ggml.c 386 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include <cublas_v2.h>
  128. #include <cuda_runtime.h>
  129. #include "ggml-cuda.h"
  130. #define CUDA_CHECK(err) \
  131. do { \
  132. cudaError_t err_ = (err); \
  133. if (err_ != cudaSuccess) { \
  134. printf("CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
  135. cudaGetErrorString(err_)); \
  136. exit(1); \
  137. } \
  138. } while (0)
  139. #define CUBLAS_CHECK(err) \
  140. do { \
  141. cublasStatus_t err_ = (err); \
  142. if (err_ != CUBLAS_STATUS_SUCCESS) { \
  143. printf("cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
  144. exit(1); \
  145. } \
  146. } while (0)
  147. static cublasHandle_t cublasH = NULL;
  148. static cudaStream_t cudaStream = NULL;
  149. static void init_cublas(void) {
  150. if (cublasH == NULL) {
  151. // create cublas handle, bind a stream
  152. CUBLAS_CHECK(cublasCreate(&cublasH));
  153. CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
  154. CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
  155. // configure logging to stdout
  156. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
  157. }
  158. }
  159. #endif
  160. #undef MIN
  161. #undef MAX
  162. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  163. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  164. // floating point type used to accumulate sums
  165. typedef double ggml_float;
  166. // 16-bit float
  167. // on Arm, we use __fp16
  168. // on x86, we use uint16_t
  169. #ifdef __ARM_NEON
  170. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  171. //
  172. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  173. //
  174. #include <arm_neon.h>
  175. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  176. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  177. #define GGML_FP16_TO_FP32(x) ((float) (x))
  178. #define GGML_FP32_TO_FP16(x) (x)
  179. #else
  180. #ifdef __wasm_simd128__
  181. #include <wasm_simd128.h>
  182. #else
  183. #ifdef __POWER9_VECTOR__
  184. #include <altivec.h>
  185. #undef bool
  186. #define bool _Bool
  187. #else
  188. #include <immintrin.h>
  189. #endif
  190. #endif
  191. #ifdef __F16C__
  192. #ifdef _MSC_VER
  193. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  194. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  195. #else
  196. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  197. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  198. #endif
  199. #elif defined(__POWER9_VECTOR__)
  200. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  201. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  202. /* the inline asm below is about 12% faster than the lookup method */
  203. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  204. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  205. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  206. register float f;
  207. register double d;
  208. __asm__(
  209. "mtfprd %0,%2\n"
  210. "xscvhpdp %0,%0\n"
  211. "frsp %1,%0\n" :
  212. /* temp */ "=d"(d),
  213. /* out */ "=f"(f):
  214. /* in */ "r"(h));
  215. return f;
  216. }
  217. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  218. register double d;
  219. register ggml_fp16_t r;
  220. __asm__( /* xscvdphp can work on double or single precision */
  221. "xscvdphp %0,%2\n"
  222. "mffprd %1,%0\n" :
  223. /* temp */ "=d"(d),
  224. /* out */ "=r"(r):
  225. /* in */ "f"(f));
  226. return r;
  227. }
  228. #else
  229. // FP16 <-> FP32
  230. // ref: https://github.com/Maratyszcza/FP16
  231. static inline float fp32_from_bits(uint32_t w) {
  232. union {
  233. uint32_t as_bits;
  234. float as_value;
  235. } fp32;
  236. fp32.as_bits = w;
  237. return fp32.as_value;
  238. }
  239. static inline uint32_t fp32_to_bits(float f) {
  240. union {
  241. float as_value;
  242. uint32_t as_bits;
  243. } fp32;
  244. fp32.as_value = f;
  245. return fp32.as_bits;
  246. }
  247. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  248. const uint32_t w = (uint32_t) h << 16;
  249. const uint32_t sign = w & UINT32_C(0x80000000);
  250. const uint32_t two_w = w + w;
  251. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  252. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  253. const float exp_scale = 0x1.0p-112f;
  254. #else
  255. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  256. #endif
  257. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  258. const uint32_t magic_mask = UINT32_C(126) << 23;
  259. const float magic_bias = 0.5f;
  260. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  261. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  262. const uint32_t result = sign |
  263. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  264. return fp32_from_bits(result);
  265. }
  266. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  267. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  268. const float scale_to_inf = 0x1.0p+112f;
  269. const float scale_to_zero = 0x1.0p-110f;
  270. #else
  271. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  272. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  273. #endif
  274. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  275. const uint32_t w = fp32_to_bits(f);
  276. const uint32_t shl1_w = w + w;
  277. const uint32_t sign = w & UINT32_C(0x80000000);
  278. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  279. if (bias < UINT32_C(0x71000000)) {
  280. bias = UINT32_C(0x71000000);
  281. }
  282. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  283. const uint32_t bits = fp32_to_bits(base);
  284. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  285. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  286. const uint32_t nonsign = exp_bits + mantissa_bits;
  287. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  288. }
  289. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  290. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  291. #endif // __F16C__
  292. #endif // __ARM_NEON
  293. //
  294. // global data
  295. //
  296. // precomputed gelu table for f16 (128 KB)
  297. static ggml_fp16_t table_gelu_f16[1 << 16];
  298. // precomputed silu table for f16 (128 KB)
  299. static ggml_fp16_t table_silu_f16[1 << 16];
  300. // precomputed exp table for f16 (128 KB)
  301. static ggml_fp16_t table_exp_f16[1 << 16];
  302. // precomputed f32 table for f16 (256 KB)
  303. static float table_f32_f16[1 << 16];
  304. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  305. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  306. // This is also true for POWER9.
  307. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  308. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  309. uint16_t s;
  310. memcpy(&s, &f, sizeof(uint16_t));
  311. return table_f32_f16[s];
  312. }
  313. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  314. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  315. #endif
  316. // note: do not use these inside ggml.c
  317. // these are meant to be used via the ggml.h API
  318. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  319. return (float) GGML_FP16_TO_FP32(x);
  320. }
  321. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  322. return GGML_FP32_TO_FP16(x);
  323. }
  324. //
  325. // timing
  326. //
  327. #if defined(_MSC_VER) || defined(__MINGW32__)
  328. static int64_t timer_freq;
  329. void ggml_time_init(void) {
  330. LARGE_INTEGER frequency;
  331. QueryPerformanceFrequency(&frequency);
  332. timer_freq = frequency.QuadPart;
  333. }
  334. int64_t ggml_time_ms(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return (t.QuadPart * 1000) / timer_freq;
  338. }
  339. int64_t ggml_time_us(void) {
  340. LARGE_INTEGER t;
  341. QueryPerformanceCounter(&t);
  342. return (t.QuadPart * 1000000) / timer_freq;
  343. }
  344. #else
  345. void ggml_time_init(void) {}
  346. int64_t ggml_time_ms(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  350. }
  351. int64_t ggml_time_us(void) {
  352. struct timespec ts;
  353. clock_gettime(CLOCK_MONOTONIC, &ts);
  354. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  355. }
  356. #endif
  357. int64_t ggml_cycles(void) {
  358. return clock();
  359. }
  360. int64_t ggml_cycles_per_ms(void) {
  361. return CLOCKS_PER_SEC/1000;
  362. }
  363. #ifdef GGML_PERF
  364. #define ggml_perf_time_ms() ggml_time_ms()
  365. #define ggml_perf_time_us() ggml_time_us()
  366. #define ggml_perf_cycles() ggml_cycles()
  367. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  368. #else
  369. #define ggml_perf_time_ms() 0
  370. #define ggml_perf_time_us() 0
  371. #define ggml_perf_cycles() 0
  372. #define ggml_perf_cycles_per_ms() 0
  373. #endif
  374. //
  375. // cache line
  376. //
  377. #if defined(__cpp_lib_hardware_interference_size)
  378. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  379. #else
  380. #if defined(__POWER9_VECTOR__)
  381. #define CACHE_LINE_SIZE 128
  382. #else
  383. #define CACHE_LINE_SIZE 64
  384. #endif
  385. #endif
  386. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  387. //
  388. // quantization
  389. //
  390. #if __AVX__ || __AVX2__ || __AVX512F__
  391. // Unpack 16 4-bit fields into 16 bytes
  392. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  393. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  394. {
  395. // Load 8 bytes from memory
  396. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  397. // Expand bytes into uint16_t values
  398. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  399. // Unpack values into individual bytes
  400. const __m128i lowMask = _mm_set1_epi8( 0xF );
  401. __m128i high = _mm_andnot_si128( lowMask, bytes );
  402. __m128i low = _mm_and_si128( lowMask, bytes );
  403. high = _mm_slli_epi16( high, 4 );
  404. bytes = _mm_or_si128( low, high );
  405. return bytes;
  406. }
  407. #if __AVX2__ || __AVX512F__
  408. // Unpack 32 4-bit fields into 32 bytes
  409. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  410. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  411. {
  412. // Load 16 bytes from memory
  413. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  414. // Expand bytes into uint16_t values
  415. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  416. // Unpack values into individual bytes
  417. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  418. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  419. __m256i low = _mm256_and_si256( lowMask, bytes );
  420. high = _mm256_slli_epi16( high, 4 );
  421. bytes = _mm256_or_si256( low, high );
  422. return bytes;
  423. }
  424. static inline __m128i packNibbles( __m256i bytes )
  425. {
  426. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  427. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  428. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  429. __m256i low = _mm256_and_si256( lowByte, bytes );
  430. high = _mm256_srli_epi16( high, 4 );
  431. bytes = _mm256_or_si256( low, high );
  432. // Compress uint16_t lanes into bytes
  433. __m128i r0 = _mm256_castsi256_si128( bytes );
  434. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  435. return _mm_packus_epi16( r0, r1 );
  436. }
  437. #else
  438. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  439. {
  440. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  441. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  442. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  443. __m128i low = _mm_and_si128( lowByte, bytes1 );
  444. high = _mm_srli_epi16( high, 4 );
  445. bytes1 = _mm_or_si128( low, high );
  446. high = _mm_andnot_si128( lowByte, bytes2 );
  447. low = _mm_and_si128( lowByte, bytes2 );
  448. high = _mm_srli_epi16( high, 4 );
  449. bytes2 = _mm_or_si128( low, high );
  450. return _mm_packus_epi16( bytes1, bytes2);
  451. }
  452. #endif
  453. #endif // __AVX__ || __AVX2__ || __AVX512F__
  454. #if __ARM_NEON
  455. #if !defined(__aarch64__)
  456. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  457. return
  458. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  459. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  460. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  461. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  462. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  463. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  464. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  465. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  466. }
  467. inline static int16_t vaddvq_s8(int8x16_t v) {
  468. return
  469. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  470. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  471. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  472. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  473. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  474. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  475. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  476. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  477. }
  478. inline static int32_t vaddvq_s16(int16x8_t v) {
  479. return
  480. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  481. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  482. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  483. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  484. }
  485. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  486. return
  487. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  488. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  489. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  490. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  491. }
  492. inline static int32_t vaddvq_s32(int32x4_t v) {
  493. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  494. }
  495. inline static float vaddvq_f32(float32x4_t v) {
  496. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  497. }
  498. float vminvq_f32(float32x4_t v) {
  499. return
  500. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  501. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  502. }
  503. float vmaxvq_f32(float32x4_t v) {
  504. return
  505. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  506. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  507. }
  508. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  509. return vget_low_s8(vcombine_s8(a, b));
  510. }
  511. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  512. return vget_high_s8(vcombine_s8(a, b));
  513. }
  514. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  515. return vget_low_u8(vcombine_u8(a, b));
  516. }
  517. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  518. return vget_high_u8(vcombine_u8(a, b));
  519. }
  520. #endif
  521. #endif
  522. #define QK4_0 32
  523. typedef struct {
  524. float d; // delta
  525. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  526. } block_q4_0;
  527. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  528. #define QK4_1 32
  529. typedef struct {
  530. float d; // delta
  531. float m; // min
  532. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  533. } block_q4_1;
  534. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  535. #define QK4_2 16
  536. typedef struct {
  537. ggml_fp16_t d; // delta
  538. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  539. } block_q4_2;
  540. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  541. #define QK4_3 16
  542. typedef struct {
  543. ggml_fp16_t d; // delta
  544. ggml_fp16_t m; // min
  545. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  546. } block_q4_3;
  547. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  548. #define QK8_0 32
  549. typedef struct {
  550. float d; // delta
  551. int8_t qs[QK8_0]; // quants
  552. } block_q8_0;
  553. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  554. // reference implementation for deterministic creation of model files
  555. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  556. assert(k % QK4_0 == 0);
  557. const int nb = k / QK4_0;
  558. uint8_t pp[QK4_0/2];
  559. for (int i = 0; i < nb; i++) {
  560. float amax = 0.0f; // absolute max
  561. for (int l = 0; l < QK4_0; l++) {
  562. const float v = x[i*QK4_0 + l];
  563. amax = MAX(amax, fabsf(v));
  564. }
  565. const float d = amax / ((1 << 3) - 1);
  566. const float id = d ? 1.0f/d : 0.0f;
  567. y[i].d = d;
  568. for (int l = 0; l < QK4_0; l += 2) {
  569. const float v0 = x[i*QK4_0 + l + 0]*id;
  570. const float v1 = x[i*QK4_0 + l + 1]*id;
  571. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  572. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  573. assert(vi0 < 16);
  574. assert(vi1 < 16);
  575. pp[l/2] = vi0 | (vi1 << 4);
  576. }
  577. memcpy(y[i].qs, pp, sizeof(pp));
  578. }
  579. }
  580. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  581. assert(k % QK4_0 == 0);
  582. const int nb = k / QK4_0;
  583. block_q4_0 * restrict y = vy;
  584. #if defined(__POWER9_VECTOR__)
  585. const vector float v85 = vec_splats(8.5f);
  586. for (int i = 0; i < nb; i++) {
  587. float amax = 0.0f; // absolute max
  588. vector float srcv [8];
  589. vector float asrcv[8];
  590. vector float amaxv[8];
  591. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  592. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  593. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  594. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  595. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  596. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  597. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  598. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  599. amax = MAX(
  600. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  601. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  602. const float d = amax / ((1 << 3) - 1);
  603. const float id = d ? 1.0/d : 0.0;
  604. y[i].d = d;
  605. const vector float vid = vec_splats(id);
  606. uint8_t * restrict pb = y[i].qs;
  607. for (int l = 0; l < 8; l++) {
  608. const vector float vf = vec_madd(srcv[l], vid, v85);
  609. const vector signed int vi = vec_signed(vf);
  610. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  611. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  612. }
  613. }
  614. #elif __ARM_NEON
  615. for (int i = 0; i < nb; i++) {
  616. float32x4_t srcv [8];
  617. float32x4_t asrcv[8];
  618. float32x4_t amaxv[8];
  619. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  620. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  621. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  622. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  623. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  624. const float amax = vmaxvq_f32(amaxv[0]);
  625. const float d = amax / ((1 << 3) - 1);
  626. const float id = d ? 1.0f/d : 0.0f;
  627. y[i].d = d;
  628. for (int l = 0; l < 8; l++) {
  629. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  630. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  631. const int32x4_t vi = vcvtq_s32_f32(vf);
  632. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  633. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  634. }
  635. }
  636. #elif defined(__AVX2__)
  637. for (int i = 0; i < nb; i++) {
  638. // Load elements into 4 AVX vectors
  639. __m256 v0 = _mm256_loadu_ps( x );
  640. __m256 v1 = _mm256_loadu_ps( x + 8 );
  641. __m256 v2 = _mm256_loadu_ps( x + 16 );
  642. __m256 v3 = _mm256_loadu_ps( x + 24 );
  643. x += 32;
  644. // Compute max(abs(e)) for the block
  645. const __m256 signBit = _mm256_set1_ps( -0.0f );
  646. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  647. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  648. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  649. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  650. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  651. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  652. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  653. const float maxScalar = _mm_cvtss_f32( max4 );
  654. // Quantize these floats
  655. const float d = maxScalar / 7.0f;
  656. y[i].d = d;
  657. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  658. const __m256 mul = _mm256_set1_ps( id );
  659. // Apply the multiplier
  660. v0 = _mm256_mul_ps( v0, mul );
  661. v1 = _mm256_mul_ps( v1, mul );
  662. v2 = _mm256_mul_ps( v2, mul );
  663. v3 = _mm256_mul_ps( v3, mul );
  664. // Round to nearest integer
  665. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  666. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  667. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  668. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  669. // Convert floats to integers
  670. __m256i i0 = _mm256_cvtps_epi32( v0 );
  671. __m256i i1 = _mm256_cvtps_epi32( v1 );
  672. __m256i i2 = _mm256_cvtps_epi32( v2 );
  673. __m256i i3 = _mm256_cvtps_epi32( v3 );
  674. // Convert int32 to int16
  675. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  676. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  677. // Convert int16 to int8
  678. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  679. // We got our precious signed bytes, but the order is now wrong
  680. // These AVX2 pack instructions process 16-byte pieces independently
  681. // The following instruction is fixing the order
  682. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  683. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  684. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  685. const __m256i off = _mm256_set1_epi8( 8 );
  686. i0 = _mm256_add_epi8( i0, off );
  687. // Compress the vector into 4 bit/value, and store
  688. __m128i res = packNibbles( i0 );
  689. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  690. }
  691. #elif defined(__AVX__)
  692. for (int i = 0; i < nb; i++) {
  693. // Load elements into 4 AVX vectors
  694. __m256 v0 = _mm256_loadu_ps( x );
  695. __m256 v1 = _mm256_loadu_ps( x + 8 );
  696. __m256 v2 = _mm256_loadu_ps( x + 16 );
  697. __m256 v3 = _mm256_loadu_ps( x + 24 );
  698. x += 32;
  699. // Compute max(abs(e)) for the block
  700. const __m256 signBit = _mm256_set1_ps( -0.0f );
  701. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  702. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  703. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  704. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  705. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  706. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  707. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  708. const float maxScalar = _mm_cvtss_f32( max4 );
  709. // Quantize these floats
  710. const float d = maxScalar / 7.0f;
  711. y[i].d = d;
  712. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  713. const __m256 mul = _mm256_set1_ps( id );
  714. // Apply the multiplier
  715. v0 = _mm256_mul_ps( v0, mul );
  716. v1 = _mm256_mul_ps( v1, mul );
  717. v2 = _mm256_mul_ps( v2, mul );
  718. v3 = _mm256_mul_ps( v3, mul );
  719. // Round to nearest integer
  720. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  721. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  722. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  723. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  724. // Convert floats to integers
  725. __m256i i0 = _mm256_cvtps_epi32( v0 );
  726. __m256i i1 = _mm256_cvtps_epi32( v1 );
  727. __m256i i2 = _mm256_cvtps_epi32( v2 );
  728. __m256i i3 = _mm256_cvtps_epi32( v3 );
  729. // Since we don't have in AVX some necessary functions,
  730. // we split the registers in half and call AVX2 analogs from SSE
  731. __m128i ni0 = _mm256_castsi256_si128( i0 );
  732. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  733. __m128i ni2 = _mm256_castsi256_si128( i1 );
  734. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  735. __m128i ni4 = _mm256_castsi256_si128( i2 );
  736. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  737. __m128i ni6 = _mm256_castsi256_si128( i3 );
  738. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  739. // Convert int32 to int16
  740. ni0 = _mm_packs_epi32( ni0, ni1 );
  741. ni2 = _mm_packs_epi32( ni2, ni3 );
  742. ni4 = _mm_packs_epi32( ni4, ni5 );
  743. ni6 = _mm_packs_epi32( ni6, ni7 );
  744. // Convert int16 to int8
  745. ni0 = _mm_packs_epi16( ni0, ni2 );
  746. ni4 = _mm_packs_epi16( ni4, ni6 );
  747. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  748. const __m128i off = _mm_set1_epi8( 8);
  749. ni0 = _mm_add_epi8( ni0, off );
  750. ni4 = _mm_add_epi8( ni4, off );
  751. // Compress the vector into 4 bit/value, and store
  752. __m128i res = packNibbles( ni0, ni4 );
  753. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  754. }
  755. #elif defined(__wasm_simd128__)
  756. for (int i = 0; i < nb; i++) {
  757. float amax = 0.0f; // absolute max
  758. v128_t srcv [8];
  759. v128_t asrcv[8];
  760. v128_t amaxv[8];
  761. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  762. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  763. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  764. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  765. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  766. amax = MAX(
  767. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  768. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  769. const float d = amax / ((1 << 3) - 1);
  770. const float id = d ? 1.0/d : 0.0;
  771. y[i].d = d;
  772. for (int l = 0; l < 8; l++) {
  773. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  774. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  775. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  776. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  777. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  778. }
  779. }
  780. #else
  781. // scalar
  782. quantize_row_q4_0_reference(x, y, k);
  783. #endif
  784. }
  785. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  786. assert(k % QK4_1 == 0);
  787. const int nb = k / QK4_1;
  788. block_q4_1 * restrict y = vy;
  789. uint8_t pp[QK4_1/2];
  790. for (int i = 0; i < nb; i++) {
  791. float min = FLT_MAX;
  792. float max = -FLT_MAX;
  793. for (int l = 0; l < QK4_1; l++) {
  794. const float v = x[i*QK4_1 + l];
  795. if (v < min) min = v;
  796. if (v > max) max = v;
  797. }
  798. const float d = (max - min) / ((1 << 4) - 1);
  799. const float id = d ? 1.0f/d : 0.0f;
  800. y[i].d = d;
  801. y[i].m = min;
  802. for (int l = 0; l < QK4_1; l += 2) {
  803. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  804. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  805. const uint8_t vi0 = roundf(v0);
  806. const uint8_t vi1 = roundf(v1);
  807. assert(vi0 < 16);
  808. assert(vi1 < 16);
  809. pp[l/2] = vi0 | (vi1 << 4);
  810. }
  811. memcpy(y[i].qs, pp, sizeof(pp));
  812. }
  813. }
  814. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  815. assert(k % QK4_1 == 0);
  816. const int nb = k / QK4_1;
  817. block_q4_1 * restrict y = vy;
  818. #if defined(__AVX2__)
  819. for (int i = 0; i < nb; i++) {
  820. // Load elements into 4 AVX vectors
  821. __m256 v0 = _mm256_loadu_ps( x );
  822. __m256 v1 = _mm256_loadu_ps( x + 8 );
  823. __m256 v2 = _mm256_loadu_ps( x + 16 );
  824. __m256 v3 = _mm256_loadu_ps( x + 24 );
  825. x += 32;
  826. // Compute max for the block
  827. __m256 vmax;
  828. vmax = _mm256_max_ps( v0, v1 );
  829. vmax = _mm256_max_ps( vmax, v2 );
  830. vmax = _mm256_max_ps( vmax, v3 );
  831. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  832. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  833. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  834. const float maxScalar = _mm_cvtss_f32( max4 );
  835. // Compute min for the block
  836. __m256 vmin;
  837. vmin = _mm256_min_ps( v0, v1 );
  838. vmin = _mm256_min_ps( vmin, v2 );
  839. vmin = _mm256_min_ps( vmin, v3 );
  840. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  841. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  842. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  843. const float minScalar = _mm_cvtss_f32( min4 );
  844. // Quantize these floats
  845. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  846. const float id = d ? 1.0f/d : 0.0f;
  847. y[i].m = minScalar;
  848. y[i].d = d;
  849. // x = (x-min)*id
  850. const __m256 mul = _mm256_set1_ps( id );
  851. const __m256 off = _mm256_set1_ps( minScalar );
  852. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  853. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  854. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  855. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  856. // Round to nearest integer
  857. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  858. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  859. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  860. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  861. // Convert floats to integers
  862. __m256i i0 = _mm256_cvtps_epi32( v0 );
  863. __m256i i1 = _mm256_cvtps_epi32( v1 );
  864. __m256i i2 = _mm256_cvtps_epi32( v2 );
  865. __m256i i3 = _mm256_cvtps_epi32( v3 );
  866. // Convert int32 to int16
  867. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  868. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  869. // Convert int16 to int8
  870. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  871. // We got our precious signed bytes, but the order is now wrong
  872. // These AVX2 pack instructions process 16-byte pieces independently
  873. // The following instruction is fixing the order
  874. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  875. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  876. // Compress the vector into 4 bit/value, and store
  877. __m128i res = packNibbles( i0 );
  878. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  879. }
  880. #elif __ARM_NEON
  881. for (int i = 0; i < nb; i++) {
  882. float32x4_t srcv[8];
  883. float32x4_t minv[8];
  884. float32x4_t maxv[8];
  885. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  886. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  887. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  888. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  889. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  890. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  891. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  892. const float min = vminvq_f32(minv[0]);
  893. const float max = vmaxvq_f32(maxv[0]);
  894. const float d = (max - min) / ((1 << 4) - 1);
  895. const float id = d ? 1.0f/d : 0.0f;
  896. y[i].d = d;
  897. y[i].m = min;
  898. const float32x4_t minv0 = vdupq_n_f32(min);
  899. for (int l = 0; l < 8; l++) {
  900. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  901. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  902. const int32x4_t vi = vcvtq_s32_f32(vf);
  903. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  904. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  905. }
  906. }
  907. #else
  908. // scalar
  909. quantize_row_q4_1_reference(x, vy, k);
  910. #endif
  911. }
  912. // reference implementation for deterministic creation of model files
  913. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  914. assert(k % QK4_2 == 0);
  915. const int nb = k / QK4_2;
  916. for (int i = 0; i < nb; i++) {
  917. float amax = 0.0f; // absolute max
  918. for (int l = 0; l < QK4_2; l++) {
  919. const float v = x[i*QK4_2 + l];
  920. amax = MAX(amax, fabsf(v));
  921. }
  922. const float d = amax / ((1 << 3) - 1);
  923. const float id = d ? 1.0f/d : 0.0f;
  924. y[i].d = GGML_FP32_TO_FP16(d);
  925. for (int l = 0; l < QK4_2; l += 2) {
  926. const float v0 = x[i*QK4_2 + l + 0]*id;
  927. const float v1 = x[i*QK4_2 + l + 1]*id;
  928. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  929. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  930. assert(vi0 < 16);
  931. assert(vi1 < 16);
  932. y[i].qs[l/2] = vi0 | (vi1 << 4);
  933. }
  934. }
  935. }
  936. static inline int nearest_int(float fval) {
  937. assert(fval <= 4194303.f);
  938. float val = fval + 12582912.f;
  939. int i; memcpy(&i, &val, sizeof(int));
  940. return (i & 0x007fffff) - 0x00400000;
  941. }
  942. static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
  943. const float * restrict candidates, int8_t * restrict L) {
  944. assert (nmin >= INT8_MIN);
  945. assert (nmax <= INT8_MAX);
  946. float amax = 0;
  947. for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
  948. if (!amax) { // all zero
  949. for (int i=0; i<n; ++i) L[i] = 0;
  950. return 1.f;
  951. }
  952. float best = 0, bestScale = 0;
  953. for (int si=0; si<nCandidates; ++si) {
  954. float iscale = candidates[si]/amax;
  955. float sumlxP = 0; int suml2P = 0;
  956. float sumlxM = 0; int suml2M = 0;
  957. for (int i=0; i<n; ++i) {
  958. int l = nearest_int(iscale*X[i]);
  959. int lp = MAX(nmin, MIN(nmax, +l));
  960. int lm = MAX(nmin, MIN(nmax, -l));
  961. sumlxP += X[i]*lp; suml2P += lp*lp;
  962. sumlxM += X[i]*lm; suml2M += lm*lm;
  963. }
  964. float sumlxP2 = sumlxP*sumlxP;
  965. float sumlxM2 = sumlxM*sumlxM;
  966. if (sumlxP2*suml2M > sumlxM2*suml2P) {
  967. if (sumlxP2 > best*suml2P) {
  968. best = sumlxP2/suml2P; bestScale = iscale;
  969. }
  970. } else {
  971. if (sumlxM2 > best*suml2M) {
  972. best = sumlxM2/suml2M; bestScale = -iscale;
  973. }
  974. }
  975. }
  976. float sumlx = 0; int suml2 = 0;
  977. for (int i=0; i<n; ++i) {
  978. int l = nearest_int(bestScale*X[i]);
  979. l = MAX(nmin, MIN(nmax, l));
  980. sumlx += X[i]*l; suml2 += l*l;
  981. L[i] = l;
  982. }
  983. float scale = sumlx/suml2;
  984. return scale;
  985. }
  986. static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
  987. #define CANDIDATE_COUNT 8
  988. static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
  989. assert(k % QK4_2 == 0);
  990. int8_t L[QK4_2];
  991. const int nb = k / QK4_2;
  992. for (int i = 0; i < nb; i++) {
  993. float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
  994. y[i].d = GGML_FP32_TO_FP16(scale);
  995. for (int l = 0; l < QK4_2; l += 2) {
  996. const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
  997. const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
  998. assert(vi0 < 16);
  999. assert(vi1 < 16);
  1000. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1001. }
  1002. x += QK4_2;
  1003. }
  1004. }
  1005. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1006. assert(k % QK4_2 == 0);
  1007. block_q4_2 * restrict y = vy;
  1008. //quantize_row_q4_2_reference(x, y, k);
  1009. // This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
  1010. quantize_row_q4_2_rmse(x, y, k);
  1011. }
  1012. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1013. assert(k % QK4_3 == 0);
  1014. const int nb = k / QK4_3;
  1015. for (int i = 0; i < nb; i++) {
  1016. float min = FLT_MAX;
  1017. float max = -FLT_MAX;
  1018. for (int l = 0; l < QK4_3; l++) {
  1019. const float v = x[i*QK4_3 + l];
  1020. if (v < min) min = v;
  1021. if (v > max) max = v;
  1022. }
  1023. const float d = (max - min) / ((1 << 4) - 1);
  1024. const float id = d ? 1.0f/d : 0.0f;
  1025. y[i].d = GGML_FP32_TO_FP16(d);
  1026. y[i].m = GGML_FP32_TO_FP16(min);
  1027. for (int l = 0; l < QK4_3; l += 2) {
  1028. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1029. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1030. const uint8_t vi0 = (int) (v0 + 0.5f);
  1031. const uint8_t vi1 = (int) (v1 + 0.5f);
  1032. assert(vi0 < 16);
  1033. assert(vi1 < 16);
  1034. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1035. }
  1036. }
  1037. }
  1038. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1039. assert(k % QK4_3 == 0);
  1040. block_q4_3 * restrict y = vy;
  1041. quantize_row_q4_3_reference(x, y, k);
  1042. }
  1043. // reference implementation for deterministic creation of model files
  1044. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1045. assert(k % QK8_0 == 0);
  1046. const int nb = k / QK8_0;
  1047. for (int i = 0; i < nb; i++) {
  1048. float amax = 0.0f; // absolute max
  1049. for (int l = 0; l < QK8_0; l++) {
  1050. const float v = x[i*QK8_0 + l];
  1051. amax = MAX(amax, fabsf(v));
  1052. }
  1053. const float d = amax / ((1 << 7) - 1);
  1054. const float id = d ? 1.0f/d : 0.0f;
  1055. y[i].d = d;
  1056. for (int l = 0; l < QK8_0; ++l) {
  1057. const float v = x[i*QK8_0 + l]*id;
  1058. y[i].qs[l] = roundf(v);
  1059. }
  1060. }
  1061. }
  1062. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1063. assert(k % QK8_0 == 0);
  1064. const int nb = k / QK8_0;
  1065. block_q8_0 * restrict y = vy;
  1066. #if defined(__ARM_NEON)
  1067. for (int i = 0; i < nb; i++) {
  1068. float32x4_t srcv [8];
  1069. float32x4_t asrcv[8];
  1070. float32x4_t amaxv[8];
  1071. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1072. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1073. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1074. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1075. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1076. const float amax = vmaxvq_f32(amaxv[0]);
  1077. const float d = amax / ((1 << 7) - 1);
  1078. const float id = d ? 1.0f/d : 0.0f;
  1079. y[i].d = d;
  1080. for (int l = 0; l < 8; l++) {
  1081. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1082. const int32x4_t vi = vcvtnq_s32_f32(v);
  1083. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1084. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1085. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1086. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1087. }
  1088. }
  1089. #elif defined(__AVX2__) || defined(__AVX__)
  1090. for (int i = 0; i < nb; i++) {
  1091. // Load elements into 4 AVX vectors
  1092. __m256 v0 = _mm256_loadu_ps( x );
  1093. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1094. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1095. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1096. x += 32;
  1097. // Compute max(abs(e)) for the block
  1098. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1099. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1100. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1101. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1102. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1103. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1104. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1105. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1106. const float maxScalar = _mm_cvtss_f32( max4 );
  1107. // Quantize these floats
  1108. const float d = maxScalar / 127.f;
  1109. y[i].d = d;
  1110. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1111. const __m256 mul = _mm256_set1_ps( id );
  1112. // Apply the multiplier
  1113. v0 = _mm256_mul_ps( v0, mul );
  1114. v1 = _mm256_mul_ps( v1, mul );
  1115. v2 = _mm256_mul_ps( v2, mul );
  1116. v3 = _mm256_mul_ps( v3, mul );
  1117. // Round to nearest integer
  1118. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1119. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1120. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1121. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1122. // Convert floats to integers
  1123. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1124. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1125. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1126. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1127. #if defined(__AVX2__)
  1128. // Convert int32 to int16
  1129. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1130. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1131. // Convert int16 to int8
  1132. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1133. // We got our precious signed bytes, but the order is now wrong
  1134. // These AVX2 pack instructions process 16-byte pieces independently
  1135. // The following instruction is fixing the order
  1136. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1137. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1138. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1139. #else
  1140. // Since we don't have in AVX some necessary functions,
  1141. // we split the registers in half and call AVX2 analogs from SSE
  1142. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1143. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1144. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1145. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1146. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1147. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1148. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1149. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1150. // Convert int32 to int16
  1151. ni0 = _mm_packs_epi32( ni0, ni1 );
  1152. ni2 = _mm_packs_epi32( ni2, ni3 );
  1153. ni4 = _mm_packs_epi32( ni4, ni5 );
  1154. ni6 = _mm_packs_epi32( ni6, ni7 );
  1155. // Convert int16 to int8
  1156. ni0 = _mm_packs_epi16( ni0, ni2 );
  1157. ni4 = _mm_packs_epi16( ni4, ni6 );
  1158. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1159. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1160. #endif
  1161. }
  1162. #else
  1163. // scalar
  1164. quantize_row_q8_0_reference(x, y, k);
  1165. #endif
  1166. }
  1167. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1168. assert(k % QK4_0 == 0);
  1169. const int nb = k / QK4_0;
  1170. const block_q4_0 * restrict x = vx;
  1171. #if defined(__AVX2__)
  1172. for (int i = 0; i < nb; i++) {
  1173. // scale factor
  1174. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1175. const uint8_t * restrict pp = x[i].qs;
  1176. for (int l = 0; l < QK4_0; l += 32) {
  1177. // Load 32x4-bit integers into 32x8-bit integers
  1178. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1179. // Subtract 8 from the integers
  1180. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1181. // Convert to 16-bit int
  1182. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1183. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1184. // Convert to 32-bit int -> float 32
  1185. const __m256 vf[4] = {
  1186. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1187. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1188. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1189. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1190. };
  1191. // Scale and store
  1192. for (int j = 0; j < 4; j++) {
  1193. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1194. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1195. }
  1196. }
  1197. }
  1198. #elif defined(__ARM_NEON)
  1199. for (int i = 0; i < nb; i++) {
  1200. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1201. const uint8_t * restrict pp = x[i].qs;
  1202. for (int l = 0; l < QK4_0; l += 16) {
  1203. // Load 16x4-bit integers into 8x8-bit integers
  1204. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1205. // Expand 4-bit qs to 8-bit bytes
  1206. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1207. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1208. // Convert to signed 8-bit integers
  1209. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1210. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1211. // Subtract 8 from each byte
  1212. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1213. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1214. // Interleave and combine
  1215. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1216. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1217. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1218. // convert to 2x int16x8_t
  1219. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1220. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1221. // convert to 4x float32x4_t
  1222. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1223. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1224. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1225. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1226. // Multiply by d
  1227. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1228. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1229. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1230. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1231. // Store
  1232. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1233. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1234. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1235. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1236. }
  1237. }
  1238. #else
  1239. // scalar
  1240. for (int i = 0; i < nb; i++) {
  1241. const float d = x[i].d;
  1242. const uint8_t * restrict pp = x[i].qs;
  1243. for (int l = 0; l < QK4_0; l += 2) {
  1244. const uint8_t vi = pp[l/2];
  1245. const int8_t vi0 = vi & 0xf;
  1246. const int8_t vi1 = vi >> 4;
  1247. const float v0 = (vi0 - 8)*d;
  1248. const float v1 = (vi1 - 8)*d;
  1249. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1250. y[i*QK4_0 + l + 0] = v0;
  1251. y[i*QK4_0 + l + 1] = v1;
  1252. assert(!isnan(y[i*QK4_0 + l + 0]));
  1253. assert(!isnan(y[i*QK4_0 + l + 1]));
  1254. }
  1255. }
  1256. #endif
  1257. }
  1258. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1259. assert(k % QK4_1 == 0);
  1260. const int nb = k / QK4_1;
  1261. const block_q4_1 * restrict x = vx;
  1262. #if defined(__AVX2__)
  1263. for (int i = 0; i < nb; i++) {
  1264. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1265. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1266. const uint8_t * restrict pp = x[i].qs;
  1267. for (int l = 0; l < QK4_1; l += 32) {
  1268. // Load 32x4-bit integers into 32x8-bit integers
  1269. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1270. // Convert to 16-bit int
  1271. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1272. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1273. // Convert to 32-bit int -> float 32
  1274. const __m256 vf[4] = {
  1275. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1276. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1277. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1278. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1279. };
  1280. // Scale, add m and store
  1281. for (int j = 0; j < 4; j++) {
  1282. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1283. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1284. }
  1285. }
  1286. }
  1287. #elif defined(__ARM_NEON)
  1288. for (int i = 0; i < nb; i++) {
  1289. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1290. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1291. const uint8_t * restrict pp = x[i].qs;
  1292. for (int l = 0; l < QK4_1; l += 16) {
  1293. // Load 16x4-bit integers into 8x8-bit integers
  1294. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1295. // Expand 4-bit qs to 8-bit bytes
  1296. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1297. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1298. // Interleave and combine
  1299. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1300. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1301. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1302. // convert to 2x uint16x8_t
  1303. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1304. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1305. // convert to 4x float32x4_t
  1306. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1307. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1308. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1309. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1310. // multiply by d and add m
  1311. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1312. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1313. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1314. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1315. // Store
  1316. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1317. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1318. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1319. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1320. }
  1321. }
  1322. #else
  1323. for (int i = 0; i < nb; i++) {
  1324. const float d = x[i].d;
  1325. const float m = x[i].m;
  1326. const uint8_t * restrict pp = x[i].qs;
  1327. for (int l = 0; l < QK4_1; l += 2) {
  1328. const uint8_t vi = pp[l/2];
  1329. const int8_t vi0 = vi & 0xf;
  1330. const int8_t vi1 = vi >> 4;
  1331. const float v0 = vi0*d + m;
  1332. const float v1 = vi1*d + m;
  1333. y[i*QK4_1 + l + 0] = v0;
  1334. y[i*QK4_1 + l + 1] = v1;
  1335. assert(!isnan(y[i*QK4_1 + l + 0]));
  1336. assert(!isnan(y[i*QK4_1 + l + 1]));
  1337. }
  1338. }
  1339. #endif
  1340. }
  1341. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1342. assert(k % QK4_2 == 0);
  1343. const int nb = k / QK4_2;
  1344. const block_q4_2 * restrict x = vx;
  1345. for (int i = 0; i < nb; i++) {
  1346. const float d = GGML_FP16_TO_FP32(x[i].d);
  1347. const uint8_t * restrict pp = x[i].qs;
  1348. for (int l = 0; l < QK4_2; l += 2) {
  1349. const uint8_t vi = pp[l/2];
  1350. const int8_t vi0 = vi & 0xf;
  1351. const int8_t vi1 = vi >> 4;
  1352. const float v0 = (vi0 - 8)*d;
  1353. const float v1 = (vi1 - 8)*d;
  1354. y[i*QK4_2 + l + 0] = v0;
  1355. y[i*QK4_2 + l + 1] = v1;
  1356. assert(!isnan(y[i*QK4_2 + l + 0]));
  1357. assert(!isnan(y[i*QK4_2 + l + 1]));
  1358. }
  1359. }
  1360. }
  1361. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1362. assert(k % QK4_3 == 0);
  1363. const int nb = k / QK4_3;
  1364. const block_q4_3 * restrict x = vx;
  1365. for (int i = 0; i < nb; i++) {
  1366. const float d = GGML_FP16_TO_FP32(x[i].d);
  1367. const float m = GGML_FP16_TO_FP32(x[i].m);
  1368. const uint8_t * restrict pp = x[i].qs;
  1369. for (int l = 0; l < QK4_3; l += 2) {
  1370. const uint8_t vi = pp[l/2];
  1371. const int8_t vi0 = vi & 0xf;
  1372. const int8_t vi1 = vi >> 4;
  1373. const float v0 = vi0*d + m;
  1374. const float v1 = vi1*d + m;
  1375. y[i*QK4_3 + l + 0] = v0;
  1376. y[i*QK4_3 + l + 1] = v1;
  1377. assert(!isnan(y[i*QK4_3 + l + 0]));
  1378. assert(!isnan(y[i*QK4_3 + l + 1]));
  1379. }
  1380. }
  1381. }
  1382. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1383. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1384. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1385. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1386. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1387. [GGML_TYPE_Q4_0] = {
  1388. .dequantize_row_q = dequantize_row_q4_0,
  1389. .quantize_row_q = quantize_row_q4_0,
  1390. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1391. .quantize_row_q_dot = quantize_row_q8_0,
  1392. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1393. },
  1394. [GGML_TYPE_Q4_1] = {
  1395. .dequantize_row_q = dequantize_row_q4_1,
  1396. .quantize_row_q = quantize_row_q4_1,
  1397. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1398. .quantize_row_q_dot = quantize_row_q8_0,
  1399. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1400. },
  1401. [GGML_TYPE_Q4_2] = {
  1402. .dequantize_row_q = dequantize_row_q4_2,
  1403. .quantize_row_q = quantize_row_q4_2,
  1404. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
  1405. .quantize_row_q_dot = quantize_row_q8_0,
  1406. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1407. },
  1408. [GGML_TYPE_Q4_3] = {
  1409. .dequantize_row_q = dequantize_row_q4_3,
  1410. .quantize_row_q = quantize_row_q4_3,
  1411. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference, // TODO: RMSE optimization
  1412. .quantize_row_q_dot = quantize_row_q8_0,
  1413. .vec_dot_q = ggml_vec_dot_q4_3_q8_0,
  1414. },
  1415. [GGML_TYPE_Q8_0] = {
  1416. .dequantize_row_q = NULL, // TODO
  1417. .quantize_row_q = quantize_row_q8_0,
  1418. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1419. .quantize_row_q_dot = quantize_row_q8_0,
  1420. .vec_dot_q = NULL, // TODO
  1421. },
  1422. };
  1423. // For internal test use
  1424. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1425. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1426. return quantize_fns[i];
  1427. }
  1428. //
  1429. // simd mappings
  1430. //
  1431. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1432. // we then implement the fundamental computation operations below using only these macros
  1433. // adding support for new architectures requires to define the corresponding SIMD macros
  1434. //
  1435. // GGML_F32_STEP / GGML_F16_STEP
  1436. // number of elements to process in a single step
  1437. //
  1438. // GGML_F32_EPR / GGML_F16_EPR
  1439. // number of elements to fit in a single register
  1440. //
  1441. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1442. #define GGML_SIMD
  1443. // F32 NEON
  1444. #define GGML_F32_STEP 16
  1445. #define GGML_F32_EPR 4
  1446. #define GGML_F32x4 float32x4_t
  1447. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1448. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1449. #define GGML_F32x4_LOAD vld1q_f32
  1450. #define GGML_F32x4_STORE vst1q_f32
  1451. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1452. #define GGML_F32x4_ADD vaddq_f32
  1453. #define GGML_F32x4_MUL vmulq_f32
  1454. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1455. #define GGML_F32x4_REDUCE(res, x) \
  1456. { \
  1457. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1458. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1459. } \
  1460. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1461. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1462. } \
  1463. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1464. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1465. } \
  1466. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1467. }
  1468. #define GGML_F32_VEC GGML_F32x4
  1469. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1470. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1471. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1472. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1473. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1474. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1475. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1476. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1477. // F16 NEON
  1478. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1479. #define GGML_F16_STEP 32
  1480. #define GGML_F16_EPR 8
  1481. #define GGML_F16x8 float16x8_t
  1482. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1483. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1484. #define GGML_F16x8_LOAD vld1q_f16
  1485. #define GGML_F16x8_STORE vst1q_f16
  1486. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1487. #define GGML_F16x8_ADD vaddq_f16
  1488. #define GGML_F16x8_MUL vmulq_f16
  1489. #define GGML_F16x8_REDUCE(res, x) \
  1490. { \
  1491. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1492. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1493. } \
  1494. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1495. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1496. } \
  1497. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1498. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1499. } \
  1500. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1501. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1502. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1503. }
  1504. #define GGML_F16_VEC GGML_F16x8
  1505. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1506. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1507. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1508. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1509. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1510. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1511. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1512. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1513. #else
  1514. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1515. // and take advantage of the vcvt_ functions to convert to/from FP16
  1516. #define GGML_F16_STEP 16
  1517. #define GGML_F16_EPR 4
  1518. #define GGML_F32Cx4 float32x4_t
  1519. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1520. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1521. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1522. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1523. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1524. #define GGML_F32Cx4_ADD vaddq_f32
  1525. #define GGML_F32Cx4_MUL vmulq_f32
  1526. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1527. #define GGML_F16_VEC GGML_F32Cx4
  1528. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1529. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1530. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1531. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1532. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1533. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1534. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1535. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1536. #endif
  1537. #elif defined(__AVX__)
  1538. #define GGML_SIMD
  1539. // F32 AVX
  1540. #define GGML_F32_STEP 32
  1541. #define GGML_F32_EPR 8
  1542. #define GGML_F32x8 __m256
  1543. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1544. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1545. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1546. #define GGML_F32x8_STORE _mm256_storeu_ps
  1547. #if defined(__FMA__)
  1548. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1549. #else
  1550. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1551. #endif
  1552. #define GGML_F32x8_ADD _mm256_add_ps
  1553. #define GGML_F32x8_MUL _mm256_mul_ps
  1554. #define GGML_F32x8_REDUCE(res, x) \
  1555. { \
  1556. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1557. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1558. } \
  1559. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1560. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1561. } \
  1562. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1563. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1564. } \
  1565. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1566. _mm256_extractf128_ps(x[0], 1)); \
  1567. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1568. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1569. }
  1570. // TODO: is this optimal ?
  1571. #define GGML_F32_VEC GGML_F32x8
  1572. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1573. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1574. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1575. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1576. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1577. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1578. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1579. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1580. // F16 AVX
  1581. #define GGML_F16_STEP 32
  1582. #define GGML_F16_EPR 8
  1583. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1584. #define GGML_F32Cx8 __m256
  1585. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1586. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1587. #if defined(__F16C__)
  1588. // the _mm256_cvt intrinsics require F16C
  1589. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1590. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1591. #else
  1592. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1593. float tmp[8];
  1594. for (int i = 0; i < 8; i++)
  1595. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1596. return _mm256_loadu_ps(tmp);
  1597. }
  1598. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1599. float arr[8];
  1600. _mm256_storeu_ps(arr, y);
  1601. for (int i = 0; i < 8; i++)
  1602. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1603. }
  1604. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1605. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1606. #endif
  1607. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1608. #define GGML_F32Cx8_ADD _mm256_add_ps
  1609. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1610. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1611. #define GGML_F16_VEC GGML_F32Cx8
  1612. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1613. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1614. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1615. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1616. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1617. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1618. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1619. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1620. #elif defined(__POWER9_VECTOR__)
  1621. #define GGML_SIMD
  1622. // F32 POWER9
  1623. #define GGML_F32_STEP 32
  1624. #define GGML_F32_EPR 4
  1625. #define GGML_F32x4 vector float
  1626. #define GGML_F32x4_ZERO 0.0f
  1627. #define GGML_F32x4_SET1 vec_splats
  1628. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1629. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1630. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1631. #define GGML_F32x4_ADD vec_add
  1632. #define GGML_F32x4_MUL vec_mul
  1633. #define GGML_F32x4_REDUCE(res, x) \
  1634. { \
  1635. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1636. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1637. } \
  1638. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1639. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1640. } \
  1641. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1642. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1643. } \
  1644. res = vec_extract(x[0], 0) + \
  1645. vec_extract(x[0], 1) + \
  1646. vec_extract(x[0], 2) + \
  1647. vec_extract(x[0], 3); \
  1648. }
  1649. #define GGML_F32_VEC GGML_F32x4
  1650. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1651. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1652. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1653. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1654. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1655. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1656. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1657. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1658. // F16 POWER9
  1659. #define GGML_F16_STEP GGML_F32_STEP
  1660. #define GGML_F16_EPR GGML_F32_EPR
  1661. #define GGML_F16_VEC GGML_F32x4
  1662. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1663. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1664. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1665. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1666. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1667. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1668. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1669. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1670. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1671. #define GGML_F16_VEC_STORE(p, r, i) \
  1672. if (i & 0x1) \
  1673. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1674. r[i - GGML_ENDIAN_BYTE(0)]), \
  1675. 0, p - GGML_F16_EPR)
  1676. #elif defined(__wasm_simd128__)
  1677. #define GGML_SIMD
  1678. // F32 WASM
  1679. #define GGML_F32_STEP 16
  1680. #define GGML_F32_EPR 4
  1681. #define GGML_F32x4 v128_t
  1682. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1683. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1684. #define GGML_F32x4_LOAD wasm_v128_load
  1685. #define GGML_F32x4_STORE wasm_v128_store
  1686. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1687. #define GGML_F32x4_ADD wasm_f32x4_add
  1688. #define GGML_F32x4_MUL wasm_f32x4_mul
  1689. #define GGML_F32x4_REDUCE(res, x) \
  1690. { \
  1691. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1692. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1693. } \
  1694. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1695. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1696. } \
  1697. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1698. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1699. } \
  1700. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1701. wasm_f32x4_extract_lane(x[0], 1) + \
  1702. wasm_f32x4_extract_lane(x[0], 2) + \
  1703. wasm_f32x4_extract_lane(x[0], 3); \
  1704. }
  1705. #define GGML_F32_VEC GGML_F32x4
  1706. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1707. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1708. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1709. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1710. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1711. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1712. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1713. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1714. // F16 WASM
  1715. #define GGML_F16_STEP 16
  1716. #define GGML_F16_EPR 4
  1717. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1718. float tmp[4];
  1719. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1720. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1721. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1722. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1723. return wasm_v128_load(tmp);
  1724. }
  1725. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1726. float tmp[4];
  1727. wasm_v128_store(tmp, x);
  1728. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1729. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1730. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1731. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1732. }
  1733. #define GGML_F16x4 v128_t
  1734. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1735. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1736. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1737. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1738. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1739. #define GGML_F16x4_ADD wasm_f32x4_add
  1740. #define GGML_F16x4_MUL wasm_f32x4_mul
  1741. #define GGML_F16x4_REDUCE(res, x) \
  1742. { \
  1743. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1744. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1745. } \
  1746. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1747. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1748. } \
  1749. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1750. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1751. } \
  1752. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1753. wasm_f32x4_extract_lane(x[0], 1) + \
  1754. wasm_f32x4_extract_lane(x[0], 2) + \
  1755. wasm_f32x4_extract_lane(x[0], 3); \
  1756. }
  1757. #define GGML_F16_VEC GGML_F16x4
  1758. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1759. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1760. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1761. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1762. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1763. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1764. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1765. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1766. #elif defined(__SSE3__)
  1767. #define GGML_SIMD
  1768. // F32 SSE
  1769. #define GGML_F32_STEP 32
  1770. #define GGML_F32_EPR 4
  1771. #define GGML_F32x4 __m128
  1772. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1773. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1774. #define GGML_F32x4_LOAD _mm_loadu_ps
  1775. #define GGML_F32x4_STORE _mm_storeu_ps
  1776. #if defined(__FMA__)
  1777. // TODO: Does this work?
  1778. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1779. #else
  1780. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1781. #endif
  1782. #define GGML_F32x4_ADD _mm_add_ps
  1783. #define GGML_F32x4_MUL _mm_mul_ps
  1784. #define GGML_F32x4_REDUCE(res, x) \
  1785. { \
  1786. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1787. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1788. } \
  1789. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1790. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1791. } \
  1792. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1793. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1794. } \
  1795. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1796. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1797. }
  1798. // TODO: is this optimal ?
  1799. #define GGML_F32_VEC GGML_F32x4
  1800. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1801. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1802. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1803. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1804. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1805. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1806. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1807. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1808. // F16 SSE
  1809. #define GGML_F16_STEP 32
  1810. #define GGML_F16_EPR 4
  1811. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1812. float tmp[4];
  1813. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1814. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1815. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1816. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1817. return _mm_loadu_ps(tmp);
  1818. }
  1819. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1820. float arr[4];
  1821. _mm_storeu_ps(arr, y);
  1822. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1823. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1824. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1825. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1826. }
  1827. #define GGML_F32Cx4 __m128
  1828. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1829. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1830. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1831. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1832. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1833. #define GGML_F32Cx4_ADD _mm_add_ps
  1834. #define GGML_F32Cx4_MUL _mm_mul_ps
  1835. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1836. #define GGML_F16_VEC GGML_F32Cx4
  1837. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1838. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1839. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1840. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1841. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1842. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1843. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1844. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1845. #endif
  1846. // GGML_F32_ARR / GGML_F16_ARR
  1847. // number of registers to use per step
  1848. #ifdef GGML_SIMD
  1849. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1850. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1851. #endif
  1852. //
  1853. // fundamental operations
  1854. //
  1855. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1856. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1857. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1858. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1859. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1860. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1861. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1862. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1863. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1864. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1865. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1866. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1867. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1868. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1869. #ifdef GGML_SIMD
  1870. float sumf = 0.0f;
  1871. const int np = (n & ~(GGML_F32_STEP - 1));
  1872. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1873. GGML_F32_VEC ax[GGML_F32_ARR];
  1874. GGML_F32_VEC ay[GGML_F32_ARR];
  1875. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1876. for (int j = 0; j < GGML_F32_ARR; j++) {
  1877. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1878. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1879. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1880. }
  1881. }
  1882. // reduce sum0..sum3 to sum0
  1883. GGML_F32_VEC_REDUCE(sumf, sum);
  1884. // leftovers
  1885. for (int i = np; i < n; ++i) {
  1886. sumf += x[i]*y[i];
  1887. }
  1888. #else
  1889. // scalar
  1890. ggml_float sumf = 0.0;
  1891. for (int i = 0; i < n; ++i) {
  1892. sumf += (ggml_float)(x[i]*y[i]);
  1893. }
  1894. #endif
  1895. *s = sumf;
  1896. }
  1897. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1898. ggml_float sumf = 0.0;
  1899. #if defined(GGML_SIMD)
  1900. const int np = (n & ~(GGML_F16_STEP - 1));
  1901. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1902. GGML_F16_VEC ax[GGML_F16_ARR];
  1903. GGML_F16_VEC ay[GGML_F16_ARR];
  1904. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1905. for (int j = 0; j < GGML_F16_ARR; j++) {
  1906. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1907. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1908. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1909. }
  1910. }
  1911. // reduce sum0..sum3 to sum0
  1912. GGML_F16_VEC_REDUCE(sumf, sum);
  1913. // leftovers
  1914. for (int i = np; i < n; ++i) {
  1915. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1916. }
  1917. #else
  1918. for (int i = 0; i < n; ++i) {
  1919. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1920. }
  1921. #endif
  1922. *s = sumf;
  1923. }
  1924. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1925. const int nb = n / QK8_0;
  1926. assert(n % QK8_0 == 0);
  1927. assert(nb % 2 == 0);
  1928. const block_q4_0 * restrict x = vx;
  1929. const block_q8_0 * restrict y = vy;
  1930. float sumf = 0.0;
  1931. #if defined(__ARM_NEON)
  1932. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1933. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1934. for (int i = 0; i < nb; i += 2) {
  1935. const block_q4_0 * restrict x0 = &x[i + 0];
  1936. const block_q4_0 * restrict x1 = &x[i + 1];
  1937. const block_q8_0 * restrict y0 = &y[i + 0];
  1938. const block_q8_0 * restrict y1 = &y[i + 1];
  1939. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1940. const int8x16_t s8b = vdupq_n_s8(0x8);
  1941. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1942. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1943. // 4-bit -> 8-bit
  1944. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1945. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1946. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1947. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1948. // sub 8
  1949. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1950. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1951. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1952. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1953. // load y
  1954. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1955. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1956. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1957. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1958. // interleave
  1959. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  1960. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  1961. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  1962. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  1963. #if defined(__ARM_FEATURE_DOTPROD)
  1964. // dot product into int32x4_t
  1965. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  1966. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  1967. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1968. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1969. #else
  1970. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1971. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1972. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1973. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1974. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1975. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1976. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1977. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1978. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1979. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1980. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1981. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1982. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1983. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1984. #endif
  1985. }
  1986. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1987. #elif defined(__AVX2__)
  1988. // Initialize accumulator with zeros
  1989. __m256 acc = _mm256_setzero_ps();
  1990. // Main loop
  1991. for (int i = 0; i < nb; ++i) {
  1992. /* Compute combined scale for the block */
  1993. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1994. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1995. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1996. const __m256i off = _mm256_set1_epi8( 8 );
  1997. bx = _mm256_sub_epi8( bx, off );
  1998. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1999. // Get absolute values of x vectors
  2000. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2001. // Sign the values of the y vectors
  2002. const __m256i sy = _mm256_sign_epi8(by, bx);
  2003. // Perform multiplication and create 16-bit values
  2004. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2005. const __m256i ones = _mm256_set1_epi16(1);
  2006. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2007. /* Convert to vectore of 8 int32_t to 8 floats */
  2008. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2009. /* Multiply q with scale and accumulate */
  2010. acc = _mm256_fmadd_ps( d, q, acc );
  2011. }
  2012. // Return horizontal sum of the acc vector
  2013. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2014. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2015. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2016. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2017. sumf = _mm_cvtss_f32( res );
  2018. #elif defined(__AVX__)
  2019. // Initialize accumulator with zeros
  2020. __m256 acc = _mm256_setzero_ps();
  2021. // Main loop
  2022. for (int i = 0; i < nb; ++i) {
  2023. // Compute combined scale for the block
  2024. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2025. __m128i i32[2];
  2026. for (int j = 0; j < 2; ++j) {
  2027. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2028. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2029. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2030. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2031. const __m128i off = _mm_set1_epi8( 8 );
  2032. bx = _mm_sub_epi8( bx, off );
  2033. // Get absolute values of x vectors
  2034. const __m128i ax = _mm_sign_epi8(bx, bx);
  2035. // Sign the values of the y vectors
  2036. const __m128i sy = _mm_sign_epi8(by, bx);
  2037. // Perform multiplication and create 16-bit values
  2038. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2039. const __m128i ones = _mm_set1_epi16(1);
  2040. i32[j] = _mm_madd_epi16(ones, dot);
  2041. }
  2042. // Convert int32_t to float
  2043. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2044. // Apply the scale, and accumulate
  2045. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2046. }
  2047. // Return horizontal sum of the acc vector
  2048. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2049. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2050. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2051. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2052. sumf = _mm_cvtss_f32( res );
  2053. #else
  2054. // scalar
  2055. for (int i = 0; i < nb; i++) {
  2056. const float d0 = x[i].d;
  2057. const float d1 = y[i].d;
  2058. const uint8_t * restrict p0 = x[i].qs;
  2059. const int8_t * restrict p1 = y[i].qs;
  2060. int sumi = 0;
  2061. for (int j = 0; j < QK8_0/2; j++) {
  2062. const uint8_t v0 = p0[j];
  2063. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2064. const int i1 = (int8_t) (v0 >> 4) - 8;
  2065. const int i2 = p1[2*j + 0];
  2066. const int i3 = p1[2*j + 1];
  2067. sumi += i0*i2 + i1*i3;
  2068. }
  2069. sumf += d0*d1*sumi;
  2070. }
  2071. #endif
  2072. *s = sumf;
  2073. }
  2074. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2075. const int nb = n / QK8_0;
  2076. assert(n % QK8_0 == 0);
  2077. assert(nb % 2 == 0);
  2078. const block_q4_1 * restrict x = vx;
  2079. const block_q8_0 * restrict y = vy;
  2080. float sumf = 0.0;
  2081. // TODO: add AVX / WASM SIMD / etc
  2082. #if defined(__ARM_NEON)
  2083. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2084. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2085. for (int i = 0; i < nb; i += 2) {
  2086. const block_q4_1 * restrict x0 = &x[i + 0];
  2087. const block_q4_1 * restrict x1 = &x[i + 1];
  2088. const block_q8_0 * restrict y0 = &y[i + 0];
  2089. const block_q8_0 * restrict y1 = &y[i + 1];
  2090. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2091. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2092. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2093. // 4-bit -> 8-bit
  2094. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2095. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2096. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2097. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2098. // load y
  2099. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2100. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2101. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2102. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2103. // interleave
  2104. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2105. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2106. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2107. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2108. const int16x8_t s0i = vaddq_s16(
  2109. vaddq_s16(vmovl_s8(vget_low_s8(v1_0ls)), vmovl_s8(vget_high_s8(v1_0ls))),
  2110. vaddq_s16(vmovl_s8(vget_low_s8(v1_0hs)), vmovl_s8(vget_high_s8(v1_0hs))));
  2111. const int16x8_t s1i = vaddq_s16(
  2112. vaddq_s16(vmovl_s8(vget_low_s8(v1_1ls)), vmovl_s8(vget_high_s8(v1_1ls))),
  2113. vaddq_s16(vmovl_s8(vget_low_s8(v1_1hs)), vmovl_s8(vget_high_s8(v1_1hs))));
  2114. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s0i), vget_high_s16(s0i))), x0->m*y0->d);
  2115. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s1i), vget_high_s16(s1i))), x1->m*y1->d);
  2116. #if defined(__ARM_FEATURE_DOTPROD)
  2117. // dot product into int32x4_t
  2118. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  2119. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2120. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2121. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2122. #else
  2123. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2124. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2125. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2126. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2127. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2128. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2129. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2130. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2131. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2132. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2133. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2134. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2135. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2136. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2137. #endif
  2138. }
  2139. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2140. #elif defined(__AVX2__)
  2141. // Initialize accumulator with zeros
  2142. __m256 acc = _mm256_setzero_ps();
  2143. // Main loop
  2144. for (int i = 0; i < nb; ++i) {
  2145. const float * d0 = &x[i].d;
  2146. const float * d1 = &y[i].d;
  2147. const float * m0 = &x[i].m;
  2148. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2149. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2150. const __m256 m0v = _mm256_broadcast_ss( m0 );
  2151. // Compute combined scales
  2152. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2153. const __m256 d1m0 = _mm256_mul_ps( d1v, m0v );
  2154. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2155. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2156. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2157. // Get absolute values of x vectors
  2158. const __m256i ax = _mm256_sign_epi8( bx, bx );
  2159. // Sign the values of the y vectors
  2160. const __m256i sy = _mm256_sign_epi8( by, bx );
  2161. // Perform multiplication and create 16-bit values
  2162. const __m256i dot = _mm256_maddubs_epi16( ax, sy );
  2163. const __m256i ones = _mm256_set1_epi16( 1 );
  2164. const __m256i xy_q = _mm256_madd_epi16( ones, dot );
  2165. // Convert to vector of 8 int32_t to 8 floats
  2166. const __m256 xy = _mm256_cvtepi32_ps( xy_q );
  2167. // Accumulate d0*d1*x*y
  2168. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2169. // Compute sum of y values
  2170. const __m256i y16_l = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  2171. const __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  2172. const __m256i ysumi = _mm256_madd_epi16( _mm256_add_epi16(y16_l, y16_h), ones );
  2173. const __m256 ysum = _mm256_cvtepi32_ps( ysumi );
  2174. // Accumulate d1*m0*y
  2175. acc = _mm256_fmadd_ps( d1m0, ysum, acc );
  2176. }
  2177. // Return horizontal sum of the acc vector
  2178. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2179. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2180. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2181. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2182. sumf = _mm_cvtss_f32( res );
  2183. #else
  2184. // scalar
  2185. for (int i = 0; i < nb; i++) {
  2186. const float d0 = x[i].d;
  2187. const float m0 = x[i].m;
  2188. const float d1 = y[i].d;
  2189. const uint8_t * restrict p0 = x[i].qs;
  2190. const int8_t * restrict p1 = y[i].qs;
  2191. // TODO: this is very slow ..
  2192. for (int j = 0; j < QK8_0/2; j++) {
  2193. const uint8_t v0 = p0[j];
  2194. const float f0 = d0*(v0 & 0xf) + m0;
  2195. const float f1 = d0*(v0 >> 4) + m0;
  2196. const float f2 = d1*p1[2*j + 0];
  2197. const float f3 = d1*p1[2*j + 1];
  2198. sumf += f0*f2 + f1*f3;
  2199. }
  2200. }
  2201. #endif
  2202. *s = sumf;
  2203. }
  2204. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2205. const int nb = n / QK8_0;
  2206. assert(n % QK8_0 == 0);
  2207. assert(nb % 2 == 0);
  2208. assert(QK8_0 == 2*QK4_2);
  2209. const block_q4_2 * restrict x = vx;
  2210. const block_q8_0 * restrict y = vy;
  2211. float sumf = 0.0;
  2212. #if defined(__ARM_NEON)
  2213. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2214. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2215. for (int i = 0; i < nb; i += 2) {
  2216. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2217. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2218. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2219. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2220. const block_q8_0 * restrict y0 = &y[i + 0];
  2221. const block_q8_0 * restrict y1 = &y[i + 1];
  2222. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2223. const int8x16_t s8b = vdupq_n_s8(0x8);
  2224. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2225. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2226. // 4-bit -> 8-bit
  2227. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2228. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2229. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2230. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2231. // sub 8
  2232. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2233. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2234. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2235. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2236. // interleave
  2237. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2238. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2239. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2240. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2241. // load y
  2242. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2243. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2244. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2245. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2246. #if defined(__ARM_FEATURE_DOTPROD)
  2247. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2248. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2249. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2250. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2251. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2252. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2253. #else
  2254. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2255. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2256. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2257. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2258. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2259. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2260. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2261. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2262. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2263. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2264. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2265. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2266. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2267. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2268. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2269. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2270. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2271. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2272. #endif
  2273. }
  2274. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2275. #elif defined(__AVX2__)
  2276. // Initialize accumulator with zeros
  2277. __m256 acc = _mm256_setzero_ps();
  2278. // Main loop
  2279. for (int i = 0; i < nb; i++) {
  2280. /* Compute combined scale for the block */
  2281. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2282. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2283. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2284. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2285. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2286. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2287. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2288. const __m256i off = _mm256_set1_epi8(8);
  2289. bx = _mm256_sub_epi8(bx, off);
  2290. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2291. // Get absolute values of x vectors
  2292. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2293. // Sign the values of the y vectors
  2294. const __m256i sy = _mm256_sign_epi8(by, bx);
  2295. // Perform multiplication and create 16-bit values
  2296. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2297. const __m256i ones = _mm256_set1_epi16(1);
  2298. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2299. /* Convert to vectore of 8 int32_t to 8 floats */
  2300. __m256 q = _mm256_cvtepi32_ps(xy_q);
  2301. /* Multiply q with scale and accumulate */
  2302. acc = _mm256_fmadd_ps(d, q, acc);
  2303. }
  2304. // Return horizontal sum of the acc vector
  2305. __m128 res = _mm256_extractf128_ps(acc, 1);
  2306. res = _mm_add_ps(res, _mm256_castps256_ps128(acc));
  2307. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  2308. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  2309. sumf = _mm_cvtss_f32(res);
  2310. #else
  2311. // scalar
  2312. for (int i = 0; i < nb; i++) {
  2313. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2314. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2315. const int8_t * restrict y0 = y[i].qs;
  2316. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2317. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2318. int sumi_0 = 0;
  2319. int sumi_1 = 0;
  2320. for (int j = 0; j < QK8_0/4; j++) {
  2321. const uint8_t v0 = x0[j];
  2322. const uint8_t v1 = x1[j];
  2323. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2324. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2325. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2326. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2327. const int i2_0 = y0[2*j + 0];
  2328. const int i3_0 = y0[2*j + 1];
  2329. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2330. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2331. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2332. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2333. }
  2334. sumf += (d0 * y[i].d) * sumi_0;
  2335. sumf += (d1 * y[i].d) * sumi_1;
  2336. }
  2337. #endif
  2338. *s = sumf;
  2339. }
  2340. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2341. const int nb = n / QK8_0;
  2342. assert(n % QK8_0 == 0);
  2343. assert(nb % 2 == 0);
  2344. assert(QK8_0 == 2*QK4_2);
  2345. const block_q4_3 * restrict x = vx;
  2346. const block_q8_0 * restrict y = vy;
  2347. float sumf = 0.0;
  2348. #if defined(__ARM_NEON)
  2349. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2350. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2351. for (int i = 0; i < nb; i += 2) {
  2352. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2353. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2354. const block_q4_3 * restrict x1_0 = &x[2*(i + 1) + 0];
  2355. const block_q4_3 * restrict x1_1 = &x[2*(i + 1) + 1];
  2356. const block_q8_0 * restrict y0 = &y[i + 0];
  2357. const block_q8_0 * restrict y1 = &y[i + 1];
  2358. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2359. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2360. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2361. const float x1_0d = GGML_FP16_TO_FP32(x1_0->d);
  2362. const float x1_1d = GGML_FP16_TO_FP32(x1_1->d);
  2363. const float x0_0m = GGML_FP16_TO_FP32(x0_0->m);
  2364. const float x0_1m = GGML_FP16_TO_FP32(x0_1->m);
  2365. const float x1_0m = GGML_FP16_TO_FP32(x1_0->m);
  2366. const float x1_1m = GGML_FP16_TO_FP32(x1_1->m);
  2367. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2368. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2369. // 4-bit -> 8-bit
  2370. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2371. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2372. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2373. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2374. // interleave
  2375. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2376. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2377. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2378. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2379. // load y
  2380. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2381. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2382. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2383. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2384. const int16x8_t sy0_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0l)), vmovl_s8(vget_high_s8(v1_0l)));
  2385. const int16x8_t sy0_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0h)), vmovl_s8(vget_high_s8(v1_0h)));
  2386. const int16x8_t sy1_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1l)), vmovl_s8(vget_high_s8(v1_1l)));
  2387. const int16x8_t sy1_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1h)), vmovl_s8(vget_high_s8(v1_1h)));
  2388. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_0), vget_high_s16(sy0_0))), x0_0m*y0->d);
  2389. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_1), vget_high_s16(sy0_1))), x0_1m*y0->d);
  2390. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_0), vget_high_s16(sy1_0))), x1_0m*y1->d);
  2391. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_1), vget_high_s16(sy1_1))), x1_1m*y1->d);
  2392. #if defined(__ARM_FEATURE_DOTPROD)
  2393. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2394. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2395. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), x1_0d*y1->d);
  2396. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), x1_1d*y1->d);
  2397. #else
  2398. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2399. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2400. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2401. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2402. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2403. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2404. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2405. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2406. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2407. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2408. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2409. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2410. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2411. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2412. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(pl1), x1_0d*y1->d);
  2413. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph1), x1_1d*y1->d);
  2414. #endif
  2415. }
  2416. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2417. #else
  2418. // scalar
  2419. for (int i = 0; i < nb; i++) {
  2420. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2421. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2422. const int8_t * restrict y0 = y[i].qs;
  2423. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2424. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2425. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2426. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2427. int sy_0 = 0;
  2428. int sy_1 = 0;
  2429. int sxy_0 = 0;
  2430. int sxy_1 = 0;
  2431. for (int j = 0; j < QK8_0/4; j++) {
  2432. const uint8_t v0 = x0[j];
  2433. const uint8_t v1 = x1[j];
  2434. const int x0_0 = v0 & 0xf;
  2435. const int x1_0 = v0 >> 4;
  2436. const int x0_1 = v1 & 0xf;
  2437. const int x1_1 = v1 >> 4;
  2438. const int y0_0 = y0[2*j + 0];
  2439. const int y1_0 = y0[2*j + 1];
  2440. const int y0_1 = y0[2*(j + QK8_0/4) + 0];
  2441. const int y1_1 = y0[2*(j + QK8_0/4) + 1];
  2442. sy_0 += y0_0 + y1_0;
  2443. sy_1 += y0_1 + y1_1;
  2444. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2445. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2446. }
  2447. sumf += (d0*sxy_0 + m0*sy_0)*y[i].d;
  2448. sumf += (d1*sxy_1 + m1*sy_1)*y[i].d;
  2449. }
  2450. #endif
  2451. *s = sumf;
  2452. }
  2453. // compute GGML_VEC_DOT_UNROLL dot products at once
  2454. // xs - x row stride in bytes
  2455. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2456. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2457. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2458. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2459. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2460. }
  2461. #if defined(GGML_SIMD)
  2462. const int np = (n & ~(GGML_F16_STEP - 1));
  2463. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2464. GGML_F16_VEC ax[GGML_F16_ARR];
  2465. GGML_F16_VEC ay[GGML_F16_ARR];
  2466. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2467. for (int j = 0; j < GGML_F16_ARR; j++) {
  2468. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2469. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2470. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2471. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2472. }
  2473. }
  2474. }
  2475. // reduce sum0..sum3 to sum0
  2476. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2477. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2478. }
  2479. // leftovers
  2480. for (int i = np; i < n; ++i) {
  2481. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2482. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2483. }
  2484. }
  2485. #else
  2486. for (int i = 0; i < n; ++i) {
  2487. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2488. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2489. }
  2490. }
  2491. #endif
  2492. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2493. s[i] = sumf[i];
  2494. }
  2495. }
  2496. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2497. #if defined(GGML_SIMD)
  2498. const int np = (n & ~(GGML_F32_STEP - 1));
  2499. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2500. GGML_F32_VEC ax[GGML_F32_ARR];
  2501. GGML_F32_VEC ay[GGML_F32_ARR];
  2502. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2503. for (int j = 0; j < GGML_F32_ARR; j++) {
  2504. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2505. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2506. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2507. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2508. }
  2509. }
  2510. // leftovers
  2511. for (int i = np; i < n; ++i) {
  2512. y[i] += x[i]*v;
  2513. }
  2514. #else
  2515. // scalar
  2516. for (int i = 0; i < n; ++i) {
  2517. y[i] += x[i]*v;
  2518. }
  2519. #endif
  2520. }
  2521. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2522. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2523. #if defined(GGML_SIMD)
  2524. const int np = (n & ~(GGML_F32_STEP - 1));
  2525. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2526. GGML_F32_VEC ay[GGML_F32_ARR];
  2527. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2528. for (int j = 0; j < GGML_F32_ARR; j++) {
  2529. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2530. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2531. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2532. }
  2533. }
  2534. // leftovers
  2535. for (int i = np; i < n; ++i) {
  2536. y[i] *= v;
  2537. }
  2538. #else
  2539. // scalar
  2540. for (int i = 0; i < n; ++i) {
  2541. y[i] *= v;
  2542. }
  2543. #endif
  2544. }
  2545. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2546. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2547. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2548. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2549. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2550. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2551. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2552. static const float GELU_COEF_A = 0.044715f;
  2553. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2554. inline static float ggml_gelu_f32(float x) {
  2555. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2556. }
  2557. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2558. const uint16_t * i16 = (const uint16_t *) x;
  2559. for (int i = 0; i < n; ++i) {
  2560. y[i] = table_gelu_f16[i16[i]];
  2561. }
  2562. }
  2563. #ifdef GGML_GELU_FP16
  2564. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2565. uint16_t t;
  2566. for (int i = 0; i < n; ++i) {
  2567. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2568. memcpy(&t, &fp16, sizeof(uint16_t));
  2569. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2570. }
  2571. }
  2572. #else
  2573. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2574. for (int i = 0; i < n; ++i) {
  2575. y[i] = ggml_gelu_f32(x[i]);
  2576. }
  2577. }
  2578. #endif
  2579. // Sigmoid Linear Unit (SiLU) function
  2580. inline static float ggml_silu_f32(float x) {
  2581. return x/(1.0f + expf(-x));
  2582. }
  2583. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2584. const uint16_t * i16 = (const uint16_t *) x;
  2585. for (int i = 0; i < n; ++i) {
  2586. y[i] = table_silu_f16[i16[i]];
  2587. }
  2588. }
  2589. #ifdef GGML_SILU_FP16
  2590. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2591. uint16_t t;
  2592. for (int i = 0; i < n; ++i) {
  2593. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2594. memcpy(&t, &fp16, sizeof(uint16_t));
  2595. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2596. }
  2597. }
  2598. #else
  2599. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2600. for (int i = 0; i < n; ++i) {
  2601. y[i] = ggml_silu_f32(x[i]);
  2602. }
  2603. }
  2604. #endif
  2605. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2606. #ifndef GGML_USE_ACCELERATE
  2607. ggml_float sum = 0.0;
  2608. for (int i = 0; i < n; ++i) {
  2609. sum += (ggml_float)x[i];
  2610. }
  2611. *s = sum;
  2612. #else
  2613. vDSP_sve(x, 1, s, n);
  2614. #endif
  2615. }
  2616. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2617. #ifndef GGML_USE_ACCELERATE
  2618. float max = -INFINITY;
  2619. for (int i = 0; i < n; ++i) {
  2620. max = MAX(max, x[i]);
  2621. }
  2622. *s = max;
  2623. #else
  2624. vDSP_maxv(x, 1, s, n);
  2625. #endif
  2626. }
  2627. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2628. ggml_vec_norm_f32(n, s, x);
  2629. *s = 1.f/(*s);
  2630. }
  2631. //
  2632. // logging
  2633. //
  2634. #if (GGML_DEBUG >= 1)
  2635. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2636. #else
  2637. #define GGML_PRINT_DEBUG(...)
  2638. #endif
  2639. #if (GGML_DEBUG >= 5)
  2640. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2641. #else
  2642. #define GGML_PRINT_DEBUG_5(...)
  2643. #endif
  2644. #if (GGML_DEBUG >= 10)
  2645. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2646. #else
  2647. #define GGML_PRINT_DEBUG_10(...)
  2648. #endif
  2649. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2650. //
  2651. // data types
  2652. //
  2653. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2654. [GGML_TYPE_F32] = 1,
  2655. [GGML_TYPE_F16] = 1,
  2656. [GGML_TYPE_Q4_0] = QK4_0,
  2657. [GGML_TYPE_Q4_1] = QK4_1,
  2658. [GGML_TYPE_Q4_2] = QK4_2,
  2659. [GGML_TYPE_Q4_3] = QK4_3,
  2660. [GGML_TYPE_Q8_0] = QK8_0,
  2661. [GGML_TYPE_I8] = 1,
  2662. [GGML_TYPE_I16] = 1,
  2663. [GGML_TYPE_I32] = 1,
  2664. };
  2665. static_assert(GGML_TYPE_COUNT == 10, "GGML_BLCK_SIZE is outdated");
  2666. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2667. [GGML_TYPE_F32] = sizeof(float),
  2668. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2669. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2670. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2671. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2672. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  2673. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2674. [GGML_TYPE_I8] = sizeof(int8_t),
  2675. [GGML_TYPE_I16] = sizeof(int16_t),
  2676. [GGML_TYPE_I32] = sizeof(int32_t),
  2677. };
  2678. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_SIZE is outdated");
  2679. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2680. [GGML_TYPE_F32] = "f32",
  2681. [GGML_TYPE_F16] = "f16",
  2682. [GGML_TYPE_Q4_0] = "q4_0",
  2683. [GGML_TYPE_Q4_1] = "q4_1",
  2684. [GGML_TYPE_Q4_2] = "q4_2",
  2685. [GGML_TYPE_Q4_3] = "q4_3",
  2686. [GGML_TYPE_Q8_0] = "q8_0",
  2687. [GGML_TYPE_I8] = "i8",
  2688. [GGML_TYPE_I16] = "i16",
  2689. [GGML_TYPE_I32] = "i32",
  2690. };
  2691. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_NAME is outdated");
  2692. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2693. [GGML_TYPE_F32] = false,
  2694. [GGML_TYPE_F16] = false,
  2695. [GGML_TYPE_Q4_0] = true,
  2696. [GGML_TYPE_Q4_1] = true,
  2697. [GGML_TYPE_Q4_2] = true,
  2698. [GGML_TYPE_Q4_3] = true,
  2699. [GGML_TYPE_Q8_0] = true,
  2700. [GGML_TYPE_I8] = false,
  2701. [GGML_TYPE_I16] = false,
  2702. [GGML_TYPE_I32] = false,
  2703. };
  2704. static_assert(GGML_TYPE_COUNT == 10, "GGML_IS_QUANTIZED is outdated");
  2705. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2706. "NONE",
  2707. "DUP",
  2708. "ADD",
  2709. "SUB",
  2710. "MUL",
  2711. "DIV",
  2712. "SQR",
  2713. "SQRT",
  2714. "SUM",
  2715. "MEAN",
  2716. "REPEAT",
  2717. "ABS",
  2718. "SGN",
  2719. "NEG",
  2720. "STEP",
  2721. "RELU",
  2722. "GELU",
  2723. "SILU",
  2724. "NORM",
  2725. "RMS_NORM",
  2726. "MUL_MAT",
  2727. "SCALE",
  2728. "CPY",
  2729. "CONT",
  2730. "RESHAPE",
  2731. "VIEW",
  2732. "PERMUTE",
  2733. "TRANSPOSE",
  2734. "GET_ROWS",
  2735. "DIAG_MASK_INF",
  2736. "SOFT_MAX",
  2737. "ROPE",
  2738. "CONV_1D_1S",
  2739. "CONV_1D_2S",
  2740. "FLASH_ATTN",
  2741. "FLASH_FF",
  2742. "MAP_UNARY",
  2743. "MAP_BINARY",
  2744. };
  2745. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2746. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2747. "none",
  2748. "x",
  2749. "x+y",
  2750. "x-y",
  2751. "x*y",
  2752. "x/y",
  2753. "x^2",
  2754. "√x",
  2755. "Σx",
  2756. "Σx/n",
  2757. "repeat(x)",
  2758. "abs(x)",
  2759. "sgn(x)",
  2760. "-x",
  2761. "step(x)",
  2762. "relu(x)",
  2763. "gelu(x)",
  2764. "silu(x)",
  2765. "norm(x)",
  2766. "rms_norm(x)",
  2767. "X*Y",
  2768. "x*v",
  2769. "x-\\>y",
  2770. "cont(x)",
  2771. "reshape(x)",
  2772. "view(x)",
  2773. "permute(x)",
  2774. "transpose(x)",
  2775. "get_rows(x)",
  2776. "diag_mask_inf(x)",
  2777. "soft_max(x)",
  2778. "rope(x)",
  2779. "conv_1d_1s(x)",
  2780. "conv_1d_2s(x)",
  2781. "flash_attn(x)",
  2782. "flash_ff(x)",
  2783. "f(x)",
  2784. "f(x,y)",
  2785. };
  2786. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2787. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2788. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2789. //
  2790. // ggml context
  2791. //
  2792. struct ggml_context {
  2793. size_t mem_size;
  2794. void * mem_buffer;
  2795. bool mem_buffer_owned;
  2796. bool no_alloc;
  2797. int n_objects;
  2798. struct ggml_object * objects_begin;
  2799. struct ggml_object * objects_end;
  2800. struct ggml_scratch scratch;
  2801. struct ggml_scratch scratch_save;
  2802. };
  2803. struct ggml_context_container {
  2804. bool used;
  2805. struct ggml_context context;
  2806. };
  2807. //
  2808. // compute types
  2809. //
  2810. enum ggml_task_type {
  2811. GGML_TASK_INIT = 0,
  2812. GGML_TASK_COMPUTE,
  2813. GGML_TASK_FINALIZE,
  2814. };
  2815. struct ggml_compute_params {
  2816. enum ggml_task_type type;
  2817. int ith, nth;
  2818. // work buffer for all threads
  2819. size_t wsize;
  2820. void * wdata;
  2821. };
  2822. //
  2823. // ggml state
  2824. //
  2825. struct ggml_state {
  2826. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2827. };
  2828. // global state
  2829. static struct ggml_state g_state;
  2830. static atomic_int g_state_barrier = 0;
  2831. // barrier via spin lock
  2832. inline static void ggml_critical_section_start(void) {
  2833. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2834. while (processing > 0) {
  2835. // wait for other threads to finish
  2836. atomic_fetch_sub(&g_state_barrier, 1);
  2837. sched_yield(); // TODO: reconsider this
  2838. processing = atomic_fetch_add(&g_state_barrier, 1);
  2839. }
  2840. }
  2841. // TODO: make this somehow automatically executed
  2842. // some sort of "sentry" mechanism
  2843. inline static void ggml_critical_section_end(void) {
  2844. atomic_fetch_sub(&g_state_barrier, 1);
  2845. }
  2846. ////////////////////////////////////////////////////////////////////////////////
  2847. void ggml_print_object(const struct ggml_object * obj) {
  2848. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2849. obj->offs, obj->size, (const void *) obj->next);
  2850. }
  2851. void ggml_print_objects(const struct ggml_context * ctx) {
  2852. struct ggml_object * obj = ctx->objects_begin;
  2853. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2854. while (obj != NULL) {
  2855. ggml_print_object(obj);
  2856. obj = obj->next;
  2857. }
  2858. GGML_PRINT("%s: --- end ---\n", __func__);
  2859. }
  2860. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2861. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2862. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2863. }
  2864. int ggml_nrows(const struct ggml_tensor * tensor) {
  2865. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2866. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2867. }
  2868. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2869. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2870. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2871. }
  2872. int ggml_blck_size(enum ggml_type type) {
  2873. return GGML_BLCK_SIZE[type];
  2874. }
  2875. size_t ggml_type_size(enum ggml_type type) {
  2876. return GGML_TYPE_SIZE[type];
  2877. }
  2878. float ggml_type_sizef(enum ggml_type type) {
  2879. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2880. }
  2881. const char * ggml_type_name(enum ggml_type type) {
  2882. return GGML_TYPE_NAME[type];
  2883. }
  2884. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2885. return GGML_TYPE_SIZE[tensor->type];
  2886. }
  2887. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2888. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2889. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2890. }
  2891. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2892. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2893. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2894. }
  2895. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2896. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2897. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2898. }
  2899. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2900. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2901. return
  2902. (t0->ne[0] == t1->ne[0]) &&
  2903. (t0->ne[2] == t1->ne[2]) &&
  2904. (t0->ne[3] == t1->ne[3]);
  2905. }
  2906. bool ggml_is_quantized(enum ggml_type type) {
  2907. return GGML_IS_QUANTIZED[type];
  2908. }
  2909. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2910. return tensor->nb[0] > tensor->nb[1];
  2911. }
  2912. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2913. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2914. return
  2915. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2916. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2917. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2918. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2919. }
  2920. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2921. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2922. return
  2923. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2924. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2925. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2926. }
  2927. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2928. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2929. return
  2930. (t0->ne[0] == t1->ne[0] ) &&
  2931. (t0->ne[1] == t1->ne[1] ) &&
  2932. (t0->ne[2] == t1->ne[2] ) &&
  2933. (t0->ne[3] == t1->ne[3] );
  2934. }
  2935. // check if t1 can be represented as a repeatition of t0
  2936. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2937. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2938. return
  2939. (t1->ne[0]%t0->ne[0] == 0) &&
  2940. (t1->ne[1]%t0->ne[1] == 0) &&
  2941. (t1->ne[2]%t0->ne[2] == 0) &&
  2942. (t1->ne[3]%t0->ne[3] == 0);
  2943. }
  2944. static inline int ggml_up32(int n) {
  2945. return (n + 31) & ~31;
  2946. }
  2947. static inline int ggml_up64(int n) {
  2948. return (n + 63) & ~63;
  2949. }
  2950. static inline int ggml_up(int n, int m) {
  2951. // assert m is a power of 2
  2952. GGML_ASSERT((m & (m - 1)) == 0);
  2953. return (n + m - 1) & ~(m - 1);
  2954. }
  2955. // assert that pointer is aligned to GGML_MEM_ALIGN
  2956. #define ggml_assert_aligned(ptr) \
  2957. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2958. ////////////////////////////////////////////////////////////////////////////////
  2959. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2960. // make this function thread safe
  2961. ggml_critical_section_start();
  2962. static bool is_first_call = true;
  2963. if (is_first_call) {
  2964. // initialize time system (required on Windows)
  2965. ggml_time_init();
  2966. // initialize GELU, SILU and EXP F32 tables
  2967. {
  2968. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2969. ggml_fp16_t ii;
  2970. for (int i = 0; i < (1 << 16); ++i) {
  2971. uint16_t ui = i;
  2972. memcpy(&ii, &ui, sizeof(ii));
  2973. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2974. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2975. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2976. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2977. }
  2978. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2979. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2980. }
  2981. // initialize g_state
  2982. {
  2983. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2984. g_state = (struct ggml_state) {
  2985. /*.contexts =*/ { { 0 } },
  2986. };
  2987. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2988. g_state.contexts[i].used = false;
  2989. }
  2990. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2991. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2992. }
  2993. // initialize cuBLAS
  2994. #if defined(GGML_USE_CUBLAS)
  2995. init_cublas();
  2996. #endif
  2997. is_first_call = false;
  2998. }
  2999. // find non-used context in g_state
  3000. struct ggml_context * ctx = NULL;
  3001. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3002. if (!g_state.contexts[i].used) {
  3003. g_state.contexts[i].used = true;
  3004. ctx = &g_state.contexts[i].context;
  3005. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3006. break;
  3007. }
  3008. }
  3009. if (ctx == NULL) {
  3010. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3011. ggml_critical_section_end();
  3012. return NULL;
  3013. }
  3014. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3015. *ctx = (struct ggml_context) {
  3016. /*.mem_size =*/ mem_size,
  3017. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3018. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3019. /*.no_alloc =*/ params.no_alloc,
  3020. /*.n_objects =*/ 0,
  3021. /*.objects_begin =*/ NULL,
  3022. /*.objects_end =*/ NULL,
  3023. /*.scratch =*/ { 0, 0, NULL, },
  3024. /*.scratch_save =*/ { 0, 0, NULL, },
  3025. };
  3026. GGML_ASSERT(ctx->mem_buffer != NULL);
  3027. ggml_assert_aligned(ctx->mem_buffer);
  3028. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3029. ggml_critical_section_end();
  3030. return ctx;
  3031. }
  3032. void ggml_free(struct ggml_context * ctx) {
  3033. // make this function thread safe
  3034. ggml_critical_section_start();
  3035. bool found = false;
  3036. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3037. if (&g_state.contexts[i].context == ctx) {
  3038. g_state.contexts[i].used = false;
  3039. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3040. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3041. if (ctx->mem_buffer_owned) {
  3042. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3043. }
  3044. found = true;
  3045. break;
  3046. }
  3047. }
  3048. if (!found) {
  3049. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3050. }
  3051. ggml_critical_section_end();
  3052. }
  3053. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3054. return ctx->objects_end->offs + ctx->objects_end->size;
  3055. }
  3056. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3057. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3058. ctx->scratch = scratch;
  3059. return result;
  3060. }
  3061. ////////////////////////////////////////////////////////////////////////////////
  3062. struct ggml_tensor * ggml_new_tensor_impl(
  3063. struct ggml_context * ctx,
  3064. enum ggml_type type,
  3065. int n_dims,
  3066. const int64_t* ne,
  3067. void* data) {
  3068. // always insert objects at the end of the context's memory pool
  3069. struct ggml_object * obj_cur = ctx->objects_end;
  3070. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3071. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3072. const size_t cur_end = cur_offs + cur_size;
  3073. size_t size_needed = 0;
  3074. if (data == NULL && !ctx->no_alloc) {
  3075. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3076. for (int i = 1; i < n_dims; i++) {
  3077. size_needed *= ne[i];
  3078. }
  3079. // align to GGML_MEM_ALIGN
  3080. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3081. }
  3082. char * const mem_buffer = ctx->mem_buffer;
  3083. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3084. if (ctx->scratch.data == NULL || data != NULL) {
  3085. size_needed += sizeof(struct ggml_tensor);
  3086. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3087. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3088. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3089. assert(false);
  3090. return NULL;
  3091. }
  3092. *obj_new = (struct ggml_object) {
  3093. .offs = cur_end + GGML_OBJECT_SIZE,
  3094. .size = size_needed,
  3095. .next = NULL,
  3096. };
  3097. } else {
  3098. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3099. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3100. assert(false);
  3101. return NULL;
  3102. }
  3103. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3104. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3105. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3106. assert(false);
  3107. return NULL;
  3108. }
  3109. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3110. *obj_new = (struct ggml_object) {
  3111. .offs = cur_end + GGML_OBJECT_SIZE,
  3112. .size = sizeof(struct ggml_tensor),
  3113. .next = NULL,
  3114. };
  3115. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3116. ctx->scratch.offs += size_needed;
  3117. }
  3118. if (obj_cur != NULL) {
  3119. obj_cur->next = obj_new;
  3120. } else {
  3121. // this is the first object in this context
  3122. ctx->objects_begin = obj_new;
  3123. }
  3124. ctx->objects_end = obj_new;
  3125. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3126. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3127. ggml_assert_aligned(result);
  3128. *result = (struct ggml_tensor) {
  3129. /*.type =*/ type,
  3130. /*.n_dims =*/ n_dims,
  3131. /*.ne =*/ { 1, 1, 1, 1 },
  3132. /*.nb =*/ { 0, 0, 0, 0 },
  3133. /*.op =*/ GGML_OP_NONE,
  3134. /*.is_param =*/ false,
  3135. /*.grad =*/ NULL,
  3136. /*.src0 =*/ NULL,
  3137. /*.src1 =*/ NULL,
  3138. /*.opt =*/ { NULL },
  3139. /*.n_tasks =*/ 0,
  3140. /*.perf_runs =*/ 0,
  3141. /*.perf_cycles =*/ 0,
  3142. /*.perf_time_us =*/ 0,
  3143. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3144. /*.pad =*/ { 0 },
  3145. };
  3146. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3147. //ggml_assert_aligned(result->data);
  3148. for (int i = 0; i < n_dims; i++) {
  3149. result->ne[i] = ne[i];
  3150. }
  3151. result->nb[0] = GGML_TYPE_SIZE[type];
  3152. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3153. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3154. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3155. }
  3156. ctx->n_objects++;
  3157. return result;
  3158. }
  3159. struct ggml_tensor * ggml_new_tensor(
  3160. struct ggml_context * ctx,
  3161. enum ggml_type type,
  3162. int n_dims,
  3163. const int64_t * ne) {
  3164. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3165. }
  3166. struct ggml_tensor * ggml_new_tensor_1d(
  3167. struct ggml_context * ctx,
  3168. enum ggml_type type,
  3169. int64_t ne0) {
  3170. return ggml_new_tensor(ctx, type, 1, &ne0);
  3171. }
  3172. struct ggml_tensor * ggml_new_tensor_2d(
  3173. struct ggml_context * ctx,
  3174. enum ggml_type type,
  3175. int64_t ne0,
  3176. int64_t ne1) {
  3177. const int64_t ne[2] = { ne0, ne1 };
  3178. return ggml_new_tensor(ctx, type, 2, ne);
  3179. }
  3180. struct ggml_tensor * ggml_new_tensor_3d(
  3181. struct ggml_context * ctx,
  3182. enum ggml_type type,
  3183. int64_t ne0,
  3184. int64_t ne1,
  3185. int64_t ne2) {
  3186. const int64_t ne[3] = { ne0, ne1, ne2 };
  3187. return ggml_new_tensor(ctx, type, 3, ne);
  3188. }
  3189. struct ggml_tensor * ggml_new_tensor_4d(
  3190. struct ggml_context * ctx,
  3191. enum ggml_type type,
  3192. int64_t ne0,
  3193. int64_t ne1,
  3194. int64_t ne2,
  3195. int64_t ne3) {
  3196. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3197. return ggml_new_tensor(ctx, type, 4, ne);
  3198. }
  3199. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3200. ctx->scratch_save = ctx->scratch;
  3201. ctx->scratch.data = NULL;
  3202. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3203. ctx->scratch = ctx->scratch_save;
  3204. ggml_set_i32(result, value);
  3205. return result;
  3206. }
  3207. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3208. ctx->scratch_save = ctx->scratch;
  3209. ctx->scratch.data = NULL;
  3210. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3211. ctx->scratch = ctx->scratch_save;
  3212. ggml_set_f32(result, value);
  3213. return result;
  3214. }
  3215. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3216. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3217. }
  3218. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3219. memset(tensor->data, 0, ggml_nbytes(tensor));
  3220. return tensor;
  3221. }
  3222. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3223. const int n = ggml_nrows(tensor);
  3224. const int nc = tensor->ne[0];
  3225. const size_t n1 = tensor->nb[1];
  3226. char * const data = tensor->data;
  3227. switch (tensor->type) {
  3228. case GGML_TYPE_I8:
  3229. {
  3230. assert(tensor->nb[0] == sizeof(int8_t));
  3231. for (int i = 0; i < n; i++) {
  3232. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3233. }
  3234. } break;
  3235. case GGML_TYPE_I16:
  3236. {
  3237. assert(tensor->nb[0] == sizeof(int16_t));
  3238. for (int i = 0; i < n; i++) {
  3239. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3240. }
  3241. } break;
  3242. case GGML_TYPE_I32:
  3243. {
  3244. assert(tensor->nb[0] == sizeof(int32_t));
  3245. for (int i = 0; i < n; i++) {
  3246. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3247. }
  3248. } break;
  3249. case GGML_TYPE_F16:
  3250. {
  3251. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3252. for (int i = 0; i < n; i++) {
  3253. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3254. }
  3255. } break;
  3256. case GGML_TYPE_F32:
  3257. {
  3258. assert(tensor->nb[0] == sizeof(float));
  3259. for (int i = 0; i < n; i++) {
  3260. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3261. }
  3262. } break;
  3263. default:
  3264. {
  3265. GGML_ASSERT(false);
  3266. } break;
  3267. }
  3268. return tensor;
  3269. }
  3270. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3271. const int n = ggml_nrows(tensor);
  3272. const int nc = tensor->ne[0];
  3273. const size_t n1 = tensor->nb[1];
  3274. char * const data = tensor->data;
  3275. switch (tensor->type) {
  3276. case GGML_TYPE_I8:
  3277. {
  3278. assert(tensor->nb[0] == sizeof(int8_t));
  3279. for (int i = 0; i < n; i++) {
  3280. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3281. }
  3282. } break;
  3283. case GGML_TYPE_I16:
  3284. {
  3285. assert(tensor->nb[0] == sizeof(int16_t));
  3286. for (int i = 0; i < n; i++) {
  3287. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3288. }
  3289. } break;
  3290. case GGML_TYPE_I32:
  3291. {
  3292. assert(tensor->nb[0] == sizeof(int32_t));
  3293. for (int i = 0; i < n; i++) {
  3294. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3295. }
  3296. } break;
  3297. case GGML_TYPE_F16:
  3298. {
  3299. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3300. for (int i = 0; i < n; i++) {
  3301. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3302. }
  3303. } break;
  3304. case GGML_TYPE_F32:
  3305. {
  3306. assert(tensor->nb[0] == sizeof(float));
  3307. for (int i = 0; i < n; i++) {
  3308. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3309. }
  3310. } break;
  3311. default:
  3312. {
  3313. GGML_ASSERT(false);
  3314. } break;
  3315. }
  3316. return tensor;
  3317. }
  3318. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3319. switch (tensor->type) {
  3320. case GGML_TYPE_I8:
  3321. {
  3322. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3323. return ((int8_t *)(tensor->data))[i];
  3324. } break;
  3325. case GGML_TYPE_I16:
  3326. {
  3327. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3328. return ((int16_t *)(tensor->data))[i];
  3329. } break;
  3330. case GGML_TYPE_I32:
  3331. {
  3332. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3333. return ((int32_t *)(tensor->data))[i];
  3334. } break;
  3335. case GGML_TYPE_F16:
  3336. {
  3337. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3338. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3339. } break;
  3340. case GGML_TYPE_F32:
  3341. {
  3342. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3343. return ((float *)(tensor->data))[i];
  3344. } break;
  3345. default:
  3346. {
  3347. GGML_ASSERT(false);
  3348. } break;
  3349. }
  3350. return 0.0f;
  3351. }
  3352. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3353. switch (tensor->type) {
  3354. case GGML_TYPE_I8:
  3355. {
  3356. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3357. ((int8_t *)(tensor->data))[i] = value;
  3358. } break;
  3359. case GGML_TYPE_I16:
  3360. {
  3361. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3362. ((int16_t *)(tensor->data))[i] = value;
  3363. } break;
  3364. case GGML_TYPE_I32:
  3365. {
  3366. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3367. ((int32_t *)(tensor->data))[i] = value;
  3368. } break;
  3369. case GGML_TYPE_F16:
  3370. {
  3371. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3372. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3373. } break;
  3374. case GGML_TYPE_F32:
  3375. {
  3376. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3377. ((float *)(tensor->data))[i] = value;
  3378. } break;
  3379. default:
  3380. {
  3381. GGML_ASSERT(false);
  3382. } break;
  3383. }
  3384. }
  3385. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3386. switch (tensor->type) {
  3387. case GGML_TYPE_I8:
  3388. {
  3389. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3390. return ((int8_t *)(tensor->data))[i];
  3391. } break;
  3392. case GGML_TYPE_I16:
  3393. {
  3394. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3395. return ((int16_t *)(tensor->data))[i];
  3396. } break;
  3397. case GGML_TYPE_I32:
  3398. {
  3399. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3400. return ((int32_t *)(tensor->data))[i];
  3401. } break;
  3402. case GGML_TYPE_F16:
  3403. {
  3404. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3405. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3406. } break;
  3407. case GGML_TYPE_F32:
  3408. {
  3409. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3410. return ((float *)(tensor->data))[i];
  3411. } break;
  3412. default:
  3413. {
  3414. GGML_ASSERT(false);
  3415. } break;
  3416. }
  3417. return 0.0f;
  3418. }
  3419. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3420. switch (tensor->type) {
  3421. case GGML_TYPE_I8:
  3422. {
  3423. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3424. ((int8_t *)(tensor->data))[i] = value;
  3425. } break;
  3426. case GGML_TYPE_I16:
  3427. {
  3428. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3429. ((int16_t *)(tensor->data))[i] = value;
  3430. } break;
  3431. case GGML_TYPE_I32:
  3432. {
  3433. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3434. ((int32_t *)(tensor->data))[i] = value;
  3435. } break;
  3436. case GGML_TYPE_F16:
  3437. {
  3438. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3439. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3440. } break;
  3441. case GGML_TYPE_F32:
  3442. {
  3443. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3444. ((float *)(tensor->data))[i] = value;
  3445. } break;
  3446. default:
  3447. {
  3448. GGML_ASSERT(false);
  3449. } break;
  3450. }
  3451. }
  3452. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3453. return tensor->data;
  3454. }
  3455. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3456. assert(tensor->type == GGML_TYPE_F32);
  3457. return (float *)(tensor->data);
  3458. }
  3459. struct ggml_tensor * ggml_view_tensor(
  3460. struct ggml_context * ctx,
  3461. const struct ggml_tensor * src) {
  3462. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3463. result->nb[0] = src->nb[0];
  3464. result->nb[1] = src->nb[1];
  3465. result->nb[2] = src->nb[2];
  3466. result->nb[3] = src->nb[3];
  3467. return result;
  3468. }
  3469. ////////////////////////////////////////////////////////////////////////////////
  3470. // ggml_dup
  3471. struct ggml_tensor * ggml_dup_impl(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a,
  3474. bool inplace) {
  3475. bool is_node = false;
  3476. if (!inplace && (a->grad)) {
  3477. is_node = true;
  3478. }
  3479. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3480. result->op = GGML_OP_DUP;
  3481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3482. result->src0 = a;
  3483. result->src1 = NULL;
  3484. return result;
  3485. }
  3486. struct ggml_tensor * ggml_dup(
  3487. struct ggml_context * ctx,
  3488. struct ggml_tensor * a) {
  3489. return ggml_dup_impl(ctx, a, false);
  3490. }
  3491. struct ggml_tensor * ggml_dup_inplace(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a) {
  3494. return ggml_dup_impl(ctx, a, true);
  3495. }
  3496. // ggml_add
  3497. struct ggml_tensor * ggml_add_impl(
  3498. struct ggml_context * ctx,
  3499. struct ggml_tensor * a,
  3500. struct ggml_tensor * b,
  3501. bool inplace) {
  3502. GGML_ASSERT(ggml_are_same_shape(a, b));
  3503. bool is_node = false;
  3504. if (!inplace && (a->grad || b->grad)) {
  3505. is_node = true;
  3506. }
  3507. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3508. result->op = GGML_OP_ADD;
  3509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3510. result->src0 = a;
  3511. result->src1 = b;
  3512. return result;
  3513. }
  3514. struct ggml_tensor * ggml_add(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a,
  3517. struct ggml_tensor * b) {
  3518. return ggml_add_impl(ctx, a, b, false);
  3519. }
  3520. struct ggml_tensor * ggml_add_inplace(
  3521. struct ggml_context * ctx,
  3522. struct ggml_tensor * a,
  3523. struct ggml_tensor * b) {
  3524. return ggml_add_impl(ctx, a, b, true);
  3525. }
  3526. // ggml_sub
  3527. struct ggml_tensor * ggml_sub_impl(
  3528. struct ggml_context * ctx,
  3529. struct ggml_tensor * a,
  3530. struct ggml_tensor * b,
  3531. bool inplace) {
  3532. GGML_ASSERT(ggml_are_same_shape(a, b));
  3533. bool is_node = false;
  3534. if (!inplace && (a->grad || b->grad)) {
  3535. is_node = true;
  3536. }
  3537. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3538. result->op = GGML_OP_SUB;
  3539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3540. result->src0 = a;
  3541. result->src1 = b;
  3542. return result;
  3543. }
  3544. struct ggml_tensor * ggml_sub(
  3545. struct ggml_context * ctx,
  3546. struct ggml_tensor * a,
  3547. struct ggml_tensor * b) {
  3548. return ggml_sub_impl(ctx, a, b, false);
  3549. }
  3550. struct ggml_tensor * ggml_sub_inplace(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. struct ggml_tensor * b) {
  3554. return ggml_sub_impl(ctx, a, b, true);
  3555. }
  3556. // ggml_mul
  3557. struct ggml_tensor * ggml_mul_impl(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. struct ggml_tensor * b,
  3561. bool inplace) {
  3562. GGML_ASSERT(ggml_are_same_shape(a, b));
  3563. bool is_node = false;
  3564. if (!inplace && (a->grad || b->grad)) {
  3565. is_node = true;
  3566. }
  3567. if (inplace) {
  3568. GGML_ASSERT(is_node == false);
  3569. }
  3570. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3571. result->op = GGML_OP_MUL;
  3572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3573. result->src0 = a;
  3574. result->src1 = b;
  3575. return result;
  3576. }
  3577. struct ggml_tensor * ggml_mul(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a,
  3580. struct ggml_tensor * b) {
  3581. return ggml_mul_impl(ctx, a, b, false);
  3582. }
  3583. struct ggml_tensor * ggml_mul_inplace(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. struct ggml_tensor * b) {
  3587. return ggml_mul_impl(ctx, a, b, true);
  3588. }
  3589. // ggml_div
  3590. struct ggml_tensor * ggml_div_impl(
  3591. struct ggml_context * ctx,
  3592. struct ggml_tensor * a,
  3593. struct ggml_tensor * b,
  3594. bool inplace) {
  3595. GGML_ASSERT(ggml_are_same_shape(a, b));
  3596. bool is_node = false;
  3597. if (!inplace && (a->grad || b->grad)) {
  3598. is_node = true;
  3599. }
  3600. if (inplace) {
  3601. GGML_ASSERT(is_node == false);
  3602. }
  3603. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3604. result->op = GGML_OP_DIV;
  3605. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3606. result->src0 = a;
  3607. result->src1 = b;
  3608. return result;
  3609. }
  3610. struct ggml_tensor * ggml_div(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a,
  3613. struct ggml_tensor * b) {
  3614. return ggml_div_impl(ctx, a, b, false);
  3615. }
  3616. struct ggml_tensor * ggml_div_inplace(
  3617. struct ggml_context * ctx,
  3618. struct ggml_tensor * a,
  3619. struct ggml_tensor * b) {
  3620. return ggml_div_impl(ctx, a, b, true);
  3621. }
  3622. // ggml_sqr
  3623. struct ggml_tensor * ggml_sqr_impl(
  3624. struct ggml_context * ctx,
  3625. struct ggml_tensor * a,
  3626. bool inplace) {
  3627. bool is_node = false;
  3628. if (!inplace && (a->grad)) {
  3629. is_node = true;
  3630. }
  3631. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3632. result->op = GGML_OP_SQR;
  3633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3634. result->src0 = a;
  3635. result->src1 = NULL;
  3636. return result;
  3637. }
  3638. struct ggml_tensor * ggml_sqr(
  3639. struct ggml_context * ctx,
  3640. struct ggml_tensor * a) {
  3641. return ggml_sqr_impl(ctx, a, false);
  3642. }
  3643. struct ggml_tensor * ggml_sqr_inplace(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a) {
  3646. return ggml_sqr_impl(ctx, a, true);
  3647. }
  3648. // ggml_sqrt
  3649. struct ggml_tensor * ggml_sqrt_impl(
  3650. struct ggml_context * ctx,
  3651. struct ggml_tensor * a,
  3652. bool inplace) {
  3653. bool is_node = false;
  3654. if (!inplace && (a->grad)) {
  3655. is_node = true;
  3656. }
  3657. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3658. result->op = GGML_OP_SQRT;
  3659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3660. result->src0 = a;
  3661. result->src1 = NULL;
  3662. return result;
  3663. }
  3664. struct ggml_tensor * ggml_sqrt(
  3665. struct ggml_context * ctx,
  3666. struct ggml_tensor * a) {
  3667. return ggml_sqrt_impl(ctx, a, false);
  3668. }
  3669. struct ggml_tensor * ggml_sqrt_inplace(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a) {
  3672. return ggml_sqrt_impl(ctx, a, true);
  3673. }
  3674. // ggml_sum
  3675. struct ggml_tensor * ggml_sum(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a) {
  3678. bool is_node = false;
  3679. if (a->grad) {
  3680. is_node = true;
  3681. }
  3682. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3683. result->op = GGML_OP_SUM;
  3684. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3685. result->src0 = a;
  3686. result->src1 = NULL;
  3687. return result;
  3688. }
  3689. // ggml_mean
  3690. struct ggml_tensor * ggml_mean(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a) {
  3693. bool is_node = false;
  3694. if (a->grad) {
  3695. GGML_ASSERT(false); // TODO: implement
  3696. is_node = true;
  3697. }
  3698. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3699. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3700. result->op = GGML_OP_MEAN;
  3701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3702. result->src0 = a;
  3703. result->src1 = NULL;
  3704. return result;
  3705. }
  3706. // ggml_repeat
  3707. struct ggml_tensor * ggml_repeat(
  3708. struct ggml_context * ctx,
  3709. struct ggml_tensor * a,
  3710. struct ggml_tensor * b) {
  3711. GGML_ASSERT(ggml_can_repeat(a, b));
  3712. bool is_node = false;
  3713. if (a->grad) {
  3714. is_node = true;
  3715. }
  3716. if (ggml_are_same_shape(a, b) && !is_node) {
  3717. return a;
  3718. }
  3719. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3720. result->op = GGML_OP_REPEAT;
  3721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3722. result->src0 = a;
  3723. result->src1 = b;
  3724. return result;
  3725. }
  3726. // ggml_abs
  3727. struct ggml_tensor * ggml_abs_impl(
  3728. struct ggml_context * ctx,
  3729. struct ggml_tensor * a,
  3730. bool inplace) {
  3731. bool is_node = false;
  3732. if (!inplace && (a->grad)) {
  3733. is_node = true;
  3734. }
  3735. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3736. result->op = GGML_OP_ABS;
  3737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3738. result->src0 = a;
  3739. result->src1 = NULL;
  3740. return result;
  3741. }
  3742. struct ggml_tensor * ggml_abs(
  3743. struct ggml_context * ctx,
  3744. struct ggml_tensor * a) {
  3745. return ggml_abs_impl(ctx, a, false);
  3746. }
  3747. struct ggml_tensor * ggml_abs_inplace(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a) {
  3750. return ggml_abs_impl(ctx, a, true);
  3751. }
  3752. // ggml_sgn
  3753. struct ggml_tensor * ggml_sgn_impl(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. bool inplace) {
  3757. bool is_node = false;
  3758. if (!inplace && (a->grad)) {
  3759. is_node = true;
  3760. }
  3761. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3762. result->op = GGML_OP_SGN;
  3763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3764. result->src0 = a;
  3765. result->src1 = NULL;
  3766. return result;
  3767. }
  3768. struct ggml_tensor * ggml_sgn(
  3769. struct ggml_context * ctx,
  3770. struct ggml_tensor * a) {
  3771. return ggml_sgn_impl(ctx, a, false);
  3772. }
  3773. struct ggml_tensor * ggml_sgn_inplace(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a) {
  3776. return ggml_sgn_impl(ctx, a, true);
  3777. }
  3778. // ggml_neg
  3779. struct ggml_tensor * ggml_neg_impl(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. bool inplace) {
  3783. bool is_node = false;
  3784. if (!inplace && (a->grad)) {
  3785. is_node = true;
  3786. }
  3787. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3788. result->op = GGML_OP_NEG;
  3789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3790. result->src0 = a;
  3791. result->src1 = NULL;
  3792. return result;
  3793. }
  3794. struct ggml_tensor * ggml_neg(
  3795. struct ggml_context * ctx,
  3796. struct ggml_tensor * a) {
  3797. return ggml_neg_impl(ctx, a, false);
  3798. }
  3799. struct ggml_tensor * ggml_neg_inplace(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a) {
  3802. return ggml_neg_impl(ctx, a, true);
  3803. }
  3804. // ggml_step
  3805. struct ggml_tensor * ggml_step_impl(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a,
  3808. bool inplace) {
  3809. bool is_node = false;
  3810. if (!inplace && (a->grad)) {
  3811. is_node = true;
  3812. }
  3813. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3814. result->op = GGML_OP_STEP;
  3815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3816. result->src0 = a;
  3817. result->src1 = NULL;
  3818. return result;
  3819. }
  3820. struct ggml_tensor * ggml_step(
  3821. struct ggml_context * ctx,
  3822. struct ggml_tensor * a) {
  3823. return ggml_step_impl(ctx, a, false);
  3824. }
  3825. struct ggml_tensor * ggml_step_inplace(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a) {
  3828. return ggml_step_impl(ctx, a, true);
  3829. }
  3830. // ggml_relu
  3831. struct ggml_tensor * ggml_relu_impl(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a,
  3834. bool inplace) {
  3835. bool is_node = false;
  3836. if (!inplace && (a->grad)) {
  3837. is_node = true;
  3838. }
  3839. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3840. result->op = GGML_OP_RELU;
  3841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3842. result->src0 = a;
  3843. result->src1 = NULL;
  3844. return result;
  3845. }
  3846. struct ggml_tensor * ggml_relu(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a) {
  3849. return ggml_relu_impl(ctx, a, false);
  3850. }
  3851. struct ggml_tensor * ggml_relu_inplace(
  3852. struct ggml_context * ctx,
  3853. struct ggml_tensor * a) {
  3854. return ggml_relu_impl(ctx, a, true);
  3855. }
  3856. // ggml_gelu
  3857. struct ggml_tensor * ggml_gelu_impl(
  3858. struct ggml_context * ctx,
  3859. struct ggml_tensor * a,
  3860. bool inplace) {
  3861. bool is_node = false;
  3862. if (!inplace && (a->grad)) {
  3863. is_node = true;
  3864. }
  3865. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3866. result->op = GGML_OP_GELU;
  3867. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3868. result->src0 = a;
  3869. result->src1 = NULL;
  3870. return result;
  3871. }
  3872. struct ggml_tensor * ggml_gelu(
  3873. struct ggml_context * ctx,
  3874. struct ggml_tensor * a) {
  3875. return ggml_gelu_impl(ctx, a, false);
  3876. }
  3877. struct ggml_tensor * ggml_gelu_inplace(
  3878. struct ggml_context * ctx,
  3879. struct ggml_tensor * a) {
  3880. return ggml_gelu_impl(ctx, a, true);
  3881. }
  3882. // ggml_silu
  3883. struct ggml_tensor * ggml_silu_impl(
  3884. struct ggml_context * ctx,
  3885. struct ggml_tensor * a,
  3886. bool inplace) {
  3887. bool is_node = false;
  3888. if (!inplace && (a->grad)) {
  3889. is_node = true;
  3890. }
  3891. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3892. result->op = GGML_OP_SILU;
  3893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3894. result->src0 = a;
  3895. result->src1 = NULL;
  3896. return result;
  3897. }
  3898. struct ggml_tensor * ggml_silu(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a) {
  3901. return ggml_silu_impl(ctx, a, false);
  3902. }
  3903. struct ggml_tensor * ggml_silu_inplace(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a) {
  3906. return ggml_silu_impl(ctx, a, true);
  3907. }
  3908. // ggml_norm
  3909. struct ggml_tensor * ggml_norm_impl(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. bool inplace) {
  3913. bool is_node = false;
  3914. if (!inplace && (a->grad)) {
  3915. GGML_ASSERT(false); // TODO: implement backward
  3916. is_node = true;
  3917. }
  3918. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3919. result->op = GGML_OP_NORM;
  3920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3921. result->src0 = a;
  3922. result->src1 = NULL; // TODO: maybe store epsilon here?
  3923. return result;
  3924. }
  3925. struct ggml_tensor * ggml_norm(
  3926. struct ggml_context * ctx,
  3927. struct ggml_tensor * a) {
  3928. return ggml_norm_impl(ctx, a, false);
  3929. }
  3930. struct ggml_tensor * ggml_norm_inplace(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a) {
  3933. return ggml_norm_impl(ctx, a, true);
  3934. }
  3935. struct ggml_tensor * ggml_rms_norm_impl(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a,
  3938. bool inplace) {
  3939. bool is_node = false;
  3940. if (!inplace && (a->grad)) {
  3941. GGML_ASSERT(false); // TODO: implement backward
  3942. is_node = true;
  3943. }
  3944. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3945. result->op = GGML_OP_RMS_NORM;
  3946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3947. result->src0 = a;
  3948. result->src1 = NULL; // TODO: maybe store epsilon here?
  3949. return result;
  3950. }
  3951. struct ggml_tensor * ggml_rms_norm(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a) {
  3954. return ggml_rms_norm_impl(ctx, a, false);
  3955. }
  3956. struct ggml_tensor * ggml_rms_norm_inplace(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a) {
  3959. return ggml_rms_norm_impl(ctx, a, true);
  3960. }
  3961. // ggml_mul_mat
  3962. struct ggml_tensor * ggml_mul_mat(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a,
  3965. struct ggml_tensor * b) {
  3966. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3967. GGML_ASSERT(!ggml_is_transposed(a));
  3968. bool is_node = false;
  3969. if (a->grad || b->grad) {
  3970. is_node = true;
  3971. }
  3972. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3973. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3974. result->op = GGML_OP_MUL_MAT;
  3975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3976. result->src0 = a;
  3977. result->src1 = b;
  3978. return result;
  3979. }
  3980. // ggml_scale
  3981. struct ggml_tensor * ggml_scale_impl(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. struct ggml_tensor * b,
  3985. bool inplace) {
  3986. GGML_ASSERT(ggml_is_scalar(b));
  3987. GGML_ASSERT(ggml_is_padded_1d(a));
  3988. bool is_node = false;
  3989. if (!inplace && (a->grad || b->grad)) {
  3990. GGML_ASSERT(false); // TODO: implement backward
  3991. is_node = true;
  3992. }
  3993. // TODO: when implement backward, fix this:
  3994. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3995. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3996. result->op = GGML_OP_SCALE;
  3997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3998. result->src0 = a;
  3999. result->src1 = b;
  4000. return result;
  4001. }
  4002. struct ggml_tensor * ggml_scale(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a,
  4005. struct ggml_tensor * b) {
  4006. return ggml_scale_impl(ctx, a, b, false);
  4007. }
  4008. struct ggml_tensor * ggml_scale_inplace(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a,
  4011. struct ggml_tensor * b) {
  4012. return ggml_scale_impl(ctx, a, b, true);
  4013. }
  4014. // ggml_cpy
  4015. struct ggml_tensor * ggml_cpy_impl(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a,
  4018. struct ggml_tensor * b,
  4019. bool inplace) {
  4020. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4021. bool is_node = false;
  4022. if (!inplace && (a->grad || b->grad)) {
  4023. GGML_ASSERT(false); // TODO: implement backward
  4024. is_node = true;
  4025. }
  4026. // make a view of the destination
  4027. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4028. result->op = GGML_OP_CPY;
  4029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4030. result->src0 = a;
  4031. result->src1 = b;
  4032. return result;
  4033. }
  4034. struct ggml_tensor * ggml_cpy(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a,
  4037. struct ggml_tensor * b) {
  4038. return ggml_cpy_impl(ctx, a, b, false);
  4039. }
  4040. struct ggml_tensor * ggml_cpy_inplace(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a,
  4043. struct ggml_tensor * b) {
  4044. return ggml_cpy_impl(ctx, a, b, true);
  4045. }
  4046. // ggml_cont
  4047. struct ggml_tensor * ggml_cont_impl(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. bool inplace) {
  4051. bool is_node = false;
  4052. if (!inplace && a->grad) {
  4053. GGML_ASSERT(false); // TODO: implement backward
  4054. is_node = true;
  4055. }
  4056. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4057. result->op = GGML_OP_CONT;
  4058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4059. result->src0 = a;
  4060. result->src1 = NULL;
  4061. return result;
  4062. }
  4063. struct ggml_tensor * ggml_cont(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a) {
  4066. return ggml_cont_impl(ctx, a, false);
  4067. }
  4068. struct ggml_tensor * ggml_cont_inplace(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a) {
  4071. return ggml_cont_impl(ctx, a, true);
  4072. }
  4073. // ggml_reshape
  4074. struct ggml_tensor * ggml_reshape(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a,
  4077. struct ggml_tensor * b) {
  4078. GGML_ASSERT(ggml_is_contiguous(a));
  4079. GGML_ASSERT(ggml_is_contiguous(b));
  4080. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4081. bool is_node = false;
  4082. if (a->grad || b->grad) {
  4083. GGML_ASSERT(false); // TODO: implement backward
  4084. is_node = true;
  4085. }
  4086. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4087. result->op = GGML_OP_RESHAPE;
  4088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4089. result->src0 = a;
  4090. result->src1 = NULL;
  4091. return result;
  4092. }
  4093. struct ggml_tensor * ggml_reshape_2d(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. int64_t ne0,
  4097. int64_t ne1) {
  4098. GGML_ASSERT(ggml_is_contiguous(a));
  4099. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4100. bool is_node = false;
  4101. if (a->grad) {
  4102. GGML_ASSERT(false); // TODO: implement backward
  4103. is_node = true;
  4104. }
  4105. const int64_t ne[2] = { ne0, ne1 };
  4106. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4107. result->op = GGML_OP_RESHAPE;
  4108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4109. result->src0 = a;
  4110. result->src1 = NULL;
  4111. return result;
  4112. }
  4113. struct ggml_tensor * ggml_reshape_3d(
  4114. struct ggml_context * ctx,
  4115. struct ggml_tensor * a,
  4116. int64_t ne0,
  4117. int64_t ne1,
  4118. int64_t ne2) {
  4119. GGML_ASSERT(ggml_is_contiguous(a));
  4120. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4121. bool is_node = false;
  4122. if (a->grad) {
  4123. GGML_ASSERT(false); // TODO: implement backward
  4124. is_node = true;
  4125. }
  4126. const int64_t ne[3] = { ne0, ne1, ne2 };
  4127. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4128. result->op = GGML_OP_RESHAPE;
  4129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4130. result->src0 = a;
  4131. result->src1 = NULL;
  4132. return result;
  4133. }
  4134. // ggml_view_1d
  4135. struct ggml_tensor * ggml_view_1d(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a,
  4138. int64_t ne0,
  4139. size_t offset) {
  4140. if (a->grad) {
  4141. GGML_ASSERT(false); // gradient propagation is not supported
  4142. }
  4143. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4144. result->op = GGML_OP_VIEW;
  4145. result->grad = NULL;
  4146. result->src0 = a;
  4147. result->src1 = NULL; // TODO: maybe store the offset here?
  4148. return result;
  4149. }
  4150. // ggml_view_2d
  4151. struct ggml_tensor * ggml_view_2d(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. int64_t ne0,
  4155. int64_t ne1,
  4156. size_t nb1,
  4157. size_t offset) {
  4158. if (a->grad) {
  4159. GGML_ASSERT(false); // gradient propagation is not supported
  4160. }
  4161. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4162. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4163. result->nb[1] = nb1;
  4164. result->nb[2] = result->nb[1]*ne1;
  4165. result->nb[3] = result->nb[2];
  4166. result->op = GGML_OP_VIEW;
  4167. result->grad = NULL;
  4168. result->src0 = a;
  4169. result->src1 = NULL; // TODO: maybe store the offset here?
  4170. return result;
  4171. }
  4172. // ggml_view_3d
  4173. struct ggml_tensor * ggml_view_3d(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a,
  4176. int64_t ne0,
  4177. int64_t ne1,
  4178. int64_t ne2,
  4179. size_t nb1,
  4180. size_t nb2,
  4181. size_t offset) {
  4182. if (a->grad) {
  4183. GGML_ASSERT(false); // gradient propagation is not supported
  4184. }
  4185. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4186. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4187. result->nb[1] = nb1;
  4188. result->nb[2] = nb2;
  4189. result->nb[3] = result->nb[2]*ne2;
  4190. result->op = GGML_OP_VIEW;
  4191. result->grad = NULL;
  4192. result->src0 = a;
  4193. result->src1 = NULL; // TODO: maybe store the offset here?
  4194. return result;
  4195. }
  4196. // ggml_permute
  4197. struct ggml_tensor * ggml_permute(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a,
  4200. int axis0,
  4201. int axis1,
  4202. int axis2,
  4203. int axis3) {
  4204. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4205. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4206. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4207. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4208. GGML_ASSERT(axis0 != axis1);
  4209. GGML_ASSERT(axis0 != axis2);
  4210. GGML_ASSERT(axis0 != axis3);
  4211. GGML_ASSERT(axis1 != axis2);
  4212. GGML_ASSERT(axis1 != axis3);
  4213. GGML_ASSERT(axis2 != axis3);
  4214. bool is_node = false;
  4215. if (a->grad) {
  4216. GGML_ASSERT(false); // TODO: implement backward
  4217. is_node = true;
  4218. }
  4219. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4220. int ne[GGML_MAX_DIMS];
  4221. int nb[GGML_MAX_DIMS];
  4222. ne[axis0] = a->ne[0];
  4223. ne[axis1] = a->ne[1];
  4224. ne[axis2] = a->ne[2];
  4225. ne[axis3] = a->ne[3];
  4226. nb[axis0] = a->nb[0];
  4227. nb[axis1] = a->nb[1];
  4228. nb[axis2] = a->nb[2];
  4229. nb[axis3] = a->nb[3];
  4230. result->ne[0] = ne[0];
  4231. result->ne[1] = ne[1];
  4232. result->ne[2] = ne[2];
  4233. result->ne[3] = ne[3];
  4234. result->nb[0] = nb[0];
  4235. result->nb[1] = nb[1];
  4236. result->nb[2] = nb[2];
  4237. result->nb[3] = nb[3];
  4238. result->op = GGML_OP_PERMUTE;
  4239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4240. result->src0 = a;
  4241. result->src1 = NULL; // TODO: maybe store the permutation here?
  4242. return result;
  4243. }
  4244. // ggml_transpose
  4245. struct ggml_tensor * ggml_transpose(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a) {
  4248. bool is_node = false;
  4249. if (a->grad) {
  4250. GGML_ASSERT(false); // TODO: implement backward
  4251. is_node = true;
  4252. }
  4253. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4254. result->ne[0] = a->ne[1];
  4255. result->ne[1] = a->ne[0];
  4256. result->nb[0] = a->nb[1];
  4257. result->nb[1] = a->nb[0];
  4258. result->op = GGML_OP_TRANSPOSE;
  4259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4260. result->src0 = a;
  4261. result->src1 = NULL;
  4262. return result;
  4263. }
  4264. // ggml_get_rows
  4265. struct ggml_tensor * ggml_get_rows(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a,
  4268. struct ggml_tensor * b) {
  4269. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4270. bool is_node = false;
  4271. if (a->grad || b->grad) {
  4272. GGML_ASSERT(false); // TODO: implement backward
  4273. is_node = true;
  4274. }
  4275. // TODO: implement non F32 return
  4276. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4277. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4278. result->op = GGML_OP_GET_ROWS;
  4279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4280. result->src0 = a;
  4281. result->src1 = b;
  4282. return result;
  4283. }
  4284. // ggml_diag_mask_inf
  4285. struct ggml_tensor * ggml_diag_mask_inf(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a,
  4288. int n_past) {
  4289. bool is_node = false;
  4290. if (a->grad) {
  4291. GGML_ASSERT(false); // TODO: implement backward
  4292. is_node = true;
  4293. }
  4294. // TODO: when implement backward, fix this:
  4295. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4296. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4297. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4298. result->op = GGML_OP_DIAG_MASK_INF;
  4299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4300. result->src0 = a;
  4301. result->src1 = b;
  4302. return result;
  4303. }
  4304. // ggml_soft_max
  4305. struct ggml_tensor * ggml_soft_max(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a) {
  4308. bool is_node = false;
  4309. if (a->grad) {
  4310. GGML_ASSERT(false); // TODO: implement backward
  4311. is_node = true;
  4312. }
  4313. // TODO: when implement backward, fix this:
  4314. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4315. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4316. result->op = GGML_OP_SOFT_MAX;
  4317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4318. result->src0 = a;
  4319. result->src1 = NULL;
  4320. return result;
  4321. }
  4322. // ggml_rope
  4323. struct ggml_tensor * ggml_rope(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. int n_past,
  4327. int n_dims,
  4328. int mode) {
  4329. GGML_ASSERT(n_past >= 0);
  4330. bool is_node = false;
  4331. if (a->grad) {
  4332. GGML_ASSERT(false); // TODO: implement backward
  4333. is_node = true;
  4334. }
  4335. // TODO: when implement backward, fix this:
  4336. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4337. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4338. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4339. ((int32_t *) b->data)[0] = n_past;
  4340. ((int32_t *) b->data)[1] = n_dims;
  4341. ((int32_t *) b->data)[2] = mode;
  4342. result->op = GGML_OP_ROPE;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src0 = a;
  4345. result->src1 = b;
  4346. return result;
  4347. }
  4348. // ggml_conv_1d_1s
  4349. struct ggml_tensor * ggml_conv_1d_1s(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a,
  4352. struct ggml_tensor * b) {
  4353. GGML_ASSERT(ggml_is_matrix(b));
  4354. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4355. GGML_ASSERT(a->ne[3] == 1);
  4356. bool is_node = false;
  4357. if (a->grad || b->grad) {
  4358. GGML_ASSERT(false); // TODO: implement backward
  4359. is_node = true;
  4360. }
  4361. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4362. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4363. result->op = GGML_OP_CONV_1D_1S;
  4364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4365. result->src0 = a;
  4366. result->src1 = b;
  4367. return result;
  4368. }
  4369. // ggml_conv_1d_2s
  4370. struct ggml_tensor * ggml_conv_1d_2s(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. struct ggml_tensor * b) {
  4374. GGML_ASSERT(ggml_is_matrix(b));
  4375. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4376. GGML_ASSERT(a->ne[3] == 1);
  4377. bool is_node = false;
  4378. if (a->grad || b->grad) {
  4379. GGML_ASSERT(false); // TODO: implement backward
  4380. is_node = true;
  4381. }
  4382. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4383. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4384. result->op = GGML_OP_CONV_1D_2S;
  4385. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4386. result->src0 = a;
  4387. result->src1 = b;
  4388. return result;
  4389. }
  4390. // ggml_flash_attn
  4391. struct ggml_tensor * ggml_flash_attn(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * q,
  4394. struct ggml_tensor * k,
  4395. struct ggml_tensor * v,
  4396. bool masked) {
  4397. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4398. // TODO: check if vT can be multiplied by (k*qT)
  4399. bool is_node = false;
  4400. if (q->grad || k->grad || v->grad) {
  4401. GGML_ASSERT(false); // TODO: implement backward
  4402. is_node = true;
  4403. }
  4404. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4405. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4406. result->op = GGML_OP_FLASH_ATTN;
  4407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4408. result->src0 = q;
  4409. result->src1 = k;
  4410. result->opt[0] = v;
  4411. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4412. return result;
  4413. }
  4414. // ggml_flash_ff
  4415. struct ggml_tensor * ggml_flash_ff(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b0,
  4419. struct ggml_tensor * b1,
  4420. struct ggml_tensor * c0,
  4421. struct ggml_tensor * c1) {
  4422. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4423. // TODO: more checks
  4424. bool is_node = false;
  4425. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4426. GGML_ASSERT(false); // TODO: implement backward
  4427. is_node = true;
  4428. }
  4429. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4430. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4431. result->op = GGML_OP_FLASH_FF;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src0 = a;
  4434. result->src1 = b0;
  4435. result->opt[0] = b1;
  4436. result->opt[1] = c0;
  4437. result->opt[2] = c1;
  4438. return result;
  4439. }
  4440. // ggml_map_unary
  4441. struct ggml_tensor * ggml_map_unary_impl_f32(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a,
  4444. const ggml_unary_op_f32_t fun,
  4445. bool inplace) {
  4446. bool is_node = false;
  4447. if (!inplace && a->grad) {
  4448. is_node = true;
  4449. }
  4450. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4451. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4452. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4453. result->op = GGML_OP_MAP_UNARY;
  4454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4455. result->src0 = a;
  4456. result->opt[0] = addr_tensor;
  4457. return result;
  4458. }
  4459. struct ggml_tensor * ggml_map_unary_f32(
  4460. struct ggml_context * ctx,
  4461. struct ggml_tensor * a,
  4462. const ggml_unary_op_f32_t fun) {
  4463. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4464. }
  4465. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a,
  4468. const ggml_unary_op_f32_t fun) {
  4469. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4470. }
  4471. // ggml_map_binary
  4472. struct ggml_tensor * ggml_map_binary_impl_f32(
  4473. struct ggml_context * ctx,
  4474. struct ggml_tensor * a,
  4475. struct ggml_tensor * b,
  4476. const ggml_binary_op_f32_t fun,
  4477. bool inplace) {
  4478. GGML_ASSERT(ggml_are_same_shape(a, b));
  4479. bool is_node = false;
  4480. if (!inplace && (a->grad || b->grad)) {
  4481. is_node = true;
  4482. }
  4483. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4484. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4485. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4486. result->op = GGML_OP_MAP_BINARY;
  4487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4488. result->src0 = a;
  4489. result->src1 = b;
  4490. result->opt[0] = addr_tensor;
  4491. return result;
  4492. }
  4493. struct ggml_tensor * ggml_map_binary_f32(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b,
  4497. const ggml_binary_op_f32_t fun) {
  4498. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4499. }
  4500. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a,
  4503. struct ggml_tensor * b,
  4504. const ggml_binary_op_f32_t fun) {
  4505. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4506. }
  4507. ////////////////////////////////////////////////////////////////////////////////
  4508. void ggml_set_param(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * tensor) {
  4511. tensor->is_param = true;
  4512. GGML_ASSERT(tensor->grad == NULL);
  4513. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4514. }
  4515. // ggml_compute_forward_dup
  4516. static void ggml_compute_forward_dup_f16(
  4517. const struct ggml_compute_params * params,
  4518. const struct ggml_tensor * src0,
  4519. struct ggml_tensor * dst) {
  4520. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4522. return;
  4523. }
  4524. const int64_t ne00 = src0->ne[0];
  4525. const int64_t ne01 = src0->ne[1];
  4526. const int64_t ne02 = src0->ne[2];
  4527. const int64_t ne03 = src0->ne[3];
  4528. const int64_t ne0 = dst->ne[0];
  4529. const int64_t ne1 = dst->ne[1];
  4530. const int64_t ne2 = dst->ne[2];
  4531. const int64_t ne3 = dst->ne[3];
  4532. const size_t nb00 = src0->nb[0];
  4533. const size_t nb01 = src0->nb[1];
  4534. const size_t nb02 = src0->nb[2];
  4535. const size_t nb03 = src0->nb[3];
  4536. const size_t nb0 = dst->nb[0];
  4537. const size_t nb1 = dst->nb[1];
  4538. const size_t nb2 = dst->nb[2];
  4539. const size_t nb3 = dst->nb[3];
  4540. const int ith = params->ith; // thread index
  4541. const int nth = params->nth; // number of threads
  4542. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4543. // parallelize by elements
  4544. const int ne = ggml_nelements(dst);
  4545. const int dr = (ne + nth - 1) / nth;
  4546. const int ie0 = dr * ith;
  4547. const int ie1 = MIN(ie0 + dr, ne);
  4548. memcpy(
  4549. ((char *) dst->data + ie0*nb0),
  4550. ((char *) src0->data + ie0*nb00),
  4551. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4552. return;
  4553. }
  4554. // parallelize by rows
  4555. const int nr = ne01;
  4556. // number of rows per thread
  4557. const int dr = (nr + nth - 1) / nth;
  4558. // row range for this thread
  4559. const int ir0 = dr * ith;
  4560. const int ir1 = MIN(ir0 + dr, nr);
  4561. if (src0->type == dst->type &&
  4562. ne00 == ne0 &&
  4563. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4564. // copy by rows
  4565. const size_t rs = ne00*nb00;
  4566. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4567. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4568. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4569. memcpy(
  4570. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4571. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4572. rs);
  4573. }
  4574. }
  4575. }
  4576. return;
  4577. }
  4578. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4579. if (ggml_is_contiguous(dst)) {
  4580. if (nb00 == sizeof(ggml_fp16_t)) {
  4581. if (dst->type == GGML_TYPE_F16) {
  4582. size_t id = 0;
  4583. const size_t rs = ne00 * nb00;
  4584. char * dst_ptr = (char *) dst->data;
  4585. for (int i03 = 0; i03 < ne03; i03++) {
  4586. for (int i02 = 0; i02 < ne02; i02++) {
  4587. id += rs * ir0;
  4588. for (int i01 = ir0; i01 < ir1; i01++) {
  4589. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4590. memcpy(dst_ptr + id, src0_ptr, rs);
  4591. id += rs;
  4592. }
  4593. id += rs * (ne01 - ir1);
  4594. }
  4595. }
  4596. } else if (dst->type == GGML_TYPE_F32) {
  4597. size_t id = 0;
  4598. float * dst_ptr = (float *) dst->data;
  4599. for (int i03 = 0; i03 < ne03; i03++) {
  4600. for (int i02 = 0; i02 < ne02; i02++) {
  4601. id += ne00 * ir0;
  4602. for (int i01 = ir0; i01 < ir1; i01++) {
  4603. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4604. for (int i00 = 0; i00 < ne00; i00++) {
  4605. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4606. id++;
  4607. }
  4608. }
  4609. id += ne00 * (ne01 - ir1);
  4610. }
  4611. }
  4612. } else if (ggml_is_quantized(dst->type)) {
  4613. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4614. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4615. size_t id = 0;
  4616. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4617. char * dst_ptr = (char *) dst->data;
  4618. for (int i03 = 0; i03 < ne03; i03++) {
  4619. for (int i02 = 0; i02 < ne02; i02++) {
  4620. id += rs * ir0;
  4621. for (int i01 = ir0; i01 < ir1; i01++) {
  4622. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4623. for (int i00 = 0; i00 < ne00; i00++) {
  4624. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4625. }
  4626. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4627. id += rs;
  4628. }
  4629. id += rs * (ne01 - ir1);
  4630. }
  4631. }
  4632. } else {
  4633. GGML_ASSERT(false); // TODO: implement
  4634. }
  4635. } else {
  4636. //printf("%s: this is not optimal - fix me\n", __func__);
  4637. if (dst->type == GGML_TYPE_F32) {
  4638. size_t id = 0;
  4639. float * dst_ptr = (float *) dst->data;
  4640. for (int i03 = 0; i03 < ne03; i03++) {
  4641. for (int i02 = 0; i02 < ne02; i02++) {
  4642. id += ne00 * ir0;
  4643. for (int i01 = ir0; i01 < ir1; i01++) {
  4644. for (int i00 = 0; i00 < ne00; i00++) {
  4645. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4646. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4647. id++;
  4648. }
  4649. }
  4650. id += ne00 * (ne01 - ir1);
  4651. }
  4652. }
  4653. } else if (dst->type == GGML_TYPE_F16) {
  4654. size_t id = 0;
  4655. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4656. for (int i03 = 0; i03 < ne03; i03++) {
  4657. for (int i02 = 0; i02 < ne02; i02++) {
  4658. id += ne00 * ir0;
  4659. for (int i01 = ir0; i01 < ir1; i01++) {
  4660. for (int i00 = 0; i00 < ne00; i00++) {
  4661. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4662. dst_ptr[id] = *src0_ptr;
  4663. id++;
  4664. }
  4665. }
  4666. id += ne00 * (ne01 - ir1);
  4667. }
  4668. }
  4669. } else {
  4670. GGML_ASSERT(false); // TODO: implement
  4671. }
  4672. }
  4673. return;
  4674. }
  4675. // dst counters
  4676. int64_t i10 = 0;
  4677. int64_t i11 = 0;
  4678. int64_t i12 = 0;
  4679. int64_t i13 = 0;
  4680. if (dst->type == GGML_TYPE_F16) {
  4681. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4682. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4683. i10 += ne00 * ir0;
  4684. while (i10 >= ne0) {
  4685. i10 -= ne0;
  4686. if (++i11 == ne1) {
  4687. i11 = 0;
  4688. if (++i12 == ne2) {
  4689. i12 = 0;
  4690. if (++i13 == ne3) {
  4691. i13 = 0;
  4692. }
  4693. }
  4694. }
  4695. }
  4696. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4697. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4698. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4699. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4700. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4701. if (++i10 == ne00) {
  4702. i10 = 0;
  4703. if (++i11 == ne01) {
  4704. i11 = 0;
  4705. if (++i12 == ne02) {
  4706. i12 = 0;
  4707. if (++i13 == ne03) {
  4708. i13 = 0;
  4709. }
  4710. }
  4711. }
  4712. }
  4713. }
  4714. }
  4715. i10 += ne00 * (ne01 - ir1);
  4716. while (i10 >= ne0) {
  4717. i10 -= ne0;
  4718. if (++i11 == ne1) {
  4719. i11 = 0;
  4720. if (++i12 == ne2) {
  4721. i12 = 0;
  4722. if (++i13 == ne3) {
  4723. i13 = 0;
  4724. }
  4725. }
  4726. }
  4727. }
  4728. }
  4729. }
  4730. } else if (dst->type == GGML_TYPE_F32) {
  4731. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4732. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4733. i10 += ne00 * ir0;
  4734. while (i10 >= ne0) {
  4735. i10 -= ne0;
  4736. if (++i11 == ne1) {
  4737. i11 = 0;
  4738. if (++i12 == ne2) {
  4739. i12 = 0;
  4740. if (++i13 == ne3) {
  4741. i13 = 0;
  4742. }
  4743. }
  4744. }
  4745. }
  4746. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4747. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4748. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4749. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4750. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4751. if (++i10 == ne0) {
  4752. i10 = 0;
  4753. if (++i11 == ne1) {
  4754. i11 = 0;
  4755. if (++i12 == ne2) {
  4756. i12 = 0;
  4757. if (++i13 == ne3) {
  4758. i13 = 0;
  4759. }
  4760. }
  4761. }
  4762. }
  4763. }
  4764. }
  4765. i10 += ne00 * (ne01 - ir1);
  4766. while (i10 >= ne0) {
  4767. i10 -= ne0;
  4768. if (++i11 == ne1) {
  4769. i11 = 0;
  4770. if (++i12 == ne2) {
  4771. i12 = 0;
  4772. if (++i13 == ne3) {
  4773. i13 = 0;
  4774. }
  4775. }
  4776. }
  4777. }
  4778. }
  4779. }
  4780. } else {
  4781. GGML_ASSERT(false); // TODO: implement
  4782. }
  4783. }
  4784. static void ggml_compute_forward_dup_f32(
  4785. const struct ggml_compute_params * params,
  4786. const struct ggml_tensor * src0,
  4787. struct ggml_tensor * dst) {
  4788. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4789. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4790. return;
  4791. }
  4792. const int64_t ne00 = src0->ne[0];
  4793. const int64_t ne01 = src0->ne[1];
  4794. const int64_t ne02 = src0->ne[2];
  4795. const int64_t ne03 = src0->ne[3];
  4796. const int64_t ne0 = dst->ne[0];
  4797. const int64_t ne1 = dst->ne[1];
  4798. const int64_t ne2 = dst->ne[2];
  4799. const int64_t ne3 = dst->ne[3];
  4800. const size_t nb00 = src0->nb[0];
  4801. const size_t nb01 = src0->nb[1];
  4802. const size_t nb02 = src0->nb[2];
  4803. const size_t nb03 = src0->nb[3];
  4804. const size_t nb0 = dst->nb[0];
  4805. const size_t nb1 = dst->nb[1];
  4806. const size_t nb2 = dst->nb[2];
  4807. const size_t nb3 = dst->nb[3];
  4808. const int ith = params->ith; // thread index
  4809. const int nth = params->nth; // number of threads
  4810. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4811. // parallelize by elements
  4812. const int ne = ggml_nelements(dst);
  4813. const int dr = (ne + nth - 1) / nth;
  4814. const int ie0 = dr * ith;
  4815. const int ie1 = MIN(ie0 + dr, ne);
  4816. memcpy(
  4817. ((char *) dst->data + ie0*nb0),
  4818. ((char *) src0->data + ie0*nb00),
  4819. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4820. return;
  4821. }
  4822. // parallelize by rows
  4823. const int nr = ne01;
  4824. // number of rows per thread
  4825. const int dr = (nr + nth - 1) / nth;
  4826. // row range for this thread
  4827. const int ir0 = dr * ith;
  4828. const int ir1 = MIN(ir0 + dr, nr);
  4829. if (src0->type == dst->type &&
  4830. ne00 == ne0 &&
  4831. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4832. // copy by rows
  4833. const size_t rs = ne00*nb00;
  4834. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4835. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4836. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4837. memcpy(
  4838. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4839. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4840. rs);
  4841. }
  4842. }
  4843. }
  4844. return;
  4845. }
  4846. if (ggml_is_contiguous(dst)) {
  4847. // TODO: simplify
  4848. if (nb00 == sizeof(float)) {
  4849. if (dst->type == GGML_TYPE_F32) {
  4850. size_t id = 0;
  4851. const size_t rs = ne00 * nb00;
  4852. char * dst_ptr = (char *) dst->data;
  4853. for (int i03 = 0; i03 < ne03; i03++) {
  4854. for (int i02 = 0; i02 < ne02; i02++) {
  4855. id += rs * ir0;
  4856. for (int i01 = ir0; i01 < ir1; i01++) {
  4857. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4858. memcpy(dst_ptr + id, src0_ptr, rs);
  4859. id += rs;
  4860. }
  4861. id += rs * (ne01 - ir1);
  4862. }
  4863. }
  4864. } else if (dst->type == GGML_TYPE_F16) {
  4865. size_t id = 0;
  4866. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4867. for (int i03 = 0; i03 < ne03; i03++) {
  4868. for (int i02 = 0; i02 < ne02; i02++) {
  4869. id += ne00 * ir0;
  4870. for (int i01 = ir0; i01 < ir1; i01++) {
  4871. for (int i00 = 0; i00 < ne00; i00++) {
  4872. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4873. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4874. id++;
  4875. }
  4876. }
  4877. id += ne00 * (ne01 - ir1);
  4878. }
  4879. }
  4880. } else if (ggml_is_quantized(dst->type)) {
  4881. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4882. size_t id = 0;
  4883. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4884. char * dst_ptr = (char *) dst->data;
  4885. for (int i03 = 0; i03 < ne03; i03++) {
  4886. for (int i02 = 0; i02 < ne02; i02++) {
  4887. id += rs * ir0;
  4888. for (int i01 = ir0; i01 < ir1; i01++) {
  4889. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4890. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4891. id += rs;
  4892. }
  4893. id += rs * (ne01 - ir1);
  4894. }
  4895. }
  4896. } else {
  4897. GGML_ASSERT(false); // TODO: implement
  4898. }
  4899. } else {
  4900. //printf("%s: this is not optimal - fix me\n", __func__);
  4901. if (dst->type == GGML_TYPE_F32) {
  4902. size_t id = 0;
  4903. float * dst_ptr = (float *) dst->data;
  4904. for (int i03 = 0; i03 < ne03; i03++) {
  4905. for (int i02 = 0; i02 < ne02; i02++) {
  4906. id += ne00 * ir0;
  4907. for (int i01 = ir0; i01 < ir1; i01++) {
  4908. for (int i00 = 0; i00 < ne00; i00++) {
  4909. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4910. dst_ptr[id] = *src0_ptr;
  4911. id++;
  4912. }
  4913. }
  4914. id += ne00 * (ne01 - ir1);
  4915. }
  4916. }
  4917. } else if (dst->type == GGML_TYPE_F16) {
  4918. size_t id = 0;
  4919. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4920. for (int i03 = 0; i03 < ne03; i03++) {
  4921. for (int i02 = 0; i02 < ne02; i02++) {
  4922. id += ne00 * ir0;
  4923. for (int i01 = ir0; i01 < ir1; i01++) {
  4924. for (int i00 = 0; i00 < ne00; i00++) {
  4925. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4926. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4927. id++;
  4928. }
  4929. }
  4930. id += ne00 * (ne01 - ir1);
  4931. }
  4932. }
  4933. } else {
  4934. GGML_ASSERT(false); // TODO: implement
  4935. }
  4936. }
  4937. return;
  4938. }
  4939. // dst counters
  4940. int64_t i10 = 0;
  4941. int64_t i11 = 0;
  4942. int64_t i12 = 0;
  4943. int64_t i13 = 0;
  4944. if (dst->type == GGML_TYPE_F32) {
  4945. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4946. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4947. i10 += ne00 * ir0;
  4948. while (i10 >= ne0) {
  4949. i10 -= ne0;
  4950. if (++i11 == ne1) {
  4951. i11 = 0;
  4952. if (++i12 == ne2) {
  4953. i12 = 0;
  4954. if (++i13 == ne3) {
  4955. i13 = 0;
  4956. }
  4957. }
  4958. }
  4959. }
  4960. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4961. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4962. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4963. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4964. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4965. if (++i10 == ne0) {
  4966. i10 = 0;
  4967. if (++i11 == ne1) {
  4968. i11 = 0;
  4969. if (++i12 == ne2) {
  4970. i12 = 0;
  4971. if (++i13 == ne3) {
  4972. i13 = 0;
  4973. }
  4974. }
  4975. }
  4976. }
  4977. }
  4978. }
  4979. i10 += ne00 * (ne01 - ir1);
  4980. while (i10 >= ne0) {
  4981. i10 -= ne0;
  4982. if (++i11 == ne1) {
  4983. i11 = 0;
  4984. if (++i12 == ne2) {
  4985. i12 = 0;
  4986. if (++i13 == ne3) {
  4987. i13 = 0;
  4988. }
  4989. }
  4990. }
  4991. }
  4992. }
  4993. }
  4994. } else if (dst->type == GGML_TYPE_F16) {
  4995. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4996. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4997. i10 += ne00 * ir0;
  4998. while (i10 >= ne0) {
  4999. i10 -= ne0;
  5000. if (++i11 == ne1) {
  5001. i11 = 0;
  5002. if (++i12 == ne2) {
  5003. i12 = 0;
  5004. if (++i13 == ne3) {
  5005. i13 = 0;
  5006. }
  5007. }
  5008. }
  5009. }
  5010. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5011. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5012. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5013. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5014. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5015. if (++i10 == ne0) {
  5016. i10 = 0;
  5017. if (++i11 == ne1) {
  5018. i11 = 0;
  5019. if (++i12 == ne2) {
  5020. i12 = 0;
  5021. if (++i13 == ne3) {
  5022. i13 = 0;
  5023. }
  5024. }
  5025. }
  5026. }
  5027. }
  5028. }
  5029. i10 += ne00 * (ne01 - ir1);
  5030. while (i10 >= ne0) {
  5031. i10 -= ne0;
  5032. if (++i11 == ne1) {
  5033. i11 = 0;
  5034. if (++i12 == ne2) {
  5035. i12 = 0;
  5036. if (++i13 == ne3) {
  5037. i13 = 0;
  5038. }
  5039. }
  5040. }
  5041. }
  5042. }
  5043. }
  5044. } else {
  5045. GGML_ASSERT(false); // TODO: implement
  5046. }
  5047. }
  5048. static void ggml_compute_forward_dup(
  5049. const struct ggml_compute_params * params,
  5050. const struct ggml_tensor * src0,
  5051. struct ggml_tensor * dst) {
  5052. switch (src0->type) {
  5053. case GGML_TYPE_F16:
  5054. {
  5055. ggml_compute_forward_dup_f16(params, src0, dst);
  5056. } break;
  5057. case GGML_TYPE_F32:
  5058. {
  5059. ggml_compute_forward_dup_f32(params, src0, dst);
  5060. } break;
  5061. default:
  5062. {
  5063. GGML_ASSERT(false);
  5064. } break;
  5065. }
  5066. }
  5067. // ggml_compute_forward_add
  5068. static void ggml_compute_forward_add_f32(
  5069. const struct ggml_compute_params * params,
  5070. const struct ggml_tensor * src0,
  5071. const struct ggml_tensor * src1,
  5072. struct ggml_tensor * dst) {
  5073. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5074. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5075. return;
  5076. }
  5077. const int ith = params->ith;
  5078. const int nth = params->nth;
  5079. const int n = ggml_nrows(src0);
  5080. const int nc = src0->ne[0];
  5081. const size_t nb00 = src0->nb[0];
  5082. const size_t nb01 = src0->nb[1];
  5083. const size_t nb10 = src1->nb[0];
  5084. const size_t nb11 = src1->nb[1];
  5085. const size_t nb0 = dst->nb[0];
  5086. const size_t nb1 = dst->nb[1];
  5087. GGML_ASSERT( nb0 == sizeof(float));
  5088. GGML_ASSERT(nb00 == sizeof(float));
  5089. if (nb10 == sizeof(float)) {
  5090. for (int j = ith; j < n; j += nth) {
  5091. #ifdef GGML_USE_ACCELERATE
  5092. vDSP_vadd(
  5093. (float *) ((char *) src0->data + j*nb01), 1,
  5094. (float *) ((char *) src1->data + j*nb11), 1,
  5095. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5096. #else
  5097. ggml_vec_add_f32(nc,
  5098. (float *) ((char *) dst->data + j*nb1),
  5099. (float *) ((char *) src0->data + j*nb01),
  5100. (float *) ((char *) src1->data + j*nb11));
  5101. #endif
  5102. }
  5103. } else {
  5104. // src1 is not contiguous
  5105. for (int j = ith; j < n; j += nth) {
  5106. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5107. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5108. for (int i = 0; i < nc; i++) {
  5109. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5110. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5111. }
  5112. }
  5113. }
  5114. }
  5115. static void ggml_compute_forward_add_f16_f32(
  5116. const struct ggml_compute_params * params,
  5117. const struct ggml_tensor * src0,
  5118. const struct ggml_tensor * src1,
  5119. struct ggml_tensor * dst) {
  5120. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5121. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5122. return;
  5123. }
  5124. const int ith = params->ith;
  5125. const int nth = params->nth;
  5126. const int n = ggml_nrows(src0);
  5127. const int nc = src0->ne[0];
  5128. const size_t nb00 = src0->nb[0];
  5129. const size_t nb01 = src0->nb[1];
  5130. const size_t nb10 = src1->nb[0];
  5131. const size_t nb11 = src1->nb[1];
  5132. const size_t nb0 = dst->nb[0];
  5133. const size_t nb1 = dst->nb[1];
  5134. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5135. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5136. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5137. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5138. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5139. if (nb10 == sizeof(float)) {
  5140. for (int j = ith; j < n; j += nth) {
  5141. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5142. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5143. for (int i = 0; i < nc; i++) {
  5144. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5145. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5146. }
  5147. }
  5148. }
  5149. else {
  5150. // src1 is not contiguous
  5151. GGML_ASSERT(false);
  5152. }
  5153. }
  5154. static void ggml_compute_forward_add_f16_f16(
  5155. const struct ggml_compute_params * params,
  5156. const struct ggml_tensor * src0,
  5157. const struct ggml_tensor * src1,
  5158. struct ggml_tensor * dst) {
  5159. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5160. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5161. return;
  5162. }
  5163. const int ith = params->ith;
  5164. const int nth = params->nth;
  5165. const int n = ggml_nrows(src0);
  5166. const int nc = src0->ne[0];
  5167. const size_t nb00 = src0->nb[0];
  5168. const size_t nb01 = src0->nb[1];
  5169. const size_t nb10 = src1->nb[0];
  5170. const size_t nb11 = src1->nb[1];
  5171. const size_t nb0 = dst->nb[0];
  5172. const size_t nb1 = dst->nb[1];
  5173. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5174. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5175. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5176. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5177. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5178. if (nb10 == sizeof(ggml_fp16_t)) {
  5179. for (int j = ith; j < n; j += nth) {
  5180. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5181. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5182. for (int i = 0; i < nc; i++) {
  5183. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5184. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5185. }
  5186. }
  5187. }
  5188. else {
  5189. // src1 is not contiguous
  5190. GGML_ASSERT(false);
  5191. }
  5192. }
  5193. static void ggml_compute_forward_add_q_f32(
  5194. const struct ggml_compute_params * params,
  5195. const struct ggml_tensor * src0,
  5196. const struct ggml_tensor * src1,
  5197. struct ggml_tensor * dst) {
  5198. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5199. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5200. return;
  5201. }
  5202. const int64_t ne00 = src0->ne[0];
  5203. const int64_t ne01 = src0->ne[1];
  5204. const int64_t ne02 = src0->ne[2];
  5205. const int64_t ne03 = src0->ne[3];
  5206. //const int64_t ne10 = src1->ne[0];
  5207. //const int64_t ne11 = src1->ne[1];
  5208. const int64_t ne12 = src1->ne[2];
  5209. const int64_t ne13 = src1->ne[3];
  5210. //const int64_t ne0 = dst->ne[0];
  5211. //const int64_t ne1 = dst->ne[1];
  5212. const int64_t ne2 = dst->ne[2];
  5213. const int64_t ne3 = dst->ne[3];
  5214. const int nb00 = src0->nb[0];
  5215. const int nb01 = src0->nb[1];
  5216. const int nb02 = src0->nb[2];
  5217. const int nb03 = src0->nb[3];
  5218. const int nb10 = src1->nb[0];
  5219. const int nb11 = src1->nb[1];
  5220. const int nb12 = src1->nb[2];
  5221. const int nb13 = src1->nb[3];
  5222. const int nb0 = dst->nb[0];
  5223. const int nb1 = dst->nb[1];
  5224. const int nb2 = dst->nb[2];
  5225. const int nb3 = dst->nb[3];
  5226. const int ith = params->ith;
  5227. const int nth = params->nth;
  5228. GGML_ASSERT(ne02 == ne12);
  5229. GGML_ASSERT(ne03 == ne13);
  5230. GGML_ASSERT(ne2 == ne12);
  5231. GGML_ASSERT(ne3 == ne13);
  5232. const enum ggml_type type = src0->type;
  5233. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5234. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5235. // we don't support permuted src0 or src1
  5236. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5237. GGML_ASSERT(nb10 == sizeof(float));
  5238. // dst cannot be transposed or permuted
  5239. GGML_ASSERT(nb0 <= nb1);
  5240. GGML_ASSERT(nb1 <= nb2);
  5241. GGML_ASSERT(nb2 <= nb3);
  5242. GGML_ASSERT(ggml_is_quantized(src0->type));
  5243. GGML_ASSERT(dst->type == src0->type);
  5244. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5245. // total rows in src0
  5246. const int nr = ne01*ne02*ne03;
  5247. // rows per thread
  5248. const int dr = (nr + nth - 1)/nth;
  5249. // row range for this thread
  5250. const int ir0 = dr*ith;
  5251. const int ir1 = MIN(ir0 + dr, nr);
  5252. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5253. for (int ir = ir0; ir < ir1; ++ir) {
  5254. // src0 indices
  5255. const int i03 = ir/(ne02*ne01);
  5256. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5257. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5258. // src1 and dst are same shape as src0 => same indices
  5259. const int i13 = i03;
  5260. const int i12 = i02;
  5261. const int i11 = i01;
  5262. const int i3 = i03;
  5263. const int i2 = i02;
  5264. const int i1 = i01;
  5265. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5266. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5267. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5268. assert(ne00 % 32 == 0);
  5269. // unquantize row from src0 to temp buffer
  5270. dequantize_row_q(src0_row, wdata, ne00);
  5271. // add src1
  5272. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5273. // quantize row to dst
  5274. quantize_row_q(wdata, dst_row, ne00);
  5275. }
  5276. }
  5277. static void ggml_compute_forward_add(
  5278. const struct ggml_compute_params * params,
  5279. const struct ggml_tensor * src0,
  5280. const struct ggml_tensor * src1,
  5281. struct ggml_tensor * dst) {
  5282. switch (src0->type) {
  5283. case GGML_TYPE_F32:
  5284. {
  5285. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5286. } break;
  5287. case GGML_TYPE_F16:
  5288. {
  5289. if (src1->type == GGML_TYPE_F16) {
  5290. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5291. }
  5292. else if (src1->type == GGML_TYPE_F32) {
  5293. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5294. }
  5295. else {
  5296. GGML_ASSERT(false);
  5297. }
  5298. } break;
  5299. case GGML_TYPE_Q4_0:
  5300. case GGML_TYPE_Q4_1:
  5301. case GGML_TYPE_Q4_2:
  5302. case GGML_TYPE_Q4_3:
  5303. {
  5304. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5305. } break;
  5306. default:
  5307. {
  5308. GGML_ASSERT(false);
  5309. } break;
  5310. }
  5311. }
  5312. // ggml_compute_forward_sub
  5313. static void ggml_compute_forward_sub_f32(
  5314. const struct ggml_compute_params * params,
  5315. const struct ggml_tensor * src0,
  5316. const struct ggml_tensor * src1,
  5317. struct ggml_tensor * dst) {
  5318. assert(params->ith == 0);
  5319. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5321. return;
  5322. }
  5323. const int n = ggml_nrows(src0);
  5324. const int nc = src0->ne[0];
  5325. assert( dst->nb[0] == sizeof(float));
  5326. assert(src0->nb[0] == sizeof(float));
  5327. assert(src1->nb[0] == sizeof(float));
  5328. for (int i = 0; i < n; i++) {
  5329. ggml_vec_sub_f32(nc,
  5330. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5331. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5332. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5333. }
  5334. }
  5335. static void ggml_compute_forward_sub(
  5336. const struct ggml_compute_params * params,
  5337. const struct ggml_tensor * src0,
  5338. const struct ggml_tensor * src1,
  5339. struct ggml_tensor * dst) {
  5340. switch (src0->type) {
  5341. case GGML_TYPE_F32:
  5342. {
  5343. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5344. } break;
  5345. default:
  5346. {
  5347. GGML_ASSERT(false);
  5348. } break;
  5349. }
  5350. }
  5351. // ggml_compute_forward_mul
  5352. static void ggml_compute_forward_mul_f32(
  5353. const struct ggml_compute_params * params,
  5354. const struct ggml_tensor * src0,
  5355. const struct ggml_tensor * src1,
  5356. struct ggml_tensor * dst) {
  5357. assert(params->ith == 0);
  5358. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5360. return;
  5361. }
  5362. const int n = ggml_nrows(src0);
  5363. const int nc = src0->ne[0];
  5364. assert( dst->nb[0] == sizeof(float));
  5365. assert(src0->nb[0] == sizeof(float));
  5366. assert(src1->nb[0] == sizeof(float));
  5367. for (int i = 0; i < n; i++) {
  5368. ggml_vec_mul_f32(nc,
  5369. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5370. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5371. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5372. }
  5373. }
  5374. static void ggml_compute_forward_mul(
  5375. const struct ggml_compute_params * params,
  5376. const struct ggml_tensor * src0,
  5377. const struct ggml_tensor * src1,
  5378. struct ggml_tensor * dst) {
  5379. switch (src0->type) {
  5380. case GGML_TYPE_F32:
  5381. {
  5382. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5383. } break;
  5384. default:
  5385. {
  5386. GGML_ASSERT(false);
  5387. } break;
  5388. }
  5389. }
  5390. // ggml_compute_forward_div
  5391. static void ggml_compute_forward_div_f32(
  5392. const struct ggml_compute_params * params,
  5393. const struct ggml_tensor * src0,
  5394. const struct ggml_tensor * src1,
  5395. struct ggml_tensor * dst) {
  5396. assert(params->ith == 0);
  5397. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5399. return;
  5400. }
  5401. const int n = ggml_nrows(src0);
  5402. const int nc = src0->ne[0];
  5403. assert( dst->nb[0] == sizeof(float));
  5404. assert(src0->nb[0] == sizeof(float));
  5405. assert(src1->nb[0] == sizeof(float));
  5406. for (int i = 0; i < n; i++) {
  5407. ggml_vec_div_f32(nc,
  5408. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5409. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5410. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5411. }
  5412. }
  5413. static void ggml_compute_forward_div(
  5414. const struct ggml_compute_params * params,
  5415. const struct ggml_tensor * src0,
  5416. const struct ggml_tensor * src1,
  5417. struct ggml_tensor * dst) {
  5418. switch (src0->type) {
  5419. case GGML_TYPE_F32:
  5420. {
  5421. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5422. } break;
  5423. default:
  5424. {
  5425. GGML_ASSERT(false);
  5426. } break;
  5427. }
  5428. }
  5429. // ggml_compute_forward_sqr
  5430. static void ggml_compute_forward_sqr_f32(
  5431. const struct ggml_compute_params * params,
  5432. const struct ggml_tensor * src0,
  5433. struct ggml_tensor * dst) {
  5434. assert(params->ith == 0);
  5435. assert(ggml_are_same_shape(src0, dst));
  5436. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5437. return;
  5438. }
  5439. const int n = ggml_nrows(src0);
  5440. const int nc = src0->ne[0];
  5441. assert( dst->nb[0] == sizeof(float));
  5442. assert(src0->nb[0] == sizeof(float));
  5443. for (int i = 0; i < n; i++) {
  5444. ggml_vec_sqr_f32(nc,
  5445. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5446. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5447. }
  5448. }
  5449. static void ggml_compute_forward_sqr(
  5450. const struct ggml_compute_params * params,
  5451. const struct ggml_tensor * src0,
  5452. struct ggml_tensor * dst) {
  5453. switch (src0->type) {
  5454. case GGML_TYPE_F32:
  5455. {
  5456. ggml_compute_forward_sqr_f32(params, src0, dst);
  5457. } break;
  5458. default:
  5459. {
  5460. GGML_ASSERT(false);
  5461. } break;
  5462. }
  5463. }
  5464. // ggml_compute_forward_sqrt
  5465. static void ggml_compute_forward_sqrt_f32(
  5466. const struct ggml_compute_params * params,
  5467. const struct ggml_tensor * src0,
  5468. struct ggml_tensor * dst) {
  5469. assert(params->ith == 0);
  5470. assert(ggml_are_same_shape(src0, dst));
  5471. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5472. return;
  5473. }
  5474. const int n = ggml_nrows(src0);
  5475. const int nc = src0->ne[0];
  5476. assert( dst->nb[0] == sizeof(float));
  5477. assert(src0->nb[0] == sizeof(float));
  5478. for (int i = 0; i < n; i++) {
  5479. ggml_vec_sqrt_f32(nc,
  5480. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5481. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5482. }
  5483. }
  5484. static void ggml_compute_forward_sqrt(
  5485. const struct ggml_compute_params * params,
  5486. const struct ggml_tensor * src0,
  5487. struct ggml_tensor * dst) {
  5488. switch (src0->type) {
  5489. case GGML_TYPE_F32:
  5490. {
  5491. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5492. } break;
  5493. default:
  5494. {
  5495. GGML_ASSERT(false);
  5496. } break;
  5497. }
  5498. }
  5499. // ggml_compute_forward_sum
  5500. static void ggml_compute_forward_sum_f32(
  5501. const struct ggml_compute_params * params,
  5502. const struct ggml_tensor * src0,
  5503. struct ggml_tensor * dst) {
  5504. assert(params->ith == 0);
  5505. assert(ggml_is_scalar(dst));
  5506. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5507. return;
  5508. }
  5509. assert(ggml_is_scalar(dst));
  5510. assert(src0->nb[0] == sizeof(float));
  5511. const int64_t ne00 = src0->ne[0];
  5512. const int64_t ne01 = src0->ne[1];
  5513. const int64_t ne02 = src0->ne[2];
  5514. const int64_t ne03 = src0->ne[3];
  5515. const size_t nb01 = src0->nb[1];
  5516. const size_t nb02 = src0->nb[2];
  5517. const size_t nb03 = src0->nb[3];
  5518. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5519. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5520. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5521. ggml_vec_sum_f32(ne00,
  5522. (float *) (dst->data),
  5523. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5524. }
  5525. }
  5526. }
  5527. }
  5528. static void ggml_compute_forward_sum(
  5529. const struct ggml_compute_params * params,
  5530. const struct ggml_tensor * src0,
  5531. struct ggml_tensor * dst) {
  5532. switch (src0->type) {
  5533. case GGML_TYPE_F32:
  5534. {
  5535. ggml_compute_forward_sum_f32(params, src0, dst);
  5536. } break;
  5537. default:
  5538. {
  5539. GGML_ASSERT(false);
  5540. } break;
  5541. }
  5542. }
  5543. // ggml_compute_forward_mean
  5544. static void ggml_compute_forward_mean_f32(
  5545. const struct ggml_compute_params * params,
  5546. const struct ggml_tensor * src0,
  5547. struct ggml_tensor * dst) {
  5548. assert(params->ith == 0);
  5549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5550. return;
  5551. }
  5552. assert(src0->nb[0] == sizeof(float));
  5553. const int64_t ne00 = src0->ne[0];
  5554. const int64_t ne01 = src0->ne[1];
  5555. const int64_t ne02 = src0->ne[2];
  5556. const int64_t ne03 = src0->ne[3];
  5557. const size_t nb01 = src0->nb[1];
  5558. const size_t nb02 = src0->nb[2];
  5559. const size_t nb03 = src0->nb[3];
  5560. const int64_t ne0 = dst->ne[0];
  5561. const int64_t ne1 = dst->ne[1];
  5562. const int64_t ne2 = dst->ne[2];
  5563. const int64_t ne3 = dst->ne[3];
  5564. assert(ne0 == 1);
  5565. assert(ne1 == ne01);
  5566. assert(ne2 == ne02);
  5567. assert(ne3 == ne03);
  5568. UNUSED(ne0);
  5569. UNUSED(ne1);
  5570. UNUSED(ne2);
  5571. UNUSED(ne3);
  5572. const size_t nb1 = dst->nb[1];
  5573. const size_t nb2 = dst->nb[2];
  5574. const size_t nb3 = dst->nb[3];
  5575. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5576. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5577. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5578. ggml_vec_sum_f32(ne00,
  5579. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5580. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5581. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5582. }
  5583. }
  5584. }
  5585. }
  5586. static void ggml_compute_forward_mean(
  5587. const struct ggml_compute_params * params,
  5588. const struct ggml_tensor * src0,
  5589. struct ggml_tensor * dst) {
  5590. switch (src0->type) {
  5591. case GGML_TYPE_F32:
  5592. {
  5593. ggml_compute_forward_mean_f32(params, src0, dst);
  5594. } break;
  5595. default:
  5596. {
  5597. GGML_ASSERT(false);
  5598. } break;
  5599. }
  5600. }
  5601. // ggml_compute_forward_repeat
  5602. static void ggml_compute_forward_repeat_f32(
  5603. const struct ggml_compute_params * params,
  5604. const struct ggml_tensor * src0,
  5605. struct ggml_tensor * dst) {
  5606. assert(params->ith == 0);
  5607. assert(ggml_can_repeat(src0, dst));
  5608. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5609. return;
  5610. }
  5611. // TODO: implement support for rank > 2 tensors
  5612. assert(src0->ne[2] == 1);
  5613. assert(src0->ne[3] == 1);
  5614. assert( dst->ne[2] == 1);
  5615. assert( dst->ne[3] == 1);
  5616. const int nc = dst->ne[0];
  5617. const int nr = dst->ne[1];
  5618. const int nc0 = src0->ne[0];
  5619. const int nr0 = src0->ne[1];
  5620. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5621. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5622. // TODO: support for transposed / permuted tensors
  5623. assert( dst->nb[0] == sizeof(float));
  5624. assert(src0->nb[0] == sizeof(float));
  5625. // TODO: maybe this is not optimal?
  5626. for (int i = 0; i < nrr; i++) {
  5627. for (int j = 0; j < ncr; j++) {
  5628. for (int k = 0; k < nr0; k++) {
  5629. ggml_vec_cpy_f32(nc0,
  5630. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5631. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5632. }
  5633. }
  5634. }
  5635. }
  5636. static void ggml_compute_forward_repeat(
  5637. const struct ggml_compute_params * params,
  5638. const struct ggml_tensor * src0,
  5639. struct ggml_tensor * dst) {
  5640. switch (src0->type) {
  5641. case GGML_TYPE_F32:
  5642. {
  5643. ggml_compute_forward_repeat_f32(params, src0, dst);
  5644. } break;
  5645. default:
  5646. {
  5647. GGML_ASSERT(false);
  5648. } break;
  5649. }
  5650. }
  5651. // ggml_compute_forward_abs
  5652. static void ggml_compute_forward_abs_f32(
  5653. const struct ggml_compute_params * params,
  5654. const struct ggml_tensor * src0,
  5655. struct ggml_tensor * dst) {
  5656. assert(params->ith == 0);
  5657. assert(ggml_are_same_shape(src0, dst));
  5658. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5659. return;
  5660. }
  5661. const int n = ggml_nrows(src0);
  5662. const int nc = src0->ne[0];
  5663. assert(dst->nb[0] == sizeof(float));
  5664. assert(src0->nb[0] == sizeof(float));
  5665. for (int i = 0; i < n; i++) {
  5666. ggml_vec_abs_f32(nc,
  5667. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5668. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5669. }
  5670. }
  5671. static void ggml_compute_forward_abs(
  5672. const struct ggml_compute_params * params,
  5673. const struct ggml_tensor * src0,
  5674. struct ggml_tensor * dst) {
  5675. switch (src0->type) {
  5676. case GGML_TYPE_F32:
  5677. {
  5678. ggml_compute_forward_abs_f32(params, src0, dst);
  5679. } break;
  5680. default:
  5681. {
  5682. GGML_ASSERT(false);
  5683. } break;
  5684. }
  5685. }
  5686. // ggml_compute_forward_sgn
  5687. static void ggml_compute_forward_sgn_f32(
  5688. const struct ggml_compute_params * params,
  5689. const struct ggml_tensor * src0,
  5690. struct ggml_tensor * dst) {
  5691. assert(params->ith == 0);
  5692. assert(ggml_are_same_shape(src0, dst));
  5693. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5694. return;
  5695. }
  5696. const int n = ggml_nrows(src0);
  5697. const int nc = src0->ne[0];
  5698. assert(dst->nb[0] == sizeof(float));
  5699. assert(src0->nb[0] == sizeof(float));
  5700. for (int i = 0; i < n; i++) {
  5701. ggml_vec_sgn_f32(nc,
  5702. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5703. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5704. }
  5705. }
  5706. static void ggml_compute_forward_sgn(
  5707. const struct ggml_compute_params * params,
  5708. const struct ggml_tensor * src0,
  5709. struct ggml_tensor * dst) {
  5710. switch (src0->type) {
  5711. case GGML_TYPE_F32:
  5712. {
  5713. ggml_compute_forward_sgn_f32(params, src0, dst);
  5714. } break;
  5715. default:
  5716. {
  5717. GGML_ASSERT(false);
  5718. } break;
  5719. }
  5720. }
  5721. // ggml_compute_forward_neg
  5722. static void ggml_compute_forward_neg_f32(
  5723. const struct ggml_compute_params * params,
  5724. const struct ggml_tensor * src0,
  5725. struct ggml_tensor * dst) {
  5726. assert(params->ith == 0);
  5727. assert(ggml_are_same_shape(src0, dst));
  5728. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5729. return;
  5730. }
  5731. const int n = ggml_nrows(src0);
  5732. const int nc = src0->ne[0];
  5733. assert(dst->nb[0] == sizeof(float));
  5734. assert(src0->nb[0] == sizeof(float));
  5735. for (int i = 0; i < n; i++) {
  5736. ggml_vec_neg_f32(nc,
  5737. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5738. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5739. }
  5740. }
  5741. static void ggml_compute_forward_neg(
  5742. const struct ggml_compute_params * params,
  5743. const struct ggml_tensor * src0,
  5744. struct ggml_tensor * dst) {
  5745. switch (src0->type) {
  5746. case GGML_TYPE_F32:
  5747. {
  5748. ggml_compute_forward_neg_f32(params, src0, dst);
  5749. } break;
  5750. default:
  5751. {
  5752. GGML_ASSERT(false);
  5753. } break;
  5754. }
  5755. }
  5756. // ggml_compute_forward_step
  5757. static void ggml_compute_forward_step_f32(
  5758. const struct ggml_compute_params * params,
  5759. const struct ggml_tensor * src0,
  5760. struct ggml_tensor * dst) {
  5761. assert(params->ith == 0);
  5762. assert(ggml_are_same_shape(src0, dst));
  5763. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5764. return;
  5765. }
  5766. const int n = ggml_nrows(src0);
  5767. const int nc = src0->ne[0];
  5768. assert(dst->nb[0] == sizeof(float));
  5769. assert(src0->nb[0] == sizeof(float));
  5770. for (int i = 0; i < n; i++) {
  5771. ggml_vec_step_f32(nc,
  5772. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5773. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5774. }
  5775. }
  5776. static void ggml_compute_forward_step(
  5777. const struct ggml_compute_params * params,
  5778. const struct ggml_tensor * src0,
  5779. struct ggml_tensor * dst) {
  5780. switch (src0->type) {
  5781. case GGML_TYPE_F32:
  5782. {
  5783. ggml_compute_forward_step_f32(params, src0, dst);
  5784. } break;
  5785. default:
  5786. {
  5787. GGML_ASSERT(false);
  5788. } break;
  5789. }
  5790. }
  5791. // ggml_compute_forward_relu
  5792. static void ggml_compute_forward_relu_f32(
  5793. const struct ggml_compute_params * params,
  5794. const struct ggml_tensor * src0,
  5795. struct ggml_tensor * dst) {
  5796. assert(params->ith == 0);
  5797. assert(ggml_are_same_shape(src0, dst));
  5798. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5799. return;
  5800. }
  5801. const int n = ggml_nrows(src0);
  5802. const int nc = src0->ne[0];
  5803. assert(dst->nb[0] == sizeof(float));
  5804. assert(src0->nb[0] == sizeof(float));
  5805. for (int i = 0; i < n; i++) {
  5806. ggml_vec_relu_f32(nc,
  5807. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5808. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5809. }
  5810. }
  5811. static void ggml_compute_forward_relu(
  5812. const struct ggml_compute_params * params,
  5813. const struct ggml_tensor * src0,
  5814. struct ggml_tensor * dst) {
  5815. switch (src0->type) {
  5816. case GGML_TYPE_F32:
  5817. {
  5818. ggml_compute_forward_relu_f32(params, src0, dst);
  5819. } break;
  5820. default:
  5821. {
  5822. GGML_ASSERT(false);
  5823. } break;
  5824. }
  5825. }
  5826. // ggml_compute_forward_gelu
  5827. static void ggml_compute_forward_gelu_f32(
  5828. const struct ggml_compute_params * params,
  5829. const struct ggml_tensor * src0,
  5830. struct ggml_tensor * dst) {
  5831. GGML_ASSERT(ggml_is_contiguous(src0));
  5832. GGML_ASSERT(ggml_is_contiguous(dst));
  5833. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5834. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5835. return;
  5836. }
  5837. const int ith = params->ith;
  5838. const int nth = params->nth;
  5839. const int nc = src0->ne[0];
  5840. const int nr = ggml_nrows(src0);
  5841. // rows per thread
  5842. const int dr = (nr + nth - 1)/nth;
  5843. // row range for this thread
  5844. const int ir0 = dr*ith;
  5845. const int ir1 = MIN(ir0 + dr, nr);
  5846. for (int i1 = ir0; i1 < ir1; i1++) {
  5847. ggml_vec_gelu_f32(nc,
  5848. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5849. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5850. #ifndef NDEBUG
  5851. for (int k = 0; k < nc; k++) {
  5852. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5853. UNUSED(x);
  5854. assert(!isnan(x));
  5855. assert(!isinf(x));
  5856. }
  5857. #endif
  5858. }
  5859. }
  5860. static void ggml_compute_forward_gelu(
  5861. const struct ggml_compute_params * params,
  5862. const struct ggml_tensor * src0,
  5863. struct ggml_tensor * dst) {
  5864. switch (src0->type) {
  5865. case GGML_TYPE_F32:
  5866. {
  5867. ggml_compute_forward_gelu_f32(params, src0, dst);
  5868. } break;
  5869. default:
  5870. {
  5871. GGML_ASSERT(false);
  5872. } break;
  5873. }
  5874. //printf("XXXXXXXX gelu\n");
  5875. }
  5876. // ggml_compute_forward_silu
  5877. static void ggml_compute_forward_silu_f32(
  5878. const struct ggml_compute_params * params,
  5879. const struct ggml_tensor * src0,
  5880. struct ggml_tensor * dst) {
  5881. GGML_ASSERT(ggml_is_contiguous(src0));
  5882. GGML_ASSERT(ggml_is_contiguous(dst));
  5883. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5884. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5885. return;
  5886. }
  5887. const int ith = params->ith;
  5888. const int nth = params->nth;
  5889. const int nc = src0->ne[0];
  5890. const int nr = ggml_nrows(src0);
  5891. // rows per thread
  5892. const int dr = (nr + nth - 1)/nth;
  5893. // row range for this thread
  5894. const int ir0 = dr*ith;
  5895. const int ir1 = MIN(ir0 + dr, nr);
  5896. for (int i1 = ir0; i1 < ir1; i1++) {
  5897. ggml_vec_silu_f32(nc,
  5898. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5899. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5900. #ifndef NDEBUG
  5901. for (int k = 0; k < nc; k++) {
  5902. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5903. UNUSED(x);
  5904. assert(!isnan(x));
  5905. assert(!isinf(x));
  5906. }
  5907. #endif
  5908. }
  5909. }
  5910. static void ggml_compute_forward_silu(
  5911. const struct ggml_compute_params * params,
  5912. const struct ggml_tensor * src0,
  5913. struct ggml_tensor * dst) {
  5914. switch (src0->type) {
  5915. case GGML_TYPE_F32:
  5916. {
  5917. ggml_compute_forward_silu_f32(params, src0, dst);
  5918. } break;
  5919. default:
  5920. {
  5921. GGML_ASSERT(false);
  5922. } break;
  5923. }
  5924. }
  5925. // ggml_compute_forward_norm
  5926. static void ggml_compute_forward_norm_f32(
  5927. const struct ggml_compute_params * params,
  5928. const struct ggml_tensor * src0,
  5929. struct ggml_tensor * dst) {
  5930. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5931. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5932. return;
  5933. }
  5934. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5935. const int ith = params->ith;
  5936. const int nth = params->nth;
  5937. const int64_t ne00 = src0->ne[0];
  5938. const int64_t ne01 = src0->ne[1];
  5939. const int64_t ne02 = src0->ne[2];
  5940. const int64_t ne03 = src0->ne[3];
  5941. const size_t nb01 = src0->nb[1];
  5942. const size_t nb02 = src0->nb[2];
  5943. const size_t nb03 = src0->nb[3];
  5944. const size_t nb1 = dst->nb[1];
  5945. const size_t nb2 = dst->nb[2];
  5946. const size_t nb3 = dst->nb[3];
  5947. const float eps = 1e-5f; // TODO: make this a parameter
  5948. // TODO: optimize
  5949. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5950. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5951. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5952. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5953. ggml_float sum = 0.0;
  5954. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5955. sum += (ggml_float)x[i00];
  5956. }
  5957. float mean = sum/ne00;
  5958. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5959. ggml_float sum2 = 0.0;
  5960. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5961. float v = x[i00] - mean;
  5962. y[i00] = v;
  5963. sum2 += (ggml_float)(v*v);
  5964. }
  5965. float variance = sum2/ne00;
  5966. const float scale = 1.0f/sqrtf(variance + eps);
  5967. ggml_vec_scale_f32(ne00, y, scale);
  5968. }
  5969. }
  5970. }
  5971. }
  5972. static void ggml_compute_forward_norm(
  5973. const struct ggml_compute_params * params,
  5974. const struct ggml_tensor * src0,
  5975. struct ggml_tensor * dst) {
  5976. switch (src0->type) {
  5977. case GGML_TYPE_F32:
  5978. {
  5979. ggml_compute_forward_norm_f32(params, src0, dst);
  5980. } break;
  5981. default:
  5982. {
  5983. GGML_ASSERT(false);
  5984. } break;
  5985. }
  5986. }
  5987. static void ggml_compute_forward_rms_norm_f32(
  5988. const struct ggml_compute_params * params,
  5989. const struct ggml_tensor * src0,
  5990. struct ggml_tensor * dst) {
  5991. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5993. return;
  5994. }
  5995. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5996. const int ith = params->ith;
  5997. const int nth = params->nth;
  5998. const int64_t ne00 = src0->ne[0];
  5999. const int64_t ne01 = src0->ne[1];
  6000. const int64_t ne02 = src0->ne[2];
  6001. const int64_t ne03 = src0->ne[3];
  6002. const size_t nb01 = src0->nb[1];
  6003. const size_t nb02 = src0->nb[2];
  6004. const size_t nb03 = src0->nb[3];
  6005. const size_t nb1 = dst->nb[1];
  6006. const size_t nb2 = dst->nb[2];
  6007. const size_t nb3 = dst->nb[3];
  6008. const float eps = 1e-6f; // TODO: make this a parameter
  6009. // TODO: optimize
  6010. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6011. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6012. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6013. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6014. ggml_float sum = 0.0;
  6015. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6016. sum += (ggml_float)(x[i00] * x[i00]);
  6017. }
  6018. float mean = sum/ne00;
  6019. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6020. memcpy(y, x, ne00 * sizeof(float));
  6021. // for (int i00 = 0; i00 < ne00; i00++) {
  6022. // y[i00] = x[i00];
  6023. // }
  6024. const float scale = 1.0f/sqrtf(mean + eps);
  6025. ggml_vec_scale_f32(ne00, y, scale);
  6026. }
  6027. }
  6028. }
  6029. }
  6030. static void ggml_compute_forward_rms_norm(
  6031. const struct ggml_compute_params * params,
  6032. const struct ggml_tensor * src0,
  6033. struct ggml_tensor * dst) {
  6034. switch (src0->type) {
  6035. case GGML_TYPE_F32:
  6036. {
  6037. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6038. } break;
  6039. default:
  6040. {
  6041. GGML_ASSERT(false);
  6042. } break;
  6043. }
  6044. }
  6045. // ggml_compute_forward_mul_mat
  6046. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6047. // helper function to determine if it is better to use BLAS or not
  6048. // for large matrices, BLAS is faster
  6049. static bool ggml_compute_forward_mul_mat_use_blas(
  6050. const struct ggml_tensor * src0,
  6051. const struct ggml_tensor * src1,
  6052. struct ggml_tensor * dst) {
  6053. //const int64_t ne00 = src0->ne[0];
  6054. //const int64_t ne01 = src0->ne[1];
  6055. const int64_t ne10 = src1->ne[0];
  6056. const int64_t ne0 = dst->ne[0];
  6057. const int64_t ne1 = dst->ne[1];
  6058. // TODO: find the optimal values for these
  6059. if (ggml_is_contiguous(src0) &&
  6060. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6061. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6062. return true;
  6063. }
  6064. return false;
  6065. }
  6066. #endif
  6067. static void ggml_compute_forward_mul_mat_f32(
  6068. const struct ggml_compute_params * params,
  6069. const struct ggml_tensor * src0,
  6070. const struct ggml_tensor * src1,
  6071. struct ggml_tensor * dst) {
  6072. int64_t t0 = ggml_perf_time_us();
  6073. UNUSED(t0);
  6074. const int64_t ne00 = src0->ne[0];
  6075. const int64_t ne01 = src0->ne[1];
  6076. const int64_t ne02 = src0->ne[2];
  6077. const int64_t ne03 = src0->ne[3];
  6078. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6079. const int64_t ne10 = src1->ne[0];
  6080. #endif
  6081. const int64_t ne11 = src1->ne[1];
  6082. #ifndef NDEBUG
  6083. const int64_t ne12 = src1->ne[2];
  6084. const int64_t ne13 = src1->ne[3];
  6085. const int64_t ne0 = dst->ne[0];
  6086. const int64_t ne1 = dst->ne[1];
  6087. const int64_t ne2 = dst->ne[2];
  6088. const int64_t ne3 = dst->ne[3];
  6089. const int nb00 = src0->nb[0];
  6090. #endif
  6091. const int nb01 = src0->nb[1];
  6092. const int nb02 = src0->nb[2];
  6093. const int nb03 = src0->nb[3];
  6094. #ifndef NDEBUG
  6095. const int nb10 = src1->nb[0];
  6096. #endif
  6097. const int nb11 = src1->nb[1];
  6098. const int nb12 = src1->nb[2];
  6099. const int nb13 = src1->nb[3];
  6100. const int nb0 = dst->nb[0];
  6101. const int nb1 = dst->nb[1];
  6102. const int nb2 = dst->nb[2];
  6103. const int nb3 = dst->nb[3];
  6104. const int ith = params->ith;
  6105. const int nth = params->nth;
  6106. assert(ne02 == ne12);
  6107. assert(ne03 == ne13);
  6108. assert(ne2 == ne12);
  6109. assert(ne3 == ne13);
  6110. // we don't support permuted src0 or src1
  6111. assert(nb00 == sizeof(float));
  6112. assert(nb10 == sizeof(float));
  6113. // dst cannot be transposed or permuted
  6114. assert(nb0 == sizeof(float));
  6115. assert(nb0 <= nb1);
  6116. assert(nb1 <= nb2);
  6117. assert(nb2 <= nb3);
  6118. assert(ne0 == ne01);
  6119. assert(ne1 == ne11);
  6120. assert(ne2 == ne02);
  6121. assert(ne3 == ne03);
  6122. // nb01 >= nb00 - src0 is not transposed
  6123. // compute by src0 rows
  6124. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6125. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6126. if (params->ith != 0) {
  6127. return;
  6128. }
  6129. if (params->type == GGML_TASK_INIT) {
  6130. return;
  6131. }
  6132. if (params->type == GGML_TASK_FINALIZE) {
  6133. return;
  6134. }
  6135. #if defined(GGML_USE_CUBLAS)
  6136. float *d_X = NULL;
  6137. float *d_Y = NULL;
  6138. float *d_D = NULL;
  6139. const float alpha = 1.0f;
  6140. const float beta = 0.0f;
  6141. const int x_ne = ne01 * ne10;
  6142. const int y_ne = ne11 * ne10;
  6143. const int d_ne = ne11 * ne01;
  6144. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6145. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6146. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6147. #endif
  6148. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6149. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6150. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6151. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6152. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6153. #if defined(GGML_USE_CUBLAS)
  6154. // copy data to device
  6155. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6156. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6157. // compute
  6158. CUBLAS_CHECK(
  6159. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6160. ne01, ne11, ne10,
  6161. &alpha, d_X, ne00,
  6162. d_Y, ne10,
  6163. &beta, d_D, ne01));
  6164. // copy data to host
  6165. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6166. #else
  6167. // zT = y * xT
  6168. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6169. ne11, ne01, ne10,
  6170. 1.0f, y, ne10,
  6171. x, ne00,
  6172. 0.0f, d, ne01);
  6173. #endif
  6174. }
  6175. }
  6176. #if defined(GGML_USE_CUBLAS)
  6177. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6178. CUDA_CHECK(cudaFree(d_X));
  6179. CUDA_CHECK(cudaFree(d_Y));
  6180. CUDA_CHECK(cudaFree(d_D));
  6181. #endif
  6182. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6183. return;
  6184. }
  6185. #endif
  6186. if (params->type == GGML_TASK_INIT) {
  6187. return;
  6188. }
  6189. if (params->type == GGML_TASK_FINALIZE) {
  6190. return;
  6191. }
  6192. // parallelize by src0 rows using ggml_vec_dot_f32
  6193. // total rows in src0
  6194. const int nr = ne01*ne02*ne03;
  6195. // rows per thread
  6196. const int dr = (nr + nth - 1)/nth;
  6197. // row range for this thread
  6198. const int ir0 = dr*ith;
  6199. const int ir1 = MIN(ir0 + dr, nr);
  6200. for (int ir = ir0; ir < ir1; ++ir) {
  6201. // src0 indices
  6202. const int i03 = ir/(ne02*ne01);
  6203. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6204. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6205. for (int64_t ic = 0; ic < ne11; ++ic) {
  6206. // src1 indices
  6207. const int i13 = i03;
  6208. const int i12 = i02;
  6209. const int i11 = ic;
  6210. // dst indices
  6211. const int i0 = i01;
  6212. const int i1 = i11;
  6213. const int i2 = i02;
  6214. const int i3 = i03;
  6215. ggml_vec_dot_f32(ne00,
  6216. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6217. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6218. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6219. }
  6220. }
  6221. //int64_t t1 = ggml_perf_time_us();
  6222. //static int64_t acc = 0;
  6223. //acc += t1 - t0;
  6224. //if (t1 - t0 > 10) {
  6225. // printf("\n");
  6226. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6227. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6228. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6229. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6230. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6231. //}
  6232. }
  6233. static void ggml_compute_forward_mul_mat_f16_f32(
  6234. const struct ggml_compute_params * params,
  6235. const struct ggml_tensor * src0,
  6236. const struct ggml_tensor * src1,
  6237. struct ggml_tensor * dst) {
  6238. int64_t t0 = ggml_perf_time_us();
  6239. UNUSED(t0);
  6240. const int64_t ne00 = src0->ne[0];
  6241. const int64_t ne01 = src0->ne[1];
  6242. const int64_t ne02 = src0->ne[2];
  6243. const int64_t ne03 = src0->ne[3];
  6244. const int64_t ne10 = src1->ne[0];
  6245. const int64_t ne11 = src1->ne[1];
  6246. const int64_t ne12 = src1->ne[2];
  6247. const int64_t ne13 = src1->ne[3];
  6248. const int64_t ne0 = dst->ne[0];
  6249. const int64_t ne1 = dst->ne[1];
  6250. const int64_t ne2 = dst->ne[2];
  6251. const int64_t ne3 = dst->ne[3];
  6252. //const int64_t ne = ne0*ne1*ne2*ne3;
  6253. const int nb00 = src0->nb[0];
  6254. const int nb01 = src0->nb[1];
  6255. const int nb02 = src0->nb[2];
  6256. const int nb03 = src0->nb[3];
  6257. const int nb10 = src1->nb[0];
  6258. const int nb11 = src1->nb[1];
  6259. const int nb12 = src1->nb[2];
  6260. const int nb13 = src1->nb[3];
  6261. const int nb0 = dst->nb[0];
  6262. const int nb1 = dst->nb[1];
  6263. const int nb2 = dst->nb[2];
  6264. const int nb3 = dst->nb[3];
  6265. const int ith = params->ith;
  6266. const int nth = params->nth;
  6267. GGML_ASSERT(ne02 == ne12);
  6268. GGML_ASSERT(ne03 == ne13);
  6269. GGML_ASSERT(ne2 == ne12);
  6270. GGML_ASSERT(ne3 == ne13);
  6271. // TODO: we don't support permuted src0
  6272. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6273. // dst cannot be transposed or permuted
  6274. GGML_ASSERT(nb0 == sizeof(float));
  6275. GGML_ASSERT(nb0 <= nb1);
  6276. GGML_ASSERT(nb1 <= nb2);
  6277. GGML_ASSERT(nb2 <= nb3);
  6278. GGML_ASSERT(ne0 == ne01);
  6279. GGML_ASSERT(ne1 == ne11);
  6280. GGML_ASSERT(ne2 == ne02);
  6281. GGML_ASSERT(ne3 == ne03);
  6282. // nb01 >= nb00 - src0 is not transposed
  6283. // compute by src0 rows
  6284. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6285. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6286. GGML_ASSERT(nb10 == sizeof(float));
  6287. if (params->ith != 0) {
  6288. return;
  6289. }
  6290. if (params->type == GGML_TASK_INIT) {
  6291. return;
  6292. }
  6293. if (params->type == GGML_TASK_FINALIZE) {
  6294. return;
  6295. }
  6296. #if defined(GGML_USE_CUBLAS)
  6297. ggml_fp16_t * const wdata = params->wdata;
  6298. float *d_X = NULL;
  6299. float *d_Y = NULL;
  6300. float *d_D = NULL;
  6301. const float alpha = 1.0f;
  6302. const float beta = 0.0f;
  6303. const int x_ne = ne01 * ne10;
  6304. const int y_ne = ne11 * ne10;
  6305. const int d_ne = ne11 * ne01;
  6306. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(ggml_fp16_t) * x_ne));
  6307. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6308. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6309. #else
  6310. float * const wdata = params->wdata;
  6311. #endif
  6312. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6313. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6314. #if defined(GGML_USE_CUBLAS)
  6315. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6316. {
  6317. size_t id = 0;
  6318. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6319. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6320. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6321. }
  6322. }
  6323. }
  6324. #else
  6325. {
  6326. size_t id = 0;
  6327. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6328. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6329. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6330. }
  6331. }
  6332. }
  6333. #endif
  6334. #if defined(GGML_USE_CUBLAS)
  6335. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6336. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6337. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6338. // copy data to device
  6339. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6340. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6341. // compute
  6342. CUBLAS_CHECK(
  6343. cublasGemmEx(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6344. ne01, ne11, ne10,
  6345. &alpha, d_X, CUDA_R_16F, ne00,
  6346. d_Y, CUDA_R_16F, ne10,
  6347. &beta, d_D, CUDA_R_32F, ne01,
  6348. CUBLAS_COMPUTE_32F,
  6349. CUBLAS_GEMM_DEFAULT));
  6350. // copy data to host
  6351. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6352. #else
  6353. const float * x = wdata;
  6354. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6355. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6356. // zT = y * xT
  6357. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6358. ne11, ne01, ne10,
  6359. 1.0f, y, ne10,
  6360. x, ne00,
  6361. 0.0f, d, ne01);
  6362. #endif
  6363. }
  6364. }
  6365. #if defined(GGML_USE_CUBLAS)
  6366. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6367. CUDA_CHECK(cudaFree(d_X));
  6368. CUDA_CHECK(cudaFree(d_Y));
  6369. CUDA_CHECK(cudaFree(d_D));
  6370. #endif
  6371. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6372. return;
  6373. }
  6374. #endif
  6375. if (params->type == GGML_TASK_INIT) {
  6376. ggml_fp16_t * const wdata = params->wdata;
  6377. size_t id = 0;
  6378. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6379. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6380. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6381. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6382. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6383. }
  6384. }
  6385. }
  6386. }
  6387. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6388. return;
  6389. }
  6390. if (params->type == GGML_TASK_FINALIZE) {
  6391. return;
  6392. }
  6393. // fp16 -> half the size, so divide by 2
  6394. // TODO: do not support transposed src1
  6395. assert(nb10/2 == sizeof(ggml_fp16_t));
  6396. // parallelize by src0 rows using ggml_vec_dot_f16
  6397. // total rows in src0
  6398. const int nr = ne01*ne02*ne03;
  6399. // rows per thread
  6400. const int dr = (nr + nth - 1)/nth;
  6401. // row range for this thread
  6402. const int ir0 = dr*ith;
  6403. const int ir1 = MIN(ir0 + dr, nr);
  6404. ggml_fp16_t * wdata = params->wdata;
  6405. for (int ir = ir0; ir < ir1; ++ir) {
  6406. // src0 indices
  6407. const int i03 = ir/(ne02*ne01);
  6408. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6409. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6410. const int i13 = i03;
  6411. const int i12 = i02;
  6412. const int i0 = i01;
  6413. const int i2 = i02;
  6414. const int i3 = i03;
  6415. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6416. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6417. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6418. for (int64_t ic = 0; ic < ne11; ++ic) {
  6419. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6420. }
  6421. }
  6422. //int64_t t1 = ggml_time_us();
  6423. //static int64_t acc = 0;
  6424. //acc += t1 - t0;
  6425. //if (t1 - t0 > 10) {
  6426. // printf("\n");
  6427. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6428. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6429. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6430. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6431. //}
  6432. }
  6433. static void ggml_compute_forward_mul_mat_q_f32(
  6434. const struct ggml_compute_params * params,
  6435. const struct ggml_tensor * src0,
  6436. const struct ggml_tensor * src1,
  6437. struct ggml_tensor * dst) {
  6438. int64_t t0 = ggml_perf_time_us();
  6439. UNUSED(t0);
  6440. const int64_t ne00 = src0->ne[0];
  6441. const int64_t ne01 = src0->ne[1];
  6442. const int64_t ne02 = src0->ne[2];
  6443. const int64_t ne03 = src0->ne[3];
  6444. const int64_t ne10 = src1->ne[0];
  6445. const int64_t ne11 = src1->ne[1];
  6446. const int64_t ne12 = src1->ne[2];
  6447. const int64_t ne13 = src1->ne[3];
  6448. const int64_t ne0 = dst->ne[0];
  6449. const int64_t ne1 = dst->ne[1];
  6450. const int64_t ne2 = dst->ne[2];
  6451. const int64_t ne3 = dst->ne[3];
  6452. const int nb00 = src0->nb[0];
  6453. const int nb01 = src0->nb[1];
  6454. const int nb02 = src0->nb[2];
  6455. const int nb03 = src0->nb[3];
  6456. const int nb10 = src1->nb[0];
  6457. const int nb11 = src1->nb[1];
  6458. const int nb12 = src1->nb[2];
  6459. const int nb13 = src1->nb[3];
  6460. const int nb0 = dst->nb[0];
  6461. const int nb1 = dst->nb[1];
  6462. const int nb2 = dst->nb[2];
  6463. const int nb3 = dst->nb[3];
  6464. const int ith = params->ith;
  6465. const int nth = params->nth;
  6466. GGML_ASSERT(ne02 == ne12);
  6467. GGML_ASSERT(ne03 == ne13);
  6468. GGML_ASSERT(ne2 == ne12);
  6469. GGML_ASSERT(ne3 == ne13);
  6470. const enum ggml_type type = src0->type;
  6471. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6472. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6473. // we don't support permuted src0 or src1
  6474. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6475. GGML_ASSERT(nb10 == sizeof(float));
  6476. // dst cannot be transposed or permuted
  6477. GGML_ASSERT(nb0 == sizeof(float));
  6478. GGML_ASSERT(nb0 <= nb1);
  6479. GGML_ASSERT(nb1 <= nb2);
  6480. GGML_ASSERT(nb2 <= nb3);
  6481. GGML_ASSERT(ne0 == ne01);
  6482. GGML_ASSERT(ne1 == ne11);
  6483. GGML_ASSERT(ne2 == ne02);
  6484. GGML_ASSERT(ne3 == ne03);
  6485. // nb01 >= nb00 - src0 is not transposed
  6486. // compute by src0 rows
  6487. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6488. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6489. if (params->ith != 0) {
  6490. return;
  6491. }
  6492. if (params->type == GGML_TASK_INIT) {
  6493. return;
  6494. }
  6495. if (params->type == GGML_TASK_FINALIZE) {
  6496. return;
  6497. }
  6498. #if defined(GGML_USE_CUBLAS)
  6499. float *d_X = NULL;
  6500. float *d_Y = NULL;
  6501. float *d_D = NULL;
  6502. float *d_Q = NULL;
  6503. const float alpha = 1.0f;
  6504. const float beta = 0.0f;
  6505. const int x_ne = ne01 * ne10;
  6506. const int y_ne = ne11 * ne10;
  6507. const int d_ne = ne11 * ne01;
  6508. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6509. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6510. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6511. CUDA_CHECK(cudaMalloc((void **)(&d_Q), GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type]));
  6512. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6513. if (type == GGML_TYPE_Q4_0) {
  6514. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6515. }
  6516. else if (type == GGML_TYPE_Q4_1) {
  6517. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6518. }
  6519. else if (type == GGML_TYPE_Q4_2) {
  6520. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6521. }
  6522. else {
  6523. GGML_ASSERT(false);
  6524. }
  6525. #else
  6526. float * const wdata = params->wdata;
  6527. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6528. #endif
  6529. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6530. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6531. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6532. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6533. #if defined(GGML_USE_CUBLAS)
  6534. // copy and dequantize on device
  6535. CUDA_CHECK(
  6536. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6537. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, cudaStream));
  6538. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, cudaStream);
  6539. CUDA_CHECK(cudaGetLastError());
  6540. #else
  6541. {
  6542. size_t id = 0;
  6543. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6544. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6545. id += ne00;
  6546. }
  6547. }
  6548. const float * x = wdata;
  6549. #endif
  6550. #if defined(GGML_USE_CUBLAS)
  6551. // copy data to device
  6552. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6553. // compute
  6554. CUBLAS_CHECK(
  6555. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6556. ne01, ne11, ne10,
  6557. &alpha, d_X, ne00,
  6558. d_Y, ne10,
  6559. &beta, d_D, ne01));
  6560. // copy data to host
  6561. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6562. #else
  6563. // zT = y * xT
  6564. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6565. ne11, ne01, ne10,
  6566. 1.0f, y, ne10,
  6567. x, ne00,
  6568. 0.0f, d, ne01);
  6569. #endif
  6570. }
  6571. }
  6572. #if defined(GGML_USE_CUBLAS)
  6573. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6574. CUDA_CHECK(cudaFree(d_X));
  6575. CUDA_CHECK(cudaFree(d_Y));
  6576. CUDA_CHECK(cudaFree(d_D));
  6577. CUDA_CHECK(cudaFree(d_Q));
  6578. #endif
  6579. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6580. return;
  6581. }
  6582. #endif
  6583. if (params->type == GGML_TASK_INIT) {
  6584. char * wdata = params->wdata;
  6585. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6586. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6587. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6588. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6589. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6590. wdata += row_size;
  6591. }
  6592. }
  6593. }
  6594. return;
  6595. }
  6596. if (params->type == GGML_TASK_FINALIZE) {
  6597. return;
  6598. }
  6599. // parallelize by src0 rows using ggml_vec_dot_q
  6600. // total rows in src0
  6601. const int nr = ne01*ne02*ne03;
  6602. // rows per thread
  6603. const int dr = (nr + nth - 1)/nth;
  6604. // row range for this thread
  6605. const int ir0 = dr*ith;
  6606. const int ir1 = MIN(ir0 + dr, nr);
  6607. void * wdata = params->wdata;
  6608. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6609. for (int ir = ir0; ir < ir1; ++ir) {
  6610. // src0 indices
  6611. const int i03 = ir/(ne02*ne01);
  6612. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6613. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6614. const int i13 = i03;
  6615. const int i12 = i02;
  6616. const int i0 = i01;
  6617. const int i2 = i02;
  6618. const int i3 = i03;
  6619. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6620. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6621. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6622. assert(ne00 % 32 == 0);
  6623. for (int64_t ic = 0; ic < ne11; ++ic) {
  6624. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6625. }
  6626. }
  6627. //int64_t t1 = ggml_time_us();
  6628. //static int64_t acc = 0;
  6629. //acc += t1 - t0;
  6630. //if (t1 - t0 > 10) {
  6631. // printf("\n");
  6632. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6633. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6634. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6635. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6636. //}
  6637. }
  6638. static void ggml_compute_forward_mul_mat(
  6639. const struct ggml_compute_params * params,
  6640. const struct ggml_tensor * src0,
  6641. const struct ggml_tensor * src1,
  6642. struct ggml_tensor * dst) {
  6643. switch (src0->type) {
  6644. case GGML_TYPE_Q4_0:
  6645. case GGML_TYPE_Q4_1:
  6646. case GGML_TYPE_Q4_2:
  6647. case GGML_TYPE_Q4_3:
  6648. case GGML_TYPE_Q8_0:
  6649. {
  6650. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6651. } break;
  6652. case GGML_TYPE_F16:
  6653. {
  6654. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6655. } break;
  6656. case GGML_TYPE_F32:
  6657. {
  6658. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6659. } break;
  6660. default:
  6661. {
  6662. GGML_ASSERT(false);
  6663. } break;
  6664. }
  6665. }
  6666. // ggml_compute_forward_scale
  6667. static void ggml_compute_forward_scale_f32(
  6668. const struct ggml_compute_params * params,
  6669. const struct ggml_tensor * src0,
  6670. const struct ggml_tensor * src1,
  6671. struct ggml_tensor * dst) {
  6672. GGML_ASSERT(ggml_is_contiguous(src0));
  6673. GGML_ASSERT(ggml_is_contiguous(dst));
  6674. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6675. GGML_ASSERT(ggml_is_scalar(src1));
  6676. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6677. return;
  6678. }
  6679. // scale factor
  6680. const float v = *(float *) src1->data;
  6681. const int ith = params->ith;
  6682. const int nth = params->nth;
  6683. const int nc = src0->ne[0];
  6684. const int nr = ggml_nrows(src0);
  6685. // rows per thread
  6686. const int dr = (nr + nth - 1)/nth;
  6687. // row range for this thread
  6688. const int ir0 = dr*ith;
  6689. const int ir1 = MIN(ir0 + dr, nr);
  6690. for (int i1 = ir0; i1 < ir1; i1++) {
  6691. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6692. }
  6693. }
  6694. static void ggml_compute_forward_scale(
  6695. const struct ggml_compute_params * params,
  6696. const struct ggml_tensor * src0,
  6697. const struct ggml_tensor * src1,
  6698. struct ggml_tensor * dst) {
  6699. switch (src0->type) {
  6700. case GGML_TYPE_F32:
  6701. {
  6702. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6703. } break;
  6704. default:
  6705. {
  6706. GGML_ASSERT(false);
  6707. } break;
  6708. }
  6709. }
  6710. // ggml_compute_forward_cpy
  6711. static void ggml_compute_forward_cpy(
  6712. const struct ggml_compute_params * params,
  6713. const struct ggml_tensor * src0,
  6714. struct ggml_tensor * dst) {
  6715. ggml_compute_forward_dup(params, src0, dst);
  6716. }
  6717. // ggml_compute_forward_cont
  6718. static void ggml_compute_forward_cont(
  6719. const struct ggml_compute_params * params,
  6720. const struct ggml_tensor * src0,
  6721. struct ggml_tensor * dst) {
  6722. ggml_compute_forward_dup(params, src0, dst);
  6723. }
  6724. // ggml_compute_forward_reshape
  6725. static void ggml_compute_forward_reshape(
  6726. const struct ggml_compute_params * params,
  6727. const struct ggml_tensor * src0,
  6728. struct ggml_tensor * dst) {
  6729. // NOP
  6730. UNUSED(params);
  6731. UNUSED(src0);
  6732. UNUSED(dst);
  6733. }
  6734. // ggml_compute_forward_view
  6735. static void ggml_compute_forward_view(
  6736. const struct ggml_compute_params * params,
  6737. const struct ggml_tensor * src0) {
  6738. // NOP
  6739. UNUSED(params);
  6740. UNUSED(src0);
  6741. }
  6742. // ggml_compute_forward_permute
  6743. static void ggml_compute_forward_permute(
  6744. const struct ggml_compute_params * params,
  6745. const struct ggml_tensor * src0) {
  6746. // NOP
  6747. UNUSED(params);
  6748. UNUSED(src0);
  6749. }
  6750. // ggml_compute_forward_transpose
  6751. static void ggml_compute_forward_transpose(
  6752. const struct ggml_compute_params * params,
  6753. const struct ggml_tensor * src0) {
  6754. // NOP
  6755. UNUSED(params);
  6756. UNUSED(src0);
  6757. }
  6758. // ggml_compute_forward_get_rows
  6759. static void ggml_compute_forward_get_rows_q(
  6760. const struct ggml_compute_params * params,
  6761. const struct ggml_tensor * src0,
  6762. const struct ggml_tensor * src1,
  6763. struct ggml_tensor * dst) {
  6764. assert(params->ith == 0);
  6765. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6766. return;
  6767. }
  6768. const int nc = src0->ne[0];
  6769. const int nr = ggml_nelements(src1);
  6770. const enum ggml_type type = src0->type;
  6771. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6772. assert( dst->ne[0] == nc);
  6773. assert( dst->ne[1] == nr);
  6774. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6775. for (int i = 0; i < nr; ++i) {
  6776. const int r = ((int32_t *) src1->data)[i];
  6777. dequantize_row_q(
  6778. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6779. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6780. }
  6781. }
  6782. static void ggml_compute_forward_get_rows_f16(
  6783. const struct ggml_compute_params * params,
  6784. const struct ggml_tensor * src0,
  6785. const struct ggml_tensor * src1,
  6786. struct ggml_tensor * dst) {
  6787. assert(params->ith == 0);
  6788. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6789. return;
  6790. }
  6791. const int nc = src0->ne[0];
  6792. const int nr = ggml_nelements(src1);
  6793. assert( dst->ne[0] == nc);
  6794. assert( dst->ne[1] == nr);
  6795. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6796. for (int i = 0; i < nr; ++i) {
  6797. const int r = ((int32_t *) src1->data)[i];
  6798. for (int j = 0; j < nc; ++j) {
  6799. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6800. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6801. }
  6802. }
  6803. }
  6804. static void ggml_compute_forward_get_rows_f32(
  6805. const struct ggml_compute_params * params,
  6806. const struct ggml_tensor * src0,
  6807. const struct ggml_tensor * src1,
  6808. struct ggml_tensor * dst) {
  6809. assert(params->ith == 0);
  6810. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6811. return;
  6812. }
  6813. const int nc = src0->ne[0];
  6814. const int nr = ggml_nelements(src1);
  6815. assert( dst->ne[0] == nc);
  6816. assert( dst->ne[1] == nr);
  6817. assert(src0->nb[0] == sizeof(float));
  6818. for (int i = 0; i < nr; ++i) {
  6819. const int r = ((int32_t *) src1->data)[i];
  6820. ggml_vec_cpy_f32(nc,
  6821. (float *) ((char *) dst->data + i*dst->nb[1]),
  6822. (float *) ((char *) src0->data + r*src0->nb[1]));
  6823. }
  6824. }
  6825. static void ggml_compute_forward_get_rows(
  6826. const struct ggml_compute_params * params,
  6827. const struct ggml_tensor * src0,
  6828. const struct ggml_tensor * src1,
  6829. struct ggml_tensor * dst) {
  6830. switch (src0->type) {
  6831. case GGML_TYPE_Q4_0:
  6832. case GGML_TYPE_Q4_1:
  6833. case GGML_TYPE_Q4_2:
  6834. case GGML_TYPE_Q4_3:
  6835. case GGML_TYPE_Q8_0:
  6836. {
  6837. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6838. } break;
  6839. case GGML_TYPE_F16:
  6840. {
  6841. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6842. } break;
  6843. case GGML_TYPE_F32:
  6844. {
  6845. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6846. } break;
  6847. default:
  6848. {
  6849. GGML_ASSERT(false);
  6850. } break;
  6851. }
  6852. //static bool first = true;
  6853. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6854. //if (first) {
  6855. // first = false;
  6856. //} else {
  6857. // for (int k = 0; k < dst->ne[1]; ++k) {
  6858. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6859. // for (int i = 0; i < 16; ++i) {
  6860. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6861. // }
  6862. // printf("\n");
  6863. // }
  6864. // printf("\n");
  6865. // }
  6866. // printf("\n");
  6867. // exit(0);
  6868. //}
  6869. }
  6870. // ggml_compute_forward_diag_mask_inf
  6871. static void ggml_compute_forward_diag_mask_inf_f32(
  6872. const struct ggml_compute_params * params,
  6873. const struct ggml_tensor * src0,
  6874. const struct ggml_tensor * src1,
  6875. struct ggml_tensor * dst) {
  6876. assert(params->ith == 0);
  6877. assert(src1->type == GGML_TYPE_I32);
  6878. assert(ggml_nelements(src1) == 1);
  6879. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6880. return;
  6881. }
  6882. const int n_past = ((int32_t *) src1->data)[0];
  6883. // TODO: handle transposed/permuted matrices
  6884. const int n = ggml_nrows(src0);
  6885. const int nc = src0->ne[0];
  6886. const int nr = src0->ne[1];
  6887. const int nz = n/nr;
  6888. assert( dst->nb[0] == sizeof(float));
  6889. assert(src0->nb[0] == sizeof(float));
  6890. for (int k = 0; k < nz; k++) {
  6891. for (int j = 0; j < nr; j++) {
  6892. for (int i = n_past; i < nc; i++) {
  6893. if (i > n_past + j) {
  6894. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6895. }
  6896. }
  6897. }
  6898. }
  6899. }
  6900. static void ggml_compute_forward_diag_mask_inf(
  6901. const struct ggml_compute_params * params,
  6902. const struct ggml_tensor * src0,
  6903. const struct ggml_tensor * src1,
  6904. struct ggml_tensor * dst) {
  6905. switch (src0->type) {
  6906. case GGML_TYPE_F32:
  6907. {
  6908. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6909. } break;
  6910. default:
  6911. {
  6912. GGML_ASSERT(false);
  6913. } break;
  6914. }
  6915. }
  6916. // ggml_compute_forward_soft_max
  6917. static void ggml_compute_forward_soft_max_f32(
  6918. const struct ggml_compute_params * params,
  6919. const struct ggml_tensor * src0,
  6920. struct ggml_tensor * dst) {
  6921. GGML_ASSERT(ggml_is_contiguous(src0));
  6922. GGML_ASSERT(ggml_is_contiguous(dst));
  6923. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6924. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6925. return;
  6926. }
  6927. // TODO: handle transposed/permuted matrices
  6928. const int ith = params->ith;
  6929. const int nth = params->nth;
  6930. const int nc = src0->ne[0];
  6931. const int nr = ggml_nrows(src0);
  6932. // rows per thread
  6933. const int dr = (nr + nth - 1)/nth;
  6934. // row range for this thread
  6935. const int ir0 = dr*ith;
  6936. const int ir1 = MIN(ir0 + dr, nr);
  6937. for (int i1 = ir0; i1 < ir1; i1++) {
  6938. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6939. #ifndef NDEBUG
  6940. for (int i = 0; i < nc; ++i) {
  6941. //printf("p[%d] = %f\n", i, p[i]);
  6942. assert(!isnan(p[i]));
  6943. }
  6944. #endif
  6945. float max = -INFINITY;
  6946. ggml_vec_max_f32(nc, &max, p);
  6947. ggml_float sum = 0.0;
  6948. uint16_t scvt;
  6949. for (int i = 0; i < nc; i++) {
  6950. if (p[i] == -INFINITY) {
  6951. p[i] = 0.0f;
  6952. } else {
  6953. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6954. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6955. memcpy(&scvt, &s, sizeof(scvt));
  6956. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6957. sum += (ggml_float)val;
  6958. p[i] = val;
  6959. }
  6960. }
  6961. assert(sum > 0.0);
  6962. sum = 1.0/sum;
  6963. ggml_vec_scale_f32(nc, p, sum);
  6964. #ifndef NDEBUG
  6965. for (int i = 0; i < nc; ++i) {
  6966. assert(!isnan(p[i]));
  6967. assert(!isinf(p[i]));
  6968. }
  6969. #endif
  6970. }
  6971. }
  6972. static void ggml_compute_forward_soft_max(
  6973. const struct ggml_compute_params * params,
  6974. const struct ggml_tensor * src0,
  6975. struct ggml_tensor * dst) {
  6976. switch (src0->type) {
  6977. case GGML_TYPE_F32:
  6978. {
  6979. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6980. } break;
  6981. default:
  6982. {
  6983. GGML_ASSERT(false);
  6984. } break;
  6985. }
  6986. }
  6987. // ggml_compute_forward_rope
  6988. static void ggml_compute_forward_rope_f32(
  6989. const struct ggml_compute_params * params,
  6990. const struct ggml_tensor * src0,
  6991. const struct ggml_tensor * src1,
  6992. struct ggml_tensor * dst) {
  6993. assert(src1->type == GGML_TYPE_I32);
  6994. assert(ggml_nelements(src1) == 3);
  6995. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6996. return;
  6997. }
  6998. const int n_past = ((int32_t *) src1->data)[0];
  6999. const int n_dims = ((int32_t *) src1->data)[1];
  7000. const int mode = ((int32_t *) src1->data)[2];
  7001. //const int64_t ne0 = src0->ne[0];
  7002. const int64_t ne1 = src0->ne[1];
  7003. const int64_t ne2 = src0->ne[2];
  7004. const int64_t ne3 = src0->ne[3];
  7005. const int nb0 = src0->nb[0];
  7006. const int nb1 = src0->nb[1];
  7007. const int nb2 = src0->nb[2];
  7008. const int nb3 = src0->nb[3];
  7009. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7010. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7011. assert(nb0 == sizeof(float));
  7012. const int ith = params->ith;
  7013. const int nth = params->nth;
  7014. const int nr = ggml_nrows(src0);
  7015. // rows per thread
  7016. const int dr = (nr + nth - 1)/nth;
  7017. // row range for this thread
  7018. const int ir0 = dr*ith;
  7019. const int ir1 = MIN(ir0 + dr, nr);
  7020. // row index used to determine which thread to use
  7021. int ir = 0;
  7022. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7023. const bool is_neox = mode & 2;
  7024. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7025. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7026. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7027. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7028. if (ir++ < ir0) continue;
  7029. if (ir > ir1) break;
  7030. float theta = (float)p;
  7031. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7032. const float cos_theta = cosf(theta);
  7033. const float sin_theta = sinf(theta);
  7034. theta *= theta_scale;
  7035. if (!is_neox) {
  7036. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7037. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7038. const float x0 = src[0];
  7039. const float x1 = src[1];
  7040. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7041. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7042. } else {
  7043. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7044. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7045. const float x0 = src[0];
  7046. const float x1 = src[n_dims/2];
  7047. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7048. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7049. }
  7050. }
  7051. }
  7052. }
  7053. }
  7054. }
  7055. static void ggml_compute_forward_rope_f16(
  7056. const struct ggml_compute_params * params,
  7057. const struct ggml_tensor * src0,
  7058. const struct ggml_tensor * src1,
  7059. struct ggml_tensor * dst) {
  7060. assert(src1->type == GGML_TYPE_I32);
  7061. assert(ggml_nelements(src1) == 3);
  7062. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7063. return;
  7064. }
  7065. const int n_past = ((int32_t *) src1->data)[0];
  7066. const int n_dims = ((int32_t *) src1->data)[1];
  7067. const int mode = ((int32_t *) src1->data)[2];
  7068. //const int64_t ne0 = src0->ne[0];
  7069. const int64_t ne1 = src0->ne[1];
  7070. const int64_t ne2 = src0->ne[2];
  7071. const int64_t ne3 = src0->ne[3];
  7072. const int nb0 = src0->nb[0];
  7073. const int nb1 = src0->nb[1];
  7074. const int nb2 = src0->nb[2];
  7075. const int nb3 = src0->nb[3];
  7076. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7077. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7078. assert(nb0 == sizeof(ggml_fp16_t));
  7079. const int ith = params->ith;
  7080. const int nth = params->nth;
  7081. const int nr = ggml_nrows(src0);
  7082. // rows per thread
  7083. const int dr = (nr + nth - 1)/nth;
  7084. // row range for this thread
  7085. const int ir0 = dr*ith;
  7086. const int ir1 = MIN(ir0 + dr, nr);
  7087. // row index used to determine which thread to use
  7088. int ir = 0;
  7089. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7090. const bool is_neox = mode & 2;
  7091. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7092. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7093. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7094. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7095. if (ir++ < ir0) continue;
  7096. if (ir > ir1) break;
  7097. float theta = (float)p;
  7098. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7099. const float cos_theta = cosf(theta);
  7100. const float sin_theta = sinf(theta);
  7101. theta *= theta_scale;
  7102. if (!is_neox) {
  7103. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7104. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7105. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7106. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7107. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7108. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7109. } else {
  7110. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7111. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7112. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7113. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7114. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7115. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7116. }
  7117. }
  7118. }
  7119. }
  7120. }
  7121. }
  7122. static void ggml_compute_forward_rope(
  7123. const struct ggml_compute_params * params,
  7124. const struct ggml_tensor * src0,
  7125. const struct ggml_tensor * src1,
  7126. struct ggml_tensor * dst) {
  7127. switch (src0->type) {
  7128. case GGML_TYPE_F16:
  7129. {
  7130. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7131. } break;
  7132. case GGML_TYPE_F32:
  7133. {
  7134. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7135. } break;
  7136. default:
  7137. {
  7138. GGML_ASSERT(false);
  7139. } break;
  7140. }
  7141. }
  7142. // ggml_compute_forward_conv_1d_1s
  7143. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7144. const struct ggml_compute_params * params,
  7145. const struct ggml_tensor * src0,
  7146. const struct ggml_tensor * src1,
  7147. struct ggml_tensor * dst) {
  7148. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7149. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7150. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7151. int64_t t0 = ggml_perf_time_us();
  7152. UNUSED(t0);
  7153. const int64_t ne00 = src0->ne[0];
  7154. const int64_t ne01 = src0->ne[1];
  7155. const int64_t ne02 = src0->ne[2];
  7156. //const int64_t ne03 = src0->ne[3];
  7157. const int64_t ne10 = src1->ne[0];
  7158. const int64_t ne11 = src1->ne[1];
  7159. //const int64_t ne12 = src1->ne[2];
  7160. //const int64_t ne13 = src1->ne[3];
  7161. //const int64_t ne0 = dst->ne[0];
  7162. //const int64_t ne1 = dst->ne[1];
  7163. //const int64_t ne2 = dst->ne[2];
  7164. //const int64_t ne3 = dst->ne[3];
  7165. //const int64_t ne = ne0*ne1*ne2*ne3;
  7166. const int nb00 = src0->nb[0];
  7167. const int nb01 = src0->nb[1];
  7168. const int nb02 = src0->nb[2];
  7169. //const int nb03 = src0->nb[3];
  7170. const int nb10 = src1->nb[0];
  7171. const int nb11 = src1->nb[1];
  7172. //const int nb12 = src1->nb[2];
  7173. //const int nb13 = src1->nb[3];
  7174. //const int nb0 = dst->nb[0];
  7175. const int nb1 = dst->nb[1];
  7176. //const int nb2 = dst->nb[2];
  7177. //const int nb3 = dst->nb[3];
  7178. const int ith = params->ith;
  7179. const int nth = params->nth;
  7180. const int nk = ne00;
  7181. const int nh = nk/2;
  7182. const int ew0 = ggml_up32(ne01);
  7183. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7184. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7185. GGML_ASSERT(nb10 == sizeof(float));
  7186. if (params->type == GGML_TASK_INIT) {
  7187. // TODO: fix this memset (wsize is overestimated)
  7188. memset(params->wdata, 0, params->wsize);
  7189. // prepare kernel data (src0)
  7190. {
  7191. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7192. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7193. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7194. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7195. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7196. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7197. dst_data[i00*ew0 + i01] = src[i00];
  7198. }
  7199. }
  7200. }
  7201. }
  7202. // prepare source data (src1)
  7203. {
  7204. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7205. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7206. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7207. ggml_fp16_t * dst_data = wdata;
  7208. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7209. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7210. }
  7211. }
  7212. }
  7213. return;
  7214. }
  7215. if (params->type == GGML_TASK_FINALIZE) {
  7216. return;
  7217. }
  7218. // total rows in dst
  7219. const int nr = ne02;
  7220. // rows per thread
  7221. const int dr = (nr + nth - 1)/nth;
  7222. // row range for this thread
  7223. const int ir0 = dr*ith;
  7224. const int ir1 = MIN(ir0 + dr, nr);
  7225. for (int i1 = ir0; i1 < ir1; i1++) {
  7226. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7227. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7228. dst_data[i0] = 0;
  7229. for (int k = -nh; k <= nh; k++) {
  7230. float v = 0.0f;
  7231. ggml_vec_dot_f16(ew0, &v,
  7232. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7233. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7234. dst_data[i0] += v;
  7235. }
  7236. }
  7237. }
  7238. }
  7239. static void ggml_compute_forward_conv_1d_1s_f32(
  7240. const struct ggml_compute_params * params,
  7241. const struct ggml_tensor * src0,
  7242. const struct ggml_tensor * src1,
  7243. struct ggml_tensor * dst) {
  7244. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7245. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7246. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7247. int64_t t0 = ggml_perf_time_us();
  7248. UNUSED(t0);
  7249. const int64_t ne00 = src0->ne[0];
  7250. const int64_t ne01 = src0->ne[1];
  7251. const int64_t ne02 = src0->ne[2];
  7252. //const int64_t ne03 = src0->ne[3];
  7253. const int64_t ne10 = src1->ne[0];
  7254. const int64_t ne11 = src1->ne[1];
  7255. //const int64_t ne12 = src1->ne[2];
  7256. //const int64_t ne13 = src1->ne[3];
  7257. //const int64_t ne0 = dst->ne[0];
  7258. //const int64_t ne1 = dst->ne[1];
  7259. //const int64_t ne2 = dst->ne[2];
  7260. //const int64_t ne3 = dst->ne[3];
  7261. //const int64_t ne = ne0*ne1*ne2*ne3;
  7262. const int nb00 = src0->nb[0];
  7263. const int nb01 = src0->nb[1];
  7264. const int nb02 = src0->nb[2];
  7265. //const int nb03 = src0->nb[3];
  7266. const int nb10 = src1->nb[0];
  7267. const int nb11 = src1->nb[1];
  7268. //const int nb12 = src1->nb[2];
  7269. //const int nb13 = src1->nb[3];
  7270. //const int nb0 = dst->nb[0];
  7271. const int nb1 = dst->nb[1];
  7272. //const int nb2 = dst->nb[2];
  7273. //const int nb3 = dst->nb[3];
  7274. const int ith = params->ith;
  7275. const int nth = params->nth;
  7276. const int nk = ne00;
  7277. const int nh = nk/2;
  7278. const int ew0 = ggml_up32(ne01);
  7279. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7280. GGML_ASSERT(nb00 == sizeof(float));
  7281. GGML_ASSERT(nb10 == sizeof(float));
  7282. if (params->type == GGML_TASK_INIT) {
  7283. // TODO: fix this memset (wsize is overestimated)
  7284. memset(params->wdata, 0, params->wsize);
  7285. // prepare kernel data (src0)
  7286. {
  7287. float * const wdata = (float *) params->wdata + 0;
  7288. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7289. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7290. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7291. float * dst_data = wdata + i02*ew0*ne00;
  7292. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7293. dst_data[i00*ew0 + i01] = src[i00];
  7294. }
  7295. }
  7296. }
  7297. }
  7298. // prepare source data (src1)
  7299. {
  7300. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7301. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7302. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7303. float * dst_data = wdata;
  7304. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7305. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7306. }
  7307. }
  7308. }
  7309. return;
  7310. }
  7311. if (params->type == GGML_TASK_FINALIZE) {
  7312. return;
  7313. }
  7314. // total rows in dst
  7315. const int nr = ne02;
  7316. // rows per thread
  7317. const int dr = (nr + nth - 1)/nth;
  7318. // row range for this thread
  7319. const int ir0 = dr*ith;
  7320. const int ir1 = MIN(ir0 + dr, nr);
  7321. for (int i1 = ir0; i1 < ir1; i1++) {
  7322. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7323. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7324. dst_data[i0] = 0;
  7325. for (int k = -nh; k <= nh; k++) {
  7326. float v = 0.0f;
  7327. ggml_vec_dot_f32(ew0, &v,
  7328. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7329. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7330. dst_data[i0] += v;
  7331. }
  7332. }
  7333. }
  7334. }
  7335. static void ggml_compute_forward_conv_1d_1s(
  7336. const struct ggml_compute_params * params,
  7337. const struct ggml_tensor * src0,
  7338. const struct ggml_tensor * src1,
  7339. struct ggml_tensor * dst) {
  7340. switch (src0->type) {
  7341. case GGML_TYPE_F16:
  7342. {
  7343. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7344. } break;
  7345. case GGML_TYPE_F32:
  7346. {
  7347. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7348. } break;
  7349. default:
  7350. {
  7351. GGML_ASSERT(false);
  7352. } break;
  7353. }
  7354. }
  7355. // ggml_compute_forward_conv_1d_2s
  7356. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7357. const struct ggml_compute_params * params,
  7358. const struct ggml_tensor * src0,
  7359. const struct ggml_tensor * src1,
  7360. struct ggml_tensor * dst) {
  7361. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7362. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7363. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7364. int64_t t0 = ggml_perf_time_us();
  7365. UNUSED(t0);
  7366. const int64_t ne00 = src0->ne[0];
  7367. const int64_t ne01 = src0->ne[1];
  7368. const int64_t ne02 = src0->ne[2];
  7369. //const int64_t ne03 = src0->ne[3];
  7370. const int64_t ne10 = src1->ne[0];
  7371. const int64_t ne11 = src1->ne[1];
  7372. //const int64_t ne12 = src1->ne[2];
  7373. //const int64_t ne13 = src1->ne[3];
  7374. //const int64_t ne0 = dst->ne[0];
  7375. //const int64_t ne1 = dst->ne[1];
  7376. //const int64_t ne2 = dst->ne[2];
  7377. //const int64_t ne3 = dst->ne[3];
  7378. //const int64_t ne = ne0*ne1*ne2*ne3;
  7379. const int nb00 = src0->nb[0];
  7380. const int nb01 = src0->nb[1];
  7381. const int nb02 = src0->nb[2];
  7382. //const int nb03 = src0->nb[3];
  7383. const int nb10 = src1->nb[0];
  7384. const int nb11 = src1->nb[1];
  7385. //const int nb12 = src1->nb[2];
  7386. //const int nb13 = src1->nb[3];
  7387. //const int nb0 = dst->nb[0];
  7388. const int nb1 = dst->nb[1];
  7389. //const int nb2 = dst->nb[2];
  7390. //const int nb3 = dst->nb[3];
  7391. const int ith = params->ith;
  7392. const int nth = params->nth;
  7393. const int nk = ne00;
  7394. const int nh = nk/2;
  7395. const int ew0 = ggml_up32(ne01);
  7396. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7397. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7398. GGML_ASSERT(nb10 == sizeof(float));
  7399. if (params->type == GGML_TASK_INIT) {
  7400. // TODO: fix this memset (wsize is overestimated)
  7401. memset(params->wdata, 0, params->wsize);
  7402. // prepare kernel data (src0)
  7403. {
  7404. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7405. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7406. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7407. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7408. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7409. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7410. dst_data[i00*ew0 + i01] = src[i00];
  7411. }
  7412. }
  7413. }
  7414. }
  7415. // prepare source data (src1)
  7416. {
  7417. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7418. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7419. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7420. ggml_fp16_t * dst_data = wdata;
  7421. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7422. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7423. }
  7424. }
  7425. }
  7426. return;
  7427. }
  7428. if (params->type == GGML_TASK_FINALIZE) {
  7429. return;
  7430. }
  7431. // total rows in dst
  7432. const int nr = ne02;
  7433. // rows per thread
  7434. const int dr = (nr + nth - 1)/nth;
  7435. // row range for this thread
  7436. const int ir0 = dr*ith;
  7437. const int ir1 = MIN(ir0 + dr, nr);
  7438. for (int i1 = ir0; i1 < ir1; i1++) {
  7439. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7440. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7441. dst_data[i0/2] = 0;
  7442. for (int k = -nh; k <= nh; k++) {
  7443. float v = 0.0f;
  7444. ggml_vec_dot_f16(ew0, &v,
  7445. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7446. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7447. dst_data[i0/2] += v;
  7448. }
  7449. }
  7450. }
  7451. }
  7452. static void ggml_compute_forward_conv_1d_2s_f32(
  7453. const struct ggml_compute_params * params,
  7454. const struct ggml_tensor * src0,
  7455. const struct ggml_tensor * src1,
  7456. struct ggml_tensor * dst) {
  7457. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7458. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7459. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7460. int64_t t0 = ggml_perf_time_us();
  7461. UNUSED(t0);
  7462. const int64_t ne00 = src0->ne[0];
  7463. const int64_t ne01 = src0->ne[1];
  7464. const int64_t ne02 = src0->ne[2];
  7465. //const int64_t ne03 = src0->ne[3];
  7466. const int64_t ne10 = src1->ne[0];
  7467. const int64_t ne11 = src1->ne[1];
  7468. //const int64_t ne12 = src1->ne[2];
  7469. //const int64_t ne13 = src1->ne[3];
  7470. //const int64_t ne0 = dst->ne[0];
  7471. //const int64_t ne1 = dst->ne[1];
  7472. //const int64_t ne2 = dst->ne[2];
  7473. //const int64_t ne3 = dst->ne[3];
  7474. //const int64_t ne = ne0*ne1*ne2*ne3;
  7475. const int nb00 = src0->nb[0];
  7476. const int nb01 = src0->nb[1];
  7477. const int nb02 = src0->nb[2];
  7478. //const int nb03 = src0->nb[3];
  7479. const int nb10 = src1->nb[0];
  7480. const int nb11 = src1->nb[1];
  7481. //const int nb12 = src1->nb[2];
  7482. //const int nb13 = src1->nb[3];
  7483. //const int nb0 = dst->nb[0];
  7484. const int nb1 = dst->nb[1];
  7485. //const int nb2 = dst->nb[2];
  7486. //const int nb3 = dst->nb[3];
  7487. const int ith = params->ith;
  7488. const int nth = params->nth;
  7489. const int nk = ne00;
  7490. const int nh = nk/2;
  7491. const int ew0 = ggml_up32(ne01);
  7492. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7493. GGML_ASSERT(nb00 == sizeof(float));
  7494. GGML_ASSERT(nb10 == sizeof(float));
  7495. if (params->type == GGML_TASK_INIT) {
  7496. // TODO: fix this memset (wsize is overestimated)
  7497. memset(params->wdata, 0, params->wsize);
  7498. // prepare kernel data (src0)
  7499. {
  7500. float * const wdata = (float *) params->wdata + 0;
  7501. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7502. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7503. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7504. float * dst_data = wdata + i02*ew0*ne00;
  7505. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7506. dst_data[i00*ew0 + i01] = src[i00];
  7507. }
  7508. }
  7509. }
  7510. }
  7511. // prepare source data (src1)
  7512. {
  7513. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7514. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7515. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7516. float * dst_data = wdata;
  7517. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7518. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7519. }
  7520. }
  7521. }
  7522. return;
  7523. }
  7524. if (params->type == GGML_TASK_FINALIZE) {
  7525. return;
  7526. }
  7527. // total rows in dst
  7528. const int nr = ne02;
  7529. // rows per thread
  7530. const int dr = (nr + nth - 1)/nth;
  7531. // row range for this thread
  7532. const int ir0 = dr*ith;
  7533. const int ir1 = MIN(ir0 + dr, nr);
  7534. for (int i1 = ir0; i1 < ir1; i1++) {
  7535. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7536. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7537. dst_data[i0/2] = 0;
  7538. for (int k = -nh; k <= nh; k++) {
  7539. float v = 0.0f;
  7540. ggml_vec_dot_f32(ew0, &v,
  7541. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7542. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7543. dst_data[i0/2] += v;
  7544. }
  7545. }
  7546. }
  7547. }
  7548. static void ggml_compute_forward_conv_1d_2s(
  7549. const struct ggml_compute_params * params,
  7550. const struct ggml_tensor * src0,
  7551. const struct ggml_tensor * src1,
  7552. struct ggml_tensor * dst) {
  7553. switch (src0->type) {
  7554. case GGML_TYPE_F16:
  7555. {
  7556. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7557. } break;
  7558. case GGML_TYPE_F32:
  7559. {
  7560. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7561. } break;
  7562. default:
  7563. {
  7564. GGML_ASSERT(false);
  7565. } break;
  7566. }
  7567. }
  7568. // ggml_compute_forward_flash_attn
  7569. static void ggml_compute_forward_flash_attn_f32(
  7570. const struct ggml_compute_params * params,
  7571. const struct ggml_tensor * q,
  7572. const struct ggml_tensor * k,
  7573. const struct ggml_tensor * v,
  7574. const bool masked,
  7575. struct ggml_tensor * dst) {
  7576. int64_t t0 = ggml_perf_time_us();
  7577. UNUSED(t0);
  7578. const int64_t neq0 = q->ne[0];
  7579. const int64_t neq1 = q->ne[1];
  7580. const int64_t neq2 = q->ne[2];
  7581. const int64_t neq3 = q->ne[3];
  7582. const int64_t nek0 = k->ne[0];
  7583. const int64_t nek1 = k->ne[1];
  7584. //const int64_t nek2 = k->ne[2];
  7585. //const int64_t nek3 = k->ne[3];
  7586. //const int64_t nev0 = v->ne[0];
  7587. const int64_t nev1 = v->ne[1];
  7588. //const int64_t nev2 = v->ne[2];
  7589. //const int64_t nev3 = v->ne[3];
  7590. const int64_t ne0 = dst->ne[0];
  7591. const int64_t ne1 = dst->ne[1];
  7592. //const int64_t ne2 = dst->ne[2];
  7593. //const int64_t ne3 = dst->ne[3];
  7594. const int nbk0 = k->nb[0];
  7595. const int nbk1 = k->nb[1];
  7596. const int nbk2 = k->nb[2];
  7597. const int nbk3 = k->nb[3];
  7598. const int nbq0 = q->nb[0];
  7599. const int nbq1 = q->nb[1];
  7600. const int nbq2 = q->nb[2];
  7601. const int nbq3 = q->nb[3];
  7602. const int nbv0 = v->nb[0];
  7603. const int nbv1 = v->nb[1];
  7604. const int nbv2 = v->nb[2];
  7605. const int nbv3 = v->nb[3];
  7606. const int nb0 = dst->nb[0];
  7607. const int nb1 = dst->nb[1];
  7608. const int nb2 = dst->nb[2];
  7609. const int nb3 = dst->nb[3];
  7610. const int ith = params->ith;
  7611. const int nth = params->nth;
  7612. const int64_t D = neq0;
  7613. const int64_t N = neq1;
  7614. const int64_t P = nek1 - N;
  7615. const int64_t M = P + N;
  7616. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7617. GGML_ASSERT(ne0 == D);
  7618. GGML_ASSERT(ne1 == N);
  7619. GGML_ASSERT(P >= 0);
  7620. GGML_ASSERT(nbq0 == sizeof(float));
  7621. GGML_ASSERT(nbk0 == sizeof(float));
  7622. GGML_ASSERT(nbv0 == sizeof(float));
  7623. GGML_ASSERT(neq0 == D);
  7624. GGML_ASSERT(nek0 == D);
  7625. GGML_ASSERT(nev1 == D);
  7626. GGML_ASSERT(neq1 == N);
  7627. GGML_ASSERT(nek1 == N + P);
  7628. GGML_ASSERT(nev1 == D);
  7629. // dst cannot be transposed or permuted
  7630. GGML_ASSERT(nb0 == sizeof(float));
  7631. GGML_ASSERT(nb0 <= nb1);
  7632. GGML_ASSERT(nb1 <= nb2);
  7633. GGML_ASSERT(nb2 <= nb3);
  7634. if (params->type == GGML_TASK_INIT) {
  7635. return;
  7636. }
  7637. if (params->type == GGML_TASK_FINALIZE) {
  7638. return;
  7639. }
  7640. // parallelize by q rows using ggml_vec_dot_f32
  7641. // total rows in q
  7642. const int nr = neq1*neq2*neq3;
  7643. // rows per thread
  7644. const int dr = (nr + nth - 1)/nth;
  7645. // row range for this thread
  7646. const int ir0 = dr*ith;
  7647. const int ir1 = MIN(ir0 + dr, nr);
  7648. const float scale = 1.0f/sqrtf(D);
  7649. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7650. for (int ir = ir0; ir < ir1; ++ir) {
  7651. // q indices
  7652. const int iq3 = ir/(neq2*neq1);
  7653. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7654. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7655. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7656. for (int i = M; i < Mup; ++i) {
  7657. S[i] = -INFINITY;
  7658. }
  7659. for (int64_t ic = 0; ic < nek1; ++ic) {
  7660. // k indices
  7661. const int ik3 = iq3;
  7662. const int ik2 = iq2;
  7663. const int ik1 = ic;
  7664. // S indices
  7665. const int i1 = ik1;
  7666. ggml_vec_dot_f32(neq0,
  7667. S + i1,
  7668. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7669. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7670. }
  7671. // scale
  7672. ggml_vec_scale_f32(nek1, S, scale);
  7673. if (masked) {
  7674. for (int64_t i = P; i < M; i++) {
  7675. if (i > P + iq1) {
  7676. S[i] = -INFINITY;
  7677. }
  7678. }
  7679. }
  7680. // softmax
  7681. {
  7682. float max = -INFINITY;
  7683. ggml_vec_max_f32(M, &max, S);
  7684. ggml_float sum = 0.0;
  7685. {
  7686. #ifdef GGML_SOFT_MAX_ACCELERATE
  7687. max = -max;
  7688. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7689. vvexpf(S, S, &Mup);
  7690. ggml_vec_sum_f32(Mup, &sum, S);
  7691. #else
  7692. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7693. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7694. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7695. float * SS = S + i;
  7696. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7697. if (SS[j] == -INFINITY) {
  7698. SS[j] = 0.0f;
  7699. } else {
  7700. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7701. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7702. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7703. sump[j] += (ggml_float)val;
  7704. SS[j] = val;
  7705. }
  7706. }
  7707. }
  7708. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7709. sum += sump[i];
  7710. }
  7711. #endif
  7712. }
  7713. assert(sum > 0.0);
  7714. sum = 1.0/sum;
  7715. ggml_vec_scale_f32(M, S, sum);
  7716. #ifndef NDEBUG
  7717. for (int i = 0; i < M; ++i) {
  7718. assert(!isnan(S[i]));
  7719. assert(!isinf(S[i]));
  7720. }
  7721. #endif
  7722. }
  7723. for (int64_t ic = 0; ic < nev1; ++ic) {
  7724. // dst indices
  7725. const int i1 = iq1;
  7726. const int i2 = iq2;
  7727. const int i3 = iq3;
  7728. ggml_vec_dot_f32(nek1,
  7729. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7730. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7731. S);
  7732. }
  7733. }
  7734. }
  7735. static void ggml_compute_forward_flash_attn_f16(
  7736. const struct ggml_compute_params * params,
  7737. const struct ggml_tensor * q,
  7738. const struct ggml_tensor * k,
  7739. const struct ggml_tensor * v,
  7740. const bool masked,
  7741. struct ggml_tensor * dst) {
  7742. int64_t t0 = ggml_perf_time_us();
  7743. UNUSED(t0);
  7744. const int64_t neq0 = q->ne[0];
  7745. const int64_t neq1 = q->ne[1];
  7746. const int64_t neq2 = q->ne[2];
  7747. const int64_t neq3 = q->ne[3];
  7748. const int64_t nek0 = k->ne[0];
  7749. const int64_t nek1 = k->ne[1];
  7750. //const int64_t nek2 = k->ne[2];
  7751. //const int64_t nek3 = k->ne[3];
  7752. //const int64_t nev0 = v->ne[0];
  7753. const int64_t nev1 = v->ne[1];
  7754. //const int64_t nev2 = v->ne[2];
  7755. //const int64_t nev3 = v->ne[3];
  7756. const int64_t ne0 = dst->ne[0];
  7757. const int64_t ne1 = dst->ne[1];
  7758. //const int64_t ne2 = dst->ne[2];
  7759. //const int64_t ne3 = dst->ne[3];
  7760. const int nbk0 = k->nb[0];
  7761. const int nbk1 = k->nb[1];
  7762. const int nbk2 = k->nb[2];
  7763. const int nbk3 = k->nb[3];
  7764. const int nbq0 = q->nb[0];
  7765. const int nbq1 = q->nb[1];
  7766. const int nbq2 = q->nb[2];
  7767. const int nbq3 = q->nb[3];
  7768. const int nbv0 = v->nb[0];
  7769. const int nbv1 = v->nb[1];
  7770. const int nbv2 = v->nb[2];
  7771. const int nbv3 = v->nb[3];
  7772. const int nb0 = dst->nb[0];
  7773. const int nb1 = dst->nb[1];
  7774. const int nb2 = dst->nb[2];
  7775. const int nb3 = dst->nb[3];
  7776. const int ith = params->ith;
  7777. const int nth = params->nth;
  7778. const int64_t D = neq0;
  7779. const int64_t N = neq1;
  7780. const int64_t P = nek1 - N;
  7781. const int64_t M = P + N;
  7782. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7783. GGML_ASSERT(ne0 == D);
  7784. GGML_ASSERT(ne1 == N);
  7785. GGML_ASSERT(P >= 0);
  7786. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7787. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7788. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7789. GGML_ASSERT(neq0 == D);
  7790. GGML_ASSERT(nek0 == D);
  7791. GGML_ASSERT(nev1 == D);
  7792. GGML_ASSERT(neq1 == N);
  7793. GGML_ASSERT(nek1 == N + P);
  7794. GGML_ASSERT(nev1 == D);
  7795. // dst cannot be transposed or permuted
  7796. GGML_ASSERT(nb0 == sizeof(float));
  7797. GGML_ASSERT(nb0 <= nb1);
  7798. GGML_ASSERT(nb1 <= nb2);
  7799. GGML_ASSERT(nb2 <= nb3);
  7800. if (params->type == GGML_TASK_INIT) {
  7801. return;
  7802. }
  7803. if (params->type == GGML_TASK_FINALIZE) {
  7804. return;
  7805. }
  7806. // parallelize by q rows using ggml_vec_dot_f32
  7807. // total rows in q
  7808. const int nr = neq1*neq2*neq3;
  7809. // rows per thread
  7810. const int dr = (nr + nth - 1)/nth;
  7811. // row range for this thread
  7812. const int ir0 = dr*ith;
  7813. const int ir1 = MIN(ir0 + dr, nr);
  7814. const float scale = 1.0f/sqrtf(D);
  7815. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7816. for (int ir = ir0; ir < ir1; ++ir) {
  7817. // q indices
  7818. const int iq3 = ir/(neq2*neq1);
  7819. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7820. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7821. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7822. for (int i = M; i < Mup; ++i) {
  7823. S[i] = -INFINITY;
  7824. }
  7825. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7826. for (int64_t ic = 0; ic < nek1; ++ic) {
  7827. // k indices
  7828. const int ik3 = iq3;
  7829. const int ik2 = iq2;
  7830. const int ik1 = ic;
  7831. // S indices
  7832. const int i1 = ik1;
  7833. ggml_vec_dot_f16(neq0,
  7834. S + i1,
  7835. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7836. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7837. }
  7838. } else {
  7839. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7840. // k indices
  7841. const int ik3 = iq3;
  7842. const int ik2 = iq2;
  7843. const int ik1 = ic;
  7844. // S indices
  7845. const int i1 = ik1;
  7846. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7847. S + i1,
  7848. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7849. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7850. }
  7851. }
  7852. // scale
  7853. ggml_vec_scale_f32(nek1, S, scale);
  7854. if (masked) {
  7855. for (int64_t i = P; i < M; i++) {
  7856. if (i > P + iq1) {
  7857. S[i] = -INFINITY;
  7858. }
  7859. }
  7860. }
  7861. // softmax
  7862. {
  7863. float max = -INFINITY;
  7864. ggml_vec_max_f32(M, &max, S);
  7865. ggml_float sum = 0.0;
  7866. {
  7867. #ifdef GGML_SOFT_MAX_ACCELERATE
  7868. max = -max;
  7869. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7870. vvexpf(S, S, &Mup);
  7871. ggml_vec_sum_f32(Mup, &sum, S);
  7872. #else
  7873. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7874. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7875. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7876. float * SS = S + i;
  7877. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7878. if (SS[j] == -INFINITY) {
  7879. SS[j] = 0.0f;
  7880. } else {
  7881. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7882. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7883. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7884. sump[j] += (ggml_float)val;
  7885. SS[j] = val;
  7886. }
  7887. }
  7888. }
  7889. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7890. sum += sump[i];
  7891. }
  7892. #endif
  7893. }
  7894. assert(sum > 0.0);
  7895. sum = 1.0/sum;
  7896. ggml_vec_scale_f32(M, S, sum);
  7897. #ifndef NDEBUG
  7898. for (int i = 0; i < M; ++i) {
  7899. assert(!isnan(S[i]));
  7900. assert(!isinf(S[i]));
  7901. }
  7902. #endif
  7903. }
  7904. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7905. for (int64_t i = 0; i < M; i++) {
  7906. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7907. }
  7908. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7909. for (int64_t ic = 0; ic < nev1; ++ic) {
  7910. // dst indices
  7911. const int i1 = iq1;
  7912. const int i2 = iq2;
  7913. const int i3 = iq3;
  7914. ggml_vec_dot_f16(nek1,
  7915. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7916. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7917. S16);
  7918. }
  7919. } else {
  7920. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7921. // dst indices
  7922. const int i1 = iq1;
  7923. const int i2 = iq2;
  7924. const int i3 = iq3;
  7925. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7926. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7927. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7928. S16);
  7929. }
  7930. }
  7931. }
  7932. }
  7933. static void ggml_compute_forward_flash_attn(
  7934. const struct ggml_compute_params * params,
  7935. const struct ggml_tensor * q,
  7936. const struct ggml_tensor * k,
  7937. const struct ggml_tensor * v,
  7938. const bool masked,
  7939. struct ggml_tensor * dst) {
  7940. switch (q->type) {
  7941. case GGML_TYPE_F16:
  7942. {
  7943. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7944. } break;
  7945. case GGML_TYPE_F32:
  7946. {
  7947. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7948. } break;
  7949. default:
  7950. {
  7951. GGML_ASSERT(false);
  7952. } break;
  7953. }
  7954. }
  7955. // ggml_compute_forward_flash_ff
  7956. static void ggml_compute_forward_flash_ff_f16(
  7957. const struct ggml_compute_params * params,
  7958. const struct ggml_tensor * a, // F16
  7959. const struct ggml_tensor * b0, // F16 fc_w
  7960. const struct ggml_tensor * b1, // F32 fc_b
  7961. const struct ggml_tensor * c0, // F16 proj_w
  7962. const struct ggml_tensor * c1, // F32 proj_b
  7963. struct ggml_tensor * dst) {
  7964. int64_t t0 = ggml_perf_time_us();
  7965. UNUSED(t0);
  7966. const int64_t nea0 = a->ne[0];
  7967. const int64_t nea1 = a->ne[1];
  7968. const int64_t nea2 = a->ne[2];
  7969. const int64_t nea3 = a->ne[3];
  7970. const int64_t neb00 = b0->ne[0];
  7971. const int64_t neb01 = b0->ne[1];
  7972. //const int64_t neb02 = b0->ne[2];
  7973. //const int64_t neb03 = b0->ne[3];
  7974. const int64_t neb10 = b1->ne[0];
  7975. const int64_t neb11 = b1->ne[1];
  7976. //const int64_t neb12 = b1->ne[2];
  7977. //const int64_t neb13 = b1->ne[3];
  7978. const int64_t nec00 = c0->ne[0];
  7979. const int64_t nec01 = c0->ne[1];
  7980. //const int64_t nec02 = c0->ne[2];
  7981. //const int64_t nec03 = c0->ne[3];
  7982. const int64_t nec10 = c1->ne[0];
  7983. const int64_t nec11 = c1->ne[1];
  7984. //const int64_t nec12 = c1->ne[2];
  7985. //const int64_t nec13 = c1->ne[3];
  7986. const int64_t ne0 = dst->ne[0];
  7987. const int64_t ne1 = dst->ne[1];
  7988. const int64_t ne2 = dst->ne[2];
  7989. //const int64_t ne3 = dst->ne[3];
  7990. const int nba0 = a->nb[0];
  7991. const int nba1 = a->nb[1];
  7992. const int nba2 = a->nb[2];
  7993. const int nba3 = a->nb[3];
  7994. const int nbb00 = b0->nb[0];
  7995. const int nbb01 = b0->nb[1];
  7996. const int nbb02 = b0->nb[2];
  7997. const int nbb03 = b0->nb[3];
  7998. const int nbb10 = b1->nb[0];
  7999. //const int nbb11 = b1->nb[1];
  8000. //const int nbb12 = b1->nb[2];
  8001. //const int nbb13 = b1->nb[3];
  8002. const int nbc00 = c0->nb[0];
  8003. const int nbc01 = c0->nb[1];
  8004. const int nbc02 = c0->nb[2];
  8005. const int nbc03 = c0->nb[3];
  8006. const int nbc10 = c1->nb[0];
  8007. //const int nbc11 = c1->nb[1];
  8008. //const int nbc12 = c1->nb[2];
  8009. //const int nbc13 = c1->nb[3];
  8010. const int nb0 = dst->nb[0];
  8011. const int nb1 = dst->nb[1];
  8012. const int nb2 = dst->nb[2];
  8013. const int nb3 = dst->nb[3];
  8014. const int ith = params->ith;
  8015. const int nth = params->nth;
  8016. const int64_t D = nea0;
  8017. //const int64_t N = nea1;
  8018. const int64_t M = neb01;
  8019. GGML_ASSERT(ne0 == nea0);
  8020. GGML_ASSERT(ne1 == nea1);
  8021. GGML_ASSERT(ne2 == nea2);
  8022. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8023. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8024. GGML_ASSERT(nbb10 == sizeof(float));
  8025. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8026. GGML_ASSERT(nbc10 == sizeof(float));
  8027. GGML_ASSERT(neb00 == D);
  8028. GGML_ASSERT(neb01 == M);
  8029. GGML_ASSERT(neb10 == M);
  8030. GGML_ASSERT(neb11 == 1);
  8031. GGML_ASSERT(nec00 == M);
  8032. GGML_ASSERT(nec01 == D);
  8033. GGML_ASSERT(nec10 == D);
  8034. GGML_ASSERT(nec11 == 1);
  8035. // dst cannot be transposed or permuted
  8036. GGML_ASSERT(nb0 == sizeof(float));
  8037. GGML_ASSERT(nb0 <= nb1);
  8038. GGML_ASSERT(nb1 <= nb2);
  8039. GGML_ASSERT(nb2 <= nb3);
  8040. if (params->type == GGML_TASK_INIT) {
  8041. return;
  8042. }
  8043. if (params->type == GGML_TASK_FINALIZE) {
  8044. return;
  8045. }
  8046. // parallelize by a rows using ggml_vec_dot_f32
  8047. // total rows in a
  8048. const int nr = nea1*nea2*nea3;
  8049. // rows per thread
  8050. const int dr = (nr + nth - 1)/nth;
  8051. // row range for this thread
  8052. const int ir0 = dr*ith;
  8053. const int ir1 = MIN(ir0 + dr, nr);
  8054. for (int ir = ir0; ir < ir1; ++ir) {
  8055. // a indices
  8056. const int ia3 = ir/(nea2*nea1);
  8057. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8058. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8059. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8060. for (int64_t ic = 0; ic < neb01; ++ic) {
  8061. // b0 indices
  8062. const int ib03 = ia3;
  8063. const int ib02 = ia2;
  8064. const int ib01 = ic;
  8065. // S indices
  8066. const int i1 = ib01;
  8067. ggml_vec_dot_f16(nea0,
  8068. S + i1,
  8069. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8070. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8071. }
  8072. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8073. //ggml_vec_gelu_f32(neb01, S, S);
  8074. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8075. for (int64_t i = 0; i < M; i++) {
  8076. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8077. }
  8078. ggml_vec_gelu_f16(neb01, S16, S16);
  8079. {
  8080. // dst indices
  8081. const int i1 = ia1;
  8082. const int i2 = ia2;
  8083. const int i3 = ia3;
  8084. for (int64_t ic = 0; ic < nec01; ++ic) {
  8085. ggml_vec_dot_f16(neb01,
  8086. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8087. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8088. S16);
  8089. }
  8090. ggml_vec_add_f32(nec01,
  8091. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8092. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8093. (float *) c1->data);
  8094. }
  8095. }
  8096. }
  8097. static void ggml_compute_forward_flash_ff(
  8098. const struct ggml_compute_params * params,
  8099. const struct ggml_tensor * a,
  8100. const struct ggml_tensor * b0,
  8101. const struct ggml_tensor * b1,
  8102. const struct ggml_tensor * c0,
  8103. const struct ggml_tensor * c1,
  8104. struct ggml_tensor * dst) {
  8105. switch (b0->type) {
  8106. case GGML_TYPE_F16:
  8107. {
  8108. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8109. } break;
  8110. case GGML_TYPE_F32:
  8111. {
  8112. GGML_ASSERT(false); // TODO
  8113. } break;
  8114. default:
  8115. {
  8116. GGML_ASSERT(false);
  8117. } break;
  8118. }
  8119. }
  8120. // ggml_compute_forward_map_unary
  8121. static void ggml_compute_forward_map_unary_f32(
  8122. const struct ggml_compute_params * params,
  8123. const struct ggml_tensor * src0,
  8124. struct ggml_tensor * dst,
  8125. const ggml_unary_op_f32_t fun) {
  8126. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8127. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8128. return;
  8129. }
  8130. const int n = ggml_nrows(src0);
  8131. const int nc = src0->ne[0];
  8132. assert( dst->nb[0] == sizeof(float));
  8133. assert(src0->nb[0] == sizeof(float));
  8134. for (int i = 0; i < n; i++) {
  8135. fun(nc,
  8136. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8137. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8138. }
  8139. }
  8140. static void ggml_compute_forward_map_unary(
  8141. const struct ggml_compute_params * params,
  8142. const struct ggml_tensor * src0,
  8143. struct ggml_tensor * dst,
  8144. const ggml_unary_op_f32_t fun) {
  8145. switch (src0->type) {
  8146. case GGML_TYPE_F32:
  8147. {
  8148. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8149. } break;
  8150. default:
  8151. {
  8152. GGML_ASSERT(false);
  8153. } break;
  8154. }
  8155. }
  8156. // ggml_compute_forward_map_binary
  8157. static void ggml_compute_forward_map_binary_f32(
  8158. const struct ggml_compute_params * params,
  8159. const struct ggml_tensor * src0,
  8160. const struct ggml_tensor * src1,
  8161. struct ggml_tensor * dst,
  8162. const ggml_binary_op_f32_t fun) {
  8163. assert(params->ith == 0);
  8164. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8166. return;
  8167. }
  8168. const int n = ggml_nrows(src0);
  8169. const int nc = src0->ne[0];
  8170. assert( dst->nb[0] == sizeof(float));
  8171. assert(src0->nb[0] == sizeof(float));
  8172. assert(src1->nb[0] == sizeof(float));
  8173. for (int i = 0; i < n; i++) {
  8174. fun(nc,
  8175. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8176. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8177. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8178. }
  8179. }
  8180. static void ggml_compute_forward_map_binary(
  8181. const struct ggml_compute_params * params,
  8182. const struct ggml_tensor * src0,
  8183. const struct ggml_tensor * src1,
  8184. struct ggml_tensor * dst,
  8185. const ggml_binary_op_f32_t fun) {
  8186. switch (src0->type) {
  8187. case GGML_TYPE_F32:
  8188. {
  8189. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8190. } break;
  8191. default:
  8192. {
  8193. GGML_ASSERT(false);
  8194. } break;
  8195. }
  8196. }
  8197. /////////////////////////////////
  8198. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8199. GGML_ASSERT(params);
  8200. switch (tensor->op) {
  8201. case GGML_OP_DUP:
  8202. {
  8203. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8204. } break;
  8205. case GGML_OP_ADD:
  8206. {
  8207. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8208. } break;
  8209. case GGML_OP_SUB:
  8210. {
  8211. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8212. } break;
  8213. case GGML_OP_MUL:
  8214. {
  8215. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8216. } break;
  8217. case GGML_OP_DIV:
  8218. {
  8219. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8220. } break;
  8221. case GGML_OP_SQR:
  8222. {
  8223. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8224. } break;
  8225. case GGML_OP_SQRT:
  8226. {
  8227. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8228. } break;
  8229. case GGML_OP_SUM:
  8230. {
  8231. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8232. } break;
  8233. case GGML_OP_MEAN:
  8234. {
  8235. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8236. } break;
  8237. case GGML_OP_REPEAT:
  8238. {
  8239. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8240. } break;
  8241. case GGML_OP_ABS:
  8242. {
  8243. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8244. } break;
  8245. case GGML_OP_SGN:
  8246. {
  8247. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8248. } break;
  8249. case GGML_OP_NEG:
  8250. {
  8251. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8252. } break;
  8253. case GGML_OP_STEP:
  8254. {
  8255. ggml_compute_forward_step(params, tensor->src0, tensor);
  8256. } break;
  8257. case GGML_OP_RELU:
  8258. {
  8259. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8260. } break;
  8261. case GGML_OP_GELU:
  8262. {
  8263. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8264. } break;
  8265. case GGML_OP_SILU:
  8266. {
  8267. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8268. } break;
  8269. case GGML_OP_NORM:
  8270. {
  8271. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8272. } break;
  8273. case GGML_OP_RMS_NORM:
  8274. {
  8275. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8276. } break;
  8277. case GGML_OP_MUL_MAT:
  8278. {
  8279. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8280. } break;
  8281. case GGML_OP_SCALE:
  8282. {
  8283. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8284. } break;
  8285. case GGML_OP_CPY:
  8286. {
  8287. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8288. } break;
  8289. case GGML_OP_CONT:
  8290. {
  8291. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8292. } break;
  8293. case GGML_OP_RESHAPE:
  8294. {
  8295. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8296. } break;
  8297. case GGML_OP_VIEW:
  8298. {
  8299. ggml_compute_forward_view(params, tensor->src0);
  8300. } break;
  8301. case GGML_OP_PERMUTE:
  8302. {
  8303. ggml_compute_forward_permute(params, tensor->src0);
  8304. } break;
  8305. case GGML_OP_TRANSPOSE:
  8306. {
  8307. ggml_compute_forward_transpose(params, tensor->src0);
  8308. } break;
  8309. case GGML_OP_GET_ROWS:
  8310. {
  8311. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8312. } break;
  8313. case GGML_OP_DIAG_MASK_INF:
  8314. {
  8315. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8316. } break;
  8317. case GGML_OP_SOFT_MAX:
  8318. {
  8319. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8320. } break;
  8321. case GGML_OP_ROPE:
  8322. {
  8323. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8324. } break;
  8325. case GGML_OP_CONV_1D_1S:
  8326. {
  8327. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8328. } break;
  8329. case GGML_OP_CONV_1D_2S:
  8330. {
  8331. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8332. } break;
  8333. case GGML_OP_FLASH_ATTN:
  8334. {
  8335. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8336. GGML_ASSERT(t == 0 || t == 1);
  8337. bool masked = t != 0;
  8338. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8339. } break;
  8340. case GGML_OP_FLASH_FF:
  8341. {
  8342. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8343. } break;
  8344. case GGML_OP_MAP_UNARY:
  8345. {
  8346. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8347. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8348. }
  8349. break;
  8350. case GGML_OP_MAP_BINARY:
  8351. {
  8352. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8353. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8354. }
  8355. break;
  8356. case GGML_OP_NONE:
  8357. {
  8358. // nop
  8359. } break;
  8360. case GGML_OP_COUNT:
  8361. {
  8362. GGML_ASSERT(false);
  8363. } break;
  8364. }
  8365. }
  8366. ////////////////////////////////////////////////////////////////////////////////
  8367. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8368. struct ggml_tensor * src0 = tensor->src0;
  8369. struct ggml_tensor * src1 = tensor->src1;
  8370. switch (tensor->op) {
  8371. case GGML_OP_DUP:
  8372. {
  8373. if (src0->grad) {
  8374. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8375. }
  8376. } break;
  8377. case GGML_OP_ADD:
  8378. {
  8379. if (src0->grad) {
  8380. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8381. }
  8382. if (src1->grad) {
  8383. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8384. }
  8385. } break;
  8386. case GGML_OP_SUB:
  8387. {
  8388. if (src0->grad) {
  8389. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8390. }
  8391. if (src1->grad) {
  8392. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8393. }
  8394. } break;
  8395. case GGML_OP_MUL:
  8396. {
  8397. if (src0->grad) {
  8398. src0->grad =
  8399. ggml_add_impl(ctx,
  8400. src0->grad,
  8401. ggml_mul(ctx, src1, tensor->grad),
  8402. inplace);
  8403. }
  8404. if (src1->grad) {
  8405. src1->grad =
  8406. ggml_add_impl(ctx,
  8407. src1->grad,
  8408. ggml_mul(ctx, src0, tensor->grad),
  8409. inplace);
  8410. }
  8411. } break;
  8412. case GGML_OP_DIV:
  8413. {
  8414. if (src0->grad) {
  8415. src0->grad =
  8416. ggml_add_impl(ctx,
  8417. src0->grad,
  8418. ggml_div(ctx, tensor->grad, src1),
  8419. inplace);
  8420. }
  8421. if (src1->grad) {
  8422. src1->grad =
  8423. ggml_sub_impl(ctx,
  8424. src1->grad,
  8425. ggml_mul(ctx,
  8426. tensor->grad,
  8427. ggml_div(ctx, tensor, src1)),
  8428. inplace);
  8429. }
  8430. } break;
  8431. case GGML_OP_SQR:
  8432. {
  8433. if (src0->grad) {
  8434. src0->grad =
  8435. ggml_add_impl(ctx,
  8436. src0->grad,
  8437. ggml_mul(ctx,
  8438. ggml_mul(ctx, src0, tensor->grad),
  8439. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8440. inplace);
  8441. }
  8442. } break;
  8443. case GGML_OP_SQRT:
  8444. {
  8445. if (src0->grad) {
  8446. src0->grad =
  8447. ggml_add_impl(ctx,
  8448. src0->grad,
  8449. ggml_div(ctx,
  8450. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8451. tensor),
  8452. inplace);
  8453. }
  8454. } break;
  8455. case GGML_OP_SUM:
  8456. {
  8457. if (src0->grad) {
  8458. src0->grad =
  8459. ggml_add_impl(ctx,
  8460. src0->grad,
  8461. ggml_repeat(ctx, tensor->grad, src0->grad),
  8462. inplace);
  8463. }
  8464. } break;
  8465. case GGML_OP_MEAN:
  8466. {
  8467. GGML_ASSERT(false); // TODO: implement
  8468. } break;
  8469. case GGML_OP_REPEAT:
  8470. {
  8471. if (src0->grad) {
  8472. src0->grad =
  8473. ggml_add_impl(ctx,
  8474. src0->grad,
  8475. ggml_sum(ctx, tensor->grad),
  8476. inplace);
  8477. }
  8478. } break;
  8479. case GGML_OP_ABS:
  8480. {
  8481. if (src0->grad) {
  8482. src0->grad =
  8483. ggml_add_impl(ctx,
  8484. src0->grad,
  8485. ggml_mul(ctx,
  8486. ggml_sgn(ctx, src0),
  8487. tensor->grad),
  8488. inplace);
  8489. }
  8490. } break;
  8491. case GGML_OP_SGN:
  8492. {
  8493. if (src0->grad) {
  8494. // noop
  8495. }
  8496. } break;
  8497. case GGML_OP_NEG:
  8498. {
  8499. if (src0->grad) {
  8500. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8501. }
  8502. } break;
  8503. case GGML_OP_STEP:
  8504. {
  8505. if (src0->grad) {
  8506. // noop
  8507. }
  8508. } break;
  8509. case GGML_OP_RELU:
  8510. {
  8511. if (src0->grad) {
  8512. src0->grad = ggml_sub_impl(ctx,
  8513. src0->grad,
  8514. ggml_mul(ctx,
  8515. ggml_step(ctx, src0),
  8516. tensor->grad),
  8517. inplace);
  8518. }
  8519. } break;
  8520. case GGML_OP_GELU:
  8521. {
  8522. GGML_ASSERT(false); // TODO: not implemented
  8523. } break;
  8524. case GGML_OP_SILU:
  8525. {
  8526. GGML_ASSERT(false); // TODO: not implemented
  8527. } break;
  8528. case GGML_OP_NORM:
  8529. {
  8530. GGML_ASSERT(false); // TODO: not implemented
  8531. } break;
  8532. case GGML_OP_RMS_NORM:
  8533. {
  8534. GGML_ASSERT(false); // TODO: not implemented
  8535. } break;
  8536. case GGML_OP_MUL_MAT:
  8537. {
  8538. if (src0->grad) {
  8539. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8540. GGML_ASSERT(false);
  8541. }
  8542. if (src1->grad) {
  8543. src1->grad =
  8544. ggml_add_impl(ctx,
  8545. src1->grad,
  8546. ggml_mul_mat(ctx,
  8547. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8548. tensor->grad),
  8549. inplace);
  8550. }
  8551. } break;
  8552. case GGML_OP_SCALE:
  8553. {
  8554. GGML_ASSERT(false); // TODO: not implemented
  8555. } break;
  8556. case GGML_OP_CPY:
  8557. {
  8558. GGML_ASSERT(false); // TODO: not implemented
  8559. } break;
  8560. case GGML_OP_CONT:
  8561. {
  8562. GGML_ASSERT(false); // TODO: not implemented
  8563. } break;
  8564. case GGML_OP_RESHAPE:
  8565. {
  8566. GGML_ASSERT(false); // TODO: not implemented
  8567. } break;
  8568. case GGML_OP_VIEW:
  8569. {
  8570. GGML_ASSERT(false); // not supported
  8571. } break;
  8572. case GGML_OP_PERMUTE:
  8573. {
  8574. GGML_ASSERT(false); // TODO: not implemented
  8575. } break;
  8576. case GGML_OP_TRANSPOSE:
  8577. {
  8578. GGML_ASSERT(false); // TODO: not implemented
  8579. } break;
  8580. case GGML_OP_GET_ROWS:
  8581. {
  8582. GGML_ASSERT(false); // TODO: not implemented
  8583. } break;
  8584. case GGML_OP_DIAG_MASK_INF:
  8585. {
  8586. GGML_ASSERT(false); // TODO: not implemented
  8587. } break;
  8588. case GGML_OP_SOFT_MAX:
  8589. {
  8590. GGML_ASSERT(false); // TODO: not implemented
  8591. } break;
  8592. case GGML_OP_ROPE:
  8593. {
  8594. GGML_ASSERT(false); // TODO: not implemented
  8595. } break;
  8596. case GGML_OP_CONV_1D_1S:
  8597. {
  8598. GGML_ASSERT(false); // TODO: not implemented
  8599. } break;
  8600. case GGML_OP_CONV_1D_2S:
  8601. {
  8602. GGML_ASSERT(false); // TODO: not implemented
  8603. } break;
  8604. case GGML_OP_FLASH_ATTN:
  8605. {
  8606. GGML_ASSERT(false); // not supported
  8607. } break;
  8608. case GGML_OP_FLASH_FF:
  8609. {
  8610. GGML_ASSERT(false); // not supported
  8611. } break;
  8612. case GGML_OP_MAP_UNARY:
  8613. case GGML_OP_MAP_BINARY:
  8614. {
  8615. GGML_ASSERT(false); // not supported
  8616. } break;
  8617. case GGML_OP_NONE:
  8618. {
  8619. // nop
  8620. } break;
  8621. case GGML_OP_COUNT:
  8622. {
  8623. GGML_ASSERT(false);
  8624. } break;
  8625. }
  8626. }
  8627. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8628. if (node->grad == NULL) {
  8629. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8630. // it can also happen during forward pass, if the user performs computations with constants
  8631. if (node->op != GGML_OP_NONE) {
  8632. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8633. }
  8634. }
  8635. // check if already visited
  8636. for (int i = 0; i < cgraph->n_nodes; i++) {
  8637. if (cgraph->nodes[i] == node) {
  8638. return;
  8639. }
  8640. }
  8641. for (int i = 0; i < cgraph->n_leafs; i++) {
  8642. if (cgraph->leafs[i] == node) {
  8643. return;
  8644. }
  8645. }
  8646. if (node->src0) {
  8647. ggml_visit_parents(cgraph, node->src0);
  8648. }
  8649. if (node->src1) {
  8650. ggml_visit_parents(cgraph, node->src1);
  8651. }
  8652. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8653. if (node->opt[i]) {
  8654. ggml_visit_parents(cgraph, node->opt[i]);
  8655. }
  8656. }
  8657. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8658. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8659. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8660. cgraph->leafs[cgraph->n_leafs] = node;
  8661. cgraph->n_leafs++;
  8662. } else {
  8663. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8664. cgraph->nodes[cgraph->n_nodes] = node;
  8665. cgraph->grads[cgraph->n_nodes] = node->grad;
  8666. cgraph->n_nodes++;
  8667. }
  8668. }
  8669. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8670. if (!expand) {
  8671. cgraph->n_nodes = 0;
  8672. cgraph->n_leafs = 0;
  8673. }
  8674. const int n0 = cgraph->n_nodes;
  8675. UNUSED(n0);
  8676. ggml_visit_parents(cgraph, tensor);
  8677. const int n_new = cgraph->n_nodes - n0;
  8678. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8679. if (n_new > 0) {
  8680. // the last added node should always be starting point
  8681. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8682. }
  8683. }
  8684. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8685. ggml_build_forward_impl(cgraph, tensor, true);
  8686. }
  8687. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8688. struct ggml_cgraph result = {
  8689. /*.n_nodes =*/ 0,
  8690. /*.n_leafs =*/ 0,
  8691. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8692. /*.work_size =*/ 0,
  8693. /*.work =*/ NULL,
  8694. /*.nodes =*/ { NULL },
  8695. /*.grads =*/ { NULL },
  8696. /*.leafs =*/ { NULL },
  8697. /*.perf_runs =*/ 0,
  8698. /*.perf_cycles =*/ 0,
  8699. /*.perf_time_us =*/ 0,
  8700. };
  8701. ggml_build_forward_impl(&result, tensor, false);
  8702. return result;
  8703. }
  8704. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8705. struct ggml_cgraph result = *gf;
  8706. GGML_ASSERT(gf->n_nodes > 0);
  8707. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8708. if (keep) {
  8709. for (int i = 0; i < gf->n_nodes; i++) {
  8710. struct ggml_tensor * node = gf->nodes[i];
  8711. if (node->grad) {
  8712. node->grad = ggml_dup_tensor(ctx, node);
  8713. gf->grads[i] = node->grad;
  8714. }
  8715. }
  8716. }
  8717. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8718. struct ggml_tensor * node = gf->nodes[i];
  8719. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8720. if (node->grad) {
  8721. ggml_compute_backward(ctx, node, keep);
  8722. }
  8723. }
  8724. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8725. struct ggml_tensor * node = gf->nodes[i];
  8726. if (node->is_param) {
  8727. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8728. ggml_build_forward_impl(&result, node->grad, true);
  8729. }
  8730. }
  8731. return result;
  8732. }
  8733. //
  8734. // thread data
  8735. //
  8736. // synchronization is done via busy loops
  8737. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8738. //
  8739. #ifdef __APPLE__
  8740. //#include <os/lock.h>
  8741. //
  8742. //typedef os_unfair_lock ggml_lock_t;
  8743. //
  8744. //#define ggml_lock_init(x) UNUSED(x)
  8745. //#define ggml_lock_destroy(x) UNUSED(x)
  8746. //#define ggml_lock_lock os_unfair_lock_lock
  8747. //#define ggml_lock_unlock os_unfair_lock_unlock
  8748. //
  8749. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8750. typedef int ggml_lock_t;
  8751. #define ggml_lock_init(x) UNUSED(x)
  8752. #define ggml_lock_destroy(x) UNUSED(x)
  8753. #define ggml_lock_lock(x) UNUSED(x)
  8754. #define ggml_lock_unlock(x) UNUSED(x)
  8755. #define GGML_LOCK_INITIALIZER 0
  8756. typedef pthread_t ggml_thread_t;
  8757. #define ggml_thread_create pthread_create
  8758. #define ggml_thread_join pthread_join
  8759. #else
  8760. //typedef pthread_spinlock_t ggml_lock_t;
  8761. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8762. //#define ggml_lock_destroy pthread_spin_destroy
  8763. //#define ggml_lock_lock pthread_spin_lock
  8764. //#define ggml_lock_unlock pthread_spin_unlock
  8765. typedef int ggml_lock_t;
  8766. #define ggml_lock_init(x) UNUSED(x)
  8767. #define ggml_lock_destroy(x) UNUSED(x)
  8768. #define ggml_lock_lock(x) UNUSED(x)
  8769. #define ggml_lock_unlock(x) UNUSED(x)
  8770. #define GGML_LOCK_INITIALIZER 0
  8771. typedef pthread_t ggml_thread_t;
  8772. #define ggml_thread_create pthread_create
  8773. #define ggml_thread_join pthread_join
  8774. #endif
  8775. struct ggml_compute_state_shared {
  8776. ggml_lock_t spin;
  8777. int n_threads;
  8778. // synchronization primitives
  8779. atomic_int n_ready;
  8780. atomic_bool has_work;
  8781. atomic_bool stop; // stop all threads
  8782. };
  8783. struct ggml_compute_state {
  8784. ggml_thread_t thrd;
  8785. struct ggml_compute_params params;
  8786. struct ggml_tensor * node;
  8787. struct ggml_compute_state_shared * shared;
  8788. };
  8789. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8790. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8791. const int n_threads = state->shared->n_threads;
  8792. while (true) {
  8793. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8794. atomic_store(&state->shared->has_work, false);
  8795. } else {
  8796. while (atomic_load(&state->shared->has_work)) {
  8797. if (atomic_load(&state->shared->stop)) {
  8798. return 0;
  8799. }
  8800. ggml_lock_lock (&state->shared->spin);
  8801. ggml_lock_unlock(&state->shared->spin);
  8802. }
  8803. }
  8804. atomic_fetch_sub(&state->shared->n_ready, 1);
  8805. // wait for work
  8806. while (!atomic_load(&state->shared->has_work)) {
  8807. if (atomic_load(&state->shared->stop)) {
  8808. return 0;
  8809. }
  8810. ggml_lock_lock (&state->shared->spin);
  8811. ggml_lock_unlock(&state->shared->spin);
  8812. }
  8813. // check if we should stop
  8814. if (atomic_load(&state->shared->stop)) {
  8815. break;
  8816. }
  8817. if (state->node) {
  8818. if (state->params.ith < state->params.nth) {
  8819. ggml_compute_forward(&state->params, state->node);
  8820. }
  8821. state->node = NULL;
  8822. } else {
  8823. break;
  8824. }
  8825. }
  8826. return 0;
  8827. }
  8828. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8829. const int n_threads = cgraph->n_threads;
  8830. struct ggml_compute_state_shared state_shared = {
  8831. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8832. /*.n_threads =*/ n_threads,
  8833. /*.n_ready =*/ 0,
  8834. /*.has_work =*/ false,
  8835. /*.stop =*/ false,
  8836. };
  8837. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8838. // create thread pool
  8839. if (n_threads > 1) {
  8840. ggml_lock_init(&state_shared.spin);
  8841. atomic_store(&state_shared.has_work, true);
  8842. for (int j = 0; j < n_threads - 1; j++) {
  8843. workers[j] = (struct ggml_compute_state) {
  8844. .thrd = 0,
  8845. .params = {
  8846. .type = GGML_TASK_COMPUTE,
  8847. .ith = j + 1,
  8848. .nth = n_threads,
  8849. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8850. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8851. },
  8852. .node = NULL,
  8853. .shared = &state_shared,
  8854. };
  8855. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8856. GGML_ASSERT(rc == 0);
  8857. UNUSED(rc);
  8858. }
  8859. }
  8860. // initialize tasks + work buffer
  8861. {
  8862. size_t work_size = 0;
  8863. // thread scheduling for the different operations
  8864. for (int i = 0; i < cgraph->n_nodes; i++) {
  8865. struct ggml_tensor * node = cgraph->nodes[i];
  8866. switch (node->op) {
  8867. case GGML_OP_CPY:
  8868. case GGML_OP_DUP:
  8869. {
  8870. node->n_tasks = n_threads;
  8871. size_t cur = 0;
  8872. if (ggml_is_quantized(node->type)) {
  8873. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8874. }
  8875. work_size = MAX(work_size, cur);
  8876. } break;
  8877. case GGML_OP_ADD:
  8878. {
  8879. node->n_tasks = n_threads;
  8880. size_t cur = 0;
  8881. if (ggml_is_quantized(node->src0->type)) {
  8882. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8883. }
  8884. work_size = MAX(work_size, cur);
  8885. } break;
  8886. case GGML_OP_SUB:
  8887. case GGML_OP_MUL:
  8888. case GGML_OP_DIV:
  8889. case GGML_OP_SQR:
  8890. case GGML_OP_SQRT:
  8891. case GGML_OP_SUM:
  8892. case GGML_OP_MEAN:
  8893. case GGML_OP_REPEAT:
  8894. case GGML_OP_ABS:
  8895. case GGML_OP_SGN:
  8896. case GGML_OP_NEG:
  8897. case GGML_OP_STEP:
  8898. case GGML_OP_RELU:
  8899. {
  8900. node->n_tasks = 1;
  8901. } break;
  8902. case GGML_OP_GELU:
  8903. {
  8904. node->n_tasks = n_threads;
  8905. } break;
  8906. case GGML_OP_SILU:
  8907. {
  8908. node->n_tasks = n_threads;
  8909. } break;
  8910. case GGML_OP_NORM:
  8911. case GGML_OP_RMS_NORM:
  8912. {
  8913. node->n_tasks = n_threads;
  8914. } break;
  8915. case GGML_OP_MUL_MAT:
  8916. {
  8917. node->n_tasks = n_threads;
  8918. // TODO: use different scheduling for different matrix sizes
  8919. //const int nr0 = ggml_nrows(node->src0);
  8920. //const int nr1 = ggml_nrows(node->src1);
  8921. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8922. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8923. size_t cur = 0;
  8924. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8925. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8926. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8927. node->n_tasks = 1; // TODO: this actually is doing nothing
  8928. // the threads are still spinning
  8929. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8930. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8931. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8932. //printf("cur = %zu\n", cur);
  8933. } else {
  8934. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8935. }
  8936. #else
  8937. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8938. #endif
  8939. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8940. cur = 0;
  8941. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8942. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8943. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8944. node->n_tasks = 1;
  8945. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8946. } else
  8947. #endif
  8948. {
  8949. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8950. }
  8951. } else {
  8952. GGML_ASSERT(false);
  8953. }
  8954. work_size = MAX(work_size, cur);
  8955. } break;
  8956. case GGML_OP_SCALE:
  8957. {
  8958. node->n_tasks = n_threads;
  8959. } break;
  8960. case GGML_OP_CONT:
  8961. case GGML_OP_RESHAPE:
  8962. case GGML_OP_VIEW:
  8963. case GGML_OP_PERMUTE:
  8964. case GGML_OP_TRANSPOSE:
  8965. case GGML_OP_GET_ROWS:
  8966. case GGML_OP_DIAG_MASK_INF:
  8967. {
  8968. node->n_tasks = 1;
  8969. } break;
  8970. case GGML_OP_SOFT_MAX:
  8971. {
  8972. node->n_tasks = n_threads;
  8973. } break;
  8974. case GGML_OP_ROPE:
  8975. {
  8976. node->n_tasks = n_threads;
  8977. } break;
  8978. case GGML_OP_CONV_1D_1S:
  8979. case GGML_OP_CONV_1D_2S:
  8980. {
  8981. node->n_tasks = n_threads;
  8982. GGML_ASSERT(node->src0->ne[3] == 1);
  8983. GGML_ASSERT(node->src1->ne[2] == 1);
  8984. GGML_ASSERT(node->src1->ne[3] == 1);
  8985. size_t cur = 0;
  8986. const int nk = node->src0->ne[0];
  8987. if (node->src0->type == GGML_TYPE_F16 &&
  8988. node->src1->type == GGML_TYPE_F32) {
  8989. cur = sizeof(ggml_fp16_t)*(
  8990. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8991. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8992. );
  8993. } else if (node->src0->type == GGML_TYPE_F32 &&
  8994. node->src1->type == GGML_TYPE_F32) {
  8995. cur = sizeof(float)*(
  8996. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8997. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8998. );
  8999. } else {
  9000. GGML_ASSERT(false);
  9001. }
  9002. work_size = MAX(work_size, cur);
  9003. } break;
  9004. case GGML_OP_FLASH_ATTN:
  9005. {
  9006. node->n_tasks = n_threads;
  9007. size_t cur = 0;
  9008. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9009. if (node->src1->type == GGML_TYPE_F32) {
  9010. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9011. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9012. }
  9013. if (node->src1->type == GGML_TYPE_F16) {
  9014. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9015. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9016. }
  9017. work_size = MAX(work_size, cur);
  9018. } break;
  9019. case GGML_OP_FLASH_FF:
  9020. {
  9021. node->n_tasks = n_threads;
  9022. size_t cur = 0;
  9023. if (node->src1->type == GGML_TYPE_F32) {
  9024. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9025. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9026. }
  9027. if (node->src1->type == GGML_TYPE_F16) {
  9028. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9029. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9030. }
  9031. work_size = MAX(work_size, cur);
  9032. } break;
  9033. case GGML_OP_MAP_UNARY:
  9034. case GGML_OP_MAP_BINARY:
  9035. {
  9036. node->n_tasks = 1;
  9037. } break;
  9038. case GGML_OP_NONE:
  9039. {
  9040. node->n_tasks = 1;
  9041. } break;
  9042. case GGML_OP_COUNT:
  9043. {
  9044. GGML_ASSERT(false);
  9045. } break;
  9046. }
  9047. }
  9048. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9049. GGML_ASSERT(false); // TODO: better handling
  9050. }
  9051. if (work_size > 0 && cgraph->work == NULL) {
  9052. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9053. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9054. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9055. }
  9056. }
  9057. const int64_t perf_start_cycles = ggml_perf_cycles();
  9058. const int64_t perf_start_time_us = ggml_perf_time_us();
  9059. for (int i = 0; i < cgraph->n_nodes; i++) {
  9060. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9061. struct ggml_tensor * node = cgraph->nodes[i];
  9062. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9063. //if (node->grad == NULL && node->perf_runs > 0) {
  9064. // continue;
  9065. //}
  9066. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9067. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9068. // INIT
  9069. struct ggml_compute_params params = {
  9070. /*.type =*/ GGML_TASK_INIT,
  9071. /*.ith =*/ 0,
  9072. /*.nth =*/ node->n_tasks,
  9073. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9074. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9075. };
  9076. ggml_compute_forward(&params, node);
  9077. // COMPUTE
  9078. if (node->n_tasks > 1) {
  9079. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9080. atomic_store(&state_shared.has_work, false);
  9081. }
  9082. while (atomic_load(&state_shared.has_work)) {
  9083. ggml_lock_lock (&state_shared.spin);
  9084. ggml_lock_unlock(&state_shared.spin);
  9085. }
  9086. // launch thread pool
  9087. for (int j = 0; j < n_threads - 1; j++) {
  9088. workers[j].params = (struct ggml_compute_params) {
  9089. .type = GGML_TASK_COMPUTE,
  9090. .ith = j + 1,
  9091. .nth = node->n_tasks,
  9092. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9093. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9094. };
  9095. workers[j].node = node;
  9096. }
  9097. atomic_fetch_sub(&state_shared.n_ready, 1);
  9098. while (atomic_load(&state_shared.n_ready) > 0) {
  9099. ggml_lock_lock (&state_shared.spin);
  9100. ggml_lock_unlock(&state_shared.spin);
  9101. }
  9102. atomic_store(&state_shared.has_work, true);
  9103. }
  9104. params.type = GGML_TASK_COMPUTE;
  9105. ggml_compute_forward(&params, node);
  9106. // wait for thread pool
  9107. if (node->n_tasks > 1) {
  9108. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9109. atomic_store(&state_shared.has_work, false);
  9110. }
  9111. while (atomic_load(&state_shared.has_work)) {
  9112. ggml_lock_lock (&state_shared.spin);
  9113. ggml_lock_unlock(&state_shared.spin);
  9114. }
  9115. atomic_fetch_sub(&state_shared.n_ready, 1);
  9116. while (atomic_load(&state_shared.n_ready) != 0) {
  9117. ggml_lock_lock (&state_shared.spin);
  9118. ggml_lock_unlock(&state_shared.spin);
  9119. }
  9120. }
  9121. // FINALIZE
  9122. if (node->n_tasks > 1) {
  9123. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9124. atomic_store(&state_shared.has_work, false);
  9125. }
  9126. while (atomic_load(&state_shared.has_work)) {
  9127. ggml_lock_lock (&state_shared.spin);
  9128. ggml_lock_unlock(&state_shared.spin);
  9129. }
  9130. // launch thread pool
  9131. for (int j = 0; j < n_threads - 1; j++) {
  9132. workers[j].params = (struct ggml_compute_params) {
  9133. .type = GGML_TASK_FINALIZE,
  9134. .ith = j + 1,
  9135. .nth = node->n_tasks,
  9136. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9137. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9138. };
  9139. workers[j].node = node;
  9140. }
  9141. atomic_fetch_sub(&state_shared.n_ready, 1);
  9142. while (atomic_load(&state_shared.n_ready) > 0) {
  9143. ggml_lock_lock (&state_shared.spin);
  9144. ggml_lock_unlock(&state_shared.spin);
  9145. }
  9146. atomic_store(&state_shared.has_work, true);
  9147. }
  9148. params.type = GGML_TASK_FINALIZE;
  9149. ggml_compute_forward(&params, node);
  9150. // wait for thread pool
  9151. if (node->n_tasks > 1) {
  9152. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9153. atomic_store(&state_shared.has_work, false);
  9154. }
  9155. while (atomic_load(&state_shared.has_work)) {
  9156. ggml_lock_lock (&state_shared.spin);
  9157. ggml_lock_unlock(&state_shared.spin);
  9158. }
  9159. atomic_fetch_sub(&state_shared.n_ready, 1);
  9160. while (atomic_load(&state_shared.n_ready) != 0) {
  9161. ggml_lock_lock (&state_shared.spin);
  9162. ggml_lock_unlock(&state_shared.spin);
  9163. }
  9164. }
  9165. // performance stats (node)
  9166. {
  9167. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9168. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9169. node->perf_runs++;
  9170. node->perf_cycles += perf_cycles_cur;
  9171. node->perf_time_us += perf_time_us_cur;
  9172. }
  9173. }
  9174. // join thread pool
  9175. if (n_threads > 1) {
  9176. atomic_store(&state_shared.stop, true);
  9177. atomic_store(&state_shared.has_work, true);
  9178. for (int j = 0; j < n_threads - 1; j++) {
  9179. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9180. GGML_ASSERT(rc == 0);
  9181. UNUSED(rc);
  9182. }
  9183. ggml_lock_destroy(&state_shared.spin);
  9184. }
  9185. // performance stats (graph)
  9186. {
  9187. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9188. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9189. cgraph->perf_runs++;
  9190. cgraph->perf_cycles += perf_cycles_cur;
  9191. cgraph->perf_time_us += perf_time_us_cur;
  9192. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9193. __func__, cgraph->perf_runs,
  9194. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9195. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9196. (double) perf_time_us_cur / 1000.0,
  9197. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9198. }
  9199. }
  9200. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9201. for (int i = 0; i < cgraph->n_nodes; i++) {
  9202. struct ggml_tensor * grad = cgraph->grads[i];
  9203. if (grad) {
  9204. ggml_set_zero(grad);
  9205. }
  9206. }
  9207. }
  9208. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9209. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9210. GGML_PRINT("=== GRAPH ===\n");
  9211. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9212. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9213. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9214. for (int i = 0; i < cgraph->n_nodes; i++) {
  9215. struct ggml_tensor * node = cgraph->nodes[i];
  9216. perf_total_per_op_us[node->op] += node->perf_time_us;
  9217. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9218. i,
  9219. node->ne[0], node->ne[1], node->ne[2],
  9220. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9221. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9222. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9223. (double) node->perf_time_us / 1000.0,
  9224. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9225. }
  9226. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9227. for (int i = 0; i < cgraph->n_leafs; i++) {
  9228. struct ggml_tensor * node = cgraph->leafs[i];
  9229. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  9230. i,
  9231. node->ne[0], node->ne[1],
  9232. GGML_OP_LABEL[node->op]);
  9233. }
  9234. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9235. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9236. }
  9237. GGML_PRINT("========================================\n");
  9238. }
  9239. // check if node is part of the graph
  9240. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9241. if (cgraph == NULL) {
  9242. return true;
  9243. }
  9244. for (int i = 0; i < cgraph->n_nodes; i++) {
  9245. if (cgraph->nodes[i] == node) {
  9246. return true;
  9247. }
  9248. }
  9249. return false;
  9250. }
  9251. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9252. for (int i = 0; i < cgraph->n_nodes; i++) {
  9253. struct ggml_tensor * parent = cgraph->nodes[i];
  9254. if (parent->grad == node) {
  9255. return parent;
  9256. }
  9257. }
  9258. return NULL;
  9259. }
  9260. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9261. char color[16];
  9262. FILE * fp = fopen(filename, "w");
  9263. GGML_ASSERT(fp);
  9264. fprintf(fp, "digraph G {\n");
  9265. fprintf(fp, " newrank = true;\n");
  9266. fprintf(fp, " rankdir = LR;\n");
  9267. for (int i = 0; i < gb->n_nodes; i++) {
  9268. struct ggml_tensor * node = gb->nodes[i];
  9269. if (ggml_graph_get_parent(gb, node) != NULL) {
  9270. continue;
  9271. }
  9272. if (node->is_param) {
  9273. snprintf(color, sizeof(color), "yellow");
  9274. } else if (node->grad) {
  9275. if (ggml_graph_find(gf, node)) {
  9276. snprintf(color, sizeof(color), "green");
  9277. } else {
  9278. snprintf(color, sizeof(color), "lightblue");
  9279. }
  9280. } else {
  9281. snprintf(color, sizeof(color), "white");
  9282. }
  9283. fprintf(fp, " \"%p\" [ \
  9284. style = filled; fillcolor = %s; shape = record; \
  9285. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9286. (void *) node, color,
  9287. i, node->ne[0], node->ne[1],
  9288. GGML_OP_SYMBOL[node->op]);
  9289. if (node->grad) {
  9290. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9291. } else {
  9292. fprintf(fp, "\"; ]\n");
  9293. }
  9294. }
  9295. for (int i = 0; i < gb->n_leafs; i++) {
  9296. struct ggml_tensor * node = gb->leafs[i];
  9297. snprintf(color, sizeof(color), "pink");
  9298. if (ggml_nelements(node) == 1) {
  9299. fprintf(fp, " \"%p\" [ \
  9300. style = filled; fillcolor = %s; shape = record; \
  9301. label=\"<x>%.1e\"; ]\n",
  9302. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9303. } else {
  9304. fprintf(fp, " \"%p\" [ \
  9305. style = filled; fillcolor = %s; shape = record; \
  9306. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9307. (void *) node, color,
  9308. i, node->ne[0], node->ne[1]);
  9309. }
  9310. }
  9311. for (int i = 0; i < gb->n_nodes; i++) {
  9312. struct ggml_tensor * node = gb->nodes[i];
  9313. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9314. if (node->src0) {
  9315. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9316. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9317. parent0 ? (void *) parent0 : (void *) node->src0,
  9318. parent0 ? "g" : "x",
  9319. parent ? (void *) parent : (void *) node,
  9320. parent ? "g" : "x",
  9321. parent ? "empty" : "vee",
  9322. parent ? "dashed" : "solid");
  9323. }
  9324. if (node->src1) {
  9325. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9326. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9327. parent1 ? (void *) parent1 : (void *) node->src1,
  9328. parent1 ? "g" : "x",
  9329. parent ? (void *) parent : (void *) node,
  9330. parent ? "g" : "x",
  9331. parent ? "empty" : "vee",
  9332. parent ? "dashed" : "solid");
  9333. }
  9334. }
  9335. for (int i = 0; i < gb->n_leafs; i++) {
  9336. struct ggml_tensor * node = gb->leafs[i];
  9337. if (node->src0) {
  9338. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9339. (void *) node->src0, "x",
  9340. (void *) node, "x");
  9341. }
  9342. if (node->src1) {
  9343. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9344. (void *) node->src1, "x",
  9345. (void *) node, "x");
  9346. }
  9347. }
  9348. fprintf(fp, "}\n");
  9349. fclose(fp);
  9350. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9351. }
  9352. ////////////////////////////////////////////////////////////////////////////////
  9353. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9354. int i = 0;
  9355. for (int p = 0; p < np; ++p) {
  9356. const int64_t ne = ggml_nelements(ps[p]) ;
  9357. // TODO: add function to set tensor from array
  9358. for (int64_t j = 0; j < ne; ++j) {
  9359. ggml_set_f32_1d(ps[p], j, x[i++]);
  9360. }
  9361. }
  9362. }
  9363. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9364. int i = 0;
  9365. for (int p = 0; p < np; ++p) {
  9366. const int64_t ne = ggml_nelements(ps[p]) ;
  9367. // TODO: add function to get all elements at once
  9368. for (int64_t j = 0; j < ne; ++j) {
  9369. x[i++] = ggml_get_f32_1d(ps[p], j);
  9370. }
  9371. }
  9372. }
  9373. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9374. int i = 0;
  9375. for (int p = 0; p < np; ++p) {
  9376. const int64_t ne = ggml_nelements(ps[p]) ;
  9377. // TODO: add function to get all elements at once
  9378. for (int64_t j = 0; j < ne; ++j) {
  9379. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9380. }
  9381. }
  9382. }
  9383. //
  9384. // ADAM
  9385. //
  9386. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9387. //
  9388. static enum ggml_opt_result ggml_opt_adam(
  9389. struct ggml_context * ctx,
  9390. struct ggml_opt_params params,
  9391. struct ggml_tensor * f,
  9392. struct ggml_cgraph * gf,
  9393. struct ggml_cgraph * gb) {
  9394. GGML_ASSERT(ggml_is_scalar(f));
  9395. gf->n_threads = params.n_threads;
  9396. gb->n_threads = params.n_threads;
  9397. // these will store the parameters we want to optimize
  9398. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9399. int np = 0;
  9400. int nx = 0;
  9401. for (int i = 0; i < gf->n_nodes; ++i) {
  9402. if (gf->nodes[i]->is_param) {
  9403. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9404. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9405. ps[np++] = gf->nodes[i];
  9406. nx += ggml_nelements(gf->nodes[i]);
  9407. }
  9408. }
  9409. // constants
  9410. const float alpha = params.adam.alpha;
  9411. const float beta1 = params.adam.beta1;
  9412. const float beta2 = params.adam.beta2;
  9413. const float eps = params.adam.eps;
  9414. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9415. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9416. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9417. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9418. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9419. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9420. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9421. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9422. // initialize
  9423. ggml_vec_set_f32(nx, m, 0.0f);
  9424. ggml_vec_set_f32(nx, v, 0.0f);
  9425. // update view
  9426. ggml_opt_get_params(np, ps, x);
  9427. // compute the function value
  9428. ggml_graph_reset (gf);
  9429. ggml_set_f32 (f->grad, 1.0f);
  9430. ggml_graph_compute(ctx, gb);
  9431. float fx_prev = ggml_get_f32_1d(f, 0);
  9432. if (pf) {
  9433. pf[0] = fx_prev;
  9434. }
  9435. int n_no_improvement = 0;
  9436. float fx_best = fx_prev;
  9437. // run the optimizer
  9438. for (int t = 0; t < params.adam.n_iter; ++t) {
  9439. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9440. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9441. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9442. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9443. for (int i = 0; i < np; ++i) {
  9444. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9445. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9446. }
  9447. const int64_t t_start_wall = ggml_time_us();
  9448. const int64_t t_start_cpu = ggml_cycles();
  9449. UNUSED(t_start_wall);
  9450. UNUSED(t_start_cpu);
  9451. {
  9452. // update the gradient
  9453. ggml_opt_get_grad(np, ps, g1);
  9454. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9455. ggml_vec_scale_f32(nx, m, beta1);
  9456. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9457. // g2 = g1^2
  9458. ggml_vec_sqr_f32 (nx, g2, g1);
  9459. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9460. ggml_vec_scale_f32(nx, v, beta2);
  9461. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9462. // m^hat = m_t / (1 - beta1^t)
  9463. // v^hat = v_t / (1 - beta2^t)
  9464. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9465. ggml_vec_cpy_f32 (nx, mh, m);
  9466. ggml_vec_cpy_f32 (nx, vh, v);
  9467. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9468. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9469. ggml_vec_sqrt_f32 (nx, vh, vh);
  9470. ggml_vec_acc1_f32 (nx, vh, eps);
  9471. ggml_vec_div_f32 (nx, mh, mh, vh);
  9472. ggml_vec_sub_f32 (nx, x, x, mh);
  9473. // update the parameters
  9474. ggml_opt_set_params(np, ps, x);
  9475. }
  9476. ggml_graph_reset (gf);
  9477. ggml_set_f32 (f->grad, 1.0f);
  9478. ggml_graph_compute(ctx, gb);
  9479. const float fx = ggml_get_f32_1d(f, 0);
  9480. // check convergence
  9481. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9482. GGML_PRINT_DEBUG("converged\n");
  9483. return GGML_OPT_OK;
  9484. }
  9485. // delta-based convergence test
  9486. if (pf != NULL) {
  9487. // need at least params.past iterations to start checking for convergence
  9488. if (params.past <= t) {
  9489. const float rate = (pf[t%params.past] - fx)/fx;
  9490. if (fabsf(rate) < params.delta) {
  9491. return GGML_OPT_OK;
  9492. }
  9493. }
  9494. pf[t%params.past] = fx;
  9495. }
  9496. // check for improvement
  9497. if (params.max_no_improvement > 0) {
  9498. if (fx_best > fx) {
  9499. fx_best = fx;
  9500. n_no_improvement = 0;
  9501. } else {
  9502. ++n_no_improvement;
  9503. if (n_no_improvement >= params.max_no_improvement) {
  9504. return GGML_OPT_OK;
  9505. }
  9506. }
  9507. }
  9508. fx_prev = fx;
  9509. {
  9510. const int64_t t_end_cpu = ggml_cycles();
  9511. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9512. UNUSED(t_end_cpu);
  9513. const int64_t t_end_wall = ggml_time_us();
  9514. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9515. UNUSED(t_end_wall);
  9516. }
  9517. }
  9518. return GGML_OPT_DID_NOT_CONVERGE;
  9519. }
  9520. //
  9521. // L-BFGS
  9522. //
  9523. // the L-BFGS implementation below is based on the following implementation:
  9524. //
  9525. // https://github.com/chokkan/liblbfgs
  9526. //
  9527. struct ggml_lbfgs_iteration_data {
  9528. float alpha;
  9529. float ys;
  9530. float * s;
  9531. float * y;
  9532. };
  9533. static enum ggml_opt_result linesearch_backtracking(
  9534. struct ggml_context * ctx,
  9535. const struct ggml_opt_params * params,
  9536. int nx,
  9537. float * x,
  9538. float * fx,
  9539. float * g,
  9540. float * d,
  9541. float * step,
  9542. const float * xp,
  9543. struct ggml_tensor * f,
  9544. struct ggml_cgraph * gf,
  9545. struct ggml_cgraph * gb,
  9546. const int np,
  9547. struct ggml_tensor * ps[]) {
  9548. int count = 0;
  9549. float width = 0.0f;
  9550. float dg = 0.0f;
  9551. float finit = 0.0f;
  9552. float dginit = 0.0f;
  9553. float dgtest = 0.0f;
  9554. const float dec = 0.5f;
  9555. const float inc = 2.1f;
  9556. if (*step <= 0.f) {
  9557. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9558. }
  9559. // compute the initial gradient in the search direction
  9560. ggml_vec_dot_f32(nx, &dginit, g, d);
  9561. // make sure that d points to a descent direction
  9562. if (0 < dginit) {
  9563. return GGML_LINESEARCH_FAIL;
  9564. }
  9565. // initialize local variables
  9566. finit = *fx;
  9567. dgtest = params->lbfgs.ftol*dginit;
  9568. while (true) {
  9569. ggml_vec_cpy_f32(nx, x, xp);
  9570. ggml_vec_mad_f32(nx, x, d, *step);
  9571. // evaluate the function and gradient values
  9572. {
  9573. ggml_opt_set_params(np, ps, x);
  9574. ggml_graph_reset (gf);
  9575. ggml_set_f32 (f->grad, 1.0f);
  9576. ggml_graph_compute(ctx, gb);
  9577. ggml_opt_get_grad(np, ps, g);
  9578. *fx = ggml_get_f32_1d(f, 0);
  9579. }
  9580. ++count;
  9581. if (*fx > finit + (*step)*dgtest) {
  9582. width = dec;
  9583. } else {
  9584. // Armijo condition is satisfied
  9585. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9586. return count;
  9587. }
  9588. ggml_vec_dot_f32(nx, &dg, g, d);
  9589. // check the Wolfe condition
  9590. if (dg < params->lbfgs.wolfe * dginit) {
  9591. width = inc;
  9592. } else {
  9593. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9594. // regular Wolfe conditions
  9595. return count;
  9596. }
  9597. if(dg > -params->lbfgs.wolfe*dginit) {
  9598. width = dec;
  9599. } else {
  9600. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9601. return count;
  9602. }
  9603. return count;
  9604. }
  9605. }
  9606. if (*step < params->lbfgs.min_step) {
  9607. return GGML_LINESEARCH_MINIMUM_STEP;
  9608. }
  9609. if (*step > params->lbfgs.max_step) {
  9610. return GGML_LINESEARCH_MAXIMUM_STEP;
  9611. }
  9612. if (params->lbfgs.max_linesearch <= count) {
  9613. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9614. }
  9615. (*step) *= width;
  9616. }
  9617. return GGML_LINESEARCH_FAIL;
  9618. }
  9619. static enum ggml_opt_result ggml_opt_lbfgs(
  9620. struct ggml_context * ctx,
  9621. struct ggml_opt_params params,
  9622. struct ggml_tensor * f,
  9623. struct ggml_cgraph * gf,
  9624. struct ggml_cgraph * gb) {
  9625. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9626. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9627. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9628. return GGML_OPT_INVALID_WOLFE;
  9629. }
  9630. }
  9631. gf->n_threads = params.n_threads;
  9632. gb->n_threads = params.n_threads;
  9633. const int m = params.lbfgs.m;
  9634. // these will store the parameters we want to optimize
  9635. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9636. int np = 0;
  9637. int nx = 0;
  9638. for (int i = 0; i < gf->n_nodes; ++i) {
  9639. if (gf->nodes[i]->is_param) {
  9640. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9641. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9642. ps[np++] = gf->nodes[i];
  9643. nx += ggml_nelements(gf->nodes[i]);
  9644. }
  9645. }
  9646. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9647. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9648. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9649. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9650. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9651. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9652. float fx = 0.0f; // cost function value
  9653. float xnorm = 0.0f; // ||x||
  9654. float gnorm = 0.0f; // ||g||
  9655. float step = 0.0f;
  9656. // initialize x from the graph nodes
  9657. ggml_opt_get_params(np, ps, x);
  9658. // the L-BFGS memory
  9659. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9660. for (int i = 0; i < m; ++i) {
  9661. lm[i].alpha = 0.0f;
  9662. lm[i].ys = 0.0f;
  9663. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9664. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9665. }
  9666. // evaluate the function value and its gradient
  9667. {
  9668. ggml_opt_set_params(np, ps, x);
  9669. ggml_graph_reset (gf);
  9670. ggml_set_f32 (f->grad, 1.0f);
  9671. ggml_graph_compute(ctx, gb);
  9672. ggml_opt_get_grad(np, ps, g);
  9673. fx = ggml_get_f32_1d(f, 0);
  9674. }
  9675. if (pf) {
  9676. pf[0] = fx;
  9677. }
  9678. float fx_best = fx;
  9679. // search direction = -gradient
  9680. ggml_vec_neg_f32(nx, d, g);
  9681. // ||x||, ||g||
  9682. ggml_vec_norm_f32(nx, &xnorm, x);
  9683. ggml_vec_norm_f32(nx, &gnorm, g);
  9684. if (xnorm < 1.0f) {
  9685. xnorm = 1.0f;
  9686. }
  9687. // already optimized
  9688. if (gnorm/xnorm <= params.lbfgs.eps) {
  9689. return GGML_OPT_OK;
  9690. }
  9691. // initial step
  9692. ggml_vec_norm_inv_f32(nx, &step, d);
  9693. int j = 0;
  9694. int k = 1;
  9695. int ls = 0;
  9696. int end = 0;
  9697. int bound = 0;
  9698. int n_no_improvement = 0;
  9699. float ys = 0.0f;
  9700. float yy = 0.0f;
  9701. float beta = 0.0f;
  9702. while (true) {
  9703. // store the current position and gradient vectors
  9704. ggml_vec_cpy_f32(nx, xp, x);
  9705. ggml_vec_cpy_f32(nx, gp, g);
  9706. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9707. if (ls < 0) {
  9708. // linesearch failed - go back to the previous point and return
  9709. ggml_vec_cpy_f32(nx, x, xp);
  9710. ggml_vec_cpy_f32(nx, g, gp);
  9711. return ls;
  9712. }
  9713. ggml_vec_norm_f32(nx, &xnorm, x);
  9714. ggml_vec_norm_f32(nx, &gnorm, g);
  9715. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9716. if (xnorm < 1.0f) {
  9717. xnorm = 1.0f;
  9718. }
  9719. if (gnorm/xnorm <= params.lbfgs.eps) {
  9720. // converged
  9721. return GGML_OPT_OK;
  9722. }
  9723. // delta-based convergence test
  9724. if (pf != NULL) {
  9725. // need at least params.past iterations to start checking for convergence
  9726. if (params.past <= k) {
  9727. const float rate = (pf[k%params.past] - fx)/fx;
  9728. if (fabsf(rate) < params.delta) {
  9729. return GGML_OPT_OK;
  9730. }
  9731. }
  9732. pf[k%params.past] = fx;
  9733. }
  9734. // check for improvement
  9735. if (params.max_no_improvement > 0) {
  9736. if (fx < fx_best) {
  9737. fx_best = fx;
  9738. n_no_improvement = 0;
  9739. } else {
  9740. n_no_improvement++;
  9741. if (n_no_improvement >= params.max_no_improvement) {
  9742. return GGML_OPT_OK;
  9743. }
  9744. }
  9745. }
  9746. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9747. // reached the maximum number of iterations
  9748. return GGML_OPT_DID_NOT_CONVERGE;
  9749. }
  9750. // update vectors s and y:
  9751. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9752. // y_{k+1} = g_{k+1} - g_{k}.
  9753. //
  9754. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9755. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9756. // compute scalars ys and yy:
  9757. // ys = y^t \cdot s -> 1 / \rho.
  9758. // yy = y^t \cdot y.
  9759. //
  9760. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9761. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9762. lm[end].ys = ys;
  9763. // find new search direction
  9764. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9765. bound = (m <= k) ? m : k;
  9766. k++;
  9767. end = (end + 1)%m;
  9768. // initialize search direction with -g
  9769. ggml_vec_neg_f32(nx, d, g);
  9770. j = end;
  9771. for (int i = 0; i < bound; ++i) {
  9772. j = (j + m - 1) % m;
  9773. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9774. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9775. lm[j].alpha /= lm[j].ys;
  9776. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9777. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9778. }
  9779. ggml_vec_scale_f32(nx, d, ys/yy);
  9780. for (int i = 0; i < bound; ++i) {
  9781. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9782. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9783. beta /= lm[j].ys;
  9784. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9785. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9786. j = (j + 1)%m;
  9787. }
  9788. step = 1.0;
  9789. }
  9790. return GGML_OPT_DID_NOT_CONVERGE;
  9791. }
  9792. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9793. struct ggml_opt_params result;
  9794. switch (type) {
  9795. case GGML_OPT_ADAM:
  9796. {
  9797. result = (struct ggml_opt_params) {
  9798. .type = GGML_OPT_ADAM,
  9799. .n_threads = 1,
  9800. .past = 0,
  9801. .delta = 1e-5f,
  9802. .max_no_improvement = 100,
  9803. .print_forward_graph = true,
  9804. .print_backward_graph = true,
  9805. .adam = {
  9806. .n_iter = 10000,
  9807. .alpha = 0.001f,
  9808. .beta1 = 0.9f,
  9809. .beta2 = 0.999f,
  9810. .eps = 1e-8f,
  9811. .eps_f = 1e-5f,
  9812. .eps_g = 1e-3f,
  9813. },
  9814. };
  9815. } break;
  9816. case GGML_OPT_LBFGS:
  9817. {
  9818. result = (struct ggml_opt_params) {
  9819. .type = GGML_OPT_LBFGS,
  9820. .n_threads = 1,
  9821. .past = 0,
  9822. .delta = 1e-5f,
  9823. .max_no_improvement = 0,
  9824. .print_forward_graph = true,
  9825. .print_backward_graph = true,
  9826. .lbfgs = {
  9827. .m = 6,
  9828. .n_iter = 100,
  9829. .max_linesearch = 20,
  9830. .eps = 1e-5f,
  9831. .ftol = 1e-4f,
  9832. .wolfe = 0.9f,
  9833. .min_step = 1e-20f,
  9834. .max_step = 1e+20f,
  9835. .linesearch = GGML_LINESEARCH_DEFAULT,
  9836. },
  9837. };
  9838. } break;
  9839. }
  9840. return result;
  9841. }
  9842. enum ggml_opt_result ggml_opt(
  9843. struct ggml_context * ctx,
  9844. struct ggml_opt_params params,
  9845. struct ggml_tensor * f) {
  9846. bool free_ctx = false;
  9847. if (ctx == NULL) {
  9848. struct ggml_init_params params_ctx = {
  9849. .mem_size = 16*1024*1024,
  9850. .mem_buffer = NULL,
  9851. .no_alloc = false,
  9852. };
  9853. ctx = ggml_init(params_ctx);
  9854. if (ctx == NULL) {
  9855. return GGML_OPT_NO_CONTEXT;
  9856. }
  9857. free_ctx = true;
  9858. }
  9859. enum ggml_opt_result result = GGML_OPT_OK;
  9860. // build forward + backward compute graphs
  9861. struct ggml_cgraph gf = ggml_build_forward (f);
  9862. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9863. switch (params.type) {
  9864. case GGML_OPT_ADAM:
  9865. {
  9866. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9867. } break;
  9868. case GGML_OPT_LBFGS:
  9869. {
  9870. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9871. } break;
  9872. }
  9873. if (params.print_forward_graph) {
  9874. ggml_graph_print (&gf);
  9875. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9876. }
  9877. if (params.print_backward_graph) {
  9878. ggml_graph_print (&gb);
  9879. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9880. }
  9881. if (free_ctx) {
  9882. ggml_free(ctx);
  9883. }
  9884. return result;
  9885. }
  9886. ////////////////////////////////////////////////////////////////////////////////
  9887. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9888. assert(k % QK4_0 == 0);
  9889. const int nb = k / QK4_0;
  9890. for (int j = 0; j < n; j += k) {
  9891. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9892. quantize_row_q4_0_reference(src + j, y, k);
  9893. for (int i = 0; i < nb; i++) {
  9894. for (int l = 0; l < QK4_0; l += 2) {
  9895. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9896. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9897. hist[vi0]++;
  9898. hist[vi1]++;
  9899. }
  9900. }
  9901. }
  9902. return (n/QK4_0*sizeof(block_q4_0));
  9903. }
  9904. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9905. assert(k % QK4_1 == 0);
  9906. const int nb = k / QK4_1;
  9907. for (int j = 0; j < n; j += k) {
  9908. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9909. quantize_row_q4_1_reference(src + j, y, k);
  9910. for (int i = 0; i < nb; i++) {
  9911. for (int l = 0; l < QK4_1; l += 2) {
  9912. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9913. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9914. hist[vi0]++;
  9915. hist[vi1]++;
  9916. }
  9917. }
  9918. }
  9919. return (n/QK4_1*sizeof(block_q4_1));
  9920. }
  9921. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9922. assert(k % QK4_2 == 0);
  9923. const int nb = k / QK4_2;
  9924. for (int j = 0; j < n; j += k) {
  9925. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9926. //quantize_row_q4_2_reference(src + j, y, k);
  9927. quantize_row_q4_2_rmse(src + j, y, k);
  9928. for (int i = 0; i < nb; i++) {
  9929. for (int l = 0; l < QK4_2; l += 2) {
  9930. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9931. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9932. hist[vi0]++;
  9933. hist[vi1]++;
  9934. }
  9935. }
  9936. }
  9937. return (n/QK4_2*sizeof(block_q4_2));
  9938. }
  9939. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  9940. assert(k % QK4_3 == 0);
  9941. const int nb = k / QK4_3;
  9942. for (int j = 0; j < n; j += k) {
  9943. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  9944. quantize_row_q4_3_reference(src + j, y, k);
  9945. for (int i = 0; i < nb; i++) {
  9946. for (int l = 0; l < QK4_3; l += 2) {
  9947. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9948. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9949. hist[vi0]++;
  9950. hist[vi1]++;
  9951. }
  9952. }
  9953. }
  9954. return (n/QK4_3*sizeof(block_q4_3));
  9955. }
  9956. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  9957. size_t result = 0;
  9958. switch (type) {
  9959. case GGML_TYPE_Q4_0:
  9960. {
  9961. GGML_ASSERT(start % QK4_0 == 0);
  9962. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  9963. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  9964. } break;
  9965. case GGML_TYPE_Q4_1:
  9966. {
  9967. GGML_ASSERT(start % QK4_1 == 0);
  9968. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  9969. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  9970. } break;
  9971. case GGML_TYPE_Q4_2:
  9972. {
  9973. GGML_ASSERT(start % QK4_2 == 0);
  9974. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  9975. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  9976. } break;
  9977. case GGML_TYPE_Q4_3:
  9978. {
  9979. GGML_ASSERT(start % QK4_3 == 0);
  9980. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  9981. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  9982. } break;
  9983. default:
  9984. assert(false);
  9985. }
  9986. return result;
  9987. }
  9988. ////////////////////////////////////////////////////////////////////////////////
  9989. int ggml_cpu_has_avx(void) {
  9990. #if defined(__AVX__)
  9991. return 1;
  9992. #else
  9993. return 0;
  9994. #endif
  9995. }
  9996. int ggml_cpu_has_avx2(void) {
  9997. #if defined(__AVX2__)
  9998. return 1;
  9999. #else
  10000. return 0;
  10001. #endif
  10002. }
  10003. int ggml_cpu_has_avx512(void) {
  10004. #if defined(__AVX512F__)
  10005. return 1;
  10006. #else
  10007. return 0;
  10008. #endif
  10009. }
  10010. int ggml_cpu_has_avx512_vbmi(void) {
  10011. #if defined(__AVX512VBMI__)
  10012. return 1;
  10013. #else
  10014. return 0;
  10015. #endif
  10016. }
  10017. int ggml_cpu_has_avx512_vnni(void) {
  10018. #if defined(__AVX512VNNI__)
  10019. return 1;
  10020. #else
  10021. return 0;
  10022. #endif
  10023. }
  10024. int ggml_cpu_has_fma(void) {
  10025. #if defined(__FMA__)
  10026. return 1;
  10027. #else
  10028. return 0;
  10029. #endif
  10030. }
  10031. int ggml_cpu_has_neon(void) {
  10032. #if defined(__ARM_NEON)
  10033. return 1;
  10034. #else
  10035. return 0;
  10036. #endif
  10037. }
  10038. int ggml_cpu_has_arm_fma(void) {
  10039. #if defined(__ARM_FEATURE_FMA)
  10040. return 1;
  10041. #else
  10042. return 0;
  10043. #endif
  10044. }
  10045. int ggml_cpu_has_f16c(void) {
  10046. #if defined(__F16C__)
  10047. return 1;
  10048. #else
  10049. return 0;
  10050. #endif
  10051. }
  10052. int ggml_cpu_has_fp16_va(void) {
  10053. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10054. return 1;
  10055. #else
  10056. return 0;
  10057. #endif
  10058. }
  10059. int ggml_cpu_has_wasm_simd(void) {
  10060. #if defined(__wasm_simd128__)
  10061. return 1;
  10062. #else
  10063. return 0;
  10064. #endif
  10065. }
  10066. int ggml_cpu_has_blas(void) {
  10067. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10068. return 1;
  10069. #else
  10070. return 0;
  10071. #endif
  10072. }
  10073. int ggml_cpu_has_cublas(void) {
  10074. #if defined(GGML_USE_CUBLAS)
  10075. return 1;
  10076. #else
  10077. return 0;
  10078. #endif
  10079. }
  10080. int ggml_cpu_has_sse3(void) {
  10081. #if defined(__SSE3__)
  10082. return 1;
  10083. #else
  10084. return 0;
  10085. #endif
  10086. }
  10087. int ggml_cpu_has_vsx(void) {
  10088. #if defined(__POWER9_VECTOR__)
  10089. return 1;
  10090. #else
  10091. return 0;
  10092. #endif
  10093. }
  10094. ////////////////////////////////////////////////////////////////////////////////