tensor_mapping.py 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. ),
  29. # Token type embeddings
  30. MODEL_TENSOR.TOKEN_TYPES: (
  31. "embeddings.token_type_embeddings", # bert nomic-bert
  32. ),
  33. # Normalization of token embeddings
  34. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  35. "word_embeddings_layernorm", # bloom
  36. "embeddings.LayerNorm", # bert
  37. "emb_ln", # nomic-bert
  38. "transformer.norm", # openelm
  39. "rwkv.blocks.0.pre_ln", # rwkv
  40. "rwkv.blocks.0.pre_ln", # rwkv6
  41. "model.pre_ln", # rwkv7
  42. "model.layers.0.pre_norm", # rwkv7
  43. "backbone.norm", # wavtokenizer
  44. ),
  45. # Position embeddings
  46. MODEL_TENSOR.POS_EMBD: (
  47. "transformer.wpe", # gpt2
  48. "embeddings.position_embeddings", # bert
  49. "wpe", # gpt2
  50. ),
  51. # Output
  52. MODEL_TENSOR.OUTPUT: (
  53. "embed_out", # gptneox
  54. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
  55. "output", # llama-pth bloom internlm2
  56. "word_embeddings_for_head", # persimmon
  57. "lm_head.linear", # phi2
  58. "output_layer", # chatglm
  59. "head", # rwkv
  60. "head.out", # wavtokenizer
  61. ),
  62. # Output norm
  63. MODEL_TENSOR.OUTPUT_NORM: (
  64. "gpt_neox.final_layer_norm", # gptneox
  65. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  66. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
  67. "norm", # llama-pth
  68. "transformer.norm_f", # mpt dbrx
  69. "ln_f", # refact bloom qwen gpt2
  70. "language_model.encoder.final_layernorm", # persimmon
  71. "model.final_layernorm", # persimmon
  72. "lm_head.ln", # phi2
  73. "model.norm_f", # mamba-qbert
  74. "backbone.norm_f", # mamba
  75. "transformer.rms_norm", # Grok
  76. "encoder.final_layernorm", # chatglm
  77. "transformer.norm", # openelm
  78. "model.norm", # nemotron
  79. "rwkv.ln_out", # rwkv6
  80. "model.ln_out", # rwkv7
  81. "backbone.final_layer_norm", # wavtokenizer
  82. ),
  83. # Rope frequencies
  84. MODEL_TENSOR.ROPE_FREQS: (
  85. "rope.freqs", # llama-pth
  86. "rotary_pos_emb.inv_freq", # chatglm
  87. ),
  88. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  89. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  90. MODEL_TENSOR.CONV1D: (
  91. "backbone.embed", # roberta
  92. ),
  93. }
  94. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  95. # Attention norm
  96. MODEL_TENSOR.ATTN_NORM: (
  97. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  98. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  99. "transformer.blocks.{bid}.norm_1", # mpt
  100. "transformer.h.{bid}.input_layernorm", # falcon7b
  101. "h.{bid}.input_layernorm", # bloom
  102. "transformer.h.{bid}.ln_mlp", # falcon40b
  103. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
  104. "layers.{bid}.attention_norm", # llama-pth
  105. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  106. "model.layers.{bid}.ln1", # yi
  107. "h.{bid}.ln_1", # gpt2
  108. "transformer.h.{bid}.ln", # phi2
  109. "model.layers.layers.{bid}.norm", # plamo
  110. "model.layers.{bid}.attention_norm", # internlm2
  111. "model.layers.{bid}.norm", # mamba-qbert
  112. "backbone.layers.{bid}.norm", # mamba
  113. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  114. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  115. "encoder.layers.{bid}.input_layernorm", # chatglm
  116. "transformer.layers.{bid}.attn_norm", # openelm
  117. "rwkv.blocks.{bid}.ln1", # rwkv6
  118. "model.layers.{bid}.ln1", # rwkv7
  119. ),
  120. # Attention norm 2
  121. MODEL_TENSOR.ATTN_NORM_2: (
  122. "transformer.h.{bid}.ln_attn", # falcon40b
  123. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  124. "rwkv.blocks.{bid}.ln2", # rwkv6
  125. "model.layers.{bid}.ln2", # rwkv7
  126. ),
  127. # Attention query-key-value
  128. MODEL_TENSOR.ATTN_QKV: (
  129. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  130. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  131. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  132. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  133. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  134. "h.{bid}.self_attention.query_key_value", # bloom
  135. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  136. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  137. "h.{bid}.attn.c_attn", # gpt2
  138. "transformer.h.{bid}.mixer.Wqkv", # phi2
  139. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  140. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  141. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  142. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  143. ),
  144. # Attention query
  145. MODEL_TENSOR.ATTN_Q: (
  146. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  147. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  148. "layers.{bid}.attention.wq", # llama-pth
  149. "encoder.layer.{bid}.attention.self.query", # bert
  150. "transformer.h.{bid}.attn.q_proj", # gpt-j
  151. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  152. "model.layers.{bid}.attention.wq", # internlm2
  153. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  154. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  155. ),
  156. # Attention key
  157. MODEL_TENSOR.ATTN_K: (
  158. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  159. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  160. "layers.{bid}.attention.wk", # llama-pth
  161. "encoder.layer.{bid}.attention.self.key", # bert
  162. "transformer.h.{bid}.attn.k_proj", # gpt-j
  163. "transformer.h.{bid}.attn.k", # refact
  164. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  165. "model.layers.{bid}.attention.wk", # internlm2
  166. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  167. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  168. ),
  169. # Attention value
  170. MODEL_TENSOR.ATTN_V: (
  171. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  172. "layers.{bid}.attention.wv", # llama-pth
  173. "encoder.layer.{bid}.attention.self.value", # bert
  174. "transformer.h.{bid}.attn.v_proj", # gpt-j
  175. "transformer.h.{bid}.attn.v", # refact
  176. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  177. "model.layers.{bid}.attention.wv", # internlm2
  178. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  179. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  180. ),
  181. # Attention output
  182. MODEL_TENSOR.ATTN_OUT: (
  183. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  184. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  185. "transformer.blocks.{bid}.attn.out_proj", # mpt
  186. "transformer.h.{bid}.self_attention.dense", # falcon
  187. "h.{bid}.self_attention.dense", # bloom
  188. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  189. "model.layers.{bid}.self_attn.linear_attn", # deci
  190. "layers.{bid}.attention.wo", # llama-pth
  191. "encoder.layer.{bid}.attention.output.dense", # bert
  192. "transformer.h.{bid}.attn.out_proj", # gpt-j
  193. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  194. "model.layers.{bid}.self_attn.dense", # persimmon
  195. "h.{bid}.attn.c_proj", # gpt2
  196. "transformer.h.{bid}.mixer.out_proj", # phi2
  197. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  198. "model.layers.{bid}.attention.wo", # internlm2
  199. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  200. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  201. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  202. "encoder.layers.{bid}.self_attention.dense", # chatglm
  203. "transformer.layers.{bid}.attn.out_proj", # openelm
  204. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  205. ),
  206. # Attention output norm
  207. MODEL_TENSOR.ATTN_OUT_NORM: (
  208. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  209. "encoder.layers.{bid}.norm1", # nomic-bert
  210. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  211. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  212. ),
  213. MODEL_TENSOR.ATTN_POST_NORM: (
  214. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2
  215. ),
  216. # Rotary embeddings
  217. MODEL_TENSOR.ATTN_ROT_EMBD: (
  218. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  219. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  220. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  221. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  222. ),
  223. # Feed-forward norm
  224. MODEL_TENSOR.FFN_NORM: (
  225. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  226. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  227. "h.{bid}.post_attention_layernorm", # bloom
  228. "transformer.blocks.{bid}.norm_2", # mpt
  229. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  230. "layers.{bid}.ffn_norm", # llama-pth
  231. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  232. "model.layers.{bid}.ln2", # yi
  233. "h.{bid}.ln_2", # gpt2
  234. "model.layers.{bid}.ffn_norm", # internlm2
  235. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  236. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  237. "transformer.layers.{bid}.ffn_norm", # openelm
  238. ),
  239. # Post feed-forward norm
  240. MODEL_TENSOR.FFN_PRE_NORM: (
  241. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  242. ),
  243. # Post feed-forward norm
  244. MODEL_TENSOR.FFN_POST_NORM: (
  245. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  246. ),
  247. MODEL_TENSOR.FFN_GATE_INP: (
  248. "layers.{bid}.feed_forward.gate", # mixtral
  249. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  250. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  251. "transformer.decoder_layer.{bid}.router", # Grok
  252. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  253. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  254. ),
  255. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  256. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  257. ),
  258. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  259. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3
  260. ),
  261. # Feed-forward up
  262. MODEL_TENSOR.FFN_UP: (
  263. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  264. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  265. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  266. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  267. "h.{bid}.mlp.dense_h_to_4h", # bloom
  268. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  269. "layers.{bid}.feed_forward.w3", # llama-pth
  270. "encoder.layer.{bid}.intermediate.dense", # bert
  271. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  272. "transformer.h.{bid}.mlp.linear_3", # refact
  273. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  274. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  275. "transformer.h.{bid}.mlp.w1", # qwen
  276. "h.{bid}.mlp.c_fc", # gpt2
  277. "transformer.h.{bid}.mlp.fc1", # phi2
  278. "model.layers.{bid}.mlp.fc1", # phi2
  279. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  280. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  281. "model.layers.{bid}.feed_forward.w3", # internlm2
  282. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  283. "model.layers.{bid}.mlp.c_fc", # starcoder2
  284. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  285. "model.layers.{bid}.residual_mlp.w3", # arctic
  286. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  287. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  288. ),
  289. MODEL_TENSOR.FFN_UP_EXP: (
  290. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  291. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  292. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  293. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  294. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  295. ),
  296. MODEL_TENSOR.FFN_UP_SHEXP: (
  297. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  298. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  299. ),
  300. # AWQ-activation gate
  301. MODEL_TENSOR.FFN_ACT: (
  302. "transformer.blocks.{bid}.ffn.act", # mpt
  303. ),
  304. # Feed-forward gate
  305. MODEL_TENSOR.FFN_GATE: (
  306. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  307. "layers.{bid}.feed_forward.w1", # llama-pth
  308. "transformer.h.{bid}.mlp.w2", # qwen
  309. "transformer.h.{bid}.mlp.c_fc2", # jais
  310. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  311. "model.layers.{bid}.feed_forward.w1", # internlm2
  312. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  313. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  314. "transformer.h.{bid}.mlp.linear_1", # refact
  315. "model.layers.{bid}.residual_mlp.w1", # arctic
  316. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  317. ),
  318. MODEL_TENSOR.FFN_GATE_EXP: (
  319. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  320. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  321. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  322. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  323. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  324. ),
  325. MODEL_TENSOR.FFN_GATE_SHEXP: (
  326. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  327. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  328. ),
  329. # Feed-forward down
  330. MODEL_TENSOR.FFN_DOWN: (
  331. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  332. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  333. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  334. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  335. "h.{bid}.mlp.dense_4h_to_h", # bloom
  336. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  337. "layers.{bid}.feed_forward.w2", # llama-pth
  338. "encoder.layer.{bid}.output.dense", # bert
  339. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  340. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  341. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  342. "h.{bid}.mlp.c_proj", # gpt2
  343. "transformer.h.{bid}.mlp.fc2", # phi2
  344. "model.layers.{bid}.mlp.fc2", # phi2
  345. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  346. "model.layers.{bid}.feed_forward.w2", # internlm2
  347. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  348. "model.layers.{bid}.mlp.c_proj", # starcoder2
  349. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  350. "transformer.layers.{bid}.ffn.proj_2", # openelm
  351. "model.layers.{bid}.residual_mlp.w2", # arctic
  352. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  353. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  354. "model.layers.h.{bid}.mlp.c_proj", # exaone
  355. ),
  356. MODEL_TENSOR.FFN_DOWN_EXP: (
  357. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  358. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  359. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  360. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  361. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  362. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  363. ),
  364. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  365. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  366. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  367. ),
  368. MODEL_TENSOR.ATTN_Q_NORM: (
  369. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  370. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  371. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  372. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  373. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  374. "transformer.layers.{bid}.attn.q_norm", # openelm
  375. ),
  376. MODEL_TENSOR.ATTN_K_NORM: (
  377. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  378. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  379. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  380. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  381. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  382. "transformer.layers.{bid}.attn.k_norm", # openelm
  383. ),
  384. MODEL_TENSOR.ROPE_FREQS: (
  385. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  386. ),
  387. MODEL_TENSOR.LAYER_OUT_NORM: (
  388. "encoder.layer.{bid}.output.LayerNorm", # bert
  389. "encoder.layers.{bid}.norm2", # nomic-bert
  390. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  391. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  392. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  393. ),
  394. MODEL_TENSOR.SSM_IN: (
  395. "model.layers.{bid}.in_proj",
  396. "backbone.layers.{bid}.mixer.in_proj",
  397. ),
  398. MODEL_TENSOR.SSM_CONV1D: (
  399. "model.layers.{bid}.conv1d",
  400. "backbone.layers.{bid}.mixer.conv1d",
  401. ),
  402. MODEL_TENSOR.SSM_X: (
  403. "model.layers.{bid}.x_proj",
  404. "backbone.layers.{bid}.mixer.x_proj",
  405. ),
  406. MODEL_TENSOR.SSM_DT: (
  407. "model.layers.{bid}.dt_proj",
  408. "backbone.layers.{bid}.mixer.dt_proj",
  409. ),
  410. MODEL_TENSOR.SSM_A: (
  411. "model.layers.{bid}.A_log",
  412. "backbone.layers.{bid}.mixer.A_log",
  413. ),
  414. MODEL_TENSOR.SSM_D: (
  415. "model.layers.{bid}.D",
  416. "backbone.layers.{bid}.mixer.D",
  417. ),
  418. MODEL_TENSOR.SSM_OUT: (
  419. "model.layers.{bid}.out_proj",
  420. "backbone.layers.{bid}.mixer.out_proj",
  421. ),
  422. MODEL_TENSOR.TIME_MIX_W0: (
  423. "model.layers.{bid}.attention.w0", # rwkv7
  424. ),
  425. MODEL_TENSOR.TIME_MIX_W1: (
  426. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  427. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  428. "model.layers.{bid}.attention.w1", # rwkv7
  429. ),
  430. MODEL_TENSOR.TIME_MIX_W2: (
  431. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  432. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  433. "model.layers.{bid}.attention.w2", # rwkv7
  434. ),
  435. MODEL_TENSOR.TIME_MIX_A0: (
  436. "model.layers.{bid}.attention.a0", # rwkv7
  437. ),
  438. MODEL_TENSOR.TIME_MIX_A1: (
  439. "model.layers.{bid}.attention.a1", # rwkv7
  440. ),
  441. MODEL_TENSOR.TIME_MIX_A2: (
  442. "model.layers.{bid}.attention.a2", # rwkv7
  443. ),
  444. MODEL_TENSOR.TIME_MIX_V0: (
  445. "model.layers.{bid}.attention.v0", # rwkv7
  446. ),
  447. MODEL_TENSOR.TIME_MIX_V1: (
  448. "model.layers.{bid}.attention.v1", # rwkv7
  449. ),
  450. MODEL_TENSOR.TIME_MIX_V2: (
  451. "model.layers.{bid}.attention.v2", # rwkv7
  452. ),
  453. MODEL_TENSOR.TIME_MIX_G1: (
  454. "model.layers.{bid}.attention.g1", # rwkv7
  455. ),
  456. MODEL_TENSOR.TIME_MIX_G2: (
  457. "model.layers.{bid}.attention.g2", # rwkv7
  458. ),
  459. MODEL_TENSOR.TIME_MIX_K_K: (
  460. "model.layers.{bid}.attention.k_k", # rwkv7
  461. ),
  462. MODEL_TENSOR.TIME_MIX_K_A: (
  463. "model.layers.{bid}.attention.k_a", # rwkv7
  464. ),
  465. MODEL_TENSOR.TIME_MIX_R_K: (
  466. "model.layers.{bid}.attention.r_k", # rwkv7
  467. ),
  468. MODEL_TENSOR.TIME_MIX_LERP_X: (
  469. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  470. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  471. ),
  472. MODEL_TENSOR.TIME_MIX_LERP_K: (
  473. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  474. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  475. ),
  476. MODEL_TENSOR.TIME_MIX_LERP_V: (
  477. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  478. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  479. ),
  480. MODEL_TENSOR.TIME_MIX_LERP_R: (
  481. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  482. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  483. ),
  484. MODEL_TENSOR.TIME_MIX_LERP_G: (
  485. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  486. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  487. ),
  488. MODEL_TENSOR.TIME_MIX_LERP_W: (
  489. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  490. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  491. ),
  492. MODEL_TENSOR.TIME_MIX_FIRST: (
  493. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  494. ),
  495. MODEL_TENSOR.TIME_MIX_DECAY: (
  496. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  497. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  498. ),
  499. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  500. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  501. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  502. ),
  503. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  504. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  505. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  506. ),
  507. MODEL_TENSOR.TIME_MIX_KEY: (
  508. "rwkv.blocks.{bid}.attention.key", # rwkv6
  509. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  510. "model.layers.{bid}.attention.key", # rwkv7
  511. "model.layers.{bid}.attention.k_proj", # rwkv7
  512. ),
  513. MODEL_TENSOR.TIME_MIX_VALUE: (
  514. "rwkv.blocks.{bid}.attention.value", # rwkv6
  515. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  516. "model.layers.{bid}.attention.value", # rwkv7
  517. "model.layers.{bid}.attention.v_proj", # rwkv7
  518. ),
  519. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  520. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  521. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  522. "model.layers.{bid}.attention.receptance", # rwkv7
  523. "model.layers.{bid}.attention.r_proj", # rwkv7
  524. ),
  525. MODEL_TENSOR.TIME_MIX_GATE: (
  526. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  527. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  528. ),
  529. MODEL_TENSOR.TIME_MIX_LN: (
  530. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  531. "model.layers.{bid}.attention.ln_x" # rwkv7
  532. ),
  533. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  534. "rwkv.blocks.{bid}.attention.output", # rwkv6
  535. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  536. "model.layers.{bid}.attention.output", # rwkv7
  537. "model.layers.{bid}.attention.o_proj", # rwkv7
  538. ),
  539. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  540. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  541. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  542. ),
  543. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  544. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  545. ),
  546. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  547. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  548. "model.layers.{bid}.feed_forward.key", # rwkv7
  549. ),
  550. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  551. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  552. ),
  553. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  554. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  555. "model.layers.{bid}.feed_forward.value", # rwkv7
  556. ),
  557. MODEL_TENSOR.ATTN_Q_A: (
  558. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  559. ),
  560. MODEL_TENSOR.ATTN_Q_B: (
  561. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  562. ),
  563. MODEL_TENSOR.ATTN_KV_A_MQA: (
  564. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  565. ),
  566. MODEL_TENSOR.ATTN_KV_B: (
  567. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  568. ),
  569. MODEL_TENSOR.ATTN_Q_A_NORM: (
  570. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  571. ),
  572. MODEL_TENSOR.ATTN_KV_A_NORM: (
  573. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  574. ),
  575. MODEL_TENSOR.ATTN_SUB_NORM: (
  576. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  577. ),
  578. MODEL_TENSOR.FFN_SUB_NORM: (
  579. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  580. ),
  581. MODEL_TENSOR.DEC_ATTN_NORM: (
  582. "decoder.block.{bid}.layer.0.layer_norm", # t5
  583. ),
  584. MODEL_TENSOR.DEC_ATTN_Q: (
  585. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  586. ),
  587. MODEL_TENSOR.DEC_ATTN_K: (
  588. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  589. ),
  590. MODEL_TENSOR.DEC_ATTN_V: (
  591. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  592. ),
  593. MODEL_TENSOR.DEC_ATTN_OUT: (
  594. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  595. ),
  596. MODEL_TENSOR.DEC_ATTN_REL_B: (
  597. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  598. ),
  599. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  600. "decoder.block.{bid}.layer.1.layer_norm", # t5
  601. ),
  602. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  603. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  604. ),
  605. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  606. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  607. ),
  608. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  609. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  610. ),
  611. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  612. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  613. ),
  614. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  615. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  616. ),
  617. MODEL_TENSOR.DEC_FFN_NORM: (
  618. "decoder.block.{bid}.layer.2.layer_norm", # t5
  619. ),
  620. MODEL_TENSOR.DEC_FFN_GATE: (
  621. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  622. ),
  623. MODEL_TENSOR.DEC_FFN_UP: (
  624. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  625. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  626. ),
  627. MODEL_TENSOR.DEC_FFN_DOWN: (
  628. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  629. ),
  630. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  631. "decoder.final_layer_norm", # t5
  632. ),
  633. MODEL_TENSOR.ENC_ATTN_NORM: (
  634. "encoder.block.{bid}.layer.0.layer_norm", # t5
  635. ),
  636. MODEL_TENSOR.ENC_ATTN_Q: (
  637. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  638. ),
  639. MODEL_TENSOR.ENC_ATTN_K: (
  640. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  641. ),
  642. MODEL_TENSOR.ENC_ATTN_V: (
  643. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  644. ),
  645. MODEL_TENSOR.ENC_ATTN_OUT: (
  646. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  647. ),
  648. MODEL_TENSOR.ENC_ATTN_REL_B: (
  649. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  650. ),
  651. MODEL_TENSOR.ENC_FFN_NORM: (
  652. "encoder.block.{bid}.layer.1.layer_norm", # t5
  653. ),
  654. MODEL_TENSOR.ENC_FFN_GATE: (
  655. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  656. ),
  657. MODEL_TENSOR.ENC_FFN_UP: (
  658. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  659. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  660. ),
  661. MODEL_TENSOR.ENC_FFN_DOWN: (
  662. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  663. ),
  664. ############################################################################
  665. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  666. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  667. "encoder.final_layer_norm", # t5
  668. ),
  669. MODEL_TENSOR.CLS: (
  670. "classifier", # jina
  671. "classifier.dense", # roberta
  672. ),
  673. MODEL_TENSOR.CLS_OUT: (
  674. "classifier.out_proj", # roberta
  675. ),
  676. #############################################################################
  677. MODEL_TENSOR.CONVNEXT_DW: (
  678. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  679. ),
  680. MODEL_TENSOR.CONVNEXT_NORM: (
  681. "backbone.convnext.{bid}.norm", # wavtokenizer
  682. ),
  683. MODEL_TENSOR.CONVNEXT_PW1: (
  684. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  685. ),
  686. MODEL_TENSOR.CONVNEXT_PW2: (
  687. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  688. ),
  689. MODEL_TENSOR.CONVNEXT_GAMMA: (
  690. "backbone.convnext.{bid}.gamma", # wavtokenizer
  691. ),
  692. MODEL_TENSOR.POSNET_CONV1: (
  693. "backbone.posnet.{bid}.conv1", # wavtokenizer
  694. ),
  695. MODEL_TENSOR.POSNET_CONV2: (
  696. "backbone.posnet.{bid}.conv2", # wavtokenizer
  697. ),
  698. MODEL_TENSOR.POSNET_NORM: (
  699. "backbone.posnet.{bid}.norm", # wavtokenizer
  700. ),
  701. MODEL_TENSOR.POSNET_NORM1: (
  702. "backbone.posnet.{bid}.norm1", # wavtokenizer
  703. ),
  704. MODEL_TENSOR.POSNET_NORM2: (
  705. "backbone.posnet.{bid}.norm2", # wavtokenizer
  706. ),
  707. MODEL_TENSOR.POSNET_ATTN_NORM: (
  708. "backbone.posnet.{bid}.norm", # wavtokenizer
  709. ),
  710. MODEL_TENSOR.POSNET_ATTN_Q: (
  711. "backbone.posnet.{bid}.q", # wavtokenizer
  712. ),
  713. MODEL_TENSOR.POSNET_ATTN_K: (
  714. "backbone.posnet.{bid}.k", # wavtokenizer
  715. ),
  716. MODEL_TENSOR.POSNET_ATTN_V: (
  717. "backbone.posnet.{bid}.v", # wavtokenizer
  718. ),
  719. MODEL_TENSOR.POSNET_ATTN_OUT: (
  720. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  721. ),
  722. }
  723. # architecture-specific block mappings
  724. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  725. MODEL_ARCH.ARCTIC: {
  726. MODEL_TENSOR.FFN_NORM: (
  727. "model.layers.{bid}.residual_layernorm",
  728. ),
  729. MODEL_TENSOR.FFN_NORM_EXP: (
  730. "model.layers.{bid}.post_attention_layernorm",
  731. ),
  732. },
  733. }
  734. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  735. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  736. self.mapping = {}
  737. for tensor, keys in self.mappings_cfg.items():
  738. if tensor not in MODEL_TENSORS[arch]:
  739. continue
  740. tensor_name = TENSOR_NAMES[tensor]
  741. self.mapping[tensor_name] = (tensor, tensor_name)
  742. for key in keys:
  743. self.mapping[key] = (tensor, tensor_name)
  744. if arch in self.arch_block_mappings_cfg:
  745. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  746. for bid in range(n_blocks):
  747. for tensor, keys in self.block_mappings_cfg.items():
  748. if tensor not in MODEL_TENSORS[arch]:
  749. continue
  750. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  751. self.mapping[tensor_name] = (tensor, tensor_name)
  752. for key in keys:
  753. key = key.format(bid = bid)
  754. self.mapping[key] = (tensor, tensor_name)
  755. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  756. result = self.mapping.get(key)
  757. if result is not None:
  758. return result
  759. for suffix in try_suffixes:
  760. if key.endswith(suffix):
  761. result = self.mapping.get(key[:-len(suffix)])
  762. if result is not None:
  763. return result[0], result[1] + suffix
  764. return None
  765. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  766. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  767. if result is None:
  768. return None
  769. return result[1]
  770. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  771. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  772. if result is None:
  773. return None
  774. return result[0]
  775. def __getitem__(self, key: str) -> str:
  776. try:
  777. return self.mapping[key][1]
  778. except KeyError:
  779. raise KeyError(key)
  780. def __contains__(self, key: str) -> bool:
  781. return key in self.mapping
  782. def __repr__(self) -> str:
  783. return repr(self.mapping)
  784. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  785. return TensorNameMap(arch, n_blocks)