  8320. .min_step = 1e-20f,
  8321. .max_step = 1e+20f,
  8322. .linesearch = GGML_LINESEARCH_DEFAULT,
  8323. },
  8324. };
  8325. } break;
  8326. }
  8327. return result;
  8328. }
  8329. enum ggml_opt_result ggml_opt(
  8330. struct ggml_context * ctx,
  8331. struct ggml_opt_params params,
  8332. struct ggml_tensor * f) {
  8333. bool free_ctx = false;
  8334. if (ctx == NULL) {
  8335. struct ggml_init_params params_ctx = {
  8336. .mem_size = 16*1024*1024,
  8337. .mem_buffer = NULL,
  8338. };
  8339. ctx = ggml_init(params_ctx);
  8340. if (ctx == NULL) {
  8341. return GGML_OPT_NO_CONTEXT;
  8342. }
  8343. free_ctx = true;
  8344. }
  8345. enum ggml_opt_result result = GGML_OPT_OK;
  8346. // build forward + backward compute graphs
  8347. struct ggml_cgraph gf = ggml_build_forward (f);
  8348. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8349. switch (params.type) {
  8350. case GGML_OPT_ADAM:
  8351. {
  8352. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8353. } break;
  8354. case GGML_OPT_LBFGS:
  8355. {
  8356. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8357. } break;
  8358. }
  8359. if (params.print_forward_graph) {
  8360. ggml_graph_print (&gf);
  8361. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8362. }
  8363. if (params.print_backward_graph) {
  8364. ggml_graph_print (&gb);
  8365. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8366. }
  8367. if (free_ctx) {
  8368. ggml_free(ctx);
  8369. }
  8370. return result;
  8371. }
  8372. ////////////////////////////////////////////////////////////////////////////////
  8373. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8374. assert(k % QK == 0);
  8375. const int nb = k / QK;
  8376. for (int j = 0; j < n; j += k) {
  8377. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8378. quantize_row_q4_0_reference(src + j, y, k);
  8379. for (int i = 0; i < nb; i++) {
  8380. for (int l = 0; l < QK; l += 2) {
  8381. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8382. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8383. hist[vi0]++;
  8384. hist[vi1]++;
  8385. }
  8386. }
  8387. }
  8388. return (n/QK*sizeof(block_q4_0));
  8389. }
  8390. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8391. assert(k % QK == 0);
  8392. const int nb = k / QK;
  8393. for (int j = 0; j < n; j += k) {
  8394. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8395. quantize_row_q4_1_reference(src + j, y, k);
  8396. for (int i = 0; i < nb; i++) {
  8397. for (int l = 0; l < QK; l += 2) {
  8398. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8399. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8400. hist[vi0]++;
  8401. hist[vi1]++;
  8402. }
  8403. }
  8404. }
  8405. return (n/QK*sizeof(block_q4_1));
  8406. }
  8407. ////////////////////////////////////////////////////////////////////////////////
  8408. int ggml_cpu_has_avx(void) {
  8409. #if defined(__AVX__)
  8410. return 1;
  8411. #else
  8412. return 0;
  8413. #endif
  8414. }
  8415. int ggml_cpu_has_avx2(void) {
  8416. #if defined(__AVX2__)
  8417. return 1;
  8418. #else
  8419. return 0;
  8420. #endif
  8421. }
  8422. int ggml_cpu_has_avx512(void) {
  8423. #if defined(__AVX512F__)
  8424. return 1;
  8425. #else
  8426. return 0;
  8427. #endif
  8428. }
  8429. int ggml_cpu_has_fma(void) {
  8430. #if defined(__FMA__)
  8431. return 1;
  8432. #else
  8433. return 0;
  8434. #endif
  8435. }
  8436. int ggml_cpu_has_neon(void) {
  8437. #if defined(__ARM_NEON)
  8438. return 1;
  8439. #else
  8440. return 0;
  8441. #endif
  8442. }
  8443. int ggml_cpu_has_arm_fma(void) {
  8444. #if defined(__ARM_FEATURE_FMA)
  8445. return 1;
  8446. #else
  8447. return 0;
  8448. #endif
  8449. }
  8450. int ggml_cpu_has_f16c(void) {
  8451. #if defined(__F16C__)
  8452. return 1;
  8453. #else
  8454. return 0;
  8455. #endif
  8456. }
  8457. int ggml_cpu_has_fp16_va(void) {
  8458. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8459. return 1;
  8460. #else
  8461. return 0;
  8462. #endif
  8463. }
  8464. int ggml_cpu_has_wasm_simd(void) {
  8465. #if defined(__wasm_simd128__)
  8466. return 1;
  8467. #else
  8468. return 0;
  8469. #endif
  8470. }
  8471. int ggml_cpu_has_blas(void) {
  8472. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8473. return 1;
  8474. #else
  8475. return 0;
  8476. #endif
  8477. }
  8478. int ggml_cpu_has_sse3(void) {
  8479. #if defined(__SSE3__)
  8480. return 1;
  8481. #else
  8482. return 0;
  8483. #endif
  8484. }
  8485. int ggml_cpu_has_vsx(void) {
  8486. #if defined(__POWER9_VECTOR__)
  8487. return 1;
  8488. #else
  8489. return 0;
  8490. #endif
  8491. }
  8492. ////////////////////////////////////////////////////////////////////////////////