common.h 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama-cpp.h"
  4. #include <set>
  5. #include <string>
  6. #include <vector>
  7. #include <sstream>
  8. #ifdef _WIN32
  9. #define DIRECTORY_SEPARATOR '\\'
  10. #else
  11. #define DIRECTORY_SEPARATOR '/'
  12. #endif // _WIN32
  13. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  14. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  15. #define print_build_info() do { \
  16. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  17. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  18. } while(0)
  19. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  20. struct common_adapter_lora_info {
  21. std::string path;
  22. float scale;
  23. struct llama_adapter_lora * ptr;
  24. };
  25. using llama_tokens = std::vector<llama_token>;
  26. // build info
  27. extern int LLAMA_BUILD_NUMBER;
  28. extern const char * LLAMA_COMMIT;
  29. extern const char * LLAMA_COMPILER;
  30. extern const char * LLAMA_BUILD_TARGET;
  31. struct common_control_vector_load_info;
  32. //
  33. // CPU utils
  34. //
  35. struct cpu_params {
  36. int n_threads = -1;
  37. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  38. bool mask_valid = false; // Default: any CPU
  39. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  40. bool strict_cpu = false; // Use strict CPU placement
  41. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  42. };
  43. int32_t cpu_get_num_physical_cores();
  44. int32_t cpu_get_num_math();
  45. //
  46. // Common params
  47. //
  48. enum llama_example {
  49. LLAMA_EXAMPLE_COMMON,
  50. LLAMA_EXAMPLE_SPECULATIVE,
  51. LLAMA_EXAMPLE_MAIN,
  52. LLAMA_EXAMPLE_INFILL,
  53. LLAMA_EXAMPLE_EMBEDDING,
  54. LLAMA_EXAMPLE_PERPLEXITY,
  55. LLAMA_EXAMPLE_RETRIEVAL,
  56. LLAMA_EXAMPLE_PASSKEY,
  57. LLAMA_EXAMPLE_IMATRIX,
  58. LLAMA_EXAMPLE_BENCH,
  59. LLAMA_EXAMPLE_SERVER,
  60. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  61. LLAMA_EXAMPLE_EXPORT_LORA,
  62. LLAMA_EXAMPLE_LLAVA,
  63. LLAMA_EXAMPLE_LOOKUP,
  64. LLAMA_EXAMPLE_PARALLEL,
  65. LLAMA_EXAMPLE_TTS,
  66. LLAMA_EXAMPLE_COUNT,
  67. };
  68. enum common_sampler_type {
  69. COMMON_SAMPLER_TYPE_NONE = 0,
  70. COMMON_SAMPLER_TYPE_DRY = 1,
  71. COMMON_SAMPLER_TYPE_TOP_K = 2,
  72. COMMON_SAMPLER_TYPE_TOP_P = 3,
  73. COMMON_SAMPLER_TYPE_MIN_P = 4,
  74. //COMMON_SAMPLER_TYPE_TFS_Z = 5,
  75. COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
  76. COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
  77. COMMON_SAMPLER_TYPE_XTC = 8,
  78. COMMON_SAMPLER_TYPE_INFILL = 9,
  79. COMMON_SAMPLER_TYPE_PENALTIES = 10,
  80. };
  81. // dimensionality reduction methods, used by cvector-generator
  82. enum dimre_method {
  83. DIMRE_METHOD_PCA,
  84. DIMRE_METHOD_MEAN,
  85. };
  86. enum common_conversation_mode {
  87. COMMON_CONVERSATION_MODE_DISABLED = 0,
  88. COMMON_CONVERSATION_MODE_ENABLED = 1,
  89. COMMON_CONVERSATION_MODE_AUTO = 2,
  90. };
  91. struct common_grammar_trigger {
  92. std::string word;
  93. bool at_start;
  94. };
  95. // sampling parameters
  96. struct common_params_sampling {
  97. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  98. int32_t n_prev = 64; // number of previous tokens to remember
  99. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  100. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  101. int32_t top_k = 40; // <= 0 to use vocab size
  102. float top_p = 0.95f; // 1.0 = disabled
  103. float min_p = 0.05f; // 0.0 = disabled
  104. float xtc_probability = 0.00f; // 0.0 = disabled
  105. float xtc_threshold = 0.10f; // > 0.5 disables XTC
  106. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  107. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  108. float dynatemp_range = 0.00f; // 0.0 = disabled
  109. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  110. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  111. float penalty_repeat = 1.00f; // 1.0 = disabled
  112. float penalty_freq = 0.00f; // 0.0 = disabled
  113. float penalty_present = 0.00f; // 0.0 = disabled
  114. float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
  115. float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
  116. int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
  117. int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
  118. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  119. float top_n_sigma = -1.00f;// -1.0 = disabled
  120. float mirostat_tau = 5.00f; // target entropy
  121. float mirostat_eta = 0.10f; // learning rate
  122. bool ignore_eos = false;
  123. bool no_perf = false; // disable performance metrics
  124. bool timing_per_token = false;
  125. std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
  126. std::vector<enum common_sampler_type> samplers = {
  127. COMMON_SAMPLER_TYPE_PENALTIES,
  128. COMMON_SAMPLER_TYPE_DRY,
  129. COMMON_SAMPLER_TYPE_TOP_K,
  130. COMMON_SAMPLER_TYPE_TYPICAL_P,
  131. COMMON_SAMPLER_TYPE_TOP_P,
  132. COMMON_SAMPLER_TYPE_MIN_P,
  133. COMMON_SAMPLER_TYPE_XTC,
  134. COMMON_SAMPLER_TYPE_TEMPERATURE,
  135. };
  136. std::string grammar; // optional BNF-like grammar to constrain sampling
  137. bool grammar_lazy = false;
  138. std::vector<common_grammar_trigger> grammar_trigger_words; // optional trigger words to trigger lazy grammar
  139. std::vector<llama_token> grammar_trigger_tokens; // optional trigger tokens to trigger lazy grammar and print trigger special tokens.
  140. std::set<llama_token> preserved_tokens;
  141. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  142. // print the parameters into a string
  143. std::string print() const;
  144. };
  145. struct common_params_speculative {
  146. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  147. int32_t n_ctx = 0; // draft context size
  148. int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
  149. int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
  150. int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  151. float p_split = 0.1f; // speculative decoding split probability
  152. float p_min = 0.75f; // minimum speculative decoding probability (greedy)
  153. struct cpu_params cpuparams;
  154. struct cpu_params cpuparams_batch;
  155. std::string hf_repo = ""; // HF repo // NOLINT
  156. std::string hf_file = ""; // HF file // NOLINT
  157. std::string model = ""; // draft model for speculative decoding // NOLINT
  158. std::string model_url = ""; // model url to download // NOLINT
  159. };
  160. struct common_params_vocoder {
  161. std::string hf_repo = ""; // HF repo // NOLINT
  162. std::string hf_file = ""; // HF file // NOLINT
  163. std::string model = ""; // model path // NOLINT
  164. std::string model_url = ""; // model url to download // NOLINT
  165. std::string speaker_file = ""; // speaker file path // NOLINT
  166. bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
  167. };
  168. enum common_reasoning_format {
  169. COMMON_REASONING_FORMAT_NONE,
  170. COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
  171. };
  172. struct common_params {
  173. int32_t n_predict = -1; // new tokens to predict
  174. int32_t n_ctx = 4096; // context size
  175. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  176. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  177. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  178. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  179. int32_t n_parallel = 1; // number of parallel sequences to decode
  180. int32_t n_sequences = 1; // number of sequences to decode
  181. int32_t grp_attn_n = 1; // group-attention factor
  182. int32_t grp_attn_w = 512; // group-attention width
  183. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  184. float rope_freq_base = 0.0f; // RoPE base frequency
  185. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  186. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  187. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  188. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  189. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  190. int32_t yarn_orig_ctx = 0; // YaRN original context length
  191. float defrag_thold = 0.1f; // KV cache defragmentation threshold
  192. // offload params
  193. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  194. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  195. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  196. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  197. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  198. struct cpu_params cpuparams;
  199. struct cpu_params cpuparams_batch;
  200. ggml_backend_sched_eval_callback cb_eval = nullptr;
  201. void * cb_eval_user_data = nullptr;
  202. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  203. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  204. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  205. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  206. struct common_params_sampling sampling;
  207. struct common_params_speculative speculative;
  208. struct common_params_vocoder vocoder;
  209. std::string model = ""; // model path // NOLINT
  210. std::string model_alias = ""; // model alias // NOLINT
  211. std::string model_url = ""; // model url to download // NOLINT
  212. std::string hf_token = ""; // HF token // NOLINT
  213. std::string hf_repo = ""; // HF repo // NOLINT
  214. std::string hf_file = ""; // HF file // NOLINT
  215. std::string prompt = ""; // NOLINT
  216. std::string system_prompt = ""; // NOLINT
  217. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  218. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  219. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  220. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  221. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  222. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  223. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  224. std::vector<std::string> in_files; // all input files
  225. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  226. std::vector<llama_model_kv_override> kv_overrides;
  227. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
  228. std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
  229. std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
  230. int32_t verbosity = 0;
  231. int32_t control_vector_layer_start = -1; // layer range for control vector
  232. int32_t control_vector_layer_end = -1; // layer range for control vector
  233. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  234. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  235. // (which is more convenient to use for plotting)
  236. //
  237. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  238. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  239. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  240. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  241. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  242. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  243. bool kl_divergence = false; // compute KL divergence
  244. bool usage = false; // print usage
  245. bool completion = false; // print source-able completion script
  246. bool use_color = false; // use color to distinguish generations and inputs
  247. bool special = false; // enable special token output
  248. bool interactive = false; // interactive mode
  249. bool interactive_first = false; // wait for user input immediately
  250. bool prompt_cache_all = false; // save user input and generations to prompt cache
  251. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  252. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  253. bool multiline_input = false; // reverse the usage of `\`
  254. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  255. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  256. bool flash_attn = false; // flash attention
  257. bool no_perf = false; // disable performance metrics
  258. bool ctx_shift = true; // context shift on inifinite text generation
  259. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  260. bool logits_all = false; // return logits for all tokens in the batch
  261. bool use_mmap = true; // use mmap for faster loads
  262. bool use_mlock = false; // use mlock to keep model in memory
  263. bool verbose_prompt = false; // print prompt tokens before generation
  264. bool display_prompt = true; // print prompt before generation
  265. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  266. bool no_kv_offload = false; // disable KV offloading
  267. bool warmup = true; // warmup run
  268. bool check_tensors = false; // validate tensor data
  269. ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
  270. ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
  271. common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
  272. // multimodal models (see examples/llava)
  273. std::string mmproj = ""; // path to multimodal projector // NOLINT
  274. std::vector<std::string> image; // path to image file(s)
  275. // embedding
  276. bool embedding = false; // get only sentence embedding
  277. int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  278. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  279. std::string embd_sep = "\n"; // separator of embeddings
  280. bool reranking = false; // enable reranking support on server
  281. // server params
  282. int32_t port = 8080; // server listens on this network port
  283. int32_t timeout_read = 600; // http read timeout in seconds
  284. int32_t timeout_write = timeout_read; // http write timeout in seconds
  285. int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  286. int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
  287. std::string hostname = "127.0.0.1";
  288. std::string public_path = ""; // NOLINT
  289. std::string chat_template = ""; // NOLINT
  290. bool use_jinja = false; // NOLINT
  291. bool enable_chat_template = true;
  292. common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
  293. std::vector<std::string> api_keys;
  294. std::string ssl_file_key = ""; // NOLINT
  295. std::string ssl_file_cert = ""; // NOLINT
  296. // "advanced" endpoints are disabled by default for better security
  297. bool webui = true;
  298. bool endpoint_slots = false;
  299. bool endpoint_props = false; // only control POST requests, not GET
  300. bool endpoint_metrics = false;
  301. bool log_json = false;
  302. std::string slot_save_path;
  303. float slot_prompt_similarity = 0.5f;
  304. // batched-bench params
  305. bool is_pp_shared = false;
  306. std::vector<int32_t> n_pp;
  307. std::vector<int32_t> n_tg;
  308. std::vector<int32_t> n_pl;
  309. // retrieval params
  310. std::vector<std::string> context_files; // context files to embed
  311. int32_t chunk_size = 64; // chunk size for context embedding
  312. std::string chunk_separator = "\n"; // chunk separator for context embedding
  313. // passkey params
  314. int32_t n_junk = 250; // number of times to repeat the junk text
  315. int32_t i_pos = -1; // position of the passkey in the junk text
  316. // imatrix params
  317. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  318. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  319. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  320. int32_t i_chunk = 0; // start processing from this chunk
  321. bool process_output = false; // collect data for the output tensor
  322. bool compute_ppl = true; // whether to compute perplexity
  323. // cvector-generator params
  324. int n_pca_batch = 100;
  325. int n_pca_iterations = 1000;
  326. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  327. std::string cvector_outfile = "control_vector.gguf";
  328. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  329. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  330. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  331. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  332. // batched-bench params
  333. bool batched_bench_output_jsonl = false;
  334. };
  335. // call once at the start of a program if it uses libcommon
  336. // initializes the logging system and prints info about the build
  337. void common_init();
  338. std::string common_params_get_system_info(const common_params & params);
  339. bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  340. bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  341. void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
  342. bool set_process_priority(enum ggml_sched_priority prio);
  343. //
  344. // String utils
  345. //
  346. #ifdef __GNUC__
  347. # if defined(__MINGW32__) && !defined(__clang__)
  348. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  349. # else
  350. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  351. # endif
  352. #else
  353. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  354. #endif
  355. LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
  356. std::string string_format(const char * fmt, ...);
  357. std::string string_strip(const std::string & str);
  358. std::string string_get_sortable_timestamp();
  359. std::string string_join(const std::vector<std::string> & values, const std::string & separator);
  360. std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
  361. std::string string_repeat(const std::string & str, size_t n);
  362. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  363. template<class T>
  364. static std::vector<T> string_split(const std::string & str, char delim) {
  365. static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
  366. std::vector<T> values;
  367. std::istringstream str_stream(str);
  368. std::string token;
  369. while (std::getline(str_stream, token, delim)) {
  370. T value;
  371. std::istringstream token_stream(token);
  372. token_stream >> value;
  373. values.push_back(value);
  374. }
  375. return values;
  376. }
  377. template<>
  378. std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
  379. {
  380. std::vector<std::string> parts;
  381. size_t begin_pos = 0;
  382. size_t separator_pos = input.find(separator);
  383. while (separator_pos != std::string::npos) {
  384. std::string part = input.substr(begin_pos, separator_pos - begin_pos);
  385. parts.emplace_back(part);
  386. begin_pos = separator_pos + 1;
  387. separator_pos = input.find(separator, begin_pos);
  388. }
  389. parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
  390. return parts;
  391. }
  392. static bool string_starts_with(const std::string & str,
  393. const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
  394. return str.rfind(prefix, 0) == 0;
  395. }
  396. static bool string_ends_with(const std::string & str,
  397. const std::string & suffix) { // While we wait for C++20's std::string::ends_with...
  398. return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
  399. }
  400. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  401. void string_process_escapes(std::string & input);
  402. std::string string_from(bool value);
  403. std::string string_from(const std::vector<int> & values);
  404. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  405. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  406. //
  407. // Filesystem utils
  408. //
  409. bool fs_validate_filename(const std::string & filename);
  410. bool fs_create_directory_with_parents(const std::string & path);
  411. std::string fs_get_cache_directory();
  412. std::string fs_get_cache_file(const std::string & filename);
  413. //
  414. // Model utils
  415. //
  416. // note: defines object's lifetime
  417. struct common_init_result {
  418. llama_model_ptr model;
  419. llama_context_ptr context;
  420. std::vector<llama_adapter_lora_ptr> lora;
  421. };
  422. struct common_init_result common_init_from_params(common_params & params);
  423. struct llama_model_params common_model_params_to_llama ( common_params & params);
  424. struct llama_context_params common_context_params_to_llama(const common_params & params);
  425. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  426. struct llama_model * common_load_model_from_url(
  427. const std::string & model_url,
  428. const std::string & local_path,
  429. const std::string & hf_token,
  430. const struct llama_model_params & params);
  431. struct llama_model * common_load_model_from_hf(
  432. const std::string & repo,
  433. const std::string & remote_path,
  434. const std::string & local_path,
  435. const std::string & hf_token,
  436. const struct llama_model_params & params);
  437. std::pair<std::string, std::string> common_get_hf_file(
  438. const std::string & hf_repo_with_tag,
  439. const std::string & hf_token);
  440. // clear LoRA adapters from context, then apply new list of adapters
  441. void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
  442. //
  443. // Batch utils
  444. //
  445. void common_batch_clear(struct llama_batch & batch);
  446. void common_batch_add(
  447. struct llama_batch & batch,
  448. llama_token id,
  449. llama_pos pos,
  450. const std::vector<llama_seq_id> & seq_ids,
  451. bool logits);
  452. //
  453. // Token utils
  454. //
  455. // longest common prefix
  456. size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
  457. // longet common subsequence
  458. size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
  459. //
  460. // Vocab utils
  461. //
  462. // tokenizes a string into a vector of tokens
  463. // should work similar to Python's `tokenizer.encode`
  464. std::vector<llama_token> common_tokenize(
  465. const struct llama_context * ctx,
  466. const std::string & text,
  467. bool add_special,
  468. bool parse_special = false);
  469. std::vector<llama_token> common_tokenize(
  470. const struct llama_vocab * vocab,
  471. const std::string & text,
  472. bool add_special,
  473. bool parse_special = false);
  474. // tokenizes a token into a piece, optionally renders special/control tokens
  475. // should work similar to Python's `tokenizer.id_to_piece`
  476. std::string common_token_to_piece(
  477. const struct llama_context * ctx,
  478. llama_token token,
  479. bool special = true);
  480. std::string common_token_to_piece(
  481. const struct llama_vocab * vocab,
  482. llama_token token,
  483. bool special = true);
  484. // detokenizes a vector of tokens into a string
  485. // should work similar to Python's `tokenizer.decode`
  486. // optionally renders special/control tokens
  487. std::string common_detokenize(
  488. const struct llama_context * ctx,
  489. const std::vector<llama_token> & tokens,
  490. bool special = true);
  491. std::string common_detokenize(
  492. const struct llama_vocab * vocab,
  493. const std::vector<llama_token> & tokens,
  494. bool special = true);
  495. //
  496. // KV cache utils
  497. //
  498. // Dump the KV cache view with the number of sequences per cell.
  499. void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  500. // Dump the KV cache view showing individual sequences in each cell (long output).
  501. void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  502. //
  503. // Embedding utils
  504. //
  505. // TODO: repace embd_norm with an enum
  506. void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
  507. float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  508. //
  509. // Control vector utils
  510. //
  511. struct common_control_vector_data {
  512. int n_embd;
  513. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  514. std::vector<float> data;
  515. };
  516. struct common_control_vector_load_info {
  517. float strength;
  518. std::string fname;
  519. };
  520. // Load control vectors, scale each by strength, and add them together.
  521. // On error, returns {-1, empty}
  522. common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
  523. //
  524. // Split utils
  525. //
  526. namespace {
  527. const char * const LLM_KV_SPLIT_NO = "split.no";
  528. const char * const LLM_KV_SPLIT_COUNT = "split.count";
  529. const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  530. }