tensor_mapping.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. ),
  19. # Token type embeddings
  20. MODEL_TENSOR.TOKEN_TYPES: (
  21. "embeddings.token_type_embeddings", # bert
  22. ),
  23. # Normalization of token embeddings
  24. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  25. "word_embeddings_layernorm", # bloom
  26. ),
  27. # Position embeddings
  28. MODEL_TENSOR.POS_EMBD: (
  29. "transformer.wpe", # gpt2
  30. "embeddings.position_embeddings", # bert
  31. "wpe", # gpt2
  32. ),
  33. # Output
  34. MODEL_TENSOR.OUTPUT: (
  35. "embed_out", # gptneox
  36. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
  37. "output", # llama-pth bloom
  38. "word_embeddings_for_head", # persimmon
  39. "lm_head.linear", # phi2
  40. ),
  41. # Output norm
  42. MODEL_TENSOR.OUTPUT_NORM: (
  43. "gpt_neox.final_layer_norm", # gptneox
  44. "transformer.ln_f", # gpt2 gpt-j falcon
  45. "model.norm", # llama-hf baichuan
  46. "norm", # llama-pth
  47. "embeddings.LayerNorm", # bert
  48. "transformer.norm_f", # mpt
  49. "ln_f", # refact bloom qwen gpt2
  50. "language_model.encoder.final_layernorm", # persimmon
  51. "lm_head.ln", # phi2
  52. ),
  53. # Rope frequencies
  54. MODEL_TENSOR.ROPE_FREQS: (
  55. "rope.freqs", # llama-pth
  56. ),
  57. }
  58. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  59. # Attention norm
  60. MODEL_TENSOR.ATTN_NORM: (
  61. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  62. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  63. "transformer.blocks.{bid}.norm_1", # mpt
  64. "transformer.h.{bid}.input_layernorm", # falcon7b
  65. "h.{bid}.input_layernorm", # bloom
  66. "transformer.h.{bid}.ln_mlp", # falcon40b
  67. "model.layers.{bid}.input_layernorm", # llama-hf
  68. "layers.{bid}.attention_norm", # llama-pth
  69. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  70. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  71. "model.layers.{bid}.ln1", # yi
  72. "h.{bid}.ln_1", # gpt2
  73. "transformer.h.{bid}.ln", # phi2
  74. "model.layers.layers.{bid}.norm", # plamo
  75. ),
  76. # Attention norm 2
  77. MODEL_TENSOR.ATTN_NORM_2: (
  78. "transformer.h.{bid}.ln_attn", # falcon40b
  79. ),
  80. # Attention query-key-value
  81. MODEL_TENSOR.ATTN_QKV: (
  82. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  83. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  84. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  85. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  86. "h.{bid}.self_attention.query_key_value", # bloom
  87. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  88. "h.{bid}.attn.c_attn", # gpt2
  89. "transformer.h.{bid}.mixer.Wqkv", # phi2
  90. ),
  91. # Attention query
  92. MODEL_TENSOR.ATTN_Q: (
  93. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  94. "layers.{bid}.attention.wq", # llama-pth
  95. "encoder.layer.{bid}.attention.self.query", # bert
  96. "transformer.h.{bid}.attn.q_proj", # gpt-j
  97. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  98. ),
  99. # Attention key
  100. MODEL_TENSOR.ATTN_K: (
  101. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  102. "layers.{bid}.attention.wk", # llama-pth
  103. "encoder.layer.{bid}.attention.self.key", # bert
  104. "transformer.h.{bid}.attn.k_proj", # gpt-j
  105. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  106. ),
  107. # Attention value
  108. MODEL_TENSOR.ATTN_V: (
  109. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  110. "layers.{bid}.attention.wv", # llama-pth
  111. "encoder.layer.{bid}.attention.self.value", # bert
  112. "transformer.h.{bid}.attn.v_proj", # gpt-j
  113. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  114. ),
  115. # Attention output
  116. MODEL_TENSOR.ATTN_OUT: (
  117. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  118. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  119. "transformer.blocks.{bid}.attn.out_proj", # mpt
  120. "transformer.h.{bid}.self_attention.dense", # falcon
  121. "h.{bid}.self_attention.dense", # bloom
  122. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  123. "layers.{bid}.attention.wo", # llama-pth
  124. "encoder.layer.{bid}.attention.output.dense", # bert
  125. "transformer.h.{bid}.attn.out_proj", # gpt-j
  126. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  127. "h.{bid}.attn.c_proj", # gpt2
  128. "transformer.h.{bid}.mixer.out_proj", # phi2
  129. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  130. ),
  131. # Rotary embeddings
  132. MODEL_TENSOR.ATTN_ROT_EMBD: (
  133. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  134. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  135. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  136. ),
  137. # Feed-forward norm
  138. MODEL_TENSOR.FFN_NORM: (
  139. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  140. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  141. "h.{bid}.post_attention_layernorm", # bloom
  142. "transformer.blocks.{bid}.norm_2", # mpt
  143. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  144. "layers.{bid}.ffn_norm", # llama-pth
  145. "encoder.layer.{bid}.output.LayerNorm", # bert
  146. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  147. "model.layers.{bid}.ln2", # yi
  148. "h.{bid}.ln_2", # gpt2
  149. ),
  150. MODEL_TENSOR.FFN_GATE_INP: (
  151. "layers.{bid}.feed_forward.gate", # mixtral
  152. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  153. ),
  154. # Feed-forward up
  155. MODEL_TENSOR.FFN_UP: (
  156. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  157. "transformer.h.{bid}.mlp.c_fc", # gpt2
  158. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  159. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  160. "h.{bid}.mlp.dense_h_to_4h", # bloom
  161. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  162. "layers.{bid}.feed_forward.w3", # llama-pth
  163. "encoder.layer.{bid}.intermediate.dense", # bert
  164. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  165. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  166. "transformer.h.{bid}.mlp.w1", # qwen
  167. "h.{bid}.mlp.c_fc", # gpt2
  168. "transformer.h.{bid}.mlp.fc1", # phi2
  169. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  170. ),
  171. MODEL_TENSOR.FFN_UP_EXP: (
  172. "layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
  173. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
  174. ),
  175. # AWQ-activation gate
  176. MODEL_TENSOR.FFN_ACT: (
  177. "transformer.blocks.{bid}.ffn.act", # mpt
  178. ),
  179. # Feed-forward gate
  180. MODEL_TENSOR.FFN_GATE: (
  181. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  182. "layers.{bid}.feed_forward.w1", # llama-pth
  183. "transformer.h.{bid}.mlp.w2", # qwen
  184. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  185. ),
  186. MODEL_TENSOR.FFN_GATE_EXP: (
  187. "layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
  188. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
  189. ),
  190. # Feed-forward down
  191. MODEL_TENSOR.FFN_DOWN: (
  192. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  193. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  194. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  195. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  196. "h.{bid}.mlp.dense_4h_to_h", # bloom
  197. "model.layers.{bid}.mlp.down_proj", # llama-hf
  198. "layers.{bid}.feed_forward.w2", # llama-pth
  199. "encoder.layer.{bid}.output.dense", # bert
  200. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  201. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  202. "h.{bid}.mlp.c_proj", # gpt2
  203. "transformer.h.{bid}.mlp.fc2", # phi2
  204. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  205. ),
  206. MODEL_TENSOR.FFN_DOWN_EXP: (
  207. "layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
  208. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
  209. ),
  210. MODEL_TENSOR.ATTN_Q_NORM: (
  211. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  212. ),
  213. MODEL_TENSOR.ATTN_K_NORM: (
  214. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  215. ),
  216. MODEL_TENSOR.ROPE_FREQS: (
  217. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  218. ),
  219. }
  220. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  221. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  222. self.mapping = {}
  223. for tensor, keys in self.mappings_cfg.items():
  224. if tensor not in MODEL_TENSORS[arch]:
  225. continue
  226. tensor_name = TENSOR_NAMES[tensor]
  227. self.mapping[tensor_name] = (tensor, tensor_name)
  228. for key in keys:
  229. self.mapping[key] = (tensor, tensor_name)
  230. for bid in range(n_blocks):
  231. for tensor, keys in self.block_mappings_cfg.items():
  232. if tensor not in MODEL_TENSORS[arch]:
  233. continue
  234. # TODO: make this configurable
  235. n_experts = 8
  236. for xid in range(n_experts):
  237. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  238. self.mapping[tensor_name] = (tensor, tensor_name)
  239. for key in keys:
  240. key = key.format(bid = bid, xid = xid)
  241. self.mapping[key] = (tensor, tensor_name)
  242. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  243. result = self.mapping.get(key)
  244. if result is not None:
  245. return result
  246. for suffix in try_suffixes:
  247. if key.endswith(suffix):
  248. result = self.mapping.get(key[:-len(suffix)])
  249. if result is not None:
  250. return result[0], result[1] + suffix
  251. return None
  252. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  253. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  254. if result is None:
  255. return None
  256. return result[1]
  257. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  258. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  259. if result is None:
  260. return None
  261. return result[0]
  262. def __getitem__(self, key: str) -> str:
  263. try:
  264. return self.mapping[key][1]
  265. except KeyError:
  266. raise KeyError(key)
  267. def __contains__(self, key: str) -> bool:
  268. return key in self.mapping
  269. def __repr__(self) -> str:
  270. return repr(self.mapping)
  271. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  272. return TensorNameMap(arch, n_blocks)