convert_hf_to_gguf.py 501 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first tensor's dtype
  118. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  119. if self.ftype == gguf.LlamaFileType.GUESSED:
  120. for _, tensor in self.get_tensors():
  121. if tensor.dim() < 2:
  122. continue
  123. if tensor.dtype == torch.bfloat16:
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. logger.info("heuristics detected bfloat16 tensor dtype, setting --outtype bf16")
  126. break
  127. elif tensor.dtype == torch.float16:
  128. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  129. logger.info("heuristics detected float16 tensor dtype, setting --outtype f16")
  130. break
  131. else:
  132. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  133. logger.info("heuristics unable to detect tensor dtype, defaulting to --outtype f16")
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  180. part_names = sorted(part_dict.keys())
  181. else:
  182. weight_map = {}
  183. else:
  184. weight_map = {}
  185. for part_name in part_names:
  186. logger.info(f"gguf: indexing model part '{part_name}'")
  187. ctx: ContextManager[Any]
  188. if is_safetensors:
  189. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  190. else:
  191. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  192. with ctx as model_part:
  193. assert model_part is not None
  194. for name in model_part.keys():
  195. if is_safetensors:
  196. data: gguf.utility.LocalTensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  199. else:
  200. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  201. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  202. else:
  203. data_torch: Tensor = model_part[name]
  204. if self.lazy:
  205. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  206. else:
  207. data_gen = lambda data=data_torch: data # noqa: E731
  208. tensors[name] = data_gen
  209. # verify tensor name presence and identify potentially missing files
  210. if len(tensor_names_from_index) > 0:
  211. tensor_names_from_parts = set(tensors.keys())
  212. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  213. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  214. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  215. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  216. if len(extra) == 0 and len(missing_files) > 0:
  217. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  218. f"Missing tensors: {missing}")
  219. else:
  220. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  221. f"Missing tensors: {missing}\n"
  222. f"Extra tensors: {extra}")
  223. return tensors
  224. def dequant_model(self):
  225. tensors_to_remove: list[str] = []
  226. new_tensors: dict[str, Callable[[], Tensor]] = {}
  227. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  228. quant_method = quant_config.get("quant_method")
  229. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  230. weight = weight.view(torch.uint8)
  231. orig_shape = weight.shape
  232. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  233. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  234. data = data & 3
  235. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  236. # The scale is inverted
  237. return data / scale.float()
  238. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  239. scale = scale.float()
  240. if block_size is not None:
  241. for i, size in enumerate(block_size):
  242. scale = scale.repeat_interleave(size, i)
  243. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  244. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  245. return weight.float() * scale
  246. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  247. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  248. bits = quant_config["bits"]
  249. assert bits in (2, 3, 4, 8)
  250. assert qweight.dtype == qzeros.dtype
  251. maxq = (2 ** bits) - 1
  252. weight = None
  253. zeros = None
  254. pack_dtype_bits = qweight.dtype.itemsize * 8
  255. if bits in [2, 4, 8]:
  256. pack_factor = pack_dtype_bits // bits
  257. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  258. if self.lazy:
  259. wf = LazyTorchTensor.from_eager(wf)
  260. zeros = torch.bitwise_right_shift(
  261. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  262. wf.unsqueeze(0)
  263. ).to(torch.int16 if bits == 8 else torch.int8)
  264. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  265. weight = torch.bitwise_and(
  266. torch.bitwise_right_shift(
  267. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  268. wf.unsqueeze(-1)
  269. ).to(torch.int16 if bits == 8 else torch.int8),
  270. maxq
  271. )
  272. elif bits == 3:
  273. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  274. assert weight is not None
  275. assert zeros is not None
  276. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  277. # gptq_v2 doesn't need to offset zeros
  278. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  279. zeros += 1
  280. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  281. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  282. assert w.dtype == torch.int32
  283. shape = tuple(shape_tensor.tolist())
  284. assert len(shape) == 2
  285. mask = (1 << num_bits) - 1
  286. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  287. if self.lazy:
  288. shifts = LazyTorchTensor.from_eager(shifts)
  289. if zero_point is None:
  290. offset = 1 << (num_bits - 1)
  291. else:
  292. assert len(zero_point.shape) == 2
  293. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  294. offset = offset.reshape(-1, zero_point.shape[1])
  295. # trim padding, and prepare for broadcast
  296. # NOTE: the zero-point is packed along dim 0
  297. offset = offset[:shape[0], :].unsqueeze(-1)
  298. # extract values
  299. # NOTE: the weights are packed along dim 1
  300. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  301. unpacked = unpacked.reshape(shape[0], -1)
  302. # trim padding
  303. unpacked = unpacked[:, :shape[1]]
  304. # prepare for broadcast of the scale
  305. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  306. unpacked = unpacked - offset
  307. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  308. if quant_method == "bitnet":
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale"):
  311. weight_name = name.removesuffix("_scale")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  315. tensors_to_remove.append(name)
  316. elif quant_method == "fp8":
  317. block_size = quant_config.get("weight_block_size")
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".weight_scale_inv"):
  320. weight_name = name.removesuffix("_scale_inv")
  321. w = self.model_tensors[weight_name]
  322. s = self.model_tensors[name]
  323. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  324. tensors_to_remove.append(name)
  325. if name.endswith(".activation_scale"): # unused
  326. tensors_to_remove.append(name)
  327. # mistral format
  328. if name.endswith(".qscale_weight"):
  329. weight_name = name.removesuffix("qscale_weight") + "weight"
  330. w = self.model_tensors[weight_name]
  331. s = self.model_tensors[name]
  332. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  333. tensors_to_remove.append(name)
  334. if name.endswith(".qscale_act"):
  335. tensors_to_remove.append(name)
  336. elif quant_method == "gptq":
  337. for name in self.model_tensors.keys():
  338. if name.endswith(".qweight"):
  339. base_name = name.removesuffix(".qweight")
  340. g_idx = self.model_tensors[base_name + ".g_idx"]
  341. qweight = self.model_tensors[base_name + ".qweight"]
  342. qzeros = self.model_tensors[base_name + ".qzeros"]
  343. scales = self.model_tensors[base_name + ".scales"]
  344. new_tensors[base_name + ".weight"] = (
  345. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  346. g(), w(), z(), s()
  347. )
  348. )
  349. tensors_to_remove += [
  350. base_name + n
  351. for n in (
  352. ".g_idx",
  353. ".qzeros",
  354. ".qweight",
  355. ".scales",
  356. )
  357. ]
  358. elif quant_method == "compressed-tensors":
  359. quant_format = quant_config["format"]
  360. groups = quant_config["config_groups"]
  361. if len(groups) > 1:
  362. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  363. weight_config = tuple(groups.values())[0]["weights"]
  364. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  365. block_size = weight_config.get("block_structure", None)
  366. strategy = weight_config.get("strategy")
  367. assert strategy == "channel" or strategy == "block"
  368. assert weight_config.get("group_size") is None # didn't find a model using this yet
  369. for name in self.model_tensors.keys():
  370. if name.endswith(".weight_scale"):
  371. weight_name = name.removesuffix("_scale")
  372. w = self.model_tensors[weight_name]
  373. s = self.model_tensors[name]
  374. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  375. tensors_to_remove.append(name)
  376. elif quant_format == "pack-quantized":
  377. assert weight_config.get("strategy") == "group"
  378. assert weight_config.get("type", "int") == "int"
  379. num_bits = weight_config.get("num_bits")
  380. group_size = weight_config.get("group_size")
  381. assert isinstance(num_bits, int)
  382. assert isinstance(group_size, int)
  383. for name in self.model_tensors.keys():
  384. if name.endswith(".weight_packed"):
  385. base_name = name.removesuffix("_packed")
  386. w = self.model_tensors[name]
  387. scale = self.model_tensors[base_name + "_scale"]
  388. shape = self.model_tensors[base_name + "_shape"]
  389. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  390. new_tensors[base_name] = (
  391. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  392. w(), scale(), shape(), zero_point(), num_bits, group_size,
  393. )
  394. )
  395. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  396. if (base_name + "_zero_point") in self.model_tensors:
  397. tensors_to_remove.append(base_name + "_zero_point")
  398. else:
  399. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  400. else:
  401. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  402. for name in tensors_to_remove:
  403. if name in self.model_tensors:
  404. del self.model_tensors[name]
  405. for name, value in new_tensors.items():
  406. self.model_tensors[name] = value
  407. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  408. for name, gen in self.model_tensors.items():
  409. yield name, gen()
  410. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  413. name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in name:
  415. assert bid is not None
  416. name = name.format(bid=bid)
  417. return name + suffix
  418. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  419. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  420. return False
  421. key_name: str = gguf.TENSOR_NAMES[key]
  422. if "{bid}" in key_name:
  423. if bid is None:
  424. return False
  425. key_name = key_name.format(bid=bid)
  426. else:
  427. if bid is not None:
  428. return False
  429. return name == (key_name + suffix)
  430. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  431. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  432. if new_name is None:
  433. raise ValueError(f"Can not map tensor {name!r}")
  434. return new_name
  435. def set_gguf_parameters(self):
  436. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  438. del bid # unused
  439. return [(self.map_tensor_name(name), data_torch)]
  440. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  441. del name, new_name, bid, n_dims # unused
  442. return False
  443. # some models need extra generated tensors (like rope_freqs)
  444. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  445. return ()
  446. def prepare_tensors(self):
  447. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  448. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  449. # we don't need these
  450. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  451. continue
  452. old_dtype = data_torch.dtype
  453. # convert any unsupported data types to float32
  454. if data_torch.dtype not in (torch.float16, torch.float32):
  455. data_torch = data_torch.to(torch.float32)
  456. # use the first number-like part of the tensor name as the block id
  457. bid = None
  458. for part in name.split("."):
  459. if part.isdecimal():
  460. bid = int(part)
  461. break
  462. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  463. # TODO: why do we squeeze here?
  464. # data = data_torch.squeeze().numpy()
  465. data = data_torch.numpy()
  466. n_dims = len(data.shape)
  467. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  468. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  469. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  470. data_qtype = gguf.GGMLQuantizationType.F32
  471. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  472. # Some tensor types are always in float32
  473. if data_qtype is False and (
  474. any(
  475. self.match_model_tensor_name(new_name, key, bid)
  476. for key in (
  477. gguf.MODEL_TENSOR.FFN_GATE_INP,
  478. gguf.MODEL_TENSOR.POS_EMBD,
  479. gguf.MODEL_TENSOR.TOKEN_TYPES,
  480. gguf.MODEL_TENSOR.SSM_CONV1D,
  481. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  482. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  483. gguf.MODEL_TENSOR.TIME_MIX_W1,
  484. gguf.MODEL_TENSOR.TIME_MIX_W2,
  485. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  486. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  487. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  488. gguf.MODEL_TENSOR.POSNET_NORM1,
  489. gguf.MODEL_TENSOR.POSNET_NORM2,
  490. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  491. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  492. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  493. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  494. )
  495. )
  496. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  497. ):
  498. data_qtype = gguf.GGMLQuantizationType.F32
  499. if data_qtype is False and any(
  500. self.match_model_tensor_name(new_name, key, bid)
  501. for key in (
  502. gguf.MODEL_TENSOR.TOKEN_EMBD,
  503. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  504. gguf.MODEL_TENSOR.OUTPUT,
  505. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  506. gguf.MODEL_TENSOR.LAUREL_L,
  507. gguf.MODEL_TENSOR.LAUREL_R,
  508. )
  509. ):
  510. if self.ftype in (
  511. gguf.LlamaFileType.MOSTLY_TQ1_0,
  512. gguf.LlamaFileType.MOSTLY_TQ2_0,
  513. ):
  514. # TODO: use Q4_K and Q6_K
  515. data_qtype = gguf.GGMLQuantizationType.F16
  516. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  517. if isinstance(data_qtype, bool):
  518. if self.ftype == gguf.LlamaFileType.ALL_F32:
  519. data_qtype = gguf.GGMLQuantizationType.F32
  520. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  521. data_qtype = gguf.GGMLQuantizationType.F16
  522. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  523. data_qtype = gguf.GGMLQuantizationType.BF16
  524. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  525. data_qtype = gguf.GGMLQuantizationType.Q8_0
  526. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  527. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  528. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  529. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  530. else:
  531. raise ValueError(f"Unknown file type: {self.ftype.name}")
  532. try:
  533. data = gguf.quants.quantize(data, data_qtype)
  534. except gguf.QuantError as e:
  535. logger.warning("%s, %s", e, "falling back to F16")
  536. data_qtype = gguf.GGMLQuantizationType.F16
  537. data = gguf.quants.quantize(data, data_qtype)
  538. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  539. # reverse shape to make it similar to the internal ggml dimension order
  540. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  541. # n_dims is implicit in the shape
  542. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  543. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  544. def set_type(self):
  545. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  546. def prepare_metadata(self, vocab_only: bool):
  547. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  548. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  549. # If we are using HF model id, set the metadata name to the model id
  550. if self.remote_hf_model_id:
  551. self.metadata.name = self.remote_hf_model_id
  552. # Fallback to model directory name if metadata name is still missing
  553. if self.metadata.name is None:
  554. self.metadata.name = self.dir_model.name
  555. # Generate parameter weight class (useful for leader boards) if not yet determined
  556. if self.metadata.size_label is None and total_params > 0:
  557. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  558. self.set_type()
  559. logger.info("Set meta model")
  560. self.metadata.set_gguf_meta_model(self.gguf_writer)
  561. logger.info("Set model parameters")
  562. self.set_gguf_parameters()
  563. logger.info("Set model quantization version")
  564. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  565. def write_vocab(self):
  566. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  567. def write(self):
  568. self.prepare_tensors()
  569. self.prepare_metadata(vocab_only=False)
  570. self.gguf_writer.write_header_to_file(path=self.fname_out)
  571. self.gguf_writer.write_kv_data_to_file()
  572. self.gguf_writer.write_tensors_to_file(progress=True)
  573. self.gguf_writer.close()
  574. @staticmethod
  575. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  576. part_names: list[str] = []
  577. for filename in os.listdir(dir_model):
  578. if filename.startswith(prefix) and filename.endswith(suffix):
  579. part_names.append(filename)
  580. part_names.sort()
  581. return part_names
  582. @staticmethod
  583. def load_hparams(dir_model: Path, is_mistral_format: bool):
  584. if is_mistral_format:
  585. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  586. config = json.load(f)
  587. return config
  588. try:
  589. # for security reason, we don't allow loading remote code by default
  590. # if a model need remote code, we will fallback to config.json
  591. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  592. except Exception as e:
  593. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  594. logger.warning("Trying to load config.json instead")
  595. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  596. config = json.load(f)
  597. if "llm_config" in config:
  598. # rename for InternVL
  599. config["text_config"] = config["llm_config"]
  600. if "lm_config" in config:
  601. # rename for GlmASR
  602. config["text_config"] = config["lm_config"]
  603. if "thinker_config" in config:
  604. # rename for Qwen2.5-Omni
  605. config["text_config"] = config["thinker_config"]["text_config"]
  606. if "lfm" in config:
  607. # rename for LFM2-Audio
  608. config["text_config"] = config["lfm"]
  609. return config
  610. @classmethod
  611. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  612. assert names
  613. def func(modelcls: AnyModel) -> AnyModel:
  614. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  615. for name in names:
  616. cls._model_classes[model_type][name] = modelcls
  617. return modelcls
  618. return func
  619. @classmethod
  620. def print_registered_models(cls):
  621. for model_type, model_classes in cls._model_classes.items():
  622. logger.error(f"{model_type.name} models:")
  623. for name in sorted(model_classes.keys()):
  624. logger.error(f" - {name}")
  625. @classmethod
  626. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  627. try:
  628. return cls._model_classes[model_type][arch]
  629. except KeyError:
  630. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  631. class TextModel(ModelBase):
  632. model_type = ModelType.TEXT
  633. hf_arch: str
  634. def __init__(self, *args, **kwargs):
  635. super().__init__(*args, **kwargs)
  636. if not self.is_mistral_format:
  637. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  638. else:
  639. self.hf_arch = ""
  640. if "text_config" in self.hparams:
  641. # move the text_config to the root level
  642. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  643. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  644. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  645. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  646. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  647. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  648. if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
  649. self.rope_parameters["rope_theta"] = rope_theta
  650. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  651. self.rope_parameters["rope_type"] = rope_type
  652. @classmethod
  653. def __init_subclass__(cls):
  654. # can't use an abstract property, because overriding it without type errors
  655. # would require using decorated functions instead of simply defining the property
  656. if "model_arch" not in cls.__dict__:
  657. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  658. def set_vocab(self):
  659. self._set_vocab_gpt2()
  660. def prepare_metadata(self, vocab_only: bool):
  661. super().prepare_metadata(vocab_only=vocab_only)
  662. total_params = self.gguf_writer.get_total_parameter_count()[0]
  663. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  664. output_type: str = self.ftype.name.partition("_")[2]
  665. # Filename Output
  666. if self.fname_out.is_dir():
  667. # Generate default filename based on model specification and available metadata
  668. if not vocab_only:
  669. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  670. else:
  671. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  672. # Use the default filename
  673. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  674. else:
  675. # Output path is a custom defined templated filename
  676. # Note: `not is_dir()` is used because `.is_file()` will not detect
  677. # file template strings as it doesn't actually exist as a file
  678. # Process templated file name with the output ftype, useful with the "auto" ftype
  679. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  680. logger.info("Set model tokenizer")
  681. self.set_vocab()
  682. def set_gguf_parameters(self):
  683. self.gguf_writer.add_block_count(self.block_count)
  684. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  685. self.gguf_writer.add_context_length(n_ctx)
  686. logger.info(f"gguf: context length = {n_ctx}")
  687. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  688. self.gguf_writer.add_embedding_length(n_embd)
  689. logger.info(f"gguf: embedding length = {n_embd}")
  690. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  691. self.gguf_writer.add_feed_forward_length(n_ff)
  692. logger.info(f"gguf: feed forward length = {n_ff}")
  693. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  694. self.gguf_writer.add_head_count(n_head)
  695. logger.info(f"gguf: head count = {n_head}")
  696. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  697. self.gguf_writer.add_head_count_kv(n_head_kv)
  698. logger.info(f"gguf: key-value head count = {n_head_kv}")
  699. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  700. if (rope_type := rope_params.get("rope_type")) is not None:
  701. rope_factor = rope_params.get("factor")
  702. rope_gguf_type = gguf.RopeScalingType.NONE
  703. if rope_type == "linear" and rope_factor is not None:
  704. rope_gguf_type = gguf.RopeScalingType.LINEAR
  705. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  706. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  707. elif rope_type == "yarn" and rope_factor is not None:
  708. rope_gguf_type = gguf.RopeScalingType.YARN
  709. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  710. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  711. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  712. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  713. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  714. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  715. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  716. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  717. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  718. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  719. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  720. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  721. elif rope_type == "su" or rope_type == "longrope":
  722. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  723. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  724. elif rope_type == "dynamic":
  725. # HunYuan, handled in model class
  726. pass
  727. elif rope_type.lower() == "llama3":
  728. # Handled in generate_extra_tensors
  729. pass
  730. else:
  731. logger.warning(f"Unknown RoPE type: {rope_type}")
  732. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  733. if "mrope_section" in self.rope_parameters:
  734. mrope_section = self.rope_parameters["mrope_section"]
  735. # Pad to 4 dimensions [time, height, width, extra]
  736. while len(mrope_section) < 4:
  737. mrope_section.append(0)
  738. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  739. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  740. if (rope_theta := rope_params.get("rope_theta")) is not None:
  741. self.gguf_writer.add_rope_freq_base(rope_theta)
  742. logger.info(f"gguf: rope theta = {rope_theta}")
  743. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  744. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  745. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  746. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  747. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  748. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  749. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  750. self.gguf_writer.add_expert_count(n_experts)
  751. logger.info(f"gguf: expert count = {n_experts}")
  752. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  753. self.gguf_writer.add_expert_used_count(n_experts_used)
  754. logger.info(f"gguf: experts used count = {n_experts_used}")
  755. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  756. self.gguf_writer.add_expert_group_count(n_expert_groups)
  757. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  758. if (n_group_used := self.hparams.get("topk_group")) is not None:
  759. self.gguf_writer.add_expert_group_used_count(n_group_used)
  760. logger.info(f"gguf: expert groups used count = {n_group_used}")
  761. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  762. if score_func == "sigmoid":
  763. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  764. elif score_func == "softmax":
  765. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  766. else:
  767. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  768. logger.info(f"gguf: expert score gating function = {score_func}")
  769. if (head_dim := self.hparams.get("head_dim")) is not None:
  770. self.gguf_writer.add_key_length(head_dim)
  771. self.gguf_writer.add_value_length(head_dim)
  772. self.gguf_writer.add_file_type(self.ftype)
  773. logger.info(f"gguf: file type = {self.ftype}")
  774. def write_vocab(self):
  775. if len(self.gguf_writer.tensors) != 1:
  776. raise ValueError('Splitting the vocabulary is not supported')
  777. self.prepare_metadata(vocab_only=True)
  778. self.gguf_writer.write_header_to_file(path=self.fname_out)
  779. self.gguf_writer.write_kv_data_to_file()
  780. self.gguf_writer.close()
  781. def does_token_look_special(self, token: str | bytes) -> bool:
  782. if isinstance(token, (bytes, bytearray)):
  783. token_text = token.decode(encoding="utf-8")
  784. elif isinstance(token, memoryview):
  785. token_text = token.tobytes().decode(encoding="utf-8")
  786. else:
  787. token_text = token
  788. # Some models mark some added tokens which ought to be control tokens as not special.
  789. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  790. seems_special = token_text in (
  791. "<pad>", # deepseek-coder
  792. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  793. )
  794. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  795. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  796. # TODO: should these be marked as UNUSED instead? (maybe not)
  797. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  798. return seems_special
  799. # used for GPT-2 BPE and WordPiece vocabs
  800. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  801. tokens: list[str] = []
  802. toktypes: list[int] = []
  803. from transformers import AutoTokenizer
  804. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  805. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  806. assert max(tokenizer.vocab.values()) < vocab_size
  807. tokpre = self.get_vocab_base_pre(tokenizer)
  808. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  809. added_vocab = tokenizer.get_added_vocab()
  810. added_tokens_decoder = tokenizer.added_tokens_decoder
  811. for i in range(vocab_size):
  812. if i not in reverse_vocab:
  813. tokens.append(f"[PAD{i}]")
  814. toktypes.append(gguf.TokenType.UNUSED)
  815. else:
  816. token: str = reverse_vocab[i]
  817. if token in added_vocab:
  818. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  819. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  820. if not added_tokens_decoder[i].normalized:
  821. previous_token = token
  822. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  823. if previous_token != token:
  824. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  825. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  826. toktypes.append(gguf.TokenType.CONTROL)
  827. else:
  828. # NOTE: this was added for Gemma.
  829. # Encoding and decoding the tokens above isn't sufficient for this case.
  830. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  831. toktypes.append(gguf.TokenType.USER_DEFINED)
  832. else:
  833. toktypes.append(gguf.TokenType.NORMAL)
  834. tokens.append(token)
  835. return tokens, toktypes, tokpre
  836. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  837. # do not modify it manually!
  838. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  839. # Marker: Start get_vocab_base_pre
  840. def get_vocab_base_pre(self, tokenizer) -> str:
  841. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  842. # is specific for the BPE pre-tokenizer used by the model
  843. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  844. # use in llama.cpp to implement the same pre-tokenizer
  845. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  846. chktok = tokenizer.encode(chktxt)
  847. chkhsh = sha256(str(chktok).encode()).hexdigest()
  848. logger.debug(f"chktok: {chktok}")
  849. logger.debug(f"chkhsh: {chkhsh}")
  850. res = None
  851. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  852. # or pull the latest version of the model from Huggingface
  853. # don't edit the hashes manually!
  854. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  855. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  856. res = "chatglm-bpe"
  857. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  858. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  859. res = "chatglm-bpe"
  860. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  861. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  862. res = "glm4"
  863. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  864. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  865. res = "glm4"
  866. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  867. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  868. res = "minerva-7b"
  869. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  870. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  871. res = "hunyuan"
  872. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  873. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  874. res = "hunyuan-dense"
  875. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  876. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  877. res = "falcon-h1"
  878. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  879. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  880. res = "falcon-h1"
  881. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  882. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  883. res = "falcon-h1"
  884. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  885. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  886. res = "falcon-h1"
  887. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  888. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  889. res = "kimi-k2"
  890. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  891. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  892. res = "qwen2"
  893. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  894. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  895. res = "grok-2"
  896. if chkhsh == "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df":
  897. # ref: https://huggingface.co/aari1995/German_Semantic_V3
  898. res = "jina-v2-de"
  899. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  900. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  901. res = "llama-bpe"
  902. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  903. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  904. res = "deepseek-llm"
  905. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  906. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  907. res = "deepseek-coder"
  908. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  909. # ref: https://huggingface.co/tiiuae/falcon-7b
  910. res = "falcon"
  911. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  912. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  913. res = "bert-bge"
  914. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  915. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  916. res = "falcon3"
  917. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  918. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  919. res = "bert-bge-large"
  920. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  921. # ref: https://huggingface.co/mosaicml/mpt-7b
  922. res = "mpt"
  923. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  924. # ref: https://huggingface.co/bigcode/starcoder2-3b
  925. res = "starcoder"
  926. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  927. # ref: https://huggingface.co/openai-community/gpt2
  928. res = "gpt-2"
  929. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  930. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  931. res = "stablelm2"
  932. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  933. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  934. res = "refact"
  935. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  936. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  937. res = "command-r"
  938. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  939. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  940. res = "qwen2"
  941. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  942. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  943. res = "olmo"
  944. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  945. # ref: https://huggingface.co/databricks/dbrx-base
  946. res = "dbrx"
  947. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  948. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  949. res = "jina-v1-en"
  950. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  951. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  952. res = "jina-v2-en"
  953. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  954. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  955. res = "jina-v2-es"
  956. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  957. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  958. res = "jina-v2-de"
  959. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  960. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  961. res = "smaug-bpe"
  962. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  963. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  964. res = "poro-chat"
  965. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  966. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  967. res = "jina-v2-code"
  968. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  969. # ref: https://huggingface.co/LumiOpen/Viking-7B
  970. res = "viking"
  971. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  972. # ref: https://huggingface.co/core42/jais-13b
  973. res = "jais"
  974. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  975. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  976. res = "codeshell"
  977. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  978. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  979. res = "tekken"
  980. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  981. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  982. res = "smollm"
  983. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  984. # ref: https://huggingface.co/bigscience/bloom
  985. res = "bloom"
  986. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  987. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  988. res = "gpt3-finnish"
  989. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  990. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  991. res = "exaone"
  992. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  993. # ref: https://huggingface.co/microsoft/phi-2
  994. res = "phi-2"
  995. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  996. # ref: https://huggingface.co/facebook/chameleon-7b
  997. res = "chameleon"
  998. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  999. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  1000. res = "roberta-bpe"
  1001. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  1002. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  1003. res = "gigachat"
  1004. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  1005. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  1006. res = "megrez"
  1007. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  1008. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  1009. res = "deepseek-v3"
  1010. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  1011. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  1012. res = "deepseek-r1-qwen"
  1013. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1014. # ref: https://huggingface.co/Xenova/gpt-4o
  1015. res = "gpt-4o"
  1016. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1017. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1018. res = "superbpe"
  1019. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1020. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1021. res = "trillion"
  1022. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1023. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1024. res = "bailingmoe"
  1025. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1026. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1027. res = "llama4"
  1028. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1029. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1030. res = "pixtral"
  1031. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1032. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1033. res = "seed-coder"
  1034. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1035. # ref: https://huggingface.co/skt/A.X-4.0
  1036. res = "a.x-4.0"
  1037. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1038. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1039. res = "midm-2.0"
  1040. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1041. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1042. res = "lfm2"
  1043. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1044. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1045. res = "exaone4"
  1046. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1047. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1048. res = "mellum"
  1049. if chkhsh == "a0b64b4385f123663873756336c085744376d015ff328bb1d901598f63c44152":
  1050. # ref: https://huggingface.co/answerdotai/ModernBERT-base
  1051. res = "modern-bert"
  1052. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1053. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1054. res = "afmoe"
  1055. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1056. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1057. res = "bailingmoe2"
  1058. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1059. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1060. res = "granite-docling"
  1061. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1062. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1063. res = "minimax-m2"
  1064. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1065. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1066. res = "kormo"
  1067. if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
  1068. # ref: https://huggingface.co/upstage/Solar-Open-100B
  1069. res = "solar-open"
  1070. if res is None:
  1071. logger.warning("\n")
  1072. logger.warning("**************************************************************************************")
  1073. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1074. logger.warning("** There are 2 possible reasons for this:")
  1075. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1076. logger.warning("** - the pre-tokenization config has changed upstream")
  1077. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1078. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1079. logger.warning("**")
  1080. logger.warning(f"** chkhsh: {chkhsh}")
  1081. logger.warning("**************************************************************************************")
  1082. logger.warning("\n")
  1083. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1084. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1085. logger.debug(f"chkhsh: {chkhsh}")
  1086. return res
  1087. # Marker: End get_vocab_base_pre
  1088. def _set_vocab_none(self) -> None:
  1089. self.gguf_writer.add_tokenizer_model("none")
  1090. def _set_vocab_gpt2(self) -> None:
  1091. tokens, toktypes, tokpre = self.get_vocab_base()
  1092. self.gguf_writer.add_tokenizer_model("gpt2")
  1093. self.gguf_writer.add_tokenizer_pre(tokpre)
  1094. self.gguf_writer.add_token_list(tokens)
  1095. self.gguf_writer.add_token_types(toktypes)
  1096. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1097. special_vocab.add_to_gguf(self.gguf_writer)
  1098. def _set_vocab_qwen(self):
  1099. dir_model = self.dir_model
  1100. hparams = self.hparams
  1101. tokens: list[str] = []
  1102. toktypes: list[int] = []
  1103. from transformers import AutoTokenizer
  1104. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1105. vocab_size = hparams["vocab_size"]
  1106. assert max(tokenizer.get_vocab().values()) < vocab_size
  1107. tokpre = self.get_vocab_base_pre(tokenizer)
  1108. merges = []
  1109. vocab = {}
  1110. mergeable_ranks = tokenizer.mergeable_ranks
  1111. for token, rank in mergeable_ranks.items():
  1112. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1113. if len(token) == 1:
  1114. continue
  1115. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1116. assert len(merged) == 2
  1117. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1118. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1119. added_vocab = tokenizer.special_tokens
  1120. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1121. for i in range(vocab_size):
  1122. if i not in reverse_vocab:
  1123. tokens.append(f"[PAD{i}]")
  1124. toktypes.append(gguf.TokenType.UNUSED)
  1125. elif reverse_vocab[i] in added_vocab:
  1126. tokens.append(reverse_vocab[i])
  1127. toktypes.append(gguf.TokenType.CONTROL)
  1128. else:
  1129. tokens.append(reverse_vocab[i])
  1130. toktypes.append(gguf.TokenType.NORMAL)
  1131. self.gguf_writer.add_tokenizer_model("gpt2")
  1132. self.gguf_writer.add_tokenizer_pre(tokpre)
  1133. self.gguf_writer.add_token_list(tokens)
  1134. self.gguf_writer.add_token_types(toktypes)
  1135. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1136. special_vocab.merges = merges
  1137. # only add special tokens when they were not already loaded from config.json
  1138. if len(special_vocab.special_token_ids) == 0:
  1139. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1140. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1141. # this one is usually not in config.json anyway
  1142. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1143. special_vocab.add_to_gguf(self.gguf_writer)
  1144. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1145. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1146. self.gguf_writer.add_tokenizer_model("llama")
  1147. self.gguf_writer.add_tokenizer_pre("default")
  1148. self.gguf_writer.add_token_list(tokens)
  1149. self.gguf_writer.add_token_scores(scores)
  1150. self.gguf_writer.add_token_types(toktypes)
  1151. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1152. special_vocab.add_to_gguf(self.gguf_writer)
  1153. def _create_vocab_sentencepiece(self):
  1154. from sentencepiece import SentencePieceProcessor
  1155. tokenizer_path = self.dir_model / 'tokenizer.model'
  1156. if not tokenizer_path.is_file():
  1157. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1158. tokenizer = SentencePieceProcessor()
  1159. tokenizer.LoadFromFile(str(tokenizer_path))
  1160. vocab_size = self.find_hparam([
  1161. "vocab_size_per_layer_input", # gemma3n
  1162. "vocab_size",
  1163. ], optional=True) or tokenizer.vocab_size()
  1164. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1165. scores: list[float] = [-10000.0] * vocab_size
  1166. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1167. for token_id in range(tokenizer.vocab_size()):
  1168. if token_id >= vocab_size:
  1169. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1170. break
  1171. piece = tokenizer.IdToPiece(token_id)
  1172. text = piece.encode("utf-8")
  1173. score = tokenizer.GetScore(token_id)
  1174. toktype = SentencePieceTokenTypes.NORMAL
  1175. if tokenizer.IsUnknown(token_id):
  1176. toktype = SentencePieceTokenTypes.UNKNOWN
  1177. elif tokenizer.IsControl(token_id):
  1178. toktype = SentencePieceTokenTypes.CONTROL
  1179. elif tokenizer.IsUnused(token_id):
  1180. toktype = SentencePieceTokenTypes.UNUSED
  1181. elif tokenizer.IsByte(token_id):
  1182. toktype = SentencePieceTokenTypes.BYTE
  1183. tokens[token_id] = text
  1184. scores[token_id] = score
  1185. toktypes[token_id] = toktype
  1186. added_tokens_file = self.dir_model / 'added_tokens.json'
  1187. if added_tokens_file.is_file():
  1188. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1189. added_tokens_json = json.load(f)
  1190. for key in added_tokens_json:
  1191. token_id = added_tokens_json[key]
  1192. if token_id >= vocab_size:
  1193. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1194. continue
  1195. tokens[token_id] = key.encode("utf-8")
  1196. scores[token_id] = -1000.0
  1197. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1198. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1199. if tokenizer_config_file.is_file():
  1200. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1201. tokenizer_config_json = json.load(f)
  1202. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1203. for token_id, token_data in added_tokens_decoder.items():
  1204. token_id = int(token_id)
  1205. token: str = token_data["content"]
  1206. if token_id >= vocab_size:
  1207. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1208. continue
  1209. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1210. if tokens[token_id] != token.encode("utf-8"):
  1211. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1212. if token_data.get("special") or self.does_token_look_special(token):
  1213. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1214. else:
  1215. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1216. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1217. scores[token_id] = -1000.0
  1218. tokens[token_id] = token.encode("utf-8")
  1219. if vocab_size > len(tokens):
  1220. pad_count = vocab_size - len(tokens)
  1221. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1222. for i in range(1, pad_count + 1):
  1223. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1224. scores.append(-1000.0)
  1225. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1226. return tokens, scores, toktypes
  1227. def _set_vocab_llama_hf(self):
  1228. vocab = gguf.LlamaHfVocab(self.dir_model)
  1229. tokens = []
  1230. scores = []
  1231. toktypes = []
  1232. for text, score, toktype in vocab.all_tokens():
  1233. tokens.append(text)
  1234. scores.append(score)
  1235. toktypes.append(toktype)
  1236. assert len(tokens) == vocab.vocab_size
  1237. self.gguf_writer.add_tokenizer_model("llama")
  1238. self.gguf_writer.add_tokenizer_pre("default")
  1239. self.gguf_writer.add_token_list(tokens)
  1240. self.gguf_writer.add_token_scores(scores)
  1241. self.gguf_writer.add_token_types(toktypes)
  1242. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1243. special_vocab.add_to_gguf(self.gguf_writer)
  1244. def _set_vocab_rwkv_world(self):
  1245. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1246. vocab_size = self.hparams.get("vocab_size", 65536)
  1247. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1248. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1249. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1250. lines = f.readlines()
  1251. for line in lines:
  1252. parts = line.split(' ')
  1253. assert len(parts) >= 3
  1254. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1255. token = token.encode("utf-8") if isinstance(token, str) else token
  1256. assert isinstance(token, bytes)
  1257. assert len(token) == token_len
  1258. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1259. tokens.append(token_text.encode("utf-8"))
  1260. toktypes.append(gguf.TokenType.NORMAL)
  1261. remainder = vocab_size - len(tokens)
  1262. assert remainder >= 0
  1263. for i in range(len(tokens), vocab_size):
  1264. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1265. toktypes.append(gguf.TokenType.UNUSED)
  1266. self.gguf_writer.add_tokenizer_model("rwkv")
  1267. self.gguf_writer.add_token_list(tokens)
  1268. self.gguf_writer.add_token_types(toktypes)
  1269. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1270. if special_vocab.chat_template is None:
  1271. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1272. if template_path.is_file():
  1273. with open(template_path, "r", encoding="utf-8") as f:
  1274. template = f.read()
  1275. else:
  1276. template = "rwkv-world"
  1277. special_vocab.chat_template = template
  1278. # hack: Add '\n\n' as the EOT token to make it chat normally
  1279. special_vocab._set_special_token("eot", 261)
  1280. # hack: Override these as they have already been set (incorrectly)
  1281. special_vocab.special_token_ids["bos"] = 0
  1282. special_vocab.special_token_ids["eos"] = 0
  1283. special_vocab.add_to_gguf(self.gguf_writer)
  1284. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1285. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1286. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1287. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1288. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1289. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1290. assert field # tokenizer model
  1291. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1292. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1293. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1294. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1295. assert field # token list
  1296. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1297. if model_name == "llama-spm":
  1298. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1299. assert field # token scores
  1300. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1301. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1302. assert field # token types
  1303. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1304. if model_name != "llama-spm":
  1305. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1306. assert field # token merges
  1307. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1308. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1309. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1310. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1311. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1312. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1313. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1314. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1315. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1316. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1317. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1318. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1319. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1320. def _try_set_pooling_type(self) -> None:
  1321. # get pooling path
  1322. pooling_path = None
  1323. module_path = self.dir_model / "modules.json"
  1324. if module_path.is_file():
  1325. with open(module_path, encoding="utf-8") as f:
  1326. modules = json.load(f)
  1327. for mod in modules:
  1328. if mod["type"] == "sentence_transformers.models.Pooling":
  1329. pooling_path = mod["path"]
  1330. break
  1331. # get pooling type
  1332. if pooling_path is not None:
  1333. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1334. pooling = json.load(f)
  1335. if pooling["pooling_mode_mean_tokens"]:
  1336. pooling_type = gguf.PoolingType.MEAN
  1337. elif pooling["pooling_mode_cls_token"]:
  1338. pooling_type = gguf.PoolingType.CLS
  1339. elif pooling["pooling_mode_lasttoken"]:
  1340. pooling_type = gguf.PoolingType.LAST
  1341. else:
  1342. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1343. self.gguf_writer.add_pooling_type(pooling_type)
  1344. def _set_vocab_glmedge(self):
  1345. from transformers import AutoTokenizer
  1346. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1347. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1348. tokens, toktypes, tokpre = self.get_vocab_base()
  1349. self.gguf_writer.add_tokenizer_model("gpt2")
  1350. self.gguf_writer.add_tokenizer_pre(tokpre)
  1351. self.gguf_writer.add_token_list(tokens)
  1352. self.gguf_writer.add_token_types(toktypes)
  1353. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1354. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1355. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1356. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1357. special_vocab.add_to_gguf(self.gguf_writer)
  1358. def _set_vocab_interns1(self):
  1359. tokens: list[str] = []
  1360. toktypes: list[int] = []
  1361. from transformers import AutoTokenizer
  1362. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1363. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1364. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1365. assert max(vocab.values()) < vocab_size
  1366. tokpre = self.get_vocab_base_pre(tokenizer)
  1367. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1368. added_vocab = tokenizer.get_added_vocab()
  1369. added_tokens_decoder = tokenizer.added_tokens_decoder
  1370. for i in range(vocab_size):
  1371. if i not in reverse_vocab:
  1372. tokens.append(f"[PAD{i}]")
  1373. toktypes.append(gguf.TokenType.UNUSED)
  1374. else:
  1375. token: str = reverse_vocab[i]
  1376. if token in added_vocab:
  1377. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1378. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1379. if not added_tokens_decoder[i].normalized:
  1380. previous_token = token
  1381. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1382. if previous_token != token:
  1383. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1384. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1385. toktypes.append(gguf.TokenType.CONTROL)
  1386. else:
  1387. toktypes.append(gguf.TokenType.USER_DEFINED)
  1388. else:
  1389. toktypes.append(gguf.TokenType.NORMAL)
  1390. tokens.append(token)
  1391. self.gguf_writer.add_tokenizer_model("gpt2")
  1392. self.gguf_writer.add_tokenizer_pre(tokpre)
  1393. self.gguf_writer.add_token_list(tokens)
  1394. self.gguf_writer.add_token_types(toktypes)
  1395. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1396. special_vocab._set_special_token("bos", 151643)
  1397. special_vocab.add_to_gguf(self.gguf_writer)
  1398. def _set_vocab_mistral(self):
  1399. if not _mistral_common_installed:
  1400. raise ImportError(_mistral_import_error_msg)
  1401. vocab = MistralVocab(self.dir_model)
  1402. logger.info(
  1403. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1404. )
  1405. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1406. tokens = []
  1407. scores = []
  1408. toktypes = []
  1409. for text, score, toktype in vocab.all_tokens():
  1410. tokens.append(text)
  1411. scores.append(score)
  1412. toktypes.append(toktype)
  1413. assert len(tokens) == vocab.vocab_size, (
  1414. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1415. )
  1416. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1417. self.gguf_writer.add_tokenizer_pre("tekken")
  1418. self.gguf_writer.add_token_merges(
  1419. vocab.extract_vocab_merges_from_model()
  1420. )
  1421. logger.info(
  1422. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1423. )
  1424. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1425. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1426. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1427. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1428. self.gguf_writer.add_token_list(tokens)
  1429. self.gguf_writer.add_token_scores(scores)
  1430. self.gguf_writer.add_token_types(toktypes)
  1431. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1432. self.gguf_writer.add_add_bos_token(True)
  1433. self.gguf_writer.add_add_eos_token(False)
  1434. local_template_file_path = self.dir_model / "chat_template.jinja"
  1435. if self.is_mistral_format and local_template_file_path.is_file():
  1436. # Ministral-3 and other new Mistral models come with chat templates.
  1437. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1438. logger.info("Using an existing Mistral local chat template.")
  1439. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1440. template = f.read()
  1441. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1442. template_dir = Path(__file__).parent / "models/templates/"
  1443. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1444. if self.is_mistral_format:
  1445. logger.info(
  1446. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1447. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1448. )
  1449. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1450. else:
  1451. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1452. template = None
  1453. if template is not None:
  1454. self.gguf_writer.add_chat_template(template)
  1455. def _set_vocab_plamo(self):
  1456. # PLaMo models use a custom tokenizer with a .jsonl file
  1457. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  1458. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  1459. if not tokenizer_jsonl_path.is_file():
  1460. raise FileNotFoundError(f"PLaMo tokenizer file not found: {tokenizer_jsonl_path}")
  1461. # Load tokenizer config
  1462. with open(tokenizer_config_path, "r", encoding="utf-8") as f:
  1463. tokenizer_config = json.load(f)
  1464. # Load tokens from JSONL file (actually a list format)
  1465. tokens = []
  1466. scores = []
  1467. toktypes = []
  1468. with open(tokenizer_jsonl_path, "r", encoding="utf-8") as f:
  1469. for line_num, line in enumerate(f):
  1470. if line.strip():
  1471. token_data = json.loads(line)
  1472. # Format: [token, score, type, ?, ?, ?, ?]
  1473. token = token_data[0].encode("utf-8")
  1474. score = float(token_data[1])
  1475. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  1476. tokens.append(token)
  1477. scores.append(score)
  1478. if token_type_str == "UNKNOWN":
  1479. toktypes.append(gguf.TokenType.UNKNOWN)
  1480. elif token_type_str == "CONTROL":
  1481. toktypes.append(gguf.TokenType.CONTROL)
  1482. elif token_type_str == "BYTE":
  1483. toktypes.append(gguf.TokenType.BYTE)
  1484. else:
  1485. token_str = token_data[0]
  1486. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  1487. toktypes.append(gguf.TokenType.CONTROL)
  1488. else:
  1489. toktypes.append(gguf.TokenType.NORMAL)
  1490. vocab_size = self.hparams["vocab_size"]
  1491. if vocab_size > len(tokens):
  1492. pad_count = vocab_size - len(tokens)
  1493. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1494. for i in range(1, pad_count + 1):
  1495. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1496. scores.append(-1000.0)
  1497. toktypes.append(gguf.TokenType.UNUSED)
  1498. self.gguf_writer.add_tokenizer_model("plamo2")
  1499. self.gguf_writer.add_tokenizer_pre("default")
  1500. self.gguf_writer.add_token_list(tokens)
  1501. self.gguf_writer.add_token_scores(scores)
  1502. self.gguf_writer.add_token_types(toktypes)
  1503. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  1504. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  1505. self.gguf_writer.add_bos_token_id(token_id)
  1506. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  1507. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  1508. self.gguf_writer.add_eos_token_id(token_id)
  1509. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  1510. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  1511. self.gguf_writer.add_pad_token_id(token_id)
  1512. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  1513. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  1514. self.gguf_writer.add_sep_token_id(token_id)
  1515. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  1516. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  1517. self.gguf_writer.add_unk_token_id(token_id)
  1518. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  1519. self.gguf_writer.add_eot_token_id(4)
  1520. self.gguf_writer.add_add_space_prefix(False)
  1521. class MmprojModel(ModelBase):
  1522. model_type = ModelType.MMPROJ
  1523. model_arch = gguf.MODEL_ARCH.MMPROJ
  1524. preprocessor_config: dict[str, Any]
  1525. global_config: dict[str, Any]
  1526. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1527. has_vision_encoder: bool = True # by default
  1528. has_audio_encoder: bool = False
  1529. # for models having multiple encoders, we need to separate their hparams
  1530. hparams_vision: dict[str, Any] | None = None
  1531. hparams_audio: dict[str, Any] | None = None
  1532. def __init__(self, *args, **kwargs):
  1533. super().__init__(*args, **kwargs)
  1534. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1535. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1536. # get n_embd of the text model
  1537. if not self.is_mistral_format:
  1538. if "text_config" not in self.hparams:
  1539. self.hparams["text_config"] = {}
  1540. if "audio_config" not in self.hparams:
  1541. self.hparams["audio_config"] = {}
  1542. text_config = {**self.hparams, **self.hparams["text_config"]}
  1543. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1544. else:
  1545. text_config = {
  1546. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1547. }
  1548. self.n_embd_text = text_config.get("hidden_dim", 0)
  1549. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1550. # move vision config to the top level, while preserving the original hparams in global_config
  1551. import copy
  1552. self.global_config = copy.deepcopy(self.hparams)
  1553. self.hparams_vision = self.get_vision_config()
  1554. self.hparams_audio = self.get_audio_config()
  1555. if self.hparams_vision is None and self.hparams_audio is None:
  1556. raise ValueError("vision_config / audio_config not found in hparams")
  1557. # for compat with vision-only models
  1558. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1559. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1560. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1561. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1562. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1563. # load preprocessor config
  1564. self.preprocessor_config = {}
  1565. # prefer preprocessor_config.json if possible
  1566. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1567. if preprocessor_config_path.is_file():
  1568. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1569. self.preprocessor_config = json.load(f)
  1570. # prefer processor_config.json if possible
  1571. processor_config_path = self.dir_model / "processor_config.json"
  1572. if processor_config_path.is_file():
  1573. with open(processor_config_path, "r", encoding="utf-8") as f:
  1574. cfg = json.load(f)
  1575. # move image_processor to root level for compat
  1576. if "image_processor" in cfg:
  1577. cfg = {
  1578. **cfg,
  1579. **cfg["image_processor"],
  1580. }
  1581. # merge configs
  1582. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1583. def get_vision_config(self) -> dict[str, Any] | None:
  1584. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1585. return self.global_config.get(config_name)
  1586. def get_audio_config(self) -> dict[str, Any] | None:
  1587. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1588. return self.global_config.get(mm_config_key)
  1589. def set_type(self):
  1590. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1591. def prepare_metadata(self, vocab_only: bool):
  1592. super().prepare_metadata(vocab_only=vocab_only)
  1593. output_type: str = self.ftype.name.partition("_")[2]
  1594. if self.fname_out.is_dir():
  1595. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1596. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1597. else:
  1598. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1599. def set_gguf_parameters(self):
  1600. self.gguf_writer.add_file_type(self.ftype)
  1601. if self.has_vision_encoder:
  1602. self.gguf_writer.add_clip_has_vision_encoder(True)
  1603. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1604. # vision config
  1605. self.image_size = self.find_vparam(["image_size"])
  1606. self.gguf_writer.add_vision_image_size(self.image_size)
  1607. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1608. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1609. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1610. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1611. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1612. # preprocessor config
  1613. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1614. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1615. self.gguf_writer.add_vision_image_mean(image_mean)
  1616. self.gguf_writer.add_vision_image_std(image_std)
  1617. if self.has_audio_encoder:
  1618. self.gguf_writer.add_clip_has_audio_encoder(True)
  1619. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1620. # audio config
  1621. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1622. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1623. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1624. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1625. if not self.has_vision_encoder and not self.has_audio_encoder:
  1626. raise ValueError("MmprojModel must have either vision or audio encoder")
  1627. def write_vocab(self):
  1628. raise ValueError("MmprojModel does not support vocab writing")
  1629. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1630. assert self.hparams_vision is not None
  1631. return self._find_param(self.hparams_vision, keys, optional)
  1632. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1633. assert self.hparams_audio is not None
  1634. return self._find_param(self.hparams_audio, keys, optional)
  1635. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1636. key = next((k for k in keys if k in obj), None)
  1637. if key is not None:
  1638. return obj[key]
  1639. if optional:
  1640. return None
  1641. raise KeyError(f"could not find any of: {keys}")
  1642. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1643. del bid, name, n_dims # unused
  1644. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1645. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1646. return False
  1647. @ModelBase.register("GPTNeoXForCausalLM")
  1648. class GPTNeoXModel(TextModel):
  1649. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1650. def set_gguf_parameters(self):
  1651. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1652. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1653. self.gguf_writer.add_block_count(self.block_count)
  1654. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1655. self.gguf_writer.add_rope_dimension_count(
  1656. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1657. )
  1658. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1659. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1660. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1661. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1662. del bid # unused
  1663. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1664. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1665. tensors: list[tuple[str, Tensor]] = []
  1666. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1667. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1668. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1669. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1670. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1671. data_torch = torch.cat(
  1672. (
  1673. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1674. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1675. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1676. ),
  1677. dim=0,
  1678. )
  1679. logger.info("re-format attention.linear_qkv.weight")
  1680. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1681. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1682. data_torch = torch.cat(
  1683. (
  1684. qkv_bias[:, 0, :].reshape((n_embed,)),
  1685. qkv_bias[:, 1, :].reshape((n_embed,)),
  1686. qkv_bias[:, 2, :].reshape((n_embed,)),
  1687. ),
  1688. dim=0,
  1689. )
  1690. logger.info("re-format attention.linear_qkv.bias")
  1691. tensors.append((self.map_tensor_name(name), data_torch))
  1692. return tensors
  1693. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1694. class BloomModel(TextModel):
  1695. model_arch = gguf.MODEL_ARCH.BLOOM
  1696. def set_gguf_parameters(self):
  1697. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1698. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1699. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1700. self.gguf_writer.add_embedding_length(n_embed)
  1701. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1702. self.gguf_writer.add_block_count(self.block_count)
  1703. self.gguf_writer.add_head_count(n_head)
  1704. self.gguf_writer.add_head_count_kv(n_head)
  1705. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1706. self.gguf_writer.add_file_type(self.ftype)
  1707. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1708. del bid # unused
  1709. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1710. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1711. name = re.sub(r'transformer\.', '', name)
  1712. tensors: list[tuple[str, Tensor]] = []
  1713. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1714. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1715. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1716. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1717. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1718. data_torch = torch.cat(
  1719. (
  1720. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1721. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1722. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1723. ),
  1724. dim=0,
  1725. )
  1726. logger.info("re-format attention.linear_qkv.weight")
  1727. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1728. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1729. data_torch = torch.cat(
  1730. (
  1731. qkv_bias[:, 0, :].reshape((n_embed,)),
  1732. qkv_bias[:, 1, :].reshape((n_embed,)),
  1733. qkv_bias[:, 2, :].reshape((n_embed,)),
  1734. ),
  1735. dim=0,
  1736. )
  1737. logger.info("re-format attention.linear_qkv.bias")
  1738. tensors.append((self.map_tensor_name(name), data_torch))
  1739. return tensors
  1740. @ModelBase.register("MPTForCausalLM")
  1741. class MPTModel(TextModel):
  1742. model_arch = gguf.MODEL_ARCH.MPT
  1743. def set_vocab(self):
  1744. try:
  1745. self._set_vocab_gpt2()
  1746. except Exception:
  1747. # Fallback for SEA-LION model
  1748. self._set_vocab_sentencepiece()
  1749. self.gguf_writer.add_add_bos_token(False)
  1750. self.gguf_writer.add_pad_token_id(3)
  1751. self.gguf_writer.add_eos_token_id(1)
  1752. self.gguf_writer.add_unk_token_id(0)
  1753. def set_gguf_parameters(self):
  1754. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1755. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1756. self.gguf_writer.add_block_count(self.block_count)
  1757. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1758. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1759. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1760. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1761. self.gguf_writer.add_layer_norm_eps(1e-5)
  1762. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1763. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1764. if self.hparams["attn_config"]["alibi"]:
  1765. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1766. else:
  1767. self.gguf_writer.add_max_alibi_bias(0.0)
  1768. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1769. del bid # unused
  1770. if "scales" in name:
  1771. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1772. new_name = new_name.replace("scales", "act.scales")
  1773. else:
  1774. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1775. return [(new_name, data_torch)]
  1776. @ModelBase.register("OrionForCausalLM")
  1777. class OrionModel(TextModel):
  1778. model_arch = gguf.MODEL_ARCH.ORION
  1779. def set_vocab(self):
  1780. self._set_vocab_sentencepiece()
  1781. def set_gguf_parameters(self):
  1782. head_count = self.hparams["num_attention_heads"]
  1783. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1784. ctx_length = 0
  1785. if "max_sequence_length" in self.hparams:
  1786. ctx_length = self.hparams["max_sequence_length"]
  1787. elif "max_position_embeddings" in self.hparams:
  1788. ctx_length = self.hparams["max_position_embeddings"]
  1789. elif "model_max_length" in self.hparams:
  1790. ctx_length = self.hparams["model_max_length"]
  1791. else:
  1792. raise ValueError("gguf: can not find ctx length parameter.")
  1793. self.gguf_writer.add_file_type(self.ftype)
  1794. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1795. self.gguf_writer.add_context_length(ctx_length)
  1796. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1797. self.gguf_writer.add_block_count(self.block_count)
  1798. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1799. self.gguf_writer.add_head_count(head_count)
  1800. self.gguf_writer.add_head_count_kv(head_count_kv)
  1801. # note: config provides rms norm but it is actually layer norm
  1802. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1803. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1804. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1805. class BaichuanModel(TextModel):
  1806. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1807. def set_vocab(self):
  1808. self._set_vocab_sentencepiece()
  1809. def set_gguf_parameters(self):
  1810. super().set_gguf_parameters()
  1811. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1812. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1813. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1814. head_count = self.hparams["num_attention_heads"]
  1815. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1816. tensors: list[tuple[str, Tensor]] = []
  1817. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1818. logger.info(f"Unpacking and permuting layer {bid}")
  1819. tensors = [
  1820. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1821. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1822. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1823. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1824. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1825. self._reverse_hf_part(data_torch, 2)),
  1826. ]
  1827. else:
  1828. tensors = [(self.map_tensor_name(name), data_torch)]
  1829. return tensors
  1830. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1831. if n_kv_head is not None and n_head != n_kv_head:
  1832. n_head //= n_kv_head
  1833. return (
  1834. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1835. .swapaxes(1, 2)
  1836. .reshape(weights.shape)
  1837. )
  1838. def _reverse_hf_permute_part(
  1839. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1840. ) -> Tensor:
  1841. r = weights.shape[0] // 3
  1842. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1843. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1844. r = weights.shape[0] // 3
  1845. return weights[r * n_part:r * n_part + r, ...]
  1846. @ModelBase.register("XverseForCausalLM")
  1847. class XverseModel(TextModel):
  1848. model_arch = gguf.MODEL_ARCH.XVERSE
  1849. def set_vocab(self):
  1850. assert (self.dir_model / "tokenizer.json").is_file()
  1851. dir_model = self.dir_model
  1852. hparams = self.hparams
  1853. tokens: list[bytes] = []
  1854. toktypes: list[int] = []
  1855. from transformers import AutoTokenizer
  1856. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1857. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1858. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1859. # because vocab_size is the count of items, and indexes start at 0.
  1860. max_vocab_index = max(tokenizer.get_vocab().values())
  1861. if max_vocab_index >= vocab_size:
  1862. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1863. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1864. added_vocab = tokenizer.get_added_vocab()
  1865. for token_id in range(vocab_size):
  1866. token_text = reverse_vocab[token_id].encode('utf-8')
  1867. # replace "\x00" to string with length > 0
  1868. if token_text == b"\x00":
  1869. toktype = gguf.TokenType.BYTE # special
  1870. token_text = f"<{token_text}>".encode('utf-8')
  1871. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1872. toktype = gguf.TokenType.BYTE # special
  1873. elif reverse_vocab[token_id] in added_vocab:
  1874. if tokenizer.added_tokens_decoder[token_id].special:
  1875. toktype = gguf.TokenType.CONTROL
  1876. else:
  1877. toktype = gguf.TokenType.USER_DEFINED
  1878. else:
  1879. toktype = gguf.TokenType.NORMAL
  1880. tokens.append(token_text)
  1881. toktypes.append(toktype)
  1882. self.gguf_writer.add_tokenizer_model("llama")
  1883. self.gguf_writer.add_tokenizer_pre("default")
  1884. self.gguf_writer.add_token_list(tokens)
  1885. self.gguf_writer.add_token_types(toktypes)
  1886. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1887. special_vocab.add_to_gguf(self.gguf_writer)
  1888. def set_gguf_parameters(self):
  1889. super().set_gguf_parameters()
  1890. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1891. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1892. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1893. del bid # unused
  1894. head_count = self.hparams["num_attention_heads"]
  1895. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1896. # HF models permute some of the tensors, so we need to undo that
  1897. if name.endswith("q_proj.weight"):
  1898. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1899. if name.endswith("k_proj.weight"):
  1900. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1901. return [(self.map_tensor_name(name), data_torch)]
  1902. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1903. if n_kv_head is not None and n_head != n_kv_head:
  1904. n_head //= n_kv_head
  1905. return (
  1906. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1907. .swapaxes(1, 2)
  1908. .reshape(weights.shape)
  1909. )
  1910. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1911. class FalconModel(TextModel):
  1912. model_arch = gguf.MODEL_ARCH.FALCON
  1913. def set_gguf_parameters(self):
  1914. n_head = self.hparams.get("num_attention_heads")
  1915. if n_head is None:
  1916. n_head = self.hparams["n_head"] # old name
  1917. n_head_kv = self.hparams.get("num_kv_heads")
  1918. if n_head_kv is None:
  1919. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1920. self.gguf_writer.add_context_length(2048) # not in config.json
  1921. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1922. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1923. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1924. self.gguf_writer.add_block_count(self.block_count)
  1925. self.gguf_writer.add_head_count(n_head)
  1926. self.gguf_writer.add_head_count_kv(n_head_kv)
  1927. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1928. self.gguf_writer.add_file_type(self.ftype)
  1929. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1930. del bid # unused
  1931. # QKV tensor transform
  1932. # The original query_key_value tensor contains n_head_kv "kv groups",
  1933. # each consisting of n_head/n_head_kv query weights followed by one key
  1934. # and one value weight (shared by all query heads in the kv group).
  1935. # This layout makes it a big pain to work with in GGML.
  1936. # So we rearrange them here,, so that we have n_head query weights
  1937. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1938. # in contiguous fashion.
  1939. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1940. if "query_key_value" in name:
  1941. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1942. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1943. head_dim = self.hparams["hidden_size"] // n_head
  1944. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1945. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1946. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1947. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1948. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1949. return [(self.map_tensor_name(name), data_torch)]
  1950. @ModelBase.register("GPTBigCodeForCausalLM")
  1951. class StarCoderModel(TextModel):
  1952. model_arch = gguf.MODEL_ARCH.STARCODER
  1953. def set_gguf_parameters(self):
  1954. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1955. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1956. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1957. self.gguf_writer.add_block_count(self.block_count)
  1958. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1959. self.gguf_writer.add_head_count_kv(1)
  1960. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1961. self.gguf_writer.add_file_type(self.ftype)
  1962. @ModelBase.register("GPTRefactForCausalLM")
  1963. class RefactModel(TextModel):
  1964. model_arch = gguf.MODEL_ARCH.REFACT
  1965. def set_vocab(self):
  1966. super().set_vocab()
  1967. # TODO: how to determine special FIM tokens automatically?
  1968. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1969. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1970. special_vocab._set_special_token("prefix", 1)
  1971. special_vocab._set_special_token("suffix", 3)
  1972. special_vocab._set_special_token("middle", 2)
  1973. special_vocab.chat_template = None # do not add it twice
  1974. special_vocab.add_to_gguf(self.gguf_writer)
  1975. def set_gguf_parameters(self):
  1976. hidden_dim = self.hparams["n_embd"]
  1977. inner_dim = 4 * hidden_dim
  1978. hidden_dim = int(2 * inner_dim / 3)
  1979. multiple_of = 256
  1980. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1981. # refact uses Alibi. So this is from config.json which might be used by training.
  1982. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1983. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1984. self.gguf_writer.add_feed_forward_length(ff_dim)
  1985. self.gguf_writer.add_block_count(self.block_count)
  1986. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1987. self.gguf_writer.add_head_count_kv(1)
  1988. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1989. self.gguf_writer.add_file_type(self.ftype)
  1990. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1991. hidden_dim = self.hparams["n_embd"]
  1992. inner_dim = 4 * hidden_dim
  1993. hidden_dim = int(2 * inner_dim / 3)
  1994. multiple_of = 256
  1995. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1996. n_head = self.hparams["n_head"]
  1997. n_head_kv = 1
  1998. head_dim = self.hparams["n_embd"] // n_head
  1999. tensors: list[tuple[str, Tensor]] = []
  2000. if bid is not None:
  2001. if name == f"transformer.h.{bid}.attn.kv.weight":
  2002. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  2003. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  2004. elif name == f"transformer.h.{bid}.attn.q.weight":
  2005. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  2006. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  2007. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  2008. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  2009. if len(tensors) == 0:
  2010. tensors.append((self.map_tensor_name(name), data_torch))
  2011. return tensors
  2012. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  2013. class StableLMModel(TextModel):
  2014. model_arch = gguf.MODEL_ARCH.STABLELM
  2015. def set_vocab(self):
  2016. if (self.dir_model / "tokenizer.json").is_file():
  2017. self._set_vocab_gpt2()
  2018. else:
  2019. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  2020. self._set_vocab_qwen()
  2021. def set_gguf_parameters(self):
  2022. hparams = self.hparams
  2023. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2024. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2025. self.gguf_writer.add_block_count(self.block_count)
  2026. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2027. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  2028. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  2029. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2030. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2031. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  2032. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  2033. self.gguf_writer.add_file_type(self.ftype)
  2034. _q_norms: list[dict[str, Tensor]] | None = None
  2035. _k_norms: list[dict[str, Tensor]] | None = None
  2036. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2037. n_head = self.hparams["num_attention_heads"]
  2038. n_kv_head = self.hparams["num_key_value_heads"]
  2039. if name.find("q_layernorm.norms") != -1:
  2040. assert bid is not None
  2041. if self._q_norms is None:
  2042. self._q_norms = [{} for _ in range(self.block_count)]
  2043. self._q_norms[bid][name] = data_torch
  2044. if len(self._q_norms[bid]) >= n_head:
  2045. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  2046. else:
  2047. return []
  2048. if name.find("k_layernorm.norms") != -1:
  2049. assert bid is not None
  2050. if self._k_norms is None:
  2051. self._k_norms = [{} for _ in range(self.block_count)]
  2052. self._k_norms[bid][name] = data_torch
  2053. if len(self._k_norms[bid]) >= n_kv_head:
  2054. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  2055. else:
  2056. return []
  2057. return [(self.map_tensor_name(name), data_torch)]
  2058. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  2059. datas: list[Tensor] = []
  2060. # extract the norms in order
  2061. for xid in range(n_head):
  2062. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  2063. datas.append(norms[ename])
  2064. del norms[ename]
  2065. data_torch = torch.stack(datas, dim=0)
  2066. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  2067. new_name = self.map_tensor_name(merged_name)
  2068. return [(new_name, data_torch)]
  2069. def prepare_tensors(self):
  2070. super().prepare_tensors()
  2071. if self._q_norms is not None or self._k_norms is not None:
  2072. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  2073. norms = (
  2074. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  2075. ) + (
  2076. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  2077. )
  2078. if len(norms) > 0:
  2079. raise ValueError(f"Unprocessed norms: {norms}")
  2080. @ModelBase.register(
  2081. "LLaMAForCausalLM",
  2082. "LlamaForCausalLM",
  2083. "MistralForCausalLM",
  2084. "MixtralForCausalLM",
  2085. "VLlama3ForCausalLM",
  2086. "LlavaForConditionalGeneration",
  2087. "VoxtralForConditionalGeneration",
  2088. "IQuestCoderForCausalLM",
  2089. "LlamaModel")
  2090. class LlamaModel(TextModel):
  2091. model_arch = gguf.MODEL_ARCH.LLAMA
  2092. undo_permute = True
  2093. def __init__(self, *args, **kwargs):
  2094. super().__init__(*args, **kwargs)
  2095. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2096. if self.hf_arch == "VLlama3ForCausalLM":
  2097. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2098. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2099. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2100. def set_vocab(self):
  2101. if self.origin_hf_arch == "GlmasrModel":
  2102. return self._set_vocab_glmedge()
  2103. if self.is_mistral_format:
  2104. return self._set_vocab_mistral()
  2105. path_tekken_json = self.dir_model / "tekken.json"
  2106. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2107. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2108. self._set_vocab_mistral()
  2109. try:
  2110. self._set_vocab_sentencepiece()
  2111. except FileNotFoundError:
  2112. try:
  2113. self._set_vocab_llama_hf()
  2114. except (FileNotFoundError, TypeError):
  2115. # Llama 3
  2116. self._set_vocab_gpt2()
  2117. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2118. if self.hparams.get("vocab_size", 32000) == 32016:
  2119. special_vocab = gguf.SpecialVocab(
  2120. self.dir_model, load_merges=False,
  2121. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2122. )
  2123. special_vocab._set_special_token("prefix", 32007)
  2124. special_vocab._set_special_token("suffix", 32008)
  2125. special_vocab._set_special_token("middle", 32009)
  2126. special_vocab._set_special_token("eot", 32010)
  2127. special_vocab.add_to_gguf(self.gguf_writer)
  2128. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2129. if tokenizer_config_file.is_file():
  2130. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2131. tokenizer_config_json = json.load(f)
  2132. if "add_prefix_space" in tokenizer_config_json:
  2133. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2134. # Apply to granite small models only
  2135. if self.hparams.get("vocab_size", 32000) == 49152:
  2136. self.gguf_writer.add_add_bos_token(False)
  2137. def set_gguf_parameters(self):
  2138. super().set_gguf_parameters()
  2139. hparams = self.hparams
  2140. if not self.is_mistral_format:
  2141. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2142. if (rope_dim := hparams.get("head_dim")) is None:
  2143. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2144. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2145. @staticmethod
  2146. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2147. if n_head_kv is not None and n_head != n_head_kv:
  2148. n_head = n_head_kv
  2149. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2150. .swapaxes(1, 2)
  2151. .reshape(weights.shape))
  2152. _experts: list[dict[str, Tensor]] | None = None
  2153. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2154. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2155. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2156. vision_prefixes = [
  2157. "vision_encoder.",
  2158. "vision_language_adapter.",
  2159. "patch_merger.",
  2160. "pre_mm_projector_norm",
  2161. "audio_encoder.",
  2162. ]
  2163. is_multimodal_tensor = "vision_tower" in name \
  2164. or "vision_model" in name \
  2165. or "audio_tower" in name \
  2166. or "model.connector" in name \
  2167. or "multi_modal_projector" in name \
  2168. or any(
  2169. name.startswith(prefix)
  2170. for prefix in vision_prefixes
  2171. )
  2172. if is_multimodal_tensor:
  2173. return [] # skip vision tensors
  2174. elif self.hf_arch == "LlamaModel":
  2175. name = "model." + name
  2176. elif name.startswith("model.text_model"):
  2177. name = name.replace("text_model.", "") # for SmolVLM
  2178. elif name.startswith("language_model."):
  2179. name = name.replace("language_model.", "") # for the rest
  2180. if self.undo_permute:
  2181. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2182. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2183. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2184. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2185. # process the experts separately
  2186. if name.find("block_sparse_moe.experts") != -1:
  2187. n_experts = self.hparams["num_local_experts"]
  2188. assert bid is not None
  2189. if self._experts is None:
  2190. self._experts = [{} for _ in range(self.block_count)]
  2191. self._experts[bid][name] = data_torch
  2192. if len(self._experts[bid]) >= n_experts * 3:
  2193. tensors: list[tuple[str, Tensor]] = []
  2194. # merge the experts into a single 3d tensor
  2195. for wid in ["w1", "w2", "w3"]:
  2196. datas: list[Tensor] = []
  2197. for xid in range(n_experts):
  2198. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2199. datas.append(self._experts[bid][ename])
  2200. del self._experts[bid][ename]
  2201. data_torch = torch.stack(datas, dim=0)
  2202. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2203. new_name = self.map_tensor_name(merged_name)
  2204. tensors.append((new_name, data_torch))
  2205. return tensors
  2206. else:
  2207. return []
  2208. return [(self.map_tensor_name(name), data_torch)]
  2209. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2210. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2211. if rope_params.get("rope_type", '').lower() == "llama3":
  2212. base = rope_params.get("rope_theta", 10000.0)
  2213. if (dim := self.hparams.get("head_dim")) is None:
  2214. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2215. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2216. factor = rope_params.get("factor", 8.0)
  2217. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2218. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2219. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2220. low_freq_wavelen = old_context_len / low_freq_factor
  2221. high_freq_wavelen = old_context_len / high_freq_factor
  2222. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2223. rope_factors = []
  2224. for freq in freqs:
  2225. wavelen = 2 * math.pi / freq
  2226. if wavelen < high_freq_wavelen:
  2227. rope_factors.append(1)
  2228. elif wavelen > low_freq_wavelen:
  2229. rope_factors.append(factor)
  2230. else:
  2231. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2232. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2233. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2234. def prepare_tensors(self):
  2235. super().prepare_tensors()
  2236. if self._experts is not None:
  2237. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2238. experts = [k for d in self._experts for k in d.keys()]
  2239. if len(experts) > 0:
  2240. raise ValueError(f"Unprocessed experts: {experts}")
  2241. @ModelBase.register("ArceeForCausalLM")
  2242. class ArceeModel(LlamaModel):
  2243. model_arch = gguf.MODEL_ARCH.ARCEE
  2244. def set_gguf_parameters(self):
  2245. super().set_gguf_parameters()
  2246. self._try_set_pooling_type()
  2247. @ModelBase.register("AfmoeForCausalLM")
  2248. class AfmoeModel(LlamaModel):
  2249. model_arch = gguf.MODEL_ARCH.AFMOE
  2250. def set_gguf_parameters(self):
  2251. super().set_gguf_parameters()
  2252. # MoE parameters
  2253. if (n_experts := self.hparams.get("num_experts")) is not None:
  2254. self.gguf_writer.add_expert_count(n_experts)
  2255. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2256. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2257. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2258. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2259. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2260. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2261. # Route normalization and scaling
  2262. if (route_norm := self.hparams.get("route_norm")) is not None:
  2263. self.gguf_writer.add_expert_weights_norm(route_norm)
  2264. if (route_scale := self.hparams.get("route_scale")) is not None:
  2265. self.gguf_writer.add_expert_weights_scale(route_scale)
  2266. # Sliding window attention
  2267. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2268. self.gguf_writer.add_sliding_window(sliding_window)
  2269. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2270. # Handle expert weights - they're already merged in the HF format
  2271. # process the experts separately
  2272. if name.find("mlp.experts") != -1:
  2273. n_experts = self.hparams["num_experts"]
  2274. assert bid is not None
  2275. if self._experts is None:
  2276. self._experts = [{} for _ in range(self.block_count)]
  2277. self._experts[bid][name] = data_torch
  2278. if len(self._experts[bid]) >= n_experts * 3:
  2279. tensors: list[tuple[str, Tensor]] = []
  2280. # merge the experts into a single 3d tensor
  2281. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2282. datas: list[Tensor] = []
  2283. for xid in range(n_experts):
  2284. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2285. datas.append(self._experts[bid][ename_to_retrieve])
  2286. del self._experts[bid][ename_to_retrieve]
  2287. data_torch = torch.stack(datas, dim=0)
  2288. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2289. new_name = self.map_tensor_name(merged_name)
  2290. tensors.append((new_name, data_torch))
  2291. return tensors
  2292. else:
  2293. return []
  2294. if name.endswith(".expert_bias"):
  2295. name = name.replace(".expert_bias", ".expert_bias.bias")
  2296. return [(self.map_tensor_name(name), data_torch)]
  2297. @ModelBase.register(
  2298. "LlavaForConditionalGeneration", # pixtral
  2299. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2300. )
  2301. class LlavaVisionModel(MmprojModel):
  2302. img_break_tok_id = -1
  2303. use_break_tok = True
  2304. def __init__(self, *args, **kwargs):
  2305. super().__init__(*args, **kwargs)
  2306. if self.hparams.get("model_type") == "pixtral":
  2307. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2308. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2309. if self.use_break_tok:
  2310. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2311. elif self.is_mistral_format:
  2312. # hparams is already vision config here so norm_eps is only defined in global_config.
  2313. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2314. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2315. if self.use_break_tok:
  2316. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2317. else:
  2318. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2319. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2320. def get_token_id(self, token: str) -> int:
  2321. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2322. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2323. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2324. for id_, token_data in added_tokens_decoder.items():
  2325. if token_data["content"] == token:
  2326. return int(id_)
  2327. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2328. def set_gguf_parameters(self):
  2329. super().set_gguf_parameters()
  2330. hparams = self.hparams
  2331. if hparams.get("model_type") == "pixtral":
  2332. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2333. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2334. # hidden_act
  2335. if hparams["hidden_act"] == "silu":
  2336. self.gguf_writer.add_vision_use_silu(True)
  2337. elif hparams["hidden_act"] == "gelu":
  2338. self.gguf_writer.add_vision_use_gelu(True)
  2339. else:
  2340. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2341. # spatial_merge_size
  2342. if "spatial_merge_size" in self.global_config:
  2343. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2345. del bid # unused
  2346. n_head = (
  2347. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2348. )
  2349. n_kv_head = n_head
  2350. valid_prefixes = (
  2351. "multi_modal_projector.",
  2352. "vision_tower.",
  2353. "vision_encoder.",
  2354. "vision_language_adapter.",
  2355. "patch_merger.",
  2356. "pre_mm_projector_norm",
  2357. )
  2358. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2359. # process vision tensors
  2360. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2361. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2362. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2363. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2364. return [(self.map_tensor_name(name), data_torch)]
  2365. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2366. if self.img_break_tok_id > 0 and embed_key in name:
  2367. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2368. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2369. img_break_embd = data_torch[self.img_break_tok_id]
  2370. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2371. return [(self.map_tensor_name(name), img_break_embd)]
  2372. return [] # skip other tensors
  2373. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2374. class SmolVLMModel(MmprojModel):
  2375. def __init__(self, *args, **kwargs):
  2376. super().__init__(*args, **kwargs)
  2377. if self.hparams["model_type"] == "smolvlm_vision":
  2378. # fix for SmolVLM2, missing some keys in config.json
  2379. # default values are taken from transformers code
  2380. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2381. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2382. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2383. def set_gguf_parameters(self):
  2384. super().set_gguf_parameters()
  2385. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2386. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2387. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2388. self.gguf_writer.add_vision_use_gelu(True)
  2389. # Add the preprocessor longest edge size
  2390. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2391. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2392. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2393. if ".embeddings." in name:
  2394. return gguf.GGMLQuantizationType.F32
  2395. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2396. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2397. del bid # unused
  2398. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2399. if is_vision_tensor:
  2400. return [(self.map_tensor_name(name), data_torch)]
  2401. return [] # skip other tensors
  2402. @ModelBase.register(
  2403. "Llama4ForConditionalGeneration",
  2404. "Llama4ForCausalLM",
  2405. )
  2406. class Llama4Model(LlamaModel):
  2407. model_arch = gguf.MODEL_ARCH.LLAMA4
  2408. undo_permute = False
  2409. def __init__(self, *args, **kwargs):
  2410. super().__init__(*args, **kwargs)
  2411. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2412. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2413. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2414. def set_vocab(self):
  2415. self._set_vocab_gpt2()
  2416. def set_gguf_parameters(self):
  2417. super().set_gguf_parameters()
  2418. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2419. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2420. if "layer_types" in self.hparams:
  2421. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2422. # all layers are full attention (for MobileLLM), disable swa
  2423. self.gguf_writer.add_sliding_window(0)
  2424. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2425. if name.startswith("language_model."):
  2426. name = name.replace("language_model.", "")
  2427. # split the gate_up into gate and up
  2428. if "gate_up_proj" in name:
  2429. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2430. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2431. dim_half = data_torch.shape[-1] // 2
  2432. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2433. return [
  2434. (self.map_tensor_name(name_gate), gate_proj_weight),
  2435. (self.map_tensor_name(name_up), up_proj_weight)
  2436. ]
  2437. if name.endswith("down_proj"):
  2438. name += ".weight"
  2439. data_torch = data_torch.transpose(-1, -2)
  2440. if "multi_modal_projector" in name or "vision_model" in name:
  2441. return []
  2442. return super().modify_tensors(data_torch, name, bid)
  2443. @ModelBase.register("Llama4ForConditionalGeneration")
  2444. class Llama4VisionModel(MmprojModel):
  2445. def set_gguf_parameters(self):
  2446. super().set_gguf_parameters()
  2447. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2448. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2449. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2450. assert self.hparams["hidden_act"] == "gelu"
  2451. self.gguf_writer.add_vision_use_gelu(True)
  2452. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2453. del bid # unused
  2454. if "multi_modal_projector" in name or "vision_model" in name:
  2455. # process vision tensors
  2456. if "positional_embedding_vlm" in name and ".weight" not in name:
  2457. name += ".weight"
  2458. if "multi_modal_projector.linear_1" in name:
  2459. # despite the name with number postfix, this is a single fully connected layer
  2460. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2461. return [(self.map_tensor_name(name), data_torch)]
  2462. return []
  2463. @ModelBase.register("Mistral3ForConditionalGeneration")
  2464. class Mistral3Model(LlamaModel):
  2465. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2466. def __init__(self, *args, **kwargs):
  2467. super().__init__(*args, **kwargs)
  2468. # for compatibility, we use LLAMA arch for older models
  2469. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2470. if self.hparams.get("model_type") != "ministral3":
  2471. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2472. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2473. self.gguf_writer.add_architecture()
  2474. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2475. def set_gguf_parameters(self):
  2476. super().set_gguf_parameters()
  2477. rope_params = self.rope_parameters
  2478. if self.hparams.get("model_type") == "ministral3":
  2479. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2480. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2481. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2482. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2483. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2484. name = name.replace("language_model.", "")
  2485. if "multi_modal_projector" in name or "vision_tower" in name:
  2486. return []
  2487. return super().modify_tensors(data_torch, name, bid)
  2488. @ModelBase.register("DeciLMForCausalLM")
  2489. class DeciModel(TextModel):
  2490. model_arch = gguf.MODEL_ARCH.DECI
  2491. @staticmethod
  2492. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2493. # DeciLM-specific code
  2494. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2495. return DeciModel._find_multiple(intermediate_size, 256)
  2496. @staticmethod
  2497. def _find_multiple(n: int, k: int) -> int:
  2498. # DeciLM-specific code
  2499. if n % k == 0:
  2500. return n
  2501. return n + k - (n % k)
  2502. def __init__(self, *args, **kwargs):
  2503. super().__init__(*args, **kwargs)
  2504. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2505. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2506. assert self.block_count == len(_block_configs)
  2507. self._num_kv_heads = list()
  2508. self._num_heads = list()
  2509. _ffn_multipliers = list()
  2510. # ***linear attention layer***
  2511. # if n_heads_in_group is None and replace_with_linear is True
  2512. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2513. # ***attention-free layer***
  2514. # if n_heads_in_group is None and replace_with_linear is False
  2515. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2516. # ***normal attention-layer***
  2517. # if n_heads_in_group is not None, then
  2518. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2519. # _num_heads[il] is num_attention_head
  2520. # ***dummy layer*** for nemotron 253B
  2521. # if n_heads_in_group is None and ffn_mult is None
  2522. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2523. for il in range(len(_block_configs)):
  2524. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2525. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2526. self._num_kv_heads.append(0)
  2527. self._num_heads.append(self.hparams["num_attention_heads"])
  2528. else:
  2529. self._num_kv_heads.append(0)
  2530. self._num_heads.append(0)
  2531. else:
  2532. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2533. self._num_heads.append(self.hparams["num_attention_heads"])
  2534. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2535. _ffn_multipliers.append(0.0)
  2536. else:
  2537. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2538. assert self.block_count == len(self._num_kv_heads)
  2539. assert self.block_count == len(self._num_heads)
  2540. assert self.block_count == len(_ffn_multipliers)
  2541. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2542. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2543. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2544. self._ffn_dims: list[int] = [
  2545. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2546. for multiplier in _ffn_multipliers
  2547. ]
  2548. def set_vocab(self):
  2549. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2550. # eos_token from '|eot_id|' to '|end_of_text|'
  2551. if self.hparams.get("vocab_size", 128256) == 128256:
  2552. tokens, toktypes, tokpre = self.get_vocab_base()
  2553. self.gguf_writer.add_tokenizer_model("gpt2")
  2554. self.gguf_writer.add_tokenizer_pre(tokpre)
  2555. self.gguf_writer.add_token_list(tokens)
  2556. self.gguf_writer.add_token_types(toktypes)
  2557. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2558. special_vocab.add_to_gguf(self.gguf_writer)
  2559. else:
  2560. # DeciLM-7B
  2561. self._set_vocab_llama_hf()
  2562. def set_gguf_parameters(self):
  2563. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2564. assert self.block_count == len(self._num_kv_heads)
  2565. assert self.block_count == len(self._num_heads)
  2566. assert self.block_count == len(self._ffn_dims)
  2567. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2568. self.gguf_writer.add_rope_freq_base(rope_theta)
  2569. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2570. self.gguf_writer.add_head_count(self._num_heads)
  2571. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2572. self.gguf_writer.add_block_count(self.block_count)
  2573. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2574. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2575. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2576. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2577. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2578. self.gguf_writer.add_file_type(self.ftype)
  2579. else: # DeciLM-7B
  2580. super().set_gguf_parameters()
  2581. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2582. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2583. assert self.block_count == len(self._num_kv_heads)
  2584. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2585. hparams = self.hparams
  2586. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2587. if (rope_dim := hparams.get("head_dim")) is None:
  2588. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2589. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2590. @staticmethod
  2591. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2592. if n_head_kv is not None and n_head != n_head_kv:
  2593. n_head = n_head_kv
  2594. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2595. .swapaxes(1, 2)
  2596. .reshape(weights.shape))
  2597. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2598. n_head = self.hparams["num_attention_heads"]
  2599. if bid is not None:
  2600. if "num_key_value_heads_per_layer" in self.hparams:
  2601. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2602. elif "block_configs" in self.hparams:
  2603. n_kv_head = self._num_kv_heads[bid]
  2604. n_head = self._num_heads[bid]
  2605. else:
  2606. n_kv_head = self.hparams.get("num_key_value_heads")
  2607. else:
  2608. n_kv_head = self.hparams.get("num_key_value_heads")
  2609. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2610. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2611. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2612. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2613. return [(self.map_tensor_name(name), data_torch)]
  2614. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2615. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2616. if rope_params.get("rope_type", '').lower() == "llama3":
  2617. base = rope_params.get("rope_theta", 10000.0)
  2618. if (dim := self.hparams.get("head_dim")) is None:
  2619. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2620. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2621. factor = rope_params.get("factor", 8.0)
  2622. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2623. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2624. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2625. low_freq_wavelen = old_context_len / low_freq_factor
  2626. high_freq_wavelen = old_context_len / high_freq_factor
  2627. assert low_freq_wavelen != high_freq_wavelen
  2628. rope_factors = []
  2629. for freq in freqs:
  2630. wavelen = 2 * math.pi / freq
  2631. if wavelen < high_freq_wavelen:
  2632. rope_factors.append(1)
  2633. elif wavelen > low_freq_wavelen:
  2634. rope_factors.append(factor)
  2635. else:
  2636. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2637. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2638. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2639. def prepare_tensors(self):
  2640. super().prepare_tensors()
  2641. @ModelBase.register("BitnetForCausalLM")
  2642. class BitnetModel(TextModel):
  2643. model_arch = gguf.MODEL_ARCH.BITNET
  2644. def set_vocab(self):
  2645. self._set_vocab_sentencepiece()
  2646. def set_gguf_parameters(self):
  2647. super().set_gguf_parameters()
  2648. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2649. self.gguf_writer.add_rope_scaling_factor(1.0)
  2650. def weight_quant(self, weight: Tensor) -> Tensor:
  2651. dtype = weight.dtype
  2652. weight = weight.float()
  2653. scale = weight.abs().mean().clamp(min=1e-5)
  2654. iscale = 1 / scale
  2655. # TODO: multiply by the scale directly instead of inverting it twice
  2656. # (this is also unnecessarily doubly inverted upstream)
  2657. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2658. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2659. return result.type(dtype)
  2660. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2661. new_name = self.map_tensor_name(name)
  2662. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2663. gguf.MODEL_TENSOR.ATTN_Q,
  2664. gguf.MODEL_TENSOR.ATTN_K,
  2665. gguf.MODEL_TENSOR.ATTN_V,
  2666. gguf.MODEL_TENSOR.ATTN_OUT,
  2667. gguf.MODEL_TENSOR.FFN_UP,
  2668. gguf.MODEL_TENSOR.FFN_DOWN,
  2669. gguf.MODEL_TENSOR.FFN_GATE,
  2670. ]):
  2671. # transform weight into 1/0/-1 (in fp32)
  2672. data_torch = self.weight_quant(data_torch)
  2673. yield (new_name, data_torch)
  2674. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2675. class GrokModel(TextModel):
  2676. model_arch = gguf.MODEL_ARCH.GROK
  2677. def set_vocab(self):
  2678. if (self.dir_model / 'tokenizer.model').is_file():
  2679. self._set_vocab_sentencepiece()
  2680. return
  2681. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2682. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2683. sys.exit(1)
  2684. self._set_vocab_gpt2()
  2685. def __init__(self, *args, **kwargs):
  2686. super().__init__(*args, **kwargs)
  2687. def set_gguf_parameters(self):
  2688. super().set_gguf_parameters()
  2689. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2690. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2691. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2692. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2693. if (rope_dim := self.hparams.get("head_dim")) is None:
  2694. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2695. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2696. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2697. # Treat "original" as "yarn", seems to have been a mistake
  2698. if self.hparams.get("rope_type") in ("yarn", "original"):
  2699. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2700. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2701. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2702. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2703. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2704. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2705. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2706. if temp_len := self.hparams.get("attn_temperature_len"):
  2707. self.gguf_writer.add_attn_temperature_length(temp_len)
  2708. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2709. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2710. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2711. _experts: list[dict[str, list[Tensor]]] | None = None
  2712. _cur_expert = ""
  2713. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2714. tensors: list[tuple[str, Tensor]] = []
  2715. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2716. if not is_expert:
  2717. tensors.append((self.map_tensor_name(name), data_torch))
  2718. # process the experts separately
  2719. if is_expert or self._cur_expert:
  2720. n_experts = self.hparams["num_local_experts"]
  2721. assert bid is not None
  2722. if self._experts is None:
  2723. self._experts = [{} for _ in range(self.block_count)]
  2724. # concatenate split tensors
  2725. if name in self._experts[bid]:
  2726. self._cur_expert = name
  2727. self._experts[bid][name].append(data_torch)
  2728. return []
  2729. elif is_expert:
  2730. self._cur_expert = name
  2731. self._experts[bid][name] = [data_torch]
  2732. return []
  2733. else:
  2734. self._cur_expert = ""
  2735. for bid in range(self.block_count):
  2736. if len(self._experts[bid]) >= n_experts * 3:
  2737. # merge the experts into a single 3d tensor
  2738. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2739. datas: list[Tensor] = []
  2740. for xid in range(n_experts):
  2741. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2742. if ename not in self._experts[bid]:
  2743. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2744. tensor_list = self._experts[bid][ename]
  2745. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2746. del self._experts[bid][ename]
  2747. data_torch = torch.stack(datas, dim=0)
  2748. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2749. new_name = self.map_tensor_name(merged_name)
  2750. yield (new_name, data_torch)
  2751. yield from tensors
  2752. @ModelBase.register("DbrxForCausalLM")
  2753. class DbrxModel(TextModel):
  2754. model_arch = gguf.MODEL_ARCH.DBRX
  2755. def set_gguf_parameters(self):
  2756. ffn_config = self.hparams["ffn_config"]
  2757. attn_config = self.hparams["attn_config"]
  2758. self.gguf_writer.add_block_count(self.block_count)
  2759. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2760. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2761. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2762. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2763. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2764. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2765. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2766. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2767. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2768. self.gguf_writer.add_layer_norm_eps(1e-5)
  2769. self.gguf_writer.add_file_type(self.ftype)
  2770. logger.info(f"gguf: file type = {self.ftype}")
  2771. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2772. del bid # unused
  2773. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2774. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2775. n_embd = self.hparams["d_model"]
  2776. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2777. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2778. # But llama.cpp moe graph works differently
  2779. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2780. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2781. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2782. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2783. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2784. experts = False
  2785. for exp_tensor_name in exp_tensor_names.keys():
  2786. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2787. experts = True
  2788. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2789. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2790. data_torch = data_torch.permute(*permute_tensor)
  2791. break
  2792. # map tensor names
  2793. # In MoE models the ffn tensors are typically most of the model weights,
  2794. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2795. # Every other model has the weight names ending in .weight,
  2796. # let's assume that is the convention which is not the case for dbrx:
  2797. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2798. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2799. return [(new_name, data_torch)]
  2800. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2801. del name, new_name, bid # unused
  2802. return n_dims > 1
  2803. @ModelBase.register("MiniCPMForCausalLM")
  2804. class MiniCPMModel(TextModel):
  2805. model_arch = gguf.MODEL_ARCH.MINICPM
  2806. def set_gguf_parameters(self):
  2807. super().set_gguf_parameters()
  2808. embedding_scale = float(self.hparams["scale_emb"])
  2809. self.gguf_writer.add_embedding_scale(embedding_scale)
  2810. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2811. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2812. self.gguf_writer.add_residual_scale(residual_scale)
  2813. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2814. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2815. self.gguf_writer.add_logit_scale(logit_scale)
  2816. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2817. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2818. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2819. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2820. if rope_scaling is not None:
  2821. long_factors = rope_scaling.get('long_factor', None)
  2822. short_factors = rope_scaling.get('short_factor', None)
  2823. if long_factors is None or short_factors is None:
  2824. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2825. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2826. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2827. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2828. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2829. def set_vocab(self):
  2830. self._set_vocab_sentencepiece()
  2831. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2832. del bid # unused
  2833. n_head = self.hparams["num_attention_heads"]
  2834. n_kv_head = self.hparams.get("num_key_value_heads")
  2835. # HF models permute some of the tensors, so we need to undo that
  2836. if name.endswith(("q_proj.weight")):
  2837. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2838. if name.endswith(("k_proj.weight")):
  2839. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2840. return [(self.map_tensor_name(name), data_torch)]
  2841. @ModelBase.register("MiniCPM3ForCausalLM")
  2842. class MiniCPM3Model(TextModel):
  2843. model_arch = gguf.MODEL_ARCH.MINICPM3
  2844. def set_gguf_parameters(self):
  2845. hparams = self.hparams
  2846. self.gguf_writer.add_file_type(self.ftype)
  2847. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2848. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2849. self.gguf_writer.add_block_count(self.block_count)
  2850. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2851. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2852. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2853. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2854. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2855. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2856. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2857. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2858. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2859. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2860. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2861. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2862. if rope_scaling is not None:
  2863. rope_dims = self.hparams["qk_rope_head_dim"]
  2864. long_factors = rope_scaling.get('long_factor', None)
  2865. short_factors = rope_scaling.get('short_factor', None)
  2866. if long_factors is None or short_factors is None:
  2867. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2868. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2869. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2870. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2871. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2872. def set_vocab(self):
  2873. self._set_vocab_sentencepiece()
  2874. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2875. if n_kv_head is not None and n_head != n_kv_head:
  2876. n_head //= n_kv_head
  2877. return (
  2878. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2879. .swapaxes(1, 2)
  2880. .reshape(weights.shape)
  2881. )
  2882. @ModelBase.register("QWenLMHeadModel")
  2883. class QwenModel(TextModel):
  2884. model_arch = gguf.MODEL_ARCH.QWEN
  2885. @staticmethod
  2886. def token_bytes_to_string(b):
  2887. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2888. byte_encoder = bytes_to_unicode()
  2889. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2890. @staticmethod
  2891. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2892. parts = [bytes([b]) for b in token]
  2893. while True:
  2894. min_idx = None
  2895. min_rank = None
  2896. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2897. rank = mergeable_ranks.get(pair[0] + pair[1])
  2898. if rank is not None and (min_rank is None or rank < min_rank):
  2899. min_idx = i
  2900. min_rank = rank
  2901. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2902. break
  2903. assert min_idx is not None
  2904. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2905. return parts
  2906. def set_vocab(self):
  2907. self._set_vocab_qwen()
  2908. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM", "AudioFlamingo3ForConditionalGeneration")
  2909. class Qwen2Model(TextModel):
  2910. model_arch = gguf.MODEL_ARCH.QWEN2
  2911. def set_vocab(self):
  2912. try:
  2913. self._set_vocab_sentencepiece()
  2914. except FileNotFoundError:
  2915. self._set_vocab_gpt2()
  2916. def set_gguf_parameters(self):
  2917. super().set_gguf_parameters()
  2918. self._try_set_pooling_type()
  2919. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2920. if self.hf_arch == "Qwen2Model":
  2921. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2922. if "language_model." in name:
  2923. name = name.replace("language_model.", "") # for InternVL
  2924. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2925. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2926. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2927. # skip vision and audio tensors
  2928. return []
  2929. yield from super().modify_tensors(data_torch, name, bid)
  2930. @ModelBase.register("DreamModel")
  2931. class DreamModel(TextModel):
  2932. model_arch = gguf.MODEL_ARCH.DREAM
  2933. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2934. tokens: list[str] = []
  2935. toktypes: list[int] = []
  2936. from transformers import AutoTokenizer
  2937. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2938. vocab_dict = tokenizer.get_vocab()
  2939. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2940. assert max(vocab_dict.values()) < vocab_size
  2941. tokpre = self.get_vocab_base_pre(tokenizer)
  2942. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2943. added_vocab = tokenizer.get_added_vocab()
  2944. for i in range(vocab_size):
  2945. if i not in reverse_vocab:
  2946. tokens.append(f"[PAD{i}]")
  2947. toktypes.append(gguf.TokenType.UNUSED)
  2948. elif reverse_vocab[i] in added_vocab:
  2949. tokens.append(reverse_vocab[i])
  2950. # Check if it's a special token - treat special tokens as CONTROL tokens
  2951. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2952. if tokenizer.added_tokens_decoder[i].special:
  2953. toktypes.append(gguf.TokenType.CONTROL)
  2954. else:
  2955. toktypes.append(gguf.TokenType.USER_DEFINED)
  2956. else:
  2957. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2958. toktypes.append(gguf.TokenType.CONTROL)
  2959. else:
  2960. tokens.append(reverse_vocab[i])
  2961. toktypes.append(gguf.TokenType.NORMAL)
  2962. return tokens, toktypes, tokpre
  2963. def set_vocab(self):
  2964. try:
  2965. self._set_vocab_sentencepiece()
  2966. except FileNotFoundError:
  2967. self._set_vocab_gpt2()
  2968. def set_gguf_parameters(self):
  2969. super().set_gguf_parameters()
  2970. self._try_set_pooling_type()
  2971. # Dream models use non-causal attention for diffusion
  2972. self.gguf_writer.add_causal_attention(False)
  2973. # Add Dream-specific parameters
  2974. mask_token_id = self.hparams.get("mask_token_id")
  2975. if mask_token_id is not None:
  2976. self.gguf_writer.add_mask_token_id(mask_token_id)
  2977. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2978. # Dream model tensors should be mapped directly since it's the base model
  2979. yield from super().modify_tensors(data_torch, name, bid)
  2980. @ModelBase.register("LLaDAModelLM")
  2981. class LLaDAModel(TextModel):
  2982. model_arch = gguf.MODEL_ARCH.LLADA
  2983. undo_permute = True
  2984. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2985. tokens: list[str] = []
  2986. toktypes: list[int] = []
  2987. from transformers import AutoTokenizer
  2988. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2989. vocab_dict = tokenizer.get_vocab()
  2990. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2991. assert max(vocab_dict.values()) < vocab_size
  2992. tokpre = self.get_vocab_base_pre(tokenizer)
  2993. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2994. added_vocab = tokenizer.get_added_vocab()
  2995. for i in range(vocab_size):
  2996. if i not in reverse_vocab:
  2997. tokens.append(f"[PAD{i}]")
  2998. toktypes.append(gguf.TokenType.UNUSED)
  2999. elif reverse_vocab[i] in added_vocab:
  3000. tokens.append(reverse_vocab[i])
  3001. # Check if it's a special token - treat special tokens as CONTROL tokens
  3002. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  3003. if tokenizer.added_tokens_decoder[i].special:
  3004. toktypes.append(gguf.TokenType.CONTROL)
  3005. else:
  3006. toktypes.append(gguf.TokenType.USER_DEFINED)
  3007. else:
  3008. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  3009. toktypes.append(gguf.TokenType.CONTROL)
  3010. else:
  3011. tokens.append(reverse_vocab[i])
  3012. toktypes.append(gguf.TokenType.NORMAL)
  3013. return tokens, toktypes, tokpre
  3014. def set_vocab(self):
  3015. self._set_vocab_gpt2()
  3016. # LLaDA specific parameters
  3017. self.gguf_writer.add_add_bos_token(True)
  3018. def set_gguf_parameters(self):
  3019. super().set_gguf_parameters()
  3020. self._try_set_pooling_type()
  3021. # Add parameters similar to LlamaModel
  3022. hparams = self.hparams
  3023. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3024. if (rope_dim := hparams.get("head_dim")) is None:
  3025. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  3026. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  3027. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3028. # Set context length for LLaDA
  3029. context_length = self.hparams.get("max_sequence_length", 4096)
  3030. self.gguf_writer.add_context_length(context_length)
  3031. # Set embedding length (dimension size)
  3032. embedding_length = self.hparams.get("d_model", 4096)
  3033. self.gguf_writer.add_embedding_length(embedding_length)
  3034. # Set feed forward length (MLP hidden size)
  3035. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  3036. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  3037. # LLaDA models use non-causal attention for diffusion, similar to Dream
  3038. self.gguf_writer.add_causal_attention(False)
  3039. # LLaDA models don't shift their logits
  3040. self.gguf_writer.add_diffusion_shift_logits(False)
  3041. @staticmethod
  3042. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3043. if n_head_kv is not None and n_head != n_head_kv:
  3044. n_head = n_head_kv
  3045. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3046. .swapaxes(1, 2)
  3047. .reshape(weights.shape))
  3048. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3049. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  3050. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  3051. if self.undo_permute:
  3052. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3053. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  3054. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3055. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  3056. # LLaDA model tensors should be mapped directly since it's the base model
  3057. yield from super().modify_tensors(data_torch, name, bid)
  3058. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  3059. class Ernie4_5Model(TextModel):
  3060. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  3061. def set_vocab(self):
  3062. self._set_vocab_sentencepiece()
  3063. def set_gguf_parameters(self):
  3064. super().set_gguf_parameters()
  3065. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3066. num_heads = self.hparams["num_attention_heads"]
  3067. num_kv_heads = self.hparams["num_key_value_heads"]
  3068. if (head_dim := self.hparams.get("head_dim")) is None:
  3069. head_dim = self.hparams["hidden_size"] // num_heads
  3070. if "ernie." in name:
  3071. name = name.replace("ernie.", "model.")
  3072. # split the qkv weights
  3073. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  3074. if "qkv_proj" in name:
  3075. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  3076. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  3077. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  3078. total_q_dim = num_heads * head_dim
  3079. total_k_dim = num_kv_heads * head_dim
  3080. total_v_dim = num_kv_heads * head_dim
  3081. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3082. return [
  3083. (self.map_tensor_name(name_q), q_proj_weight),
  3084. (self.map_tensor_name(name_k), k_proj_weight),
  3085. (self.map_tensor_name(name_v), v_proj_weight)
  3086. ]
  3087. # split the up_gate_proj into gate and up
  3088. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3089. if "up_gate_proj" in name:
  3090. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3091. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3092. dim_half = data_torch.shape[0] // 2
  3093. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3094. return [
  3095. (self.map_tensor_name(name_gate), gate_proj_weight),
  3096. (self.map_tensor_name(name_up), up_proj_weight)
  3097. ]
  3098. return [(self.map_tensor_name(name), data_torch)]
  3099. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3100. class Ernie4_5MoeModel(Ernie4_5Model):
  3101. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3102. _experts: list[dict[str, Tensor]] | None = None
  3103. def __init__(self, *args, **kwargs):
  3104. super().__init__(*args, **kwargs)
  3105. self._experts = [{} for _ in range(self.block_count)]
  3106. def set_gguf_parameters(self):
  3107. super().set_gguf_parameters()
  3108. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3109. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3110. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3111. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3112. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3113. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3114. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3115. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3116. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3117. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3118. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3119. # Modify correction bias name as in DeepseekV2
  3120. if name.endswith("e_score_correction_bias"):
  3121. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3122. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3123. match = re.match(r"model.mtp_block.(\d+)", name)
  3124. if match:
  3125. return []
  3126. # skip all other MTP tensors for now
  3127. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3128. if match:
  3129. return []
  3130. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3131. if match:
  3132. return []
  3133. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3134. if match:
  3135. return []
  3136. # process the experts separately
  3137. if name.find("mlp.experts") != -1:
  3138. n_experts = self.hparams["moe_num_experts"]
  3139. assert bid is not None
  3140. if self._experts is None:
  3141. self._experts = [{} for _ in range(self.block_count)]
  3142. self._experts[bid][name] = data_torch
  3143. if len(self._experts[bid]) >= n_experts * 3:
  3144. tensors: list[tuple[str, Tensor]] = []
  3145. # merge the experts into a single 3d tensor
  3146. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3147. datas: list[Tensor] = []
  3148. for xid in range(n_experts):
  3149. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3150. datas.append(self._experts[bid][ename_to_retrieve])
  3151. del self._experts[bid][ename_to_retrieve]
  3152. data_torch = torch.stack(datas, dim=0)
  3153. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3154. new_name = self.map_tensor_name(merged_name)
  3155. tensors.append((new_name, data_torch))
  3156. return tensors
  3157. else:
  3158. return []
  3159. return [(self.map_tensor_name(name), data_torch)]
  3160. def prepare_tensors(self):
  3161. super().prepare_tensors()
  3162. if self._experts is not None:
  3163. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3164. experts = [k for d in self._experts for k in d.keys()]
  3165. if len(experts) > 0:
  3166. raise ValueError(f"Unprocessed experts: {experts}")
  3167. @ModelBase.register(
  3168. "Qwen2VLModel",
  3169. "Qwen2VLForConditionalGeneration",
  3170. "Qwen2_5_VLForConditionalGeneration",
  3171. "Qwen2_5OmniModel",
  3172. )
  3173. class Qwen2VLModel(TextModel):
  3174. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3175. def set_gguf_parameters(self):
  3176. super().set_gguf_parameters()
  3177. def set_vocab(self):
  3178. try:
  3179. self._set_vocab_sentencepiece()
  3180. except FileNotFoundError:
  3181. self._set_vocab_gpt2()
  3182. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3183. del bid # unused
  3184. if name.startswith("thinker."):
  3185. name = name.replace("thinker.", "")
  3186. if name.startswith("visual") or name.startswith("audio") or \
  3187. name.startswith("talker") or name.startswith("token2wav"):
  3188. # skip multimodal tensors
  3189. return []
  3190. return [(self.map_tensor_name(name), data_torch)]
  3191. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3192. class Qwen2VLVisionModel(MmprojModel):
  3193. def __init__(self, *args, **kwargs):
  3194. super().__init__(*args, **kwargs)
  3195. assert self.hparams_vision is not None
  3196. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3197. # rename config.json values
  3198. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3199. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3200. if "embed_dim" in self.hparams_vision: # qwen2vl
  3201. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3202. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3203. def set_gguf_parameters(self):
  3204. super().set_gguf_parameters()
  3205. assert self.hparams_vision is not None
  3206. hparams = self.hparams_vision
  3207. model_type = self.global_config['model_type']
  3208. if model_type == 'qwen2_vl':
  3209. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3210. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3211. if model_type == 'qwen2_5_omni':
  3212. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3213. else:
  3214. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3215. self.gguf_writer.add_vision_use_silu(True)
  3216. # find n_wa_pattern (window attention pattern)
  3217. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3218. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3219. n_wa_pattern = fullatt_block_indexes[0] + 1
  3220. # validate n_wa_pattern
  3221. for i in range(1, len(fullatt_block_indexes)):
  3222. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3223. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3224. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3225. else:
  3226. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3227. # default values below are taken from HF tranformers code
  3228. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3229. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3230. if ".position_embd." in new_name:
  3231. return gguf.GGMLQuantizationType.F32
  3232. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3233. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3234. del bid # unused
  3235. if name.startswith("visual."):
  3236. # process visual tensors
  3237. # split QKV tensors if needed
  3238. if ".qkv." in name:
  3239. if data_torch.ndim == 2: # weight
  3240. c3, _ = data_torch.shape
  3241. else: # bias
  3242. c3 = data_torch.shape[0]
  3243. assert c3 % 3 == 0
  3244. c = c3 // 3
  3245. wq = data_torch[:c]
  3246. wk = data_torch[c: c * 2]
  3247. wv = data_torch[c * 2:]
  3248. return [
  3249. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3250. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3251. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3252. ]
  3253. elif 'patch_embed.proj.weight' in name:
  3254. # split Conv3D into Conv2Ds
  3255. c1, c2, kt, kh, kw = data_torch.shape
  3256. del c1, c2, kh, kw # unused
  3257. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3258. return [
  3259. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3260. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3261. ]
  3262. else:
  3263. return [(self.map_tensor_name(name), data_torch)]
  3264. return [] # skip other tensors
  3265. @ModelBase.register("Qwen2_5OmniModel")
  3266. class Qwen25OmniModel(Qwen2VLVisionModel):
  3267. has_vision_encoder = True
  3268. has_audio_encoder = True
  3269. def __init__(self, *args, **kwargs):
  3270. super().__init__(*args, **kwargs)
  3271. assert self.hparams_audio is not None
  3272. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3273. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3274. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3275. def set_gguf_parameters(self):
  3276. super().set_gguf_parameters()
  3277. assert self.hparams_audio is not None
  3278. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3279. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3280. def get_vision_config(self) -> dict[str, Any] | None:
  3281. return self.global_config["thinker_config"].get("vision_config")
  3282. def get_audio_config(self) -> dict[str, Any] | None:
  3283. return self.global_config["thinker_config"].get("audio_config")
  3284. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3285. # SinusoidsPositionEmbedding
  3286. assert self.hparams_audio is not None
  3287. max_timescale = 10000
  3288. length = 1500
  3289. channels = self.hparams_audio["hidden_size"]
  3290. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3291. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3292. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3293. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3294. yield ("audio_tower.embed_positions.weight", pos_embd)
  3295. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3296. if ".conv" in name and ".weight" in name:
  3297. return gguf.GGMLQuantizationType.F16
  3298. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3299. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3300. if name.startswith("thinker."):
  3301. name = name.replace("thinker.", "")
  3302. if name.startswith("audio_tower"):
  3303. # process audio tensors
  3304. if "conv1.bias" in name or "conv2.bias" in name:
  3305. # transpose conv1 and conv2 bias
  3306. data_torch = data_torch.unsqueeze(-1)
  3307. if "audio_bos_eos_token" in name:
  3308. # this tensor is left unused in transformers code
  3309. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3310. return []
  3311. return [(self.map_tensor_name(name), data_torch)]
  3312. return super().modify_tensors(data_torch, name, bid)
  3313. @ModelBase.register("InternVisionModel")
  3314. class InternVisionModel(MmprojModel):
  3315. def set_gguf_parameters(self):
  3316. assert self.hparams_vision is not None
  3317. if isinstance(self.hparams_vision['image_size'], list):
  3318. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3319. if isinstance(self.hparams_vision['patch_size'], list):
  3320. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3321. super().set_gguf_parameters()
  3322. hparams = self.hparams
  3323. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3324. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3325. # hidden_act
  3326. if hparams["hidden_act"] == "silu":
  3327. self.gguf_writer.add_vision_use_silu(True)
  3328. elif hparams["hidden_act"] == "gelu":
  3329. self.gguf_writer.add_vision_use_gelu(True)
  3330. else:
  3331. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3332. # downsample_ratio
  3333. downsample_ratio = self.global_config.get("downsample_ratio")
  3334. assert downsample_ratio is not None
  3335. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3336. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3337. if ".position_embd." in new_name:
  3338. return gguf.GGMLQuantizationType.F32
  3339. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3340. def _mapping_interns1_name(self, name):
  3341. names_map = {
  3342. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3343. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3344. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3345. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3346. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3347. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3348. }
  3349. if name in names_map:
  3350. name = names_map[name]
  3351. return name
  3352. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3353. del bid # unused
  3354. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3355. # deal with intern-s1 special case
  3356. name = self._mapping_interns1_name(name)
  3357. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3358. # process visual tensors
  3359. # correct name
  3360. if name.startswith("vision_model"):
  3361. name = "vision_tower." + name
  3362. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3363. name += ".weight"
  3364. # split QKV tensors if needed
  3365. if ".qkv." in name:
  3366. if data_torch.ndim == 2: # weight
  3367. c3, _ = data_torch.shape
  3368. else: # bias
  3369. c3 = data_torch.shape[0]
  3370. assert c3 % 3 == 0
  3371. c = c3 // 3
  3372. wq = data_torch[:c]
  3373. wk = data_torch[c: c * 2]
  3374. wv = data_torch[c * 2:]
  3375. return [
  3376. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3377. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3378. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3379. ]
  3380. return [(self.map_tensor_name(name), data_torch)]
  3381. return [] # skip other tensors
  3382. @ModelBase.register("WavTokenizerDec")
  3383. class WavTokenizerDecModel(TextModel):
  3384. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3385. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3386. del bid # unused
  3387. if \
  3388. name.endswith("codebook.cluster_size") or \
  3389. name.endswith("codebook.embed_avg") or \
  3390. name.endswith("codebook.inited"):
  3391. logger.debug(f"Skipping {name!r}")
  3392. return []
  3393. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3394. return [(self.map_tensor_name(name), data_torch)]
  3395. def set_vocab(self):
  3396. self._set_vocab_none()
  3397. def set_gguf_parameters(self):
  3398. super().set_gguf_parameters()
  3399. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3400. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3401. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3402. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3403. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3404. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3405. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3406. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3407. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3408. self.gguf_writer.add_causal_attention(False)
  3409. @ModelBase.register("Qwen2MoeForCausalLM")
  3410. class Qwen2MoeModel(TextModel):
  3411. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3412. def set_gguf_parameters(self):
  3413. super().set_gguf_parameters()
  3414. if (n_experts := self.hparams.get("num_experts")) is not None:
  3415. self.gguf_writer.add_expert_count(n_experts)
  3416. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3417. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3418. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3419. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3420. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3421. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3422. _experts: list[dict[str, Tensor]] | None = None
  3423. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3424. # process the experts separately
  3425. name = name.replace("language_model.", "") # InternVL
  3426. # handle aggregated expert tensors
  3427. # GGUF stores dimensions reversed from PyTorch, so:
  3428. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3429. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3430. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3431. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3432. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3433. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3434. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3435. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3436. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3437. permuted = data_torch.permute(0, 2, 1).contiguous()
  3438. return [(self.map_tensor_name(mapped), permuted)]
  3439. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3440. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3441. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3442. split_dim = data_torch.shape[-1] // 2
  3443. gate = data_torch[..., :split_dim].contiguous()
  3444. up = data_torch[..., split_dim:].contiguous()
  3445. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3446. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3447. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3448. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3449. base_name = name.removesuffix(".weight")
  3450. base = base_name.rsplit('.', 1)[0]
  3451. mapped_gate = f"{base}.gate_proj.weight"
  3452. mapped_up = f"{base}.up_proj.weight"
  3453. perm_gate = gate.permute(0, 2, 1).contiguous()
  3454. perm_up = up.permute(0, 2, 1).contiguous()
  3455. return [
  3456. (self.map_tensor_name(mapped_gate), perm_gate),
  3457. (self.map_tensor_name(mapped_up), perm_up),
  3458. ]
  3459. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3460. # skip visual tensors
  3461. return []
  3462. if name.find("experts") != -1:
  3463. n_experts = self.hparams["num_experts"]
  3464. assert bid is not None
  3465. if self._experts is None:
  3466. self._experts = [{} for _ in range(self.block_count)]
  3467. self._experts[bid][name] = data_torch
  3468. if len(self._experts[bid]) >= n_experts * 3:
  3469. tensors: list[tuple[str, Tensor]] = []
  3470. # merge the experts into a single 3d tensor
  3471. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3472. datas: list[Tensor] = []
  3473. for xid in range(n_experts):
  3474. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3475. datas.append(self._experts[bid][ename])
  3476. del self._experts[bid][ename]
  3477. data_torch = torch.stack(datas, dim=0)
  3478. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3479. new_name = self.map_tensor_name(merged_name)
  3480. tensors.append((new_name, data_torch))
  3481. return tensors
  3482. else:
  3483. return []
  3484. return [(self.map_tensor_name(name), data_torch)]
  3485. def prepare_tensors(self):
  3486. super().prepare_tensors()
  3487. if self._experts is not None:
  3488. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3489. experts = [k for d in self._experts for k in d.keys()]
  3490. if len(experts) > 0:
  3491. raise ValueError(f"Unprocessed experts: {experts}")
  3492. @ModelBase.register("Qwen3ForCausalLM")
  3493. class Qwen3Model(Qwen2Model):
  3494. model_arch = gguf.MODEL_ARCH.QWEN3
  3495. # extra logic for rerank models
  3496. is_rerank: bool = False
  3497. is_tied_embeddings: bool = False
  3498. token_false_id: int | None = None
  3499. token_true_id: int | None = None
  3500. def __init__(self, *args, **kwargs):
  3501. super().__init__(*args, **kwargs)
  3502. # track for intern-s1-mini
  3503. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3504. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3505. # a bit hacky, but currently the only way to detect if this is a rerank model
  3506. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3507. readme_path = self.dir_model / "README.md"
  3508. readme_text = ""
  3509. if readme_path.exists():
  3510. with readme_path.open("r", encoding="utf-8") as f:
  3511. readme_text = f.read()
  3512. if "# Qwen3-Reranker" in readme_text:
  3513. self._find_rerank_config()
  3514. def set_vocab(self):
  3515. # deal with intern-s1-mini
  3516. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3517. self._set_vocab_interns1()
  3518. return
  3519. super().set_vocab()
  3520. def _find_rerank_config(self):
  3521. from transformers import AutoTokenizer
  3522. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3523. self.is_rerank = True
  3524. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3525. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3526. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3527. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3528. assert self.token_false_id is not None and self.token_true_id is not None
  3529. def set_gguf_parameters(self):
  3530. super().set_gguf_parameters()
  3531. if self.is_rerank:
  3532. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3533. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3534. self.gguf_writer.add_chat_template([{
  3535. "name": "rerank",
  3536. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3537. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3538. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3539. }])
  3540. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3541. # extract "yes" and "no" tokens from the output lm_head tensor
  3542. false_row = data_torch[self.token_false_id]
  3543. true_row = data_torch[self.token_true_id]
  3544. return torch.stack([true_row, false_row], dim=0)
  3545. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3546. if "model.vision_" in name:
  3547. # skip multimodal tensors
  3548. return []
  3549. if self.is_rerank:
  3550. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3551. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3552. if is_tied_head or is_real_head:
  3553. cls_out_head = (
  3554. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3555. self._get_cls_out_tensor(data_torch),
  3556. )
  3557. if is_tied_head:
  3558. embed = (self.map_tensor_name(name), data_torch)
  3559. return [cls_out_head, embed]
  3560. if is_real_head:
  3561. return [cls_out_head]
  3562. return super().modify_tensors(data_torch, name, bid)
  3563. @ModelBase.register("Qwen3MoeForCausalLM")
  3564. class Qwen3MoeModel(Qwen2MoeModel):
  3565. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3566. def __init__(self, *args, **kwargs):
  3567. super().__init__(*args, **kwargs)
  3568. hparams = ModelBase.load_hparams(self.dir_model, False)
  3569. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3570. def set_vocab(self):
  3571. # deal with intern-s1
  3572. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3573. self._set_vocab_interns1()
  3574. return
  3575. super().set_vocab()
  3576. @ModelBase.register("Qwen3NextForCausalLM")
  3577. class Qwen3NextModel(Qwen2MoeModel):
  3578. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3579. def set_gguf_parameters(self):
  3580. super().set_gguf_parameters()
  3581. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3582. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3583. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3584. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3585. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3586. if (rope_dim := self.hparams.get("head_dim")) is None:
  3587. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3588. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3589. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3590. if name.startswith("mtp"):
  3591. return [] # ignore MTP layers for now
  3592. if name.endswith(".A_log"):
  3593. data_torch = -torch.exp(data_torch)
  3594. elif name.endswith(".dt_bias"):
  3595. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3596. elif "conv1d" in name:
  3597. data_torch = data_torch.squeeze()
  3598. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3599. data_torch = data_torch + 1
  3600. yield from super().modify_tensors(data_torch, name, bid)
  3601. @ModelBase.register("RND1")
  3602. class RND1Model(Qwen2MoeModel):
  3603. model_arch = gguf.MODEL_ARCH.RND1
  3604. def set_gguf_parameters(self):
  3605. super().set_gguf_parameters()
  3606. # RND1 specific parameters
  3607. # RND1 uses bidirectional attention
  3608. self.gguf_writer.add_causal_attention(False)
  3609. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3610. self.gguf_writer.add_mask_token_id(mask_token_id)
  3611. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3612. class Qwen3VLVisionModel(MmprojModel):
  3613. def __init__(self, *args, **kwargs):
  3614. super().__init__(*args, **kwargs)
  3615. assert self.hparams_vision is not None
  3616. # Compute image_size if not present
  3617. if "image_size" not in self.hparams_vision:
  3618. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3619. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3620. patch_size = self.hparams_vision.get("patch_size", 16)
  3621. # num_position_embeddings = (image_size / patch_size) ** 2
  3622. # So image_size = sqrt(num_position_embeddings) * patch_size
  3623. image_size = int(num_pos**0.5 * patch_size)
  3624. self.hparams_vision["image_size"] = image_size
  3625. # Rename config values for compatibility
  3626. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3627. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3628. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3629. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3630. self.is_deepstack_layers[idx] = True
  3631. def set_gguf_parameters(self):
  3632. super().set_gguf_parameters()
  3633. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3634. self.gguf_writer.add_vision_use_gelu(True)
  3635. if self.hparams_vision is not None:
  3636. merge_size = self.hparams_vision.get("spatial_merge_size")
  3637. if merge_size is not None:
  3638. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3639. # Use text config's rms_norm_eps for vision attention layernorm eps
  3640. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3641. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3642. if self.is_deepstack_layers:
  3643. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3644. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3645. assert self.hparams_vision is not None
  3646. # Skip text model tensors - they go in the text model file
  3647. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3648. return []
  3649. if name.startswith("model.visual."):
  3650. name = name.replace("model.visual.", "visual.", 1)
  3651. if name.startswith("visual.deepstack_merger_list."):
  3652. prefix, rest = name.split(".", maxsplit=3)[2:]
  3653. # prefix is the layer index, convert to absolute clip layer index!
  3654. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3655. target = rest
  3656. tensor_type: gguf.MODEL_TENSOR
  3657. if target.startswith("norm."):
  3658. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3659. suffix = target.split(".", 1)[1]
  3660. elif target.startswith("linear_fc1."):
  3661. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3662. suffix = target.split(".", 1)[1]
  3663. elif target.startswith("linear_fc2."):
  3664. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3665. suffix = target.split(".", 1)[1]
  3666. else:
  3667. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3668. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3669. return [(new_name, data_torch)]
  3670. if name.startswith("visual.merger."):
  3671. suffix = name.split(".", 2)[2]
  3672. if suffix.startswith("linear_fc"):
  3673. fc_idx_str, tail = suffix.split(".", 1)
  3674. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3675. # Qwen3VL has linear_fc1 and linear_fc2
  3676. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3677. if fc_num == 1:
  3678. fc_idx = 0
  3679. elif fc_num == 2:
  3680. fc_idx = 2
  3681. else:
  3682. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3683. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3684. elif suffix.startswith("norm."):
  3685. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3686. else:
  3687. raise ValueError(f"Unexpected merger tensor: {name}")
  3688. return [(new_name, data_torch)]
  3689. if name == "visual.patch_embed.proj.weight":
  3690. # split Conv3D into Conv2Ds along temporal dimension
  3691. c1, c2, kt, _, _ = data_torch.shape
  3692. del c1, c2
  3693. if kt != 2:
  3694. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3695. return [
  3696. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3697. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3698. ]
  3699. if name == "visual.patch_embed.proj.bias":
  3700. # Include the bias - it's used by the C++ code
  3701. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3702. if name.startswith("visual."):
  3703. return [(self.map_tensor_name(name), data_torch)]
  3704. # Fall back to parent class for other tensors
  3705. return super().modify_tensors(data_torch, name, bid)
  3706. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3707. class Glm4VVisionModel(Qwen3VLVisionModel):
  3708. def set_gguf_parameters(self):
  3709. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3710. assert self.hparams_vision is not None
  3711. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3712. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3713. if hidden_act == "gelu":
  3714. self.gguf_writer.add_vision_use_gelu(True)
  3715. elif hidden_act == "silu":
  3716. self.gguf_writer.add_vision_use_silu(True)
  3717. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3718. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3720. if name.startswith("model.visual."):
  3721. name = name.replace("model.visual.", "visual.")
  3722. if name.startswith("visual.merger."):
  3723. return [(self.map_tensor_name(name), data_torch)]
  3724. return super().modify_tensors(data_torch, name, bid)
  3725. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3726. class Qwen3VLTextModel(Qwen3Model):
  3727. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3728. def set_gguf_parameters(self):
  3729. super().set_gguf_parameters()
  3730. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3731. vision_config = self.hparams.get("vision_config", {})
  3732. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3733. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3734. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3735. # Skip vision tensors - they go in the mmproj file
  3736. if name.startswith("model.visual."):
  3737. return []
  3738. return super().modify_tensors(data_torch, name, bid)
  3739. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3740. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3741. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3742. def set_gguf_parameters(self):
  3743. super().set_gguf_parameters()
  3744. vision_config = self.hparams.get("vision_config", {})
  3745. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3746. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3747. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3748. # Skip vision tensors - they go in the mmproj file
  3749. if name.startswith("model.visual."):
  3750. return []
  3751. return super().modify_tensors(data_torch, name, bid)
  3752. @ModelBase.register("GPT2LMHeadModel")
  3753. class GPT2Model(TextModel):
  3754. model_arch = gguf.MODEL_ARCH.GPT2
  3755. def set_gguf_parameters(self):
  3756. self.gguf_writer.add_block_count(self.block_count)
  3757. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3758. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3759. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3760. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3761. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3762. self.gguf_writer.add_file_type(self.ftype)
  3763. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3764. del bid # unused
  3765. tensors: list[tuple[str, Tensor]] = []
  3766. # we don't need these
  3767. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3768. return tensors
  3769. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3770. data_torch = data_torch.transpose(1, 0)
  3771. new_name = self.map_tensor_name(name)
  3772. tensors.append((new_name, data_torch))
  3773. return tensors
  3774. @ModelBase.register("PhiForCausalLM")
  3775. class Phi2Model(TextModel):
  3776. model_arch = gguf.MODEL_ARCH.PHI2
  3777. def set_gguf_parameters(self):
  3778. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3779. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3780. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3781. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3782. self.gguf_writer.add_embedding_length(n_embd)
  3783. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3784. self.gguf_writer.add_block_count(self.block_count)
  3785. self.gguf_writer.add_head_count(n_head)
  3786. self.gguf_writer.add_head_count_kv(n_head)
  3787. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3788. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3789. self.gguf_writer.add_file_type(self.ftype)
  3790. self.gguf_writer.add_add_bos_token(False)
  3791. @ModelBase.register("Phi3ForCausalLM")
  3792. class Phi3MiniModel(TextModel):
  3793. model_arch = gguf.MODEL_ARCH.PHI3
  3794. def set_vocab(self):
  3795. # Phi-4 model uses GPT2Tokenizer
  3796. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3797. if tokenizer_config_file.is_file():
  3798. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3799. tokenizer_config_json = json.load(f)
  3800. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3801. if tokenizer_class == 'GPT2Tokenizer':
  3802. return self._set_vocab_gpt2()
  3803. from sentencepiece import SentencePieceProcessor
  3804. tokenizer_path = self.dir_model / 'tokenizer.model'
  3805. if not tokenizer_path.is_file():
  3806. raise ValueError(f'Error: Missing {tokenizer_path}')
  3807. tokenizer = SentencePieceProcessor()
  3808. tokenizer.LoadFromFile(str(tokenizer_path))
  3809. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3810. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3811. scores: list[float] = [-10000.0] * vocab_size
  3812. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3813. for token_id in range(tokenizer.vocab_size()):
  3814. piece = tokenizer.IdToPiece(token_id)
  3815. text = piece.encode("utf-8")
  3816. score = tokenizer.GetScore(token_id)
  3817. toktype = SentencePieceTokenTypes.NORMAL
  3818. if tokenizer.IsUnknown(token_id):
  3819. toktype = SentencePieceTokenTypes.UNKNOWN
  3820. elif tokenizer.IsControl(token_id):
  3821. toktype = SentencePieceTokenTypes.CONTROL
  3822. elif tokenizer.IsUnused(token_id):
  3823. toktype = SentencePieceTokenTypes.UNUSED
  3824. elif tokenizer.IsByte(token_id):
  3825. toktype = SentencePieceTokenTypes.BYTE
  3826. tokens[token_id] = text
  3827. scores[token_id] = score
  3828. toktypes[token_id] = toktype
  3829. added_tokens_file = self.dir_model / 'added_tokens.json'
  3830. if added_tokens_file.is_file():
  3831. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3832. added_tokens_json = json.load(f)
  3833. for key in added_tokens_json:
  3834. token_id = added_tokens_json[key]
  3835. if token_id >= vocab_size:
  3836. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3837. continue
  3838. tokens[token_id] = key.encode("utf-8")
  3839. scores[token_id] = -1000.0
  3840. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3841. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3842. if tokenizer_config_file.is_file():
  3843. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3844. tokenizer_config_json = json.load(f)
  3845. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3846. for token_id, foken_data in added_tokens_decoder.items():
  3847. token_id = int(token_id)
  3848. token = foken_data["content"].encode("utf-8")
  3849. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3850. if tokens[token_id] != token:
  3851. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3852. tokens[token_id] = token
  3853. scores[token_id] = -1000.0
  3854. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3855. if foken_data.get("special"):
  3856. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3857. tokenizer_file = self.dir_model / 'tokenizer.json'
  3858. if tokenizer_file.is_file():
  3859. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3860. tokenizer_json = json.load(f)
  3861. added_tokens = tokenizer_json.get("added_tokens", [])
  3862. for foken_data in added_tokens:
  3863. token_id = int(foken_data["id"])
  3864. token = foken_data["content"].encode("utf-8")
  3865. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3866. if tokens[token_id] != token:
  3867. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3868. tokens[token_id] = token
  3869. scores[token_id] = -1000.0
  3870. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3871. if foken_data.get("special"):
  3872. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3873. self.gguf_writer.add_tokenizer_model("llama")
  3874. self.gguf_writer.add_tokenizer_pre("default")
  3875. self.gguf_writer.add_token_list(tokens)
  3876. self.gguf_writer.add_token_scores(scores)
  3877. self.gguf_writer.add_token_types(toktypes)
  3878. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3879. special_vocab.add_to_gguf(self.gguf_writer)
  3880. def set_gguf_parameters(self):
  3881. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3882. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3883. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3884. rms_eps = self.find_hparam(["rms_norm_eps"])
  3885. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3886. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3887. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3888. rope_dims = int(rot_pct * n_embd) // n_head
  3889. self.gguf_writer.add_context_length(max_pos_embds)
  3890. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3891. self.gguf_writer.add_embedding_length(n_embd)
  3892. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3893. self.gguf_writer.add_block_count(self.block_count)
  3894. self.gguf_writer.add_head_count(n_head)
  3895. self.gguf_writer.add_head_count_kv(n_head_kv)
  3896. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3897. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3898. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3899. self.gguf_writer.add_file_type(self.ftype)
  3900. sliding_window = self.hparams.get("sliding_window")
  3901. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3902. if sliding_window is None:
  3903. sliding_window = 0
  3904. self.gguf_writer.add_sliding_window(sliding_window)
  3905. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3906. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3907. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3908. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3909. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3910. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3911. rope_dims = int(rot_pct * n_embd) // n_head
  3912. # write rope scaling for long context (128k) model
  3913. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3914. if rope_scaling is None:
  3915. return
  3916. scale = max_pos_embds / orig_max_pos_embds
  3917. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3918. if len(rope_scaling_type) == 0:
  3919. raise KeyError('Missing the required key rope_scaling.type')
  3920. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3921. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3922. elif rope_scaling_type == 'yarn':
  3923. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3924. else:
  3925. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3926. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3927. long_factors = rope_scaling.get('long_factor', None)
  3928. short_factors = rope_scaling.get('short_factor', None)
  3929. if long_factors is None or short_factors is None:
  3930. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3931. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3932. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3933. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3934. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3935. @ModelBase.register("PhiMoEForCausalLM")
  3936. class PhiMoeModel(Phi3MiniModel):
  3937. model_arch = gguf.MODEL_ARCH.PHIMOE
  3938. _experts: list[dict[str, Tensor]] | None = None
  3939. def set_gguf_parameters(self):
  3940. super().set_gguf_parameters()
  3941. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3942. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3943. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3944. # process the experts separately
  3945. if name.find("block_sparse_moe.experts") != -1:
  3946. n_experts = self.hparams["num_local_experts"]
  3947. assert bid is not None
  3948. if self._experts is None:
  3949. self._experts = [{} for _ in range(self.block_count)]
  3950. self._experts[bid][name] = data_torch
  3951. if len(self._experts[bid]) >= n_experts * 3:
  3952. tensors: list[tuple[str, Tensor]] = []
  3953. # merge the experts into a single 3d tensor
  3954. for w_name in ["w1", "w2", "w3"]:
  3955. datas: list[Tensor] = []
  3956. for xid in range(n_experts):
  3957. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3958. datas.append(self._experts[bid][ename])
  3959. del self._experts[bid][ename]
  3960. data_torch = torch.stack(datas, dim=0)
  3961. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3962. new_name = self.map_tensor_name(merged_name)
  3963. tensors.append((new_name, data_torch))
  3964. return tensors
  3965. else:
  3966. return []
  3967. return [(self.map_tensor_name(name), data_torch)]
  3968. def prepare_tensors(self):
  3969. super().prepare_tensors()
  3970. if self._experts is not None:
  3971. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3972. experts = [k for d in self._experts for k in d.keys()]
  3973. if len(experts) > 0:
  3974. raise ValueError(f"Unprocessed experts: {experts}")
  3975. @ModelBase.register("PlamoForCausalLM")
  3976. class PlamoModel(TextModel):
  3977. model_arch = gguf.MODEL_ARCH.PLAMO
  3978. def set_vocab(self):
  3979. self._set_vocab_sentencepiece()
  3980. def set_gguf_parameters(self):
  3981. hparams = self.hparams
  3982. self.gguf_writer.add_context_length(4096) # not in config.json
  3983. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3984. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3985. self.gguf_writer.add_block_count(self.block_count)
  3986. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3987. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3988. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3989. self.gguf_writer.add_file_type(self.ftype)
  3990. def shuffle_attn_q_weight(self, data_torch):
  3991. assert data_torch.size() == (5120, 5120)
  3992. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3993. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3994. data_torch = torch.reshape(data_torch, (5120, 5120))
  3995. return data_torch
  3996. def shuffle_attn_output_weight(self, data_torch):
  3997. assert data_torch.size() == (5120, 5120)
  3998. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3999. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  4000. data_torch = torch.reshape(data_torch, (5120, 5120))
  4001. return data_torch
  4002. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4003. del bid # unused
  4004. new_name = self.map_tensor_name(name)
  4005. # shuffle for broadcasting of gqa in ggml_mul_mat
  4006. if new_name.endswith("attn_q.weight"):
  4007. data_torch = self.shuffle_attn_q_weight(data_torch)
  4008. elif new_name.endswith("attn_output.weight"):
  4009. data_torch = self.shuffle_attn_output_weight(data_torch)
  4010. return [(new_name, data_torch)]
  4011. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  4012. class Plamo2Model(TextModel):
  4013. model_arch = gguf.MODEL_ARCH.PLAMO2
  4014. def set_vocab(self):
  4015. self._set_vocab_plamo()
  4016. def set_gguf_parameters(self):
  4017. hparams = self.hparams
  4018. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4019. # Which layers are Mamba layers
  4020. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4021. # This logic matches modeling_plamo.py's is_mamba function
  4022. mamba_step = hparams.get("mamba_step", 2)
  4023. mamba_enabled = hparams.get("mamba_enabled", True)
  4024. num_key_value_heads = []
  4025. num_attention_heads = []
  4026. if mamba_enabled:
  4027. for i in range(self.block_count):
  4028. if self.block_count <= (mamba_step // 2):
  4029. # use attention in last layer
  4030. is_mamba = (i != self.block_count - 1)
  4031. else:
  4032. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4033. if is_mamba:
  4034. num_key_value_heads.append(0)
  4035. num_attention_heads.append(0)
  4036. else:
  4037. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4038. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4039. if num_key_value_heads and num_attention_heads:
  4040. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4041. self.gguf_writer.add_head_count(num_attention_heads)
  4042. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4043. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4044. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4045. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4046. self.gguf_writer.add_block_count(self.block_count)
  4047. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4048. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4049. # Mamba parameters
  4050. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4051. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4052. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4053. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4054. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4055. self.gguf_writer.add_ssm_group_count(0)
  4056. # MLP feed forward parameters (for attention layers)
  4057. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4058. self.gguf_writer.add_file_type(self.ftype)
  4059. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4060. del bid # unused
  4061. if name.endswith(".A_log"):
  4062. data_torch = -torch.exp(data_torch)
  4063. elif name.endswith(".dt_bias"):
  4064. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4065. elif name.endswith(".dt_norm_weight"):
  4066. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4067. elif name.endswith(".B_norm_weight"):
  4068. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4069. elif name.endswith(".C_norm_weight"):
  4070. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4071. elif name.endswith(".k_weight"):
  4072. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4073. elif name.endswith(".q_weight"):
  4074. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4075. elif name.endswith(".conv1d.weight"):
  4076. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4077. assert data_torch.ndim == 2
  4078. elif name.endswith(".pre_mixer_norm.weight"):
  4079. data_torch += 1.0
  4080. elif name.endswith(".post_mixer_norm.weight"):
  4081. data_torch += 1.0 / 5
  4082. elif name.endswith(".pre_mlp_norm.weight"):
  4083. data_torch += 1.0
  4084. elif name.endswith(".post_mlp_norm.weight"):
  4085. data_torch += 1.0 / (5**1.5)
  4086. elif name.endswith(".norm.weight"):
  4087. data_torch += 1.0
  4088. new_name = self.map_tensor_name(name)
  4089. return [(new_name, data_torch)]
  4090. @ModelBase.register("Plamo3ForCausalLM", "PLaMo3ForCausalLM")
  4091. class Plamo3Model(TextModel):
  4092. model_arch = gguf.MODEL_ARCH.PLAMO3
  4093. def set_vocab(self):
  4094. self._set_vocab_plamo()
  4095. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  4096. tokenizer_config = {}
  4097. if tokenizer_config_path.is_file():
  4098. with open(tokenizer_config_path, encoding="utf-8") as f:
  4099. tokenizer_config = json.load(f)
  4100. chat_template = tokenizer_config.get("chat_template")
  4101. chat_template_jinja = self.dir_model / "chat_template.jinja"
  4102. if chat_template_jinja.is_file():
  4103. with open(chat_template_jinja, encoding="utf-8") as f:
  4104. chat_template = f.read()
  4105. if chat_template:
  4106. self.gguf_writer.add_chat_template(chat_template)
  4107. def set_gguf_parameters(self):
  4108. super().set_gguf_parameters()
  4109. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4110. if (sliding_window := self.find_hparam(["window_size", "sliding_window"], optional=True)) is not None:
  4111. self.gguf_writer.add_sliding_window(sliding_window)
  4112. self.gguf_writer.add_sliding_window_pattern(self.hparams["sliding_window_pattern"])
  4113. self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("rope_local_theta")})["rope_theta"])
  4114. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4115. if name.endswith(".pre_mixer_norm.weight"):
  4116. data_torch = data_torch + 1.0
  4117. elif name.endswith(".post_mixer_norm.weight"):
  4118. data_torch = data_torch + 1.0 / 5
  4119. elif name.endswith(".pre_mlp_norm.weight"):
  4120. data_torch = data_torch + 1.0
  4121. elif name.endswith(".post_mlp_norm.weight"):
  4122. data_torch = data_torch + 1.0 / (5**1.5)
  4123. elif name.endswith((".mixer.q_norm.weight", ".mixer.k_norm.weight")):
  4124. data_torch = data_torch + 1.0
  4125. elif name.endswith(".norm.weight"):
  4126. data_torch = data_torch + 1.0
  4127. return [(self.map_tensor_name(name), data_torch)]
  4128. @ModelBase.register("CodeShellForCausalLM")
  4129. class CodeShellModel(TextModel):
  4130. model_arch = gguf.MODEL_ARCH.CODESHELL
  4131. def set_gguf_parameters(self):
  4132. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4133. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4134. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4135. self.gguf_writer.add_block_count(self.block_count)
  4136. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4137. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4138. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4139. self.gguf_writer.add_file_type(self.ftype)
  4140. self.gguf_writer.add_rope_freq_base(10000.0)
  4141. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4142. self.gguf_writer.add_rope_scaling_factor(1.0)
  4143. @ModelBase.register("InternLM2ForCausalLM")
  4144. class InternLM2Model(TextModel):
  4145. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4146. def set_vocab(self):
  4147. # (TODO): Is there a better way?
  4148. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4149. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4150. # recognized as an empty string in C++.
  4151. from sentencepiece import SentencePieceProcessor
  4152. from sentencepiece import sentencepiece_model_pb2 as model
  4153. tokenizer_path = self.dir_model / 'tokenizer.model'
  4154. tokens: list[bytes] = []
  4155. scores: list[float] = []
  4156. toktypes: list[int] = []
  4157. if not tokenizer_path.is_file():
  4158. logger.error(f'Error: Missing {tokenizer_path}')
  4159. sys.exit(1)
  4160. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4161. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4162. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4163. tokenizer = SentencePieceProcessor()
  4164. tokenizer.LoadFromFile(str(tokenizer_path))
  4165. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4166. for token_id in range(vocab_size):
  4167. piece = tokenizer.IdToPiece(token_id)
  4168. text = piece.encode("utf-8")
  4169. score = tokenizer.GetScore(token_id)
  4170. if text == b"\x00":
  4171. # (TODO): fixme
  4172. # Hack here and replace the \x00 characters.
  4173. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4174. text = "🐉".encode("utf-8")
  4175. toktype = SentencePieceTokenTypes.NORMAL
  4176. if tokenizer.IsUnknown(token_id):
  4177. toktype = SentencePieceTokenTypes.UNKNOWN
  4178. elif tokenizer.IsControl(token_id):
  4179. toktype = SentencePieceTokenTypes.CONTROL
  4180. elif tokenizer.IsUnused(token_id):
  4181. toktype = SentencePieceTokenTypes.UNUSED
  4182. elif tokenizer.IsByte(token_id):
  4183. toktype = SentencePieceTokenTypes.BYTE
  4184. # take care of ununsed raw token
  4185. if piece.startswith('[UNUSED'):
  4186. toktype = SentencePieceTokenTypes.UNUSED
  4187. tokens.append(text)
  4188. scores.append(score)
  4189. toktypes.append(toktype)
  4190. added_tokens_file = self.dir_model / 'added_tokens.json'
  4191. if added_tokens_file.is_file():
  4192. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4193. added_tokens_json = json.load(f)
  4194. for key in added_tokens_json:
  4195. tokens.append(key.encode("utf-8"))
  4196. scores.append(-1000.0)
  4197. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4198. chat_eos_token = '<|im_end|>'
  4199. chat_eos_token_id = None
  4200. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4201. if tokenizer_config_file.is_file():
  4202. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4203. tokenizer_config_json = json.load(f)
  4204. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4205. for token_id, foken_data in added_tokens_decoder.items():
  4206. token_id = int(token_id)
  4207. token = foken_data["content"]
  4208. if token == chat_eos_token:
  4209. chat_eos_token_id = token_id
  4210. token = token.encode("utf-8")
  4211. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4212. if tokens[token_id] != token:
  4213. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4214. tokens[token_id] = token
  4215. scores[token_id] = -1000.0
  4216. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4217. if foken_data.get("special"):
  4218. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4219. tokenizer_file = self.dir_model / 'tokenizer.json'
  4220. if tokenizer_file.is_file():
  4221. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4222. tokenizer_json = json.load(f)
  4223. added_tokens = tokenizer_json.get("added_tokens", [])
  4224. for foken_data in added_tokens:
  4225. token_id = int(foken_data["id"])
  4226. token = foken_data["content"]
  4227. if token == chat_eos_token:
  4228. chat_eos_token_id = token_id
  4229. token = token.encode("utf-8")
  4230. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4231. if tokens[token_id] != token:
  4232. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4233. tokens[token_id] = token
  4234. scores[token_id] = -1000.0
  4235. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4236. if foken_data.get("special"):
  4237. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4238. self.gguf_writer.add_tokenizer_model("llama")
  4239. self.gguf_writer.add_tokenizer_pre("default")
  4240. self.gguf_writer.add_token_list(tokens)
  4241. self.gguf_writer.add_token_scores(scores)
  4242. self.gguf_writer.add_token_types(toktypes)
  4243. self.gguf_writer.add_add_space_prefix(add_prefix)
  4244. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4245. old_eos = special_vocab.special_token_ids["eos"]
  4246. if chat_eos_token_id is not None:
  4247. # For the chat model, we replace the eos with '<|im_end|>'.
  4248. # TODO: this is a hack, should be fixed
  4249. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4250. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4251. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4252. " in chat mode so that the conversation can end normally.")
  4253. special_vocab.add_to_gguf(self.gguf_writer)
  4254. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4255. num_heads = self.hparams["num_attention_heads"]
  4256. num_kv_heads = self.hparams["num_key_value_heads"]
  4257. n_embd = self.hparams["hidden_size"]
  4258. q_per_kv = num_heads // num_kv_heads
  4259. head_dim = n_embd // num_heads
  4260. num_groups = num_heads // q_per_kv
  4261. name = name.replace("language_model.", "") # InternVL
  4262. if name.startswith("mlp") or name.startswith("vision_model"):
  4263. # skip visual tensors
  4264. return []
  4265. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4266. qkv = data_torch
  4267. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4268. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4269. # The model weights of q and k equire additional reshape.
  4270. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4271. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4272. v = v.reshape((-1, v.shape[-1]))
  4273. return [
  4274. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4275. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4276. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4277. ]
  4278. else:
  4279. return [(self.map_tensor_name(name), data_torch)]
  4280. @ModelBase.register("InternLM3ForCausalLM")
  4281. class InternLM3Model(TextModel):
  4282. model_arch = gguf.MODEL_ARCH.LLAMA
  4283. def set_vocab(self):
  4284. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4285. self.gguf_writer.add_tokenizer_model("llama")
  4286. self.gguf_writer.add_tokenizer_pre("default")
  4287. self.gguf_writer.add_token_list(tokens)
  4288. self.gguf_writer.add_token_scores(scores)
  4289. self.gguf_writer.add_token_types(toktypes)
  4290. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4291. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4292. if tokenizer_config_file.is_file():
  4293. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4294. tokenizer_config_json = json.load(f)
  4295. if "add_prefix_space" in tokenizer_config_json:
  4296. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4297. if "added_tokens_decoder" in tokenizer_config_json:
  4298. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4299. if token_data.get("special"):
  4300. token_id = int(token_id)
  4301. token = token_data["content"]
  4302. special_vocab._set_special_token(token, token_id)
  4303. # update eos token
  4304. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4305. special_vocab.special_token_ids["eos"] = token_id
  4306. special_vocab.add_to_gguf(self.gguf_writer)
  4307. def set_gguf_parameters(self):
  4308. super().set_gguf_parameters()
  4309. hparams = self.hparams
  4310. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4311. if (rope_dim := hparams.get("head_dim")) is None:
  4312. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4313. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4314. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4315. n_head = self.hparams["num_attention_heads"]
  4316. n_kv_head = self.hparams.get("num_key_value_heads")
  4317. name = name.replace("language_model.", "") # InternVL
  4318. if name.startswith("mlp") or name.startswith("vision_model"):
  4319. # skip visual tensors
  4320. return []
  4321. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4322. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4323. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4324. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4325. return [(self.map_tensor_name(name), data_torch)]
  4326. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4327. class BertModel(TextModel):
  4328. model_arch = gguf.MODEL_ARCH.BERT
  4329. def __init__(self, *args, **kwargs):
  4330. super().__init__(*args, **kwargs)
  4331. self.vocab_size = None
  4332. if cls_out_labels := self.hparams.get("id2label"):
  4333. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4334. # Remove dummy labels added by AutoConfig
  4335. cls_out_labels = None
  4336. self.cls_out_labels = cls_out_labels
  4337. def set_gguf_parameters(self):
  4338. super().set_gguf_parameters()
  4339. self.gguf_writer.add_causal_attention(False)
  4340. self._try_set_pooling_type()
  4341. if self.cls_out_labels:
  4342. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4343. def set_vocab(self):
  4344. tokens, toktypes, tokpre = self.get_vocab_base()
  4345. self.vocab_size = len(tokens)
  4346. # we need this to validate the size of the token_type embeddings
  4347. # though currently we are passing all zeros to the token_type embeddings
  4348. # "Sequence A" or "Sequence B"
  4349. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4350. # convert to phantom space vocab
  4351. def phantom(tok, toktype):
  4352. if toktype == gguf.TokenType.CONTROL:
  4353. return tok
  4354. if tok.startswith("##"):
  4355. return tok[2:]
  4356. return "\u2581" + tok
  4357. assert len(tokens) == len(toktypes)
  4358. tokens = list(map(phantom, tokens, toktypes))
  4359. # add vocab to gguf
  4360. self.gguf_writer.add_tokenizer_model("bert")
  4361. self.gguf_writer.add_tokenizer_pre(tokpre)
  4362. self.gguf_writer.add_token_list(tokens)
  4363. self.gguf_writer.add_token_types(toktypes)
  4364. # handle special tokens
  4365. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4366. special_vocab.add_to_gguf(self.gguf_writer)
  4367. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4368. del bid # unused
  4369. if name.startswith("bert."):
  4370. name = name[5:]
  4371. if name.endswith(".gamma"):
  4372. name = name[:-6] + ".weight"
  4373. if name.endswith(".beta"):
  4374. name = name[:-5] + ".bias"
  4375. # we are only using BERT for embeddings so we don't need the pooling layer
  4376. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4377. return [] # we don't need these
  4378. if name.startswith("cls.predictions"):
  4379. return []
  4380. if name.startswith("cls.seq_relationship"):
  4381. return []
  4382. if self.cls_out_labels:
  4383. # For BertForSequenceClassification (direct projection layer)
  4384. if name == "classifier.weight":
  4385. name = "classifier.out_proj.weight"
  4386. if name == "classifier.bias":
  4387. name = "classifier.out_proj.bias"
  4388. return [(self.map_tensor_name(name), data_torch)]
  4389. def _xlmroberta_tokenizer_init(self) -> None:
  4390. # we need the pad_token_id to know how to chop down position_embd matrix
  4391. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4392. self._position_offset = 1 + pad_token_id
  4393. if "max_position_embeddings" in self.hparams:
  4394. self.hparams["max_position_embeddings"] -= self._position_offset
  4395. else:
  4396. self._position_offset = None
  4397. def _xlmroberta_set_vocab(self) -> None:
  4398. # to avoid TypeError: Descriptors cannot be created directly
  4399. # exception when importing sentencepiece_model_pb2
  4400. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4401. from sentencepiece import SentencePieceProcessor
  4402. from sentencepiece import sentencepiece_model_pb2 as model
  4403. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4404. tokenizer_json = {}
  4405. tokenizer_config_json = {}
  4406. if not tokenizer_path.is_file():
  4407. tokenizer_path = self.dir_model / 'tokenizer.json'
  4408. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4409. if not tokenizer_path.is_file():
  4410. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4411. from base64 import b64decode
  4412. from transformers import AutoTokenizer
  4413. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4414. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4415. tokenizer_json = json.load(fp)
  4416. if tokenizer_config_path.is_file():
  4417. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4418. tokenizer_config_json = json.load(fp)
  4419. add_prefix = tokenizer.add_prefix_space
  4420. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4421. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4422. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4423. else:
  4424. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4425. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4426. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4427. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4428. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4429. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4430. tokenizer = SentencePieceProcessor()
  4431. tokenizer.LoadFromFile(str(tokenizer_path))
  4432. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4433. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4434. scores: list[float] = [-10000.0] * vocab_size
  4435. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4436. if isinstance(tokenizer, SentencePieceProcessor):
  4437. for token_id in range(tokenizer.vocab_size()):
  4438. piece = tokenizer.IdToPiece(token_id)
  4439. text = piece.encode("utf-8")
  4440. score = tokenizer.GetScore(token_id)
  4441. toktype = SentencePieceTokenTypes.NORMAL
  4442. if tokenizer.IsUnknown(token_id):
  4443. toktype = SentencePieceTokenTypes.UNKNOWN
  4444. elif tokenizer.IsControl(token_id):
  4445. toktype = SentencePieceTokenTypes.CONTROL
  4446. elif tokenizer.IsUnused(token_id):
  4447. toktype = SentencePieceTokenTypes.UNUSED
  4448. elif tokenizer.IsByte(token_id):
  4449. toktype = SentencePieceTokenTypes.BYTE
  4450. tokens[token_id] = text
  4451. scores[token_id] = score
  4452. toktypes[token_id] = toktype
  4453. else:
  4454. added_vocab = tokenizer.get_added_vocab()
  4455. unk_token = tokenizer_config_json.get("unk_token")
  4456. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4457. for token_id in range(tokenizer.vocab_size):
  4458. piece = tokenizer._convert_id_to_token(token_id)
  4459. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4460. text = piece.encode("utf-8")
  4461. score = tokenizer_json["model"]["vocab"][token_id][1]
  4462. toktype = SentencePieceTokenTypes.NORMAL
  4463. if token_id == unk_token_id:
  4464. toktype = SentencePieceTokenTypes.UNKNOWN
  4465. elif token_id in tokenizer.all_special_ids:
  4466. toktype = SentencePieceTokenTypes.CONTROL
  4467. elif token_id in added_vocab.values():
  4468. toktype = SentencePieceTokenTypes.USER_DEFINED
  4469. # No reliable way to detect this, but jina doesn't have any
  4470. # elif tokenizer.IsByte(token_id):
  4471. # toktype = SentencePieceTokenTypes.BYTE
  4472. tokens[token_id] = text
  4473. scores[token_id] = score
  4474. toktypes[token_id] = toktype
  4475. if isinstance(tokenizer, SentencePieceProcessor):
  4476. # realign tokens (see HF tokenizer code)
  4477. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4478. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4479. toktypes = [
  4480. SentencePieceTokenTypes.CONTROL,
  4481. SentencePieceTokenTypes.CONTROL,
  4482. SentencePieceTokenTypes.CONTROL,
  4483. SentencePieceTokenTypes.UNKNOWN,
  4484. ] + toktypes[3:-1]
  4485. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4486. # Add mask token missing from sentencepiece.bpe.model
  4487. tokens[250001] = b'<mask>'
  4488. scores[250001] = 0.0
  4489. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4490. self.gguf_writer.add_tokenizer_model("t5")
  4491. self.gguf_writer.add_tokenizer_pre("default")
  4492. self.gguf_writer.add_token_list(tokens)
  4493. self.gguf_writer.add_token_scores(scores)
  4494. self.gguf_writer.add_token_types(toktypes)
  4495. self.gguf_writer.add_add_space_prefix(add_prefix)
  4496. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4497. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4498. if precompiled_charsmap:
  4499. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4500. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4501. special_vocab.add_to_gguf(self.gguf_writer)
  4502. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4503. class DistilBertModel(BertModel):
  4504. model_arch = gguf.MODEL_ARCH.BERT
  4505. def set_gguf_parameters(self):
  4506. self.gguf_writer.add_layer_norm_eps(1e-12)
  4507. logger.info("gguf: layer norm epsilon = 1e-12")
  4508. super().set_gguf_parameters()
  4509. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4510. if name.startswith("distilbert."):
  4511. name = name[11:]
  4512. # These layers act as MLM head, so we don't need them
  4513. if name.startswith("vocab_"):
  4514. return []
  4515. return super().modify_tensors(data_torch, name, bid)
  4516. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4517. class RobertaModel(BertModel):
  4518. model_arch = gguf.MODEL_ARCH.BERT
  4519. def __init__(self, *args, **kwargs):
  4520. super().__init__(*args, **kwargs)
  4521. # we need the pad_token_id to know how to chop down position_embd matrix
  4522. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4523. self._position_offset = 1 + pad_token_id
  4524. if "max_position_embeddings" in self.hparams:
  4525. self.hparams["max_position_embeddings"] -= self._position_offset
  4526. else:
  4527. self._position_offset = None
  4528. def set_vocab(self):
  4529. """Support BPE tokenizers for roberta models"""
  4530. bpe_tok_path = self.dir_model / "tokenizer.json"
  4531. if bpe_tok_path.exists():
  4532. self._set_vocab_gpt2()
  4533. # we need this to validate the size of the token_type embeddings
  4534. # though currently we are passing all zeros to the token_type embeddings
  4535. # "Sequence A" or "Sequence B"
  4536. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4537. else:
  4538. return super().set_vocab()
  4539. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4540. # if name starts with "roberta.", remove the prefix
  4541. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4542. if name.startswith("roberta."):
  4543. name = name[8:]
  4544. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4545. if name == "embeddings.position_embeddings.weight":
  4546. if self._position_offset is not None:
  4547. data_torch = data_torch[self._position_offset:,:]
  4548. return super().modify_tensors(data_torch, name, bid)
  4549. @ModelBase.register("NomicBertModel")
  4550. class NomicBertModel(BertModel):
  4551. model_arch = gguf.MODEL_ARCH.BERT
  4552. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4553. hparams = kwargs.pop("hparams", None)
  4554. if hparams is None:
  4555. hparams = ModelBase.load_hparams(dir_model, False)
  4556. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4557. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4558. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4559. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4560. if self._tokenizer_is_xlmroberta:
  4561. self._xlmroberta_tokenizer_init()
  4562. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4563. if npos == 8192 and mtp == 2048:
  4564. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4565. elif npos == 2048 and mtp == 2048:
  4566. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4567. else:
  4568. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4569. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4570. # this doesn't do anything in the HF version
  4571. assert self.hparams["causal"] is False
  4572. # no bias tensors unless MoE
  4573. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4574. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4575. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4576. # norm at end of layer
  4577. assert self.hparams["prenorm"] is False
  4578. # standard RoPE
  4579. assert self.hparams["rotary_emb_fraction"] == 1.0
  4580. assert self.hparams["rotary_emb_interleaved"] is False
  4581. assert self.hparams["rotary_emb_scale_base"] is None
  4582. def set_vocab(self) -> None:
  4583. if self._tokenizer_is_xlmroberta:
  4584. return self._xlmroberta_set_vocab()
  4585. return super().set_vocab()
  4586. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4587. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4588. if "mlp.experts.bias" in name:
  4589. return [] # Explicitly return an empty list.
  4590. if "mlp.experts.mlp.w1" in name:
  4591. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4592. name += ".weight"
  4593. if "mlp.experts.mlp.w2" in name:
  4594. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4595. data_torch = data_torch.transpose(1, 2)
  4596. name += ".weight"
  4597. return [(self.map_tensor_name(name), data_torch)]
  4598. def set_gguf_parameters(self):
  4599. super().set_gguf_parameters()
  4600. if self.is_moe:
  4601. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4602. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4603. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4604. def _is_tokenizer_xlmroberta(self) -> bool:
  4605. with open(self.dir_model / "tokenizer.json") as f:
  4606. tokenizer_json = json.load(f)
  4607. toktyp = tokenizer_json["model"]["type"]
  4608. if toktyp == "Unigram":
  4609. return True
  4610. if toktyp == "WordPiece":
  4611. return False
  4612. raise ValueError(f"unknown tokenizer: {toktyp}")
  4613. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4614. class NeoBert(BertModel):
  4615. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4616. def set_gguf_parameters(self):
  4617. super().set_gguf_parameters()
  4618. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4619. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4620. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4621. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4622. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4623. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4624. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4625. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4626. def modify_tensors(self, data_torch, name, bid):
  4627. if name.startswith("decoder."):
  4628. return []
  4629. if name.startswith("model."):
  4630. name = name[6:]
  4631. return super().modify_tensors(data_torch, name, bid)
  4632. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4633. class XLMRobertaModel(BertModel):
  4634. model_arch = gguf.MODEL_ARCH.BERT
  4635. _lora_files = {}
  4636. _lora_names = []
  4637. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4638. hparams = kwargs.pop("hparams", None)
  4639. if hparams is None:
  4640. hparams = ModelBase.load_hparams(dir_model, False)
  4641. if lora_names := hparams.get("lora_adaptations"):
  4642. self._lora_names = lora_names
  4643. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4644. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4645. self._xlmroberta_tokenizer_init()
  4646. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4647. if self._lora_names:
  4648. for name in self._lora_names:
  4649. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4650. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4651. return super().generate_extra_tensors()
  4652. def set_type(self):
  4653. for lora_writer in self._lora_files.values():
  4654. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4655. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4656. super().set_type()
  4657. def set_vocab(self):
  4658. self._xlmroberta_set_vocab()
  4659. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4660. # if name starts with "roberta.", remove the prefix
  4661. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4662. if name.startswith("roberta."):
  4663. name = name[8:]
  4664. # jina-embeddings-v3
  4665. if ".parametrizations." in name:
  4666. name = name.replace(".parametrizations.", ".")
  4667. if name.endswith(".original"):
  4668. name = name[:-9]
  4669. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4670. if name == "embeddings.position_embeddings.weight":
  4671. if self._position_offset is not None:
  4672. data_torch = data_torch[self._position_offset:,:]
  4673. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4674. if name.startswith("pooler.dense"):
  4675. return []
  4676. num_loras = data_torch.size(0)
  4677. assert num_loras == len(self._lora_names)
  4678. # Split out each LoRA in their own GGUF
  4679. for i, lora_writer in enumerate(self._lora_files.values()):
  4680. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4681. data = data_torch[i, :, :]
  4682. # Transpose/flip token_embd/types into correct shape
  4683. if new_name == "token_embd.weight.lora_b":
  4684. data = data.T
  4685. elif new_name.startswith("token_types.weight."):
  4686. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4687. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4688. return []
  4689. return super().modify_tensors(data_torch, name, bid)
  4690. def set_gguf_parameters(self):
  4691. super().set_gguf_parameters()
  4692. # jina-embeddings-v3
  4693. lora_alpha = self.hparams.get("lora_alpha")
  4694. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4695. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4696. for lora_name, lora_writer in self._lora_files.items():
  4697. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4698. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4699. if lora_prompt_prefixes:
  4700. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4701. def write(self):
  4702. super().write()
  4703. for lora_writer in self._lora_files.values():
  4704. lora_writer.write_header_to_file()
  4705. lora_writer.write_kv_data_to_file()
  4706. lora_writer.write_tensors_to_file(progress=True)
  4707. lora_writer.close()
  4708. @ModelBase.register("GemmaForCausalLM")
  4709. class GemmaModel(TextModel):
  4710. model_arch = gguf.MODEL_ARCH.GEMMA
  4711. def set_vocab(self):
  4712. self._set_vocab_sentencepiece()
  4713. # TODO: these special tokens should be exported only for the CodeGemma family
  4714. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4715. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4716. special_vocab._set_special_token("prefix", 67)
  4717. special_vocab._set_special_token("suffix", 69)
  4718. special_vocab._set_special_token("middle", 68)
  4719. special_vocab._set_special_token("fsep", 70)
  4720. special_vocab._set_special_token("eot", 107)
  4721. special_vocab.chat_template = None # do not add it twice
  4722. special_vocab.add_to_gguf(self.gguf_writer)
  4723. self.gguf_writer.add_add_space_prefix(False)
  4724. def set_gguf_parameters(self):
  4725. hparams = self.hparams
  4726. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4727. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4728. self.gguf_writer.add_block_count(self.block_count)
  4729. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4730. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4731. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4732. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4733. self.gguf_writer.add_key_length(hparams["head_dim"])
  4734. self.gguf_writer.add_value_length(hparams["head_dim"])
  4735. self.gguf_writer.add_file_type(self.ftype)
  4736. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4737. del bid # unused
  4738. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4739. # To prevent errors, skip loading lm_head.weight.
  4740. if name == "lm_head.weight":
  4741. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4742. return []
  4743. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4744. if name.endswith("norm.weight"):
  4745. data_torch = data_torch + 1
  4746. return [(self.map_tensor_name(name), data_torch)]
  4747. @ModelBase.register("Gemma2ForCausalLM")
  4748. class Gemma2Model(TextModel):
  4749. model_arch = gguf.MODEL_ARCH.GEMMA2
  4750. def set_vocab(self):
  4751. self._set_vocab_sentencepiece()
  4752. self.gguf_writer.add_add_space_prefix(False)
  4753. def set_gguf_parameters(self):
  4754. hparams = self.hparams
  4755. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4756. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4757. self.gguf_writer.add_block_count(self.block_count)
  4758. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4759. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4760. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4761. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4762. self.gguf_writer.add_key_length(hparams["head_dim"])
  4763. self.gguf_writer.add_value_length(hparams["head_dim"])
  4764. self.gguf_writer.add_file_type(self.ftype)
  4765. self.gguf_writer.add_attn_logit_softcapping(
  4766. self.hparams["attn_logit_softcapping"]
  4767. )
  4768. self.gguf_writer.add_final_logit_softcapping(
  4769. self.hparams["final_logit_softcapping"]
  4770. )
  4771. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4772. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4773. del bid # unused
  4774. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4775. # To prevent errors, skip loading lm_head.weight.
  4776. if name == "lm_head.weight":
  4777. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4778. return []
  4779. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4780. if name.endswith("norm.weight"):
  4781. data_torch = data_torch + 1
  4782. return [(self.map_tensor_name(name), data_torch)]
  4783. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4784. class Gemma3Model(TextModel):
  4785. model_arch = gguf.MODEL_ARCH.GEMMA3
  4786. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4787. def set_vocab(self):
  4788. if (self.dir_model / "tokenizer.model").is_file():
  4789. self._set_vocab_sentencepiece()
  4790. self.gguf_writer.add_add_space_prefix(False)
  4791. else:
  4792. self._set_vocab_gpt2()
  4793. def set_gguf_parameters(self):
  4794. super().set_gguf_parameters()
  4795. hparams = self.hparams
  4796. # some default values are not specified in the hparams
  4797. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4798. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4799. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4800. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4801. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4802. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4803. # attn_logit_softcapping is removed in Gemma3
  4804. assert hparams.get("attn_logit_softcapping") is None
  4805. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4806. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4807. if hparams.get("sliding_window_pattern") != 1:
  4808. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4809. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4810. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4811. del bid # unused
  4812. if "language_model." in name:
  4813. name = name.replace("language_model.", "")
  4814. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4815. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4816. return [] # skip vision tensors
  4817. # remove OOV (out-of-vocabulary) rows in token_embd
  4818. if "embed_tokens.weight" in name:
  4819. if (self.dir_model / "tokenizer.model").is_file():
  4820. tokens = self._create_vocab_sentencepiece()[0]
  4821. else:
  4822. tokens = self.get_vocab_base()[0]
  4823. data_torch = data_torch[:len(tokens)]
  4824. # ref code in Gemma3RMSNorm
  4825. # output = output * (1.0 + self.weight.float())
  4826. # note: this is not the case on gemma3n
  4827. if name.endswith("norm.weight"):
  4828. data_torch = data_torch + self.norm_shift
  4829. return [(self.map_tensor_name(name), data_torch)]
  4830. @ModelBase.register("Gemma3TextModel")
  4831. class EmbeddingGemma(Gemma3Model):
  4832. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4833. module_paths = []
  4834. dense_features_dims = {}
  4835. def __init__(self, *args, **kwargs):
  4836. super().__init__(*args, **kwargs)
  4837. if self.sentence_transformers_dense_modules:
  4838. # read modules.json to determine if model has Dense layers
  4839. modules_file = self.dir_model / "modules.json"
  4840. if modules_file.is_file():
  4841. with open(modules_file, encoding="utf-8") as modules_json_file:
  4842. mods = json.load(modules_json_file)
  4843. for mod in mods:
  4844. if mod["type"] == "sentence_transformers.models.Dense":
  4845. mod_path = mod["path"]
  4846. # check if model.safetensors file for Dense layer exists
  4847. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4848. if model_tensors_file.is_file():
  4849. self.module_paths.append(mod_path)
  4850. # read config.json of the Dense layer to get in/out features
  4851. mod_conf_file = self.dir_model / mod_path / "config.json"
  4852. if mod_conf_file.is_file():
  4853. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4854. mod_conf = json.load(mod_conf_json_file)
  4855. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4856. prefix = self._get_dense_prefix(mod_path)
  4857. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4858. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4859. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4860. from safetensors.torch import load_file
  4861. module_paths = list(self.module_paths)
  4862. for i, module_path in enumerate(module_paths):
  4863. tensors_file = self.dir_model / module_path / "model.safetensors"
  4864. local_tensors = load_file(tensors_file)
  4865. tensor_name = self._get_dense_prefix(module_path)
  4866. for name, local_tensor in local_tensors.items():
  4867. if not name.endswith(".weight"):
  4868. continue
  4869. orig_name = name.replace("linear", tensor_name)
  4870. name = self.map_tensor_name(orig_name)
  4871. yield name, local_tensor.clone()
  4872. @staticmethod
  4873. def _get_dense_prefix(module_path) -> str:
  4874. """Get the tensor name prefix for the Dense layer from module path."""
  4875. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4876. return tensor_name
  4877. def set_gguf_parameters(self):
  4878. super().set_gguf_parameters()
  4879. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4880. # constructor. We want to use the value from the original model's config.json.
  4881. # ref: https://github.com/huggingface/transformers/pull/40700
  4882. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4883. config = json.load(f)
  4884. orig_sliding_window = config.get("sliding_window")
  4885. if orig_sliding_window is None:
  4886. raise ValueError("sliding_window not found in model config - this is required for the model")
  4887. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4888. f"instead of {self.hparams['sliding_window']}")
  4889. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4890. if self.sentence_transformers_dense_modules:
  4891. for dense, dims in self.dense_features_dims.items():
  4892. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4893. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4894. self._try_set_pooling_type()
  4895. @ModelBase.register("Gemma3ForConditionalGeneration")
  4896. class Gemma3VisionModel(MmprojModel):
  4897. def set_gguf_parameters(self):
  4898. super().set_gguf_parameters()
  4899. hparams = self.hparams
  4900. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4901. # default values below are taken from HF tranformers code
  4902. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4903. self.gguf_writer.add_vision_use_gelu(True)
  4904. # calculate proj_scale_factor (used by tinygemma3 test model)
  4905. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4906. n_per_side = int(image_seq_length ** 0.5)
  4907. image_size = self.hparams["image_size"]
  4908. patch_size = self.hparams["patch_size"]
  4909. proj_scale_factor = (image_size // patch_size) // n_per_side
  4910. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4911. # we only need to write this if it's not the default value
  4912. # in this case, we are converting a test model
  4913. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4914. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4915. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4916. if "input_projection" in name:
  4917. return gguf.GGMLQuantizationType.F16
  4918. if ".embeddings." in name:
  4919. return gguf.GGMLQuantizationType.F32
  4920. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4921. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4922. del bid # unused
  4923. if "vision_model.head." in name:
  4924. return [] # skip redundant tensors for tinygemma3
  4925. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4926. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4927. # process vision tensors
  4928. name = name.replace("_weight", ".weight")
  4929. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4930. # the other norm values are part of SigLIP model, and they are already correct
  4931. # ref code: Gemma3RMSNorm
  4932. if "soft_emb_norm.weight" in name:
  4933. logger.info(f"Correcting norm value for '{name}'")
  4934. data_torch = data_torch + 1
  4935. return [(self.map_tensor_name(name), data_torch)]
  4936. return [] # skip other tensors
  4937. @ModelBase.register("Gemma3nForConditionalGeneration")
  4938. class Gemma3NModel(Gemma3Model):
  4939. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4940. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4941. _altup_proj: list[Tensor] = []
  4942. _altup_unembd: list[Tensor] = []
  4943. def __init__(self, *args, **kwargs):
  4944. super().__init__(*args, **kwargs)
  4945. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4946. self._altup_proj = [
  4947. torch.Tensor(), # to be replaced
  4948. torch.Tensor(), # to be replaced
  4949. torch.Tensor(), # to be replaced
  4950. ]
  4951. self._altup_unembd = [
  4952. torch.Tensor(), # to be replaced
  4953. torch.Tensor(), # to be replaced
  4954. torch.Tensor(), # to be replaced
  4955. ]
  4956. def set_vocab(self):
  4957. super().set_vocab()
  4958. def set_gguf_parameters(self):
  4959. super().set_gguf_parameters()
  4960. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4961. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4962. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4963. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4964. activation_sparsity_scale = []
  4965. for s in self.hparams["activation_sparsity_pattern"]:
  4966. normal_dist = torch.distributions.normal.Normal(0, 1)
  4967. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4968. activation_sparsity_scale.append(std_multiplier.item())
  4969. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4970. sliding_window_pattern = []
  4971. for t in self.hparams["layer_types"]:
  4972. sliding_window_pattern.append(t == "sliding_attention")
  4973. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4974. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4975. has_all = all(m.numel() > 0 for m in matrices)
  4976. if not has_all:
  4977. return None
  4978. else:
  4979. return torch.stack(matrices, dim=0)
  4980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4981. if name.endswith("_scale"):
  4982. name = name + ".weight"
  4983. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4984. if "language_model." not in name:
  4985. return [] # skip non-language model tensors
  4986. if "altup_unembed_projections" in name:
  4987. data_torch = data_torch.to(device="cpu")
  4988. if ".0." in name:
  4989. self._altup_unembd[0] = data_torch
  4990. elif ".1." in name:
  4991. self._altup_unembd[1] = data_torch
  4992. elif ".2." in name:
  4993. self._altup_unembd[2] = data_torch
  4994. else:
  4995. raise ValueError(f"Unknown name: {name}")
  4996. out = self._stack_matrices(self._altup_unembd)
  4997. if out is not None:
  4998. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4999. else:
  5000. return []
  5001. if "altup_projections" in name:
  5002. data_torch = data_torch.to(device="cpu")
  5003. if ".0." in name:
  5004. self._altup_proj[0] = data_torch
  5005. elif ".1." in name:
  5006. self._altup_proj[1] = data_torch
  5007. elif ".2." in name:
  5008. self._altup_proj[2] = data_torch
  5009. else:
  5010. raise ValueError(f"Unknown name: {name}")
  5011. out = self._stack_matrices(self._altup_proj)
  5012. if out is not None:
  5013. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  5014. else:
  5015. return []
  5016. return super().modify_tensors(data_torch, name, bid)
  5017. @ModelBase.register("Starcoder2ForCausalLM")
  5018. class StarCoder2Model(TextModel):
  5019. model_arch = gguf.MODEL_ARCH.STARCODER2
  5020. @ModelBase.register("Rwkv6ForCausalLM")
  5021. class Rwkv6Model(TextModel):
  5022. model_arch = gguf.MODEL_ARCH.RWKV6
  5023. def set_vocab(self):
  5024. self._set_vocab_rwkv_world()
  5025. def set_gguf_parameters(self):
  5026. head_size = self.hparams["head_size"]
  5027. hidden_size = self.hparams["hidden_size"]
  5028. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5029. rescale_every_n_layers = self.hparams["rescale_every"]
  5030. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  5031. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  5032. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  5033. # RWKV isn't context limited
  5034. self.gguf_writer.add_context_length(1048576)
  5035. self.gguf_writer.add_embedding_length(hidden_size)
  5036. self.gguf_writer.add_block_count(self.block_count)
  5037. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5038. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  5039. self.gguf_writer.add_wkv_head_size(head_size)
  5040. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5041. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5042. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5043. self.gguf_writer.add_file_type(self.ftype)
  5044. # required by llama.cpp, unused
  5045. self.gguf_writer.add_head_count(0)
  5046. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5047. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5048. new_name = self.map_tensor_name(name)
  5049. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5050. new_name += ".weight"
  5051. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5052. data_torch = data_torch.transpose(0, 1)
  5053. if new_name.endswith("time_mix_w2.weight"):
  5054. data_torch = data_torch.permute(0, 2, 1)
  5055. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5056. data_torch = data_torch.squeeze()
  5057. try:
  5058. rescale_every_n_layers = self.hparams["rescale_every"]
  5059. if rescale_every_n_layers > 0:
  5060. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5061. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5062. except KeyError:
  5063. pass
  5064. # concat time_mix_lerp weights to reduce some cpu overhead
  5065. # also reduces the number of tensors in the model
  5066. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5067. try:
  5068. self.lerp_weights[bid][new_name] = data_torch
  5069. except KeyError:
  5070. self.lerp_weights[bid] = {new_name: data_torch}
  5071. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5072. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5073. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5074. yield (new_name, data)
  5075. return
  5076. yield (new_name, data_torch)
  5077. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5078. class RWKV6Qwen2Model(Rwkv6Model):
  5079. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5080. def set_vocab(self):
  5081. try:
  5082. self._set_vocab_sentencepiece()
  5083. except FileNotFoundError:
  5084. self._set_vocab_gpt2()
  5085. def set_gguf_parameters(self):
  5086. num_attention_heads = self.hparams["num_attention_heads"]
  5087. num_key_value_heads = self.hparams["num_key_value_heads"]
  5088. hidden_size = self.hparams["hidden_size"]
  5089. head_size = hidden_size // num_attention_heads
  5090. rms_norm_eps = self.hparams["rms_norm_eps"]
  5091. intermediate_size = self.hparams["intermediate_size"]
  5092. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5093. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5094. # RWKV isn't context limited
  5095. self.gguf_writer.add_context_length(1048576)
  5096. self.gguf_writer.add_embedding_length(hidden_size)
  5097. self.gguf_writer.add_block_count(self.block_count)
  5098. self.gguf_writer.add_wkv_head_size(head_size)
  5099. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5100. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5101. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5102. self.gguf_writer.add_file_type(self.ftype)
  5103. # special parameters for time_mixing in RWKV6QWEN2
  5104. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5105. self.gguf_writer.add_token_shift_count(1)
  5106. # RWKV6QWEN2 use grouped key/value like GQA
  5107. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5108. # required by llama.cpp, unused
  5109. self.gguf_writer.add_head_count(0)
  5110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5111. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5112. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5113. data = data.view(5, -1, data.shape[-1])
  5114. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5115. # permute them here to avoid code changes
  5116. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5117. if "w2" in new_name:
  5118. data = data.view(5, -1, data.shape[-1])
  5119. yield (new_name, data)
  5120. continue
  5121. yield (new_name, data)
  5122. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5123. class Rwkv7Model(TextModel):
  5124. model_arch = gguf.MODEL_ARCH.RWKV7
  5125. def set_vocab(self):
  5126. self._set_vocab_rwkv_world()
  5127. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5128. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5129. def set_gguf_parameters(self):
  5130. try:
  5131. head_size = self.hparams["head_size"]
  5132. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5133. except KeyError:
  5134. head_size = self.hparams["head_dim"]
  5135. layer_norm_eps = self.hparams["norm_eps"]
  5136. hidden_size = self.hparams["hidden_size"]
  5137. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5138. # ICLR: In-Context-Learning-Rate
  5139. try:
  5140. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5141. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5142. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5143. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5144. except KeyError:
  5145. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5146. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5147. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5148. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5149. # RWKV isn't context limited
  5150. self.gguf_writer.add_context_length(1048576)
  5151. self.gguf_writer.add_embedding_length(hidden_size)
  5152. self.gguf_writer.add_block_count(self.block_count)
  5153. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5154. self.gguf_writer.add_wkv_head_size(head_size)
  5155. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5156. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5157. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5158. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5159. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5160. self.gguf_writer.add_file_type(self.ftype)
  5161. # required by llama.cpp, unused
  5162. self.gguf_writer.add_head_count(0)
  5163. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5164. lora_needs_transpose: bool = True
  5165. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5166. # unify tensor names here to make life easier
  5167. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5168. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5169. name = name.replace("time_mixer.", "")
  5170. # lora layer names in fla-hub's impl
  5171. if "_lora.lora" in name:
  5172. self.lora_needs_transpose = False
  5173. name = name.replace("_lora.lora.0.weight", "1.weight")
  5174. name = name.replace("_lora.lora.2.weight", "2.weight")
  5175. name = name.replace("_lora.lora.2.bias", "0.weight")
  5176. name = name.replace("feed_forward_norm", "ln2")
  5177. name = name.replace("g_norm", "ln_x")
  5178. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5179. # some models have dummy v0/v1/v2 on first layer while others don't
  5180. # ignore them all since they are not used
  5181. return
  5182. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5183. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5184. if bid is not None and "attention.x_" in name:
  5185. if "attention.x_x" in name:
  5186. # already concatenated
  5187. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5188. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5189. yield (new_name, data)
  5190. else:
  5191. try:
  5192. self.lerp_weights[bid][name] = data_torch
  5193. except KeyError:
  5194. self.lerp_weights[bid] = {name: data_torch}
  5195. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5196. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5197. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5198. yield (new_name, data)
  5199. return
  5200. else:
  5201. data_torch = data_torch.squeeze()
  5202. new_name = self.map_tensor_name(name)
  5203. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5204. new_name += ".weight"
  5205. if self.lora_needs_transpose and any(
  5206. new_name.endswith(t) for t in [
  5207. "time_mix_w1.weight", "time_mix_w2.weight",
  5208. "time_mix_a1.weight", "time_mix_a2.weight",
  5209. "time_mix_v1.weight", "time_mix_v2.weight",
  5210. "time_mix_g1.weight", "time_mix_g2.weight",
  5211. ]
  5212. ):
  5213. data_torch = data_torch.transpose(0, 1)
  5214. if 'r_k' in new_name:
  5215. data_torch = data_torch.flatten()
  5216. if bid == 0 and "time_mix_a" in new_name:
  5217. # dummy v0/v1/v2 on first layer
  5218. # easist way to make llama happy
  5219. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5220. yield (new_name, data_torch)
  5221. @ModelBase.register("RwkvHybridForCausalLM")
  5222. class ARwkv7Model(Rwkv7Model):
  5223. model_arch = gguf.MODEL_ARCH.ARWKV7
  5224. def set_vocab(self):
  5225. try:
  5226. self._set_vocab_sentencepiece()
  5227. except FileNotFoundError:
  5228. self._set_vocab_gpt2()
  5229. def set_gguf_parameters(self):
  5230. hidden_size = self.hparams["hidden_size"]
  5231. head_size = self.hparams["head_size"]
  5232. rms_norm_eps = self.hparams["rms_norm_eps"]
  5233. intermediate_size = self.hparams["intermediate_size"]
  5234. wkv_has_gate = self.hparams["wkv_has_gate"]
  5235. assert self.hparams["wkv_version"] == 7
  5236. # ICLR: In-Context-Learning-Rate
  5237. lora_rank_decay = 64
  5238. lora_rank_iclr = 64
  5239. lora_rank_value_residual_mix = 32
  5240. lora_rank_gate = 128 if wkv_has_gate else 0
  5241. # RWKV isn't context limited
  5242. self.gguf_writer.add_context_length(1048576)
  5243. self.gguf_writer.add_embedding_length(hidden_size)
  5244. self.gguf_writer.add_block_count(self.block_count)
  5245. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5246. self.gguf_writer.add_wkv_head_size(head_size)
  5247. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5248. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5249. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5250. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5251. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5252. self.gguf_writer.add_file_type(self.ftype)
  5253. self.gguf_writer.add_token_shift_count(1)
  5254. # required by llama.cpp, unused
  5255. self.gguf_writer.add_head_count(0)
  5256. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5257. class MambaModel(TextModel):
  5258. model_arch = gguf.MODEL_ARCH.MAMBA
  5259. def __init__(self, dir_model: Path, *args, **kwargs):
  5260. # Avoid using AutoConfig for hparams
  5261. hparams = kwargs.pop("hparams", None)
  5262. if hparams is None:
  5263. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5264. hparams = json.load(f)
  5265. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5266. def set_vocab(self):
  5267. vocab_size = self.hparams["vocab_size"]
  5268. # Round vocab size to next multiple of 8
  5269. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5270. # pad using ceiling division
  5271. # ref: https://stackoverflow.com/a/17511341/22827863
  5272. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5273. self.hparams["vocab_size"] = vocab_size
  5274. if (self.dir_model / "tokenizer.json").is_file():
  5275. self._set_vocab_gpt2()
  5276. elif (self.dir_model / "tokenizer.model").is_file():
  5277. self._set_vocab_sentencepiece()
  5278. else:
  5279. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5280. self._set_vocab_builtin("gpt-neox", vocab_size)
  5281. def set_gguf_parameters(self):
  5282. d_model = self.find_hparam(["hidden_size", "d_model"])
  5283. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5284. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5285. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5286. # ceiling division
  5287. # ref: https://stackoverflow.com/a/17511341/22827863
  5288. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5289. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5290. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5291. use_dt_b_c_norm = False
  5292. # For falconmamba we do apply RMS norm on B / DT and C layers
  5293. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5294. use_dt_b_c_norm = True
  5295. # Fail early for models which don't have a block expansion factor of 2
  5296. assert d_inner == 2 * d_model
  5297. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5298. self.gguf_writer.add_embedding_length(d_model)
  5299. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5300. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5301. self.gguf_writer.add_block_count(self.block_count)
  5302. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5303. self.gguf_writer.add_ssm_inner_size(d_inner)
  5304. self.gguf_writer.add_ssm_state_size(d_state)
  5305. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5306. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5307. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5308. self.gguf_writer.add_file_type(self.ftype)
  5309. _tok_embd = None
  5310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5311. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5312. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5313. new_name = self.map_tensor_name(name)
  5314. if name.endswith(".A_log"):
  5315. logger.debug("A_log --> A ==> " + new_name)
  5316. data_torch = -torch.exp(data_torch)
  5317. # [4 1 8192 1] -> [4 8192 1 1]
  5318. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5319. data_torch = data_torch.squeeze()
  5320. # assuming token_embd.weight is seen before output.weight
  5321. if self._tok_embd is not None and new_name == output_name:
  5322. if torch.equal(self._tok_embd, data_torch):
  5323. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5324. return []
  5325. elif new_name == tok_embd_name:
  5326. self._tok_embd = data_torch
  5327. return [(new_name, data_torch)]
  5328. @ModelBase.register("Mamba2ForCausalLM")
  5329. class Mamba2Model(TextModel):
  5330. model_arch = gguf.MODEL_ARCH.MAMBA2
  5331. def __init__(self, dir_model: Path, *args, **kwargs):
  5332. # Avoid using AutoConfig for hparams
  5333. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5334. hparams = kwargs.pop("hparams", None)
  5335. if hparams is None:
  5336. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5337. hparams = json.load(f)
  5338. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5339. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5340. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5341. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5342. def set_vocab(self):
  5343. vocab_size = self.hparams["vocab_size"]
  5344. # Round vocab size to next multiple of 16
  5345. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5346. # pad using ceiling division
  5347. # ref: https://stackoverflow.com/a/17511341/22827863
  5348. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5349. self.hparams["vocab_size"] = vocab_size
  5350. if (self.dir_model / "tokenizer.model").is_file():
  5351. self._set_vocab_sentencepiece()
  5352. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5353. # mamba-codestral
  5354. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5355. elif (self.dir_model / "tokenizer.json").is_file():
  5356. self._set_vocab_gpt2()
  5357. else:
  5358. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5359. self._set_vocab_builtin("gpt-neox", vocab_size)
  5360. def set_gguf_parameters(self):
  5361. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5362. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5363. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5364. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5365. # Fail early for models which don't have a block expansion factor of 2
  5366. # TODO: does this really matter?
  5367. # skip the assertion for FalconH1 Model
  5368. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5369. assert self.d_inner == 2 * self.d_model
  5370. assert self.d_inner % head_dim == 0
  5371. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5372. self.gguf_writer.add_embedding_length(self.d_model)
  5373. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5374. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5375. self.gguf_writer.add_block_count(self.block_count)
  5376. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5377. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5378. self.gguf_writer.add_ssm_state_size(d_state)
  5379. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5380. self.gguf_writer.add_ssm_group_count(self.n_group)
  5381. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5382. self.gguf_writer.add_file_type(self.ftype)
  5383. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5384. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5385. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5386. name = name.removeprefix("model.")
  5387. if name.endswith(".dt_bias"):
  5388. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5389. new_name = self.map_tensor_name(name)
  5390. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5391. data_torch = data_torch.squeeze()
  5392. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5393. gguf.MODEL_TENSOR.SSM_A,
  5394. gguf.MODEL_TENSOR.SSM_D,
  5395. ]):
  5396. # unsqueeze A to use similar shape semantics as Mamba-1
  5397. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5398. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5399. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5400. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5401. if name.endswith(".A_log"):
  5402. logger.debug("A_log --> A ==> " + new_name)
  5403. data_torch = -torch.exp(data_torch)
  5404. yield (new_name, data_torch)
  5405. @ModelBase.register("JambaForCausalLM")
  5406. class JambaModel(TextModel):
  5407. model_arch = gguf.MODEL_ARCH.JAMBA
  5408. def set_vocab(self):
  5409. if (self.dir_model / "tokenizer.model").is_file():
  5410. self._set_vocab_sentencepiece()
  5411. else:
  5412. self._set_vocab_llama_hf()
  5413. self.gguf_writer.add_add_space_prefix(False)
  5414. def set_gguf_parameters(self):
  5415. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5416. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5417. d_inner = self.hparams["mamba_expand"] * d_model
  5418. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5419. # ceiling division
  5420. # ref: https://stackoverflow.com/a/17511341/22827863
  5421. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5422. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5423. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5424. n_kv_head = self.hparams["num_key_value_heads"]
  5425. attn_offset = self.hparams["attn_layer_offset"]
  5426. attn_period = self.hparams["attn_layer_period"]
  5427. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5428. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5429. ]
  5430. self.gguf_writer.add_block_count(self.block_count)
  5431. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5432. self.gguf_writer.add_embedding_length(d_model)
  5433. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5434. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5435. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5436. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5437. self.gguf_writer.add_ssm_inner_size(d_inner)
  5438. self.gguf_writer.add_ssm_state_size(d_state)
  5439. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5440. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5441. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5442. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5443. self.gguf_writer.add_file_type(self.ftype)
  5444. _experts: list[dict[str, Tensor]] | None = None
  5445. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5446. # Mini-Jamba
  5447. name = name.replace(".moe.", ".feed_forward.")
  5448. if bid is not None:
  5449. moe_offset = self.hparams["expert_layer_offset"]
  5450. moe_period = self.hparams["expert_layer_period"]
  5451. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5452. name = name.replace(".experts.0.", ".")
  5453. # process the experts separately
  5454. if ".feed_forward.experts." in name:
  5455. n_experts = self.hparams["num_experts"]
  5456. assert bid is not None
  5457. if self._experts is None:
  5458. self._experts = [{} for _ in range(self.block_count)]
  5459. self._experts[bid][name] = data_torch
  5460. if len(self._experts[bid]) >= n_experts * 3:
  5461. # merge the experts into a single 3d tensor
  5462. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5463. datas: list[Tensor] = []
  5464. for xid in range(n_experts):
  5465. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5466. datas.append(self._experts[bid][ename])
  5467. del self._experts[bid][ename]
  5468. data_torch = torch.stack(datas, dim=0)
  5469. # using the same merged name as qwen2moe
  5470. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5471. new_name = self.map_tensor_name(merged_name)
  5472. yield new_name, data_torch
  5473. return
  5474. new_name = self.map_tensor_name(name)
  5475. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5476. data_torch = data_torch.squeeze()
  5477. if name.endswith(".A_log"):
  5478. logger.debug("A_log --> A ==> " + new_name)
  5479. data_torch = -torch.exp(data_torch)
  5480. yield (new_name, data_torch)
  5481. def prepare_tensors(self):
  5482. super().prepare_tensors()
  5483. if self._experts is not None:
  5484. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5485. experts = [k for d in self._experts for k in d.keys()]
  5486. if len(experts) > 0:
  5487. raise ValueError(f"Unprocessed experts: {experts}")
  5488. @ModelBase.register("CohereForCausalLM")
  5489. class CommandR2Model(TextModel):
  5490. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5491. def __init__(self, *args, **kwargs):
  5492. super().__init__(*args, **kwargs)
  5493. # max_position_embeddings = 8192 in config.json but model was actually
  5494. # trained on 128k context length
  5495. # aya-23 models don't have model_max_length specified
  5496. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5497. def set_gguf_parameters(self):
  5498. super().set_gguf_parameters()
  5499. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5500. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5501. @ModelBase.register("Cohere2ForCausalLM")
  5502. class Cohere2Model(TextModel):
  5503. model_arch = gguf.MODEL_ARCH.COHERE2
  5504. def set_gguf_parameters(self):
  5505. super().set_gguf_parameters()
  5506. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5507. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5508. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5509. rotary_pct = self.hparams["rotary_pct"]
  5510. hidden_size = self.hparams["hidden_size"]
  5511. num_attention_heads = self.hparams["num_attention_heads"]
  5512. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5513. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5514. @ModelBase.register("OlmoForCausalLM")
  5515. @ModelBase.register("OLMoForCausalLM")
  5516. class OlmoModel(TextModel):
  5517. model_arch = gguf.MODEL_ARCH.OLMO
  5518. def set_gguf_parameters(self):
  5519. super().set_gguf_parameters()
  5520. self.gguf_writer.add_layer_norm_eps(1e-5)
  5521. clip_qkv = self.hparams.get("clip_qkv")
  5522. if clip_qkv is not None:
  5523. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5524. # Same as super class, but permuting q_proj, k_proj
  5525. # Copied from: LlamaModel
  5526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5527. del bid # unused
  5528. n_head = self.hparams["num_attention_heads"]
  5529. n_kv_head = self.hparams.get("num_key_value_heads")
  5530. if name.endswith("q_proj.weight"):
  5531. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5532. if name.endswith("k_proj.weight"):
  5533. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5534. return [(self.map_tensor_name(name), data_torch)]
  5535. @ModelBase.register("SeedOssForCausalLM")
  5536. class SeedOssModel(TextModel):
  5537. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5538. @ModelBase.register("Olmo2ForCausalLM")
  5539. @ModelBase.register("Olmo3ForCausalLM")
  5540. class Olmo2Model(TextModel):
  5541. model_arch = gguf.MODEL_ARCH.OLMO2
  5542. def set_gguf_parameters(self):
  5543. super().set_gguf_parameters()
  5544. if "sliding_window" in self.hparams:
  5545. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5546. sliding_window_pattern = []
  5547. if "layer_types" in self.hparams:
  5548. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5549. else:
  5550. # Olmo2 does not use sliding window attention.
  5551. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5552. for i in range(self.hparams["num_hidden_layers"]):
  5553. sliding_window_pattern.append((i + 1) % 4 != 0)
  5554. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5555. @ModelBase.register("OlmoeForCausalLM")
  5556. class OlmoeModel(TextModel):
  5557. model_arch = gguf.MODEL_ARCH.OLMOE
  5558. def set_gguf_parameters(self):
  5559. super().set_gguf_parameters()
  5560. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5561. if (n_experts := self.hparams.get("num_experts")) is not None:
  5562. self.gguf_writer.add_expert_count(n_experts)
  5563. _experts: list[dict[str, Tensor]] | None = None
  5564. # Copied from: Qwen2MoeModel
  5565. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5566. # process the experts separately
  5567. if name.find("experts") != -1:
  5568. n_experts = self.hparams["num_experts"]
  5569. assert bid is not None
  5570. if self._experts is None:
  5571. self._experts = [{} for _ in range(self.block_count)]
  5572. self._experts[bid][name] = data_torch
  5573. if len(self._experts[bid]) >= n_experts * 3:
  5574. tensors: list[tuple[str, Tensor]] = []
  5575. # merge the experts into a single 3d tensor
  5576. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5577. datas: list[Tensor] = []
  5578. for xid in range(n_experts):
  5579. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5580. datas.append(self._experts[bid][ename])
  5581. del self._experts[bid][ename]
  5582. data_torch = torch.stack(datas, dim=0)
  5583. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5584. new_name = self.map_tensor_name(merged_name)
  5585. tensors.append((new_name, data_torch))
  5586. return tensors
  5587. else:
  5588. return []
  5589. return [(self.map_tensor_name(name), data_torch)]
  5590. # Copied from: Qwen2MoeModel
  5591. def prepare_tensors(self):
  5592. super().prepare_tensors()
  5593. if self._experts is not None:
  5594. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5595. experts = [k for d in self._experts for k in d.keys()]
  5596. if len(experts) > 0:
  5597. raise ValueError(f"Unprocessed experts: {experts}")
  5598. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5599. class JinaBertV2Model(BertModel):
  5600. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5601. def set_vocab(self):
  5602. tokenizer_class = 'BertTokenizer'
  5603. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5604. tokenizer_class = json.load(f)['tokenizer_class']
  5605. if tokenizer_class == 'BertTokenizer':
  5606. super().set_vocab()
  5607. elif tokenizer_class == 'RobertaTokenizer':
  5608. self._set_vocab_gpt2()
  5609. self.gguf_writer.add_token_type_count(2)
  5610. else:
  5611. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5612. @ModelBase.register("OpenELMForCausalLM")
  5613. class OpenELMModel(TextModel):
  5614. model_arch = gguf.MODEL_ARCH.OPENELM
  5615. @staticmethod
  5616. def _make_divisible(v: float | int, divisor: int) -> int:
  5617. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5618. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5619. # Make sure that round down does not go down by more than 10%.
  5620. if new_v < 0.9 * v:
  5621. new_v += divisor
  5622. return new_v
  5623. def __init__(self, *args, **kwargs):
  5624. super().__init__(*args, **kwargs)
  5625. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5626. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5627. self._n_embd: int = self.hparams["model_dim"]
  5628. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5629. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5630. self._ffn_dims: list[int] = [
  5631. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5632. for multiplier in ffn_multipliers
  5633. ]
  5634. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5635. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5636. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5637. def set_vocab(self):
  5638. try:
  5639. self._set_vocab_sentencepiece()
  5640. except FileNotFoundError:
  5641. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5642. def set_gguf_parameters(self):
  5643. n_embd = self._n_embd
  5644. head_dim = self.hparams["head_dim"]
  5645. rot_pct = 1.0
  5646. assert self.block_count == len(self._num_kv_heads)
  5647. assert self.block_count == len(self._num_query_heads)
  5648. assert self.block_count == len(self._ffn_dims)
  5649. self.gguf_writer.add_block_count(self.block_count)
  5650. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5651. self.gguf_writer.add_embedding_length(n_embd)
  5652. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5653. self.gguf_writer.add_head_count(self._num_query_heads)
  5654. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5655. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5656. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5657. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5658. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5659. self.gguf_writer.add_key_length(head_dim)
  5660. self.gguf_writer.add_value_length(head_dim)
  5661. self.gguf_writer.add_file_type(self.ftype)
  5662. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5663. if "n_layers" in keys:
  5664. return self.hparams["num_transformer_layers"]
  5665. return super().find_hparam(keys, optional)
  5666. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5667. # split ff
  5668. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5669. ff_dim = self._ffn_dims[bid]
  5670. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5671. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5672. return
  5673. yield (self.map_tensor_name(name), data_torch)
  5674. @ModelBase.register("ArcticForCausalLM")
  5675. class ArcticModel(TextModel):
  5676. model_arch = gguf.MODEL_ARCH.ARCTIC
  5677. def set_vocab(self):
  5678. # The reason for using a custom implementation here is that the
  5679. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5680. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5681. from sentencepiece import SentencePieceProcessor
  5682. tokenizer_path = self.dir_model / 'tokenizer.model'
  5683. if not tokenizer_path.is_file():
  5684. logger.error(f'Error: Missing {tokenizer_path}')
  5685. sys.exit(1)
  5686. # Read the whole vocabulary from the tokenizer.model file
  5687. tokenizer = SentencePieceProcessor()
  5688. tokenizer.LoadFromFile(str(tokenizer_path))
  5689. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5690. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5691. scores: list[float] = [-10000.0] * vocab_size
  5692. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5693. for token_id in range(tokenizer.vocab_size()):
  5694. piece = tokenizer.IdToPiece(token_id)
  5695. text = piece.encode("utf-8")
  5696. score = tokenizer.GetScore(token_id)
  5697. toktype = SentencePieceTokenTypes.NORMAL
  5698. if tokenizer.IsUnknown(token_id):
  5699. toktype = SentencePieceTokenTypes.UNKNOWN
  5700. elif tokenizer.IsControl(token_id):
  5701. toktype = SentencePieceTokenTypes.CONTROL
  5702. elif tokenizer.IsUnused(token_id):
  5703. toktype = SentencePieceTokenTypes.UNUSED
  5704. elif tokenizer.IsByte(token_id):
  5705. toktype = SentencePieceTokenTypes.BYTE
  5706. tokens[token_id] = text
  5707. scores[token_id] = score
  5708. toktypes[token_id] = toktype
  5709. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5710. # of information about added/redefined tokens and modify them accordingly.
  5711. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5712. if tokenizer_config_file.is_file():
  5713. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5714. tokenizer_config_json = json.load(f)
  5715. if "added_tokens_decoder" in tokenizer_config_json:
  5716. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5717. for token_id, token_json in added_tokens_decoder.items():
  5718. token_id = int(token_id)
  5719. if token_id >= vocab_size:
  5720. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5721. continue
  5722. token_content = token_json["content"]
  5723. token_type = SentencePieceTokenTypes.USER_DEFINED
  5724. token_score = -10000.0
  5725. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5726. # Set the score to 0.0 as in the original tokenizer.model
  5727. if ("special" in token_json) and token_json["special"]:
  5728. if token_content == tokenizer_config_json["unk_token"]:
  5729. token_type = SentencePieceTokenTypes.UNKNOWN
  5730. else:
  5731. token_type = SentencePieceTokenTypes.CONTROL
  5732. token_score = 0.0
  5733. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5734. tokens[token_id] = token_content.encode("utf-8")
  5735. toktypes[token_id] = token_type
  5736. scores[token_id] = token_score
  5737. self.gguf_writer.add_tokenizer_model("llama")
  5738. self.gguf_writer.add_tokenizer_pre("default")
  5739. self.gguf_writer.add_token_list(tokens)
  5740. self.gguf_writer.add_token_scores(scores)
  5741. self.gguf_writer.add_token_types(toktypes)
  5742. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5743. special_vocab.add_to_gguf(self.gguf_writer)
  5744. def set_gguf_parameters(self):
  5745. super().set_gguf_parameters()
  5746. hparams = self.hparams
  5747. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5748. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5749. _experts: list[dict[str, Tensor]] | None = None
  5750. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5751. n_head = self.hparams["num_attention_heads"]
  5752. n_kv_head = self.hparams.get("num_key_value_heads")
  5753. if name.endswith("q_proj.weight"):
  5754. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5755. if name.endswith("k_proj.weight"):
  5756. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5757. # process the experts separately
  5758. if name.find("block_sparse_moe.experts") != -1:
  5759. n_experts = self.hparams["num_local_experts"]
  5760. assert bid is not None
  5761. if self._experts is None:
  5762. self._experts = [{} for _ in range(self.block_count)]
  5763. self._experts[bid][name] = data_torch
  5764. if len(self._experts[bid]) >= n_experts * 3:
  5765. tensors: list[tuple[str, Tensor]] = []
  5766. # merge the experts into a single 3d tensor
  5767. for wid in ["w1", "w2", "w3"]:
  5768. datas: list[Tensor] = []
  5769. for xid in range(n_experts):
  5770. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5771. datas.append(self._experts[bid][ename])
  5772. del self._experts[bid][ename]
  5773. data_torch = torch.stack(datas, dim=0)
  5774. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5775. new_name = self.map_tensor_name(merged_name)
  5776. tensors.append((new_name, data_torch))
  5777. return tensors
  5778. else:
  5779. return []
  5780. return [(self.map_tensor_name(name), data_torch)]
  5781. def prepare_tensors(self):
  5782. super().prepare_tensors()
  5783. if self._experts is not None:
  5784. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5785. experts = [k for d in self._experts for k in d.keys()]
  5786. if len(experts) > 0:
  5787. raise ValueError(f"Unprocessed experts: {experts}")
  5788. @ModelBase.register("DeepseekForCausalLM")
  5789. class DeepseekModel(TextModel):
  5790. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5791. def set_vocab(self):
  5792. try:
  5793. self._set_vocab_sentencepiece()
  5794. except FileNotFoundError:
  5795. self._set_vocab_gpt2()
  5796. def set_gguf_parameters(self):
  5797. super().set_gguf_parameters()
  5798. hparams = self.hparams
  5799. if (rope_dim := hparams.get("head_dim")) is None:
  5800. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5801. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5802. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5803. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5804. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5805. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5806. self.gguf_writer.add_expert_weights_scale(1.0)
  5807. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5808. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5809. _experts: list[dict[str, Tensor]] | None = None
  5810. @staticmethod
  5811. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5812. if n_head_kv is not None and n_head != n_head_kv:
  5813. n_head = n_head_kv
  5814. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5815. .swapaxes(1, 2)
  5816. .reshape(weights.shape))
  5817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5818. n_head = self.hparams["num_attention_heads"]
  5819. n_kv_head = self.hparams.get("num_key_value_heads")
  5820. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5821. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5822. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5823. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5824. # process the experts separately
  5825. if name.find("mlp.experts") != -1:
  5826. n_experts = self.hparams["n_routed_experts"]
  5827. assert bid is not None
  5828. if self._experts is None:
  5829. self._experts = [{} for _ in range(self.block_count)]
  5830. self._experts[bid][name] = data_torch
  5831. if len(self._experts[bid]) >= n_experts * 3:
  5832. tensors: list[tuple[str, Tensor]] = []
  5833. # merge the experts into a single 3d tensor
  5834. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5835. datas: list[Tensor] = []
  5836. for xid in range(n_experts):
  5837. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5838. datas.append(self._experts[bid][ename])
  5839. del self._experts[bid][ename]
  5840. data_torch = torch.stack(datas, dim=0)
  5841. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5842. new_name = self.map_tensor_name(merged_name)
  5843. tensors.append((new_name, data_torch))
  5844. return tensors
  5845. else:
  5846. return []
  5847. return [(self.map_tensor_name(name), data_torch)]
  5848. def prepare_tensors(self):
  5849. super().prepare_tensors()
  5850. if self._experts is not None:
  5851. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5852. experts = [k for d in self._experts for k in d.keys()]
  5853. if len(experts) > 0:
  5854. raise ValueError(f"Unprocessed experts: {experts}")
  5855. @ModelBase.register(
  5856. "DeepseekV2ForCausalLM",
  5857. "DeepseekV3ForCausalLM",
  5858. "KimiVLForConditionalGeneration",
  5859. )
  5860. class DeepseekV2Model(TextModel):
  5861. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5862. def set_vocab(self):
  5863. try:
  5864. self._set_vocab_gpt2()
  5865. return
  5866. except Exception:
  5867. pass
  5868. from transformers import AutoTokenizer
  5869. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5870. tokpre = self.get_vocab_base_pre(tokenizer)
  5871. if tokpre == "kimi-k2":
  5872. # Build merges list using the approach similar to HunYuanMoE
  5873. merges = []
  5874. vocab = {}
  5875. mergeable_ranks = tokenizer.model._mergeable_ranks
  5876. for token, rank in mergeable_ranks.items():
  5877. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5878. if len(token) == 1:
  5879. continue
  5880. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5881. if len(merged) == 2:
  5882. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5883. # Build token list
  5884. vocab_size = self.hparams["vocab_size"]
  5885. special_tokens = tokenizer.special_tokens
  5886. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5887. tokens: list[str] = []
  5888. toktypes: list[int] = []
  5889. for i in range(vocab_size):
  5890. if i not in reverse_vocab:
  5891. tokens.append(f"[PAD{i}]")
  5892. toktypes.append(gguf.TokenType.UNUSED)
  5893. else:
  5894. token = reverse_vocab[i]
  5895. tokens.append(token)
  5896. if i in special_tokens.values():
  5897. toktypes.append(gguf.TokenType.CONTROL)
  5898. else:
  5899. toktypes.append(gguf.TokenType.NORMAL)
  5900. self.gguf_writer.add_tokenizer_model("gpt2")
  5901. self.gguf_writer.add_tokenizer_pre(tokpre)
  5902. self.gguf_writer.add_token_list(tokens)
  5903. self.gguf_writer.add_token_types(toktypes)
  5904. self.gguf_writer.add_token_merges(merges)
  5905. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5906. special_vocab.add_to_gguf(self.gguf_writer)
  5907. else:
  5908. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5909. def set_gguf_parameters(self):
  5910. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5911. self.hparams["num_key_value_heads"] = 1
  5912. super().set_gguf_parameters()
  5913. hparams = self.hparams
  5914. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5915. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5916. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5917. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5918. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5919. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5920. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5921. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5922. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5923. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5924. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5925. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5926. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5927. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5928. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5929. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5930. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  5931. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  5932. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  5933. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  5934. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  5935. _experts: list[dict[str, Tensor]] | None = None
  5936. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5937. # skip vision tensors and remove "language_model." for Kimi-VL
  5938. if "vision_tower" in name or "multi_modal_projector" in name:
  5939. return []
  5940. if name.startswith("language_model."):
  5941. name = name.replace("language_model.", "")
  5942. # rename e_score_correction_bias tensors
  5943. if name.endswith("e_score_correction_bias"):
  5944. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5945. # skip Multi-Token Prediction (MTP) layers
  5946. block_count = self.hparams["num_hidden_layers"]
  5947. match = re.match(r"model.layers.(\d+)", name)
  5948. if match and int(match.group(1)) >= block_count:
  5949. return []
  5950. # process the experts separately
  5951. if name.find("mlp.experts") != -1:
  5952. n_experts = self.hparams["n_routed_experts"]
  5953. assert bid is not None
  5954. if self._experts is None:
  5955. self._experts = [{} for _ in range(self.block_count)]
  5956. self._experts[bid][name] = data_torch
  5957. if len(self._experts[bid]) >= n_experts * 3:
  5958. tensors: list[tuple[str, Tensor]] = []
  5959. # merge the experts into a single 3d tensor
  5960. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5961. datas: list[Tensor] = []
  5962. for xid in range(n_experts):
  5963. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5964. datas.append(self._experts[bid][ename])
  5965. del self._experts[bid][ename]
  5966. data_torch = torch.stack(datas, dim=0)
  5967. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5968. new_name = self.map_tensor_name(merged_name)
  5969. tensors.append((new_name, data_torch))
  5970. return tensors
  5971. else:
  5972. return []
  5973. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5974. if name.endswith("kv_b_proj.weight"):
  5975. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5976. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5977. n_head_kv = self.hparams["num_key_value_heads"]
  5978. v_head_dim = self.hparams["v_head_dim"]
  5979. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5980. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5981. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5982. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5983. k_b = k_b.transpose(1, 2)
  5984. return [
  5985. (self.map_tensor_name(name_kb), k_b),
  5986. (self.map_tensor_name(name_vb), v_b)
  5987. ]
  5988. return [(self.map_tensor_name(name), data_torch)]
  5989. def prepare_tensors(self):
  5990. super().prepare_tensors()
  5991. if self._experts is not None:
  5992. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5993. experts = [k for d in self._experts for k in d.keys()]
  5994. if len(experts) > 0:
  5995. raise ValueError(f"Unprocessed experts: {experts}")
  5996. @ModelBase.register("MiniMaxM2ForCausalLM")
  5997. class MiniMaxM2Model(TextModel):
  5998. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5999. _experts_cache: dict[int, dict[str, Tensor]] = {}
  6000. def __init__(self, *args, **kwargs):
  6001. super().__init__(*args, **kwargs)
  6002. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  6003. def set_gguf_parameters(self):
  6004. super().set_gguf_parameters()
  6005. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  6006. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  6007. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6008. if name.endswith("e_score_correction_bias"):
  6009. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6010. # merge expert weights
  6011. if 'experts' in name:
  6012. n_experts = self.hparams["num_experts"]
  6013. assert bid is not None
  6014. expert_cache = self._experts_cache.setdefault(bid, {})
  6015. expert_cache[name] = data_torch
  6016. expert_weights = ["w1", "w2", "w3"]
  6017. # not enough expert weights to merge
  6018. if len(expert_cache) < n_experts * len(expert_weights):
  6019. return []
  6020. tensors: list[tuple[str, Tensor]] = []
  6021. for w_name in expert_weights:
  6022. datas: list[Tensor] = []
  6023. for xid in range(n_experts):
  6024. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6025. datas.append(expert_cache[ename])
  6026. del expert_cache[ename]
  6027. data_torch = torch.stack(datas, dim=0)
  6028. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6029. new_name = self.map_tensor_name(merged_name)
  6030. tensors.append((new_name, data_torch))
  6031. del self._experts_cache[bid]
  6032. return tensors
  6033. return super().modify_tensors(data_torch, name, bid)
  6034. @ModelBase.register("MiMoV2FlashForCausalLM")
  6035. class MimoV2Model(TextModel):
  6036. model_arch = gguf.MODEL_ARCH.MIMO2
  6037. def set_gguf_parameters(self):
  6038. super().set_gguf_parameters()
  6039. assert self.hparams["swa_head_dim"] == self.hparams["head_dim"]
  6040. assert self.hparams["swa_num_attention_heads"] == self.hparams["num_attention_heads"]
  6041. assert self.hparams["swa_v_head_dim"] == self.hparams["v_head_dim"]
  6042. assert self.hparams["topk_method"] == "noaux_tc"
  6043. n_head_kv = self.hparams["num_key_value_heads"]
  6044. n_head_kv_swa = self.hparams["swa_num_key_value_heads"]
  6045. n_head_kv_arr = [n_head_kv_swa if use_swa == 1 else n_head_kv for use_swa in self.hparams["hybrid_layer_pattern"]]
  6046. self.gguf_writer.add_head_count_kv(n_head_kv_arr)
  6047. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6048. self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
  6049. self.gguf_writer.add_rope_freq_base_swa(self.hparams["swa_rope_theta"])
  6050. self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
  6051. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  6052. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  6053. rope_dim = int(self.hparams["head_dim"] * self.hparams["partial_rotary_factor"])
  6054. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6055. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon", 1e-5))
  6056. _experts: list[dict[str, Tensor]] | None = None
  6057. def modify_tensors(self, data_torch, name, bid):
  6058. if name.endswith("e_score_correction_bias"):
  6059. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6060. if "attention_sink" in name and not name.endswith(".weight"):
  6061. name += ".weight"
  6062. # TODO: mimo v2 does not indicate the number of next-token-prediction layers, therefore we cannot do the same way as GLM4_MOE
  6063. if "model.mtp." in name:
  6064. return []
  6065. # process the experts separately
  6066. if name.find("mlp.experts") != -1:
  6067. n_experts = self.hparams["n_routed_experts"]
  6068. assert bid is not None
  6069. if self._experts is None:
  6070. self._experts = [{} for _ in range(self.block_count)]
  6071. self._experts[bid][name] = data_torch
  6072. if len(self._experts[bid]) >= n_experts * 3:
  6073. tensors: list[tuple[str, Tensor]] = []
  6074. # merge the experts into a single 3d tensor
  6075. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  6076. datas: list[Tensor] = []
  6077. for xid in range(n_experts):
  6078. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6079. datas.append(self._experts[bid][ename_to_retrieve])
  6080. del self._experts[bid][ename_to_retrieve]
  6081. data_torch = torch.stack(datas, dim=0)
  6082. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6083. new_name = self.map_tensor_name(merged_name)
  6084. tensors.append((new_name, data_torch))
  6085. return tensors
  6086. else:
  6087. return []
  6088. return [(self.map_tensor_name(name), data_torch)]
  6089. def prepare_tensors(self):
  6090. super().prepare_tensors()
  6091. if self._experts is not None:
  6092. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6093. experts = [k for d in self._experts for k in d.keys()]
  6094. if len(experts) > 0:
  6095. raise ValueError(f"Unprocessed experts: {experts}")
  6096. @ModelBase.register("PanguEmbeddedForCausalLM")
  6097. class PanguEmbeddedModel(TextModel):
  6098. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6099. def set_vocab(self):
  6100. self._set_vocab_sentencepiece()
  6101. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6102. if tokenizer_config_file.is_file():
  6103. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6104. tokenizer_config_json = json.load(f)
  6105. if "add_prefix_space" in tokenizer_config_json:
  6106. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6107. def set_gguf_parameters(self):
  6108. super().set_gguf_parameters()
  6109. hparams = self.hparams
  6110. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6111. # PanguEmbedded's hparam loaded from config.json without head_dim
  6112. if (rope_dim := hparams.get("head_dim")) is None:
  6113. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6114. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6115. if hparams.get("head_dim") is None:
  6116. self.gguf_writer.add_key_length(rope_dim)
  6117. self.gguf_writer.add_value_length(rope_dim)
  6118. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6119. if name == "lm_head.weight":
  6120. if self.hparams.get("tie_word_embeddings", False):
  6121. logger.info("Skipping tied output layer 'lm_head.weight'")
  6122. return []
  6123. return [(self.map_tensor_name(name), data_torch)]
  6124. @ModelBase.register("Dots1ForCausalLM")
  6125. class Dots1Model(Qwen2MoeModel):
  6126. model_arch = gguf.MODEL_ARCH.DOTS1
  6127. def __init__(self, *args, **kwargs):
  6128. super().__init__(*args, **kwargs)
  6129. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6130. def set_gguf_parameters(self):
  6131. super().set_gguf_parameters()
  6132. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6133. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6134. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6135. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6136. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6137. if name.endswith("e_score_correction_bias"):
  6138. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6139. if "shared_experts" in name:
  6140. return [(self.map_tensor_name(name), data_torch)]
  6141. return super().modify_tensors(data_torch, name, bid)
  6142. @ModelBase.register("PLMForCausalLM")
  6143. class PLMModel(TextModel):
  6144. model_arch = gguf.MODEL_ARCH.PLM
  6145. def set_vocab(self):
  6146. self._set_vocab_gpt2()
  6147. def set_gguf_parameters(self):
  6148. super().set_gguf_parameters()
  6149. hparams = self.hparams
  6150. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6151. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6152. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6153. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6154. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6155. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6156. return [(self.map_tensor_name(name), data_torch)]
  6157. def prepare_tensors(self):
  6158. super().prepare_tensors()
  6159. @ModelBase.register("T5WithLMHeadModel")
  6160. @ModelBase.register("T5ForConditionalGeneration")
  6161. @ModelBase.register("MT5ForConditionalGeneration")
  6162. @ModelBase.register("UMT5ForConditionalGeneration")
  6163. @ModelBase.register("UMT5Model")
  6164. class T5Model(TextModel):
  6165. model_arch = gguf.MODEL_ARCH.T5
  6166. def __init__(self, *args, **kwargs):
  6167. super().__init__(*args, **kwargs)
  6168. self.shared_token_embeddings_found = False
  6169. def set_vocab(self):
  6170. # to avoid TypeError: Descriptors cannot be created directly
  6171. # exception when importing sentencepiece_model_pb2
  6172. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6173. from sentencepiece import SentencePieceProcessor
  6174. from sentencepiece import sentencepiece_model_pb2 as model
  6175. tokenizer_path = self.dir_model / 'tokenizer.model'
  6176. # many older models use spiece.model tokenizer model filename
  6177. if not tokenizer_path.is_file():
  6178. tokenizer_path = self.dir_model / 'spiece.model'
  6179. if not tokenizer_path.is_file():
  6180. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6181. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6182. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6183. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6184. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6185. # assure the tokenizer model file name is correct
  6186. assert tokenizer_path.name == 'tokenizer.model'
  6187. return self._set_vocab_sentencepiece()
  6188. else:
  6189. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6190. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6191. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6192. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6193. tokenizer = SentencePieceProcessor()
  6194. tokenizer.LoadFromFile(str(tokenizer_path))
  6195. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6196. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6197. scores: list[float] = [-10000.0] * vocab_size
  6198. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6199. for token_id in range(tokenizer.vocab_size()):
  6200. piece = tokenizer.IdToPiece(token_id)
  6201. text = piece.encode("utf-8")
  6202. score = tokenizer.GetScore(token_id)
  6203. toktype = SentencePieceTokenTypes.NORMAL
  6204. if tokenizer.IsUnknown(token_id):
  6205. toktype = SentencePieceTokenTypes.UNKNOWN
  6206. elif tokenizer.IsControl(token_id):
  6207. toktype = SentencePieceTokenTypes.CONTROL
  6208. elif tokenizer.IsUnused(token_id):
  6209. toktype = SentencePieceTokenTypes.UNUSED
  6210. elif tokenizer.IsByte(token_id):
  6211. toktype = SentencePieceTokenTypes.BYTE
  6212. tokens[token_id] = text
  6213. scores[token_id] = score
  6214. toktypes[token_id] = toktype
  6215. added_tokens_file = self.dir_model / 'added_tokens.json'
  6216. if added_tokens_file.is_file():
  6217. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6218. added_tokens_json = json.load(f)
  6219. for key in added_tokens_json:
  6220. token_id = added_tokens_json[key]
  6221. if token_id >= vocab_size:
  6222. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6223. continue
  6224. tokens[token_id] = key.encode("utf-8")
  6225. scores[token_id] = -1000.0
  6226. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6227. if vocab_size > len(tokens):
  6228. pad_count = vocab_size - len(tokens)
  6229. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6230. for i in range(1, pad_count + 1):
  6231. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6232. scores.append(-1000.0)
  6233. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6234. self.gguf_writer.add_tokenizer_model("t5")
  6235. self.gguf_writer.add_tokenizer_pre("default")
  6236. self.gguf_writer.add_token_list(tokens)
  6237. self.gguf_writer.add_token_scores(scores)
  6238. self.gguf_writer.add_token_types(toktypes)
  6239. self.gguf_writer.add_add_space_prefix(add_prefix)
  6240. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6241. if precompiled_charsmap:
  6242. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6243. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6244. special_vocab.add_to_gguf(self.gguf_writer)
  6245. def set_gguf_parameters(self):
  6246. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6247. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6248. n_ctx = 512
  6249. self.gguf_writer.add_context_length(n_ctx)
  6250. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6251. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6252. self.gguf_writer.add_block_count(self.block_count)
  6253. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6254. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6255. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6256. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6257. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6258. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6259. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6260. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6261. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6262. self.gguf_writer.add_file_type(self.ftype)
  6263. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6264. del bid # unused
  6265. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6266. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6267. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6268. # and decoder and ignore the remaining ones.
  6269. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6270. if not self.shared_token_embeddings_found:
  6271. name = "shared.weight"
  6272. self.shared_token_embeddings_found = True
  6273. else:
  6274. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6275. return []
  6276. return [(self.map_tensor_name(name), data_torch)]
  6277. @ModelBase.register("T5EncoderModel")
  6278. class T5EncoderModel(TextModel):
  6279. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6280. def __init__(self, *args, **kwargs):
  6281. super().__init__(*args, **kwargs)
  6282. self.shared_token_embeddings_found = False
  6283. def set_vocab(self):
  6284. # to avoid TypeError: Descriptors cannot be created directly
  6285. # exception when importing sentencepiece_model_pb2
  6286. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6287. from sentencepiece import SentencePieceProcessor
  6288. from sentencepiece import sentencepiece_model_pb2 as model
  6289. tokenizer_path = self.dir_model / 'tokenizer.model'
  6290. # many older models use spiece.model tokenizer model filename
  6291. if not tokenizer_path.is_file():
  6292. tokenizer_path = self.dir_model / 'spiece.model'
  6293. if not tokenizer_path.is_file():
  6294. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6295. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6296. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6297. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6298. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6299. # assure the tokenizer model file name is correct
  6300. assert tokenizer_path.name == 'tokenizer.model'
  6301. return self._set_vocab_sentencepiece()
  6302. else:
  6303. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6304. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6305. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6306. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6307. tokenizer = SentencePieceProcessor()
  6308. tokenizer.LoadFromFile(str(tokenizer_path))
  6309. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6310. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6311. scores: list[float] = [-10000.0] * vocab_size
  6312. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6313. for token_id in range(tokenizer.vocab_size()):
  6314. piece = tokenizer.IdToPiece(token_id)
  6315. text = piece.encode("utf-8")
  6316. score = tokenizer.GetScore(token_id)
  6317. toktype = SentencePieceTokenTypes.NORMAL
  6318. if tokenizer.IsUnknown(token_id):
  6319. toktype = SentencePieceTokenTypes.UNKNOWN
  6320. elif tokenizer.IsControl(token_id):
  6321. toktype = SentencePieceTokenTypes.CONTROL
  6322. elif tokenizer.IsUnused(token_id):
  6323. toktype = SentencePieceTokenTypes.UNUSED
  6324. elif tokenizer.IsByte(token_id):
  6325. toktype = SentencePieceTokenTypes.BYTE
  6326. tokens[token_id] = text
  6327. scores[token_id] = score
  6328. toktypes[token_id] = toktype
  6329. added_tokens_file = self.dir_model / 'added_tokens.json'
  6330. if added_tokens_file.is_file():
  6331. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6332. added_tokens_json = json.load(f)
  6333. for key in added_tokens_json:
  6334. token_id = added_tokens_json[key]
  6335. if token_id >= vocab_size:
  6336. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6337. continue
  6338. tokens[token_id] = key.encode("utf-8")
  6339. scores[token_id] = -1000.0
  6340. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6341. if vocab_size > len(tokens):
  6342. pad_count = vocab_size - len(tokens)
  6343. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6344. for i in range(1, pad_count + 1):
  6345. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6346. scores.append(-1000.0)
  6347. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6348. self.gguf_writer.add_tokenizer_model("t5")
  6349. self.gguf_writer.add_tokenizer_pre("default")
  6350. self.gguf_writer.add_token_list(tokens)
  6351. self.gguf_writer.add_token_scores(scores)
  6352. self.gguf_writer.add_token_types(toktypes)
  6353. self.gguf_writer.add_add_space_prefix(add_prefix)
  6354. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6355. if precompiled_charsmap:
  6356. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6357. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6358. special_vocab.add_to_gguf(self.gguf_writer)
  6359. def set_gguf_parameters(self):
  6360. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6361. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6362. n_ctx = 512
  6363. self.gguf_writer.add_context_length(n_ctx)
  6364. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6365. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6366. self.gguf_writer.add_block_count(self.block_count)
  6367. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6368. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6369. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6370. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6371. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6372. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6373. self.gguf_writer.add_file_type(self.ftype)
  6374. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6375. del bid # unused
  6376. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6377. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6378. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6379. # and decoder and ignore the remaining ones.
  6380. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6381. if not self.shared_token_embeddings_found:
  6382. name = "shared.weight"
  6383. self.shared_token_embeddings_found = True
  6384. else:
  6385. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6386. return []
  6387. return [(self.map_tensor_name(name), data_torch)]
  6388. @ModelBase.register("JAISLMHeadModel")
  6389. class JaisModel(TextModel):
  6390. model_arch = gguf.MODEL_ARCH.JAIS
  6391. def __init__(self, *args, **kwargs):
  6392. super().__init__(*args, **kwargs)
  6393. # SwigLU activation
  6394. assert self.hparams["activation_function"] == "swiglu"
  6395. # ALiBi position embedding
  6396. assert self.hparams["position_embedding_type"] == "alibi"
  6397. # Embeddings scale
  6398. self.embeddings_scale = 1.0
  6399. if 'mup_embeddings_scale' in self.hparams:
  6400. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6401. elif 'embeddings_scale' in self.hparams:
  6402. self.embeddings_scale = self.hparams['embeddings_scale']
  6403. else:
  6404. assert False
  6405. self.width_scale = 1.0
  6406. if 'mup_output_alpha' in self.hparams:
  6407. assert 'mup_width_scale' in self.hparams
  6408. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6409. elif 'width_scale' in self.hparams:
  6410. self.width_scale = self.hparams['width_scale']
  6411. else:
  6412. assert False
  6413. self.max_alibi_bias = 8.0
  6414. def set_vocab(self):
  6415. self._set_vocab_gpt2()
  6416. def set_gguf_parameters(self):
  6417. self.gguf_writer.add_block_count(self.block_count)
  6418. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6419. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6420. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6421. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6422. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6423. self.gguf_writer.add_file_type(self.ftype)
  6424. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6425. del bid # unused
  6426. tensors: list[tuple[str, Tensor]] = []
  6427. # we don't need these
  6428. if name.endswith((".attn.bias")):
  6429. return tensors
  6430. if name.endswith(("relative_pe.slopes")):
  6431. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6432. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6433. # but Jais's PyTorch model simply precalculates the slope values and places them
  6434. # in relative_pes.slopes
  6435. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6436. first_val = float(data_torch[0].item())
  6437. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6438. return tensors
  6439. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6440. data_torch = data_torch.transpose(1, 0)
  6441. new_name = self.map_tensor_name(name)
  6442. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6443. tensors.append((new_name, data_torch * self.embeddings_scale))
  6444. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6445. tensors.append((new_name, data_torch * self.width_scale))
  6446. else:
  6447. tensors.append((new_name, data_torch))
  6448. return tensors
  6449. def prepare_tensors(self):
  6450. super().prepare_tensors()
  6451. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6452. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6453. class Glm4Model(TextModel):
  6454. model_arch = gguf.MODEL_ARCH.GLM4
  6455. use_mrope = False
  6456. partial_rotary_factor = 0.5
  6457. def __init__(self, *args, **kwargs):
  6458. super().__init__(*args, **kwargs)
  6459. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6460. if "mrope_section" in self.rope_parameters:
  6461. self.use_mrope = True
  6462. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6463. def set_vocab(self):
  6464. from transformers import AutoTokenizer
  6465. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6466. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6467. tokens, toktypes, tokpre = self.get_vocab_base()
  6468. self.gguf_writer.add_tokenizer_model("gpt2")
  6469. self.gguf_writer.add_tokenizer_pre(tokpre)
  6470. self.gguf_writer.add_token_list(tokens)
  6471. self.gguf_writer.add_token_types(toktypes)
  6472. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6473. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6474. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6475. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6476. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6477. special_vocab.add_to_gguf(self.gguf_writer)
  6478. def set_gguf_parameters(self):
  6479. super().set_gguf_parameters()
  6480. if (rope_dim := self.hparams.get("head_dim")) is None:
  6481. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6482. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6483. @staticmethod
  6484. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6485. orig_shape = weights.shape
  6486. if len(orig_shape) == 1:
  6487. weights = weights.unsqueeze(1) # [out_dim, 1]
  6488. if len(weights.shape) != 2:
  6489. raise ValueError("Only 1D and 2D tensors are supported.")
  6490. n_effective_heads = weights.shape[0] // head_dim
  6491. if n_head_kv is not None and n_effective_heads != n_head:
  6492. if n_effective_heads != n_head_kv:
  6493. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6494. rotary_dim = int(head_dim * partial_rotary_factor)
  6495. if rotary_dim % 2 != 0:
  6496. raise ValueError("rotary_dim must be even.")
  6497. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6498. rot_part = reshaped[:, :rotary_dim, :]
  6499. non_rot_part = reshaped[:, rotary_dim:, :]
  6500. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6501. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6502. result = combined.reshape(weights.shape)
  6503. return result if len(orig_shape) != 1 else result.squeeze(1)
  6504. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6505. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6506. return []
  6507. elif name.startswith("model.language_model."):
  6508. name = name.replace("language_model.", "") # for Glm4v
  6509. if self.use_mrope:
  6510. n_head = self.hparams["num_attention_heads"]
  6511. n_kv_head = self.hparams["num_key_value_heads"]
  6512. n_embd = self.hparams["hidden_size"]
  6513. head_dim = n_embd // n_head
  6514. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6515. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6516. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6517. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6518. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6519. return super().modify_tensors(data_torch, name, bid)
  6520. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6521. class Glm4MoeModel(TextModel):
  6522. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6523. def __init__(self, *args, **kwargs):
  6524. super().__init__(*args, **kwargs)
  6525. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6526. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6527. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6528. def set_vocab(self):
  6529. from transformers import AutoTokenizer
  6530. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6531. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6532. tokens, toktypes, tokpre = self.get_vocab_base()
  6533. self.gguf_writer.add_tokenizer_model("gpt2")
  6534. self.gguf_writer.add_tokenizer_pre(tokpre)
  6535. self.gguf_writer.add_token_list(tokens)
  6536. self.gguf_writer.add_token_types(toktypes)
  6537. # Special tokens
  6538. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6539. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6540. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6541. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6542. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6543. special_vocab.add_to_gguf(self.gguf_writer)
  6544. def set_gguf_parameters(self):
  6545. super().set_gguf_parameters()
  6546. if (rope_dim := self.hparams.get("head_dim")) is None:
  6547. rope_dim = (
  6548. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6549. )
  6550. self.gguf_writer.add_rope_dimension_count(
  6551. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6552. )
  6553. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6554. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6555. self.gguf_writer.add_expert_count(n_routed_experts)
  6556. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6557. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6558. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6559. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6560. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6561. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6562. # Expert gating function (sigmoid for GLM4_MOE)
  6563. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6564. # Routed scaling factor
  6565. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6566. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6567. # Normalise topk probabilities
  6568. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6569. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6570. # NextN/MTP prediction layers
  6571. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6572. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6573. _experts: list[dict[str, Tensor]] | None = None
  6574. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6575. def modify_tensors(
  6576. self, data_torch: Tensor, name: str, bid: int | None
  6577. ) -> Iterable[tuple[str, Tensor]]:
  6578. if name.startswith("model.visual."): # ignore visual part
  6579. return []
  6580. elif name.startswith("model.language_model."):
  6581. name = name.replace("language_model.", "") # for multimodal variants
  6582. # Handle main token embedding (but not layer-specific NextN embeddings)
  6583. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6584. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6585. # Handle routed experts
  6586. if name.find("mlp.experts") != -1:
  6587. n_experts = self.hparams["n_routed_experts"]
  6588. assert bid is not None
  6589. if self._experts is None:
  6590. self._experts = [{} for _ in range(self.block_count)]
  6591. self._experts[bid][name] = data_torch
  6592. if len(self._experts[bid]) >= n_experts * 3:
  6593. tensors: list[tuple[str, Tensor]] = []
  6594. # merge the experts into a single 3d tensor
  6595. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6596. datas: list[Tensor] = []
  6597. for xid in range(n_experts):
  6598. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6599. datas.append(self._experts[bid][ename])
  6600. del self._experts[bid][ename]
  6601. data_torch = torch.stack(datas, dim=0)
  6602. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6603. new_name = self.map_tensor_name(merged_name)
  6604. tensors.append((new_name, data_torch))
  6605. return tensors
  6606. else:
  6607. return []
  6608. if name.endswith("e_score_correction_bias"):
  6609. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6610. new_name = self.map_tensor_name(name)
  6611. return [(new_name, data_torch)]
  6612. def prepare_tensors(self):
  6613. super().prepare_tensors()
  6614. if self._experts is not None:
  6615. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6616. experts = [k for d in self._experts for k in d.keys()]
  6617. if len(experts) > 0:
  6618. raise ValueError(f"Unprocessed experts: {experts}")
  6619. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6620. class ChatGLMModel(TextModel):
  6621. model_arch = gguf.MODEL_ARCH.CHATGLM
  6622. def set_vocab_chatglm3(self):
  6623. dir_model = self.dir_model
  6624. hparams = self.hparams
  6625. tokens: list[bytes] = []
  6626. toktypes: list[int] = []
  6627. scores: list[float] = []
  6628. from transformers import AutoTokenizer
  6629. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6630. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6631. assert max(tokenizer.get_vocab().values()) < vocab_size
  6632. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6633. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6634. for token_id in range(vocab_size):
  6635. piece = tokenizer._convert_id_to_token(token_id)
  6636. if token_id == 0:
  6637. piece = "<unk>"
  6638. elif token_id == 1:
  6639. piece = "<bos>"
  6640. elif token_id == 2:
  6641. piece = "<eos>"
  6642. text = piece.encode("utf-8")
  6643. score = 0.0
  6644. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6645. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6646. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6647. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6648. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6649. if piece in special_tokens:
  6650. toktype = SentencePieceTokenTypes.CONTROL
  6651. elif len(piece) == 0:
  6652. text = f"[PAD{token_id}]".encode("utf-8")
  6653. toktype = SentencePieceTokenTypes.UNUSED
  6654. else:
  6655. toktype = SentencePieceTokenTypes.USER_DEFINED
  6656. tokens.append(text)
  6657. scores.append(score)
  6658. toktypes.append(toktype)
  6659. continue
  6660. toktype = SentencePieceTokenTypes.NORMAL
  6661. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6662. toktype = SentencePieceTokenTypes.UNKNOWN
  6663. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6664. toktype = SentencePieceTokenTypes.CONTROL
  6665. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6666. toktype = SentencePieceTokenTypes.UNUSED
  6667. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6668. toktype = SentencePieceTokenTypes.BYTE
  6669. tokens.append(text)
  6670. scores.append(score)
  6671. toktypes.append(toktype)
  6672. self.gguf_writer.add_tokenizer_model("llama")
  6673. # glm3 needs prefix and suffix formatted as:
  6674. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6675. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6676. self.gguf_writer.add_token_list(tokens)
  6677. self.gguf_writer.add_token_scores(scores)
  6678. self.gguf_writer.add_token_types(toktypes)
  6679. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6680. special_vocab.add_to_gguf(self.gguf_writer)
  6681. @staticmethod
  6682. def token_bytes_to_string(b):
  6683. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6684. byte_encoder = bytes_to_unicode()
  6685. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6686. @staticmethod
  6687. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6688. parts = [bytes([b]) for b in token]
  6689. while True:
  6690. min_idx = None
  6691. min_rank = None
  6692. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6693. rank = mergeable_ranks.get(pair[0] + pair[1])
  6694. if rank is not None and (min_rank is None or rank < min_rank):
  6695. min_idx = i
  6696. min_rank = rank
  6697. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6698. break
  6699. assert min_idx is not None
  6700. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6701. return parts
  6702. def set_vocab(self):
  6703. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6704. self.set_vocab_chatglm3()
  6705. return
  6706. dir_model = self.dir_model
  6707. hparams = self.hparams
  6708. tokens: list[str] = []
  6709. toktypes: list[int] = []
  6710. from transformers import AutoTokenizer
  6711. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6712. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6713. assert max(tokenizer.get_vocab().values()) < vocab_size
  6714. tokens, toktypes, tokpre = self.get_vocab_base()
  6715. self.gguf_writer.add_tokenizer_model("gpt2")
  6716. self.gguf_writer.add_tokenizer_pre(tokpre)
  6717. self.gguf_writer.add_token_list(tokens)
  6718. self.gguf_writer.add_token_types(toktypes)
  6719. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6720. # only add special tokens when they were not already loaded from config.json
  6721. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6722. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6723. # this one is usually not in config.json anyway
  6724. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6725. special_vocab.add_to_gguf(self.gguf_writer)
  6726. def set_gguf_parameters(self):
  6727. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6728. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6729. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6730. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6731. self.gguf_writer.add_embedding_length(n_embed)
  6732. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6733. self.gguf_writer.add_block_count(self.block_count)
  6734. self.gguf_writer.add_head_count(n_head)
  6735. self.gguf_writer.add_head_count_kv(n_head_kv)
  6736. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6737. self.gguf_writer.add_file_type(self.ftype)
  6738. if "attention_dim" in self.hparams:
  6739. rope_dim = self.hparams["attention_dim"]
  6740. else:
  6741. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6742. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6743. self.gguf_writer.add_add_bos_token(False)
  6744. rope_freq = 10000
  6745. if "rope_ratio" in self.hparams:
  6746. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6747. self.gguf_writer.add_rope_freq_base(rope_freq)
  6748. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6749. del bid # unused
  6750. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6751. return []
  6752. name = name.removeprefix("transformer.")
  6753. return [(self.map_tensor_name(name), data_torch)]
  6754. @ModelBase.register("NemotronForCausalLM")
  6755. class NemotronModel(TextModel):
  6756. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6757. def set_vocab(self):
  6758. self._set_vocab_sentencepiece()
  6759. self.gguf_writer.add_pad_token_id(0)
  6760. self.gguf_writer.add_unk_token_id(1)
  6761. def set_gguf_parameters(self):
  6762. super().set_gguf_parameters()
  6763. hparams = self.hparams
  6764. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6765. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6766. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6767. # * Partial RoPE
  6768. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6769. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6770. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6771. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6772. # * RopeScaling for Nemotron
  6773. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6774. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6775. else:
  6776. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6777. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6778. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6779. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6780. # model.layers.{l}.input_layernorm.weight
  6781. # model.layers.{l}.post_attention_layernorm.weight
  6782. # model.norm.weight
  6783. if name.endswith("norm.weight"):
  6784. data_torch = data_torch + 1
  6785. return [(self.map_tensor_name(name), data_torch)]
  6786. @ModelBase.register("ExaoneForCausalLM")
  6787. class ExaoneModel(TextModel):
  6788. model_arch = gguf.MODEL_ARCH.EXAONE
  6789. def set_gguf_parameters(self):
  6790. super().set_gguf_parameters()
  6791. hparams = self.hparams
  6792. assert (hparams["activation_function"] == "silu")
  6793. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6794. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6795. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6796. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6797. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6798. if rope_params.get("rope_type", '').lower() == "llama3":
  6799. base = self.rope_parameters.get("rope_theta", 10000.0)
  6800. if (dim := self.hparams.get("head_dim")) is None:
  6801. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6802. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6803. factor = rope_params.get("factor", 8.0)
  6804. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6805. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6806. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6807. low_freq_wavelen = old_context_len / low_freq_factor
  6808. high_freq_wavelen = old_context_len / high_freq_factor
  6809. assert low_freq_wavelen != high_freq_wavelen
  6810. rope_factors = []
  6811. for freq in freqs:
  6812. wavelen = 2 * math.pi / freq
  6813. if wavelen < high_freq_wavelen:
  6814. rope_factors.append(1)
  6815. elif wavelen > low_freq_wavelen:
  6816. rope_factors.append(factor)
  6817. else:
  6818. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6819. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6820. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6821. @ModelBase.register("Exaone4ForCausalLM")
  6822. class Exaone4Model(TextModel):
  6823. model_arch = gguf.MODEL_ARCH.EXAONE4
  6824. def set_vocab(self):
  6825. tokens, toktypes, tokpre = self.get_vocab_base()
  6826. self.gguf_writer.add_tokenizer_model("gpt2")
  6827. self.gguf_writer.add_tokenizer_pre(tokpre)
  6828. self.gguf_writer.add_token_list(tokens)
  6829. self.gguf_writer.add_token_types(toktypes)
  6830. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6831. special_vocab.add_to_gguf(self.gguf_writer)
  6832. def set_gguf_parameters(self):
  6833. super().set_gguf_parameters()
  6834. hparams = self.hparams
  6835. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6836. if hparams.get("sliding_window") is not None:
  6837. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6838. if "layer_types" in hparams:
  6839. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6840. elif "sliding_window_pattern" in hparams:
  6841. sliding_window_pattern = []
  6842. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6843. for i in range(hparams["num_hidden_layers"]):
  6844. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6845. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6846. for i in range(hparams["num_hidden_layers"]):
  6847. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6848. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6849. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6850. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6851. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6852. if rope_params.get("rope_type", '').lower() == "llama3":
  6853. base = rope_params.get("rope_theta", 10_000.0)
  6854. if (dim := self.hparams.get("head_dim")) is None:
  6855. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6856. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6857. factor = rope_params.get("factor", 16.0)
  6858. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6859. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6860. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6861. low_freq_wavelen = old_context_len / low_freq_factor
  6862. high_freq_wavelen = old_context_len / high_freq_factor
  6863. rope_factors = []
  6864. for freq in freqs:
  6865. wavelen = 2 * math.pi / freq
  6866. if wavelen < high_freq_wavelen:
  6867. rope_factors.append(1)
  6868. elif wavelen > low_freq_wavelen:
  6869. rope_factors.append(factor)
  6870. else:
  6871. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6872. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6873. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6874. @ModelBase.register("GraniteForCausalLM")
  6875. class GraniteModel(LlamaModel):
  6876. """Conversion for IBM's GraniteForCausalLM"""
  6877. model_arch = gguf.MODEL_ARCH.GRANITE
  6878. def set_gguf_parameters(self):
  6879. """Granite uses standard llama parameters with the following differences:
  6880. - No head_dim support
  6881. - New multiplier params:
  6882. - attention_scale
  6883. - embedding_scale
  6884. - residual_scale
  6885. - logits_scaling
  6886. """
  6887. if head_dim := self.hparams.pop("head_dim", None):
  6888. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6889. super().set_gguf_parameters()
  6890. # NOTE: Convert _multiplier params to _scale params for naming
  6891. # consistency
  6892. if attention_scale := self.hparams.get("attention_multiplier"):
  6893. self.gguf_writer.add_attention_scale(attention_scale)
  6894. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6895. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6896. self.gguf_writer.add_embedding_scale(embedding_scale)
  6897. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6898. if residual_scale := self.hparams.get("residual_multiplier"):
  6899. self.gguf_writer.add_residual_scale(residual_scale)
  6900. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6901. if logits_scale := self.hparams.get("logits_scaling"):
  6902. self.gguf_writer.add_logit_scale(logits_scale)
  6903. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6904. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6905. class GraniteMoeModel(GraniteModel):
  6906. """Conversion for IBM's GraniteMoeForCausalLM"""
  6907. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6908. def set_gguf_parameters(self):
  6909. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6910. - shared_intermediate_size
  6911. """
  6912. super().set_gguf_parameters()
  6913. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6914. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6915. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6916. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6917. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6918. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6919. the hidden size that is then split during forward. To keep compatibility
  6920. with existing mixtral support, we pull them apart here.
  6921. """
  6922. if name.endswith("block_sparse_moe.input_linear.weight"):
  6923. ffn_dim = self.hparams["intermediate_size"]
  6924. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6925. gate, up = data_torch.split(ffn_dim, dim=-2)
  6926. return [
  6927. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6928. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6929. ]
  6930. has_experts = bool(self.hparams.get('num_local_experts'))
  6931. if name.endswith("shared_mlp.input_linear.weight"):
  6932. ffn_dim = self.hparams["shared_intermediate_size"]
  6933. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6934. gate, up = data_torch.split(ffn_dim, dim=-2)
  6935. if has_experts:
  6936. return [
  6937. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6938. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6939. ]
  6940. return [
  6941. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6942. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6943. ]
  6944. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6945. return [
  6946. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6947. ]
  6948. return super().modify_tensors(data_torch, name, bid)
  6949. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6950. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6951. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6952. layers and optionally uses MoE w/ a shared expert"""
  6953. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6954. undo_permute = True
  6955. def __init__(self, *args, **kwargs):
  6956. # Hybrid mamba models use a prefix for the mamba-specific params.
  6957. # TODO: Extend this if the prefix(es) need to be configurable
  6958. self.hparam_prefixes = ["mamba"]
  6959. super().__init__(*args, **kwargs)
  6960. # Lists of which layers use ssm vs attention
  6961. self._attn_layers = self.get_attn_layers()
  6962. self._ssm_layers = [
  6963. i for i in range(self.block_count)
  6964. if i not in self._attn_layers
  6965. ]
  6966. # There are some models in this family that are non-hybrid, but keep the
  6967. # same parent class by setting all layers to "attention." If this is the
  6968. # case, the model architecture needs to be updated to a standard
  6969. # "granite" or "granitemoe" model
  6970. if not self._ssm_layers:
  6971. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6972. new_arch = (
  6973. gguf.MODEL_ARCH.GRANITE_MOE
  6974. if has_experts else
  6975. gguf.MODEL_ARCH.GRANITE
  6976. )
  6977. self.model_arch = new_arch
  6978. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6979. self.gguf_writer.add_architecture()
  6980. # n_group and d_inner are used during reshape_tensors for mamba2
  6981. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6982. # disambiguate with top-level head_dim
  6983. # NOTE 2: If needed for future models, this can be isolated in a method
  6984. # to separate the prefix setting and teh keys used
  6985. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6986. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6987. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6988. def get_attn_layers(self):
  6989. # Explicit list of layer type names
  6990. if layer_types := self.hparams.get("layer_types"):
  6991. return [
  6992. i for i, typ in enumerate(layer_types)
  6993. if typ == "attention"
  6994. ]
  6995. # Layer types indicated by index or period
  6996. attn_layers = self.hparams.get("attn_layer_indices", [])
  6997. if not attn_layers:
  6998. attn_period = self.hparams.get("attn_layer_period")
  6999. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  7000. attn_offset = self.hparams.get("attn_layer_offset")
  7001. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  7002. attn_layers = [
  7003. i for i in range(self.block_count)
  7004. if i % attn_period == attn_offset
  7005. ]
  7006. return attn_layers
  7007. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7008. prefixed = []
  7009. for pfx in self.hparam_prefixes:
  7010. prefixed.extend(
  7011. "_".join([pfx, k])
  7012. for k in keys
  7013. )
  7014. keys = list(keys) + prefixed
  7015. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  7016. def modify_tensors(
  7017. self, data_torch: Tensor, name: str, bid: int | None
  7018. ) -> Iterable[tuple[str, Tensor]]:
  7019. if (
  7020. name.endswith("block_sparse_moe.input_linear.weight")
  7021. or "shared_mlp" in name
  7022. ):
  7023. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7024. # Determine whether this is a mamba layer or an attention layer
  7025. if bid in self._ssm_layers:
  7026. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  7027. elif bid in self._attn_layers:
  7028. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7029. return [(self.map_tensor_name(name), data_torch)]
  7030. def set_gguf_parameters(self):
  7031. """This method merges params from both parents and some that are
  7032. specific to this model. The result is some duplication of how the params
  7033. get set. The following warnings are expected during conversion:
  7034. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  7035. WARNING:Duplicated key name 'granitehybrid.context_length'
  7036. """
  7037. GraniteMoeModel.set_gguf_parameters(self)
  7038. ## Mamba mixer params ##
  7039. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  7040. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  7041. self.gguf_writer.add_ssm_group_count(self.n_group)
  7042. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  7043. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  7044. # in llama.cpp
  7045. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  7046. ## Attention params ##
  7047. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  7048. head_count_kv_vec = [
  7049. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  7050. ]
  7051. if rope_dim := self.hparams.get("attn_rotary_emb"):
  7052. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7053. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  7054. ## If Bamba or non-hybrid, use rope, otherwise don't
  7055. use_rope = (
  7056. "BambaForCausalLM" in self.hparams["architectures"]
  7057. or not self._ssm_layers
  7058. )
  7059. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  7060. if not use_rope:
  7061. self.gguf_writer.add_context_length(2**20)
  7062. ## Validation ##
  7063. d_head = self.find_hparam(["d_head"], optional=True) or 64
  7064. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7065. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  7066. def set_vocab(self):
  7067. self.hparams["pad_vocab_size_multiple"] = 8
  7068. Mamba2Model.set_vocab(self)
  7069. @ModelBase.register("NemotronHForCausalLM")
  7070. class NemotronHModel(GraniteHybridModel):
  7071. """Hybrid mamba2/attention model from NVIDIA"""
  7072. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  7073. is_moe: bool = False
  7074. def __init__(self, *args, **kwargs):
  7075. # We have to determine the correct model architecture (MoE vs non-MoE) before
  7076. # calling the parent __init__. This is because the parent constructor
  7077. # uses self.model_arch to build the tensor name map, and all MoE-specific
  7078. # mappings would be missed if it were called with the default non-MoE arch.
  7079. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  7080. if "num_experts_per_tok" in hparams:
  7081. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  7082. self.is_moe = True
  7083. super().__init__(*args, **kwargs)
  7084. # Save the top-level head_dim for later
  7085. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  7086. assert self.head_dim is not None, "Could not find the attention head dim in config"
  7087. # Don't use expand to calculate d_inner
  7088. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  7089. # Update the ssm / attn / mlp layers
  7090. # M: Mamba2, *: Attention, -: MLP
  7091. # MoE:
  7092. # M: Mamba2, *: Attention, E: Expert
  7093. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7094. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  7095. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  7096. def get_attn_layers(self):
  7097. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7098. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7099. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7100. def set_gguf_parameters(self):
  7101. super().set_gguf_parameters()
  7102. self.gguf_writer.add_key_length(self.head_dim)
  7103. self.gguf_writer.add_value_length(self.head_dim)
  7104. # Set feed_forward_length
  7105. # NOTE: This will trigger an override warning. This is preferrable to
  7106. # duplicating all the parent logic
  7107. if not self.is_moe:
  7108. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7109. self.gguf_writer.add_feed_forward_length([
  7110. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7111. ])
  7112. else:
  7113. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7114. self.gguf_writer.add_feed_forward_length([
  7115. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  7116. ])
  7117. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7118. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7119. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7120. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7121. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7122. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7123. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7124. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7125. # number of experts used per token (top-k)
  7126. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7127. self.gguf_writer.add_expert_used_count(n_experts_used)
  7128. def set_vocab(self):
  7129. super().set_vocab()
  7130. # The tokenizer _does_ add a BOS token (via post_processor type
  7131. # TemplateProcessing) but does not set add_bos_token to true in the
  7132. # config, so we need to explicitly override it here.
  7133. if not self.is_moe:
  7134. self.gguf_writer.add_add_bos_token(True)
  7135. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7136. if self.is_moe and bid is not None:
  7137. if name.endswith("mixer.gate.e_score_correction_bias"):
  7138. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7139. mapped_name = self.map_tensor_name(new_name)
  7140. return [(mapped_name, data_torch)]
  7141. if name.endswith("mixer.dt_bias"):
  7142. new_name = name.replace("dt_bias", "dt.bias")
  7143. mapped_name = self.map_tensor_name(new_name)
  7144. return [(mapped_name, data_torch)]
  7145. if name.endswith("mixer.conv1d.weight"):
  7146. squeezed_data = data_torch.squeeze()
  7147. mapped_name = self.map_tensor_name(name)
  7148. return [(mapped_name, squeezed_data)]
  7149. if name.endswith("mixer.A_log"):
  7150. transformed_data = -torch.exp(data_torch)
  7151. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7152. mapped_name = self.map_tensor_name(name)
  7153. return [(mapped_name, reshaped_data)]
  7154. if name.endswith("mixer.D"):
  7155. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7156. mapped_name = self.map_tensor_name(name)
  7157. return [(mapped_name, reshaped_data)]
  7158. if name.endswith("mixer.norm.weight"):
  7159. reshaped_data = data_torch.reshape(8, 512)
  7160. mapped_name = self.map_tensor_name(name)
  7161. return [(mapped_name, reshaped_data)]
  7162. if name.find("mixer.experts") != -1:
  7163. n_experts = self.hparams["n_routed_experts"]
  7164. assert bid is not None
  7165. if self._experts is None:
  7166. self._experts = [{} for _ in range(self.block_count)]
  7167. self._experts[bid][name] = data_torch
  7168. if len(self._experts[bid]) >= n_experts * 2:
  7169. # merge the experts into a single tensor
  7170. tensors: list[tuple[str, Tensor]] = []
  7171. for w_name in ["down_proj", "up_proj"]:
  7172. datas: list[Tensor] = []
  7173. for xid in range(n_experts):
  7174. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7175. datas.append(self._experts[bid][ename])
  7176. del self._experts[bid][ename]
  7177. data_torch = torch.stack(datas, dim=0)
  7178. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7179. new_name = self.map_tensor_name(merged_name)
  7180. tensors.append((new_name, data_torch))
  7181. return tensors
  7182. else:
  7183. return []
  7184. return super().modify_tensors(data_torch, name, bid)
  7185. def prepare_tensors(self):
  7186. super().prepare_tensors()
  7187. if self._experts is not None:
  7188. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7189. experts = [k for d in self._experts for k in d.keys()]
  7190. if len(experts) > 0:
  7191. raise ValueError(f"Unprocessed experts: {experts}")
  7192. @ModelBase.register("LlamaBidirectionalModel")
  7193. class LlamaEmbedNemotronModel(LlamaModel):
  7194. model_arch = gguf.MODEL_ARCH.LLAMA_EMBED
  7195. @ModelBase.register("BailingMoeForCausalLM")
  7196. class BailingMoeModel(TextModel):
  7197. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7198. def set_vocab(self):
  7199. self._set_vocab_gpt2()
  7200. def set_gguf_parameters(self):
  7201. super().set_gguf_parameters()
  7202. hparams = self.hparams
  7203. if (rope_dim := hparams.get("head_dim")) is None:
  7204. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7205. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7206. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7207. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7208. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7209. self.gguf_writer.add_expert_weights_scale(1.0)
  7210. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7211. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7212. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7213. _experts: list[dict[str, Tensor]] | None = None
  7214. @staticmethod
  7215. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7216. if n_head_kv is not None and n_head != n_head_kv:
  7217. n_head = n_head_kv
  7218. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7219. .swapaxes(1, 2)
  7220. .reshape(weights.shape))
  7221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7222. n_head = self.hparams["num_attention_heads"]
  7223. n_kv_head = self.hparams.get("num_key_value_heads")
  7224. n_embd = self.hparams["hidden_size"]
  7225. if (head_dim := self.hparams.get("head_dim")) is None:
  7226. head_dim = n_embd // n_head
  7227. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7228. if name.endswith("attention.dense.weight"):
  7229. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7230. elif name.endswith("query_key_value.weight"):
  7231. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7232. return [
  7233. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7234. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7235. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7236. ]
  7237. elif name.find("mlp.experts") != -1:
  7238. n_experts = self.hparams["num_experts"]
  7239. assert bid is not None
  7240. tensors: list[tuple[str, Tensor]] = []
  7241. if self._experts is None:
  7242. self._experts = [{} for _ in range(self.block_count)]
  7243. self._experts[bid][name] = data_torch
  7244. if len(self._experts[bid]) >= n_experts * 3:
  7245. # merge the experts into a single 3d tensor
  7246. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7247. datas: list[Tensor] = []
  7248. for xid in range(n_experts):
  7249. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7250. datas.append(self._experts[bid][ename])
  7251. del self._experts[bid][ename]
  7252. data_torch = torch.stack(datas, dim=0)
  7253. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7254. new_name = self.map_tensor_name(merged_name)
  7255. tensors.append((new_name, data_torch))
  7256. return tensors
  7257. new_name = self.map_tensor_name(name)
  7258. if new_name == output_name and self.hparams.get("norm_head"):
  7259. data_torch = data_torch.float()
  7260. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7261. return [(new_name, data_torch)]
  7262. def prepare_tensors(self):
  7263. super().prepare_tensors()
  7264. if self._experts is not None:
  7265. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7266. experts = [k for d in self._experts for k in d.keys()]
  7267. if len(experts) > 0:
  7268. raise ValueError(f"Unprocessed experts: {experts}")
  7269. @ModelBase.register("BailingMoeV2ForCausalLM")
  7270. class BailingMoeV2Model(TextModel):
  7271. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7272. def __init__(self, *args, **kwargs):
  7273. super().__init__(*args, **kwargs)
  7274. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7275. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7276. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7277. def set_vocab(self):
  7278. self._set_vocab_gpt2()
  7279. def set_gguf_parameters(self):
  7280. super().set_gguf_parameters()
  7281. hparams = self.hparams
  7282. if (rope_dim := hparams.get("head_dim")) is None:
  7283. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7284. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7285. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7286. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7287. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7288. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7289. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7290. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7291. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7292. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7293. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7294. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7295. _experts: list[dict[str, Tensor]] | None = None
  7296. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7297. if "mlp.experts" in name:
  7298. n_experts = self.hparams["num_experts"]
  7299. assert bid is not None
  7300. tensors: list[tuple[str, Tensor]] = []
  7301. if self._experts is None:
  7302. self._experts = [{} for _ in range(self.block_count)]
  7303. self._experts[bid][name] = data_torch
  7304. if len(self._experts[bid]) >= n_experts * 3:
  7305. # merge the experts into a single 3d tensor
  7306. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7307. datas: list[Tensor] = []
  7308. for xid in range(n_experts):
  7309. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7310. datas.append(self._experts[bid][ename])
  7311. del self._experts[bid][ename]
  7312. data_torch = torch.stack(datas, dim=0)
  7313. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7314. new_name = self.map_tensor_name(merged_name)
  7315. tensors.append((new_name, data_torch))
  7316. return tensors
  7317. if name.endswith(".expert_bias"):
  7318. name = name.replace(".expert_bias", ".expert_bias.bias")
  7319. return [(self.map_tensor_name(name), data_torch)]
  7320. def prepare_tensors(self):
  7321. super().prepare_tensors()
  7322. if self._experts is not None:
  7323. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7324. experts = [k for d in self._experts for k in d.keys()]
  7325. if len(experts) > 0:
  7326. raise ValueError(f"Unprocessed experts: {experts}")
  7327. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7328. class GroveMoeModel(TextModel):
  7329. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7330. def set_gguf_parameters(self):
  7331. super().set_gguf_parameters()
  7332. if (n_experts := self.hparams.get("num_experts")) is not None:
  7333. self.gguf_writer.add_expert_count(n_experts)
  7334. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7335. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7336. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7337. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7338. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7339. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7340. self.gguf_writer.add_experts_per_group(2)
  7341. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7342. self.gguf_writer.add_expert_group_scale(0.05)
  7343. _experts: list[dict[str, Tensor]] | None = None
  7344. _chunk_experts: list[dict[str, Tensor]] | None = None
  7345. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7346. if name.endswith(".expert_bias"):
  7347. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7348. return []
  7349. # process the experts separately
  7350. if name.find("chunk_experts") != -1:
  7351. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7352. assert bid is not None
  7353. if self._chunk_experts is None:
  7354. self._chunk_experts = [{} for _ in range(self.block_count)]
  7355. self._chunk_experts[bid][name] = data_torch
  7356. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7357. tensors: list[tuple[str, Tensor]] = []
  7358. # merge the experts into a single 3d tensor
  7359. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7360. datas: list[Tensor] = []
  7361. for xid in range(n_experts):
  7362. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7363. datas.append(self._chunk_experts[bid][ename])
  7364. del self._chunk_experts[bid][ename]
  7365. data_torch = torch.stack(datas, dim=0)
  7366. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7367. new_name = self.map_tensor_name(merged_name)
  7368. tensors.append((new_name, data_torch))
  7369. return tensors
  7370. else:
  7371. return []
  7372. elif name.find("experts") != -1:
  7373. n_experts = self.hparams["num_experts"]
  7374. assert bid is not None
  7375. if self._experts is None:
  7376. self._experts = [{} for _ in range(self.block_count)]
  7377. self._experts[bid][name] = data_torch
  7378. if len(self._experts[bid]) >= n_experts * 3:
  7379. tensors: list[tuple[str, Tensor]] = []
  7380. # merge the experts into a single 3d tensor
  7381. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7382. datas: list[Tensor] = []
  7383. for xid in range(n_experts):
  7384. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7385. datas.append(self._experts[bid][ename])
  7386. del self._experts[bid][ename]
  7387. data_torch = torch.stack(datas, dim=0)
  7388. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7389. new_name = self.map_tensor_name(merged_name)
  7390. tensors.append((new_name, data_torch))
  7391. return tensors
  7392. else:
  7393. return []
  7394. return [(self.map_tensor_name(name), data_torch)]
  7395. def prepare_tensors(self):
  7396. super().prepare_tensors()
  7397. if self._chunk_experts is not None:
  7398. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7399. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7400. if len(chunk_experts) > 0:
  7401. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7402. if self._experts is not None:
  7403. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7404. experts = [k for d in self._experts for k in d.keys()]
  7405. if len(experts) > 0:
  7406. raise ValueError(f"Unprocessed experts: {experts}")
  7407. @ModelBase.register("ChameleonForConditionalGeneration")
  7408. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7409. class ChameleonModel(TextModel):
  7410. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7411. def set_gguf_parameters(self):
  7412. super().set_gguf_parameters()
  7413. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7414. def set_vocab(self):
  7415. self._set_vocab_gpt2()
  7416. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7417. # ignore image tokenizer for now
  7418. # TODO: remove this once image support is implemented for Chameleon
  7419. if name.startswith("model.vqmodel"):
  7420. return []
  7421. n_head = self.hparams["num_attention_heads"]
  7422. n_kv_head = self.hparams.get("num_key_value_heads")
  7423. hidden_dim = self.hparams.get("hidden_size")
  7424. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7425. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7426. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7427. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7428. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7429. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7430. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7431. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7432. return [(self.map_tensor_name(name), data_torch)]
  7433. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7434. @staticmethod
  7435. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7436. head_dim = hidden_dim // n_heads
  7437. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7438. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7439. return data_torch
  7440. @ModelBase.register("UltravoxModel")
  7441. class UltravoxModel(TextModel):
  7442. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7443. def __init__(self, *args, **kwargs):
  7444. super().__init__(*args, **kwargs)
  7445. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7446. @ModelBase.register("GlmasrModel")
  7447. class GlmASRWhisperEncoderModel(MmprojModel):
  7448. has_vision_encoder = False
  7449. has_audio_encoder = True
  7450. def __init__(self, *args, **kwargs):
  7451. super().__init__(*args, **kwargs)
  7452. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7453. self.hparams["hidden_size"] = self.hparams["d_model"]
  7454. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7455. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7456. def set_gguf_parameters(self):
  7457. super().set_gguf_parameters()
  7458. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7459. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7460. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7461. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7462. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7463. if ".conv" in name and ".weight" in name:
  7464. return gguf.GGMLQuantizationType.F16
  7465. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7466. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7467. del bid # unused
  7468. if name.startswith("model.") or name.startswith("lm_head."):
  7469. # skip language model tensors
  7470. return []
  7471. if name.startswith("audio_encoder.whisper."):
  7472. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7473. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7474. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7475. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7476. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7477. if name.startswith("audio_encoder.adapting."):
  7478. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7479. if ".layer_norm." in name:
  7480. name = name.replace(".layer_norm.", ".ln_pre.")
  7481. if ".0." in name:
  7482. name = name.replace(".0.", ".linear_1.")
  7483. if ".2." in name:
  7484. name = name.replace(".2.", ".linear_2.")
  7485. if ".proj." in name:
  7486. return []
  7487. if "conv1.bias" in name or "conv2.bias" in name:
  7488. # transpose conv1 and conv2 bias
  7489. data_torch = data_torch.unsqueeze(-1)
  7490. return [(self.map_tensor_name(name), data_torch)]
  7491. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7492. class WhisperEncoderModel(MmprojModel):
  7493. has_vision_encoder = False # no vision encoder
  7494. has_audio_encoder = True
  7495. def __init__(self, *args, **kwargs):
  7496. super().__init__(*args, **kwargs)
  7497. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7498. self.hparams["hidden_size"] = self.hparams["d_model"]
  7499. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7500. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7501. def set_gguf_parameters(self):
  7502. super().set_gguf_parameters()
  7503. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7504. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7505. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7506. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7507. if ".conv" in name and ".weight" in name:
  7508. return gguf.GGMLQuantizationType.F16
  7509. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7510. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7511. del bid # unused
  7512. if name.startswith("language_model."):
  7513. # skip language model tensors
  7514. return []
  7515. # prevent clash naming with vision tensors
  7516. if name.startswith("multi_modal_projector"):
  7517. name = "audio." + name
  7518. if "conv1.bias" in name or "conv2.bias" in name:
  7519. # transpose conv1 and conv2 bias
  7520. data_torch = data_torch.unsqueeze(-1)
  7521. return [(self.map_tensor_name(name), data_torch)]
  7522. @ModelBase.register("UltravoxModel")
  7523. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7524. has_vision_encoder = False # no vision encoder
  7525. has_audio_encoder = True
  7526. def set_gguf_parameters(self):
  7527. super().set_gguf_parameters()
  7528. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7529. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7530. @ModelBase.register("VoxtralForConditionalGeneration")
  7531. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7532. has_vision_encoder = False # no vision encoder
  7533. has_audio_encoder = True
  7534. def set_gguf_parameters(self):
  7535. super().set_gguf_parameters()
  7536. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7537. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7538. @ModelBase.register("AudioFlamingo3ForConditionalGeneration")
  7539. class AudioFlamingo3WhisperEncoderModel(WhisperEncoderModel):
  7540. def set_gguf_parameters(self):
  7541. super().set_gguf_parameters()
  7542. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.MUSIC_FLAMINGO)
  7543. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7544. if ".conv" in name and ".weight" in name:
  7545. # Was trained in BF16, being safe, avoiding quantizing to FP16
  7546. return gguf.GGMLQuantizationType.F32
  7547. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7548. @ModelBase.register("FalconH1ForCausalLM")
  7549. class FalconH1Model(Mamba2Model):
  7550. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7551. def __init__(self, *args, **kwargs):
  7552. # Set the hparam prefixes for Falcon Mamba2
  7553. self.hparam_prefixes = ["mamba"]
  7554. # Initialize the base Mamba2Model
  7555. super().__init__(*args, **kwargs)
  7556. # Use Llama conversion for attention
  7557. self._transformer_model_class = LlamaModel
  7558. # n_group and d_inner are used during reshape_tensors for mamba2
  7559. self.n_group = self.find_hparam(["n_groups"])
  7560. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7561. self.d_head = self.find_hparam(["d_head"])
  7562. # Initialize any Falcon Mamba2 specific attributes
  7563. self.has_attention = True # Falcon Mamba2 has attention components
  7564. # Load Falcon-H1 multipliers from hyperparameters
  7565. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7566. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7567. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7568. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7569. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7570. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7571. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7572. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7573. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7574. prefixed = []
  7575. for pfx in self.hparam_prefixes:
  7576. prefixed.extend(
  7577. "_".join([pfx, k])
  7578. for k in keys
  7579. )
  7580. keys = list(keys) + prefixed
  7581. return super().find_hparam(keys, *args, **kwargs)
  7582. def set_vocab(self):
  7583. self._set_vocab_gpt2()
  7584. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7585. tensors = list(super().modify_tensors(data_torch, name, bid))
  7586. tensor = tensors[0][1]
  7587. if "down_proj" in name:
  7588. tensor = tensor * self.mlp_multipliers[1]
  7589. elif "gate_proj" in name:
  7590. tensor = tensor * self.mlp_multipliers[0]
  7591. elif "k_proj" in name:
  7592. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7593. elif "q_proj" in name:
  7594. tensor = tensor * self.attention_in_multiplier
  7595. elif "v_proj" in name:
  7596. tensor = tensor * self.attention_in_multiplier
  7597. elif "o_proj" in name:
  7598. tensor = tensor * self.attention_out_multiplier
  7599. elif "out_proj" in name:
  7600. tensor = tensor * self.ssm_out_multiplier
  7601. elif "in_proj" in name:
  7602. tensor = tensor * self.ssm_in_multiplier
  7603. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7604. intermediate_size = self.hparams["mamba_d_ssm"]
  7605. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7606. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7607. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7608. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7609. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7610. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7611. elif "lm_head" in name:
  7612. tensor = tensor * self.hparams["lm_head_multiplier"]
  7613. elif "embed_tokens" in name:
  7614. tensor = tensor * self.hparams["embedding_multiplier"]
  7615. elif "mamba.norm" in name:
  7616. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7617. tensors = [(tensors[0][0], tensor)]
  7618. return tensors
  7619. def set_gguf_parameters(self):
  7620. super().set_gguf_parameters()
  7621. ## General Params ##
  7622. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7623. # Override some Mamba2 defaults
  7624. self.gguf_writer.add_block_count(self.block_count)
  7625. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7626. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7627. ## Attention params ##
  7628. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7629. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7630. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7631. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7632. ## Validation ##
  7633. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7634. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7635. # Add any other Falcon Mamba2 specific configuration
  7636. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7637. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7638. class HunYuanMoEModel(TextModel):
  7639. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7640. def set_vocab(self):
  7641. from transformers import AutoTokenizer
  7642. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7643. # 1. Get the pre-tokenizer identifier hash
  7644. tokpre = self.get_vocab_base_pre(tokenizer)
  7645. # 2. Reverse-engineer the merges list from mergeable_ranks
  7646. merges = []
  7647. vocab = {}
  7648. mergeable_ranks = tokenizer.mergeable_ranks
  7649. for token, rank in mergeable_ranks.items():
  7650. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7651. if len(token) == 1:
  7652. continue
  7653. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7654. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7655. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7656. # 3. Generate the tokens and toktypes lists
  7657. vocab_size = self.hparams["vocab_size"]
  7658. assert tokenizer.vocab_size == vocab_size
  7659. special_tokens = tokenizer.special_tokens
  7660. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7661. tokens: list[str] = []
  7662. toktypes: list[int] = []
  7663. for i in range(vocab_size):
  7664. if i not in reverse_vocab:
  7665. tokens.append(f"[PAD{i}]")
  7666. toktypes.append(gguf.TokenType.UNUSED)
  7667. else:
  7668. token = reverse_vocab[i]
  7669. tokens.append(token)
  7670. if i in special_tokens.values():
  7671. toktypes.append(gguf.TokenType.CONTROL)
  7672. else:
  7673. toktypes.append(gguf.TokenType.NORMAL)
  7674. # 4. Write all vocab-related fields to the GGUF writer
  7675. self.gguf_writer.add_tokenizer_model("gpt2")
  7676. self.gguf_writer.add_tokenizer_pre(tokpre)
  7677. self.gguf_writer.add_token_list(tokens)
  7678. self.gguf_writer.add_token_types(toktypes)
  7679. self.gguf_writer.add_token_merges(merges)
  7680. # 5. Add special tokens and chat templates
  7681. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7682. special_vocab.add_to_gguf(self.gguf_writer)
  7683. # FIX for BOS token: Overwrite incorrect id read from config.json
  7684. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7685. def set_gguf_parameters(self):
  7686. super().set_gguf_parameters()
  7687. hparams = self.hparams
  7688. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7689. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7690. moe_intermediate_size = hparams["moe_intermediate_size"]
  7691. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7692. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7693. moe_topk = hparams["moe_topk"]
  7694. assert all(topk == moe_topk[0] for topk in moe_topk)
  7695. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7696. moe_shared_expert = hparams["num_shared_expert"]
  7697. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7698. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7699. # Rope
  7700. if self.rope_parameters.get("rope_type") == "dynamic":
  7701. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7702. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7703. alpha = self.rope_parameters.get("alpha", 1000)
  7704. base = self.rope_parameters.get("rope_theta", 10000.0)
  7705. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7706. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7707. self.gguf_writer.add_rope_freq_base(scaled_base)
  7708. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7709. self.gguf_writer.add_rope_scaling_factor(1)
  7710. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7711. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7712. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7713. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7714. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7715. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7716. _experts: list[dict[str, Tensor]] | None = None
  7717. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7718. if name == "lm_head.weight":
  7719. if self.hparams.get("tie_word_embeddings", False):
  7720. logger.info("Skipping tied output layer 'lm_head.weight'")
  7721. return []
  7722. if name.find("mlp.experts") != -1:
  7723. n_experts = self.hparams["num_experts"]
  7724. assert bid is not None
  7725. if self._experts is None:
  7726. self._experts = [{} for _ in range(self.block_count)]
  7727. self._experts[bid][name] = data_torch
  7728. if len(self._experts[bid]) >= n_experts * 3:
  7729. # merge the experts into a single 3d tensor
  7730. tensors: list[tuple[str, Tensor]] = []
  7731. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7732. datas: list[Tensor] = []
  7733. for xid in range(n_experts):
  7734. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7735. datas.append(self._experts[bid][ename])
  7736. del self._experts[bid][ename]
  7737. data_torch = torch.stack(datas, dim=0)
  7738. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7739. new_name = self.map_tensor_name(merged_name)
  7740. tensors.append((new_name, data_torch))
  7741. return tensors
  7742. else:
  7743. return []
  7744. return [(self.map_tensor_name(name), data_torch)]
  7745. def prepare_tensors(self):
  7746. super().prepare_tensors()
  7747. if self._experts is not None:
  7748. experts = [k for d in self._experts for k in d.keys()]
  7749. if len(experts) > 0:
  7750. raise ValueError(f"Unprocessed experts: {experts}")
  7751. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7752. class LLaDAMoEModel(TextModel):
  7753. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7754. def set_gguf_parameters(self):
  7755. super().set_gguf_parameters()
  7756. if (n_experts := self.hparams.get("num_experts")) is not None:
  7757. self.gguf_writer.add_expert_count(n_experts)
  7758. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7759. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7760. # number of experts used per token (top-k)
  7761. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7762. self.gguf_writer.add_expert_used_count(n_experts_used)
  7763. self.gguf_writer.add_mask_token_id(156895)
  7764. self.gguf_writer.add_causal_attention(False)
  7765. self.gguf_writer.add_diffusion_shift_logits(False)
  7766. _experts: list[dict[str, Tensor]] | None = None
  7767. # Copied from: Qwen2MoeModel
  7768. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7769. # process the experts separately
  7770. if name.find("experts") != -1:
  7771. n_experts = self.hparams["num_experts"]
  7772. assert bid is not None
  7773. if self._experts is None:
  7774. self._experts = [{} for _ in range(self.block_count)]
  7775. self._experts[bid][name] = data_torch
  7776. if len(self._experts[bid]) >= n_experts * 3:
  7777. tensors: list[tuple[str, Tensor]] = []
  7778. # merge the experts into a single 3d tensor
  7779. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7780. datas: list[Tensor] = []
  7781. for xid in range(n_experts):
  7782. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7783. datas.append(self._experts[bid][ename])
  7784. del self._experts[bid][ename]
  7785. data_torch = torch.stack(datas, dim=0)
  7786. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7787. new_name = self.map_tensor_name(merged_name)
  7788. tensors.append((new_name, data_torch))
  7789. return tensors
  7790. else:
  7791. return []
  7792. return [(self.map_tensor_name(name), data_torch)]
  7793. # Copied from: Qwen2MoeModel
  7794. def prepare_tensors(self):
  7795. super().prepare_tensors()
  7796. if self._experts is not None:
  7797. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7798. experts = [k for d in self._experts for k in d.keys()]
  7799. if len(experts) > 0:
  7800. raise ValueError(f"Unprocessed experts: {experts}")
  7801. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7802. class HunYuanModel(TextModel):
  7803. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7804. def set_vocab(self):
  7805. if (self.dir_model / "tokenizer.json").is_file():
  7806. self._set_vocab_gpt2()
  7807. else:
  7808. from transformers import AutoTokenizer
  7809. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7810. # 1. Get the pre-tokenizer identifier hash
  7811. tokpre = self.get_vocab_base_pre(tokenizer)
  7812. # 2. Reverse-engineer the merges list from mergeable_ranks
  7813. merges = []
  7814. vocab = {}
  7815. mergeable_ranks = tokenizer.mergeable_ranks
  7816. for token, rank in mergeable_ranks.items():
  7817. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7818. if len(token) == 1:
  7819. continue
  7820. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7821. if len(merged) == 2:
  7822. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7823. # 3. Generate the tokens and toktypes lists
  7824. vocab_size = self.hparams["vocab_size"]
  7825. assert tokenizer.vocab_size == vocab_size
  7826. special_tokens = tokenizer.special_tokens
  7827. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7828. tokens: list[str] = []
  7829. toktypes: list[int] = []
  7830. for i in range(vocab_size):
  7831. if i not in reverse_vocab:
  7832. tokens.append(f"[PAD{i}]")
  7833. toktypes.append(gguf.TokenType.UNUSED)
  7834. else:
  7835. token = reverse_vocab[i]
  7836. tokens.append(token)
  7837. if i in special_tokens.values():
  7838. toktypes.append(gguf.TokenType.CONTROL)
  7839. else:
  7840. toktypes.append(gguf.TokenType.NORMAL)
  7841. # 4. Write all vocab-related fields to the GGUF writer
  7842. self.gguf_writer.add_tokenizer_model("gpt2")
  7843. self.gguf_writer.add_tokenizer_pre(tokpre)
  7844. self.gguf_writer.add_token_list(tokens)
  7845. self.gguf_writer.add_token_types(toktypes)
  7846. self.gguf_writer.add_token_merges(merges)
  7847. # 5. Add special tokens and chat templates
  7848. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7849. special_vocab.add_to_gguf(self.gguf_writer)
  7850. # FIX for BOS token: Overwrite incorrect id read from config.json
  7851. if self.hparams['hidden_size'] == 4096:
  7852. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7853. def set_gguf_parameters(self):
  7854. super().set_gguf_parameters()
  7855. hparams = self.hparams
  7856. # Rope
  7857. if self.rope_parameters.get("rope_type") == "dynamic":
  7858. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7859. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7860. alpha = self.rope_parameters.get("alpha", 50)
  7861. base = self.rope_parameters.get("rope_theta", 10000.0)
  7862. dim = hparams["head_dim"]
  7863. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7864. self.gguf_writer.add_rope_freq_base(scaled_base)
  7865. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7866. self.gguf_writer.add_rope_scaling_factor(1)
  7867. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7868. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7869. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7870. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7871. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7872. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7873. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7874. if name == "lm_head.weight":
  7875. if self.hparams.get("tie_word_embeddings", False):
  7876. logger.info("Skipping tied output layer 'lm_head.weight'")
  7877. return []
  7878. return [(self.map_tensor_name(name), data_torch)]
  7879. @ModelBase.register("SmolLM3ForCausalLM")
  7880. class SmolLM3Model(LlamaModel):
  7881. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7882. @ModelBase.register("GptOssForCausalLM")
  7883. class GptOssModel(TextModel):
  7884. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7885. # TODO: remove once MXFP4 is supported more generally
  7886. def dequant_model(self):
  7887. quant_config = self.hparams.get("quantization_config")
  7888. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7889. return
  7890. return super().dequant_model()
  7891. def transform_nibble_layout(self, tensor):
  7892. assert tensor.dtype == torch.uint8
  7893. assert tensor.shape[-1] == 16
  7894. # swap nibbles
  7895. t_lo = tensor & 0x0F
  7896. t_hi = tensor & 0xF0
  7897. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7898. tensor = t_swapped
  7899. # transform aaaa...bbbb... to abababab...
  7900. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7901. # get a_
  7902. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7903. blk_a1 = (blk_a << 4).view(-1, 1)
  7904. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7905. # get _b
  7906. blk_b0 = (blk_b >> 4).view(-1, 1)
  7907. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7908. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7909. # swap once more
  7910. out = blk_a | blk_b
  7911. out_h = out & 0xF0
  7912. out_l = out & 0x0F
  7913. out = (out_h >> 4) | (out_l << 4)
  7914. return out
  7915. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7916. assert blocks.dtype == torch.uint8
  7917. assert scales.dtype == torch.uint8
  7918. scales = scales.unsqueeze(-1)
  7919. assert len(blocks.shape) == 4
  7920. assert len(scales.shape) == 4
  7921. blocks = self.transform_nibble_layout(blocks)
  7922. new_data = torch.concat((scales, blocks), dim=-1)
  7923. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7924. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7925. # flatten last dim
  7926. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7927. new_data = new_data.numpy()
  7928. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7929. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7930. blocks0: Tensor = torch.zeros(1)
  7931. blocks1: Tensor = torch.zeros(1)
  7932. # we assume that tensors are loaded in the correct order
  7933. for name, data_torch in self.get_tensors():
  7934. if "mlp.experts.down_proj_blocks" in name:
  7935. blocks0 = data_torch
  7936. elif "mlp.experts.down_proj_scales" in name:
  7937. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7938. self.repack_mxfp4(new_name, blocks0, data_torch)
  7939. elif "mlp.experts.gate_up_proj_blocks" in name:
  7940. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7941. elif "mlp.experts.gate_up_proj_scales" in name:
  7942. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7943. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7944. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7945. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7946. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7947. return []
  7948. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7949. del bid # unused
  7950. if "sinks" in name:
  7951. name += ".weight"
  7952. # correct naming for down_proj
  7953. if "down_proj" in name:
  7954. if name.endswith("_bias"):
  7955. name = name.replace("down_proj_bias", "down_proj.bias")
  7956. elif "_blocks" not in name and "_scales" not in name:
  7957. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7958. name = name.replace("down_proj", "down_proj.weight")
  7959. data_torch = data_torch.transpose(-1, -2)
  7960. else:
  7961. # otherwise, it should already be repacked to ggml MXFP4 format
  7962. return []
  7963. # split the gate_up into gate and up
  7964. if "gate_up_proj" in name:
  7965. if name.endswith("_bias"):
  7966. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7967. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7968. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7969. return [
  7970. (self.map_tensor_name(name_gate), gate_proj_bias),
  7971. (self.map_tensor_name(name_up), up_proj_bias)
  7972. ]
  7973. elif "_blocks" not in name and "_scales" not in name:
  7974. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7975. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7976. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7977. data_torch = data_torch.transpose(-1, -2)
  7978. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7979. return [
  7980. (self.map_tensor_name(name_gate), gate_proj_weight),
  7981. (self.map_tensor_name(name_up), up_proj_weight)
  7982. ]
  7983. else:
  7984. # otherwise, it should already be repacked to ggml MXFP4 format
  7985. return []
  7986. return [(self.map_tensor_name(name), data_torch)]
  7987. def set_vocab(self):
  7988. self._set_vocab_gpt2()
  7989. def set_gguf_parameters(self):
  7990. super().set_gguf_parameters()
  7991. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7992. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7993. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7994. class LFM2Model(TextModel):
  7995. model_arch = gguf.MODEL_ARCH.LFM2
  7996. def _add_feed_forward_length(self):
  7997. ff_dim = self.hparams["block_ff_dim"]
  7998. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7999. ff_dim = self.hparams["block_ff_dim"]
  8000. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  8001. multiple_of = self.hparams["block_multiple_of"]
  8002. if auto_adjust_ff_dim:
  8003. ff_dim = int(2 * ff_dim / 3)
  8004. # custom dim factor multiplier
  8005. if ffn_dim_multiplier is not None:
  8006. ff_dim = int(ffn_dim_multiplier * ff_dim)
  8007. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  8008. self.gguf_writer.add_feed_forward_length(ff_dim)
  8009. def set_gguf_parameters(self):
  8010. # set num_key_value_heads only for attention layers
  8011. self.hparams["num_key_value_heads"] = [
  8012. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8013. for layer_type in self.hparams["layer_types"]
  8014. ]
  8015. super().set_gguf_parameters()
  8016. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8017. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8018. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  8019. self._add_feed_forward_length()
  8020. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8021. if self._is_vision_tensor(name) or self._is_audio_tensor(name):
  8022. # skip multimodal tensors
  8023. return []
  8024. name = name.replace("language_model.", "") # vision
  8025. name = name.replace("lfm.", "model.") # audio
  8026. # conv op requires 2d tensor
  8027. if 'conv.conv' in name:
  8028. data_torch = data_torch.squeeze(1)
  8029. return [(self.map_tensor_name(name), data_torch)]
  8030. def _is_vision_tensor(self, name: str) -> bool:
  8031. return "vision_tower" in name or "multi_modal_projector" in name
  8032. def _is_audio_tensor(self, name: str):
  8033. return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
  8034. @ModelBase.register("Lfm2MoeForCausalLM")
  8035. class LFM2MoeModel(TextModel):
  8036. model_arch = gguf.MODEL_ARCH.LFM2MOE
  8037. def set_gguf_parameters(self):
  8038. # set num_key_value_heads only for attention layers
  8039. self.hparams["num_key_value_heads"] = [
  8040. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8041. for layer_type in self.hparams["layer_types"]
  8042. ]
  8043. super().set_gguf_parameters()
  8044. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  8045. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  8046. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  8047. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8048. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8049. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8050. # cache for experts weights for merging
  8051. _experts_cache: dict[int, dict[str, Tensor]] = {}
  8052. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8053. # conv op requires 2d tensor
  8054. if 'conv.conv' in name:
  8055. data_torch = data_torch.squeeze(1)
  8056. if name.endswith(".expert_bias"):
  8057. name = name.replace(".expert_bias", ".expert_bias.bias")
  8058. # merge expert weights
  8059. if 'experts' in name:
  8060. n_experts = self.hparams["num_experts"]
  8061. assert bid is not None
  8062. expert_cache = self._experts_cache.setdefault(bid, {})
  8063. expert_cache[name] = data_torch
  8064. expert_weights = ["w1", "w2", "w3"]
  8065. # not enough expert weights to merge
  8066. if len(expert_cache) < n_experts * len(expert_weights):
  8067. return []
  8068. tensors: list[tuple[str, Tensor]] = []
  8069. for w_name in expert_weights:
  8070. datas: list[Tensor] = []
  8071. for xid in range(n_experts):
  8072. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  8073. datas.append(expert_cache[ename])
  8074. del expert_cache[ename]
  8075. data_torch = torch.stack(datas, dim=0)
  8076. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  8077. new_name = self.map_tensor_name(merged_name)
  8078. tensors.append((new_name, data_torch))
  8079. del self._experts_cache[bid]
  8080. return tensors
  8081. return [(self.map_tensor_name(name), data_torch)]
  8082. def prepare_tensors(self):
  8083. super().prepare_tensors()
  8084. assert not self._experts_cache
  8085. @ModelBase.register("Lfm2VlForConditionalGeneration")
  8086. class LFM2VLModel(MmprojModel):
  8087. def __init__(self, *args, **kwargs):
  8088. super().__init__(*args, **kwargs)
  8089. assert self.hparams_vision is not None
  8090. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  8091. self.hparams_vision["image_size"] = 256
  8092. def set_gguf_parameters(self):
  8093. super().set_gguf_parameters()
  8094. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  8095. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  8096. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  8097. self.gguf_writer.add_vision_use_gelu(True)
  8098. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  8099. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  8100. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  8101. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8102. del bid # unused
  8103. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8104. if is_vision_tensor:
  8105. # remove "model." prefix
  8106. name = name.replace("model.vision_tower.", "vision_tower.")
  8107. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  8108. if "patch_embedding.weight" in name:
  8109. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  8110. return [(self.map_tensor_name(name), data_torch)]
  8111. return [] # skip other tensors
  8112. @ModelBase.register("Lfm2AudioForConditionalGeneration")
  8113. class LFM2AudioModel(MmprojModel):
  8114. has_vision_encoder = False
  8115. has_audio_encoder = True
  8116. model_name = "Lfm2AudioEncoder"
  8117. _batch_norm_tensors: list[dict[str, Tensor]] | None = None
  8118. def get_audio_config(self) -> dict[str, Any] | None:
  8119. return self.global_config.get("encoder")
  8120. def set_gguf_parameters(self):
  8121. assert self.hparams_audio is not None
  8122. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  8123. self.hparams_audio["intermediate_size"] = self.hparams_audio["d_model"]
  8124. self.hparams_audio["num_attention_heads"] = self.hparams_audio["n_heads"]
  8125. super().set_gguf_parameters()
  8126. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2A)
  8127. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  8128. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  8129. def tensor_force_quant(self, name, new_name, bid, n_dims):
  8130. if ".conv" in name and ".weight" in name:
  8131. return gguf.GGMLQuantizationType.F32
  8132. return super().tensor_force_quant(name, new_name, bid, n_dims)
  8133. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8134. # skip language model tensors
  8135. if name.startswith("lfm."):
  8136. return []
  8137. # for training only
  8138. if any(p in name for p in ["audio_loss_weight"]):
  8139. return []
  8140. # for audio output
  8141. if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
  8142. return []
  8143. # fold running_mean, running_var and eps into weight and bias for batch_norm
  8144. if "batch_norm" in name:
  8145. if self._batch_norm_tensors is None:
  8146. self._batch_norm_tensors = [{} for _ in range(self.block_count)]
  8147. assert bid is not None
  8148. self._batch_norm_tensors[bid][name] = data_torch
  8149. if len(self._batch_norm_tensors[bid]) < 5:
  8150. return []
  8151. weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
  8152. bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
  8153. running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
  8154. running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
  8155. eps = 1e-5 # default value
  8156. a = weight / torch.sqrt(running_var + eps)
  8157. b = bias - running_mean * a
  8158. return [
  8159. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
  8160. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
  8161. ]
  8162. # reshape conv weights
  8163. if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
  8164. data_torch = data_torch[:, None, None]
  8165. if "conv.depthwise_conv" in name and name.endswith(".weight"):
  8166. assert data_torch.shape[1] == 1
  8167. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
  8168. if "conv.pointwise_conv" in name and name.endswith(".weight"):
  8169. assert data_torch.shape[2] == 1
  8170. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
  8171. return [(self.map_tensor_name(name), data_torch)]
  8172. @ModelBase.register("SmallThinkerForCausalLM")
  8173. class SmallThinkerModel(TextModel):
  8174. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  8175. def set_gguf_parameters(self):
  8176. super().set_gguf_parameters()
  8177. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  8178. self.gguf_writer.add_expert_count(n_experts)
  8179. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  8180. self.gguf_writer.add_expert_used_count(n_experts_used)
  8181. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  8182. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  8183. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  8184. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  8185. if (self.hparams.get('moe_primary_router_apply_softmax')):
  8186. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  8187. else:
  8188. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8189. sliding_window_layout = self.hparams.get("sliding_window_layout")
  8190. if sliding_window_layout:
  8191. for i in sliding_window_layout:
  8192. if i != 0:
  8193. sliding_window = self.hparams.get("sliding_window_size")
  8194. if sliding_window:
  8195. self.gguf_writer.add_sliding_window(sliding_window)
  8196. break
  8197. _experts: list[dict[str, Tensor]] | None = None
  8198. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8199. # process the experts separately
  8200. if name.find("experts") != -1:
  8201. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8202. assert bid is not None
  8203. if self._experts is None:
  8204. self._experts = [{} for _ in range(self.block_count)]
  8205. self._experts[bid][name] = data_torch
  8206. if len(self._experts[bid]) >= n_experts * 3:
  8207. tensors: list[tuple[str, Tensor]] = []
  8208. # merge the experts into a single 3d tensor
  8209. for w_name in ["down", "gate", "up"]:
  8210. datas: list[Tensor] = []
  8211. for xid in range(n_experts):
  8212. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8213. datas.append(self._experts[bid][ename])
  8214. del self._experts[bid][ename]
  8215. data_torch = torch.stack(datas, dim=0)
  8216. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8217. new_name = self.map_tensor_name(merged_name)
  8218. tensors.append((new_name, data_torch))
  8219. return tensors
  8220. else:
  8221. return []
  8222. return [(self.map_tensor_name(name), data_torch)]
  8223. def prepare_tensors(self):
  8224. super().prepare_tensors()
  8225. if self._experts is not None:
  8226. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8227. experts = [k for d in self._experts for k in d.keys()]
  8228. if len(experts) > 0:
  8229. raise ValueError(f"Unprocessed experts: {experts}")
  8230. @ModelBase.register("ModernBertModel", "ModernBertForMaskedLM", "ModernBertForSequenceClassification")
  8231. class ModernBertModel(BertModel):
  8232. model_arch = gguf.MODEL_ARCH.MODERN_BERT
  8233. def set_vocab(self):
  8234. self.gguf_writer.add_add_bos_token(True)
  8235. self.gguf_writer.add_add_eos_token(True)
  8236. self.gguf_writer.add_add_sep_token(True)
  8237. self._set_vocab_gpt2()
  8238. def set_gguf_parameters(self):
  8239. super().set_gguf_parameters()
  8240. self.gguf_writer.add_sliding_window(self.hparams["local_attention"])
  8241. if (sliding_window_pattern := self.hparams.get("global_attn_every_n_layers")) is not None:
  8242. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  8243. self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("local_rope_theta")})["rope_theta"])
  8244. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8245. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8246. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8247. # these layers act as MLM head, so we don't need them
  8248. if name.startswith("decoder."):
  8249. return []
  8250. if name.startswith("model."):
  8251. name = name[6:]
  8252. return super().modify_tensors(data_torch, name, bid)
  8253. @ModelBase.register("ApertusForCausalLM")
  8254. class ApertusModel(LlamaModel):
  8255. model_arch = gguf.MODEL_ARCH.APERTUS
  8256. undo_permute = False
  8257. _alpha_n = {}
  8258. _alpha_p = {}
  8259. _beta = {}
  8260. _eps = {}
  8261. def modify_tensors(self, data_torch, name, bid):
  8262. # Handle xIELU activation parameters
  8263. n_layers = self.hparams["num_hidden_layers"]
  8264. if name.endswith(".act_fn.alpha_n"):
  8265. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8266. if (len(self._alpha_n) == n_layers):
  8267. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8268. return []
  8269. if name.endswith(".act_fn.alpha_p"):
  8270. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8271. if (len(self._alpha_p) == n_layers):
  8272. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8273. return []
  8274. if name.endswith(".act_fn.beta"):
  8275. self._beta[bid] = data_torch.to("cpu").float().item()
  8276. if (len(self._beta) == n_layers):
  8277. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8278. return []
  8279. if name.endswith(".act_fn.eps"):
  8280. self._eps[bid] = data_torch.to("cpu").float().item()
  8281. if (len(self._eps) == n_layers):
  8282. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8283. return []
  8284. return super().modify_tensors(data_torch, name, bid)
  8285. class MistralModel(LlamaModel):
  8286. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8287. model_name = "Mistral"
  8288. hf_arch = ""
  8289. is_mistral_format = True
  8290. undo_permute = False
  8291. def __init__(self, *args, **kwargs):
  8292. super().__init__(*args, **kwargs)
  8293. # for compatibility, we use LLAMA arch for older models
  8294. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8295. if "llama_4_scaling" not in self.hparams:
  8296. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8297. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8298. self.gguf_writer.add_architecture()
  8299. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8300. def dequant_model(self):
  8301. # transform quantization config into HF format
  8302. quant_config = self.hparams.get("quantization")
  8303. if quant_config is not None:
  8304. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8305. self.hparams["quantization_config"] = {
  8306. "activation_scheme": "static",
  8307. "quant_method": "fp8",
  8308. "weight_block_size": None,
  8309. }
  8310. return super().dequant_model()
  8311. @staticmethod
  8312. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8313. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8314. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8315. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8316. )
  8317. if vocab.tokenizer.version == TokenizerVersion.v1:
  8318. return "mistral-v1"
  8319. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8320. return "mistral-v3"
  8321. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8322. return "mistral-v3-tekken"
  8323. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8324. return "mistral-v7"
  8325. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8326. return "mistral-v7-tekken"
  8327. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8328. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8329. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8330. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8331. else:
  8332. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8333. if is_mistral_format:
  8334. err_message += (
  8335. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8336. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8337. )
  8338. raise ValueError(err_message)
  8339. template_path = templates_dir / template_file
  8340. if not template_path.exists():
  8341. raise FileNotFoundError(f"Template file not found: {template_path}")
  8342. with open(template_path, "r", encoding="utf-8") as f:
  8343. template = f.read()
  8344. return template
  8345. def set_gguf_parameters(self):
  8346. super().set_gguf_parameters()
  8347. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8348. @staticmethod
  8349. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8350. if "yarn" in hparams:
  8351. yarn_params = hparams["yarn"]
  8352. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8353. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8354. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8355. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8356. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8357. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8358. if "llama_4_scaling" in hparams:
  8359. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8360. class MistralMoeModel(DeepseekV2Model):
  8361. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8362. model_name = "Mistral"
  8363. hf_arch = ""
  8364. is_mistral_format = True
  8365. def __init__(self, *args, **kwargs):
  8366. super().__init__(*args, **kwargs)
  8367. logger.info("Using MistralMoeModel")
  8368. # remap hparams from Mistral MoE format to DeepseekV2 format
  8369. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8370. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8371. config = self.hparams
  8372. # Mistral key -> HF key
  8373. config_mapping = {
  8374. "dim": "hidden_size",
  8375. "norm_eps": "rms_norm_eps",
  8376. "n_kv_heads": "num_key_value_heads",
  8377. "n_layers": "num_hidden_layers",
  8378. "n_heads": "num_attention_heads",
  8379. "hidden_dim": "intermediate_size",
  8380. }
  8381. # HF key -> (Mistral key, default value)
  8382. top_level_mapping_with_default = {
  8383. "model_type": ("model_type", "transformer"),
  8384. "hidden_act": ("activation", "silu"),
  8385. "tie_word_embeddings": ("tied_embeddings", False),
  8386. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8387. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8388. }
  8389. # mapping top-level keys
  8390. for key, new_key in config_mapping.items():
  8391. if key in config:
  8392. config[new_key] = config[key]
  8393. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8394. config[new_key] = config.get(key, default_value)
  8395. # mapping MoE-specific keys
  8396. moe_config_map = {
  8397. "route_every_n": "moe_layer_freq",
  8398. "first_k_dense_replace": "first_k_dense_replace",
  8399. "num_experts_per_tok": "num_experts_per_tok",
  8400. "num_experts": "n_routed_experts",
  8401. "expert_hidden_dim": "moe_intermediate_size",
  8402. "routed_scale": "routed_scaling_factor",
  8403. "num_shared_experts": "n_shared_experts",
  8404. "num_expert_groups": "n_group",
  8405. "num_expert_groups_per_tok": "topk_group",
  8406. }
  8407. moe = config["moe"]
  8408. for key, new_key in moe_config_map.items():
  8409. if key in moe:
  8410. config[new_key] = moe[key]
  8411. # provide missing values
  8412. config["topk_method"] = None
  8413. config["norm_topk_prob"] = True
  8414. config["scoring_func"] = "softmax"
  8415. def set_vocab(self):
  8416. self._set_vocab_mistral()
  8417. def set_gguf_parameters(self):
  8418. super().set_gguf_parameters()
  8419. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8420. yarn_params = self.hparams["yarn"]
  8421. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8422. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8423. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8424. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8425. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8426. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8427. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8428. return []
  8429. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8430. if name.endswith(".qscale_act"):
  8431. name = name.replace(".qscale_act", ".input_scale")
  8432. if name.endswith(".qscale_weight"):
  8433. name = name.replace(".qscale_weight", ".weight_scale")
  8434. if ".wkv_b." in name:
  8435. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8436. if ".experts." in name:
  8437. name = name.replace(".experts.", ".mlp.experts.")
  8438. name = name.replace(".w1.", ".gate_proj.")
  8439. name = name.replace(".w2.", ".down_proj.")
  8440. name = name.replace(".w3.", ".up_proj.")
  8441. name = "model." + name
  8442. return super().modify_tensors(data_torch, name, bid)
  8443. class PixtralModel(LlavaVisionModel):
  8444. model_name = "Pixtral"
  8445. hf_arch = ""
  8446. is_mistral_format = True
  8447. def set_gguf_parameters(self):
  8448. super().set_gguf_parameters()
  8449. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8450. self.gguf_writer.add_vision_attention_layernorm_eps(
  8451. self.find_hparam(["norm_eps"])
  8452. )
  8453. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8454. self.gguf_writer.add_vision_use_silu(True)
  8455. # spatial_merge_size
  8456. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8457. self.gguf_writer.add_vision_spatial_merge_size(
  8458. self.find_vparam(["spatial_merge_size"])
  8459. )
  8460. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8461. if name == "vision_language_adapter.w_in.weight":
  8462. return "mm.1.weight"
  8463. elif name == "vision_language_adapter.w_out.weight":
  8464. return "mm.2.weight"
  8465. return super().map_tensor_name(name, try_suffixes)
  8466. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8467. class LightOnOCRVisionModel(LlavaVisionModel):
  8468. is_mistral_format = False
  8469. use_break_tok = False
  8470. def set_gguf_parameters(self):
  8471. super().set_gguf_parameters()
  8472. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8473. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8474. name = name.replace("model.vision_encoder.", "vision_tower.")
  8475. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8476. return super().modify_tensors(data_torch, name, bid)
  8477. @ModelBase.register("KimiVLForConditionalGeneration")
  8478. class KimiVLModel(MmprojModel):
  8479. def __init__(self, *args, **kwargs):
  8480. super().__init__(*args, **kwargs)
  8481. assert self.hparams_vision is not None
  8482. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8483. def set_gguf_parameters(self):
  8484. super().set_gguf_parameters()
  8485. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8486. self.gguf_writer.add_vision_use_gelu(True)
  8487. self.gguf_writer.add_vision_projector_scale_factor(2)
  8488. # eps is the same as pytorch's default value
  8489. assert self.hparams_vision is not None
  8490. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8491. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8492. del bid # unused
  8493. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8494. if is_vision_tensor:
  8495. if "pos_emb.weight" in name:
  8496. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8497. elif "wqkv" in name:
  8498. split_dim = 0 if "weight" in name else -1
  8499. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8500. return [
  8501. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8502. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8503. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8504. ]
  8505. return [(self.map_tensor_name(name), data_torch)]
  8506. return [] # skip other tensors
  8507. @ModelBase.register("CogVLMForCausalLM")
  8508. class CogVLMVisionModel(MmprojModel):
  8509. def set_gguf_parameters(self):
  8510. super().set_gguf_parameters()
  8511. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8512. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8513. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8514. del bid # unused
  8515. if not name.startswith("model.vision."):
  8516. return []
  8517. return [(self.map_tensor_name(name), data_torch)]
  8518. @ModelBase.register("CogVLMForCausalLM")
  8519. class CogVLMModel(LlamaModel):
  8520. model_arch = gguf.MODEL_ARCH.COGVLM
  8521. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8522. del bid # unused
  8523. # block vision tensors
  8524. if name.startswith("model.vision."):
  8525. return []
  8526. return [(self.map_tensor_name(name), data_torch)]
  8527. @ModelBase.register("JanusForConditionalGeneration")
  8528. class JanusProModel(LlamaModel):
  8529. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8530. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8531. # Skip vision, aligner, and generation tensors
  8532. skip_prefixes = (
  8533. 'model.vision_model.',
  8534. 'model.aligner.',
  8535. 'model.vqmodel.',
  8536. 'model.generation_embeddings.',
  8537. 'model.generation_aligner.',
  8538. 'model.generation_head.',
  8539. )
  8540. if name.startswith(skip_prefixes):
  8541. return []
  8542. if name.startswith('model.language_model.'):
  8543. name = name.replace('model.language_model.', 'model.')
  8544. elif name.startswith('language_model.'):
  8545. name = name.replace('language_model.', '')
  8546. return super().modify_tensors(data_torch, name, bid)
  8547. @ModelBase.register("JanusForConditionalGeneration")
  8548. class JanusProVisionModel(MmprojModel):
  8549. def __init__(self, *args, **kwargs):
  8550. super().__init__(*args, **kwargs)
  8551. assert self.hparams_vision is not None
  8552. if "intermediate_size" not in self.hparams_vision:
  8553. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8554. hidden_size = self.hparams_vision.get("hidden_size")
  8555. if mlp_ratio is not None and hidden_size is not None:
  8556. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8557. def set_gguf_parameters(self):
  8558. super().set_gguf_parameters()
  8559. assert self.hparams_vision is not None
  8560. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8561. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8562. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8563. if hidden_act == "gelu":
  8564. self.gguf_writer.add_vision_use_gelu(True)
  8565. elif hidden_act == "silu":
  8566. self.gguf_writer.add_vision_use_silu(True)
  8567. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8568. """Map aligner tensors to projector format"""
  8569. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8570. if name.startswith("model.aligner."):
  8571. local_name = name[len("model.aligner."):]
  8572. elif name.startswith("aligner."):
  8573. local_name = name[len("aligner."):]
  8574. else:
  8575. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8576. if local_name.startswith("fc1."):
  8577. mm_index = 0
  8578. elif local_name.startswith("hidden_layers."):
  8579. parts = local_name.split(".", 2)
  8580. if len(parts) < 3:
  8581. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8582. mm_index = int(parts[1]) + 1
  8583. else:
  8584. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8585. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8586. return [(tensor_name, data_torch)]
  8587. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8588. del bid # unused
  8589. # Skip language model tensors as they will be handled by `JanusProModel`
  8590. if name.startswith(('model.language_model.', 'language_model.')):
  8591. return []
  8592. # Skip generation-related components
  8593. skip_generation_prefixes = (
  8594. 'model.vqmodel.',
  8595. 'vqmodel.',
  8596. 'model.generation_embeddings.',
  8597. 'generation_embeddings.',
  8598. 'model.generation_aligner.',
  8599. 'generation_aligner.',
  8600. 'model.generation_head.',
  8601. 'generation_head.',
  8602. )
  8603. if name.startswith(skip_generation_prefixes):
  8604. return []
  8605. # Handle aligner tensors
  8606. if name.startswith(('model.aligner.', 'aligner.')):
  8607. return list(self._map_aligner_tensor(data_torch, name))
  8608. # Handle vision tensors
  8609. if name.startswith(('model.vision_model.', 'vision_model.')):
  8610. return [(self.map_tensor_name(name), data_torch)]
  8611. return []
  8612. @ModelBase.register("SolarOpenForCausalLM")
  8613. class SolarOpenModel(Glm4MoeModel):
  8614. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  8615. def set_vocab(self):
  8616. from transformers import AutoTokenizer
  8617. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  8618. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  8619. tokens, toktypes, tokpre = self.get_vocab_base()
  8620. self.gguf_writer.add_tokenizer_model("gpt2")
  8621. self.gguf_writer.add_tokenizer_pre(tokpre)
  8622. self.gguf_writer.add_token_list(tokens)
  8623. self.gguf_writer.add_token_types(toktypes)
  8624. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  8625. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|endoftext|>"])
  8626. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<unk>"])
  8627. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|startoftext|>"])
  8628. special_vocab.add_to_gguf(self.gguf_writer)
  8629. ###### CONVERSION LOGIC ######
  8630. # tree of lazy tensors
  8631. class LazyTorchTensor(gguf.LazyBase):
  8632. _tensor_type = torch.Tensor
  8633. # to keep the type-checker happy
  8634. dtype: torch.dtype
  8635. shape: torch.Size
  8636. # only used when converting a torch.Tensor to a np.ndarray
  8637. _dtype_map: dict[torch.dtype, type] = {
  8638. torch.float16: np.float16,
  8639. torch.float32: np.float32,
  8640. torch.uint8: np.uint8,
  8641. }
  8642. # only used when byteswapping data. Only correct size is needed
  8643. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8644. torch.float64: np.float64,
  8645. torch.float32: np.float32,
  8646. torch.bfloat16: np.float16,
  8647. torch.float16: np.float16,
  8648. torch.int64: np.int64,
  8649. torch.uint64: np.uint64,
  8650. torch.int32: np.int32,
  8651. torch.uint32: np.uint32,
  8652. torch.int16: np.int16,
  8653. torch.uint16: np.uint16,
  8654. torch.int8: np.int8,
  8655. torch.uint8: np.uint8,
  8656. torch.bool: np.uint8,
  8657. torch.float8_e4m3fn: np.uint8,
  8658. torch.float8_e5m2: np.uint8,
  8659. }
  8660. # used for safetensors slices
  8661. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8662. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8663. _dtype_str_map: dict[str, torch.dtype] = {
  8664. "F64": torch.float64,
  8665. "F32": torch.float32,
  8666. "BF16": torch.bfloat16,
  8667. "F16": torch.float16,
  8668. # "U64": torch.uint64,
  8669. "I64": torch.int64,
  8670. # "U32": torch.uint32,
  8671. "I32": torch.int32,
  8672. # "U16": torch.uint16,
  8673. "I16": torch.int16,
  8674. "U8": torch.uint8,
  8675. "I8": torch.int8,
  8676. "BOOL": torch.bool,
  8677. "F8_E4M3": torch.float8_e4m3fn,
  8678. "F8_E5M2": torch.float8_e5m2,
  8679. }
  8680. def numpy(self) -> gguf.LazyNumpyTensor:
  8681. dtype = self._dtype_map[self.dtype]
  8682. return gguf.LazyNumpyTensor(
  8683. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8684. args=(self,),
  8685. func=(lambda s: s.numpy())
  8686. )
  8687. @classmethod
  8688. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8689. return torch.empty(size=shape, dtype=dtype, device="meta")
  8690. @classmethod
  8691. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8692. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8693. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8694. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8695. return cast(torch.Tensor, lazy)
  8696. @classmethod
  8697. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8698. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8699. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8700. if sys.byteorder == 'big':
  8701. # switch data back to big endian
  8702. tensor = tensor.view(dtype).byteswap(inplace=False)
  8703. return tensor
  8704. dtype = cls._dtype_str_map[tensor.dtype]
  8705. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8706. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8707. dtype = cls._dtype_str_map[t.dtype]
  8708. shape = t.shape
  8709. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8710. return cast(torch.Tensor, lazy)
  8711. @classmethod
  8712. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8713. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8714. if sys.byteorder == 'big':
  8715. # switch data back to big endian
  8716. tensor = tensor.view(dtype).byteswap(inplace=False)
  8717. return tensor
  8718. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8719. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8720. shape = remote_tensor.shape
  8721. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8722. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8723. return cast(torch.Tensor, lazy)
  8724. @classmethod
  8725. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8726. del types # unused
  8727. if kwargs is None:
  8728. kwargs = {}
  8729. if func is torch.Tensor.numpy:
  8730. return args[0].numpy()
  8731. return cls._wrap_fn(func)(*args, **kwargs)
  8732. def parse_args() -> argparse.Namespace:
  8733. parser = argparse.ArgumentParser(
  8734. description="Convert a huggingface model to a GGML compatible file")
  8735. parser.add_argument(
  8736. "--vocab-only", action="store_true",
  8737. help="extract only the vocab",
  8738. )
  8739. parser.add_argument(
  8740. "--outfile", type=Path,
  8741. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8742. )
  8743. parser.add_argument(
  8744. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="auto",
  8745. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type",
  8746. )
  8747. parser.add_argument(
  8748. "--bigendian", action="store_true",
  8749. help="model is executed on big endian machine",
  8750. )
  8751. parser.add_argument(
  8752. "model", type=str,
  8753. help="directory containing model file or huggingface repository ID (if --remote)",
  8754. nargs="?",
  8755. )
  8756. parser.add_argument(
  8757. "--use-temp-file", action="store_true",
  8758. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8759. )
  8760. parser.add_argument(
  8761. "--no-lazy", action="store_true",
  8762. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8763. )
  8764. parser.add_argument(
  8765. "--model-name", type=str, default=None,
  8766. help="name of the model",
  8767. )
  8768. parser.add_argument(
  8769. "--verbose", action="store_true",
  8770. help="increase output verbosity",
  8771. )
  8772. parser.add_argument(
  8773. "--split-max-tensors", type=int, default=0,
  8774. help="max tensors in each split",
  8775. )
  8776. parser.add_argument(
  8777. "--split-max-size", type=str, default="0",
  8778. help="max size per split N(M|G)",
  8779. )
  8780. parser.add_argument(
  8781. "--dry-run", action="store_true",
  8782. help="only print out a split plan and exit, without writing any new files",
  8783. )
  8784. parser.add_argument(
  8785. "--no-tensor-first-split", action="store_true",
  8786. help="do not add tensors to the first split (disabled by default)"
  8787. )
  8788. parser.add_argument(
  8789. "--metadata", type=Path,
  8790. help="Specify the path for an authorship metadata override file"
  8791. )
  8792. parser.add_argument(
  8793. "--print-supported-models", action="store_true",
  8794. help="Print the supported models"
  8795. )
  8796. parser.add_argument(
  8797. "--remote", action="store_true",
  8798. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8799. )
  8800. parser.add_argument(
  8801. "--mmproj", action="store_true",
  8802. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8803. )
  8804. parser.add_argument(
  8805. "--mistral-format", action="store_true",
  8806. help="Whether the model is stored following the Mistral format.",
  8807. )
  8808. parser.add_argument(
  8809. "--disable-mistral-community-chat-template", action="store_true",
  8810. help=(
  8811. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8812. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8813. )
  8814. )
  8815. parser.add_argument(
  8816. "--sentence-transformers-dense-modules", action="store_true",
  8817. help=("Whether to include sentence-transformers dense modules."
  8818. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8819. "Default these modules are not included.")
  8820. )
  8821. args = parser.parse_args()
  8822. if not args.print_supported_models and args.model is None:
  8823. parser.error("the following arguments are required: model")
  8824. return args
  8825. def split_str_to_n_bytes(split_str: str) -> int:
  8826. if split_str.endswith("K"):
  8827. n = int(split_str[:-1]) * 1000
  8828. elif split_str.endswith("M"):
  8829. n = int(split_str[:-1]) * 1000 * 1000
  8830. elif split_str.endswith("G"):
  8831. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8832. elif split_str.isnumeric():
  8833. n = int(split_str)
  8834. else:
  8835. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8836. if n < 0:
  8837. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8838. return n
  8839. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8840. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8841. # maybe we should fallback to text model's arch in that case, since not many models have both
  8842. text_config = hparams.get("text_config", {})
  8843. vision_config = hparams.get("vision_config", {})
  8844. arch = None
  8845. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8846. arch = arches[0]
  8847. elif "ssm_cfg" in hparams:
  8848. # For non-hf Mamba and Mamba2 models
  8849. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8850. # if "architectures" is found in the sub-config, use that instead
  8851. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8852. arch = text_config["architectures"][0]
  8853. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8854. arch = vision_config["architectures"][0]
  8855. if arch is None:
  8856. raise ValueError("Failed to detect model architecture")
  8857. return arch
  8858. def main() -> None:
  8859. args = parse_args()
  8860. if args.print_supported_models:
  8861. logger.error("Supported models:")
  8862. ModelBase.print_registered_models()
  8863. sys.exit(0)
  8864. if args.verbose:
  8865. logging.basicConfig(level=logging.DEBUG)
  8866. else:
  8867. logging.basicConfig(level=logging.INFO)
  8868. if args.remote:
  8869. hf_repo_id = args.model
  8870. from huggingface_hub import snapshot_download
  8871. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8872. if args.sentence_transformers_dense_modules:
  8873. # include sentence-transformers dense modules safetensors files
  8874. allowed_patterns.append("*.safetensors")
  8875. local_dir = snapshot_download(
  8876. repo_id=hf_repo_id,
  8877. allow_patterns=allowed_patterns)
  8878. dir_model = Path(local_dir)
  8879. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8880. else:
  8881. hf_repo_id = None
  8882. dir_model = Path(args.model)
  8883. if not dir_model.is_dir():
  8884. logger.error(f'Error: {dir_model} is not a directory')
  8885. sys.exit(1)
  8886. ftype_map: dict[str, gguf.LlamaFileType] = {
  8887. "f32": gguf.LlamaFileType.ALL_F32,
  8888. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8889. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8890. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8891. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8892. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8893. "auto": gguf.LlamaFileType.GUESSED,
  8894. }
  8895. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8896. if args.use_temp_file and is_split:
  8897. logger.error("Error: Cannot use temp file when splitting")
  8898. sys.exit(1)
  8899. if args.outfile is not None:
  8900. fname_out = args.outfile
  8901. elif hf_repo_id:
  8902. # if remote, use the model ID as the output file name
  8903. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8904. else:
  8905. fname_out = dir_model
  8906. logger.info(f"Loading model: {dir_model.name}")
  8907. is_mistral_format = args.mistral_format
  8908. if is_mistral_format and not _mistral_common_installed:
  8909. raise ImportError(_mistral_import_error_msg)
  8910. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8911. with torch.inference_mode():
  8912. output_type = ftype_map[args.outtype]
  8913. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8914. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8915. if not is_mistral_format:
  8916. model_architecture = get_model_architecture(hparams, model_type)
  8917. logger.info(f"Model architecture: {model_architecture}")
  8918. try:
  8919. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8920. except NotImplementedError:
  8921. logger.error(f"Model {model_architecture} is not supported")
  8922. sys.exit(1)
  8923. elif args.mmproj:
  8924. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8925. model_class = PixtralModel
  8926. elif "moe" in hparams:
  8927. model_class = MistralMoeModel
  8928. else:
  8929. model_class = MistralModel
  8930. model_instance = model_class(dir_model, output_type, fname_out,
  8931. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8932. eager=args.no_lazy,
  8933. metadata_override=args.metadata, model_name=args.model_name,
  8934. split_max_tensors=args.split_max_tensors,
  8935. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8936. small_first_shard=args.no_tensor_first_split,
  8937. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8938. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8939. )
  8940. if args.vocab_only:
  8941. logger.info("Exporting model vocab...")
  8942. model_instance.write_vocab()
  8943. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8944. else:
  8945. logger.info("Exporting model...")
  8946. model_instance.write()
  8947. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8948. logger.info(f"Model successfully exported to {out_path}")
  8949. if __name__ == '__main__':
  8950. main()