convert_hf_to_gguf.py 243 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  155. f"Missing tensors: {missing}")
  156. else:
  157. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  158. f"Missing tensors: {missing}\n"
  159. f"Extra tensors: {extra}")
  160. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  161. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  162. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  163. name: str = gguf.TENSOR_NAMES[key]
  164. if "{bid}" in name:
  165. assert bid is not None
  166. name = name.format(bid=bid)
  167. return name + suffix
  168. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  169. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  170. return False
  171. key_name: str = gguf.TENSOR_NAMES[key]
  172. if "{bid}" in key_name:
  173. if bid is None:
  174. return False
  175. key_name = key_name.format(bid=bid)
  176. else:
  177. if bid is not None:
  178. return False
  179. return name == (key_name + suffix)
  180. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  181. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  182. if new_name is None:
  183. raise ValueError(f"Can not map tensor {name!r}")
  184. return new_name
  185. def set_gguf_parameters(self):
  186. self.gguf_writer.add_block_count(self.block_count)
  187. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  188. self.gguf_writer.add_context_length(n_ctx)
  189. logger.info(f"gguf: context length = {n_ctx}")
  190. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  191. self.gguf_writer.add_embedding_length(n_embd)
  192. logger.info(f"gguf: embedding length = {n_embd}")
  193. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  194. self.gguf_writer.add_feed_forward_length(n_ff)
  195. logger.info(f"gguf: feed forward length = {n_ff}")
  196. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  197. self.gguf_writer.add_head_count(n_head)
  198. logger.info(f"gguf: head count = {n_head}")
  199. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  200. self.gguf_writer.add_head_count_kv(n_head_kv)
  201. logger.info(f"gguf: key-value head count = {n_head_kv}")
  202. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  203. self.gguf_writer.add_rope_freq_base(rope_theta)
  204. logger.info(f"gguf: rope theta = {rope_theta}")
  205. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  206. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  207. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  208. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  209. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  210. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  211. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  212. self.gguf_writer.add_expert_count(n_experts)
  213. logger.info(f"gguf: expert count = {n_experts}")
  214. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  215. self.gguf_writer.add_expert_used_count(n_experts_used)
  216. logger.info(f"gguf: experts used count = {n_experts_used}")
  217. if (head_dim := self.hparams.get("head_dim")) is not None:
  218. self.gguf_writer.add_key_length(head_dim)
  219. self.gguf_writer.add_value_length(head_dim)
  220. self.gguf_writer.add_file_type(self.ftype)
  221. logger.info(f"gguf: file type = {self.ftype}")
  222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  223. del bid # unused
  224. return [(self.map_tensor_name(name), data_torch)]
  225. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  226. del name, new_name, bid, n_dims # unused
  227. return False
  228. # some models need extra generated tensors (like rope_freqs)
  229. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  230. return ()
  231. def prepare_tensors(self):
  232. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  233. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  234. # we don't need these
  235. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  236. continue
  237. old_dtype = data_torch.dtype
  238. # convert any unsupported data types to float32
  239. if data_torch.dtype not in (torch.float16, torch.float32):
  240. data_torch = data_torch.to(torch.float32)
  241. # use the first number-like part of the tensor name as the block id
  242. bid = None
  243. for part in name.split("."):
  244. if part.isdecimal():
  245. bid = int(part)
  246. break
  247. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  248. # TODO: why do we squeeze here?
  249. # data = data_torch.squeeze().numpy()
  250. data = data_torch.numpy()
  251. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  252. if len(data.shape) == 0:
  253. data = data_torch.numpy()
  254. n_dims = len(data.shape)
  255. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  256. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  257. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  258. data_qtype = gguf.GGMLQuantizationType.F32
  259. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  260. # Some tensor types are always in float32
  261. if data_qtype is False and (
  262. any(
  263. self.match_model_tensor_name(new_name, key, bid)
  264. for key in (
  265. gguf.MODEL_TENSOR.FFN_GATE_INP,
  266. gguf.MODEL_TENSOR.POS_EMBD,
  267. gguf.MODEL_TENSOR.TOKEN_TYPES,
  268. gguf.MODEL_TENSOR.SSM_CONV1D,
  269. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  270. gguf.MODEL_TENSOR.TIME_MIX_W1,
  271. gguf.MODEL_TENSOR.TIME_MIX_W2,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  274. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  275. gguf.MODEL_TENSOR.POSNET_NORM1,
  276. gguf.MODEL_TENSOR.POSNET_NORM2,
  277. )
  278. )
  279. or not new_name.endswith(".weight")
  280. ):
  281. data_qtype = gguf.GGMLQuantizationType.F32
  282. if data_qtype is False and any(
  283. self.match_model_tensor_name(new_name, key, bid)
  284. for key in (
  285. gguf.MODEL_TENSOR.TOKEN_EMBD,
  286. gguf.MODEL_TENSOR.OUTPUT,
  287. )
  288. ):
  289. if self.ftype in (
  290. gguf.LlamaFileType.MOSTLY_TQ1_0,
  291. gguf.LlamaFileType.MOSTLY_TQ2_0,
  292. ):
  293. # TODO: use Q4_K and Q6_K
  294. data_qtype = gguf.GGMLQuantizationType.F16
  295. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  296. if isinstance(data_qtype, bool):
  297. if self.ftype == gguf.LlamaFileType.ALL_F32:
  298. data_qtype = gguf.GGMLQuantizationType.F32
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  300. data_qtype = gguf.GGMLQuantizationType.F16
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  302. data_qtype = gguf.GGMLQuantizationType.BF16
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  304. data_qtype = gguf.GGMLQuantizationType.Q8_0
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  306. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  307. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  308. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  309. else:
  310. raise ValueError(f"Unknown file type: {self.ftype.name}")
  311. try:
  312. data = gguf.quants.quantize(data, data_qtype)
  313. except gguf.QuantError as e:
  314. logger.warning("%s, %s", e, "falling back to F16")
  315. data_qtype = gguf.GGMLQuantizationType.F16
  316. data = gguf.quants.quantize(data, data_qtype)
  317. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  318. # reverse shape to make it similar to the internal ggml dimension order
  319. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  320. # n_dims is implicit in the shape
  321. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  322. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  323. def set_type(self):
  324. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  325. def prepare_metadata(self, vocab_only: bool):
  326. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  327. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  328. # Fallback to model directory name if metadata name is still missing
  329. if self.metadata.name is None:
  330. self.metadata.name = self.dir_model.name
  331. # Generate parameter weight class (useful for leader boards) if not yet determined
  332. if self.metadata.size_label is None and total_params > 0:
  333. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  334. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  335. output_type: str = self.ftype.name.partition("_")[2]
  336. # Filename Output
  337. if self.fname_out.is_dir():
  338. # Generate default filename based on model specification and available metadata
  339. if not vocab_only:
  340. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  341. else:
  342. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  343. # Use the default filename
  344. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  345. else:
  346. # Output path is a custom defined templated filename
  347. # Note: `not is_dir()` is used because `.is_file()` will not detect
  348. # file template strings as it doesn't actually exist as a file
  349. # Process templated file name with the output ftype, useful with the "auto" ftype
  350. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  351. self.set_type()
  352. logger.info("Set meta model")
  353. self.metadata.set_gguf_meta_model(self.gguf_writer)
  354. logger.info("Set model parameters")
  355. self.set_gguf_parameters()
  356. logger.info("Set model tokenizer")
  357. self.set_vocab()
  358. logger.info("Set model quantization version")
  359. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  360. def write(self):
  361. self.prepare_tensors()
  362. self.prepare_metadata(vocab_only=False)
  363. self.gguf_writer.write_header_to_file(path=self.fname_out)
  364. self.gguf_writer.write_kv_data_to_file()
  365. self.gguf_writer.write_tensors_to_file(progress=True)
  366. self.gguf_writer.close()
  367. def write_vocab(self):
  368. if len(self.gguf_writer.tensors) != 1:
  369. raise ValueError('Splitting the vocabulary is not supported')
  370. self.prepare_metadata(vocab_only=True)
  371. self.gguf_writer.write_header_to_file(path=self.fname_out)
  372. self.gguf_writer.write_kv_data_to_file()
  373. self.gguf_writer.close()
  374. @staticmethod
  375. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  376. part_names: list[str] = []
  377. for filename in os.listdir(dir_model):
  378. if filename.startswith(prefix) and filename.endswith(suffix):
  379. part_names.append(filename)
  380. part_names.sort()
  381. return part_names
  382. @staticmethod
  383. def load_hparams(dir_model: Path):
  384. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  385. return json.load(f)
  386. @classmethod
  387. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  388. assert names
  389. def func(modelcls: AnyModel) -> AnyModel:
  390. for name in names:
  391. cls._model_classes[name] = modelcls
  392. return modelcls
  393. return func
  394. @classmethod
  395. def print_registered_models(cls):
  396. for name in sorted(cls._model_classes.keys()):
  397. logger.error(f"- {name}")
  398. @classmethod
  399. def from_model_architecture(cls, arch: str) -> type[Model]:
  400. try:
  401. return cls._model_classes[arch]
  402. except KeyError:
  403. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  404. def does_token_look_special(self, token: str | bytes) -> bool:
  405. if isinstance(token, (bytes, bytearray)):
  406. token_text = token.decode(encoding="utf-8")
  407. elif isinstance(token, memoryview):
  408. token_text = token.tobytes().decode(encoding="utf-8")
  409. else:
  410. token_text = token
  411. # Some models mark some added tokens which ought to be control tokens as not special.
  412. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  413. seems_special = token_text in (
  414. "<pad>", # deepseek-coder
  415. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  416. )
  417. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  418. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  419. # TODO: should these be marked as UNUSED instead? (maybe not)
  420. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  421. return seems_special
  422. # used for GPT-2 BPE and WordPiece vocabs
  423. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  424. tokens: list[str] = []
  425. toktypes: list[int] = []
  426. from transformers import AutoTokenizer
  427. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  428. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  429. assert max(tokenizer.vocab.values()) < vocab_size
  430. tokpre = self.get_vocab_base_pre(tokenizer)
  431. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  432. added_vocab = tokenizer.get_added_vocab()
  433. added_tokens_decoder = tokenizer.added_tokens_decoder
  434. for i in range(vocab_size):
  435. if i not in reverse_vocab:
  436. tokens.append(f"[PAD{i}]")
  437. toktypes.append(gguf.TokenType.UNUSED)
  438. else:
  439. token: str = reverse_vocab[i]
  440. if token in added_vocab:
  441. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  442. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  443. if not added_tokens_decoder[i].normalized:
  444. previous_token = token
  445. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  446. if previous_token != token:
  447. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  448. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  449. toktypes.append(gguf.TokenType.CONTROL)
  450. else:
  451. # NOTE: this was added for Gemma.
  452. # Encoding and decoding the tokens above isn't sufficient for this case.
  453. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  454. toktypes.append(gguf.TokenType.USER_DEFINED)
  455. else:
  456. toktypes.append(gguf.TokenType.NORMAL)
  457. tokens.append(token)
  458. return tokens, toktypes, tokpre
  459. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  460. # do not modify it manually!
  461. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  462. # Marker: Start get_vocab_base_pre
  463. def get_vocab_base_pre(self, tokenizer) -> str:
  464. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  465. # is specific for the BPE pre-tokenizer used by the model
  466. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  467. # use in llama.cpp to implement the same pre-tokenizer
  468. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  469. chktok = tokenizer.encode(chktxt)
  470. chkhsh = sha256(str(chktok).encode()).hexdigest()
  471. logger.debug(f"chktok: {chktok}")
  472. logger.debug(f"chkhsh: {chkhsh}")
  473. res = None
  474. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  475. # or pull the latest version of the model from Huggingface
  476. # don't edit the hashes manually!
  477. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  478. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  479. res = "llama-bpe"
  480. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  481. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  482. res = "deepseek-llm"
  483. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  484. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  485. res = "deepseek-coder"
  486. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  487. # ref: https://huggingface.co/tiiuae/falcon-7b
  488. res = "falcon"
  489. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  490. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  491. res = "falcon3"
  492. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  493. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  494. res = "bert-bge"
  495. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  496. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  497. res = "bert-bge-large"
  498. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  499. # ref: https://huggingface.co/mosaicml/mpt-7b
  500. res = "mpt"
  501. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  502. # ref: https://huggingface.co/bigcode/starcoder2-3b
  503. res = "starcoder"
  504. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  505. # ref: https://huggingface.co/openai-community/gpt2
  506. res = "gpt-2"
  507. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  508. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  509. res = "stablelm2"
  510. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  511. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  512. res = "refact"
  513. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  514. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  515. res = "command-r"
  516. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  517. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  518. res = "qwen2"
  519. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  520. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  521. res = "olmo"
  522. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  523. # ref: https://huggingface.co/databricks/dbrx-base
  524. res = "dbrx"
  525. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  526. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  527. res = "jina-v1-en"
  528. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  529. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  530. res = "jina-v2-en"
  531. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  532. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  533. res = "jina-v2-es"
  534. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  535. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  536. res = "jina-v2-de"
  537. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  538. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  539. res = "smaug-bpe"
  540. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  541. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  542. res = "poro-chat"
  543. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  544. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  545. res = "jina-v2-code"
  546. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  547. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  548. res = "chatglm-bpe"
  549. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  550. # ref: https://huggingface.co/LumiOpen/Viking-7B
  551. res = "viking"
  552. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  553. # ref: https://huggingface.co/core42/jais-13b
  554. res = "jais"
  555. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  556. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  557. res = "codeshell"
  558. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  559. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  560. res = "tekken"
  561. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  562. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  563. res = "smollm"
  564. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  565. # ref: https://huggingface.co/bigscience/bloom
  566. res = "bloom"
  567. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  568. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  569. res = "gpt3-finnish"
  570. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  571. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  572. res = "exaone"
  573. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  574. # ref: https://huggingface.co/microsoft/phi-2
  575. res = "phi-2"
  576. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  577. # ref: https://huggingface.co/facebook/chameleon-7b
  578. res = "chameleon"
  579. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  580. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  581. res = "minerva-7b"
  582. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  583. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  584. res = "roberta-bpe"
  585. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  586. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  587. res = "gigachat"
  588. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  589. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  590. res = "megrez"
  591. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  592. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  593. res = "deepseek-v3"
  594. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  595. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  596. res = "deepseek-r1-qwen"
  597. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  598. # ref: https://huggingface.co/Xenova/gpt-4o
  599. res = "gpt-4o"
  600. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  601. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  602. res = "superbpe"
  603. if res is None:
  604. logger.warning("\n")
  605. logger.warning("**************************************************************************************")
  606. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  607. logger.warning("** There are 2 possible reasons for this:")
  608. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  609. logger.warning("** - the pre-tokenization config has changed upstream")
  610. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  611. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  612. logger.warning("**")
  613. logger.warning(f"** chkhsh: {chkhsh}")
  614. logger.warning("**************************************************************************************")
  615. logger.warning("\n")
  616. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  617. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  618. logger.debug(f"chkhsh: {chkhsh}")
  619. return res
  620. # Marker: End get_vocab_base_pre
  621. def _set_vocab_none(self) -> None:
  622. self.gguf_writer.add_tokenizer_model("none")
  623. def _set_vocab_gpt2(self) -> None:
  624. tokens, toktypes, tokpre = self.get_vocab_base()
  625. self.gguf_writer.add_tokenizer_model("gpt2")
  626. self.gguf_writer.add_tokenizer_pre(tokpre)
  627. self.gguf_writer.add_token_list(tokens)
  628. self.gguf_writer.add_token_types(toktypes)
  629. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  630. special_vocab.add_to_gguf(self.gguf_writer)
  631. def _set_vocab_qwen(self):
  632. dir_model = self.dir_model
  633. hparams = self.hparams
  634. tokens: list[str] = []
  635. toktypes: list[int] = []
  636. from transformers import AutoTokenizer
  637. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  638. vocab_size = hparams["vocab_size"]
  639. assert max(tokenizer.get_vocab().values()) < vocab_size
  640. tokpre = self.get_vocab_base_pre(tokenizer)
  641. merges = []
  642. vocab = {}
  643. mergeable_ranks = tokenizer.mergeable_ranks
  644. for token, rank in mergeable_ranks.items():
  645. vocab[QwenModel.token_bytes_to_string(token)] = rank
  646. if len(token) == 1:
  647. continue
  648. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  649. assert len(merged) == 2
  650. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  651. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  652. added_vocab = tokenizer.special_tokens
  653. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  654. for i in range(vocab_size):
  655. if i not in reverse_vocab:
  656. tokens.append(f"[PAD{i}]")
  657. toktypes.append(gguf.TokenType.UNUSED)
  658. elif reverse_vocab[i] in added_vocab:
  659. tokens.append(reverse_vocab[i])
  660. toktypes.append(gguf.TokenType.CONTROL)
  661. else:
  662. tokens.append(reverse_vocab[i])
  663. toktypes.append(gguf.TokenType.NORMAL)
  664. self.gguf_writer.add_tokenizer_model("gpt2")
  665. self.gguf_writer.add_tokenizer_pre(tokpre)
  666. self.gguf_writer.add_token_list(tokens)
  667. self.gguf_writer.add_token_types(toktypes)
  668. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  669. special_vocab.merges = merges
  670. # only add special tokens when they were not already loaded from config.json
  671. if len(special_vocab.special_token_ids) == 0:
  672. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  673. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  674. # this one is usually not in config.json anyway
  675. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  676. special_vocab.add_to_gguf(self.gguf_writer)
  677. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  678. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  679. self.gguf_writer.add_tokenizer_model("llama")
  680. self.gguf_writer.add_tokenizer_pre("default")
  681. self.gguf_writer.add_token_list(tokens)
  682. self.gguf_writer.add_token_scores(scores)
  683. self.gguf_writer.add_token_types(toktypes)
  684. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  685. special_vocab.add_to_gguf(self.gguf_writer)
  686. def _create_vocab_sentencepiece(self):
  687. from sentencepiece import SentencePieceProcessor
  688. tokenizer_path = self.dir_model / 'tokenizer.model'
  689. if not tokenizer_path.is_file():
  690. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  691. tokenizer = SentencePieceProcessor()
  692. tokenizer.LoadFromFile(str(tokenizer_path))
  693. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  694. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  695. scores: list[float] = [-10000.0] * vocab_size
  696. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  697. for token_id in range(tokenizer.vocab_size()):
  698. piece = tokenizer.IdToPiece(token_id)
  699. text = piece.encode("utf-8")
  700. score = tokenizer.GetScore(token_id)
  701. toktype = SentencePieceTokenTypes.NORMAL
  702. if tokenizer.IsUnknown(token_id):
  703. toktype = SentencePieceTokenTypes.UNKNOWN
  704. elif tokenizer.IsControl(token_id):
  705. toktype = SentencePieceTokenTypes.CONTROL
  706. elif tokenizer.IsUnused(token_id):
  707. toktype = SentencePieceTokenTypes.UNUSED
  708. elif tokenizer.IsByte(token_id):
  709. toktype = SentencePieceTokenTypes.BYTE
  710. tokens[token_id] = text
  711. scores[token_id] = score
  712. toktypes[token_id] = toktype
  713. added_tokens_file = self.dir_model / 'added_tokens.json'
  714. if added_tokens_file.is_file():
  715. with open(added_tokens_file, "r", encoding="utf-8") as f:
  716. added_tokens_json = json.load(f)
  717. for key in added_tokens_json:
  718. token_id = added_tokens_json[key]
  719. if token_id >= vocab_size:
  720. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  721. continue
  722. tokens[token_id] = key.encode("utf-8")
  723. scores[token_id] = -1000.0
  724. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  725. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  726. if tokenizer_config_file.is_file():
  727. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  728. tokenizer_config_json = json.load(f)
  729. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  730. for token_id, token_data in added_tokens_decoder.items():
  731. token_id = int(token_id)
  732. token: str = token_data["content"]
  733. if token_id >= vocab_size:
  734. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  735. continue
  736. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  737. if tokens[token_id] != token.encode("utf-8"):
  738. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  739. if token_data.get("special") or self.does_token_look_special(token):
  740. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  741. else:
  742. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  743. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  744. scores[token_id] = -1000.0
  745. tokens[token_id] = token.encode("utf-8")
  746. if vocab_size > len(tokens):
  747. pad_count = vocab_size - len(tokens)
  748. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  749. for i in range(1, pad_count + 1):
  750. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  751. scores.append(-1000.0)
  752. toktypes.append(SentencePieceTokenTypes.UNUSED)
  753. return tokens, scores, toktypes
  754. def _set_vocab_llama_hf(self):
  755. vocab = gguf.LlamaHfVocab(self.dir_model)
  756. tokens = []
  757. scores = []
  758. toktypes = []
  759. for text, score, toktype in vocab.all_tokens():
  760. tokens.append(text)
  761. scores.append(score)
  762. toktypes.append(toktype)
  763. assert len(tokens) == vocab.vocab_size
  764. self.gguf_writer.add_tokenizer_model("llama")
  765. self.gguf_writer.add_tokenizer_pre("default")
  766. self.gguf_writer.add_token_list(tokens)
  767. self.gguf_writer.add_token_scores(scores)
  768. self.gguf_writer.add_token_types(toktypes)
  769. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  770. special_vocab.add_to_gguf(self.gguf_writer)
  771. def _set_vocab_rwkv_world(self):
  772. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  773. vocab_size = self.hparams.get("vocab_size", 65536)
  774. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  775. toktypes: list[int] = [gguf.TokenType.CONTROL]
  776. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  777. lines = f.readlines()
  778. for line in lines:
  779. parts = line.split(' ')
  780. assert len(parts) >= 3
  781. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  782. token = token.encode("utf-8") if isinstance(token, str) else token
  783. assert isinstance(token, bytes)
  784. assert len(token) == token_len
  785. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  786. tokens.append(token_text.encode("utf-8"))
  787. toktypes.append(gguf.TokenType.NORMAL)
  788. remainder = vocab_size - len(tokens)
  789. assert remainder >= 0
  790. for i in range(len(tokens), vocab_size):
  791. tokens.append(f"[PAD{i}]".encode("utf-8"))
  792. toktypes.append(gguf.TokenType.UNUSED)
  793. self.gguf_writer.add_tokenizer_model("rwkv")
  794. self.gguf_writer.add_token_list(tokens)
  795. self.gguf_writer.add_token_types(toktypes)
  796. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  797. special_vocab.chat_template = "rwkv-world"
  798. # hack: Add '\n\n' as the EOT token to make it chat normally
  799. special_vocab._set_special_token("eot", 261)
  800. special_vocab.add_to_gguf(self.gguf_writer)
  801. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  802. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  803. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  804. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  805. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  806. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  807. assert field # tokenizer model
  808. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  809. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  810. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  811. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  812. assert field # token list
  813. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  814. if model_name == "llama-spm":
  815. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  816. assert field # token scores
  817. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  818. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  819. assert field # token types
  820. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  821. if model_name != "llama-spm":
  822. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  823. assert field # token merges
  824. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  825. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  826. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  827. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  828. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  829. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  830. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  831. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  832. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  833. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  834. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  835. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  836. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  837. @Model.register("GPTNeoXForCausalLM")
  838. class GPTNeoXModel(Model):
  839. model_arch = gguf.MODEL_ARCH.GPTNEOX
  840. def set_gguf_parameters(self):
  841. block_count = self.hparams["num_hidden_layers"]
  842. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  843. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  844. self.gguf_writer.add_block_count(block_count)
  845. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  846. self.gguf_writer.add_rope_dimension_count(
  847. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  848. )
  849. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  850. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  851. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  853. del bid # unused
  854. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  855. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  856. tensors: list[tuple[str, Tensor]] = []
  857. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  858. # Map bloom-style qkv_linear to gpt-style qkv_linear
  859. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  860. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  861. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  862. data_torch = torch.cat(
  863. (
  864. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  865. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  866. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  867. ),
  868. dim=0,
  869. )
  870. logger.info("re-format attention.linear_qkv.weight")
  871. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  872. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  873. data_torch = torch.cat(
  874. (
  875. qkv_bias[:, 0, :].reshape((n_embed,)),
  876. qkv_bias[:, 1, :].reshape((n_embed,)),
  877. qkv_bias[:, 2, :].reshape((n_embed,)),
  878. ),
  879. dim=0,
  880. )
  881. logger.info("re-format attention.linear_qkv.bias")
  882. tensors.append((self.map_tensor_name(name), data_torch))
  883. return tensors
  884. @Model.register("BloomForCausalLM", "BloomModel")
  885. class BloomModel(Model):
  886. model_arch = gguf.MODEL_ARCH.BLOOM
  887. def set_gguf_parameters(self):
  888. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  889. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  890. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  891. self.gguf_writer.add_embedding_length(n_embed)
  892. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  893. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  894. self.gguf_writer.add_head_count(n_head)
  895. self.gguf_writer.add_head_count_kv(n_head)
  896. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  897. self.gguf_writer.add_file_type(self.ftype)
  898. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  899. del bid # unused
  900. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  901. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  902. name = re.sub(r'transformer\.', '', name)
  903. tensors: list[tuple[str, Tensor]] = []
  904. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  905. # Map bloom-style qkv_linear to gpt-style qkv_linear
  906. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  907. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  908. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  909. data_torch = torch.cat(
  910. (
  911. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  912. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  913. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  914. ),
  915. dim=0,
  916. )
  917. logger.info("re-format attention.linear_qkv.weight")
  918. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  919. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  920. data_torch = torch.cat(
  921. (
  922. qkv_bias[:, 0, :].reshape((n_embed,)),
  923. qkv_bias[:, 1, :].reshape((n_embed,)),
  924. qkv_bias[:, 2, :].reshape((n_embed,)),
  925. ),
  926. dim=0,
  927. )
  928. logger.info("re-format attention.linear_qkv.bias")
  929. tensors.append((self.map_tensor_name(name), data_torch))
  930. return tensors
  931. @Model.register("MPTForCausalLM")
  932. class MPTModel(Model):
  933. model_arch = gguf.MODEL_ARCH.MPT
  934. def set_vocab(self):
  935. try:
  936. self._set_vocab_gpt2()
  937. except Exception:
  938. # Fallback for SEA-LION model
  939. self._set_vocab_sentencepiece()
  940. self.gguf_writer.add_add_bos_token(False)
  941. self.gguf_writer.add_pad_token_id(3)
  942. self.gguf_writer.add_eos_token_id(1)
  943. self.gguf_writer.add_unk_token_id(0)
  944. def set_gguf_parameters(self):
  945. block_count = self.hparams["n_layers"]
  946. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  947. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  948. self.gguf_writer.add_block_count(block_count)
  949. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  950. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  951. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  952. self.gguf_writer.add_head_count_kv(kv_n_heads)
  953. self.gguf_writer.add_layer_norm_eps(1e-5)
  954. if self.hparams["attn_config"]["clip_qkv"] is not None:
  955. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  956. if self.hparams["attn_config"]["alibi"]:
  957. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  958. else:
  959. self.gguf_writer.add_max_alibi_bias(0.0)
  960. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  961. del bid # unused
  962. if "scales" in name:
  963. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  964. new_name = new_name.replace("scales", "act.scales")
  965. else:
  966. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  967. return [(new_name, data_torch)]
  968. @Model.register("OrionForCausalLM")
  969. class OrionModel(Model):
  970. model_arch = gguf.MODEL_ARCH.ORION
  971. def set_vocab(self):
  972. self._set_vocab_sentencepiece()
  973. def set_gguf_parameters(self):
  974. block_count = self.hparams["num_hidden_layers"]
  975. head_count = self.hparams["num_attention_heads"]
  976. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  977. ctx_length = 0
  978. if "max_sequence_length" in self.hparams:
  979. ctx_length = self.hparams["max_sequence_length"]
  980. elif "max_position_embeddings" in self.hparams:
  981. ctx_length = self.hparams["max_position_embeddings"]
  982. elif "model_max_length" in self.hparams:
  983. ctx_length = self.hparams["model_max_length"]
  984. else:
  985. raise ValueError("gguf: can not find ctx length parameter.")
  986. self.gguf_writer.add_file_type(self.ftype)
  987. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  988. self.gguf_writer.add_context_length(ctx_length)
  989. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  990. self.gguf_writer.add_block_count(block_count)
  991. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  992. self.gguf_writer.add_head_count(head_count)
  993. self.gguf_writer.add_head_count_kv(head_count_kv)
  994. # note: config provides rms norm but it is actually layer norm
  995. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  996. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  997. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  998. class BaichuanModel(Model):
  999. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1000. def set_vocab(self):
  1001. self._set_vocab_sentencepiece()
  1002. def set_gguf_parameters(self):
  1003. block_count = self.hparams["num_hidden_layers"]
  1004. head_count = self.hparams["num_attention_heads"]
  1005. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1006. ctx_length = 0
  1007. if "max_sequence_length" in self.hparams:
  1008. ctx_length = self.hparams["max_sequence_length"]
  1009. elif "max_position_embeddings" in self.hparams:
  1010. ctx_length = self.hparams["max_position_embeddings"]
  1011. elif "model_max_length" in self.hparams:
  1012. ctx_length = self.hparams["model_max_length"]
  1013. else:
  1014. raise ValueError("gguf: can not find ctx length parameter.")
  1015. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1016. self.gguf_writer.add_context_length(ctx_length)
  1017. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1018. self.gguf_writer.add_block_count(block_count)
  1019. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1020. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1021. self.gguf_writer.add_head_count(head_count)
  1022. self.gguf_writer.add_head_count_kv(head_count_kv)
  1023. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1024. self.gguf_writer.add_file_type(self.ftype)
  1025. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1026. if self.hparams["rope_scaling"].get("type") == "linear":
  1027. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1028. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1029. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1030. head_count = self.hparams["num_attention_heads"]
  1031. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1032. tensors: list[tuple[str, Tensor]] = []
  1033. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1034. logger.info(f"Unpacking and permuting layer {bid}")
  1035. tensors = [
  1036. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1037. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1038. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1039. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1040. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1041. self._reverse_hf_part(data_torch, 2)),
  1042. ]
  1043. else:
  1044. tensors = [(self.map_tensor_name(name), data_torch)]
  1045. return tensors
  1046. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1047. if n_kv_head is not None and n_head != n_kv_head:
  1048. n_head //= n_kv_head
  1049. return (
  1050. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1051. .swapaxes(1, 2)
  1052. .reshape(weights.shape)
  1053. )
  1054. def _reverse_hf_permute_part(
  1055. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1056. ) -> Tensor:
  1057. r = weights.shape[0] // 3
  1058. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1059. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1060. r = weights.shape[0] // 3
  1061. return weights[r * n_part:r * n_part + r, ...]
  1062. @Model.register("XverseForCausalLM")
  1063. class XverseModel(Model):
  1064. model_arch = gguf.MODEL_ARCH.XVERSE
  1065. def set_vocab(self):
  1066. assert (self.dir_model / "tokenizer.json").is_file()
  1067. dir_model = self.dir_model
  1068. hparams = self.hparams
  1069. tokens: list[bytes] = []
  1070. toktypes: list[int] = []
  1071. from transformers import AutoTokenizer
  1072. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1073. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1074. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1075. # because vocab_size is the count of items, and indexes start at 0.
  1076. max_vocab_index = max(tokenizer.get_vocab().values())
  1077. if max_vocab_index >= vocab_size:
  1078. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1079. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1080. added_vocab = tokenizer.get_added_vocab()
  1081. for token_id in range(vocab_size):
  1082. token_text = reverse_vocab[token_id].encode('utf-8')
  1083. # replace "\x00" to string with length > 0
  1084. if token_text == b"\x00":
  1085. toktype = gguf.TokenType.BYTE # special
  1086. token_text = f"<{token_text}>".encode('utf-8')
  1087. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1088. toktype = gguf.TokenType.BYTE # special
  1089. elif reverse_vocab[token_id] in added_vocab:
  1090. if tokenizer.added_tokens_decoder[token_id].special:
  1091. toktype = gguf.TokenType.CONTROL
  1092. else:
  1093. toktype = gguf.TokenType.USER_DEFINED
  1094. else:
  1095. toktype = gguf.TokenType.NORMAL
  1096. tokens.append(token_text)
  1097. toktypes.append(toktype)
  1098. self.gguf_writer.add_tokenizer_model("llama")
  1099. self.gguf_writer.add_tokenizer_pre("default")
  1100. self.gguf_writer.add_token_list(tokens)
  1101. self.gguf_writer.add_token_types(toktypes)
  1102. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1103. special_vocab.add_to_gguf(self.gguf_writer)
  1104. def set_gguf_parameters(self):
  1105. block_count = self.hparams["num_hidden_layers"]
  1106. head_count = self.hparams["num_attention_heads"]
  1107. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1108. ctx_length = 0
  1109. if "max_sequence_length" in self.hparams:
  1110. ctx_length = self.hparams["max_sequence_length"]
  1111. elif "max_position_embeddings" in self.hparams:
  1112. ctx_length = self.hparams["max_position_embeddings"]
  1113. elif "model_max_length" in self.hparams:
  1114. ctx_length = self.hparams["model_max_length"]
  1115. else:
  1116. raise ValueError("gguf: can not find ctx length parameter.")
  1117. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1118. self.gguf_writer.add_context_length(ctx_length)
  1119. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1120. self.gguf_writer.add_block_count(block_count)
  1121. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1122. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1123. self.gguf_writer.add_head_count(head_count)
  1124. self.gguf_writer.add_head_count_kv(head_count_kv)
  1125. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1126. self.gguf_writer.add_file_type(self.ftype)
  1127. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1128. if self.hparams["rope_scaling"].get("type") == "linear":
  1129. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1130. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1131. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1132. del bid # unused
  1133. head_count = self.hparams["num_attention_heads"]
  1134. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1135. # HF models permute some of the tensors, so we need to undo that
  1136. if name.endswith("q_proj.weight"):
  1137. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1138. if name.endswith("k_proj.weight"):
  1139. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1140. return [(self.map_tensor_name(name), data_torch)]
  1141. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1142. if n_kv_head is not None and n_head != n_kv_head:
  1143. n_head //= n_kv_head
  1144. return (
  1145. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1146. .swapaxes(1, 2)
  1147. .reshape(weights.shape)
  1148. )
  1149. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1150. class FalconModel(Model):
  1151. model_arch = gguf.MODEL_ARCH.FALCON
  1152. def set_gguf_parameters(self):
  1153. block_count = self.hparams.get("num_hidden_layers")
  1154. if block_count is None:
  1155. block_count = self.hparams["n_layer"] # old name
  1156. n_head = self.hparams.get("num_attention_heads")
  1157. if n_head is None:
  1158. n_head = self.hparams["n_head"] # old name
  1159. n_head_kv = self.hparams.get("num_kv_heads")
  1160. if n_head_kv is None:
  1161. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1162. self.gguf_writer.add_context_length(2048) # not in config.json
  1163. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1164. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1165. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1166. self.gguf_writer.add_block_count(block_count)
  1167. self.gguf_writer.add_head_count(n_head)
  1168. self.gguf_writer.add_head_count_kv(n_head_kv)
  1169. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1170. self.gguf_writer.add_file_type(self.ftype)
  1171. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1172. del bid # unused
  1173. # QKV tensor transform
  1174. # The original query_key_value tensor contains n_head_kv "kv groups",
  1175. # each consisting of n_head/n_head_kv query weights followed by one key
  1176. # and one value weight (shared by all query heads in the kv group).
  1177. # This layout makes it a big pain to work with in GGML.
  1178. # So we rearrange them here,, so that we have n_head query weights
  1179. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1180. # in contiguous fashion.
  1181. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1182. if "query_key_value" in name:
  1183. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1184. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1185. head_dim = self.hparams["hidden_size"] // n_head
  1186. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1187. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1188. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1189. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1190. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1191. return [(self.map_tensor_name(name), data_torch)]
  1192. @Model.register("GPTBigCodeForCausalLM")
  1193. class StarCoderModel(Model):
  1194. model_arch = gguf.MODEL_ARCH.STARCODER
  1195. def set_gguf_parameters(self):
  1196. block_count = self.hparams["n_layer"]
  1197. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1198. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1199. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1200. self.gguf_writer.add_block_count(block_count)
  1201. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1202. self.gguf_writer.add_head_count_kv(1)
  1203. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1204. self.gguf_writer.add_file_type(self.ftype)
  1205. @Model.register("GPTRefactForCausalLM")
  1206. class RefactModel(Model):
  1207. model_arch = gguf.MODEL_ARCH.REFACT
  1208. def set_vocab(self):
  1209. super().set_vocab()
  1210. # TODO: how to determine special FIM tokens automatically?
  1211. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1212. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1213. special_vocab._set_special_token("prefix", 1)
  1214. special_vocab._set_special_token("suffix", 3)
  1215. special_vocab._set_special_token("middle", 2)
  1216. special_vocab.chat_template = None # do not add it twice
  1217. special_vocab.add_to_gguf(self.gguf_writer)
  1218. def set_gguf_parameters(self):
  1219. hidden_dim = self.hparams["n_embd"]
  1220. inner_dim = 4 * hidden_dim
  1221. hidden_dim = int(2 * inner_dim / 3)
  1222. multiple_of = 256
  1223. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1224. block_count = self.hparams["n_layer"]
  1225. # refact uses Alibi. So this is from config.json which might be used by training.
  1226. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1227. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1228. self.gguf_writer.add_feed_forward_length(ff_dim)
  1229. self.gguf_writer.add_block_count(block_count)
  1230. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1231. self.gguf_writer.add_head_count_kv(1)
  1232. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1233. self.gguf_writer.add_file_type(self.ftype)
  1234. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1235. hidden_dim = self.hparams["n_embd"]
  1236. inner_dim = 4 * hidden_dim
  1237. hidden_dim = int(2 * inner_dim / 3)
  1238. multiple_of = 256
  1239. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1240. n_head = self.hparams["n_head"]
  1241. n_head_kv = 1
  1242. head_dim = self.hparams["n_embd"] // n_head
  1243. tensors: list[tuple[str, Tensor]] = []
  1244. if bid is not None:
  1245. if name == f"transformer.h.{bid}.attn.kv.weight":
  1246. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1247. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1248. elif name == f"transformer.h.{bid}.attn.q.weight":
  1249. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1250. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1251. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1252. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1253. if len(tensors) == 0:
  1254. tensors.append((self.map_tensor_name(name), data_torch))
  1255. return tensors
  1256. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1257. class StableLMModel(Model):
  1258. model_arch = gguf.MODEL_ARCH.STABLELM
  1259. def set_vocab(self):
  1260. if (self.dir_model / "tokenizer.json").is_file():
  1261. self._set_vocab_gpt2()
  1262. else:
  1263. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1264. self._set_vocab_qwen()
  1265. def set_gguf_parameters(self):
  1266. hparams = self.hparams
  1267. block_count = hparams["num_hidden_layers"]
  1268. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1269. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1270. self.gguf_writer.add_block_count(block_count)
  1271. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1272. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1273. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1274. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1275. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1276. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1277. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1278. self.gguf_writer.add_file_type(self.ftype)
  1279. _q_norms: list[dict[str, Tensor]] | None = None
  1280. _k_norms: list[dict[str, Tensor]] | None = None
  1281. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1282. n_head = self.hparams["num_attention_heads"]
  1283. n_kv_head = self.hparams["num_key_value_heads"]
  1284. if name.find("q_layernorm.norms") != -1:
  1285. assert bid is not None
  1286. if self._q_norms is None:
  1287. self._q_norms = [{} for _ in range(self.block_count)]
  1288. self._q_norms[bid][name] = data_torch
  1289. if len(self._q_norms[bid]) >= n_head:
  1290. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1291. else:
  1292. return []
  1293. if name.find("k_layernorm.norms") != -1:
  1294. assert bid is not None
  1295. if self._k_norms is None:
  1296. self._k_norms = [{} for _ in range(self.block_count)]
  1297. self._k_norms[bid][name] = data_torch
  1298. if len(self._k_norms[bid]) >= n_kv_head:
  1299. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1300. else:
  1301. return []
  1302. return [(self.map_tensor_name(name), data_torch)]
  1303. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1304. datas: list[Tensor] = []
  1305. # extract the norms in order
  1306. for xid in range(n_head):
  1307. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1308. datas.append(norms[ename])
  1309. del norms[ename]
  1310. data_torch = torch.stack(datas, dim=0)
  1311. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1312. new_name = self.map_tensor_name(merged_name)
  1313. return [(new_name, data_torch)]
  1314. def prepare_tensors(self):
  1315. super().prepare_tensors()
  1316. if self._q_norms is not None or self._k_norms is not None:
  1317. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1318. norms = (
  1319. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1320. ) + (
  1321. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1322. )
  1323. if len(norms) > 0:
  1324. raise ValueError(f"Unprocessed norms: {norms}")
  1325. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1326. class LlamaModel(Model):
  1327. model_arch = gguf.MODEL_ARCH.LLAMA
  1328. def set_vocab(self):
  1329. try:
  1330. self._set_vocab_sentencepiece()
  1331. except FileNotFoundError:
  1332. try:
  1333. self._set_vocab_llama_hf()
  1334. except (FileNotFoundError, TypeError):
  1335. # Llama 3
  1336. self._set_vocab_gpt2()
  1337. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1338. if self.hparams.get("vocab_size", 32000) == 32016:
  1339. special_vocab = gguf.SpecialVocab(
  1340. self.dir_model, load_merges=False,
  1341. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1342. )
  1343. special_vocab._set_special_token("prefix", 32007)
  1344. special_vocab._set_special_token("suffix", 32008)
  1345. special_vocab._set_special_token("middle", 32009)
  1346. special_vocab._set_special_token("eot", 32010)
  1347. special_vocab.add_to_gguf(self.gguf_writer)
  1348. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1349. if tokenizer_config_file.is_file():
  1350. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1351. tokenizer_config_json = json.load(f)
  1352. if "add_prefix_space" in tokenizer_config_json:
  1353. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1354. # Apply to granite small models only
  1355. if self.hparams.get("vocab_size", 32000) == 49152:
  1356. self.gguf_writer.add_add_bos_token(False)
  1357. def set_gguf_parameters(self):
  1358. super().set_gguf_parameters()
  1359. hparams = self.hparams
  1360. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1361. if "head_dim" in hparams:
  1362. rope_dim = hparams["head_dim"]
  1363. else:
  1364. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1365. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1366. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1367. if self.hparams["rope_scaling"].get("type") == "linear":
  1368. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1369. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1370. @staticmethod
  1371. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1372. if n_head_kv is not None and n_head != n_head_kv:
  1373. n_head = n_head_kv
  1374. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1375. .swapaxes(1, 2)
  1376. .reshape(weights.shape))
  1377. _experts: list[dict[str, Tensor]] | None = None
  1378. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1379. n_head = self.hparams["num_attention_heads"]
  1380. n_kv_head = self.hparams.get("num_key_value_heads")
  1381. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1382. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1383. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1384. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1385. # process the experts separately
  1386. if name.find("block_sparse_moe.experts") != -1:
  1387. n_experts = self.hparams["num_local_experts"]
  1388. assert bid is not None
  1389. if self._experts is None:
  1390. self._experts = [{} for _ in range(self.block_count)]
  1391. self._experts[bid][name] = data_torch
  1392. if len(self._experts[bid]) >= n_experts * 3:
  1393. tensors: list[tuple[str, Tensor]] = []
  1394. # merge the experts into a single 3d tensor
  1395. for wid in ["w1", "w2", "w3"]:
  1396. datas: list[Tensor] = []
  1397. for xid in range(n_experts):
  1398. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1399. datas.append(self._experts[bid][ename])
  1400. del self._experts[bid][ename]
  1401. data_torch = torch.stack(datas, dim=0)
  1402. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1403. new_name = self.map_tensor_name(merged_name)
  1404. tensors.append((new_name, data_torch))
  1405. return tensors
  1406. else:
  1407. return []
  1408. return [(self.map_tensor_name(name), data_torch)]
  1409. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1410. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1411. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1412. base = self.hparams.get("rope_theta", 10000.0)
  1413. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1414. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1415. factor = rope_scaling.get("factor", 8.0)
  1416. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1417. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1418. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1419. low_freq_wavelen = old_context_len / low_freq_factor
  1420. high_freq_wavelen = old_context_len / high_freq_factor
  1421. assert low_freq_wavelen != high_freq_wavelen
  1422. rope_factors = []
  1423. for freq in freqs:
  1424. wavelen = 2 * math.pi / freq
  1425. if wavelen < high_freq_wavelen:
  1426. rope_factors.append(1)
  1427. elif wavelen > low_freq_wavelen:
  1428. rope_factors.append(factor)
  1429. else:
  1430. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1431. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1432. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1433. def prepare_tensors(self):
  1434. super().prepare_tensors()
  1435. if self._experts is not None:
  1436. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1437. experts = [k for d in self._experts for k in d.keys()]
  1438. if len(experts) > 0:
  1439. raise ValueError(f"Unprocessed experts: {experts}")
  1440. @Model.register("Mistral3ForConditionalGeneration")
  1441. class Mistral3Model(LlamaModel):
  1442. model_arch = gguf.MODEL_ARCH.LLAMA
  1443. # we need to merge the text_config into the root level of hparams
  1444. def __init__(self, *args, **kwargs):
  1445. hparams = Model.load_hparams(kwargs["dir_model"])
  1446. if "text_config" in hparams:
  1447. hparams = {**hparams, **hparams["text_config"]}
  1448. kwargs["hparams"] = hparams
  1449. super().__init__(*args, **kwargs)
  1450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1451. name = name.replace("language_model.", "")
  1452. if "multi_modal_projector" in name or "vision_tower" in name:
  1453. return []
  1454. return super().modify_tensors(data_torch, name, bid)
  1455. @Model.register("DeciLMForCausalLM")
  1456. class DeciModel(Model):
  1457. model_arch = gguf.MODEL_ARCH.DECI
  1458. @staticmethod
  1459. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1460. # DeciLM-specific code
  1461. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1462. return DeciModel._find_multiple(intermediate_size, 256)
  1463. @staticmethod
  1464. def _find_multiple(n: int, k: int) -> int:
  1465. # DeciLM-specific code
  1466. if n % k == 0:
  1467. return n
  1468. return n + k - (n % k)
  1469. def __init__(self, *args, **kwargs):
  1470. super().__init__(*args, **kwargs)
  1471. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1472. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1473. assert self.block_count == len(_block_configs)
  1474. self._num_kv_heads = list()
  1475. self._num_heads = list()
  1476. _ffn_multipliers = list()
  1477. # ***linear attention layer***
  1478. # if n_heads_in_group is None and replace_with_linear is True
  1479. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1480. # ***attention-free layer***
  1481. # if n_heads_in_group is None and replace_with_linear is False
  1482. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1483. # ***normal attention-layer***
  1484. # if n_heads_in_group is not None, then
  1485. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1486. # _num_heads[il] is num_attention_head
  1487. for il in range(len(_block_configs)):
  1488. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1489. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1490. self._num_kv_heads.append(0)
  1491. self._num_heads.append(self.hparams["num_attention_heads"])
  1492. else:
  1493. self._num_kv_heads.append(0)
  1494. self._num_heads.append(0)
  1495. else:
  1496. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1497. self._num_heads.append(self.hparams["num_attention_heads"])
  1498. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1499. assert self.block_count == len(self._num_kv_heads)
  1500. assert self.block_count == len(self._num_heads)
  1501. assert self.block_count == len(_ffn_multipliers)
  1502. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1503. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1504. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1505. self._ffn_dims: list[int] = [
  1506. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1507. for multiplier in _ffn_multipliers
  1508. ]
  1509. def set_vocab(self):
  1510. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1511. # eos_token from '|eot_id|' to '|end_of_text|'
  1512. if self.hparams.get("vocab_size", 128256) == 128256:
  1513. tokens, toktypes, tokpre = self.get_vocab_base()
  1514. self.gguf_writer.add_tokenizer_model("gpt2")
  1515. self.gguf_writer.add_tokenizer_pre(tokpre)
  1516. self.gguf_writer.add_token_list(tokens)
  1517. self.gguf_writer.add_token_types(toktypes)
  1518. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1519. special_vocab.add_to_gguf(self.gguf_writer)
  1520. else:
  1521. # DeciLM-7B
  1522. self._set_vocab_llama_hf()
  1523. def set_gguf_parameters(self):
  1524. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1525. assert self.block_count == len(self._num_kv_heads)
  1526. assert self.block_count == len(self._num_heads)
  1527. assert self.block_count == len(self._ffn_dims)
  1528. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1529. self.gguf_writer.add_rope_freq_base(rope_theta)
  1530. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1531. self.gguf_writer.add_head_count(self._num_heads)
  1532. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1533. self.gguf_writer.add_block_count(self.block_count)
  1534. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1535. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1536. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1537. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1538. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1539. self.gguf_writer.add_file_type(self.ftype)
  1540. else: # DeciLM-7B
  1541. super().set_gguf_parameters()
  1542. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1543. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1544. assert self.block_count == len(self._num_kv_heads)
  1545. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1546. hparams = self.hparams
  1547. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1548. if "head_dim" in hparams:
  1549. rope_dim = hparams["head_dim"]
  1550. else:
  1551. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1552. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1553. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1554. if self.hparams["rope_scaling"].get("type") == "linear":
  1555. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1556. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1557. @staticmethod
  1558. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1559. if n_head_kv is not None and n_head != n_head_kv:
  1560. n_head = n_head_kv
  1561. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1562. .swapaxes(1, 2)
  1563. .reshape(weights.shape))
  1564. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1565. n_head = self.hparams["num_attention_heads"]
  1566. if bid is not None:
  1567. if "num_key_value_heads_per_layer" in self.hparams:
  1568. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1569. elif "block_configs" in self.hparams:
  1570. n_kv_head = self._num_kv_heads[bid]
  1571. n_head = self._num_heads[bid]
  1572. else:
  1573. n_kv_head = self.hparams.get("num_key_value_heads")
  1574. else:
  1575. n_kv_head = self.hparams.get("num_key_value_heads")
  1576. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1577. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1578. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1579. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1580. return [(self.map_tensor_name(name), data_torch)]
  1581. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1582. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1583. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1584. base = self.hparams.get("rope_theta", 10000.0)
  1585. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1586. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1587. factor = rope_scaling.get("factor", 8.0)
  1588. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1589. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1590. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1591. low_freq_wavelen = old_context_len / low_freq_factor
  1592. high_freq_wavelen = old_context_len / high_freq_factor
  1593. assert low_freq_wavelen != high_freq_wavelen
  1594. rope_factors = []
  1595. for freq in freqs:
  1596. wavelen = 2 * math.pi / freq
  1597. if wavelen < high_freq_wavelen:
  1598. rope_factors.append(1)
  1599. elif wavelen > low_freq_wavelen:
  1600. rope_factors.append(factor)
  1601. else:
  1602. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1603. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1604. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1605. def prepare_tensors(self):
  1606. super().prepare_tensors()
  1607. @Model.register("BitnetForCausalLM")
  1608. class BitnetModel(Model):
  1609. model_arch = gguf.MODEL_ARCH.BITNET
  1610. def set_vocab(self):
  1611. self._set_vocab_sentencepiece()
  1612. def set_gguf_parameters(self):
  1613. super().set_gguf_parameters()
  1614. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1615. self.gguf_writer.add_rope_scaling_factor(1.0)
  1616. def weight_quant(self, weight: Tensor) -> Tensor:
  1617. dtype = weight.dtype
  1618. weight = weight.float()
  1619. scale = weight.abs().mean().clamp(min=1e-5)
  1620. iscale = 1 / scale
  1621. # TODO: multiply by the scale directly instead of inverting it twice
  1622. # (this is also unnecessarily doubly inverted upstream)
  1623. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1624. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1625. return result.type(dtype)
  1626. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1627. new_name = self.map_tensor_name(name)
  1628. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1629. gguf.MODEL_TENSOR.ATTN_Q,
  1630. gguf.MODEL_TENSOR.ATTN_K,
  1631. gguf.MODEL_TENSOR.ATTN_V,
  1632. gguf.MODEL_TENSOR.ATTN_OUT,
  1633. gguf.MODEL_TENSOR.FFN_UP,
  1634. gguf.MODEL_TENSOR.FFN_DOWN,
  1635. gguf.MODEL_TENSOR.FFN_GATE,
  1636. ]):
  1637. # transform weight into 1/0/-1 (in fp32)
  1638. data_torch = self.weight_quant(data_torch)
  1639. yield (new_name, data_torch)
  1640. @Model.register("GrokForCausalLM")
  1641. class GrokModel(Model):
  1642. model_arch = gguf.MODEL_ARCH.GROK
  1643. def set_vocab(self):
  1644. self._set_vocab_sentencepiece()
  1645. def __init__(self, *args, **kwargs):
  1646. super().__init__(*args, **kwargs)
  1647. def set_gguf_parameters(self):
  1648. super().set_gguf_parameters()
  1649. _experts: list[dict[str, Tensor]] | None = None
  1650. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1651. # process the experts separately
  1652. if name.find(".moe.") != -1:
  1653. n_experts = self.hparams["num_local_experts"]
  1654. assert bid is not None
  1655. if self._experts is None:
  1656. self._experts = [{} for _ in range(self.block_count)]
  1657. self._experts[bid][name] = data_torch
  1658. if len(self._experts[bid]) >= n_experts * 3:
  1659. tensors: list[tuple[str, Tensor]] = []
  1660. # merge the experts into a single 3d tensor
  1661. for wid in ["linear", "linear_1", "linear_v"]:
  1662. datas: list[Tensor] = []
  1663. for xid in range(n_experts):
  1664. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1665. datas.append(self._experts[bid][ename])
  1666. del self._experts[bid][ename]
  1667. data_torch = torch.stack(datas, dim=0)
  1668. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1669. new_name = self.map_tensor_name(merged_name)
  1670. tensors.append((new_name, data_torch))
  1671. return tensors
  1672. else:
  1673. return []
  1674. return [(self.map_tensor_name(name), data_torch)]
  1675. @Model.register("DbrxForCausalLM")
  1676. class DbrxModel(Model):
  1677. model_arch = gguf.MODEL_ARCH.DBRX
  1678. def set_gguf_parameters(self):
  1679. ffn_config = self.hparams["ffn_config"]
  1680. attn_config = self.hparams["attn_config"]
  1681. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1682. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1683. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1684. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1685. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1686. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1687. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1688. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1689. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1690. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1691. self.gguf_writer.add_layer_norm_eps(1e-5)
  1692. self.gguf_writer.add_file_type(self.ftype)
  1693. logger.info(f"gguf: file type = {self.ftype}")
  1694. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1695. del bid # unused
  1696. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1697. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1698. n_embd = self.hparams["d_model"]
  1699. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1700. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1701. # But llama.cpp moe graph works differently
  1702. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1703. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1704. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1705. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1706. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1707. experts = False
  1708. for exp_tensor_name in exp_tensor_names.keys():
  1709. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1710. experts = True
  1711. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1712. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1713. data_torch = data_torch.permute(*permute_tensor)
  1714. break
  1715. # map tensor names
  1716. # In MoE models the ffn tensors are typically most of the model weights,
  1717. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1718. # Every other model has the weight names ending in .weight,
  1719. # let's assume that is the convention which is not the case for dbrx:
  1720. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1721. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1722. return [(new_name, data_torch)]
  1723. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1724. del name, new_name, bid # unused
  1725. return n_dims > 1
  1726. @Model.register("MiniCPMForCausalLM")
  1727. class MiniCPMModel(Model):
  1728. model_arch = gguf.MODEL_ARCH.MINICPM
  1729. def set_gguf_parameters(self):
  1730. super().set_gguf_parameters()
  1731. embedding_scale = float(self.hparams["scale_emb"])
  1732. self.gguf_writer.add_embedding_scale(embedding_scale)
  1733. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1734. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1735. self.gguf_writer.add_residual_scale(residual_scale)
  1736. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1737. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1738. self.gguf_writer.add_logit_scale(logit_scale)
  1739. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1740. if self.hparams.get("rope_scaling") is not None:
  1741. if self.hparams["rope_scaling"].get("type") == "longrope":
  1742. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1743. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1744. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1745. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1746. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1747. if rope_scaling is not None:
  1748. long_factors = rope_scaling.get('long_factor', None)
  1749. short_factors = rope_scaling.get('short_factor', None)
  1750. if long_factors is None or short_factors is None:
  1751. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1752. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1753. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1754. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1755. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1756. def set_vocab(self):
  1757. self._set_vocab_sentencepiece()
  1758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1759. del bid # unused
  1760. n_head = self.hparams["num_attention_heads"]
  1761. n_kv_head = self.hparams.get("num_key_value_heads")
  1762. # HF models permute some of the tensors, so we need to undo that
  1763. if name.endswith(("q_proj.weight")):
  1764. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1765. if name.endswith(("k_proj.weight")):
  1766. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1767. return [(self.map_tensor_name(name), data_torch)]
  1768. @Model.register("MiniCPM3ForCausalLM")
  1769. class MiniCPM3Model(Model):
  1770. model_arch = gguf.MODEL_ARCH.MINICPM3
  1771. def set_gguf_parameters(self):
  1772. hparams = self.hparams
  1773. self.gguf_writer.add_file_type(self.ftype)
  1774. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1775. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1776. self.gguf_writer.add_block_count(self.block_count)
  1777. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1778. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1779. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1780. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1781. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1782. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1783. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1784. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1785. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1786. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1787. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1788. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1789. if rope_scaling is not None:
  1790. rope_dims = self.hparams["qk_rope_head_dim"]
  1791. long_factors = rope_scaling.get('long_factor', None)
  1792. short_factors = rope_scaling.get('short_factor', None)
  1793. if long_factors is None or short_factors is None:
  1794. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1795. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1796. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1797. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1798. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1799. def set_vocab(self):
  1800. self._set_vocab_sentencepiece()
  1801. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1802. if n_kv_head is not None and n_head != n_kv_head:
  1803. n_head //= n_kv_head
  1804. return (
  1805. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1806. .swapaxes(1, 2)
  1807. .reshape(weights.shape)
  1808. )
  1809. @Model.register("QWenLMHeadModel")
  1810. class QwenModel(Model):
  1811. model_arch = gguf.MODEL_ARCH.QWEN
  1812. @staticmethod
  1813. def token_bytes_to_string(b):
  1814. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1815. byte_encoder = bytes_to_unicode()
  1816. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1817. @staticmethod
  1818. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1819. parts = [bytes([b]) for b in token]
  1820. while True:
  1821. min_idx = None
  1822. min_rank = None
  1823. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1824. rank = mergeable_ranks.get(pair[0] + pair[1])
  1825. if rank is not None and (min_rank is None or rank < min_rank):
  1826. min_idx = i
  1827. min_rank = rank
  1828. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1829. break
  1830. assert min_idx is not None
  1831. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1832. return parts
  1833. def set_vocab(self):
  1834. self._set_vocab_qwen()
  1835. def set_gguf_parameters(self):
  1836. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1837. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1838. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1839. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1840. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1841. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1842. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1843. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1844. self.gguf_writer.add_file_type(self.ftype)
  1845. @Model.register("Qwen2ForCausalLM")
  1846. class Qwen2Model(Model):
  1847. model_arch = gguf.MODEL_ARCH.QWEN2
  1848. def set_vocab(self):
  1849. try:
  1850. self._set_vocab_sentencepiece()
  1851. except FileNotFoundError:
  1852. self._set_vocab_gpt2()
  1853. def set_gguf_parameters(self):
  1854. super().set_gguf_parameters()
  1855. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1856. if self.hparams["rope_scaling"].get("type") == "yarn":
  1857. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1858. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1859. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1860. @Model.register("Qwen2VLForConditionalGeneration")
  1861. class Qwen2VLModel(Model):
  1862. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1863. def set_gguf_parameters(self):
  1864. super().set_gguf_parameters()
  1865. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1866. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1867. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1868. def set_vocab(self):
  1869. try:
  1870. self._set_vocab_sentencepiece()
  1871. except FileNotFoundError:
  1872. self._set_vocab_gpt2()
  1873. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1874. for name, data in super().get_tensors():
  1875. if name.startswith("visual."):
  1876. continue
  1877. yield name, data
  1878. @Model.register("WavTokenizerDec")
  1879. class WavTokenizerDecModel(Model):
  1880. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1881. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1882. del bid # unused
  1883. if \
  1884. name.endswith("codebook.cluster_size") or \
  1885. name.endswith("codebook.embed_avg") or \
  1886. name.endswith("codebook.inited"):
  1887. logger.debug(f"Skipping {name!r}")
  1888. return []
  1889. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1890. return [(self.map_tensor_name(name), data_torch)]
  1891. def set_vocab(self):
  1892. self._set_vocab_none()
  1893. def set_gguf_parameters(self):
  1894. super().set_gguf_parameters()
  1895. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1896. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1897. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1898. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1899. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1900. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1901. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1902. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1903. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1904. self.gguf_writer.add_causal_attention(False)
  1905. @Model.register("Qwen2MoeForCausalLM")
  1906. class Qwen2MoeModel(Model):
  1907. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1908. def set_gguf_parameters(self):
  1909. super().set_gguf_parameters()
  1910. if (n_experts := self.hparams.get("num_experts")) is not None:
  1911. self.gguf_writer.add_expert_count(n_experts)
  1912. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1913. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1914. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1915. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1916. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1917. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1918. _experts: list[dict[str, Tensor]] | None = None
  1919. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1920. # process the experts separately
  1921. if name.find("experts") != -1:
  1922. n_experts = self.hparams["num_experts"]
  1923. assert bid is not None
  1924. if self._experts is None:
  1925. self._experts = [{} for _ in range(self.block_count)]
  1926. self._experts[bid][name] = data_torch
  1927. if len(self._experts[bid]) >= n_experts * 3:
  1928. tensors: list[tuple[str, Tensor]] = []
  1929. # merge the experts into a single 3d tensor
  1930. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1931. datas: list[Tensor] = []
  1932. for xid in range(n_experts):
  1933. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1934. datas.append(self._experts[bid][ename])
  1935. del self._experts[bid][ename]
  1936. data_torch = torch.stack(datas, dim=0)
  1937. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1938. new_name = self.map_tensor_name(merged_name)
  1939. tensors.append((new_name, data_torch))
  1940. return tensors
  1941. else:
  1942. return []
  1943. return [(self.map_tensor_name(name), data_torch)]
  1944. def prepare_tensors(self):
  1945. super().prepare_tensors()
  1946. if self._experts is not None:
  1947. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1948. experts = [k for d in self._experts for k in d.keys()]
  1949. if len(experts) > 0:
  1950. raise ValueError(f"Unprocessed experts: {experts}")
  1951. @Model.register("GPT2LMHeadModel")
  1952. class GPT2Model(Model):
  1953. model_arch = gguf.MODEL_ARCH.GPT2
  1954. def set_gguf_parameters(self):
  1955. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1956. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1957. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1958. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1959. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1960. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1961. self.gguf_writer.add_file_type(self.ftype)
  1962. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1963. del bid # unused
  1964. tensors: list[tuple[str, Tensor]] = []
  1965. # we don't need these
  1966. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1967. return tensors
  1968. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1969. data_torch = data_torch.transpose(1, 0)
  1970. new_name = self.map_tensor_name(name)
  1971. tensors.append((new_name, data_torch))
  1972. return tensors
  1973. @Model.register("PhiForCausalLM")
  1974. class Phi2Model(Model):
  1975. model_arch = gguf.MODEL_ARCH.PHI2
  1976. def set_gguf_parameters(self):
  1977. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1978. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1979. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1980. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1981. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1982. self.gguf_writer.add_embedding_length(n_embd)
  1983. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1984. self.gguf_writer.add_block_count(block_count)
  1985. self.gguf_writer.add_head_count(n_head)
  1986. self.gguf_writer.add_head_count_kv(n_head)
  1987. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1988. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1989. self.gguf_writer.add_file_type(self.ftype)
  1990. self.gguf_writer.add_add_bos_token(False)
  1991. @Model.register("Phi3ForCausalLM")
  1992. class Phi3MiniModel(Model):
  1993. model_arch = gguf.MODEL_ARCH.PHI3
  1994. def set_vocab(self):
  1995. # Phi-4 model uses GPT2Tokenizer
  1996. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1997. if tokenizer_config_file.is_file():
  1998. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1999. tokenizer_config_json = json.load(f)
  2000. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2001. if tokenizer_class == 'GPT2Tokenizer':
  2002. return self._set_vocab_gpt2()
  2003. from sentencepiece import SentencePieceProcessor
  2004. tokenizer_path = self.dir_model / 'tokenizer.model'
  2005. if not tokenizer_path.is_file():
  2006. raise ValueError(f'Error: Missing {tokenizer_path}')
  2007. tokenizer = SentencePieceProcessor()
  2008. tokenizer.LoadFromFile(str(tokenizer_path))
  2009. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2010. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2011. scores: list[float] = [-10000.0] * vocab_size
  2012. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2013. for token_id in range(tokenizer.vocab_size()):
  2014. piece = tokenizer.IdToPiece(token_id)
  2015. text = piece.encode("utf-8")
  2016. score = tokenizer.GetScore(token_id)
  2017. toktype = SentencePieceTokenTypes.NORMAL
  2018. if tokenizer.IsUnknown(token_id):
  2019. toktype = SentencePieceTokenTypes.UNKNOWN
  2020. elif tokenizer.IsControl(token_id):
  2021. toktype = SentencePieceTokenTypes.CONTROL
  2022. elif tokenizer.IsUnused(token_id):
  2023. toktype = SentencePieceTokenTypes.UNUSED
  2024. elif tokenizer.IsByte(token_id):
  2025. toktype = SentencePieceTokenTypes.BYTE
  2026. tokens[token_id] = text
  2027. scores[token_id] = score
  2028. toktypes[token_id] = toktype
  2029. added_tokens_file = self.dir_model / 'added_tokens.json'
  2030. if added_tokens_file.is_file():
  2031. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2032. added_tokens_json = json.load(f)
  2033. for key in added_tokens_json:
  2034. token_id = added_tokens_json[key]
  2035. if token_id >= vocab_size:
  2036. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2037. continue
  2038. tokens[token_id] = key.encode("utf-8")
  2039. scores[token_id] = -1000.0
  2040. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2041. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2042. if tokenizer_config_file.is_file():
  2043. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2044. tokenizer_config_json = json.load(f)
  2045. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2046. for token_id, foken_data in added_tokens_decoder.items():
  2047. token_id = int(token_id)
  2048. token = foken_data["content"].encode("utf-8")
  2049. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2050. if tokens[token_id] != token:
  2051. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2052. tokens[token_id] = token
  2053. scores[token_id] = -1000.0
  2054. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2055. if foken_data.get("special"):
  2056. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2057. tokenizer_file = self.dir_model / 'tokenizer.json'
  2058. if tokenizer_file.is_file():
  2059. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2060. tokenizer_json = json.load(f)
  2061. added_tokens = tokenizer_json.get("added_tokens", [])
  2062. for foken_data in added_tokens:
  2063. token_id = int(foken_data["id"])
  2064. token = foken_data["content"].encode("utf-8")
  2065. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2066. if tokens[token_id] != token:
  2067. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2068. tokens[token_id] = token
  2069. scores[token_id] = -1000.0
  2070. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2071. if foken_data.get("special"):
  2072. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2073. self.gguf_writer.add_tokenizer_model("llama")
  2074. self.gguf_writer.add_tokenizer_pre("default")
  2075. self.gguf_writer.add_token_list(tokens)
  2076. self.gguf_writer.add_token_scores(scores)
  2077. self.gguf_writer.add_token_types(toktypes)
  2078. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2079. special_vocab.add_to_gguf(self.gguf_writer)
  2080. def set_gguf_parameters(self):
  2081. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2082. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2083. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2084. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2085. rms_eps = self.find_hparam(["rms_norm_eps"])
  2086. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2087. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2088. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2089. rope_dims = int(rot_pct * n_embd) // n_head
  2090. self.gguf_writer.add_context_length(max_pos_embds)
  2091. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2092. self.gguf_writer.add_embedding_length(n_embd)
  2093. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2094. self.gguf_writer.add_block_count(block_count)
  2095. self.gguf_writer.add_head_count(n_head)
  2096. self.gguf_writer.add_head_count_kv(n_head_kv)
  2097. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2098. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2099. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2100. self.gguf_writer.add_file_type(self.ftype)
  2101. sliding_window = self.hparams.get("sliding_window")
  2102. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2103. if sliding_window is None:
  2104. sliding_window = 0
  2105. self.gguf_writer.add_sliding_window(sliding_window)
  2106. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2107. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2108. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2109. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2110. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2111. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2112. rope_dims = int(rot_pct * n_embd) // n_head
  2113. # write rope scaling for long context (128k) model
  2114. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2115. if rope_scaling is None:
  2116. return
  2117. scale = max_pos_embds / orig_max_pos_embds
  2118. rope_scaling_type = rope_scaling.get('type', '').lower()
  2119. if len(rope_scaling_type) == 0:
  2120. raise KeyError('Missing the required key rope_scaling.type')
  2121. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2122. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2123. elif rope_scaling_type == 'yarn':
  2124. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2125. else:
  2126. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2127. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2128. long_factors = rope_scaling.get('long_factor', None)
  2129. short_factors = rope_scaling.get('short_factor', None)
  2130. if long_factors is None or short_factors is None:
  2131. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2132. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2133. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2134. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2135. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2136. @Model.register("PhiMoEForCausalLM")
  2137. class PhiMoeModel(Phi3MiniModel):
  2138. model_arch = gguf.MODEL_ARCH.PHIMOE
  2139. _experts: list[dict[str, Tensor]] | None = None
  2140. def set_gguf_parameters(self):
  2141. super().set_gguf_parameters()
  2142. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2143. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2144. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2145. # process the experts separately
  2146. if name.find("block_sparse_moe.experts") != -1:
  2147. n_experts = self.hparams["num_local_experts"]
  2148. assert bid is not None
  2149. if self._experts is None:
  2150. self._experts = [{} for _ in range(self.block_count)]
  2151. self._experts[bid][name] = data_torch
  2152. if len(self._experts[bid]) >= n_experts * 3:
  2153. tensors: list[tuple[str, Tensor]] = []
  2154. # merge the experts into a single 3d tensor
  2155. for w_name in ["w1", "w2", "w3"]:
  2156. datas: list[Tensor] = []
  2157. for xid in range(n_experts):
  2158. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2159. datas.append(self._experts[bid][ename])
  2160. del self._experts[bid][ename]
  2161. data_torch = torch.stack(datas, dim=0)
  2162. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2163. new_name = self.map_tensor_name(merged_name)
  2164. tensors.append((new_name, data_torch))
  2165. return tensors
  2166. else:
  2167. return []
  2168. return [(self.map_tensor_name(name), data_torch)]
  2169. def prepare_tensors(self):
  2170. super().prepare_tensors()
  2171. if self._experts is not None:
  2172. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2173. experts = [k for d in self._experts for k in d.keys()]
  2174. if len(experts) > 0:
  2175. raise ValueError(f"Unprocessed experts: {experts}")
  2176. @Model.register("PlamoForCausalLM")
  2177. class PlamoModel(Model):
  2178. model_arch = gguf.MODEL_ARCH.PLAMO
  2179. def set_vocab(self):
  2180. self._set_vocab_sentencepiece()
  2181. def set_gguf_parameters(self):
  2182. hparams = self.hparams
  2183. block_count = hparams["num_hidden_layers"]
  2184. self.gguf_writer.add_context_length(4096) # not in config.json
  2185. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2186. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2187. self.gguf_writer.add_block_count(block_count)
  2188. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2189. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2190. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2191. self.gguf_writer.add_file_type(self.ftype)
  2192. def shuffle_attn_q_weight(self, data_torch):
  2193. assert data_torch.size() == (5120, 5120)
  2194. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2195. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2196. data_torch = torch.reshape(data_torch, (5120, 5120))
  2197. return data_torch
  2198. def shuffle_attn_output_weight(self, data_torch):
  2199. assert data_torch.size() == (5120, 5120)
  2200. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2201. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2202. data_torch = torch.reshape(data_torch, (5120, 5120))
  2203. return data_torch
  2204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2205. del bid # unused
  2206. new_name = self.map_tensor_name(name)
  2207. # shuffle for broadcasting of gqa in ggml_mul_mat
  2208. if new_name.endswith("attn_q.weight"):
  2209. data_torch = self.shuffle_attn_q_weight(data_torch)
  2210. elif new_name.endswith("attn_output.weight"):
  2211. data_torch = self.shuffle_attn_output_weight(data_torch)
  2212. return [(new_name, data_torch)]
  2213. @Model.register("CodeShellForCausalLM")
  2214. class CodeShellModel(Model):
  2215. model_arch = gguf.MODEL_ARCH.CODESHELL
  2216. def set_gguf_parameters(self):
  2217. block_count = self.hparams["n_layer"]
  2218. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2219. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2220. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2221. self.gguf_writer.add_block_count(block_count)
  2222. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2223. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2224. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2225. self.gguf_writer.add_file_type(self.ftype)
  2226. self.gguf_writer.add_rope_freq_base(10000.0)
  2227. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2228. self.gguf_writer.add_rope_scaling_factor(1.0)
  2229. _has_tok_embd = False
  2230. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2231. del bid # unused
  2232. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2233. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2234. new_name = self.map_tensor_name(name)
  2235. # assuming token_embd.weight is seen before output.weight
  2236. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2237. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2238. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2239. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2240. self.tensor_names.remove("transformer.wte.weight")
  2241. elif new_name == tok_embd_name:
  2242. self._has_tok_embd = True
  2243. return [(new_name, data_torch)]
  2244. @Model.register("InternLM2ForCausalLM")
  2245. class InternLM2Model(Model):
  2246. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2247. def set_vocab(self):
  2248. # (TODO): Is there a better way?
  2249. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2250. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2251. # recognized as an empty string in C++.
  2252. from sentencepiece import SentencePieceProcessor
  2253. from sentencepiece import sentencepiece_model_pb2 as model
  2254. tokenizer_path = self.dir_model / 'tokenizer.model'
  2255. tokens: list[bytes] = []
  2256. scores: list[float] = []
  2257. toktypes: list[int] = []
  2258. if not tokenizer_path.is_file():
  2259. logger.error(f'Error: Missing {tokenizer_path}')
  2260. sys.exit(1)
  2261. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2262. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2263. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2264. tokenizer = SentencePieceProcessor()
  2265. tokenizer.LoadFromFile(str(tokenizer_path))
  2266. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2267. for token_id in range(vocab_size):
  2268. piece = tokenizer.IdToPiece(token_id)
  2269. text = piece.encode("utf-8")
  2270. score = tokenizer.GetScore(token_id)
  2271. if text == b"\x00":
  2272. # (TODO): fixme
  2273. # Hack here and replace the \x00 characters.
  2274. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2275. text = "🐉".encode("utf-8")
  2276. toktype = SentencePieceTokenTypes.NORMAL
  2277. if tokenizer.IsUnknown(token_id):
  2278. toktype = SentencePieceTokenTypes.UNKNOWN
  2279. elif tokenizer.IsControl(token_id):
  2280. toktype = SentencePieceTokenTypes.CONTROL
  2281. elif tokenizer.IsUnused(token_id):
  2282. toktype = SentencePieceTokenTypes.UNUSED
  2283. elif tokenizer.IsByte(token_id):
  2284. toktype = SentencePieceTokenTypes.BYTE
  2285. # take care of ununsed raw token
  2286. if piece.startswith('[UNUSED'):
  2287. toktype = SentencePieceTokenTypes.UNUSED
  2288. tokens.append(text)
  2289. scores.append(score)
  2290. toktypes.append(toktype)
  2291. added_tokens_file = self.dir_model / 'added_tokens.json'
  2292. if added_tokens_file.is_file():
  2293. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2294. added_tokens_json = json.load(f)
  2295. for key in added_tokens_json:
  2296. tokens.append(key.encode("utf-8"))
  2297. scores.append(-1000.0)
  2298. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2299. chat_eos_token = '<|im_end|>'
  2300. chat_eos_token_id = None
  2301. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2302. if tokenizer_config_file.is_file():
  2303. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2304. tokenizer_config_json = json.load(f)
  2305. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2306. for token_id, foken_data in added_tokens_decoder.items():
  2307. token_id = int(token_id)
  2308. token = foken_data["content"]
  2309. if token == chat_eos_token:
  2310. chat_eos_token_id = token_id
  2311. token = token.encode("utf-8")
  2312. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2313. if tokens[token_id] != token:
  2314. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2315. tokens[token_id] = token
  2316. scores[token_id] = -1000.0
  2317. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2318. if foken_data.get("special"):
  2319. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2320. tokenizer_file = self.dir_model / 'tokenizer.json'
  2321. if tokenizer_file.is_file():
  2322. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2323. tokenizer_json = json.load(f)
  2324. added_tokens = tokenizer_json.get("added_tokens", [])
  2325. for foken_data in added_tokens:
  2326. token_id = int(foken_data["id"])
  2327. token = foken_data["content"]
  2328. if token == chat_eos_token:
  2329. chat_eos_token_id = token_id
  2330. token = token.encode("utf-8")
  2331. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2332. if tokens[token_id] != token:
  2333. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2334. tokens[token_id] = token
  2335. scores[token_id] = -1000.0
  2336. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2337. if foken_data.get("special"):
  2338. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2339. self.gguf_writer.add_tokenizer_model("llama")
  2340. self.gguf_writer.add_tokenizer_pre("default")
  2341. self.gguf_writer.add_token_list(tokens)
  2342. self.gguf_writer.add_token_scores(scores)
  2343. self.gguf_writer.add_token_types(toktypes)
  2344. self.gguf_writer.add_add_space_prefix(add_prefix)
  2345. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2346. old_eos = special_vocab.special_token_ids["eos"]
  2347. if chat_eos_token_id is not None:
  2348. # For the chat model, we replace the eos with '<|im_end|>'.
  2349. # TODO: this is a hack, should be fixed
  2350. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2351. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2352. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2353. " in chat mode so that the conversation can end normally.")
  2354. special_vocab.add_to_gguf(self.gguf_writer)
  2355. def set_gguf_parameters(self):
  2356. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2357. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2358. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2359. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2360. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2361. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2362. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2363. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2364. self.gguf_writer.add_file_type(self.ftype)
  2365. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2366. if self.hparams["rope_scaling"].get("type") == "linear":
  2367. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2368. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2370. num_heads = self.hparams["num_attention_heads"]
  2371. num_kv_heads = self.hparams["num_key_value_heads"]
  2372. n_embd = self.hparams["hidden_size"]
  2373. q_per_kv = num_heads // num_kv_heads
  2374. head_dim = n_embd // num_heads
  2375. num_groups = num_heads // q_per_kv
  2376. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2377. qkv = data_torch
  2378. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2379. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2380. # The model weights of q and k equire additional reshape.
  2381. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2382. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2383. v = v.reshape((-1, v.shape[-1]))
  2384. return [
  2385. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2386. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2387. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2388. ]
  2389. else:
  2390. return [(self.map_tensor_name(name), data_torch)]
  2391. @Model.register("InternLM3ForCausalLM")
  2392. class InternLM3Model(Model):
  2393. model_arch = gguf.MODEL_ARCH.LLAMA
  2394. def set_vocab(self):
  2395. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2396. self.gguf_writer.add_tokenizer_model("llama")
  2397. self.gguf_writer.add_tokenizer_pre("default")
  2398. self.gguf_writer.add_token_list(tokens)
  2399. self.gguf_writer.add_token_scores(scores)
  2400. self.gguf_writer.add_token_types(toktypes)
  2401. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2402. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2403. if tokenizer_config_file.is_file():
  2404. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2405. tokenizer_config_json = json.load(f)
  2406. if "add_prefix_space" in tokenizer_config_json:
  2407. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2408. if "added_tokens_decoder" in tokenizer_config_json:
  2409. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2410. if token_data.get("special"):
  2411. token_id = int(token_id)
  2412. token = token_data["content"]
  2413. special_vocab._set_special_token(token, token_id)
  2414. # update eos token
  2415. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2416. special_vocab.special_token_ids["eos"] = token_id
  2417. special_vocab.add_to_gguf(self.gguf_writer)
  2418. def set_gguf_parameters(self):
  2419. super().set_gguf_parameters()
  2420. hparams = self.hparams
  2421. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2422. if "head_dim" in hparams:
  2423. rope_dim = hparams["head_dim"]
  2424. else:
  2425. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2426. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2427. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2428. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2429. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2430. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2431. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2432. n_head = self.hparams["num_attention_heads"]
  2433. n_kv_head = self.hparams.get("num_key_value_heads")
  2434. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2435. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2436. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2437. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2438. return [(self.map_tensor_name(name), data_torch)]
  2439. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2440. class BertModel(Model):
  2441. model_arch = gguf.MODEL_ARCH.BERT
  2442. def __init__(self, *args, **kwargs):
  2443. super().__init__(*args, **kwargs)
  2444. self.vocab_size = None
  2445. def set_gguf_parameters(self):
  2446. super().set_gguf_parameters()
  2447. self.gguf_writer.add_causal_attention(False)
  2448. # get pooling path
  2449. pooling_path = None
  2450. module_path = self.dir_model / "modules.json"
  2451. if module_path.is_file():
  2452. with open(module_path, encoding="utf-8") as f:
  2453. modules = json.load(f)
  2454. for mod in modules:
  2455. if mod["type"] == "sentence_transformers.models.Pooling":
  2456. pooling_path = mod["path"]
  2457. break
  2458. # get pooling type
  2459. if pooling_path is not None:
  2460. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2461. pooling = json.load(f)
  2462. if pooling["pooling_mode_mean_tokens"]:
  2463. pooling_type = gguf.PoolingType.MEAN
  2464. elif pooling["pooling_mode_cls_token"]:
  2465. pooling_type = gguf.PoolingType.CLS
  2466. else:
  2467. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2468. self.gguf_writer.add_pooling_type(pooling_type)
  2469. def set_vocab(self):
  2470. tokens, toktypes, tokpre = self.get_vocab_base()
  2471. self.vocab_size = len(tokens)
  2472. # we need this to validate the size of the token_type embeddings
  2473. # though currently we are passing all zeros to the token_type embeddings
  2474. # "Sequence A" or "Sequence B"
  2475. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2476. # convert to phantom space vocab
  2477. def phantom(tok):
  2478. if tok.startswith("[") and tok.endswith("]"):
  2479. return tok
  2480. if tok.startswith("##"):
  2481. return tok[2:]
  2482. return "\u2581" + tok
  2483. tokens = list(map(phantom, tokens))
  2484. # add vocab to gguf
  2485. self.gguf_writer.add_tokenizer_model("bert")
  2486. self.gguf_writer.add_tokenizer_pre(tokpre)
  2487. self.gguf_writer.add_token_list(tokens)
  2488. self.gguf_writer.add_token_types(toktypes)
  2489. # handle special tokens
  2490. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2491. special_vocab.add_to_gguf(self.gguf_writer)
  2492. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2493. del bid # unused
  2494. if name.startswith("bert."):
  2495. name = name[5:]
  2496. if name.endswith(".gamma"):
  2497. name = name[:-6] + ".weight"
  2498. if name.endswith(".beta"):
  2499. name = name[:-5] + ".bias"
  2500. # we are only using BERT for embeddings so we don't need the pooling layer
  2501. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2502. return [] # we don't need these
  2503. if name.startswith("cls.predictions"):
  2504. return []
  2505. if name.startswith("cls.seq_relationship"):
  2506. return []
  2507. return [(self.map_tensor_name(name), data_torch)]
  2508. @Model.register("RobertaModel")
  2509. class RobertaModel(BertModel):
  2510. model_arch = gguf.MODEL_ARCH.BERT
  2511. def __init__(self, *args, **kwargs):
  2512. super().__init__(*args, **kwargs)
  2513. # we need the pad_token_id to know how to chop down position_embd matrix
  2514. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2515. self._position_offset = 1 + pad_token_id
  2516. if "max_position_embeddings" in self.hparams:
  2517. self.hparams["max_position_embeddings"] -= self._position_offset
  2518. else:
  2519. self._position_offset = None
  2520. def set_vocab(self):
  2521. """Support BPE tokenizers for roberta models"""
  2522. bpe_tok_path = self.dir_model / "tokenizer.json"
  2523. if bpe_tok_path.exists():
  2524. self._set_vocab_gpt2()
  2525. self.gguf_writer.add_add_bos_token(True)
  2526. self.gguf_writer.add_add_eos_token(True)
  2527. # we need this to validate the size of the token_type embeddings
  2528. # though currently we are passing all zeros to the token_type embeddings
  2529. # "Sequence A" or "Sequence B"
  2530. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2531. else:
  2532. return super().set_vocab()
  2533. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2534. # if name starts with "roberta.", remove the prefix
  2535. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2536. if name.startswith("roberta."):
  2537. name = name[8:]
  2538. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2539. if name == "embeddings.position_embeddings.weight":
  2540. if self._position_offset is not None:
  2541. data_torch = data_torch[self._position_offset:,:]
  2542. return super().modify_tensors(data_torch, name, bid)
  2543. @Model.register("NomicBertModel")
  2544. class NomicBertModel(BertModel):
  2545. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2546. def __init__(self, *args, **kwargs):
  2547. super().__init__(*args, **kwargs)
  2548. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2549. self.hparams["n_ctx"] = 2048
  2550. # SwigLU activation
  2551. assert self.hparams["activation_function"] == "swiglu"
  2552. # this doesn't do anything in the HF version
  2553. assert self.hparams["causal"] is False
  2554. # no bias tensors
  2555. assert self.hparams["qkv_proj_bias"] is False
  2556. assert self.hparams["mlp_fc1_bias"] is False
  2557. assert self.hparams["mlp_fc2_bias"] is False
  2558. # norm at end of layer
  2559. assert self.hparams["prenorm"] is False
  2560. # standard RoPE
  2561. assert self.hparams["rotary_emb_fraction"] == 1.0
  2562. assert self.hparams["rotary_emb_interleaved"] is False
  2563. assert self.hparams["rotary_emb_scale_base"] is None
  2564. def set_gguf_parameters(self):
  2565. super().set_gguf_parameters()
  2566. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2567. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2568. class XLMRobertaModel(BertModel):
  2569. model_arch = gguf.MODEL_ARCH.BERT
  2570. def __init__(self, *args, **kwargs):
  2571. super().__init__(*args, **kwargs)
  2572. # we need the pad_token_id to know how to chop down position_embd matrix
  2573. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2574. self._position_offset = 1 + pad_token_id
  2575. if "max_position_embeddings" in self.hparams:
  2576. self.hparams["max_position_embeddings"] -= self._position_offset
  2577. else:
  2578. self._position_offset = None
  2579. def set_vocab(self):
  2580. # to avoid TypeError: Descriptors cannot be created directly
  2581. # exception when importing sentencepiece_model_pb2
  2582. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2583. from sentencepiece import SentencePieceProcessor
  2584. from sentencepiece import sentencepiece_model_pb2 as model
  2585. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2586. if not tokenizer_path.is_file():
  2587. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2588. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2589. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2590. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2591. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2592. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2593. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2594. tokenizer = SentencePieceProcessor()
  2595. tokenizer.LoadFromFile(str(tokenizer_path))
  2596. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2597. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2598. scores: list[float] = [-10000.0] * vocab_size
  2599. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2600. for token_id in range(tokenizer.vocab_size()):
  2601. piece = tokenizer.IdToPiece(token_id)
  2602. text = piece.encode("utf-8")
  2603. score = tokenizer.GetScore(token_id)
  2604. toktype = SentencePieceTokenTypes.NORMAL
  2605. if tokenizer.IsUnknown(token_id):
  2606. toktype = SentencePieceTokenTypes.UNKNOWN
  2607. elif tokenizer.IsControl(token_id):
  2608. toktype = SentencePieceTokenTypes.CONTROL
  2609. elif tokenizer.IsUnused(token_id):
  2610. toktype = SentencePieceTokenTypes.UNUSED
  2611. elif tokenizer.IsByte(token_id):
  2612. toktype = SentencePieceTokenTypes.BYTE
  2613. tokens[token_id] = text
  2614. scores[token_id] = score
  2615. toktypes[token_id] = toktype
  2616. if vocab_size > len(tokens):
  2617. pad_count = vocab_size - len(tokens)
  2618. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2619. for i in range(1, pad_count + 1):
  2620. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2621. scores.append(-1000.0)
  2622. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2623. # realign tokens (see HF tokenizer code)
  2624. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2625. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2626. toktypes = [
  2627. SentencePieceTokenTypes.CONTROL,
  2628. SentencePieceTokenTypes.CONTROL,
  2629. SentencePieceTokenTypes.CONTROL,
  2630. SentencePieceTokenTypes.UNKNOWN,
  2631. ] + toktypes[3:-1]
  2632. self.gguf_writer.add_tokenizer_model("t5")
  2633. self.gguf_writer.add_tokenizer_pre("default")
  2634. self.gguf_writer.add_token_list(tokens)
  2635. self.gguf_writer.add_token_scores(scores)
  2636. self.gguf_writer.add_token_types(toktypes)
  2637. self.gguf_writer.add_add_space_prefix(add_prefix)
  2638. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2639. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2640. if precompiled_charsmap:
  2641. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2642. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2643. special_vocab.add_to_gguf(self.gguf_writer)
  2644. self.gguf_writer.add_add_bos_token(True)
  2645. self.gguf_writer.add_add_eos_token(True)
  2646. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2647. # if name starts with "roberta.", remove the prefix
  2648. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2649. if name.startswith("roberta."):
  2650. name = name[8:]
  2651. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2652. if name == "embeddings.position_embeddings.weight":
  2653. if self._position_offset is not None:
  2654. data_torch = data_torch[self._position_offset:,:]
  2655. return super().modify_tensors(data_torch, name, bid)
  2656. @Model.register("GemmaForCausalLM")
  2657. class GemmaModel(Model):
  2658. model_arch = gguf.MODEL_ARCH.GEMMA
  2659. def set_vocab(self):
  2660. self._set_vocab_sentencepiece()
  2661. # TODO: these special tokens should be exported only for the CodeGemma family
  2662. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2663. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2664. special_vocab._set_special_token("prefix", 67)
  2665. special_vocab._set_special_token("suffix", 69)
  2666. special_vocab._set_special_token("middle", 68)
  2667. special_vocab._set_special_token("fsep", 70)
  2668. special_vocab._set_special_token("eot", 107)
  2669. special_vocab.chat_template = None # do not add it twice
  2670. special_vocab.add_to_gguf(self.gguf_writer)
  2671. self.gguf_writer.add_add_space_prefix(False)
  2672. def set_gguf_parameters(self):
  2673. hparams = self.hparams
  2674. block_count = hparams["num_hidden_layers"]
  2675. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2676. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2677. self.gguf_writer.add_block_count(block_count)
  2678. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2679. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2680. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2681. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2682. self.gguf_writer.add_key_length(hparams["head_dim"])
  2683. self.gguf_writer.add_value_length(hparams["head_dim"])
  2684. self.gguf_writer.add_file_type(self.ftype)
  2685. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2686. del bid # unused
  2687. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2688. # To prevent errors, skip loading lm_head.weight.
  2689. if name == "lm_head.weight":
  2690. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2691. return []
  2692. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2693. if name.endswith("norm.weight"):
  2694. data_torch = data_torch + 1
  2695. return [(self.map_tensor_name(name), data_torch)]
  2696. @Model.register("Gemma2ForCausalLM")
  2697. class Gemma2Model(Model):
  2698. model_arch = gguf.MODEL_ARCH.GEMMA2
  2699. def set_vocab(self):
  2700. self._set_vocab_sentencepiece()
  2701. self.gguf_writer.add_add_space_prefix(False)
  2702. def set_gguf_parameters(self):
  2703. hparams = self.hparams
  2704. block_count = hparams["num_hidden_layers"]
  2705. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2706. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2707. self.gguf_writer.add_block_count(block_count)
  2708. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2709. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2710. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2711. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2712. self.gguf_writer.add_key_length(hparams["head_dim"])
  2713. self.gguf_writer.add_value_length(hparams["head_dim"])
  2714. self.gguf_writer.add_file_type(self.ftype)
  2715. self.gguf_writer.add_attn_logit_softcapping(
  2716. self.hparams["attn_logit_softcapping"]
  2717. )
  2718. self.gguf_writer.add_final_logit_softcapping(
  2719. self.hparams["final_logit_softcapping"]
  2720. )
  2721. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2722. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2723. del bid # unused
  2724. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2725. # To prevent errors, skip loading lm_head.weight.
  2726. if name == "lm_head.weight":
  2727. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2728. return []
  2729. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2730. if name.endswith("norm.weight"):
  2731. data_torch = data_torch + 1
  2732. return [(self.map_tensor_name(name), data_torch)]
  2733. @Model.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2734. class Gemma3Model(Model):
  2735. model_arch = gguf.MODEL_ARCH.GEMMA3
  2736. has_vision: bool = False
  2737. # we need to merge the text_config into the root level of hparams
  2738. def __init__(self, *args, **kwargs):
  2739. hparams = Model.load_hparams(kwargs["dir_model"])
  2740. if "text_config" in hparams:
  2741. hparams = {**hparams, **hparams["text_config"]}
  2742. kwargs["hparams"] = hparams
  2743. super().__init__(*args, **kwargs)
  2744. if "vision_config" in hparams:
  2745. logger.info("Has vision encoder, but it will be ignored")
  2746. self.has_vision = True
  2747. def write(self):
  2748. super().write()
  2749. if self.has_vision:
  2750. logger.info("NOTE: this script only convert the language model to GGUF")
  2751. logger.info(" for the vision model, please use gemma3_convert_encoder_to_gguf.py")
  2752. def set_vocab(self):
  2753. self._set_vocab_sentencepiece()
  2754. self.gguf_writer.add_add_space_prefix(False)
  2755. def set_gguf_parameters(self):
  2756. hparams = self.hparams
  2757. block_count = hparams["num_hidden_layers"]
  2758. # some default values are not specified in the hparams
  2759. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  2760. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2761. self.gguf_writer.add_block_count(block_count)
  2762. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2763. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  2764. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  2765. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  2766. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  2767. self.gguf_writer.add_file_type(self.ftype)
  2768. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  2769. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  2770. assert hparams.get("attn_logit_softcapping") is None
  2771. assert hparams.get("final_logit_softcapping") is None
  2772. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  2773. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  2774. if hparams.get("rope_scaling") is not None:
  2775. assert hparams["rope_scaling"]["rope_type"] == "linear"
  2776. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  2777. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2778. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  2779. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2780. del bid # unused
  2781. if name.startswith("language_model."):
  2782. name = name.replace("language_model.", "")
  2783. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2784. or name.startswith("multimodal_projector.") or name.startswith("vision_model."): # this is for old HF model, should be removed later
  2785. # ignore vision tensors
  2786. return []
  2787. # remove OOV (out-of-vocabulary) rows in token_embd
  2788. if "embed_tokens.weight" in name:
  2789. vocab = self._create_vocab_sentencepiece()
  2790. tokens = vocab[0]
  2791. data_torch = data_torch[:len(tokens)]
  2792. # ref code in Gemma3RMSNorm
  2793. # output = output * (1.0 + self.weight.float())
  2794. if name.endswith("norm.weight"):
  2795. data_torch = data_torch + 1
  2796. return [(self.map_tensor_name(name), data_torch)]
  2797. @Model.register("Starcoder2ForCausalLM")
  2798. class StarCoder2Model(Model):
  2799. model_arch = gguf.MODEL_ARCH.STARCODER2
  2800. @Model.register("Rwkv6ForCausalLM")
  2801. class Rwkv6Model(Model):
  2802. model_arch = gguf.MODEL_ARCH.RWKV6
  2803. def set_vocab(self):
  2804. self._set_vocab_rwkv_world()
  2805. def set_gguf_parameters(self):
  2806. block_count = self.hparams["num_hidden_layers"]
  2807. head_size = self.hparams["head_size"]
  2808. hidden_size = self.hparams["hidden_size"]
  2809. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2810. rescale_every_n_layers = self.hparams["rescale_every"]
  2811. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2812. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2813. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2814. # RWKV isn't context limited
  2815. self.gguf_writer.add_context_length(1048576)
  2816. self.gguf_writer.add_embedding_length(hidden_size)
  2817. self.gguf_writer.add_block_count(block_count)
  2818. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2819. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2820. self.gguf_writer.add_wkv_head_size(head_size)
  2821. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2822. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2823. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2824. self.gguf_writer.add_file_type(self.ftype)
  2825. # required by llama.cpp, unused
  2826. self.gguf_writer.add_head_count(0)
  2827. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2828. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2829. new_name = self.map_tensor_name(name)
  2830. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2831. new_name += ".weight"
  2832. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2833. data_torch = data_torch.transpose(0, 1)
  2834. if new_name.endswith("time_mix_w2.weight"):
  2835. data_torch = data_torch.permute(0, 2, 1)
  2836. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2837. data_torch = data_torch.squeeze()
  2838. try:
  2839. rescale_every_n_layers = self.hparams["rescale_every"]
  2840. if rescale_every_n_layers > 0:
  2841. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2842. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2843. except KeyError:
  2844. pass
  2845. # concat time_mix_lerp weights to reduce some cpu overhead
  2846. # also reduces the number of tensors in the model
  2847. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  2848. try:
  2849. self.lerp_weights[bid][new_name] = data_torch
  2850. except KeyError:
  2851. self.lerp_weights[bid] = {new_name: data_torch}
  2852. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  2853. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2854. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  2855. yield (new_name, data)
  2856. return
  2857. yield (new_name, data_torch)
  2858. @Model.register("RWKV6Qwen2ForCausalLM")
  2859. class RWKV6Qwen2Model(Rwkv6Model):
  2860. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  2861. def set_vocab(self):
  2862. try:
  2863. self._set_vocab_sentencepiece()
  2864. except FileNotFoundError:
  2865. self._set_vocab_gpt2()
  2866. def set_gguf_parameters(self):
  2867. block_count = self.hparams["num_hidden_layers"]
  2868. num_attention_heads = self.hparams["num_attention_heads"]
  2869. num_key_value_heads = self.hparams["num_key_value_heads"]
  2870. hidden_size = self.hparams["hidden_size"]
  2871. head_size = hidden_size // num_attention_heads
  2872. rms_norm_eps = self.hparams["rms_norm_eps"]
  2873. intermediate_size = self.hparams["intermediate_size"]
  2874. time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
  2875. time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
  2876. # RWKV isn't context limited
  2877. self.gguf_writer.add_context_length(1048576)
  2878. self.gguf_writer.add_embedding_length(hidden_size)
  2879. self.gguf_writer.add_block_count(block_count)
  2880. self.gguf_writer.add_wkv_head_size(head_size)
  2881. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2882. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2883. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2884. self.gguf_writer.add_file_type(self.ftype)
  2885. # special parameters for time_mixing in RWKV6QWEN2
  2886. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2887. self.gguf_writer.add_token_shift_count(1)
  2888. # RWKV6QWEN2 use grouped key/value like GQA
  2889. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  2890. # required by llama.cpp, unused
  2891. self.gguf_writer.add_head_count(0)
  2892. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2893. for new_name, data in super().modify_tensors(data_torch, name, bid):
  2894. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  2895. data = data.view(5, -1, data.shape[-1])
  2896. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  2897. # permute them here to avoid code changes
  2898. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  2899. if "w2" in new_name:
  2900. data = data.view(5, -1, data.shape[-1])
  2901. yield (new_name, data)
  2902. continue
  2903. yield (new_name, data)
  2904. @Model.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  2905. class Rwkv7Model(Model):
  2906. model_arch = gguf.MODEL_ARCH.RWKV7
  2907. def set_vocab(self):
  2908. self._set_vocab_rwkv_world()
  2909. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  2910. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  2911. def set_gguf_parameters(self):
  2912. block_count = self.hparams["num_hidden_layers"]
  2913. try:
  2914. head_size = self.hparams["head_size"]
  2915. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2916. except KeyError:
  2917. head_size = self.hparams["head_dim"]
  2918. layer_norm_eps = self.hparams["norm_eps"]
  2919. hidden_size = self.hparams["hidden_size"]
  2920. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  2921. # ICLR: In-Context-Learning-Rate
  2922. try:
  2923. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2924. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2925. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2926. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2927. except KeyError:
  2928. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2929. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2930. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2931. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2932. # RWKV isn't context limited
  2933. self.gguf_writer.add_context_length(1048576)
  2934. self.gguf_writer.add_embedding_length(hidden_size)
  2935. self.gguf_writer.add_block_count(block_count)
  2936. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2937. self.gguf_writer.add_wkv_head_size(head_size)
  2938. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  2939. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  2940. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  2941. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  2942. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2943. self.gguf_writer.add_file_type(self.ftype)
  2944. # required by llama.cpp, unused
  2945. self.gguf_writer.add_head_count(0)
  2946. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2947. lora_needs_transpose: bool = True
  2948. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2949. # unify tensor names here to make life easier
  2950. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  2951. name = name.replace("self_attn", "attention").replace("attn", "attention")
  2952. name = name.replace("time_mixer.", "")
  2953. # lora layer names in fla-hub's impl
  2954. if "_lora.lora" in name:
  2955. self.lora_needs_transpose = False
  2956. name = name.replace("_lora.lora.0.weight", "1.weight")
  2957. name = name.replace("_lora.lora.2.weight", "2.weight")
  2958. name = name.replace("_lora.lora.2.bias", "0.weight")
  2959. name = name.replace("feed_forward_norm", "ln2")
  2960. name = name.replace("g_norm", "ln_x")
  2961. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  2962. # some models have dummy v0/v1/v2 on first layer while others don't
  2963. # ignore them all since they are not used
  2964. return
  2965. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  2966. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  2967. if bid is not None and "attention.x_" in name:
  2968. if "attention.x_x" in name:
  2969. # already concatenated
  2970. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2971. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  2972. yield (new_name, data)
  2973. else:
  2974. try:
  2975. self.lerp_weights[bid][name] = data_torch
  2976. except KeyError:
  2977. self.lerp_weights[bid] = {name: data_torch}
  2978. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  2979. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2980. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  2981. yield (new_name, data)
  2982. return
  2983. else:
  2984. data_torch = data_torch.squeeze()
  2985. new_name = self.map_tensor_name(name)
  2986. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2987. new_name += ".weight"
  2988. if self.lora_needs_transpose and any(
  2989. new_name.endswith(t) for t in [
  2990. "time_mix_w1.weight", "time_mix_w2.weight",
  2991. "time_mix_a1.weight", "time_mix_a2.weight",
  2992. "time_mix_v1.weight", "time_mix_v2.weight",
  2993. "time_mix_g1.weight", "time_mix_g2.weight",
  2994. ]
  2995. ):
  2996. data_torch = data_torch.transpose(0, 1)
  2997. if 'r_k' in new_name:
  2998. data_torch = data_torch.flatten()
  2999. if bid == 0 and "time_mix_a" in new_name:
  3000. # dummy v0/v1/v2 on first layer
  3001. # easist way to make llama happy
  3002. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3003. yield (new_name, data_torch)
  3004. @Model.register("RwkvHybridForCausalLM")
  3005. class ARwkv7Model(Rwkv7Model):
  3006. model_arch = gguf.MODEL_ARCH.ARWKV7
  3007. def set_vocab(self):
  3008. try:
  3009. self._set_vocab_sentencepiece()
  3010. except FileNotFoundError:
  3011. self._set_vocab_gpt2()
  3012. def set_gguf_parameters(self):
  3013. block_count = self.hparams["num_hidden_layers"]
  3014. hidden_size = self.hparams["hidden_size"]
  3015. head_size = self.hparams["head_size"]
  3016. rms_norm_eps = self.hparams["rms_norm_eps"]
  3017. intermediate_size = self.hparams["intermediate_size"]
  3018. wkv_has_gate = self.hparams["wkv_has_gate"]
  3019. assert self.hparams["wkv_version"] == 7
  3020. # ICLR: In-Context-Learning-Rate
  3021. lora_rank_decay = 64
  3022. lora_rank_iclr = 64
  3023. lora_rank_value_residual_mix = 32
  3024. lora_rank_gate = 128 if wkv_has_gate else 0
  3025. # RWKV isn't context limited
  3026. self.gguf_writer.add_context_length(1048576)
  3027. self.gguf_writer.add_embedding_length(hidden_size)
  3028. self.gguf_writer.add_block_count(block_count)
  3029. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3030. self.gguf_writer.add_wkv_head_size(head_size)
  3031. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3032. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3033. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3034. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3035. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3036. self.gguf_writer.add_file_type(self.ftype)
  3037. self.gguf_writer.add_token_shift_count(1)
  3038. # required by llama.cpp, unused
  3039. self.gguf_writer.add_head_count(0)
  3040. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3041. class MambaModel(Model):
  3042. model_arch = gguf.MODEL_ARCH.MAMBA
  3043. def set_vocab(self):
  3044. vocab_size = self.hparams["vocab_size"]
  3045. # Round vocab size to next multiple of 8
  3046. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3047. # pad using ceiling division
  3048. # ref: https://stackoverflow.com/a/17511341/22827863
  3049. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3050. self.hparams["vocab_size"] = vocab_size
  3051. if (self.dir_model / "tokenizer.json").is_file():
  3052. self._set_vocab_gpt2()
  3053. elif (self.dir_model / "tokenizer.model").is_file():
  3054. self._set_vocab_sentencepiece()
  3055. else:
  3056. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3057. self._set_vocab_builtin("gpt-neox", vocab_size)
  3058. def set_gguf_parameters(self):
  3059. d_model = self.find_hparam(["hidden_size", "d_model"])
  3060. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3061. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3062. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3063. # ceiling division
  3064. # ref: https://stackoverflow.com/a/17511341/22827863
  3065. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3066. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3067. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3068. use_dt_b_c_norm = False
  3069. # For falconmamba we do apply RMS norm on B / DT and C layers
  3070. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3071. use_dt_b_c_norm = True
  3072. # Fail early for models which don't have a block expansion factor of 2
  3073. assert d_inner == 2 * d_model
  3074. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3075. self.gguf_writer.add_embedding_length(d_model)
  3076. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3077. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3078. self.gguf_writer.add_block_count(self.block_count)
  3079. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3080. self.gguf_writer.add_ssm_inner_size(d_inner)
  3081. self.gguf_writer.add_ssm_state_size(d_state)
  3082. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3083. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3084. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3085. self.gguf_writer.add_file_type(self.ftype)
  3086. _tok_embd = None
  3087. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3088. del bid # unused
  3089. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3090. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3091. new_name = self.map_tensor_name(name)
  3092. if name.endswith(".A_log"):
  3093. logger.debug("A_log --> A ==> " + new_name)
  3094. data_torch = -torch.exp(data_torch)
  3095. # assuming token_embd.weight is seen before output.weight
  3096. if self._tok_embd is not None and new_name == output_name:
  3097. if torch.equal(self._tok_embd, data_torch):
  3098. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3099. return []
  3100. elif new_name == tok_embd_name:
  3101. self._tok_embd = data_torch
  3102. return [(new_name, data_torch)]
  3103. @Model.register("CohereForCausalLM")
  3104. class CommandR2Model(Model):
  3105. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3106. def __init__(self, *args, **kwargs):
  3107. super().__init__(*args, **kwargs)
  3108. # max_position_embeddings = 8192 in config.json but model was actually
  3109. # trained on 128k context length
  3110. # aya-23 models don't have model_max_length specified
  3111. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3112. def set_gguf_parameters(self):
  3113. super().set_gguf_parameters()
  3114. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3115. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3116. @Model.register("Cohere2ForCausalLM")
  3117. class Cohere2Model(Model):
  3118. model_arch = gguf.MODEL_ARCH.COHERE2
  3119. def set_gguf_parameters(self):
  3120. super().set_gguf_parameters()
  3121. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3122. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3123. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3124. rotary_pct = self.hparams["rotary_pct"]
  3125. hidden_size = self.hparams["hidden_size"]
  3126. num_attention_heads = self.hparams["num_attention_heads"]
  3127. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3128. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3129. @Model.register("OlmoForCausalLM")
  3130. @Model.register("OLMoForCausalLM")
  3131. class OlmoModel(Model):
  3132. model_arch = gguf.MODEL_ARCH.OLMO
  3133. def set_gguf_parameters(self):
  3134. super().set_gguf_parameters()
  3135. self.gguf_writer.add_layer_norm_eps(1e-5)
  3136. clip_qkv = self.hparams.get("clip_qkv")
  3137. if clip_qkv is not None:
  3138. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3139. # Same as super class, but permuting q_proj, k_proj
  3140. # Copied from: LlamaModel
  3141. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3142. del bid # unused
  3143. n_head = self.hparams["num_attention_heads"]
  3144. n_kv_head = self.hparams.get("num_key_value_heads")
  3145. if name.endswith("q_proj.weight"):
  3146. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3147. if name.endswith("k_proj.weight"):
  3148. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3149. return [(self.map_tensor_name(name), data_torch)]
  3150. @Model.register("Olmo2ForCausalLM")
  3151. class Olmo2Model(Model):
  3152. model_arch = gguf.MODEL_ARCH.OLMO2
  3153. @Model.register("OlmoeForCausalLM")
  3154. class OlmoeModel(Model):
  3155. model_arch = gguf.MODEL_ARCH.OLMOE
  3156. def set_gguf_parameters(self):
  3157. super().set_gguf_parameters()
  3158. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3159. if (n_experts := self.hparams.get("num_experts")) is not None:
  3160. self.gguf_writer.add_expert_count(n_experts)
  3161. _experts: list[dict[str, Tensor]] | None = None
  3162. # Copied from: Qwen2MoeModel
  3163. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3164. # process the experts separately
  3165. if name.find("experts") != -1:
  3166. n_experts = self.hparams["num_experts"]
  3167. assert bid is not None
  3168. if self._experts is None:
  3169. self._experts = [{} for _ in range(self.block_count)]
  3170. self._experts[bid][name] = data_torch
  3171. if len(self._experts[bid]) >= n_experts * 3:
  3172. tensors: list[tuple[str, Tensor]] = []
  3173. # merge the experts into a single 3d tensor
  3174. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3175. datas: list[Tensor] = []
  3176. for xid in range(n_experts):
  3177. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3178. datas.append(self._experts[bid][ename])
  3179. del self._experts[bid][ename]
  3180. data_torch = torch.stack(datas, dim=0)
  3181. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3182. new_name = self.map_tensor_name(merged_name)
  3183. tensors.append((new_name, data_torch))
  3184. return tensors
  3185. else:
  3186. return []
  3187. return [(self.map_tensor_name(name), data_torch)]
  3188. # Copied from: Qwen2MoeModel
  3189. def prepare_tensors(self):
  3190. super().prepare_tensors()
  3191. if self._experts is not None:
  3192. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3193. experts = [k for d in self._experts for k in d.keys()]
  3194. if len(experts) > 0:
  3195. raise ValueError(f"Unprocessed experts: {experts}")
  3196. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  3197. class JinaBertV2Model(BertModel):
  3198. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3199. def __init__(self, *args, **kwargs):
  3200. super().__init__(*args, **kwargs)
  3201. self.intermediate_size = self.hparams["intermediate_size"]
  3202. def get_tensors(self):
  3203. for name, data in super().get_tensors():
  3204. if 'gated_layer' in name:
  3205. d1 = data[:self.intermediate_size, :]
  3206. name1 = name.replace('gated_layers', 'gated_layers_w')
  3207. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3208. d2 = data[self.intermediate_size:, :]
  3209. name2 = name.replace('gated_layers', 'gated_layers_v')
  3210. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3211. yield name1, d1
  3212. yield name2, d2
  3213. continue
  3214. yield name, data
  3215. def set_vocab(self):
  3216. tokenizer_class = 'BertTokenizer'
  3217. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3218. tokenizer_class = json.load(f)['tokenizer_class']
  3219. if tokenizer_class == 'BertTokenizer':
  3220. super().set_vocab()
  3221. elif tokenizer_class == 'RobertaTokenizer':
  3222. self._set_vocab_gpt2()
  3223. self.gguf_writer.add_token_type_count(2)
  3224. else:
  3225. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3226. self.gguf_writer.add_add_bos_token(True)
  3227. self.gguf_writer.add_add_eos_token(True)
  3228. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3229. # if name starts with "bert.", remove the prefix
  3230. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3231. if name.startswith("bert."):
  3232. name = name[5:]
  3233. return super().modify_tensors(data_torch, name, bid)
  3234. @Model.register("OpenELMForCausalLM")
  3235. class OpenELMModel(Model):
  3236. model_arch = gguf.MODEL_ARCH.OPENELM
  3237. @staticmethod
  3238. def _make_divisible(v: float | int, divisor: int) -> int:
  3239. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3240. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3241. # Make sure that round down does not go down by more than 10%.
  3242. if new_v < 0.9 * v:
  3243. new_v += divisor
  3244. return new_v
  3245. def __init__(self, *args, **kwargs):
  3246. super().__init__(*args, **kwargs)
  3247. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3248. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3249. self._n_embd: int = self.hparams["model_dim"]
  3250. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3251. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3252. self._ffn_dims: list[int] = [
  3253. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3254. for multiplier in ffn_multipliers
  3255. ]
  3256. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3257. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3258. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3259. def set_vocab(self):
  3260. try:
  3261. self._set_vocab_sentencepiece()
  3262. except FileNotFoundError:
  3263. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3264. def set_gguf_parameters(self):
  3265. n_embd = self._n_embd
  3266. head_dim = self.hparams["head_dim"]
  3267. rot_pct = 1.0
  3268. assert self.block_count == len(self._num_kv_heads)
  3269. assert self.block_count == len(self._num_query_heads)
  3270. assert self.block_count == len(self._ffn_dims)
  3271. self.gguf_writer.add_block_count(self.block_count)
  3272. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3273. self.gguf_writer.add_embedding_length(n_embd)
  3274. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3275. self.gguf_writer.add_head_count(self._num_query_heads)
  3276. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3277. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3278. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3279. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3280. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3281. self.gguf_writer.add_key_length(head_dim)
  3282. self.gguf_writer.add_value_length(head_dim)
  3283. self.gguf_writer.add_file_type(self.ftype)
  3284. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3285. if "n_layers" in keys:
  3286. return self.hparams["num_transformer_layers"]
  3287. return super().find_hparam(keys, optional)
  3288. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3289. # split ff
  3290. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3291. ff_dim = self._ffn_dims[bid]
  3292. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3293. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3294. return
  3295. yield (self.map_tensor_name(name), data_torch)
  3296. @Model.register("ArcticForCausalLM")
  3297. class ArcticModel(Model):
  3298. model_arch = gguf.MODEL_ARCH.ARCTIC
  3299. def set_vocab(self):
  3300. # The reason for using a custom implementation here is that the
  3301. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3302. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3303. from sentencepiece import SentencePieceProcessor
  3304. tokenizer_path = self.dir_model / 'tokenizer.model'
  3305. if not tokenizer_path.is_file():
  3306. logger.error(f'Error: Missing {tokenizer_path}')
  3307. sys.exit(1)
  3308. # Read the whole vocabulary from the tokenizer.model file
  3309. tokenizer = SentencePieceProcessor()
  3310. tokenizer.LoadFromFile(str(tokenizer_path))
  3311. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3312. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3313. scores: list[float] = [-10000.0] * vocab_size
  3314. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3315. for token_id in range(tokenizer.vocab_size()):
  3316. piece = tokenizer.IdToPiece(token_id)
  3317. text = piece.encode("utf-8")
  3318. score = tokenizer.GetScore(token_id)
  3319. toktype = SentencePieceTokenTypes.NORMAL
  3320. if tokenizer.IsUnknown(token_id):
  3321. toktype = SentencePieceTokenTypes.UNKNOWN
  3322. elif tokenizer.IsControl(token_id):
  3323. toktype = SentencePieceTokenTypes.CONTROL
  3324. elif tokenizer.IsUnused(token_id):
  3325. toktype = SentencePieceTokenTypes.UNUSED
  3326. elif tokenizer.IsByte(token_id):
  3327. toktype = SentencePieceTokenTypes.BYTE
  3328. tokens[token_id] = text
  3329. scores[token_id] = score
  3330. toktypes[token_id] = toktype
  3331. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3332. # of information about added/redefined tokens and modify them accordingly.
  3333. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3334. if tokenizer_config_file.is_file():
  3335. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3336. tokenizer_config_json = json.load(f)
  3337. if "added_tokens_decoder" in tokenizer_config_json:
  3338. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3339. for token_id, token_json in added_tokens_decoder.items():
  3340. token_id = int(token_id)
  3341. if token_id >= vocab_size:
  3342. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3343. continue
  3344. token_content = token_json["content"]
  3345. token_type = SentencePieceTokenTypes.USER_DEFINED
  3346. token_score = -10000.0
  3347. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3348. # Set the score to 0.0 as in the original tokenizer.model
  3349. if ("special" in token_json) and token_json["special"]:
  3350. if token_content == tokenizer_config_json["unk_token"]:
  3351. token_type = SentencePieceTokenTypes.UNKNOWN
  3352. else:
  3353. token_type = SentencePieceTokenTypes.CONTROL
  3354. token_score = 0.0
  3355. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3356. tokens[token_id] = token_content.encode("utf-8")
  3357. toktypes[token_id] = token_type
  3358. scores[token_id] = token_score
  3359. self.gguf_writer.add_tokenizer_model("llama")
  3360. self.gguf_writer.add_tokenizer_pre("default")
  3361. self.gguf_writer.add_token_list(tokens)
  3362. self.gguf_writer.add_token_scores(scores)
  3363. self.gguf_writer.add_token_types(toktypes)
  3364. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3365. special_vocab.add_to_gguf(self.gguf_writer)
  3366. def set_gguf_parameters(self):
  3367. super().set_gguf_parameters()
  3368. hparams = self.hparams
  3369. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3370. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3371. _experts: list[dict[str, Tensor]] | None = None
  3372. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3373. n_head = self.hparams["num_attention_heads"]
  3374. n_kv_head = self.hparams.get("num_key_value_heads")
  3375. if name.endswith("q_proj.weight"):
  3376. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3377. if name.endswith("k_proj.weight"):
  3378. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3379. # process the experts separately
  3380. if name.find("block_sparse_moe.experts") != -1:
  3381. n_experts = self.hparams["num_local_experts"]
  3382. assert bid is not None
  3383. if self._experts is None:
  3384. self._experts = [{} for _ in range(self.block_count)]
  3385. self._experts[bid][name] = data_torch
  3386. if len(self._experts[bid]) >= n_experts * 3:
  3387. tensors: list[tuple[str, Tensor]] = []
  3388. # merge the experts into a single 3d tensor
  3389. for wid in ["w1", "w2", "w3"]:
  3390. datas: list[Tensor] = []
  3391. for xid in range(n_experts):
  3392. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3393. datas.append(self._experts[bid][ename])
  3394. del self._experts[bid][ename]
  3395. data_torch = torch.stack(datas, dim=0)
  3396. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3397. new_name = self.map_tensor_name(merged_name)
  3398. tensors.append((new_name, data_torch))
  3399. return tensors
  3400. else:
  3401. return []
  3402. return [(self.map_tensor_name(name), data_torch)]
  3403. def prepare_tensors(self):
  3404. super().prepare_tensors()
  3405. if self._experts is not None:
  3406. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3407. experts = [k for d in self._experts for k in d.keys()]
  3408. if len(experts) > 0:
  3409. raise ValueError(f"Unprocessed experts: {experts}")
  3410. @Model.register("DeepseekForCausalLM")
  3411. class DeepseekModel(Model):
  3412. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3413. def set_vocab(self):
  3414. try:
  3415. self._set_vocab_sentencepiece()
  3416. except FileNotFoundError:
  3417. self._set_vocab_gpt2()
  3418. def set_gguf_parameters(self):
  3419. super().set_gguf_parameters()
  3420. hparams = self.hparams
  3421. if "head_dim" in hparams:
  3422. rope_dim = hparams["head_dim"]
  3423. else:
  3424. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3425. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3426. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3427. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3428. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3429. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3430. self.gguf_writer.add_expert_weights_scale(1.0)
  3431. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3432. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3433. _experts: list[dict[str, Tensor]] | None = None
  3434. @staticmethod
  3435. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3436. if n_head_kv is not None and n_head != n_head_kv:
  3437. n_head = n_head_kv
  3438. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3439. .swapaxes(1, 2)
  3440. .reshape(weights.shape))
  3441. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3442. n_head = self.hparams["num_attention_heads"]
  3443. n_kv_head = self.hparams.get("num_key_value_heads")
  3444. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3445. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3446. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3447. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3448. # process the experts separately
  3449. if name.find("mlp.experts") != -1:
  3450. n_experts = self.hparams["n_routed_experts"]
  3451. assert bid is not None
  3452. if self._experts is None:
  3453. self._experts = [{} for _ in range(self.block_count)]
  3454. self._experts[bid][name] = data_torch
  3455. if len(self._experts[bid]) >= n_experts * 3:
  3456. tensors: list[tuple[str, Tensor]] = []
  3457. # merge the experts into a single 3d tensor
  3458. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3459. datas: list[Tensor] = []
  3460. for xid in range(n_experts):
  3461. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3462. datas.append(self._experts[bid][ename])
  3463. del self._experts[bid][ename]
  3464. data_torch = torch.stack(datas, dim=0)
  3465. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3466. new_name = self.map_tensor_name(merged_name)
  3467. tensors.append((new_name, data_torch))
  3468. return tensors
  3469. else:
  3470. return []
  3471. return [(self.map_tensor_name(name), data_torch)]
  3472. def prepare_tensors(self):
  3473. super().prepare_tensors()
  3474. if self._experts is not None:
  3475. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3476. experts = [k for d in self._experts for k in d.keys()]
  3477. if len(experts) > 0:
  3478. raise ValueError(f"Unprocessed experts: {experts}")
  3479. @Model.register("DeepseekV2ForCausalLM")
  3480. @Model.register("DeepseekV3ForCausalLM")
  3481. class DeepseekV2Model(Model):
  3482. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3483. def set_vocab(self):
  3484. self._set_vocab_gpt2()
  3485. def set_gguf_parameters(self):
  3486. super().set_gguf_parameters()
  3487. hparams = self.hparams
  3488. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3489. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3490. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3491. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3492. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3493. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3494. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3495. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3496. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3497. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3498. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3499. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3500. if hparams["scoring_func"] == "sigmoid":
  3501. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3502. elif hparams["scoring_func"] == "softmax":
  3503. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3504. else:
  3505. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3506. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3507. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3508. if self.hparams["rope_scaling"].get("type") == "yarn":
  3509. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3510. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3511. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3512. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3513. _experts: list[dict[str, Tensor]] | None = None
  3514. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3515. # rename e_score_correction_bias tensors
  3516. if name.endswith("e_score_correction_bias"):
  3517. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3518. # skip Multi-Token Prediction (MTP) layers
  3519. block_count = self.hparams["num_hidden_layers"]
  3520. match = re.match(r"model.layers.(\d+)", name)
  3521. if match and int(match.group(1)) >= block_count:
  3522. return []
  3523. # process the experts separately
  3524. if name.find("mlp.experts") != -1:
  3525. n_experts = self.hparams["n_routed_experts"]
  3526. assert bid is not None
  3527. if self._experts is None:
  3528. self._experts = [{} for _ in range(self.block_count)]
  3529. self._experts[bid][name] = data_torch
  3530. if len(self._experts[bid]) >= n_experts * 3:
  3531. tensors: list[tuple[str, Tensor]] = []
  3532. # merge the experts into a single 3d tensor
  3533. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3534. datas: list[Tensor] = []
  3535. for xid in range(n_experts):
  3536. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3537. datas.append(self._experts[bid][ename])
  3538. del self._experts[bid][ename]
  3539. data_torch = torch.stack(datas, dim=0)
  3540. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3541. new_name = self.map_tensor_name(merged_name)
  3542. tensors.append((new_name, data_torch))
  3543. return tensors
  3544. else:
  3545. return []
  3546. return [(self.map_tensor_name(name), data_torch)]
  3547. def prepare_tensors(self):
  3548. super().prepare_tensors()
  3549. if self._experts is not None:
  3550. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3551. experts = [k for d in self._experts for k in d.keys()]
  3552. if len(experts) > 0:
  3553. raise ValueError(f"Unprocessed experts: {experts}")
  3554. @Model.register("T5WithLMHeadModel")
  3555. @Model.register("T5ForConditionalGeneration")
  3556. @Model.register("MT5ForConditionalGeneration")
  3557. @Model.register("UMT5ForConditionalGeneration")
  3558. class T5Model(Model):
  3559. model_arch = gguf.MODEL_ARCH.T5
  3560. def __init__(self, *args, **kwargs):
  3561. super().__init__(*args, **kwargs)
  3562. self.shared_token_embeddings_found = False
  3563. def set_vocab(self):
  3564. # to avoid TypeError: Descriptors cannot be created directly
  3565. # exception when importing sentencepiece_model_pb2
  3566. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3567. from sentencepiece import SentencePieceProcessor
  3568. from sentencepiece import sentencepiece_model_pb2 as model
  3569. tokenizer_path = self.dir_model / 'tokenizer.model'
  3570. # many older models use spiece.model tokenizer model filename
  3571. if not tokenizer_path.is_file():
  3572. tokenizer_path = self.dir_model / 'spiece.model'
  3573. if not tokenizer_path.is_file():
  3574. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3575. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3576. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3577. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3578. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3579. # assure the tokenizer model file name is correct
  3580. assert tokenizer_path.name == 'tokenizer.model'
  3581. return self._set_vocab_sentencepiece()
  3582. else:
  3583. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3584. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3585. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3586. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3587. tokenizer = SentencePieceProcessor()
  3588. tokenizer.LoadFromFile(str(tokenizer_path))
  3589. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3590. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3591. scores: list[float] = [-10000.0] * vocab_size
  3592. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3593. for token_id in range(tokenizer.vocab_size()):
  3594. piece = tokenizer.IdToPiece(token_id)
  3595. text = piece.encode("utf-8")
  3596. score = tokenizer.GetScore(token_id)
  3597. toktype = SentencePieceTokenTypes.NORMAL
  3598. if tokenizer.IsUnknown(token_id):
  3599. toktype = SentencePieceTokenTypes.UNKNOWN
  3600. elif tokenizer.IsControl(token_id):
  3601. toktype = SentencePieceTokenTypes.CONTROL
  3602. elif tokenizer.IsUnused(token_id):
  3603. toktype = SentencePieceTokenTypes.UNUSED
  3604. elif tokenizer.IsByte(token_id):
  3605. toktype = SentencePieceTokenTypes.BYTE
  3606. tokens[token_id] = text
  3607. scores[token_id] = score
  3608. toktypes[token_id] = toktype
  3609. added_tokens_file = self.dir_model / 'added_tokens.json'
  3610. if added_tokens_file.is_file():
  3611. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3612. added_tokens_json = json.load(f)
  3613. for key in added_tokens_json:
  3614. token_id = added_tokens_json[key]
  3615. if token_id >= vocab_size:
  3616. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3617. continue
  3618. tokens[token_id] = key.encode("utf-8")
  3619. scores[token_id] = -1000.0
  3620. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3621. if vocab_size > len(tokens):
  3622. pad_count = vocab_size - len(tokens)
  3623. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3624. for i in range(1, pad_count + 1):
  3625. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3626. scores.append(-1000.0)
  3627. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3628. self.gguf_writer.add_tokenizer_model("t5")
  3629. self.gguf_writer.add_tokenizer_pre("default")
  3630. self.gguf_writer.add_token_list(tokens)
  3631. self.gguf_writer.add_token_scores(scores)
  3632. self.gguf_writer.add_token_types(toktypes)
  3633. self.gguf_writer.add_add_space_prefix(add_prefix)
  3634. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3635. if precompiled_charsmap:
  3636. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3637. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3638. special_vocab.add_to_gguf(self.gguf_writer)
  3639. self.gguf_writer.add_add_bos_token(False)
  3640. self.gguf_writer.add_add_eos_token(True)
  3641. def set_gguf_parameters(self):
  3642. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3643. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3644. n_ctx = 512
  3645. self.gguf_writer.add_context_length(n_ctx)
  3646. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3647. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3648. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3649. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3650. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3651. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3652. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3653. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3654. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3655. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3656. self.gguf_writer.add_file_type(self.ftype)
  3657. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3658. del bid # unused
  3659. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3660. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3661. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3662. # and decoder and ignore the remaining ones.
  3663. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3664. if not self.shared_token_embeddings_found:
  3665. name = "shared.weight"
  3666. self.shared_token_embeddings_found = True
  3667. else:
  3668. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3669. return []
  3670. return [(self.map_tensor_name(name), data_torch)]
  3671. @Model.register("T5EncoderModel")
  3672. class T5EncoderModel(Model):
  3673. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3674. def __init__(self, *args, **kwargs):
  3675. super().__init__(*args, **kwargs)
  3676. self.shared_token_embeddings_found = False
  3677. def set_vocab(self):
  3678. # to avoid TypeError: Descriptors cannot be created directly
  3679. # exception when importing sentencepiece_model_pb2
  3680. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3681. from sentencepiece import SentencePieceProcessor
  3682. from sentencepiece import sentencepiece_model_pb2 as model
  3683. tokenizer_path = self.dir_model / 'tokenizer.model'
  3684. # many older models use spiece.model tokenizer model filename
  3685. if not tokenizer_path.is_file():
  3686. tokenizer_path = self.dir_model / 'spiece.model'
  3687. if not tokenizer_path.is_file():
  3688. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3689. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3690. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3691. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3692. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3693. # assure the tokenizer model file name is correct
  3694. assert tokenizer_path.name == 'tokenizer.model'
  3695. return self._set_vocab_sentencepiece()
  3696. else:
  3697. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3698. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3699. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3700. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3701. tokenizer = SentencePieceProcessor()
  3702. tokenizer.LoadFromFile(str(tokenizer_path))
  3703. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3704. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3705. scores: list[float] = [-10000.0] * vocab_size
  3706. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3707. for token_id in range(tokenizer.vocab_size()):
  3708. piece = tokenizer.IdToPiece(token_id)
  3709. text = piece.encode("utf-8")
  3710. score = tokenizer.GetScore(token_id)
  3711. toktype = SentencePieceTokenTypes.NORMAL
  3712. if tokenizer.IsUnknown(token_id):
  3713. toktype = SentencePieceTokenTypes.UNKNOWN
  3714. elif tokenizer.IsControl(token_id):
  3715. toktype = SentencePieceTokenTypes.CONTROL
  3716. elif tokenizer.IsUnused(token_id):
  3717. toktype = SentencePieceTokenTypes.UNUSED
  3718. elif tokenizer.IsByte(token_id):
  3719. toktype = SentencePieceTokenTypes.BYTE
  3720. tokens[token_id] = text
  3721. scores[token_id] = score
  3722. toktypes[token_id] = toktype
  3723. added_tokens_file = self.dir_model / 'added_tokens.json'
  3724. if added_tokens_file.is_file():
  3725. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3726. added_tokens_json = json.load(f)
  3727. for key in added_tokens_json:
  3728. token_id = added_tokens_json[key]
  3729. if token_id >= vocab_size:
  3730. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3731. continue
  3732. tokens[token_id] = key.encode("utf-8")
  3733. scores[token_id] = -1000.0
  3734. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3735. if vocab_size > len(tokens):
  3736. pad_count = vocab_size - len(tokens)
  3737. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3738. for i in range(1, pad_count + 1):
  3739. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3740. scores.append(-1000.0)
  3741. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3742. self.gguf_writer.add_tokenizer_model("t5")
  3743. self.gguf_writer.add_tokenizer_pre("default")
  3744. self.gguf_writer.add_token_list(tokens)
  3745. self.gguf_writer.add_token_scores(scores)
  3746. self.gguf_writer.add_token_types(toktypes)
  3747. self.gguf_writer.add_add_space_prefix(add_prefix)
  3748. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3749. if precompiled_charsmap:
  3750. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3751. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3752. special_vocab.add_to_gguf(self.gguf_writer)
  3753. self.gguf_writer.add_add_bos_token(False)
  3754. self.gguf_writer.add_add_eos_token(True)
  3755. def set_gguf_parameters(self):
  3756. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3757. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3758. n_ctx = 512
  3759. self.gguf_writer.add_context_length(n_ctx)
  3760. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3761. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3762. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3763. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3764. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3765. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3766. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3767. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3768. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3769. self.gguf_writer.add_file_type(self.ftype)
  3770. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3771. del bid # unused
  3772. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3773. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3774. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3775. # and decoder and ignore the remaining ones.
  3776. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3777. if not self.shared_token_embeddings_found:
  3778. name = "shared.weight"
  3779. self.shared_token_embeddings_found = True
  3780. else:
  3781. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3782. return []
  3783. return [(self.map_tensor_name(name), data_torch)]
  3784. @Model.register("JAISLMHeadModel")
  3785. class JaisModel(Model):
  3786. model_arch = gguf.MODEL_ARCH.JAIS
  3787. def __init__(self, *args, **kwargs):
  3788. super().__init__(*args, **kwargs)
  3789. # SwigLU activation
  3790. assert self.hparams["activation_function"] == "swiglu"
  3791. # ALiBi position embedding
  3792. assert self.hparams["position_embedding_type"] == "alibi"
  3793. # Embeddings scale
  3794. self.embeddings_scale = 1.0
  3795. if 'mup_embeddings_scale' in self.hparams:
  3796. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3797. elif 'embeddings_scale' in self.hparams:
  3798. self.embeddings_scale = self.hparams['embeddings_scale']
  3799. else:
  3800. assert False
  3801. self.width_scale = 1.0
  3802. if 'mup_output_alpha' in self.hparams:
  3803. assert 'mup_width_scale' in self.hparams
  3804. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3805. elif 'width_scale' in self.hparams:
  3806. self.width_scale = self.hparams['width_scale']
  3807. else:
  3808. assert False
  3809. self.max_alibi_bias = 8.0
  3810. def set_vocab(self):
  3811. self._set_vocab_gpt2()
  3812. def set_gguf_parameters(self):
  3813. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3814. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3815. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3816. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3817. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3818. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3819. self.gguf_writer.add_file_type(self.ftype)
  3820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3821. del bid # unused
  3822. tensors: list[tuple[str, Tensor]] = []
  3823. # we don't need these
  3824. if name.endswith((".attn.bias")):
  3825. return tensors
  3826. if name.endswith(("relative_pe.slopes")):
  3827. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3828. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3829. # but Jais's PyTorch model simply precalculates the slope values and places them
  3830. # in relative_pes.slopes
  3831. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3832. first_val = float(data_torch[0].item())
  3833. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3834. return tensors
  3835. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3836. data_torch = data_torch.transpose(1, 0)
  3837. new_name = self.map_tensor_name(name)
  3838. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3839. tensors.append((new_name, data_torch * self.embeddings_scale))
  3840. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3841. tensors.append((new_name, data_torch * self.width_scale))
  3842. else:
  3843. tensors.append((new_name, data_torch))
  3844. return tensors
  3845. def prepare_tensors(self):
  3846. super().prepare_tensors()
  3847. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3848. @Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  3849. class ChatGLMModel(Model):
  3850. model_arch = gguf.MODEL_ARCH.CHATGLM
  3851. def set_vocab_chatglm3(self):
  3852. dir_model = self.dir_model
  3853. hparams = self.hparams
  3854. tokens: list[bytes] = []
  3855. toktypes: list[int] = []
  3856. scores: list[float] = []
  3857. from transformers import AutoTokenizer
  3858. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3859. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3860. assert max(tokenizer.get_vocab().values()) < vocab_size
  3861. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3862. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3863. for token_id in range(vocab_size):
  3864. piece = tokenizer._convert_id_to_token(token_id)
  3865. if token_id == 0:
  3866. piece = "<unk>"
  3867. elif token_id == 1:
  3868. piece = "<bos>"
  3869. elif token_id == 2:
  3870. piece = "<eos>"
  3871. text = piece.encode("utf-8")
  3872. score = 0.0
  3873. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3874. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3875. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3876. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3877. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3878. if piece in special_tokens:
  3879. toktype = SentencePieceTokenTypes.CONTROL
  3880. elif len(piece) == 0:
  3881. text = f"[PAD{token_id}]".encode("utf-8")
  3882. toktype = SentencePieceTokenTypes.UNUSED
  3883. else:
  3884. toktype = SentencePieceTokenTypes.USER_DEFINED
  3885. tokens.append(text)
  3886. scores.append(score)
  3887. toktypes.append(toktype)
  3888. continue
  3889. toktype = SentencePieceTokenTypes.NORMAL
  3890. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3891. toktype = SentencePieceTokenTypes.UNKNOWN
  3892. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3893. toktype = SentencePieceTokenTypes.CONTROL
  3894. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3895. toktype = SentencePieceTokenTypes.UNUSED
  3896. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3897. toktype = SentencePieceTokenTypes.BYTE
  3898. tokens.append(text)
  3899. scores.append(score)
  3900. toktypes.append(toktype)
  3901. self.gguf_writer.add_tokenizer_model("llama")
  3902. # glm3 needs prefix and suffix formatted as:
  3903. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3904. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3905. self.gguf_writer.add_token_list(tokens)
  3906. self.gguf_writer.add_token_scores(scores)
  3907. self.gguf_writer.add_token_types(toktypes)
  3908. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3909. special_vocab.add_to_gguf(self.gguf_writer)
  3910. @staticmethod
  3911. def token_bytes_to_string(b):
  3912. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3913. byte_encoder = bytes_to_unicode()
  3914. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3915. @staticmethod
  3916. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3917. parts = [bytes([b]) for b in token]
  3918. while True:
  3919. min_idx = None
  3920. min_rank = None
  3921. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3922. rank = mergeable_ranks.get(pair[0] + pair[1])
  3923. if rank is not None and (min_rank is None or rank < min_rank):
  3924. min_idx = i
  3925. min_rank = rank
  3926. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3927. break
  3928. assert min_idx is not None
  3929. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3930. return parts
  3931. def set_vocab(self):
  3932. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3933. self.set_vocab_chatglm3()
  3934. return
  3935. dir_model = self.dir_model
  3936. hparams = self.hparams
  3937. tokens: list[str] = []
  3938. toktypes: list[int] = []
  3939. from transformers import AutoTokenizer
  3940. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3941. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  3942. assert max(tokenizer.get_vocab().values()) < vocab_size
  3943. tokens, toktypes, tokpre = self.get_vocab_base()
  3944. self.gguf_writer.add_tokenizer_model("gpt2")
  3945. self.gguf_writer.add_tokenizer_pre(tokpre)
  3946. self.gguf_writer.add_token_list(tokens)
  3947. self.gguf_writer.add_token_types(toktypes)
  3948. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  3949. # only add special tokens when they were not already loaded from config.json
  3950. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3951. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3952. # this one is usually not in config.json anyway
  3953. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3954. special_vocab.add_to_gguf(self.gguf_writer)
  3955. def set_gguf_parameters(self):
  3956. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3957. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3958. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  3959. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3960. self.gguf_writer.add_embedding_length(n_embed)
  3961. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  3962. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  3963. self.gguf_writer.add_head_count(n_head)
  3964. self.gguf_writer.add_head_count_kv(n_head_kv)
  3965. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  3966. self.gguf_writer.add_file_type(self.ftype)
  3967. if "attention_dim" in self.hparams:
  3968. rope_dim = self.hparams["attention_dim"]
  3969. else:
  3970. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3971. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  3972. self.gguf_writer.add_add_bos_token(False)
  3973. rope_freq = 10000
  3974. if "rope_ratio" in self.hparams:
  3975. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3976. self.gguf_writer.add_rope_freq_base(rope_freq)
  3977. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3978. del bid # unused
  3979. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  3980. return []
  3981. name = name.removeprefix("transformer.")
  3982. return [(self.map_tensor_name(name), data_torch)]
  3983. @Model.register("NemotronForCausalLM")
  3984. class NemotronModel(Model):
  3985. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3986. def set_vocab(self):
  3987. self._set_vocab_sentencepiece()
  3988. self.gguf_writer.add_pad_token_id(0)
  3989. self.gguf_writer.add_unk_token_id(1)
  3990. def set_gguf_parameters(self):
  3991. super().set_gguf_parameters()
  3992. hparams = self.hparams
  3993. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3994. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3995. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3996. # * Partial RoPE
  3997. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3998. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3999. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4000. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4001. # * RopeScaling for Nemotron
  4002. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4003. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4004. else:
  4005. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4006. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4007. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4008. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4009. # model.layers.{l}.input_layernorm.weight
  4010. # model.layers.{l}.post_attention_layernorm.weight
  4011. # model.norm.weight
  4012. if name.endswith("norm.weight"):
  4013. data_torch = data_torch + 1
  4014. return [(self.map_tensor_name(name), data_torch)]
  4015. @Model.register("ExaoneForCausalLM")
  4016. class ExaoneModel(Model):
  4017. model_arch = gguf.MODEL_ARCH.EXAONE
  4018. def set_gguf_parameters(self):
  4019. hparams = self.hparams
  4020. assert (hparams["activation_function"] == "silu")
  4021. max_position_embeddings = hparams["max_position_embeddings"]
  4022. embed_dim = hparams["hidden_size"]
  4023. num_heads = hparams["num_attention_heads"]
  4024. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4025. layer_norm_eps = hparams["layer_norm_epsilon"]
  4026. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4027. num_layers = hparams["num_layers"]
  4028. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4029. # attention_dropout_rate = hparams["attention_dropout"]
  4030. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4031. # embed_dropout_rate = hparams["embed_dropout"]
  4032. self.gguf_writer.add_embedding_length(embed_dim)
  4033. self.gguf_writer.add_head_count(num_heads)
  4034. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4035. self.gguf_writer.add_context_length(max_position_embeddings)
  4036. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4037. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4038. self.gguf_writer.add_block_count(num_layers)
  4039. self.gguf_writer.add_file_type(self.ftype)
  4040. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4041. self.gguf_writer.add_rope_freq_base(rope_theta)
  4042. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4043. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4044. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4045. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4046. if hparams["rope_scaling"].get("type") == "linear":
  4047. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4048. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4049. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4050. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4051. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4052. base = self.hparams.get("rope_theta", 10000.0)
  4053. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4054. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4055. factor = rope_scaling.get("factor", 8.0)
  4056. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4057. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4058. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4059. low_freq_wavelen = old_context_len / low_freq_factor
  4060. high_freq_wavelen = old_context_len / high_freq_factor
  4061. assert low_freq_wavelen != high_freq_wavelen
  4062. rope_factors = []
  4063. for freq in freqs:
  4064. wavelen = 2 * math.pi / freq
  4065. if wavelen < high_freq_wavelen:
  4066. rope_factors.append(1)
  4067. elif wavelen > low_freq_wavelen:
  4068. rope_factors.append(factor)
  4069. else:
  4070. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4071. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4072. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4073. @Model.register("GraniteForCausalLM")
  4074. class GraniteModel(LlamaModel):
  4075. """Conversion for IBM's GraniteForCausalLM"""
  4076. model_arch = gguf.MODEL_ARCH.GRANITE
  4077. def set_gguf_parameters(self):
  4078. """Granite uses standard llama parameters with the following differences:
  4079. - No head_dim support
  4080. - New multiplier params:
  4081. - attention_scale
  4082. - embedding_scale
  4083. - residual_scale
  4084. - logits_scaling
  4085. """
  4086. if head_dim := self.hparams.pop("head_dim", None):
  4087. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4088. super().set_gguf_parameters()
  4089. # NOTE: Convert _multiplier params to _scale params for naming
  4090. # consistency
  4091. if attention_scale := self.hparams.get("attention_multiplier"):
  4092. self.gguf_writer.add_attention_scale(attention_scale)
  4093. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4094. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4095. self.gguf_writer.add_embedding_scale(embedding_scale)
  4096. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4097. if residual_scale := self.hparams.get("residual_multiplier"):
  4098. self.gguf_writer.add_residual_scale(residual_scale)
  4099. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4100. if logits_scale := self.hparams.get("logits_scaling"):
  4101. self.gguf_writer.add_logit_scale(logits_scale)
  4102. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4103. @Model.register("GraniteMoeForCausalLM")
  4104. class GraniteMoeModel(GraniteModel):
  4105. """Conversion for IBM's GraniteMoeForCausalLM"""
  4106. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4107. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4108. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4109. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4110. the hidden size that is then split during forward. To keep compatibility
  4111. with existing mixtral support, we pull them apart here.
  4112. """
  4113. if name.endswith("block_sparse_moe.input_linear.weight"):
  4114. ffn_dim = self.hparams["intermediate_size"]
  4115. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4116. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4117. return [
  4118. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4119. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4120. ]
  4121. return super().modify_tensors(data_torch, name, bid)
  4122. @Model.register("ChameleonForConditionalGeneration")
  4123. @Model.register("ChameleonForCausalLM") # obsolete
  4124. class ChameleonModel(Model):
  4125. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4126. def set_gguf_parameters(self):
  4127. super().set_gguf_parameters()
  4128. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4129. def set_vocab(self):
  4130. self._set_vocab_gpt2()
  4131. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4132. # ignore image tokenizer for now
  4133. # TODO: remove this once image support is implemented for Chameleon
  4134. if name.startswith("model.vqmodel"):
  4135. return []
  4136. n_head = self.hparams["num_attention_heads"]
  4137. n_kv_head = self.hparams.get("num_key_value_heads")
  4138. hidden_dim = self.hparams.get("hidden_size")
  4139. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4140. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4141. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4142. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4143. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4144. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4145. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4146. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4147. return [(self.map_tensor_name(name), data_torch)]
  4148. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4149. @staticmethod
  4150. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4151. head_dim = hidden_dim // n_heads
  4152. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4153. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4154. return data_torch
  4155. ###### CONVERSION LOGIC ######
  4156. # tree of lazy tensors
  4157. class LazyTorchTensor(gguf.LazyBase):
  4158. _tensor_type = torch.Tensor
  4159. # to keep the type-checker happy
  4160. dtype: torch.dtype
  4161. shape: torch.Size
  4162. # only used when converting a torch.Tensor to a np.ndarray
  4163. _dtype_map: dict[torch.dtype, type] = {
  4164. torch.float16: np.float16,
  4165. torch.float32: np.float32,
  4166. }
  4167. # used for safetensors slices
  4168. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4169. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4170. _dtype_str_map: dict[str, torch.dtype] = {
  4171. "F64": torch.float64,
  4172. "F32": torch.float32,
  4173. "BF16": torch.bfloat16,
  4174. "F16": torch.float16,
  4175. # "U64": torch.uint64,
  4176. "I64": torch.int64,
  4177. # "U32": torch.uint32,
  4178. "I32": torch.int32,
  4179. # "U16": torch.uint16,
  4180. "I16": torch.int16,
  4181. "U8": torch.uint8,
  4182. "I8": torch.int8,
  4183. "BOOL": torch.bool,
  4184. "F8_E4M3": torch.float8_e4m3fn,
  4185. "F8_E5M2": torch.float8_e5m2,
  4186. }
  4187. def numpy(self) -> gguf.LazyNumpyTensor:
  4188. dtype = self._dtype_map[self.dtype]
  4189. return gguf.LazyNumpyTensor(
  4190. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4191. args=(self,),
  4192. func=(lambda s: s.numpy())
  4193. )
  4194. @classmethod
  4195. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4196. return torch.empty(size=shape, dtype=dtype, device="meta")
  4197. @classmethod
  4198. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4199. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4200. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4201. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4202. return cast(torch.Tensor, lazy)
  4203. @classmethod
  4204. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4205. del types # unused
  4206. if kwargs is None:
  4207. kwargs = {}
  4208. if func is torch.Tensor.numpy:
  4209. return args[0].numpy()
  4210. return cls._wrap_fn(func)(*args, **kwargs)
  4211. def parse_args() -> argparse.Namespace:
  4212. parser = argparse.ArgumentParser(
  4213. description="Convert a huggingface model to a GGML compatible file")
  4214. parser.add_argument(
  4215. "--vocab-only", action="store_true",
  4216. help="extract only the vocab",
  4217. )
  4218. parser.add_argument(
  4219. "--outfile", type=Path,
  4220. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4221. )
  4222. parser.add_argument(
  4223. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4224. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4225. )
  4226. parser.add_argument(
  4227. "--bigendian", action="store_true",
  4228. help="model is executed on big endian machine",
  4229. )
  4230. parser.add_argument(
  4231. "model", type=Path,
  4232. help="directory containing model file",
  4233. nargs="?",
  4234. )
  4235. parser.add_argument(
  4236. "--use-temp-file", action="store_true",
  4237. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4238. )
  4239. parser.add_argument(
  4240. "--no-lazy", action="store_true",
  4241. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4242. )
  4243. parser.add_argument(
  4244. "--model-name", type=str, default=None,
  4245. help="name of the model",
  4246. )
  4247. parser.add_argument(
  4248. "--verbose", action="store_true",
  4249. help="increase output verbosity",
  4250. )
  4251. parser.add_argument(
  4252. "--split-max-tensors", type=int, default=0,
  4253. help="max tensors in each split",
  4254. )
  4255. parser.add_argument(
  4256. "--split-max-size", type=str, default="0",
  4257. help="max size per split N(M|G)",
  4258. )
  4259. parser.add_argument(
  4260. "--dry-run", action="store_true",
  4261. help="only print out a split plan and exit, without writing any new files",
  4262. )
  4263. parser.add_argument(
  4264. "--no-tensor-first-split", action="store_true",
  4265. help="do not add tensors to the first split (disabled by default)"
  4266. )
  4267. parser.add_argument(
  4268. "--metadata", type=Path,
  4269. help="Specify the path for an authorship metadata override file"
  4270. )
  4271. parser.add_argument(
  4272. "--print-supported-models", action="store_true",
  4273. help="Print the supported models"
  4274. )
  4275. args = parser.parse_args()
  4276. if not args.print_supported_models and args.model is None:
  4277. parser.error("the following arguments are required: model")
  4278. return args
  4279. def split_str_to_n_bytes(split_str: str) -> int:
  4280. if split_str.endswith("K"):
  4281. n = int(split_str[:-1]) * 1000
  4282. elif split_str.endswith("M"):
  4283. n = int(split_str[:-1]) * 1000 * 1000
  4284. elif split_str.endswith("G"):
  4285. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4286. elif split_str.isnumeric():
  4287. n = int(split_str)
  4288. else:
  4289. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4290. if n < 0:
  4291. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4292. return n
  4293. def main() -> None:
  4294. args = parse_args()
  4295. if args.print_supported_models:
  4296. logger.error("Supported models:")
  4297. Model.print_registered_models()
  4298. sys.exit(0)
  4299. if args.verbose:
  4300. logging.basicConfig(level=logging.DEBUG)
  4301. else:
  4302. logging.basicConfig(level=logging.INFO)
  4303. dir_model = args.model
  4304. if not dir_model.is_dir():
  4305. logger.error(f'Error: {args.model} is not a directory')
  4306. sys.exit(1)
  4307. ftype_map: dict[str, gguf.LlamaFileType] = {
  4308. "f32": gguf.LlamaFileType.ALL_F32,
  4309. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4310. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4311. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4312. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4313. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4314. "auto": gguf.LlamaFileType.GUESSED,
  4315. }
  4316. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4317. if args.use_temp_file and is_split:
  4318. logger.error("Error: Cannot use temp file when splitting")
  4319. sys.exit(1)
  4320. if args.outfile is not None:
  4321. fname_out = args.outfile
  4322. else:
  4323. fname_out = dir_model
  4324. logger.info(f"Loading model: {dir_model.name}")
  4325. hparams = Model.load_hparams(dir_model)
  4326. with torch.inference_mode():
  4327. output_type = ftype_map[args.outtype]
  4328. model_architecture = hparams["architectures"][0]
  4329. try:
  4330. model_class = Model.from_model_architecture(model_architecture)
  4331. except NotImplementedError:
  4332. logger.error(f"Model {model_architecture} is not supported")
  4333. sys.exit(1)
  4334. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  4335. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4336. eager=args.no_lazy,
  4337. metadata_override=args.metadata, model_name=args.model_name,
  4338. split_max_tensors=args.split_max_tensors,
  4339. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4340. small_first_shard=args.no_tensor_first_split)
  4341. if args.vocab_only:
  4342. logger.info("Exporting model vocab...")
  4343. model_instance.write_vocab()
  4344. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4345. else:
  4346. logger.info("Exporting model...")
  4347. model_instance.write()
  4348. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4349. logger.info(f"Model successfully exported to {out_path}")
  4350. if __name__ == '__main__':
  4351. main()