llama-bench.cpp 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include "ggml.h"
  20. #include "llama.h"
  21. #include "common.h"
  22. #include "ggml-cuda.h"
  23. #include "ggml-sycl.h"
  24. #ifdef GGML_USE_CANN
  25. #include "ggml-cann.h"
  26. #endif
  27. #ifdef _WIN32
  28. #define WIN32_LEAN_AND_MEAN
  29. #ifndef NOMINMAX
  30. # define NOMINMAX
  31. #endif
  32. #include <windows.h>
  33. #endif
  34. // utils
  35. static uint64_t get_time_ns() {
  36. using clock = std::chrono::high_resolution_clock;
  37. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  38. }
  39. template<class T>
  40. static std::string join(const std::vector<T> & values, const std::string & delim) {
  41. std::ostringstream str;
  42. for (size_t i = 0; i < values.size(); i++) {
  43. str << values[i];
  44. if (i < values.size() - 1) {
  45. str << delim;
  46. }
  47. }
  48. return str.str();
  49. }
  50. template<typename T, typename F>
  51. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  52. std::vector<std::string> str_values;
  53. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  54. return str_values;
  55. }
  56. template<typename T>
  57. static T avg(const std::vector<T> & v) {
  58. if (v.empty()) {
  59. return 0;
  60. }
  61. T sum = std::accumulate(v.begin(), v.end(), T(0));
  62. return sum / (T)v.size();
  63. }
  64. template<typename T>
  65. static T stdev(const std::vector<T> & v) {
  66. if (v.size() <= 1) {
  67. return 0;
  68. }
  69. T mean = avg(v);
  70. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  71. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  72. return stdev;
  73. }
  74. static std::string get_cpu_info() {
  75. std::string id;
  76. #ifdef __linux__
  77. FILE * f = fopen("/proc/cpuinfo", "r");
  78. if (f) {
  79. char buf[1024];
  80. while (fgets(buf, sizeof(buf), f)) {
  81. if (strncmp(buf, "model name", 10) == 0) {
  82. char * p = strchr(buf, ':');
  83. if (p) {
  84. p++;
  85. while (std::isspace(*p)) {
  86. p++;
  87. }
  88. while (std::isspace(p[strlen(p) - 1])) {
  89. p[strlen(p) - 1] = '\0';
  90. }
  91. id = p;
  92. break;
  93. }
  94. }
  95. }
  96. fclose(f);
  97. }
  98. #elif defined(_WIN32)
  99. HKEY hKey;
  100. if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
  101. TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
  102. 0,
  103. KEY_READ,
  104. &hKey) != ERROR_SUCCESS) {
  105. // fail to open registry key
  106. return "";
  107. }
  108. char cpu_brand[256];
  109. DWORD cpu_brand_size = sizeof(cpu_brand);
  110. if (RegQueryValueExA(hKey,
  111. TEXT("ProcessorNameString"),
  112. NULL,
  113. NULL,
  114. (LPBYTE)cpu_brand,
  115. &cpu_brand_size) == ERROR_SUCCESS) {
  116. id.assign(cpu_brand, cpu_brand_size);
  117. }
  118. RegCloseKey(hKey);
  119. #endif
  120. // TODO: other platforms
  121. return id;
  122. }
  123. static std::string get_gpu_info() {
  124. std::string id;
  125. #ifdef GGML_USE_CUDA
  126. int count = ggml_backend_cuda_get_device_count();
  127. for (int i = 0; i < count; i++) {
  128. char buf[128];
  129. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  130. id += buf;
  131. if (i < count - 1) {
  132. id += "/";
  133. }
  134. }
  135. #endif
  136. #ifdef GGML_USE_SYCL
  137. int count = ggml_backend_sycl_get_device_count();
  138. for (int i = 0; i < count; i++) {
  139. char buf[128];
  140. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  141. id += buf;
  142. if (i < count - 1) {
  143. id += "/";
  144. }
  145. }
  146. #endif
  147. #ifdef GGML_USE_CANN
  148. uint32_t count = ggml_backend_cann_get_device_count();
  149. for (uint32_t i = 0; i < count; i++) {
  150. char buf[128];
  151. ggml_backend_cann_get_device_description(i, buf, sizeof(buf));
  152. id += buf;
  153. if (i < count - 1) {
  154. id += "/";
  155. }
  156. }
  157. #endif
  158. // TODO: other backends
  159. return id;
  160. }
  161. // command line params
  162. enum output_formats {NONE, CSV, JSON, MARKDOWN, SQL};
  163. static const char * output_format_str(output_formats format) {
  164. switch (format) {
  165. case NONE: return "none";
  166. case CSV: return "csv";
  167. case JSON: return "json";
  168. case MARKDOWN: return "md";
  169. case SQL: return "sql";
  170. default: GGML_ABORT("invalid output format");
  171. }
  172. }
  173. static bool output_format_from_str(const std::string & s, output_formats & format) {
  174. if (s == "none") {
  175. format = NONE;
  176. } else if (s == "csv") {
  177. format = CSV;
  178. } else if (s == "json") {
  179. format = JSON;
  180. } else if (s == "md") {
  181. format = MARKDOWN;
  182. } else if (s == "sql") {
  183. format = SQL;
  184. } else {
  185. return false;
  186. }
  187. return true;
  188. }
  189. static const char * split_mode_str(llama_split_mode mode) {
  190. switch (mode) {
  191. case LLAMA_SPLIT_MODE_NONE: return "none";
  192. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  193. case LLAMA_SPLIT_MODE_ROW: return "row";
  194. default: GGML_ABORT("invalid split mode");
  195. }
  196. }
  197. static std::string pair_str(const std::pair<int, int> & p) {
  198. static char buf[32];
  199. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  200. return buf;
  201. }
  202. struct cmd_params {
  203. std::vector<std::string> model;
  204. std::vector<int> n_prompt;
  205. std::vector<int> n_gen;
  206. std::vector<std::pair<int, int>> n_pg;
  207. std::vector<int> n_batch;
  208. std::vector<int> n_ubatch;
  209. std::vector<ggml_type> type_k;
  210. std::vector<ggml_type> type_v;
  211. std::vector<int> n_threads;
  212. std::vector<int> n_gpu_layers;
  213. std::vector<std::string> rpc_servers;
  214. std::vector<llama_split_mode> split_mode;
  215. std::vector<int> main_gpu;
  216. std::vector<bool> no_kv_offload;
  217. std::vector<bool> flash_attn;
  218. std::vector<std::vector<float>> tensor_split;
  219. std::vector<bool> use_mmap;
  220. std::vector<bool> embeddings;
  221. ggml_numa_strategy numa;
  222. int reps;
  223. bool verbose;
  224. output_formats output_format;
  225. output_formats output_format_stderr;
  226. };
  227. static const cmd_params cmd_params_defaults = {
  228. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  229. /* n_prompt */ {512},
  230. /* n_gen */ {128},
  231. /* n_pg */ {},
  232. /* n_batch */ {2048},
  233. /* n_ubatch */ {512},
  234. /* type_k */ {GGML_TYPE_F16},
  235. /* type_v */ {GGML_TYPE_F16},
  236. /* n_threads */ {cpu_get_num_math()},
  237. /* n_gpu_layers */ {99},
  238. /* rpc_servers */ {""},
  239. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  240. /* main_gpu */ {0},
  241. /* no_kv_offload */ {false},
  242. /* flash_attn */ {false},
  243. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  244. /* use_mmap */ {true},
  245. /* embeddings */ {false},
  246. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  247. /* reps */ 5,
  248. /* verbose */ false,
  249. /* output_format */ MARKDOWN,
  250. /* output_format_stderr */ NONE,
  251. };
  252. static void print_usage(int /* argc */, char ** argv) {
  253. printf("usage: %s [options]\n", argv[0]);
  254. printf("\n");
  255. printf("options:\n");
  256. printf(" -h, --help\n");
  257. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  258. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  259. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  260. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  261. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  262. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  263. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  264. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  265. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  266. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  267. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  268. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  269. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  270. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  271. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  272. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  273. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  274. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  275. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  276. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  277. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  278. printf(" -oe, --output-err <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  279. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  280. printf("\n");
  281. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  282. }
  283. static ggml_type ggml_type_from_name(const std::string & s) {
  284. if (s == "f16") {
  285. return GGML_TYPE_F16;
  286. }
  287. if (s == "q8_0") {
  288. return GGML_TYPE_Q8_0;
  289. }
  290. if (s == "q4_0") {
  291. return GGML_TYPE_Q4_0;
  292. }
  293. if (s == "q4_1") {
  294. return GGML_TYPE_Q4_1;
  295. }
  296. if (s == "q5_0") {
  297. return GGML_TYPE_Q5_0;
  298. }
  299. if (s == "q5_1") {
  300. return GGML_TYPE_Q5_1;
  301. }
  302. if (s == "iq4_nl") {
  303. return GGML_TYPE_IQ4_NL;
  304. }
  305. return GGML_TYPE_COUNT;
  306. }
  307. static cmd_params parse_cmd_params(int argc, char ** argv) {
  308. cmd_params params;
  309. std::string arg;
  310. bool invalid_param = false;
  311. const std::string arg_prefix = "--";
  312. const char split_delim = ',';
  313. params.verbose = cmd_params_defaults.verbose;
  314. params.output_format = cmd_params_defaults.output_format;
  315. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  316. params.reps = cmd_params_defaults.reps;
  317. params.numa = cmd_params_defaults.numa;
  318. for (int i = 1; i < argc; i++) {
  319. arg = argv[i];
  320. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  321. std::replace(arg.begin(), arg.end(), '_', '-');
  322. }
  323. if (arg == "-h" || arg == "--help") {
  324. print_usage(argc, argv);
  325. exit(0);
  326. } else if (arg == "-m" || arg == "--model") {
  327. if (++i >= argc) {
  328. invalid_param = true;
  329. break;
  330. }
  331. auto p = string_split<std::string>(argv[i], split_delim);
  332. params.model.insert(params.model.end(), p.begin(), p.end());
  333. } else if (arg == "-p" || arg == "--n-prompt") {
  334. if (++i >= argc) {
  335. invalid_param = true;
  336. break;
  337. }
  338. auto p = string_split<int>(argv[i], split_delim);
  339. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  340. } else if (arg == "-n" || arg == "--n-gen") {
  341. if (++i >= argc) {
  342. invalid_param = true;
  343. break;
  344. }
  345. auto p = string_split<int>(argv[i], split_delim);
  346. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  347. } else if (arg == "-pg") {
  348. if (++i >= argc) {
  349. invalid_param = true;
  350. break;
  351. }
  352. auto p = string_split<std::string>(argv[i], ',');
  353. if (p.size() != 2) {
  354. invalid_param = true;
  355. break;
  356. }
  357. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  358. } else if (arg == "-b" || arg == "--batch-size") {
  359. if (++i >= argc) {
  360. invalid_param = true;
  361. break;
  362. }
  363. auto p = string_split<int>(argv[i], split_delim);
  364. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  365. } else if (arg == "-ub" || arg == "--ubatch-size") {
  366. if (++i >= argc) {
  367. invalid_param = true;
  368. break;
  369. }
  370. auto p = string_split<int>(argv[i], split_delim);
  371. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  372. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  373. if (++i >= argc) {
  374. invalid_param = true;
  375. break;
  376. }
  377. auto p = string_split<std::string>(argv[i], split_delim);
  378. std::vector<ggml_type> types;
  379. for (const auto & t : p) {
  380. ggml_type gt = ggml_type_from_name(t);
  381. if (gt == GGML_TYPE_COUNT) {
  382. invalid_param = true;
  383. break;
  384. }
  385. types.push_back(gt);
  386. }
  387. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  388. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  389. if (++i >= argc) {
  390. invalid_param = true;
  391. break;
  392. }
  393. auto p = string_split<std::string>(argv[i], split_delim);
  394. std::vector<ggml_type> types;
  395. for (const auto & t : p) {
  396. ggml_type gt = ggml_type_from_name(t);
  397. if (gt == GGML_TYPE_COUNT) {
  398. invalid_param = true;
  399. break;
  400. }
  401. types.push_back(gt);
  402. }
  403. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  404. } else if (arg == "-t" || arg == "--threads") {
  405. if (++i >= argc) {
  406. invalid_param = true;
  407. break;
  408. }
  409. auto p = string_split<int>(argv[i], split_delim);
  410. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  411. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  412. if (++i >= argc) {
  413. invalid_param = true;
  414. break;
  415. }
  416. auto p = string_split<int>(argv[i], split_delim);
  417. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  418. } else if (arg == "-rpc" || arg == "--rpc") {
  419. if (++i >= argc) {
  420. invalid_param = true;
  421. break;
  422. }
  423. params.rpc_servers.push_back(argv[i]);
  424. } else if (arg == "-sm" || arg == "--split-mode") {
  425. if (++i >= argc) {
  426. invalid_param = true;
  427. break;
  428. }
  429. auto p = string_split<std::string>(argv[i], split_delim);
  430. std::vector<llama_split_mode> modes;
  431. for (const auto & m : p) {
  432. llama_split_mode mode;
  433. if (m == "none") {
  434. mode = LLAMA_SPLIT_MODE_NONE;
  435. } else if (m == "layer") {
  436. mode = LLAMA_SPLIT_MODE_LAYER;
  437. } else if (m == "row") {
  438. mode = LLAMA_SPLIT_MODE_ROW;
  439. } else {
  440. invalid_param = true;
  441. break;
  442. }
  443. modes.push_back(mode);
  444. }
  445. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  446. } else if (arg == "-mg" || arg == "--main-gpu") {
  447. if (++i >= argc) {
  448. invalid_param = true;
  449. break;
  450. }
  451. params.main_gpu = string_split<int>(argv[i], split_delim);
  452. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  453. if (++i >= argc) {
  454. invalid_param = true;
  455. break;
  456. }
  457. auto p = string_split<bool>(argv[i], split_delim);
  458. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  459. } else if (arg == "--numa") {
  460. if (++i >= argc) {
  461. invalid_param = true;
  462. break;
  463. } else {
  464. std::string value(argv[i]);
  465. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  466. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  467. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  468. else { invalid_param = true; break; }
  469. }
  470. } else if (arg == "-fa" || arg == "--flash-attn") {
  471. if (++i >= argc) {
  472. invalid_param = true;
  473. break;
  474. }
  475. auto p = string_split<bool>(argv[i], split_delim);
  476. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  477. } else if (arg == "-mmp" || arg == "--mmap") {
  478. if (++i >= argc) {
  479. invalid_param = true;
  480. break;
  481. }
  482. auto p = string_split<bool>(argv[i], split_delim);
  483. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  484. } else if (arg == "-embd" || arg == "--embeddings") {
  485. if (++i >= argc) {
  486. invalid_param = true;
  487. break;
  488. }
  489. auto p = string_split<bool>(argv[i], split_delim);
  490. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  491. } else if (arg == "-ts" || arg == "--tensor-split") {
  492. if (++i >= argc) {
  493. invalid_param = true;
  494. break;
  495. }
  496. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  497. // split string by ; and /
  498. const std::regex regex{R"([;/]+)"};
  499. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  500. std::vector<std::string> split_arg{it, {}};
  501. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  502. std::vector<float> tensor_split(llama_max_devices());
  503. for (size_t i = 0; i < llama_max_devices(); ++i) {
  504. if (i < split_arg.size()) {
  505. tensor_split[i] = std::stof(split_arg[i]);
  506. } else {
  507. tensor_split[i] = 0.0f;
  508. }
  509. }
  510. params.tensor_split.push_back(tensor_split);
  511. }
  512. } else if (arg == "-r" || arg == "--repetitions") {
  513. if (++i >= argc) {
  514. invalid_param = true;
  515. break;
  516. }
  517. params.reps = std::stoi(argv[i]);
  518. } else if (arg == "-o" || arg == "--output") {
  519. if (++i >= argc) {
  520. invalid_param = true;
  521. break;
  522. }
  523. invalid_param = !output_format_from_str(argv[i], params.output_format);
  524. } else if (arg == "-oe" || arg == "--output-err") {
  525. if (++i >= argc) {
  526. invalid_param = true;
  527. break;
  528. }
  529. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  530. } else if (arg == "-v" || arg == "--verbose") {
  531. params.verbose = true;
  532. } else {
  533. invalid_param = true;
  534. break;
  535. }
  536. }
  537. if (invalid_param) {
  538. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  539. print_usage(argc, argv);
  540. exit(1);
  541. }
  542. // set defaults
  543. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  544. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  545. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  546. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  547. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  548. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  549. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  550. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  551. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  552. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  553. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  554. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  555. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  556. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  557. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  558. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  559. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  560. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  561. return params;
  562. }
  563. struct cmd_params_instance {
  564. std::string model;
  565. int n_prompt;
  566. int n_gen;
  567. int n_batch;
  568. int n_ubatch;
  569. ggml_type type_k;
  570. ggml_type type_v;
  571. int n_threads;
  572. int n_gpu_layers;
  573. std::string rpc_servers;
  574. llama_split_mode split_mode;
  575. int main_gpu;
  576. bool no_kv_offload;
  577. bool flash_attn;
  578. std::vector<float> tensor_split;
  579. bool use_mmap;
  580. bool embeddings;
  581. llama_model_params to_llama_mparams() const {
  582. llama_model_params mparams = llama_model_default_params();
  583. mparams.n_gpu_layers = n_gpu_layers;
  584. if (!rpc_servers.empty()) {
  585. mparams.rpc_servers = rpc_servers.c_str();
  586. }
  587. mparams.split_mode = split_mode;
  588. mparams.main_gpu = main_gpu;
  589. mparams.tensor_split = tensor_split.data();
  590. mparams.use_mmap = use_mmap;
  591. return mparams;
  592. }
  593. bool equal_mparams(const cmd_params_instance & other) const {
  594. return model == other.model &&
  595. n_gpu_layers == other.n_gpu_layers &&
  596. rpc_servers == other.rpc_servers &&
  597. split_mode == other.split_mode &&
  598. main_gpu == other.main_gpu &&
  599. use_mmap == other.use_mmap &&
  600. tensor_split == other.tensor_split;
  601. }
  602. llama_context_params to_llama_cparams() const {
  603. llama_context_params cparams = llama_context_default_params();
  604. cparams.n_ctx = n_prompt + n_gen;
  605. cparams.n_batch = n_batch;
  606. cparams.n_ubatch = n_ubatch;
  607. cparams.type_k = type_k;
  608. cparams.type_v = type_v;
  609. cparams.offload_kqv = !no_kv_offload;
  610. cparams.flash_attn = flash_attn;
  611. cparams.embeddings = embeddings;
  612. return cparams;
  613. }
  614. };
  615. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  616. std::vector<cmd_params_instance> instances;
  617. // this ordering minimizes the number of times that each model needs to be reloaded
  618. for (const auto & m : params.model)
  619. for (const auto & nl : params.n_gpu_layers)
  620. for (const auto & rpc : params.rpc_servers)
  621. for (const auto & sm : params.split_mode)
  622. for (const auto & mg : params.main_gpu)
  623. for (const auto & ts : params.tensor_split)
  624. for (const auto & mmp : params.use_mmap)
  625. for (const auto & embd : params.embeddings)
  626. for (const auto & nb : params.n_batch)
  627. for (const auto & nub : params.n_ubatch)
  628. for (const auto & tk : params.type_k)
  629. for (const auto & tv : params.type_v)
  630. for (const auto & nkvo : params.no_kv_offload)
  631. for (const auto & fa : params.flash_attn)
  632. for (const auto & nt : params.n_threads) {
  633. for (const auto & n_prompt : params.n_prompt) {
  634. if (n_prompt == 0) {
  635. continue;
  636. }
  637. cmd_params_instance instance = {
  638. /* .model = */ m,
  639. /* .n_prompt = */ n_prompt,
  640. /* .n_gen = */ 0,
  641. /* .n_batch = */ nb,
  642. /* .n_ubatch = */ nub,
  643. /* .type_k = */ tk,
  644. /* .type_v = */ tv,
  645. /* .n_threads = */ nt,
  646. /* .n_gpu_layers = */ nl,
  647. /* .rpc_servers = */ rpc,
  648. /* .split_mode = */ sm,
  649. /* .main_gpu = */ mg,
  650. /* .no_kv_offload= */ nkvo,
  651. /* .flash_attn = */ fa,
  652. /* .tensor_split = */ ts,
  653. /* .use_mmap = */ mmp,
  654. /* .embeddings = */ embd,
  655. };
  656. instances.push_back(instance);
  657. }
  658. for (const auto & n_gen : params.n_gen) {
  659. if (n_gen == 0) {
  660. continue;
  661. }
  662. cmd_params_instance instance = {
  663. /* .model = */ m,
  664. /* .n_prompt = */ 0,
  665. /* .n_gen = */ n_gen,
  666. /* .n_batch = */ nb,
  667. /* .n_ubatch = */ nub,
  668. /* .type_k = */ tk,
  669. /* .type_v = */ tv,
  670. /* .n_threads = */ nt,
  671. /* .n_gpu_layers = */ nl,
  672. /* .rpc_servers = */ rpc,
  673. /* .split_mode = */ sm,
  674. /* .main_gpu = */ mg,
  675. /* .no_kv_offload= */ nkvo,
  676. /* .flash_attn = */ fa,
  677. /* .tensor_split = */ ts,
  678. /* .use_mmap = */ mmp,
  679. /* .embeddings = */ embd,
  680. };
  681. instances.push_back(instance);
  682. }
  683. for (const auto & n_pg : params.n_pg) {
  684. if (n_pg.first == 0 && n_pg.second == 0) {
  685. continue;
  686. }
  687. cmd_params_instance instance = {
  688. /* .model = */ m,
  689. /* .n_prompt = */ n_pg.first,
  690. /* .n_gen = */ n_pg.second,
  691. /* .n_batch = */ nb,
  692. /* .n_ubatch = */ nub,
  693. /* .type_k = */ tk,
  694. /* .type_v = */ tv,
  695. /* .n_threads = */ nt,
  696. /* .n_gpu_layers = */ nl,
  697. /* .rpc_servers = */ rpc,
  698. /* .split_mode = */ sm,
  699. /* .main_gpu = */ mg,
  700. /* .no_kv_offload= */ nkvo,
  701. /* .flash_attn = */ fa,
  702. /* .tensor_split = */ ts,
  703. /* .use_mmap = */ mmp,
  704. /* .embeddings = */ embd,
  705. };
  706. instances.push_back(instance);
  707. }
  708. }
  709. return instances;
  710. }
  711. struct test {
  712. static const std::string build_commit;
  713. static const int build_number;
  714. static const bool cuda;
  715. static const bool vulkan;
  716. static const bool kompute;
  717. static const bool metal;
  718. static const bool sycl;
  719. static const bool gpu_blas;
  720. static const bool blas;
  721. static const std::string cpu_info;
  722. static const std::string gpu_info;
  723. std::string model_filename;
  724. std::string model_type;
  725. uint64_t model_size;
  726. uint64_t model_n_params;
  727. int n_batch;
  728. int n_ubatch;
  729. int n_threads;
  730. bool has_rpc;
  731. ggml_type type_k;
  732. ggml_type type_v;
  733. int n_gpu_layers;
  734. llama_split_mode split_mode;
  735. int main_gpu;
  736. bool no_kv_offload;
  737. bool flash_attn;
  738. std::vector<float> tensor_split;
  739. bool use_mmap;
  740. bool embeddings;
  741. int n_prompt;
  742. int n_gen;
  743. std::string test_time;
  744. std::vector<uint64_t> samples_ns;
  745. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  746. model_filename = inst.model;
  747. char buf[128];
  748. llama_model_desc(lmodel, buf, sizeof(buf));
  749. model_type = buf;
  750. model_size = llama_model_size(lmodel);
  751. model_n_params = llama_model_n_params(lmodel);
  752. n_batch = inst.n_batch;
  753. n_ubatch = inst.n_ubatch;
  754. n_threads = inst.n_threads;
  755. has_rpc = !inst.rpc_servers.empty();
  756. type_k = inst.type_k;
  757. type_v = inst.type_v;
  758. n_gpu_layers = inst.n_gpu_layers;
  759. split_mode = inst.split_mode;
  760. main_gpu = inst.main_gpu;
  761. no_kv_offload = inst.no_kv_offload;
  762. flash_attn = inst.flash_attn;
  763. tensor_split = inst.tensor_split;
  764. use_mmap = inst.use_mmap;
  765. embeddings = inst.embeddings;
  766. n_prompt = inst.n_prompt;
  767. n_gen = inst.n_gen;
  768. // RFC 3339 date-time format
  769. time_t t = time(NULL);
  770. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  771. test_time = buf;
  772. (void) ctx;
  773. }
  774. uint64_t avg_ns() const {
  775. return ::avg(samples_ns);
  776. }
  777. uint64_t stdev_ns() const {
  778. return ::stdev(samples_ns);
  779. }
  780. std::vector<double> get_ts() const {
  781. int n_tokens = n_prompt + n_gen;
  782. std::vector<double> ts;
  783. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  784. return ts;
  785. }
  786. double avg_ts() const {
  787. return ::avg(get_ts());
  788. }
  789. double stdev_ts() const {
  790. return ::stdev(get_ts());
  791. }
  792. static std::string get_backend() {
  793. if (cuda) {
  794. return GGML_CUDA_NAME;
  795. }
  796. if (vulkan) {
  797. return "Vulkan";
  798. }
  799. if (kompute) {
  800. return "Kompute";
  801. }
  802. if (metal) {
  803. return "Metal";
  804. }
  805. if (sycl) {
  806. return GGML_SYCL_NAME;
  807. }
  808. if (gpu_blas) {
  809. return "GPU BLAS";
  810. }
  811. if (blas) {
  812. return "BLAS";
  813. }
  814. return "CPU";
  815. }
  816. static const std::vector<std::string> & get_fields() {
  817. static const std::vector<std::string> fields = {
  818. "build_commit", "build_number",
  819. "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  820. "cpu_info", "gpu_info",
  821. "model_filename", "model_type", "model_size", "model_n_params",
  822. "n_batch", "n_ubatch",
  823. "n_threads", "type_k", "type_v",
  824. "n_gpu_layers", "split_mode",
  825. "main_gpu", "no_kv_offload", "flash_attn",
  826. "tensor_split", "use_mmap", "embeddings",
  827. "n_prompt", "n_gen", "test_time",
  828. "avg_ns", "stddev_ns",
  829. "avg_ts", "stddev_ts"
  830. };
  831. return fields;
  832. }
  833. enum field_type {STRING, BOOL, INT, FLOAT};
  834. static field_type get_field_type(const std::string & field) {
  835. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  836. field == "n_threads" ||
  837. field == "model_size" || field == "model_n_params" ||
  838. field == "n_gpu_layers" || field == "main_gpu" ||
  839. field == "n_prompt" || field == "n_gen" ||
  840. field == "avg_ns" || field == "stddev_ns") {
  841. return INT;
  842. }
  843. if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
  844. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  845. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  846. return BOOL;
  847. }
  848. if (field == "avg_ts" || field == "stddev_ts") {
  849. return FLOAT;
  850. }
  851. return STRING;
  852. }
  853. std::vector<std::string> get_values() const {
  854. std::string tensor_split_str;
  855. int max_nonzero = 0;
  856. for (size_t i = 0; i < llama_max_devices(); i++) {
  857. if (tensor_split[i] > 0) {
  858. max_nonzero = i;
  859. }
  860. }
  861. for (int i = 0; i <= max_nonzero; i++) {
  862. char buf[32];
  863. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  864. tensor_split_str += buf;
  865. if (i < max_nonzero) {
  866. tensor_split_str += "/";
  867. }
  868. }
  869. std::vector<std::string> values = {
  870. build_commit, std::to_string(build_number),
  871. std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
  872. std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas),
  873. cpu_info, gpu_info,
  874. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  875. std::to_string(n_batch), std::to_string(n_ubatch),
  876. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  877. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  878. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  879. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  880. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  881. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  882. std::to_string(avg_ts()), std::to_string(stdev_ts())
  883. };
  884. return values;
  885. }
  886. std::map<std::string, std::string> get_map() const {
  887. std::map<std::string, std::string> map;
  888. auto fields = get_fields();
  889. auto values = get_values();
  890. std::transform(fields.begin(), fields.end(), values.begin(),
  891. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  892. return map;
  893. }
  894. };
  895. const std::string test::build_commit = LLAMA_COMMIT;
  896. const int test::build_number = LLAMA_BUILD_NUMBER;
  897. const bool test::cuda = !!ggml_cpu_has_cuda();
  898. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  899. const bool test::kompute = !!ggml_cpu_has_kompute();
  900. const bool test::metal = !!ggml_cpu_has_metal();
  901. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  902. const bool test::blas = !!ggml_cpu_has_blas();
  903. const bool test::sycl = !!ggml_cpu_has_sycl();
  904. const std::string test::cpu_info = get_cpu_info();
  905. const std::string test::gpu_info = get_gpu_info();
  906. struct printer {
  907. virtual ~printer() {}
  908. FILE * fout;
  909. virtual void print_header(const cmd_params & params) { (void) params; }
  910. virtual void print_test(const test & t) = 0;
  911. virtual void print_footer() { }
  912. };
  913. struct csv_printer : public printer {
  914. static std::string escape_csv(const std::string & field) {
  915. std::string escaped = "\"";
  916. for (auto c : field) {
  917. if (c == '"') {
  918. escaped += "\"";
  919. }
  920. escaped += c;
  921. }
  922. escaped += "\"";
  923. return escaped;
  924. }
  925. void print_header(const cmd_params & params) override {
  926. std::vector<std::string> fields = test::get_fields();
  927. fprintf(fout, "%s\n", join(fields, ",").c_str());
  928. (void) params;
  929. }
  930. void print_test(const test & t) override {
  931. std::vector<std::string> values = t.get_values();
  932. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  933. fprintf(fout, "%s\n", join(values, ",").c_str());
  934. }
  935. };
  936. struct json_printer : public printer {
  937. bool first = true;
  938. static std::string escape_json(const std::string & value) {
  939. std::string escaped;
  940. for (auto c : value) {
  941. if (c == '"') {
  942. escaped += "\\\"";
  943. } else if (c == '\\') {
  944. escaped += "\\\\";
  945. } else if (c <= 0x1f) {
  946. char buf[8];
  947. snprintf(buf, sizeof(buf), "\\u%04x", c);
  948. escaped += buf;
  949. } else {
  950. escaped += c;
  951. }
  952. }
  953. return escaped;
  954. }
  955. static std::string format_value(const std::string & field, const std::string & value) {
  956. switch (test::get_field_type(field)) {
  957. case test::STRING:
  958. return "\"" + escape_json(value) + "\"";
  959. case test::BOOL:
  960. return value == "0" ? "false" : "true";
  961. default:
  962. return value;
  963. }
  964. }
  965. void print_header(const cmd_params & params) override {
  966. fprintf(fout, "[\n");
  967. (void) params;
  968. }
  969. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  970. assert(fields.size() == values.size());
  971. for (size_t i = 0; i < fields.size(); i++) {
  972. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  973. }
  974. }
  975. void print_test(const test & t) override {
  976. if (first) {
  977. first = false;
  978. } else {
  979. fprintf(fout, ",\n");
  980. }
  981. fprintf(fout, " {\n");
  982. print_fields(test::get_fields(), t.get_values());
  983. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  984. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  985. fprintf(fout, " }");
  986. fflush(fout);
  987. }
  988. void print_footer() override {
  989. fprintf(fout, "\n]\n");
  990. }
  991. };
  992. struct markdown_printer : public printer {
  993. std::vector<std::string> fields;
  994. static int get_field_width(const std::string & field) {
  995. if (field == "model") {
  996. return -30;
  997. }
  998. if (field == "t/s") {
  999. return 16;
  1000. }
  1001. if (field == "size" || field == "params") {
  1002. return 10;
  1003. }
  1004. if (field == "n_gpu_layers") {
  1005. return 3;
  1006. }
  1007. if (field == "n_threads") {
  1008. return 7;
  1009. }
  1010. if (field == "n_batch") {
  1011. return 7;
  1012. }
  1013. if (field == "n_ubatch") {
  1014. return 8;
  1015. }
  1016. if (field == "type_k" || field == "type_v") {
  1017. return 6;
  1018. }
  1019. if (field == "split_mode") {
  1020. return 5;
  1021. }
  1022. if (field == "flash_attn") {
  1023. return 2;
  1024. }
  1025. if (field == "use_mmap") {
  1026. return 4;
  1027. }
  1028. if (field == "test") {
  1029. return 13;
  1030. }
  1031. int width = std::max((int)field.length(), 10);
  1032. if (test::get_field_type(field) == test::STRING) {
  1033. return -width;
  1034. }
  1035. return width;
  1036. }
  1037. static std::string get_field_display_name(const std::string & field) {
  1038. if (field == "n_gpu_layers") {
  1039. return "ngl";
  1040. }
  1041. if (field == "split_mode") {
  1042. return "sm";
  1043. }
  1044. if (field == "n_threads") {
  1045. return "threads";
  1046. }
  1047. if (field == "no_kv_offload") {
  1048. return "nkvo";
  1049. }
  1050. if (field == "flash_attn") {
  1051. return "fa";
  1052. }
  1053. if (field == "use_mmap") {
  1054. return "mmap";
  1055. }
  1056. if (field == "embeddings") {
  1057. return "embd";
  1058. }
  1059. if (field == "tensor_split") {
  1060. return "ts";
  1061. }
  1062. return field;
  1063. }
  1064. void print_header(const cmd_params & params) override {
  1065. // select fields to print
  1066. fields.emplace_back("model");
  1067. fields.emplace_back("size");
  1068. fields.emplace_back("params");
  1069. fields.emplace_back("backend");
  1070. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1071. if (!is_cpu_backend) {
  1072. fields.emplace_back("n_gpu_layers");
  1073. }
  1074. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1075. fields.emplace_back("n_threads");
  1076. }
  1077. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1078. fields.emplace_back("n_batch");
  1079. }
  1080. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1081. fields.emplace_back("n_ubatch");
  1082. }
  1083. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1084. fields.emplace_back("type_k");
  1085. }
  1086. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1087. fields.emplace_back("type_v");
  1088. }
  1089. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1090. fields.emplace_back("main_gpu");
  1091. }
  1092. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1093. fields.emplace_back("split_mode");
  1094. }
  1095. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1096. fields.emplace_back("no_kv_offload");
  1097. }
  1098. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1099. fields.emplace_back("flash_attn");
  1100. }
  1101. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1102. fields.emplace_back("tensor_split");
  1103. }
  1104. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1105. fields.emplace_back("use_mmap");
  1106. }
  1107. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1108. fields.emplace_back("embeddings");
  1109. }
  1110. fields.emplace_back("test");
  1111. fields.emplace_back("t/s");
  1112. fprintf(fout, "|");
  1113. for (const auto & field : fields) {
  1114. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1115. }
  1116. fprintf(fout, "\n");
  1117. fprintf(fout, "|");
  1118. for (const auto & field : fields) {
  1119. int width = get_field_width(field);
  1120. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1121. }
  1122. fprintf(fout, "\n");
  1123. }
  1124. void print_test(const test & t) override {
  1125. std::map<std::string, std::string> vmap = t.get_map();
  1126. fprintf(fout, "|");
  1127. for (const auto & field : fields) {
  1128. std::string value;
  1129. char buf[128];
  1130. if (field == "model") {
  1131. value = t.model_type;
  1132. } else if (field == "size") {
  1133. if (t.model_size < 1024*1024*1024) {
  1134. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1135. } else {
  1136. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1137. }
  1138. value = buf;
  1139. } else if (field == "params") {
  1140. if (t.model_n_params < 1000*1000*1000) {
  1141. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1142. } else {
  1143. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1144. }
  1145. value = buf;
  1146. } else if (field == "backend") {
  1147. value = test::get_backend();
  1148. if (t.has_rpc) {
  1149. value += "+RPC";
  1150. }
  1151. } else if (field == "test") {
  1152. if (t.n_prompt > 0 && t.n_gen == 0) {
  1153. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1154. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1155. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1156. } else {
  1157. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1158. }
  1159. value = buf;
  1160. } else if (field == "t/s") {
  1161. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1162. value = buf;
  1163. } else if (vmap.find(field) != vmap.end()) {
  1164. value = vmap.at(field);
  1165. } else {
  1166. assert(false);
  1167. exit(1);
  1168. }
  1169. int width = get_field_width(field);
  1170. if (field == "t/s") {
  1171. // HACK: the utf-8 character is 2 bytes
  1172. width += 1;
  1173. }
  1174. fprintf(fout, " %*s |", width, value.c_str());
  1175. }
  1176. fprintf(fout, "\n");
  1177. }
  1178. void print_footer() override {
  1179. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1180. }
  1181. };
  1182. struct sql_printer : public printer {
  1183. static std::string get_sql_field_type(const std::string & field) {
  1184. switch (test::get_field_type(field)) {
  1185. case test::STRING:
  1186. return "TEXT";
  1187. case test::BOOL:
  1188. case test::INT:
  1189. return "INTEGER";
  1190. case test::FLOAT:
  1191. return "REAL";
  1192. default:
  1193. assert(false);
  1194. exit(1);
  1195. }
  1196. }
  1197. void print_header(const cmd_params & params) override {
  1198. std::vector<std::string> fields = test::get_fields();
  1199. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1200. for (size_t i = 0; i < fields.size(); i++) {
  1201. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1202. }
  1203. fprintf(fout, ");\n");
  1204. fprintf(fout, "\n");
  1205. (void) params;
  1206. }
  1207. void print_test(const test & t) override {
  1208. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1209. fprintf(fout, "VALUES (");
  1210. std::vector<std::string> values = t.get_values();
  1211. for (size_t i = 0; i < values.size(); i++) {
  1212. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1213. }
  1214. fprintf(fout, ");\n");
  1215. }
  1216. };
  1217. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1218. llama_set_n_threads(ctx, n_threads, n_threads);
  1219. const llama_model * model = llama_get_model(ctx);
  1220. const int32_t n_vocab = llama_n_vocab(model);
  1221. std::vector<llama_token> tokens(n_batch);
  1222. int n_processed = 0;
  1223. while (n_processed < n_prompt) {
  1224. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1225. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1226. for (int i = 1; i < n_tokens; i++) {
  1227. tokens[i] = std::rand() % n_vocab;
  1228. }
  1229. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1230. n_processed += n_tokens;
  1231. }
  1232. llama_synchronize(ctx);
  1233. }
  1234. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1235. llama_set_n_threads(ctx, n_threads, n_threads);
  1236. const llama_model * model = llama_get_model(ctx);
  1237. const int32_t n_vocab = llama_n_vocab(model);
  1238. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1239. for (int i = 0; i < n_gen; i++) {
  1240. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1241. llama_synchronize(ctx);
  1242. token = std::rand() % n_vocab;
  1243. }
  1244. }
  1245. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1246. (void) level;
  1247. (void) text;
  1248. (void) user_data;
  1249. }
  1250. static std::unique_ptr<printer> create_printer(output_formats format) {
  1251. switch (format) {
  1252. case NONE:
  1253. return nullptr;
  1254. case CSV:
  1255. return std::unique_ptr<printer>(new csv_printer());
  1256. case JSON:
  1257. return std::unique_ptr<printer>(new json_printer());
  1258. case MARKDOWN:
  1259. return std::unique_ptr<printer>(new markdown_printer());
  1260. case SQL:
  1261. return std::unique_ptr<printer>(new sql_printer());
  1262. }
  1263. GGML_ABORT("fatal error");
  1264. }
  1265. int main(int argc, char ** argv) {
  1266. // try to set locale for unicode characters in markdown
  1267. setlocale(LC_CTYPE, ".UTF-8");
  1268. #if !defined(NDEBUG)
  1269. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1270. #endif
  1271. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1272. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1273. #endif
  1274. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1275. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1276. #endif
  1277. cmd_params params = parse_cmd_params(argc, argv);
  1278. // initialize llama.cpp
  1279. if (!params.verbose) {
  1280. llama_log_set(llama_null_log_callback, NULL);
  1281. }
  1282. llama_backend_init();
  1283. llama_numa_init(params.numa);
  1284. // initialize printer
  1285. std::unique_ptr<printer> p = create_printer(params.output_format);
  1286. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1287. if (p) {
  1288. p->fout = stdout;
  1289. p->print_header(params);
  1290. }
  1291. if (p_err) {
  1292. p_err->fout = stderr;
  1293. p_err->print_header(params);
  1294. }
  1295. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1296. llama_model * lmodel = nullptr;
  1297. const cmd_params_instance * prev_inst = nullptr;
  1298. for (const auto & inst : params_instances) {
  1299. // keep the same model between tests when possible
  1300. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1301. if (lmodel) {
  1302. llama_free_model(lmodel);
  1303. }
  1304. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1305. if (lmodel == NULL) {
  1306. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1307. return 1;
  1308. }
  1309. prev_inst = &inst;
  1310. }
  1311. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1312. if (ctx == NULL) {
  1313. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1314. llama_free_model(lmodel);
  1315. return 1;
  1316. }
  1317. test t(inst, lmodel, ctx);
  1318. llama_kv_cache_clear(ctx);
  1319. // warmup run
  1320. if (t.n_prompt > 0) {
  1321. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1322. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1323. }
  1324. if (t.n_gen > 0) {
  1325. test_gen(ctx, 1, 0, t.n_threads);
  1326. }
  1327. for (int i = 0; i < params.reps; i++) {
  1328. llama_kv_cache_clear(ctx);
  1329. uint64_t t_start = get_time_ns();
  1330. if (t.n_prompt > 0) {
  1331. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1332. }
  1333. if (t.n_gen > 0) {
  1334. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1335. }
  1336. uint64_t t_ns = get_time_ns() - t_start;
  1337. t.samples_ns.push_back(t_ns);
  1338. }
  1339. if (p) {
  1340. p->print_test(t);
  1341. fflush(p->fout);
  1342. }
  1343. if (p_err) {
  1344. p_err->print_test(t);
  1345. fflush(p_err->fout);
  1346. }
  1347. llama_print_timings(ctx);
  1348. llama_free(ctx);
  1349. }
  1350. llama_free_model(lmodel);
  1351. if (p) {
  1352. p->print_footer();
  1353. }
  1354. if (p_err) {
  1355. p_err->print_footer();
  1356. }
  1357. llama_backend_free();
  1358. return 0;
  1359. }