convert_hf_to_gguf.py 243 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  155. f"Missing tensors: {missing}")
  156. else:
  157. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  158. f"Missing tensors: {missing}\n"
  159. f"Extra tensors: {extra}")
  160. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  161. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  162. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  163. name: str = gguf.TENSOR_NAMES[key]
  164. if "{bid}" in name:
  165. assert bid is not None
  166. name = name.format(bid=bid)
  167. return name + suffix
  168. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  169. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  170. return False
  171. key_name: str = gguf.TENSOR_NAMES[key]
  172. if "{bid}" in key_name:
  173. if bid is None:
  174. return False
  175. key_name = key_name.format(bid=bid)
  176. else:
  177. if bid is not None:
  178. return False
  179. return name == (key_name + suffix)
  180. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  181. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  182. if new_name is None:
  183. raise ValueError(f"Can not map tensor {name!r}")
  184. return new_name
  185. def set_gguf_parameters(self):
  186. self.gguf_writer.add_block_count(self.block_count)
  187. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  188. self.gguf_writer.add_context_length(n_ctx)
  189. logger.info(f"gguf: context length = {n_ctx}")
  190. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  191. self.gguf_writer.add_embedding_length(n_embd)
  192. logger.info(f"gguf: embedding length = {n_embd}")
  193. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  194. self.gguf_writer.add_feed_forward_length(n_ff)
  195. logger.info(f"gguf: feed forward length = {n_ff}")
  196. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  197. self.gguf_writer.add_head_count(n_head)
  198. logger.info(f"gguf: head count = {n_head}")
  199. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  200. self.gguf_writer.add_head_count_kv(n_head_kv)
  201. logger.info(f"gguf: key-value head count = {n_head_kv}")
  202. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  203. self.gguf_writer.add_rope_freq_base(rope_theta)
  204. logger.info(f"gguf: rope theta = {rope_theta}")
  205. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  206. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  207. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  208. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  209. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  210. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  211. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  212. self.gguf_writer.add_expert_count(n_experts)
  213. logger.info(f"gguf: expert count = {n_experts}")
  214. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  215. self.gguf_writer.add_expert_used_count(n_experts_used)
  216. logger.info(f"gguf: experts used count = {n_experts_used}")
  217. if (head_dim := self.hparams.get("head_dim")) is not None:
  218. self.gguf_writer.add_key_length(head_dim)
  219. self.gguf_writer.add_value_length(head_dim)
  220. self.gguf_writer.add_file_type(self.ftype)
  221. logger.info(f"gguf: file type = {self.ftype}")
  222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  223. del bid # unused
  224. return [(self.map_tensor_name(name), data_torch)]
  225. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  226. del name, new_name, bid, n_dims # unused
  227. return False
  228. # some models need extra generated tensors (like rope_freqs)
  229. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  230. return ()
  231. def prepare_tensors(self):
  232. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  233. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  234. # we don't need these
  235. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  236. continue
  237. old_dtype = data_torch.dtype
  238. # convert any unsupported data types to float32
  239. if data_torch.dtype not in (torch.float16, torch.float32):
  240. data_torch = data_torch.to(torch.float32)
  241. # use the first number-like part of the tensor name as the block id
  242. bid = None
  243. for part in name.split("."):
  244. if part.isdecimal():
  245. bid = int(part)
  246. break
  247. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  248. # TODO: why do we squeeze here?
  249. # data = data_torch.squeeze().numpy()
  250. data = data_torch.numpy()
  251. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  252. if len(data.shape) == 0:
  253. data = data_torch.numpy()
  254. n_dims = len(data.shape)
  255. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  256. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  257. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  258. data_qtype = gguf.GGMLQuantizationType.F32
  259. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  260. # Some tensor types are always in float32
  261. if data_qtype is False and (
  262. any(
  263. self.match_model_tensor_name(new_name, key, bid)
  264. for key in (
  265. gguf.MODEL_TENSOR.FFN_GATE_INP,
  266. gguf.MODEL_TENSOR.POS_EMBD,
  267. gguf.MODEL_TENSOR.TOKEN_TYPES,
  268. gguf.MODEL_TENSOR.SSM_CONV1D,
  269. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  270. gguf.MODEL_TENSOR.TIME_MIX_W1,
  271. gguf.MODEL_TENSOR.TIME_MIX_W2,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  274. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  275. gguf.MODEL_TENSOR.POSNET_NORM1,
  276. gguf.MODEL_TENSOR.POSNET_NORM2,
  277. )
  278. )
  279. or not new_name.endswith(".weight")
  280. ):
  281. data_qtype = gguf.GGMLQuantizationType.F32
  282. if data_qtype is False and any(
  283. self.match_model_tensor_name(new_name, key, bid)
  284. for key in (
  285. gguf.MODEL_TENSOR.TOKEN_EMBD,
  286. gguf.MODEL_TENSOR.OUTPUT,
  287. )
  288. ):
  289. if self.ftype in (
  290. gguf.LlamaFileType.MOSTLY_TQ1_0,
  291. gguf.LlamaFileType.MOSTLY_TQ2_0,
  292. ):
  293. # TODO: use Q4_K and Q6_K
  294. data_qtype = gguf.GGMLQuantizationType.F16
  295. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  296. if isinstance(data_qtype, bool):
  297. if self.ftype == gguf.LlamaFileType.ALL_F32:
  298. data_qtype = gguf.GGMLQuantizationType.F32
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  300. data_qtype = gguf.GGMLQuantizationType.F16
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  302. data_qtype = gguf.GGMLQuantizationType.BF16
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  304. data_qtype = gguf.GGMLQuantizationType.Q8_0
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  306. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  307. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  308. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  309. else:
  310. raise ValueError(f"Unknown file type: {self.ftype.name}")
  311. try:
  312. data = gguf.quants.quantize(data, data_qtype)
  313. except gguf.QuantError as e:
  314. logger.warning("%s, %s", e, "falling back to F16")
  315. data_qtype = gguf.GGMLQuantizationType.F16
  316. data = gguf.quants.quantize(data, data_qtype)
  317. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  318. # reverse shape to make it similar to the internal ggml dimension order
  319. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  320. # n_dims is implicit in the shape
  321. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  322. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  323. def set_type(self):
  324. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  325. def prepare_metadata(self, vocab_only: bool):
  326. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  327. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  328. # Fallback to model directory name if metadata name is still missing
  329. if self.metadata.name is None:
  330. self.metadata.name = self.dir_model.name
  331. # Generate parameter weight class (useful for leader boards) if not yet determined
  332. if self.metadata.size_label is None and total_params > 0:
  333. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  334. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  335. output_type: str = self.ftype.name.partition("_")[2]
  336. # Filename Output
  337. if self.fname_out.is_dir():
  338. # Generate default filename based on model specification and available metadata
  339. if not vocab_only:
  340. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  341. else:
  342. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  343. # Use the default filename
  344. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  345. else:
  346. # Output path is a custom defined templated filename
  347. # Note: `not is_dir()` is used because `.is_file()` will not detect
  348. # file template strings as it doesn't actually exist as a file
  349. # Process templated file name with the output ftype, useful with the "auto" ftype
  350. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  351. self.set_type()
  352. logger.info("Set meta model")
  353. self.metadata.set_gguf_meta_model(self.gguf_writer)
  354. logger.info("Set model parameters")
  355. self.set_gguf_parameters()
  356. logger.info("Set model tokenizer")
  357. self.set_vocab()
  358. logger.info("Set model quantization version")
  359. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  360. def write(self):
  361. self.prepare_tensors()
  362. self.prepare_metadata(vocab_only=False)
  363. self.gguf_writer.write_header_to_file(path=self.fname_out)
  364. self.gguf_writer.write_kv_data_to_file()
  365. self.gguf_writer.write_tensors_to_file(progress=True)
  366. self.gguf_writer.close()
  367. def write_vocab(self):
  368. if len(self.gguf_writer.tensors) != 1:
  369. raise ValueError('Splitting the vocabulary is not supported')
  370. self.prepare_metadata(vocab_only=True)
  371. self.gguf_writer.write_header_to_file(path=self.fname_out)
  372. self.gguf_writer.write_kv_data_to_file()
  373. self.gguf_writer.close()
  374. @staticmethod
  375. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  376. part_names: list[str] = []
  377. for filename in os.listdir(dir_model):
  378. if filename.startswith(prefix) and filename.endswith(suffix):
  379. part_names.append(filename)
  380. part_names.sort()
  381. return part_names
  382. @staticmethod
  383. def load_hparams(dir_model: Path):
  384. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  385. return json.load(f)
  386. @classmethod
  387. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  388. assert names
  389. def func(modelcls: AnyModel) -> AnyModel:
  390. for name in names:
  391. cls._model_classes[name] = modelcls
  392. return modelcls
  393. return func
  394. @classmethod
  395. def print_registered_models(cls):
  396. for name in sorted(cls._model_classes.keys()):
  397. logger.error(f"- {name}")
  398. @classmethod
  399. def from_model_architecture(cls, arch: str) -> type[Model]:
  400. try:
  401. return cls._model_classes[arch]
  402. except KeyError:
  403. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  404. def does_token_look_special(self, token: str | bytes) -> bool:
  405. if isinstance(token, (bytes, bytearray)):
  406. token_text = token.decode(encoding="utf-8")
  407. elif isinstance(token, memoryview):
  408. token_text = token.tobytes().decode(encoding="utf-8")
  409. else:
  410. token_text = token
  411. # Some models mark some added tokens which ought to be control tokens as not special.
  412. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  413. seems_special = token_text in (
  414. "<pad>", # deepseek-coder
  415. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  416. )
  417. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  418. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  419. # TODO: should these be marked as UNUSED instead? (maybe not)
  420. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  421. return seems_special
  422. # used for GPT-2 BPE and WordPiece vocabs
  423. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  424. tokens: list[str] = []
  425. toktypes: list[int] = []
  426. from transformers import AutoTokenizer
  427. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  428. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  429. assert max(tokenizer.vocab.values()) < vocab_size
  430. tokpre = self.get_vocab_base_pre(tokenizer)
  431. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  432. added_vocab = tokenizer.get_added_vocab()
  433. added_tokens_decoder = tokenizer.added_tokens_decoder
  434. for i in range(vocab_size):
  435. if i not in reverse_vocab:
  436. tokens.append(f"[PAD{i}]")
  437. toktypes.append(gguf.TokenType.UNUSED)
  438. else:
  439. token: str = reverse_vocab[i]
  440. if token in added_vocab:
  441. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  442. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  443. if not added_tokens_decoder[i].normalized:
  444. previous_token = token
  445. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  446. if previous_token != token:
  447. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  448. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  449. toktypes.append(gguf.TokenType.CONTROL)
  450. else:
  451. # NOTE: this was added for Gemma.
  452. # Encoding and decoding the tokens above isn't sufficient for this case.
  453. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  454. toktypes.append(gguf.TokenType.USER_DEFINED)
  455. else:
  456. toktypes.append(gguf.TokenType.NORMAL)
  457. tokens.append(token)
  458. return tokens, toktypes, tokpre
  459. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  460. # do not modify it manually!
  461. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  462. # Marker: Start get_vocab_base_pre
  463. def get_vocab_base_pre(self, tokenizer) -> str:
  464. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  465. # is specific for the BPE pre-tokenizer used by the model
  466. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  467. # use in llama.cpp to implement the same pre-tokenizer
  468. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  469. chktok = tokenizer.encode(chktxt)
  470. chkhsh = sha256(str(chktok).encode()).hexdigest()
  471. logger.debug(f"chktok: {chktok}")
  472. logger.debug(f"chkhsh: {chkhsh}")
  473. res = None
  474. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  475. # or pull the latest version of the model from Huggingface
  476. # don't edit the hashes manually!
  477. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  478. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  479. res = "llama-bpe"
  480. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  481. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  482. res = "deepseek-llm"
  483. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  484. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  485. res = "deepseek-coder"
  486. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  487. # ref: https://huggingface.co/tiiuae/falcon-7b
  488. res = "falcon"
  489. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  490. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  491. res = "falcon3"
  492. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  493. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  494. res = "bert-bge"
  495. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  496. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  497. res = "bert-bge-large"
  498. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  499. # ref: https://huggingface.co/mosaicml/mpt-7b
  500. res = "mpt"
  501. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  502. # ref: https://huggingface.co/bigcode/starcoder2-3b
  503. res = "starcoder"
  504. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  505. # ref: https://huggingface.co/openai-community/gpt2
  506. res = "gpt-2"
  507. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  508. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  509. res = "stablelm2"
  510. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  511. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  512. res = "refact"
  513. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  514. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  515. res = "command-r"
  516. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  517. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  518. res = "qwen2"
  519. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  520. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  521. res = "olmo"
  522. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  523. # ref: https://huggingface.co/databricks/dbrx-base
  524. res = "dbrx"
  525. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  526. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  527. res = "jina-v1-en"
  528. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  529. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  530. res = "jina-v2-en"
  531. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  532. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  533. res = "jina-v2-es"
  534. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  535. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  536. res = "jina-v2-de"
  537. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  538. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  539. res = "smaug-bpe"
  540. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  541. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  542. res = "poro-chat"
  543. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  544. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  545. res = "jina-v2-code"
  546. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  547. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  548. res = "chatglm-bpe"
  549. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  550. # ref: https://huggingface.co/LumiOpen/Viking-7B
  551. res = "viking"
  552. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  553. # ref: https://huggingface.co/core42/jais-13b
  554. res = "jais"
  555. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  556. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  557. res = "codeshell"
  558. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  559. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  560. res = "tekken"
  561. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  562. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  563. res = "smollm"
  564. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  565. # ref: https://huggingface.co/bigscience/bloom
  566. res = "bloom"
  567. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  568. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  569. res = "gpt3-finnish"
  570. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  571. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  572. res = "exaone"
  573. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  574. # ref: https://huggingface.co/microsoft/phi-2
  575. res = "phi-2"
  576. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  577. # ref: https://huggingface.co/facebook/chameleon-7b
  578. res = "chameleon"
  579. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  580. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  581. res = "minerva-7b"
  582. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  583. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  584. res = "roberta-bpe"
  585. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  586. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  587. res = "gigachat"
  588. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  589. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  590. res = "megrez"
  591. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  592. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  593. res = "deepseek-v3"
  594. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  595. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  596. res = "deepseek-r1-qwen"
  597. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  598. # ref: https://huggingface.co/Xenova/gpt-4o
  599. res = "gpt-4o"
  600. if res is None:
  601. logger.warning("\n")
  602. logger.warning("**************************************************************************************")
  603. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  604. logger.warning("** There are 2 possible reasons for this:")
  605. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  606. logger.warning("** - the pre-tokenization config has changed upstream")
  607. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  608. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  609. logger.warning("**")
  610. logger.warning(f"** chkhsh: {chkhsh}")
  611. logger.warning("**************************************************************************************")
  612. logger.warning("\n")
  613. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  614. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  615. logger.debug(f"chkhsh: {chkhsh}")
  616. return res
  617. # Marker: End get_vocab_base_pre
  618. def _set_vocab_none(self) -> None:
  619. self.gguf_writer.add_tokenizer_model("none")
  620. def _set_vocab_gpt2(self) -> None:
  621. tokens, toktypes, tokpre = self.get_vocab_base()
  622. self.gguf_writer.add_tokenizer_model("gpt2")
  623. self.gguf_writer.add_tokenizer_pre(tokpre)
  624. self.gguf_writer.add_token_list(tokens)
  625. self.gguf_writer.add_token_types(toktypes)
  626. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  627. special_vocab.add_to_gguf(self.gguf_writer)
  628. def _set_vocab_qwen(self):
  629. dir_model = self.dir_model
  630. hparams = self.hparams
  631. tokens: list[str] = []
  632. toktypes: list[int] = []
  633. from transformers import AutoTokenizer
  634. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  635. vocab_size = hparams["vocab_size"]
  636. assert max(tokenizer.get_vocab().values()) < vocab_size
  637. tokpre = self.get_vocab_base_pre(tokenizer)
  638. merges = []
  639. vocab = {}
  640. mergeable_ranks = tokenizer.mergeable_ranks
  641. for token, rank in mergeable_ranks.items():
  642. vocab[QwenModel.token_bytes_to_string(token)] = rank
  643. if len(token) == 1:
  644. continue
  645. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  646. assert len(merged) == 2
  647. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  648. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  649. added_vocab = tokenizer.special_tokens
  650. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  651. for i in range(vocab_size):
  652. if i not in reverse_vocab:
  653. tokens.append(f"[PAD{i}]")
  654. toktypes.append(gguf.TokenType.UNUSED)
  655. elif reverse_vocab[i] in added_vocab:
  656. tokens.append(reverse_vocab[i])
  657. toktypes.append(gguf.TokenType.CONTROL)
  658. else:
  659. tokens.append(reverse_vocab[i])
  660. toktypes.append(gguf.TokenType.NORMAL)
  661. self.gguf_writer.add_tokenizer_model("gpt2")
  662. self.gguf_writer.add_tokenizer_pre(tokpre)
  663. self.gguf_writer.add_token_list(tokens)
  664. self.gguf_writer.add_token_types(toktypes)
  665. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  666. special_vocab.merges = merges
  667. # only add special tokens when they were not already loaded from config.json
  668. if len(special_vocab.special_token_ids) == 0:
  669. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  670. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  671. # this one is usually not in config.json anyway
  672. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  673. special_vocab.add_to_gguf(self.gguf_writer)
  674. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  675. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  676. self.gguf_writer.add_tokenizer_model("llama")
  677. self.gguf_writer.add_tokenizer_pre("default")
  678. self.gguf_writer.add_token_list(tokens)
  679. self.gguf_writer.add_token_scores(scores)
  680. self.gguf_writer.add_token_types(toktypes)
  681. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  682. special_vocab.add_to_gguf(self.gguf_writer)
  683. def _create_vocab_sentencepiece(self):
  684. from sentencepiece import SentencePieceProcessor
  685. tokenizer_path = self.dir_model / 'tokenizer.model'
  686. if not tokenizer_path.is_file():
  687. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  688. tokenizer = SentencePieceProcessor()
  689. tokenizer.LoadFromFile(str(tokenizer_path))
  690. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  691. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  692. scores: list[float] = [-10000.0] * vocab_size
  693. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  694. for token_id in range(tokenizer.vocab_size()):
  695. piece = tokenizer.IdToPiece(token_id)
  696. text = piece.encode("utf-8")
  697. score = tokenizer.GetScore(token_id)
  698. toktype = SentencePieceTokenTypes.NORMAL
  699. if tokenizer.IsUnknown(token_id):
  700. toktype = SentencePieceTokenTypes.UNKNOWN
  701. elif tokenizer.IsControl(token_id):
  702. toktype = SentencePieceTokenTypes.CONTROL
  703. elif tokenizer.IsUnused(token_id):
  704. toktype = SentencePieceTokenTypes.UNUSED
  705. elif tokenizer.IsByte(token_id):
  706. toktype = SentencePieceTokenTypes.BYTE
  707. tokens[token_id] = text
  708. scores[token_id] = score
  709. toktypes[token_id] = toktype
  710. added_tokens_file = self.dir_model / 'added_tokens.json'
  711. if added_tokens_file.is_file():
  712. with open(added_tokens_file, "r", encoding="utf-8") as f:
  713. added_tokens_json = json.load(f)
  714. for key in added_tokens_json:
  715. token_id = added_tokens_json[key]
  716. if token_id >= vocab_size:
  717. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  718. continue
  719. tokens[token_id] = key.encode("utf-8")
  720. scores[token_id] = -1000.0
  721. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  722. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  723. if tokenizer_config_file.is_file():
  724. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  725. tokenizer_config_json = json.load(f)
  726. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  727. for token_id, token_data in added_tokens_decoder.items():
  728. token_id = int(token_id)
  729. token: str = token_data["content"]
  730. if token_id >= vocab_size:
  731. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  732. continue
  733. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  734. if tokens[token_id] != token.encode("utf-8"):
  735. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  736. if token_data.get("special") or self.does_token_look_special(token):
  737. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  738. else:
  739. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  740. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  741. scores[token_id] = -1000.0
  742. tokens[token_id] = token.encode("utf-8")
  743. if vocab_size > len(tokens):
  744. pad_count = vocab_size - len(tokens)
  745. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  746. for i in range(1, pad_count + 1):
  747. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  748. scores.append(-1000.0)
  749. toktypes.append(SentencePieceTokenTypes.UNUSED)
  750. return tokens, scores, toktypes
  751. def _set_vocab_llama_hf(self):
  752. vocab = gguf.LlamaHfVocab(self.dir_model)
  753. tokens = []
  754. scores = []
  755. toktypes = []
  756. for text, score, toktype in vocab.all_tokens():
  757. tokens.append(text)
  758. scores.append(score)
  759. toktypes.append(toktype)
  760. assert len(tokens) == vocab.vocab_size
  761. self.gguf_writer.add_tokenizer_model("llama")
  762. self.gguf_writer.add_tokenizer_pre("default")
  763. self.gguf_writer.add_token_list(tokens)
  764. self.gguf_writer.add_token_scores(scores)
  765. self.gguf_writer.add_token_types(toktypes)
  766. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  767. special_vocab.add_to_gguf(self.gguf_writer)
  768. def _set_vocab_rwkv_world(self):
  769. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  770. vocab_size = self.hparams.get("vocab_size", 65536)
  771. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  772. toktypes: list[int] = [gguf.TokenType.CONTROL]
  773. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  774. lines = f.readlines()
  775. for line in lines:
  776. parts = line.split(' ')
  777. assert len(parts) >= 3
  778. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  779. token = token.encode("utf-8") if isinstance(token, str) else token
  780. assert isinstance(token, bytes)
  781. assert len(token) == token_len
  782. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  783. tokens.append(token_text.encode("utf-8"))
  784. toktypes.append(gguf.TokenType.NORMAL)
  785. remainder = vocab_size - len(tokens)
  786. assert remainder >= 0
  787. for i in range(len(tokens), vocab_size):
  788. tokens.append(f"[PAD{i}]".encode("utf-8"))
  789. toktypes.append(gguf.TokenType.UNUSED)
  790. self.gguf_writer.add_tokenizer_model("rwkv")
  791. self.gguf_writer.add_token_list(tokens)
  792. self.gguf_writer.add_token_types(toktypes)
  793. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  794. special_vocab.chat_template = "rwkv-world"
  795. # hack: Add '\n\n' as the EOT token to make it chat normally
  796. special_vocab._set_special_token("eot", 261)
  797. special_vocab.add_to_gguf(self.gguf_writer)
  798. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  799. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  800. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  801. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  802. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  803. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  804. assert field # tokenizer model
  805. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  806. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  807. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  808. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  809. assert field # token list
  810. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  811. if model_name == "llama-spm":
  812. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  813. assert field # token scores
  814. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  815. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  816. assert field # token types
  817. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  818. if model_name != "llama-spm":
  819. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  820. assert field # token merges
  821. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  822. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  823. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  824. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  825. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  826. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  827. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  828. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  829. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  830. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  831. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  832. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  833. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  834. @Model.register("GPTNeoXForCausalLM")
  835. class GPTNeoXModel(Model):
  836. model_arch = gguf.MODEL_ARCH.GPTNEOX
  837. def set_gguf_parameters(self):
  838. block_count = self.hparams["num_hidden_layers"]
  839. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  840. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  841. self.gguf_writer.add_block_count(block_count)
  842. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  843. self.gguf_writer.add_rope_dimension_count(
  844. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  845. )
  846. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  847. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  848. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  849. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  850. del bid # unused
  851. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  852. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  853. tensors: list[tuple[str, Tensor]] = []
  854. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  855. # Map bloom-style qkv_linear to gpt-style qkv_linear
  856. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  857. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  858. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  859. data_torch = torch.cat(
  860. (
  861. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  862. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  863. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  864. ),
  865. dim=0,
  866. )
  867. logger.info("re-format attention.linear_qkv.weight")
  868. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  869. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  870. data_torch = torch.cat(
  871. (
  872. qkv_bias[:, 0, :].reshape((n_embed,)),
  873. qkv_bias[:, 1, :].reshape((n_embed,)),
  874. qkv_bias[:, 2, :].reshape((n_embed,)),
  875. ),
  876. dim=0,
  877. )
  878. logger.info("re-format attention.linear_qkv.bias")
  879. tensors.append((self.map_tensor_name(name), data_torch))
  880. return tensors
  881. @Model.register("BloomForCausalLM", "BloomModel")
  882. class BloomModel(Model):
  883. model_arch = gguf.MODEL_ARCH.BLOOM
  884. def set_gguf_parameters(self):
  885. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  886. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  887. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  888. self.gguf_writer.add_embedding_length(n_embed)
  889. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  890. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  891. self.gguf_writer.add_head_count(n_head)
  892. self.gguf_writer.add_head_count_kv(n_head)
  893. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  894. self.gguf_writer.add_file_type(self.ftype)
  895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  896. del bid # unused
  897. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  898. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  899. name = re.sub(r'transformer\.', '', name)
  900. tensors: list[tuple[str, Tensor]] = []
  901. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  902. # Map bloom-style qkv_linear to gpt-style qkv_linear
  903. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  904. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  905. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  906. data_torch = torch.cat(
  907. (
  908. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  909. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  910. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  911. ),
  912. dim=0,
  913. )
  914. logger.info("re-format attention.linear_qkv.weight")
  915. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  916. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  917. data_torch = torch.cat(
  918. (
  919. qkv_bias[:, 0, :].reshape((n_embed,)),
  920. qkv_bias[:, 1, :].reshape((n_embed,)),
  921. qkv_bias[:, 2, :].reshape((n_embed,)),
  922. ),
  923. dim=0,
  924. )
  925. logger.info("re-format attention.linear_qkv.bias")
  926. tensors.append((self.map_tensor_name(name), data_torch))
  927. return tensors
  928. @Model.register("MPTForCausalLM")
  929. class MPTModel(Model):
  930. model_arch = gguf.MODEL_ARCH.MPT
  931. def set_vocab(self):
  932. try:
  933. self._set_vocab_gpt2()
  934. except Exception:
  935. # Fallback for SEA-LION model
  936. self._set_vocab_sentencepiece()
  937. self.gguf_writer.add_add_bos_token(False)
  938. self.gguf_writer.add_pad_token_id(3)
  939. self.gguf_writer.add_eos_token_id(1)
  940. self.gguf_writer.add_unk_token_id(0)
  941. def set_gguf_parameters(self):
  942. block_count = self.hparams["n_layers"]
  943. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  944. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  945. self.gguf_writer.add_block_count(block_count)
  946. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  947. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  948. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  949. self.gguf_writer.add_head_count_kv(kv_n_heads)
  950. self.gguf_writer.add_layer_norm_eps(1e-5)
  951. if self.hparams["attn_config"]["clip_qkv"] is not None:
  952. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  953. if self.hparams["attn_config"]["alibi"]:
  954. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  955. else:
  956. self.gguf_writer.add_max_alibi_bias(0.0)
  957. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  958. del bid # unused
  959. if "scales" in name:
  960. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  961. new_name = new_name.replace("scales", "act.scales")
  962. else:
  963. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  964. return [(new_name, data_torch)]
  965. @Model.register("OrionForCausalLM")
  966. class OrionModel(Model):
  967. model_arch = gguf.MODEL_ARCH.ORION
  968. def set_vocab(self):
  969. self._set_vocab_sentencepiece()
  970. def set_gguf_parameters(self):
  971. block_count = self.hparams["num_hidden_layers"]
  972. head_count = self.hparams["num_attention_heads"]
  973. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  974. ctx_length = 0
  975. if "max_sequence_length" in self.hparams:
  976. ctx_length = self.hparams["max_sequence_length"]
  977. elif "max_position_embeddings" in self.hparams:
  978. ctx_length = self.hparams["max_position_embeddings"]
  979. elif "model_max_length" in self.hparams:
  980. ctx_length = self.hparams["model_max_length"]
  981. else:
  982. raise ValueError("gguf: can not find ctx length parameter.")
  983. self.gguf_writer.add_file_type(self.ftype)
  984. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  985. self.gguf_writer.add_context_length(ctx_length)
  986. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  987. self.gguf_writer.add_block_count(block_count)
  988. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  989. self.gguf_writer.add_head_count(head_count)
  990. self.gguf_writer.add_head_count_kv(head_count_kv)
  991. # note: config provides rms norm but it is actually layer norm
  992. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  993. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  994. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  995. class BaichuanModel(Model):
  996. model_arch = gguf.MODEL_ARCH.BAICHUAN
  997. def set_vocab(self):
  998. self._set_vocab_sentencepiece()
  999. def set_gguf_parameters(self):
  1000. block_count = self.hparams["num_hidden_layers"]
  1001. head_count = self.hparams["num_attention_heads"]
  1002. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1003. ctx_length = 0
  1004. if "max_sequence_length" in self.hparams:
  1005. ctx_length = self.hparams["max_sequence_length"]
  1006. elif "max_position_embeddings" in self.hparams:
  1007. ctx_length = self.hparams["max_position_embeddings"]
  1008. elif "model_max_length" in self.hparams:
  1009. ctx_length = self.hparams["model_max_length"]
  1010. else:
  1011. raise ValueError("gguf: can not find ctx length parameter.")
  1012. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1013. self.gguf_writer.add_context_length(ctx_length)
  1014. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1015. self.gguf_writer.add_block_count(block_count)
  1016. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1017. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1018. self.gguf_writer.add_head_count(head_count)
  1019. self.gguf_writer.add_head_count_kv(head_count_kv)
  1020. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1021. self.gguf_writer.add_file_type(self.ftype)
  1022. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1023. if self.hparams["rope_scaling"].get("type") == "linear":
  1024. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1025. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1026. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1027. head_count = self.hparams["num_attention_heads"]
  1028. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1029. tensors: list[tuple[str, Tensor]] = []
  1030. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1031. logger.info(f"Unpacking and permuting layer {bid}")
  1032. tensors = [
  1033. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1034. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1035. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1036. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1037. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1038. self._reverse_hf_part(data_torch, 2)),
  1039. ]
  1040. else:
  1041. tensors = [(self.map_tensor_name(name), data_torch)]
  1042. return tensors
  1043. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1044. if n_kv_head is not None and n_head != n_kv_head:
  1045. n_head //= n_kv_head
  1046. return (
  1047. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1048. .swapaxes(1, 2)
  1049. .reshape(weights.shape)
  1050. )
  1051. def _reverse_hf_permute_part(
  1052. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1053. ) -> Tensor:
  1054. r = weights.shape[0] // 3
  1055. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1056. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1057. r = weights.shape[0] // 3
  1058. return weights[r * n_part:r * n_part + r, ...]
  1059. @Model.register("XverseForCausalLM")
  1060. class XverseModel(Model):
  1061. model_arch = gguf.MODEL_ARCH.XVERSE
  1062. def set_vocab(self):
  1063. assert (self.dir_model / "tokenizer.json").is_file()
  1064. dir_model = self.dir_model
  1065. hparams = self.hparams
  1066. tokens: list[bytes] = []
  1067. toktypes: list[int] = []
  1068. from transformers import AutoTokenizer
  1069. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1070. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1071. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1072. # because vocab_size is the count of items, and indexes start at 0.
  1073. max_vocab_index = max(tokenizer.get_vocab().values())
  1074. if max_vocab_index >= vocab_size:
  1075. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1076. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1077. added_vocab = tokenizer.get_added_vocab()
  1078. for token_id in range(vocab_size):
  1079. token_text = reverse_vocab[token_id].encode('utf-8')
  1080. # replace "\x00" to string with length > 0
  1081. if token_text == b"\x00":
  1082. toktype = gguf.TokenType.BYTE # special
  1083. token_text = f"<{token_text}>".encode('utf-8')
  1084. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1085. toktype = gguf.TokenType.BYTE # special
  1086. elif reverse_vocab[token_id] in added_vocab:
  1087. if tokenizer.added_tokens_decoder[token_id].special:
  1088. toktype = gguf.TokenType.CONTROL
  1089. else:
  1090. toktype = gguf.TokenType.USER_DEFINED
  1091. else:
  1092. toktype = gguf.TokenType.NORMAL
  1093. tokens.append(token_text)
  1094. toktypes.append(toktype)
  1095. self.gguf_writer.add_tokenizer_model("llama")
  1096. self.gguf_writer.add_tokenizer_pre("default")
  1097. self.gguf_writer.add_token_list(tokens)
  1098. self.gguf_writer.add_token_types(toktypes)
  1099. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1100. special_vocab.add_to_gguf(self.gguf_writer)
  1101. def set_gguf_parameters(self):
  1102. block_count = self.hparams["num_hidden_layers"]
  1103. head_count = self.hparams["num_attention_heads"]
  1104. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1105. ctx_length = 0
  1106. if "max_sequence_length" in self.hparams:
  1107. ctx_length = self.hparams["max_sequence_length"]
  1108. elif "max_position_embeddings" in self.hparams:
  1109. ctx_length = self.hparams["max_position_embeddings"]
  1110. elif "model_max_length" in self.hparams:
  1111. ctx_length = self.hparams["model_max_length"]
  1112. else:
  1113. raise ValueError("gguf: can not find ctx length parameter.")
  1114. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1115. self.gguf_writer.add_context_length(ctx_length)
  1116. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1117. self.gguf_writer.add_block_count(block_count)
  1118. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1119. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1120. self.gguf_writer.add_head_count(head_count)
  1121. self.gguf_writer.add_head_count_kv(head_count_kv)
  1122. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1123. self.gguf_writer.add_file_type(self.ftype)
  1124. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1125. if self.hparams["rope_scaling"].get("type") == "linear":
  1126. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1127. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1128. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1129. del bid # unused
  1130. head_count = self.hparams["num_attention_heads"]
  1131. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1132. # HF models permute some of the tensors, so we need to undo that
  1133. if name.endswith("q_proj.weight"):
  1134. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1135. if name.endswith("k_proj.weight"):
  1136. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1137. return [(self.map_tensor_name(name), data_torch)]
  1138. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1139. if n_kv_head is not None and n_head != n_kv_head:
  1140. n_head //= n_kv_head
  1141. return (
  1142. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1143. .swapaxes(1, 2)
  1144. .reshape(weights.shape)
  1145. )
  1146. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1147. class FalconModel(Model):
  1148. model_arch = gguf.MODEL_ARCH.FALCON
  1149. def set_gguf_parameters(self):
  1150. block_count = self.hparams.get("num_hidden_layers")
  1151. if block_count is None:
  1152. block_count = self.hparams["n_layer"] # old name
  1153. n_head = self.hparams.get("num_attention_heads")
  1154. if n_head is None:
  1155. n_head = self.hparams["n_head"] # old name
  1156. n_head_kv = self.hparams.get("num_kv_heads")
  1157. if n_head_kv is None:
  1158. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1159. self.gguf_writer.add_context_length(2048) # not in config.json
  1160. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1161. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1162. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1163. self.gguf_writer.add_block_count(block_count)
  1164. self.gguf_writer.add_head_count(n_head)
  1165. self.gguf_writer.add_head_count_kv(n_head_kv)
  1166. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1167. self.gguf_writer.add_file_type(self.ftype)
  1168. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1169. del bid # unused
  1170. # QKV tensor transform
  1171. # The original query_key_value tensor contains n_head_kv "kv groups",
  1172. # each consisting of n_head/n_head_kv query weights followed by one key
  1173. # and one value weight (shared by all query heads in the kv group).
  1174. # This layout makes it a big pain to work with in GGML.
  1175. # So we rearrange them here,, so that we have n_head query weights
  1176. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1177. # in contiguous fashion.
  1178. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1179. if "query_key_value" in name:
  1180. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1181. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1182. head_dim = self.hparams["hidden_size"] // n_head
  1183. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1184. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1185. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1186. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1187. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1188. return [(self.map_tensor_name(name), data_torch)]
  1189. @Model.register("GPTBigCodeForCausalLM")
  1190. class StarCoderModel(Model):
  1191. model_arch = gguf.MODEL_ARCH.STARCODER
  1192. def set_gguf_parameters(self):
  1193. block_count = self.hparams["n_layer"]
  1194. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1195. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1196. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1197. self.gguf_writer.add_block_count(block_count)
  1198. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1199. self.gguf_writer.add_head_count_kv(1)
  1200. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1201. self.gguf_writer.add_file_type(self.ftype)
  1202. @Model.register("GPTRefactForCausalLM")
  1203. class RefactModel(Model):
  1204. model_arch = gguf.MODEL_ARCH.REFACT
  1205. def set_vocab(self):
  1206. super().set_vocab()
  1207. # TODO: how to determine special FIM tokens automatically?
  1208. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1209. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1210. special_vocab._set_special_token("prefix", 1)
  1211. special_vocab._set_special_token("suffix", 3)
  1212. special_vocab._set_special_token("middle", 2)
  1213. special_vocab.chat_template = None # do not add it twice
  1214. special_vocab.add_to_gguf(self.gguf_writer)
  1215. def set_gguf_parameters(self):
  1216. hidden_dim = self.hparams["n_embd"]
  1217. inner_dim = 4 * hidden_dim
  1218. hidden_dim = int(2 * inner_dim / 3)
  1219. multiple_of = 256
  1220. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1221. block_count = self.hparams["n_layer"]
  1222. # refact uses Alibi. So this is from config.json which might be used by training.
  1223. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1224. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1225. self.gguf_writer.add_feed_forward_length(ff_dim)
  1226. self.gguf_writer.add_block_count(block_count)
  1227. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1228. self.gguf_writer.add_head_count_kv(1)
  1229. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1230. self.gguf_writer.add_file_type(self.ftype)
  1231. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1232. hidden_dim = self.hparams["n_embd"]
  1233. inner_dim = 4 * hidden_dim
  1234. hidden_dim = int(2 * inner_dim / 3)
  1235. multiple_of = 256
  1236. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1237. n_head = self.hparams["n_head"]
  1238. n_head_kv = 1
  1239. head_dim = self.hparams["n_embd"] // n_head
  1240. tensors: list[tuple[str, Tensor]] = []
  1241. if bid is not None:
  1242. if name == f"transformer.h.{bid}.attn.kv.weight":
  1243. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1244. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1245. elif name == f"transformer.h.{bid}.attn.q.weight":
  1246. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1247. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1248. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1249. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1250. if len(tensors) == 0:
  1251. tensors.append((self.map_tensor_name(name), data_torch))
  1252. return tensors
  1253. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1254. class StableLMModel(Model):
  1255. model_arch = gguf.MODEL_ARCH.STABLELM
  1256. def set_vocab(self):
  1257. if (self.dir_model / "tokenizer.json").is_file():
  1258. self._set_vocab_gpt2()
  1259. else:
  1260. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1261. self._set_vocab_qwen()
  1262. def set_gguf_parameters(self):
  1263. hparams = self.hparams
  1264. block_count = hparams["num_hidden_layers"]
  1265. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1266. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1267. self.gguf_writer.add_block_count(block_count)
  1268. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1269. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1270. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1271. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1272. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1273. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1274. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1275. self.gguf_writer.add_file_type(self.ftype)
  1276. _q_norms: list[dict[str, Tensor]] | None = None
  1277. _k_norms: list[dict[str, Tensor]] | None = None
  1278. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1279. n_head = self.hparams["num_attention_heads"]
  1280. n_kv_head = self.hparams["num_key_value_heads"]
  1281. if name.find("q_layernorm.norms") != -1:
  1282. assert bid is not None
  1283. if self._q_norms is None:
  1284. self._q_norms = [{} for _ in range(self.block_count)]
  1285. self._q_norms[bid][name] = data_torch
  1286. if len(self._q_norms[bid]) >= n_head:
  1287. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1288. else:
  1289. return []
  1290. if name.find("k_layernorm.norms") != -1:
  1291. assert bid is not None
  1292. if self._k_norms is None:
  1293. self._k_norms = [{} for _ in range(self.block_count)]
  1294. self._k_norms[bid][name] = data_torch
  1295. if len(self._k_norms[bid]) >= n_kv_head:
  1296. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1297. else:
  1298. return []
  1299. return [(self.map_tensor_name(name), data_torch)]
  1300. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1301. datas: list[Tensor] = []
  1302. # extract the norms in order
  1303. for xid in range(n_head):
  1304. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1305. datas.append(norms[ename])
  1306. del norms[ename]
  1307. data_torch = torch.stack(datas, dim=0)
  1308. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1309. new_name = self.map_tensor_name(merged_name)
  1310. return [(new_name, data_torch)]
  1311. def prepare_tensors(self):
  1312. super().prepare_tensors()
  1313. if self._q_norms is not None or self._k_norms is not None:
  1314. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1315. norms = (
  1316. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1317. ) + (
  1318. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1319. )
  1320. if len(norms) > 0:
  1321. raise ValueError(f"Unprocessed norms: {norms}")
  1322. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1323. class LlamaModel(Model):
  1324. model_arch = gguf.MODEL_ARCH.LLAMA
  1325. def set_vocab(self):
  1326. try:
  1327. self._set_vocab_sentencepiece()
  1328. except FileNotFoundError:
  1329. try:
  1330. self._set_vocab_llama_hf()
  1331. except (FileNotFoundError, TypeError):
  1332. # Llama 3
  1333. self._set_vocab_gpt2()
  1334. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1335. if self.hparams.get("vocab_size", 32000) == 32016:
  1336. special_vocab = gguf.SpecialVocab(
  1337. self.dir_model, load_merges=False,
  1338. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1339. )
  1340. special_vocab._set_special_token("prefix", 32007)
  1341. special_vocab._set_special_token("suffix", 32008)
  1342. special_vocab._set_special_token("middle", 32009)
  1343. special_vocab._set_special_token("eot", 32010)
  1344. special_vocab.add_to_gguf(self.gguf_writer)
  1345. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1346. if tokenizer_config_file.is_file():
  1347. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1348. tokenizer_config_json = json.load(f)
  1349. if "add_prefix_space" in tokenizer_config_json:
  1350. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1351. # Apply to granite small models only
  1352. if self.hparams.get("vocab_size", 32000) == 49152:
  1353. self.gguf_writer.add_add_bos_token(False)
  1354. def set_gguf_parameters(self):
  1355. super().set_gguf_parameters()
  1356. hparams = self.hparams
  1357. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1358. if "head_dim" in hparams:
  1359. rope_dim = hparams["head_dim"]
  1360. else:
  1361. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1362. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1363. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1364. if self.hparams["rope_scaling"].get("type") == "linear":
  1365. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1366. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1367. @staticmethod
  1368. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1369. if n_head_kv is not None and n_head != n_head_kv:
  1370. n_head = n_head_kv
  1371. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1372. .swapaxes(1, 2)
  1373. .reshape(weights.shape))
  1374. _experts: list[dict[str, Tensor]] | None = None
  1375. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1376. n_head = self.hparams["num_attention_heads"]
  1377. n_kv_head = self.hparams.get("num_key_value_heads")
  1378. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1379. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1380. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1381. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1382. # process the experts separately
  1383. if name.find("block_sparse_moe.experts") != -1:
  1384. n_experts = self.hparams["num_local_experts"]
  1385. assert bid is not None
  1386. if self._experts is None:
  1387. self._experts = [{} for _ in range(self.block_count)]
  1388. self._experts[bid][name] = data_torch
  1389. if len(self._experts[bid]) >= n_experts * 3:
  1390. tensors: list[tuple[str, Tensor]] = []
  1391. # merge the experts into a single 3d tensor
  1392. for wid in ["w1", "w2", "w3"]:
  1393. datas: list[Tensor] = []
  1394. for xid in range(n_experts):
  1395. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1396. datas.append(self._experts[bid][ename])
  1397. del self._experts[bid][ename]
  1398. data_torch = torch.stack(datas, dim=0)
  1399. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1400. new_name = self.map_tensor_name(merged_name)
  1401. tensors.append((new_name, data_torch))
  1402. return tensors
  1403. else:
  1404. return []
  1405. return [(self.map_tensor_name(name), data_torch)]
  1406. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1407. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1408. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1409. base = self.hparams.get("rope_theta", 10000.0)
  1410. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1411. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1412. factor = rope_scaling.get("factor", 8.0)
  1413. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1414. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1415. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1416. low_freq_wavelen = old_context_len / low_freq_factor
  1417. high_freq_wavelen = old_context_len / high_freq_factor
  1418. assert low_freq_wavelen != high_freq_wavelen
  1419. rope_factors = []
  1420. for freq in freqs:
  1421. wavelen = 2 * math.pi / freq
  1422. if wavelen < high_freq_wavelen:
  1423. rope_factors.append(1)
  1424. elif wavelen > low_freq_wavelen:
  1425. rope_factors.append(factor)
  1426. else:
  1427. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1428. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1429. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1430. def prepare_tensors(self):
  1431. super().prepare_tensors()
  1432. if self._experts is not None:
  1433. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1434. experts = [k for d in self._experts for k in d.keys()]
  1435. if len(experts) > 0:
  1436. raise ValueError(f"Unprocessed experts: {experts}")
  1437. @Model.register("Mistral3ForConditionalGeneration")
  1438. class Mistral3Model(LlamaModel):
  1439. model_arch = gguf.MODEL_ARCH.LLAMA
  1440. # we need to merge the text_config into the root level of hparams
  1441. def __init__(self, *args, **kwargs):
  1442. hparams = Model.load_hparams(kwargs["dir_model"])
  1443. if "text_config" in hparams:
  1444. hparams = {**hparams, **hparams["text_config"]}
  1445. kwargs["hparams"] = hparams
  1446. super().__init__(*args, **kwargs)
  1447. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1448. name = name.replace("language_model.", "")
  1449. if "multi_modal_projector" in name or "vision_tower" in name:
  1450. return []
  1451. return super().modify_tensors(data_torch, name, bid)
  1452. @Model.register("DeciLMForCausalLM")
  1453. class DeciModel(Model):
  1454. model_arch = gguf.MODEL_ARCH.DECI
  1455. @staticmethod
  1456. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1457. # DeciLM-specific code
  1458. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1459. return DeciModel._find_multiple(intermediate_size, 256)
  1460. @staticmethod
  1461. def _find_multiple(n: int, k: int) -> int:
  1462. # DeciLM-specific code
  1463. if n % k == 0:
  1464. return n
  1465. return n + k - (n % k)
  1466. def __init__(self, *args, **kwargs):
  1467. super().__init__(*args, **kwargs)
  1468. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1469. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1470. assert self.block_count == len(_block_configs)
  1471. self._num_kv_heads = list()
  1472. self._num_heads = list()
  1473. _ffn_multipliers = list()
  1474. # ***linear attention layer***
  1475. # if n_heads_in_group is None and replace_with_linear is True
  1476. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1477. # ***attention-free layer***
  1478. # if n_heads_in_group is None and replace_with_linear is False
  1479. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1480. # ***normal attention-layer***
  1481. # if n_heads_in_group is not None, then
  1482. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1483. # _num_heads[il] is num_attention_head
  1484. for il in range(len(_block_configs)):
  1485. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1486. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1487. self._num_kv_heads.append(0)
  1488. self._num_heads.append(self.hparams["num_attention_heads"])
  1489. else:
  1490. self._num_kv_heads.append(0)
  1491. self._num_heads.append(0)
  1492. else:
  1493. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1494. self._num_heads.append(self.hparams["num_attention_heads"])
  1495. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1496. assert self.block_count == len(self._num_kv_heads)
  1497. assert self.block_count == len(self._num_heads)
  1498. assert self.block_count == len(_ffn_multipliers)
  1499. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1500. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1501. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1502. self._ffn_dims: list[int] = [
  1503. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1504. for multiplier in _ffn_multipliers
  1505. ]
  1506. def set_vocab(self):
  1507. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1508. # eos_token from '|eot_id|' to '|end_of_text|'
  1509. if self.hparams.get("vocab_size", 128256) == 128256:
  1510. tokens, toktypes, tokpre = self.get_vocab_base()
  1511. self.gguf_writer.add_tokenizer_model("gpt2")
  1512. self.gguf_writer.add_tokenizer_pre(tokpre)
  1513. self.gguf_writer.add_token_list(tokens)
  1514. self.gguf_writer.add_token_types(toktypes)
  1515. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1516. special_vocab.add_to_gguf(self.gguf_writer)
  1517. else:
  1518. # DeciLM-7B
  1519. self._set_vocab_llama_hf()
  1520. def set_gguf_parameters(self):
  1521. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1522. assert self.block_count == len(self._num_kv_heads)
  1523. assert self.block_count == len(self._num_heads)
  1524. assert self.block_count == len(self._ffn_dims)
  1525. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1526. self.gguf_writer.add_rope_freq_base(rope_theta)
  1527. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1528. self.gguf_writer.add_head_count(self._num_heads)
  1529. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1530. self.gguf_writer.add_block_count(self.block_count)
  1531. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1532. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1533. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1534. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1535. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1536. self.gguf_writer.add_file_type(self.ftype)
  1537. else: # DeciLM-7B
  1538. super().set_gguf_parameters()
  1539. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1540. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1541. assert self.block_count == len(self._num_kv_heads)
  1542. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1543. hparams = self.hparams
  1544. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1545. if "head_dim" in hparams:
  1546. rope_dim = hparams["head_dim"]
  1547. else:
  1548. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1549. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1550. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1551. if self.hparams["rope_scaling"].get("type") == "linear":
  1552. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1553. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1554. @staticmethod
  1555. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1556. if n_head_kv is not None and n_head != n_head_kv:
  1557. n_head = n_head_kv
  1558. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1559. .swapaxes(1, 2)
  1560. .reshape(weights.shape))
  1561. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1562. n_head = self.hparams["num_attention_heads"]
  1563. if bid is not None:
  1564. if "num_key_value_heads_per_layer" in self.hparams:
  1565. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1566. elif "block_configs" in self.hparams:
  1567. n_kv_head = self._num_kv_heads[bid]
  1568. n_head = self._num_heads[bid]
  1569. else:
  1570. n_kv_head = self.hparams.get("num_key_value_heads")
  1571. else:
  1572. n_kv_head = self.hparams.get("num_key_value_heads")
  1573. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1574. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1575. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1576. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1577. return [(self.map_tensor_name(name), data_torch)]
  1578. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1579. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1580. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1581. base = self.hparams.get("rope_theta", 10000.0)
  1582. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1583. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1584. factor = rope_scaling.get("factor", 8.0)
  1585. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1586. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1587. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1588. low_freq_wavelen = old_context_len / low_freq_factor
  1589. high_freq_wavelen = old_context_len / high_freq_factor
  1590. assert low_freq_wavelen != high_freq_wavelen
  1591. rope_factors = []
  1592. for freq in freqs:
  1593. wavelen = 2 * math.pi / freq
  1594. if wavelen < high_freq_wavelen:
  1595. rope_factors.append(1)
  1596. elif wavelen > low_freq_wavelen:
  1597. rope_factors.append(factor)
  1598. else:
  1599. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1600. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1601. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1602. def prepare_tensors(self):
  1603. super().prepare_tensors()
  1604. @Model.register("BitnetForCausalLM")
  1605. class BitnetModel(Model):
  1606. model_arch = gguf.MODEL_ARCH.BITNET
  1607. def set_vocab(self):
  1608. self._set_vocab_sentencepiece()
  1609. def set_gguf_parameters(self):
  1610. super().set_gguf_parameters()
  1611. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1612. self.gguf_writer.add_rope_scaling_factor(1.0)
  1613. def weight_quant(self, weight: Tensor) -> Tensor:
  1614. dtype = weight.dtype
  1615. weight = weight.float()
  1616. scale = weight.abs().mean().clamp(min=1e-5)
  1617. iscale = 1 / scale
  1618. # TODO: multiply by the scale directly instead of inverting it twice
  1619. # (this is also unnecessarily doubly inverted upstream)
  1620. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1621. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1622. return result.type(dtype)
  1623. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1624. new_name = self.map_tensor_name(name)
  1625. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1626. gguf.MODEL_TENSOR.ATTN_Q,
  1627. gguf.MODEL_TENSOR.ATTN_K,
  1628. gguf.MODEL_TENSOR.ATTN_V,
  1629. gguf.MODEL_TENSOR.ATTN_OUT,
  1630. gguf.MODEL_TENSOR.FFN_UP,
  1631. gguf.MODEL_TENSOR.FFN_DOWN,
  1632. gguf.MODEL_TENSOR.FFN_GATE,
  1633. ]):
  1634. # transform weight into 1/0/-1 (in fp32)
  1635. data_torch = self.weight_quant(data_torch)
  1636. yield (new_name, data_torch)
  1637. @Model.register("GrokForCausalLM")
  1638. class GrokModel(Model):
  1639. model_arch = gguf.MODEL_ARCH.GROK
  1640. def set_vocab(self):
  1641. self._set_vocab_sentencepiece()
  1642. def __init__(self, *args, **kwargs):
  1643. super().__init__(*args, **kwargs)
  1644. def set_gguf_parameters(self):
  1645. super().set_gguf_parameters()
  1646. _experts: list[dict[str, Tensor]] | None = None
  1647. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1648. # process the experts separately
  1649. if name.find(".moe.") != -1:
  1650. n_experts = self.hparams["num_local_experts"]
  1651. assert bid is not None
  1652. if self._experts is None:
  1653. self._experts = [{} for _ in range(self.block_count)]
  1654. self._experts[bid][name] = data_torch
  1655. if len(self._experts[bid]) >= n_experts * 3:
  1656. tensors: list[tuple[str, Tensor]] = []
  1657. # merge the experts into a single 3d tensor
  1658. for wid in ["linear", "linear_1", "linear_v"]:
  1659. datas: list[Tensor] = []
  1660. for xid in range(n_experts):
  1661. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1662. datas.append(self._experts[bid][ename])
  1663. del self._experts[bid][ename]
  1664. data_torch = torch.stack(datas, dim=0)
  1665. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1666. new_name = self.map_tensor_name(merged_name)
  1667. tensors.append((new_name, data_torch))
  1668. return tensors
  1669. else:
  1670. return []
  1671. return [(self.map_tensor_name(name), data_torch)]
  1672. @Model.register("DbrxForCausalLM")
  1673. class DbrxModel(Model):
  1674. model_arch = gguf.MODEL_ARCH.DBRX
  1675. def set_gguf_parameters(self):
  1676. ffn_config = self.hparams["ffn_config"]
  1677. attn_config = self.hparams["attn_config"]
  1678. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1679. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1680. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1681. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1682. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1683. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1684. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1685. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1686. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1687. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1688. self.gguf_writer.add_layer_norm_eps(1e-5)
  1689. self.gguf_writer.add_file_type(self.ftype)
  1690. logger.info(f"gguf: file type = {self.ftype}")
  1691. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1692. del bid # unused
  1693. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1694. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1695. n_embd = self.hparams["d_model"]
  1696. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1697. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1698. # But llama.cpp moe graph works differently
  1699. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1700. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1701. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1702. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1703. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1704. experts = False
  1705. for exp_tensor_name in exp_tensor_names.keys():
  1706. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1707. experts = True
  1708. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1709. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1710. data_torch = data_torch.permute(*permute_tensor)
  1711. break
  1712. # map tensor names
  1713. # In MoE models the ffn tensors are typically most of the model weights,
  1714. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1715. # Every other model has the weight names ending in .weight,
  1716. # let's assume that is the convention which is not the case for dbrx:
  1717. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1718. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1719. return [(new_name, data_torch)]
  1720. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1721. del name, new_name, bid # unused
  1722. return n_dims > 1
  1723. @Model.register("MiniCPMForCausalLM")
  1724. class MiniCPMModel(Model):
  1725. model_arch = gguf.MODEL_ARCH.MINICPM
  1726. def set_gguf_parameters(self):
  1727. super().set_gguf_parameters()
  1728. embedding_scale = float(self.hparams["scale_emb"])
  1729. self.gguf_writer.add_embedding_scale(embedding_scale)
  1730. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1731. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1732. self.gguf_writer.add_residual_scale(residual_scale)
  1733. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1734. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1735. self.gguf_writer.add_logit_scale(logit_scale)
  1736. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1737. if self.hparams.get("rope_scaling") is not None:
  1738. if self.hparams["rope_scaling"].get("type") == "longrope":
  1739. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1740. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1741. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1742. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1743. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1744. if rope_scaling is not None:
  1745. long_factors = rope_scaling.get('long_factor', None)
  1746. short_factors = rope_scaling.get('short_factor', None)
  1747. if long_factors is None or short_factors is None:
  1748. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1749. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1750. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1751. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1752. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1753. def set_vocab(self):
  1754. self._set_vocab_sentencepiece()
  1755. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1756. del bid # unused
  1757. n_head = self.hparams["num_attention_heads"]
  1758. n_kv_head = self.hparams.get("num_key_value_heads")
  1759. # HF models permute some of the tensors, so we need to undo that
  1760. if name.endswith(("q_proj.weight")):
  1761. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1762. if name.endswith(("k_proj.weight")):
  1763. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1764. return [(self.map_tensor_name(name), data_torch)]
  1765. @Model.register("MiniCPM3ForCausalLM")
  1766. class MiniCPM3Model(Model):
  1767. model_arch = gguf.MODEL_ARCH.MINICPM3
  1768. def set_gguf_parameters(self):
  1769. hparams = self.hparams
  1770. self.gguf_writer.add_file_type(self.ftype)
  1771. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1772. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1773. self.gguf_writer.add_block_count(self.block_count)
  1774. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1775. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1776. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1777. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1778. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1779. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1780. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1781. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1782. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1783. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1784. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1785. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1786. if rope_scaling is not None:
  1787. rope_dims = self.hparams["qk_rope_head_dim"]
  1788. long_factors = rope_scaling.get('long_factor', None)
  1789. short_factors = rope_scaling.get('short_factor', None)
  1790. if long_factors is None or short_factors is None:
  1791. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1792. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1793. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1794. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1795. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1796. def set_vocab(self):
  1797. self._set_vocab_sentencepiece()
  1798. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1799. if n_kv_head is not None and n_head != n_kv_head:
  1800. n_head //= n_kv_head
  1801. return (
  1802. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1803. .swapaxes(1, 2)
  1804. .reshape(weights.shape)
  1805. )
  1806. @Model.register("QWenLMHeadModel")
  1807. class QwenModel(Model):
  1808. model_arch = gguf.MODEL_ARCH.QWEN
  1809. @staticmethod
  1810. def token_bytes_to_string(b):
  1811. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1812. byte_encoder = bytes_to_unicode()
  1813. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1814. @staticmethod
  1815. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1816. parts = [bytes([b]) for b in token]
  1817. while True:
  1818. min_idx = None
  1819. min_rank = None
  1820. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1821. rank = mergeable_ranks.get(pair[0] + pair[1])
  1822. if rank is not None and (min_rank is None or rank < min_rank):
  1823. min_idx = i
  1824. min_rank = rank
  1825. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1826. break
  1827. assert min_idx is not None
  1828. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1829. return parts
  1830. def set_vocab(self):
  1831. self._set_vocab_qwen()
  1832. def set_gguf_parameters(self):
  1833. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1834. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1835. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1836. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1837. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1838. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1839. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1840. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1841. self.gguf_writer.add_file_type(self.ftype)
  1842. @Model.register("Qwen2ForCausalLM")
  1843. class Qwen2Model(Model):
  1844. model_arch = gguf.MODEL_ARCH.QWEN2
  1845. def set_vocab(self):
  1846. try:
  1847. self._set_vocab_sentencepiece()
  1848. except FileNotFoundError:
  1849. self._set_vocab_gpt2()
  1850. def set_gguf_parameters(self):
  1851. super().set_gguf_parameters()
  1852. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1853. if self.hparams["rope_scaling"].get("type") == "yarn":
  1854. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1855. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1856. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1857. @Model.register("Qwen2VLForConditionalGeneration")
  1858. class Qwen2VLModel(Model):
  1859. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1860. def set_gguf_parameters(self):
  1861. super().set_gguf_parameters()
  1862. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1863. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1864. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1865. def set_vocab(self):
  1866. try:
  1867. self._set_vocab_sentencepiece()
  1868. except FileNotFoundError:
  1869. self._set_vocab_gpt2()
  1870. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1871. for name, data in super().get_tensors():
  1872. if name.startswith("visual."):
  1873. continue
  1874. yield name, data
  1875. @Model.register("WavTokenizerDec")
  1876. class WavTokenizerDecModel(Model):
  1877. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1878. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1879. del bid # unused
  1880. if \
  1881. name.endswith("codebook.cluster_size") or \
  1882. name.endswith("codebook.embed_avg") or \
  1883. name.endswith("codebook.inited"):
  1884. logger.debug(f"Skipping {name!r}")
  1885. return []
  1886. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1887. return [(self.map_tensor_name(name), data_torch)]
  1888. def set_vocab(self):
  1889. self._set_vocab_none()
  1890. def set_gguf_parameters(self):
  1891. super().set_gguf_parameters()
  1892. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1893. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1894. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1895. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1896. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1897. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1898. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1899. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1900. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1901. self.gguf_writer.add_causal_attention(False)
  1902. @Model.register("Qwen2MoeForCausalLM")
  1903. class Qwen2MoeModel(Model):
  1904. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1905. def set_gguf_parameters(self):
  1906. super().set_gguf_parameters()
  1907. if (n_experts := self.hparams.get("num_experts")) is not None:
  1908. self.gguf_writer.add_expert_count(n_experts)
  1909. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1910. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1911. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1912. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1913. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1914. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1915. _experts: list[dict[str, Tensor]] | None = None
  1916. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1917. # process the experts separately
  1918. if name.find("experts") != -1:
  1919. n_experts = self.hparams["num_experts"]
  1920. assert bid is not None
  1921. if self._experts is None:
  1922. self._experts = [{} for _ in range(self.block_count)]
  1923. self._experts[bid][name] = data_torch
  1924. if len(self._experts[bid]) >= n_experts * 3:
  1925. tensors: list[tuple[str, Tensor]] = []
  1926. # merge the experts into a single 3d tensor
  1927. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1928. datas: list[Tensor] = []
  1929. for xid in range(n_experts):
  1930. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1931. datas.append(self._experts[bid][ename])
  1932. del self._experts[bid][ename]
  1933. data_torch = torch.stack(datas, dim=0)
  1934. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1935. new_name = self.map_tensor_name(merged_name)
  1936. tensors.append((new_name, data_torch))
  1937. return tensors
  1938. else:
  1939. return []
  1940. return [(self.map_tensor_name(name), data_torch)]
  1941. def prepare_tensors(self):
  1942. super().prepare_tensors()
  1943. if self._experts is not None:
  1944. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1945. experts = [k for d in self._experts for k in d.keys()]
  1946. if len(experts) > 0:
  1947. raise ValueError(f"Unprocessed experts: {experts}")
  1948. @Model.register("GPT2LMHeadModel")
  1949. class GPT2Model(Model):
  1950. model_arch = gguf.MODEL_ARCH.GPT2
  1951. def set_gguf_parameters(self):
  1952. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1953. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1954. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1955. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1956. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1957. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1958. self.gguf_writer.add_file_type(self.ftype)
  1959. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1960. del bid # unused
  1961. tensors: list[tuple[str, Tensor]] = []
  1962. # we don't need these
  1963. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1964. return tensors
  1965. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1966. data_torch = data_torch.transpose(1, 0)
  1967. new_name = self.map_tensor_name(name)
  1968. tensors.append((new_name, data_torch))
  1969. return tensors
  1970. @Model.register("PhiForCausalLM")
  1971. class Phi2Model(Model):
  1972. model_arch = gguf.MODEL_ARCH.PHI2
  1973. def set_gguf_parameters(self):
  1974. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1975. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1976. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1977. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1978. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1979. self.gguf_writer.add_embedding_length(n_embd)
  1980. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1981. self.gguf_writer.add_block_count(block_count)
  1982. self.gguf_writer.add_head_count(n_head)
  1983. self.gguf_writer.add_head_count_kv(n_head)
  1984. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1985. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1986. self.gguf_writer.add_file_type(self.ftype)
  1987. self.gguf_writer.add_add_bos_token(False)
  1988. @Model.register("Phi3ForCausalLM")
  1989. class Phi3MiniModel(Model):
  1990. model_arch = gguf.MODEL_ARCH.PHI3
  1991. def set_vocab(self):
  1992. # Phi-4 model uses GPT2Tokenizer
  1993. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1994. if tokenizer_config_file.is_file():
  1995. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1996. tokenizer_config_json = json.load(f)
  1997. tokenizer_class = tokenizer_config_json['tokenizer_class']
  1998. if tokenizer_class == 'GPT2Tokenizer':
  1999. return self._set_vocab_gpt2()
  2000. from sentencepiece import SentencePieceProcessor
  2001. tokenizer_path = self.dir_model / 'tokenizer.model'
  2002. if not tokenizer_path.is_file():
  2003. raise ValueError(f'Error: Missing {tokenizer_path}')
  2004. tokenizer = SentencePieceProcessor()
  2005. tokenizer.LoadFromFile(str(tokenizer_path))
  2006. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2007. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2008. scores: list[float] = [-10000.0] * vocab_size
  2009. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2010. for token_id in range(tokenizer.vocab_size()):
  2011. piece = tokenizer.IdToPiece(token_id)
  2012. text = piece.encode("utf-8")
  2013. score = tokenizer.GetScore(token_id)
  2014. toktype = SentencePieceTokenTypes.NORMAL
  2015. if tokenizer.IsUnknown(token_id):
  2016. toktype = SentencePieceTokenTypes.UNKNOWN
  2017. elif tokenizer.IsControl(token_id):
  2018. toktype = SentencePieceTokenTypes.CONTROL
  2019. elif tokenizer.IsUnused(token_id):
  2020. toktype = SentencePieceTokenTypes.UNUSED
  2021. elif tokenizer.IsByte(token_id):
  2022. toktype = SentencePieceTokenTypes.BYTE
  2023. tokens[token_id] = text
  2024. scores[token_id] = score
  2025. toktypes[token_id] = toktype
  2026. added_tokens_file = self.dir_model / 'added_tokens.json'
  2027. if added_tokens_file.is_file():
  2028. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2029. added_tokens_json = json.load(f)
  2030. for key in added_tokens_json:
  2031. token_id = added_tokens_json[key]
  2032. if token_id >= vocab_size:
  2033. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2034. continue
  2035. tokens[token_id] = key.encode("utf-8")
  2036. scores[token_id] = -1000.0
  2037. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2038. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2039. if tokenizer_config_file.is_file():
  2040. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2041. tokenizer_config_json = json.load(f)
  2042. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2043. for token_id, foken_data in added_tokens_decoder.items():
  2044. token_id = int(token_id)
  2045. token = foken_data["content"].encode("utf-8")
  2046. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2047. if tokens[token_id] != token:
  2048. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2049. tokens[token_id] = token
  2050. scores[token_id] = -1000.0
  2051. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2052. if foken_data.get("special"):
  2053. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2054. tokenizer_file = self.dir_model / 'tokenizer.json'
  2055. if tokenizer_file.is_file():
  2056. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2057. tokenizer_json = json.load(f)
  2058. added_tokens = tokenizer_json.get("added_tokens", [])
  2059. for foken_data in added_tokens:
  2060. token_id = int(foken_data["id"])
  2061. token = foken_data["content"].encode("utf-8")
  2062. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2063. if tokens[token_id] != token:
  2064. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2065. tokens[token_id] = token
  2066. scores[token_id] = -1000.0
  2067. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2068. if foken_data.get("special"):
  2069. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2070. self.gguf_writer.add_tokenizer_model("llama")
  2071. self.gguf_writer.add_tokenizer_pre("default")
  2072. self.gguf_writer.add_token_list(tokens)
  2073. self.gguf_writer.add_token_scores(scores)
  2074. self.gguf_writer.add_token_types(toktypes)
  2075. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2076. special_vocab.add_to_gguf(self.gguf_writer)
  2077. def set_gguf_parameters(self):
  2078. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2079. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2080. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2081. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2082. rms_eps = self.find_hparam(["rms_norm_eps"])
  2083. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2084. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2085. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2086. rope_dims = int(rot_pct * n_embd) // n_head
  2087. self.gguf_writer.add_context_length(max_pos_embds)
  2088. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2089. self.gguf_writer.add_embedding_length(n_embd)
  2090. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2091. self.gguf_writer.add_block_count(block_count)
  2092. self.gguf_writer.add_head_count(n_head)
  2093. self.gguf_writer.add_head_count_kv(n_head_kv)
  2094. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2095. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2096. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2097. self.gguf_writer.add_file_type(self.ftype)
  2098. sliding_window = self.hparams.get("sliding_window")
  2099. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2100. if sliding_window is None:
  2101. sliding_window = 0
  2102. self.gguf_writer.add_sliding_window(sliding_window)
  2103. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2104. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2105. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2106. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2107. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2108. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2109. rope_dims = int(rot_pct * n_embd) // n_head
  2110. # write rope scaling for long context (128k) model
  2111. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2112. if rope_scaling is None:
  2113. return
  2114. scale = max_pos_embds / orig_max_pos_embds
  2115. rope_scaling_type = rope_scaling.get('type', '').lower()
  2116. if len(rope_scaling_type) == 0:
  2117. raise KeyError('Missing the required key rope_scaling.type')
  2118. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2119. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2120. elif rope_scaling_type == 'yarn':
  2121. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2122. else:
  2123. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2124. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2125. long_factors = rope_scaling.get('long_factor', None)
  2126. short_factors = rope_scaling.get('short_factor', None)
  2127. if long_factors is None or short_factors is None:
  2128. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2129. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2130. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2131. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2132. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2133. @Model.register("PhiMoEForCausalLM")
  2134. class PhiMoeModel(Phi3MiniModel):
  2135. model_arch = gguf.MODEL_ARCH.PHIMOE
  2136. _experts: list[dict[str, Tensor]] | None = None
  2137. def set_gguf_parameters(self):
  2138. super().set_gguf_parameters()
  2139. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2140. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2141. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2142. # process the experts separately
  2143. if name.find("block_sparse_moe.experts") != -1:
  2144. n_experts = self.hparams["num_local_experts"]
  2145. assert bid is not None
  2146. if self._experts is None:
  2147. self._experts = [{} for _ in range(self.block_count)]
  2148. self._experts[bid][name] = data_torch
  2149. if len(self._experts[bid]) >= n_experts * 3:
  2150. tensors: list[tuple[str, Tensor]] = []
  2151. # merge the experts into a single 3d tensor
  2152. for w_name in ["w1", "w2", "w3"]:
  2153. datas: list[Tensor] = []
  2154. for xid in range(n_experts):
  2155. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2156. datas.append(self._experts[bid][ename])
  2157. del self._experts[bid][ename]
  2158. data_torch = torch.stack(datas, dim=0)
  2159. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2160. new_name = self.map_tensor_name(merged_name)
  2161. tensors.append((new_name, data_torch))
  2162. return tensors
  2163. else:
  2164. return []
  2165. return [(self.map_tensor_name(name), data_torch)]
  2166. def prepare_tensors(self):
  2167. super().prepare_tensors()
  2168. if self._experts is not None:
  2169. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2170. experts = [k for d in self._experts for k in d.keys()]
  2171. if len(experts) > 0:
  2172. raise ValueError(f"Unprocessed experts: {experts}")
  2173. @Model.register("PlamoForCausalLM")
  2174. class PlamoModel(Model):
  2175. model_arch = gguf.MODEL_ARCH.PLAMO
  2176. def set_vocab(self):
  2177. self._set_vocab_sentencepiece()
  2178. def set_gguf_parameters(self):
  2179. hparams = self.hparams
  2180. block_count = hparams["num_hidden_layers"]
  2181. self.gguf_writer.add_context_length(4096) # not in config.json
  2182. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2183. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2184. self.gguf_writer.add_block_count(block_count)
  2185. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2186. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2187. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2188. self.gguf_writer.add_file_type(self.ftype)
  2189. def shuffle_attn_q_weight(self, data_torch):
  2190. assert data_torch.size() == (5120, 5120)
  2191. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2192. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2193. data_torch = torch.reshape(data_torch, (5120, 5120))
  2194. return data_torch
  2195. def shuffle_attn_output_weight(self, data_torch):
  2196. assert data_torch.size() == (5120, 5120)
  2197. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2198. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2199. data_torch = torch.reshape(data_torch, (5120, 5120))
  2200. return data_torch
  2201. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2202. del bid # unused
  2203. new_name = self.map_tensor_name(name)
  2204. # shuffle for broadcasting of gqa in ggml_mul_mat
  2205. if new_name.endswith("attn_q.weight"):
  2206. data_torch = self.shuffle_attn_q_weight(data_torch)
  2207. elif new_name.endswith("attn_output.weight"):
  2208. data_torch = self.shuffle_attn_output_weight(data_torch)
  2209. return [(new_name, data_torch)]
  2210. @Model.register("CodeShellForCausalLM")
  2211. class CodeShellModel(Model):
  2212. model_arch = gguf.MODEL_ARCH.CODESHELL
  2213. def set_gguf_parameters(self):
  2214. block_count = self.hparams["n_layer"]
  2215. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2216. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2217. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2218. self.gguf_writer.add_block_count(block_count)
  2219. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2220. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2221. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2222. self.gguf_writer.add_file_type(self.ftype)
  2223. self.gguf_writer.add_rope_freq_base(10000.0)
  2224. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2225. self.gguf_writer.add_rope_scaling_factor(1.0)
  2226. _has_tok_embd = False
  2227. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2228. del bid # unused
  2229. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2230. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2231. new_name = self.map_tensor_name(name)
  2232. # assuming token_embd.weight is seen before output.weight
  2233. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2234. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2235. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2236. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2237. self.tensor_names.remove("transformer.wte.weight")
  2238. elif new_name == tok_embd_name:
  2239. self._has_tok_embd = True
  2240. return [(new_name, data_torch)]
  2241. @Model.register("InternLM2ForCausalLM")
  2242. class InternLM2Model(Model):
  2243. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2244. def set_vocab(self):
  2245. # (TODO): Is there a better way?
  2246. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2247. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2248. # recognized as an empty string in C++.
  2249. from sentencepiece import SentencePieceProcessor
  2250. from sentencepiece import sentencepiece_model_pb2 as model
  2251. tokenizer_path = self.dir_model / 'tokenizer.model'
  2252. tokens: list[bytes] = []
  2253. scores: list[float] = []
  2254. toktypes: list[int] = []
  2255. if not tokenizer_path.is_file():
  2256. logger.error(f'Error: Missing {tokenizer_path}')
  2257. sys.exit(1)
  2258. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2259. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2260. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2261. tokenizer = SentencePieceProcessor()
  2262. tokenizer.LoadFromFile(str(tokenizer_path))
  2263. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2264. for token_id in range(vocab_size):
  2265. piece = tokenizer.IdToPiece(token_id)
  2266. text = piece.encode("utf-8")
  2267. score = tokenizer.GetScore(token_id)
  2268. if text == b"\x00":
  2269. # (TODO): fixme
  2270. # Hack here and replace the \x00 characters.
  2271. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2272. text = "🐉".encode("utf-8")
  2273. toktype = SentencePieceTokenTypes.NORMAL
  2274. if tokenizer.IsUnknown(token_id):
  2275. toktype = SentencePieceTokenTypes.UNKNOWN
  2276. elif tokenizer.IsControl(token_id):
  2277. toktype = SentencePieceTokenTypes.CONTROL
  2278. elif tokenizer.IsUnused(token_id):
  2279. toktype = SentencePieceTokenTypes.UNUSED
  2280. elif tokenizer.IsByte(token_id):
  2281. toktype = SentencePieceTokenTypes.BYTE
  2282. # take care of ununsed raw token
  2283. if piece.startswith('[UNUSED'):
  2284. toktype = SentencePieceTokenTypes.UNUSED
  2285. tokens.append(text)
  2286. scores.append(score)
  2287. toktypes.append(toktype)
  2288. added_tokens_file = self.dir_model / 'added_tokens.json'
  2289. if added_tokens_file.is_file():
  2290. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2291. added_tokens_json = json.load(f)
  2292. for key in added_tokens_json:
  2293. tokens.append(key.encode("utf-8"))
  2294. scores.append(-1000.0)
  2295. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2296. chat_eos_token = '<|im_end|>'
  2297. chat_eos_token_id = None
  2298. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2299. if tokenizer_config_file.is_file():
  2300. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2301. tokenizer_config_json = json.load(f)
  2302. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2303. for token_id, foken_data in added_tokens_decoder.items():
  2304. token_id = int(token_id)
  2305. token = foken_data["content"]
  2306. if token == chat_eos_token:
  2307. chat_eos_token_id = token_id
  2308. token = token.encode("utf-8")
  2309. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2310. if tokens[token_id] != token:
  2311. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2312. tokens[token_id] = token
  2313. scores[token_id] = -1000.0
  2314. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2315. if foken_data.get("special"):
  2316. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2317. tokenizer_file = self.dir_model / 'tokenizer.json'
  2318. if tokenizer_file.is_file():
  2319. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2320. tokenizer_json = json.load(f)
  2321. added_tokens = tokenizer_json.get("added_tokens", [])
  2322. for foken_data in added_tokens:
  2323. token_id = int(foken_data["id"])
  2324. token = foken_data["content"]
  2325. if token == chat_eos_token:
  2326. chat_eos_token_id = token_id
  2327. token = token.encode("utf-8")
  2328. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2329. if tokens[token_id] != token:
  2330. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2331. tokens[token_id] = token
  2332. scores[token_id] = -1000.0
  2333. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2334. if foken_data.get("special"):
  2335. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2336. self.gguf_writer.add_tokenizer_model("llama")
  2337. self.gguf_writer.add_tokenizer_pre("default")
  2338. self.gguf_writer.add_token_list(tokens)
  2339. self.gguf_writer.add_token_scores(scores)
  2340. self.gguf_writer.add_token_types(toktypes)
  2341. self.gguf_writer.add_add_space_prefix(add_prefix)
  2342. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2343. old_eos = special_vocab.special_token_ids["eos"]
  2344. if chat_eos_token_id is not None:
  2345. # For the chat model, we replace the eos with '<|im_end|>'.
  2346. # TODO: this is a hack, should be fixed
  2347. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2348. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2349. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2350. " in chat mode so that the conversation can end normally.")
  2351. special_vocab.add_to_gguf(self.gguf_writer)
  2352. def set_gguf_parameters(self):
  2353. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2354. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2355. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2356. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2357. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2358. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2359. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2360. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2361. self.gguf_writer.add_file_type(self.ftype)
  2362. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2363. if self.hparams["rope_scaling"].get("type") == "linear":
  2364. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2365. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2366. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2367. num_heads = self.hparams["num_attention_heads"]
  2368. num_kv_heads = self.hparams["num_key_value_heads"]
  2369. n_embd = self.hparams["hidden_size"]
  2370. q_per_kv = num_heads // num_kv_heads
  2371. head_dim = n_embd // num_heads
  2372. num_groups = num_heads // q_per_kv
  2373. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2374. qkv = data_torch
  2375. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2376. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2377. # The model weights of q and k equire additional reshape.
  2378. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2379. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2380. v = v.reshape((-1, v.shape[-1]))
  2381. return [
  2382. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2383. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2384. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2385. ]
  2386. else:
  2387. return [(self.map_tensor_name(name), data_torch)]
  2388. @Model.register("InternLM3ForCausalLM")
  2389. class InternLM3Model(Model):
  2390. model_arch = gguf.MODEL_ARCH.LLAMA
  2391. def set_vocab(self):
  2392. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2393. self.gguf_writer.add_tokenizer_model("llama")
  2394. self.gguf_writer.add_tokenizer_pre("default")
  2395. self.gguf_writer.add_token_list(tokens)
  2396. self.gguf_writer.add_token_scores(scores)
  2397. self.gguf_writer.add_token_types(toktypes)
  2398. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2399. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2400. if tokenizer_config_file.is_file():
  2401. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2402. tokenizer_config_json = json.load(f)
  2403. if "add_prefix_space" in tokenizer_config_json:
  2404. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2405. if "added_tokens_decoder" in tokenizer_config_json:
  2406. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2407. if token_data.get("special"):
  2408. token_id = int(token_id)
  2409. token = token_data["content"]
  2410. special_vocab._set_special_token(token, token_id)
  2411. # update eos token
  2412. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2413. special_vocab.special_token_ids["eos"] = token_id
  2414. special_vocab.add_to_gguf(self.gguf_writer)
  2415. def set_gguf_parameters(self):
  2416. super().set_gguf_parameters()
  2417. hparams = self.hparams
  2418. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2419. if "head_dim" in hparams:
  2420. rope_dim = hparams["head_dim"]
  2421. else:
  2422. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2423. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2424. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2425. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2426. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2427. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2428. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2429. n_head = self.hparams["num_attention_heads"]
  2430. n_kv_head = self.hparams.get("num_key_value_heads")
  2431. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2432. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2433. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2434. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2435. return [(self.map_tensor_name(name), data_torch)]
  2436. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2437. class BertModel(Model):
  2438. model_arch = gguf.MODEL_ARCH.BERT
  2439. def __init__(self, *args, **kwargs):
  2440. super().__init__(*args, **kwargs)
  2441. self.vocab_size = None
  2442. def set_gguf_parameters(self):
  2443. super().set_gguf_parameters()
  2444. self.gguf_writer.add_causal_attention(False)
  2445. # get pooling path
  2446. pooling_path = None
  2447. module_path = self.dir_model / "modules.json"
  2448. if module_path.is_file():
  2449. with open(module_path, encoding="utf-8") as f:
  2450. modules = json.load(f)
  2451. for mod in modules:
  2452. if mod["type"] == "sentence_transformers.models.Pooling":
  2453. pooling_path = mod["path"]
  2454. break
  2455. # get pooling type
  2456. if pooling_path is not None:
  2457. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2458. pooling = json.load(f)
  2459. if pooling["pooling_mode_mean_tokens"]:
  2460. pooling_type = gguf.PoolingType.MEAN
  2461. elif pooling["pooling_mode_cls_token"]:
  2462. pooling_type = gguf.PoolingType.CLS
  2463. else:
  2464. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2465. self.gguf_writer.add_pooling_type(pooling_type)
  2466. def set_vocab(self):
  2467. tokens, toktypes, tokpre = self.get_vocab_base()
  2468. self.vocab_size = len(tokens)
  2469. # we need this to validate the size of the token_type embeddings
  2470. # though currently we are passing all zeros to the token_type embeddings
  2471. # "Sequence A" or "Sequence B"
  2472. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2473. # convert to phantom space vocab
  2474. def phantom(tok):
  2475. if tok.startswith("[") and tok.endswith("]"):
  2476. return tok
  2477. if tok.startswith("##"):
  2478. return tok[2:]
  2479. return "\u2581" + tok
  2480. tokens = list(map(phantom, tokens))
  2481. # add vocab to gguf
  2482. self.gguf_writer.add_tokenizer_model("bert")
  2483. self.gguf_writer.add_tokenizer_pre(tokpre)
  2484. self.gguf_writer.add_token_list(tokens)
  2485. self.gguf_writer.add_token_types(toktypes)
  2486. # handle special tokens
  2487. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2488. special_vocab.add_to_gguf(self.gguf_writer)
  2489. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2490. del bid # unused
  2491. if name.startswith("bert."):
  2492. name = name[5:]
  2493. if name.endswith(".gamma"):
  2494. name = name[:-6] + ".weight"
  2495. if name.endswith(".beta"):
  2496. name = name[:-5] + ".bias"
  2497. # we are only using BERT for embeddings so we don't need the pooling layer
  2498. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2499. return [] # we don't need these
  2500. if name.startswith("cls.predictions"):
  2501. return []
  2502. if name.startswith("cls.seq_relationship"):
  2503. return []
  2504. return [(self.map_tensor_name(name), data_torch)]
  2505. @Model.register("RobertaModel")
  2506. class RobertaModel(BertModel):
  2507. model_arch = gguf.MODEL_ARCH.BERT
  2508. def __init__(self, *args, **kwargs):
  2509. super().__init__(*args, **kwargs)
  2510. # we need the pad_token_id to know how to chop down position_embd matrix
  2511. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2512. self._position_offset = 1 + pad_token_id
  2513. if "max_position_embeddings" in self.hparams:
  2514. self.hparams["max_position_embeddings"] -= self._position_offset
  2515. else:
  2516. self._position_offset = None
  2517. def set_vocab(self):
  2518. """Support BPE tokenizers for roberta models"""
  2519. bpe_tok_path = self.dir_model / "tokenizer.json"
  2520. if bpe_tok_path.exists():
  2521. self._set_vocab_gpt2()
  2522. self.gguf_writer.add_add_bos_token(True)
  2523. self.gguf_writer.add_add_eos_token(True)
  2524. # we need this to validate the size of the token_type embeddings
  2525. # though currently we are passing all zeros to the token_type embeddings
  2526. # "Sequence A" or "Sequence B"
  2527. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2528. else:
  2529. return super().set_vocab()
  2530. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2531. # if name starts with "roberta.", remove the prefix
  2532. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2533. if name.startswith("roberta."):
  2534. name = name[8:]
  2535. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2536. if name == "embeddings.position_embeddings.weight":
  2537. if self._position_offset is not None:
  2538. data_torch = data_torch[self._position_offset:,:]
  2539. return super().modify_tensors(data_torch, name, bid)
  2540. @Model.register("NomicBertModel")
  2541. class NomicBertModel(BertModel):
  2542. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2543. def __init__(self, *args, **kwargs):
  2544. super().__init__(*args, **kwargs)
  2545. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2546. self.hparams["n_ctx"] = 2048
  2547. # SwigLU activation
  2548. assert self.hparams["activation_function"] == "swiglu"
  2549. # this doesn't do anything in the HF version
  2550. assert self.hparams["causal"] is False
  2551. # no bias tensors
  2552. assert self.hparams["qkv_proj_bias"] is False
  2553. assert self.hparams["mlp_fc1_bias"] is False
  2554. assert self.hparams["mlp_fc2_bias"] is False
  2555. # norm at end of layer
  2556. assert self.hparams["prenorm"] is False
  2557. # standard RoPE
  2558. assert self.hparams["rotary_emb_fraction"] == 1.0
  2559. assert self.hparams["rotary_emb_interleaved"] is False
  2560. assert self.hparams["rotary_emb_scale_base"] is None
  2561. def set_gguf_parameters(self):
  2562. super().set_gguf_parameters()
  2563. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2564. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2565. class XLMRobertaModel(BertModel):
  2566. model_arch = gguf.MODEL_ARCH.BERT
  2567. def __init__(self, *args, **kwargs):
  2568. super().__init__(*args, **kwargs)
  2569. # we need the pad_token_id to know how to chop down position_embd matrix
  2570. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2571. self._position_offset = 1 + pad_token_id
  2572. if "max_position_embeddings" in self.hparams:
  2573. self.hparams["max_position_embeddings"] -= self._position_offset
  2574. else:
  2575. self._position_offset = None
  2576. def set_vocab(self):
  2577. # to avoid TypeError: Descriptors cannot be created directly
  2578. # exception when importing sentencepiece_model_pb2
  2579. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2580. from sentencepiece import SentencePieceProcessor
  2581. from sentencepiece import sentencepiece_model_pb2 as model
  2582. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2583. if not tokenizer_path.is_file():
  2584. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2585. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2586. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2587. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2588. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2589. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2590. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2591. tokenizer = SentencePieceProcessor()
  2592. tokenizer.LoadFromFile(str(tokenizer_path))
  2593. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2594. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2595. scores: list[float] = [-10000.0] * vocab_size
  2596. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2597. for token_id in range(tokenizer.vocab_size()):
  2598. piece = tokenizer.IdToPiece(token_id)
  2599. text = piece.encode("utf-8")
  2600. score = tokenizer.GetScore(token_id)
  2601. toktype = SentencePieceTokenTypes.NORMAL
  2602. if tokenizer.IsUnknown(token_id):
  2603. toktype = SentencePieceTokenTypes.UNKNOWN
  2604. elif tokenizer.IsControl(token_id):
  2605. toktype = SentencePieceTokenTypes.CONTROL
  2606. elif tokenizer.IsUnused(token_id):
  2607. toktype = SentencePieceTokenTypes.UNUSED
  2608. elif tokenizer.IsByte(token_id):
  2609. toktype = SentencePieceTokenTypes.BYTE
  2610. tokens[token_id] = text
  2611. scores[token_id] = score
  2612. toktypes[token_id] = toktype
  2613. if vocab_size > len(tokens):
  2614. pad_count = vocab_size - len(tokens)
  2615. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2616. for i in range(1, pad_count + 1):
  2617. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2618. scores.append(-1000.0)
  2619. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2620. # realign tokens (see HF tokenizer code)
  2621. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2622. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2623. toktypes = [
  2624. SentencePieceTokenTypes.CONTROL,
  2625. SentencePieceTokenTypes.CONTROL,
  2626. SentencePieceTokenTypes.CONTROL,
  2627. SentencePieceTokenTypes.UNKNOWN,
  2628. ] + toktypes[3:-1]
  2629. self.gguf_writer.add_tokenizer_model("t5")
  2630. self.gguf_writer.add_tokenizer_pre("default")
  2631. self.gguf_writer.add_token_list(tokens)
  2632. self.gguf_writer.add_token_scores(scores)
  2633. self.gguf_writer.add_token_types(toktypes)
  2634. self.gguf_writer.add_add_space_prefix(add_prefix)
  2635. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2636. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2637. if precompiled_charsmap:
  2638. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2639. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2640. special_vocab.add_to_gguf(self.gguf_writer)
  2641. self.gguf_writer.add_add_bos_token(True)
  2642. self.gguf_writer.add_add_eos_token(True)
  2643. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2644. # if name starts with "roberta.", remove the prefix
  2645. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2646. if name.startswith("roberta."):
  2647. name = name[8:]
  2648. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2649. if name == "embeddings.position_embeddings.weight":
  2650. if self._position_offset is not None:
  2651. data_torch = data_torch[self._position_offset:,:]
  2652. return super().modify_tensors(data_torch, name, bid)
  2653. @Model.register("GemmaForCausalLM")
  2654. class GemmaModel(Model):
  2655. model_arch = gguf.MODEL_ARCH.GEMMA
  2656. def set_vocab(self):
  2657. self._set_vocab_sentencepiece()
  2658. # TODO: these special tokens should be exported only for the CodeGemma family
  2659. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2660. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2661. special_vocab._set_special_token("prefix", 67)
  2662. special_vocab._set_special_token("suffix", 69)
  2663. special_vocab._set_special_token("middle", 68)
  2664. special_vocab._set_special_token("fsep", 70)
  2665. special_vocab._set_special_token("eot", 107)
  2666. special_vocab.chat_template = None # do not add it twice
  2667. special_vocab.add_to_gguf(self.gguf_writer)
  2668. self.gguf_writer.add_add_space_prefix(False)
  2669. def set_gguf_parameters(self):
  2670. hparams = self.hparams
  2671. block_count = hparams["num_hidden_layers"]
  2672. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2673. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2674. self.gguf_writer.add_block_count(block_count)
  2675. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2676. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2677. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2678. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2679. self.gguf_writer.add_key_length(hparams["head_dim"])
  2680. self.gguf_writer.add_value_length(hparams["head_dim"])
  2681. self.gguf_writer.add_file_type(self.ftype)
  2682. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2683. del bid # unused
  2684. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2685. # To prevent errors, skip loading lm_head.weight.
  2686. if name == "lm_head.weight":
  2687. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2688. return []
  2689. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2690. if name.endswith("norm.weight"):
  2691. data_torch = data_torch + 1
  2692. return [(self.map_tensor_name(name), data_torch)]
  2693. @Model.register("Gemma2ForCausalLM")
  2694. class Gemma2Model(Model):
  2695. model_arch = gguf.MODEL_ARCH.GEMMA2
  2696. def set_vocab(self):
  2697. self._set_vocab_sentencepiece()
  2698. self.gguf_writer.add_add_space_prefix(False)
  2699. def set_gguf_parameters(self):
  2700. hparams = self.hparams
  2701. block_count = hparams["num_hidden_layers"]
  2702. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2703. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2704. self.gguf_writer.add_block_count(block_count)
  2705. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2706. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2707. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2708. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2709. self.gguf_writer.add_key_length(hparams["head_dim"])
  2710. self.gguf_writer.add_value_length(hparams["head_dim"])
  2711. self.gguf_writer.add_file_type(self.ftype)
  2712. self.gguf_writer.add_attn_logit_softcapping(
  2713. self.hparams["attn_logit_softcapping"]
  2714. )
  2715. self.gguf_writer.add_final_logit_softcapping(
  2716. self.hparams["final_logit_softcapping"]
  2717. )
  2718. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2720. del bid # unused
  2721. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2722. # To prevent errors, skip loading lm_head.weight.
  2723. if name == "lm_head.weight":
  2724. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2725. return []
  2726. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2727. if name.endswith("norm.weight"):
  2728. data_torch = data_torch + 1
  2729. return [(self.map_tensor_name(name), data_torch)]
  2730. @Model.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2731. class Gemma3Model(Model):
  2732. model_arch = gguf.MODEL_ARCH.GEMMA3
  2733. has_vision: bool = False
  2734. # we need to merge the text_config into the root level of hparams
  2735. def __init__(self, *args, **kwargs):
  2736. hparams = Model.load_hparams(kwargs["dir_model"])
  2737. if "text_config" in hparams:
  2738. hparams = {**hparams, **hparams["text_config"]}
  2739. kwargs["hparams"] = hparams
  2740. super().__init__(*args, **kwargs)
  2741. if "vision_config" in hparams:
  2742. logger.info("Has vision encoder, but it will be ignored")
  2743. self.has_vision = True
  2744. def write(self):
  2745. super().write()
  2746. if self.has_vision:
  2747. logger.info("NOTE: this script only convert the language model to GGUF")
  2748. logger.info(" for the vision model, please use gemma3_convert_encoder_to_gguf.py")
  2749. def set_vocab(self):
  2750. self._set_vocab_sentencepiece()
  2751. self.gguf_writer.add_add_space_prefix(False)
  2752. def set_gguf_parameters(self):
  2753. hparams = self.hparams
  2754. block_count = hparams["num_hidden_layers"]
  2755. # some default values are not specified in the hparams
  2756. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  2757. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2758. self.gguf_writer.add_block_count(block_count)
  2759. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2760. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  2761. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  2762. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  2763. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  2764. self.gguf_writer.add_file_type(self.ftype)
  2765. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  2766. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  2767. assert hparams.get("attn_logit_softcapping") is None
  2768. assert hparams.get("final_logit_softcapping") is None
  2769. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  2770. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  2771. if hparams.get("rope_scaling") is not None:
  2772. assert hparams["rope_scaling"]["rope_type"] == "linear"
  2773. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  2774. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2775. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  2776. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2777. del bid # unused
  2778. if name.startswith("language_model."):
  2779. name = name.replace("language_model.", "")
  2780. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2781. or name.startswith("multimodal_projector.") or name.startswith("vision_model."): # this is for old HF model, should be removed later
  2782. # ignore vision tensors
  2783. return []
  2784. # remove OOV (out-of-vocabulary) rows in token_embd
  2785. if "embed_tokens.weight" in name:
  2786. vocab = self._create_vocab_sentencepiece()
  2787. tokens = vocab[0]
  2788. data_torch = data_torch[:len(tokens)]
  2789. # ref code in Gemma3RMSNorm
  2790. # output = output * (1.0 + self.weight.float())
  2791. if name.endswith("norm.weight"):
  2792. data_torch = data_torch + 1
  2793. return [(self.map_tensor_name(name), data_torch)]
  2794. @Model.register("Starcoder2ForCausalLM")
  2795. class StarCoder2Model(Model):
  2796. model_arch = gguf.MODEL_ARCH.STARCODER2
  2797. @Model.register("Rwkv6ForCausalLM")
  2798. class Rwkv6Model(Model):
  2799. model_arch = gguf.MODEL_ARCH.RWKV6
  2800. def set_vocab(self):
  2801. self._set_vocab_rwkv_world()
  2802. def set_gguf_parameters(self):
  2803. block_count = self.hparams["num_hidden_layers"]
  2804. head_size = self.hparams["head_size"]
  2805. hidden_size = self.hparams["hidden_size"]
  2806. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2807. rescale_every_n_layers = self.hparams["rescale_every"]
  2808. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2809. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2810. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2811. # RWKV isn't context limited
  2812. self.gguf_writer.add_context_length(1048576)
  2813. self.gguf_writer.add_embedding_length(hidden_size)
  2814. self.gguf_writer.add_block_count(block_count)
  2815. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2816. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2817. self.gguf_writer.add_wkv_head_size(head_size)
  2818. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2819. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2820. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2821. self.gguf_writer.add_file_type(self.ftype)
  2822. # required by llama.cpp, unused
  2823. self.gguf_writer.add_head_count(0)
  2824. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2825. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2826. new_name = self.map_tensor_name(name)
  2827. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2828. new_name += ".weight"
  2829. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2830. data_torch = data_torch.transpose(0, 1)
  2831. if new_name.endswith("time_mix_w2.weight"):
  2832. data_torch = data_torch.permute(0, 2, 1)
  2833. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2834. data_torch = data_torch.squeeze()
  2835. try:
  2836. rescale_every_n_layers = self.hparams["rescale_every"]
  2837. if rescale_every_n_layers > 0:
  2838. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2839. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2840. except KeyError:
  2841. pass
  2842. # concat time_mix_lerp weights to reduce some cpu overhead
  2843. # also reduces the number of tensors in the model
  2844. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  2845. try:
  2846. self.lerp_weights[bid][new_name] = data_torch
  2847. except KeyError:
  2848. self.lerp_weights[bid] = {new_name: data_torch}
  2849. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  2850. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2851. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  2852. yield (new_name, data)
  2853. return
  2854. yield (new_name, data_torch)
  2855. @Model.register("RWKV6Qwen2ForCausalLM")
  2856. class RWKV6Qwen2Model(Rwkv6Model):
  2857. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  2858. def set_vocab(self):
  2859. try:
  2860. self._set_vocab_sentencepiece()
  2861. except FileNotFoundError:
  2862. self._set_vocab_gpt2()
  2863. def set_gguf_parameters(self):
  2864. block_count = self.hparams["num_hidden_layers"]
  2865. num_attention_heads = self.hparams["num_attention_heads"]
  2866. num_key_value_heads = self.hparams["num_key_value_heads"]
  2867. hidden_size = self.hparams["hidden_size"]
  2868. head_size = hidden_size // num_attention_heads
  2869. rms_norm_eps = self.hparams["rms_norm_eps"]
  2870. intermediate_size = self.hparams["intermediate_size"]
  2871. time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
  2872. time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
  2873. # RWKV isn't context limited
  2874. self.gguf_writer.add_context_length(1048576)
  2875. self.gguf_writer.add_embedding_length(hidden_size)
  2876. self.gguf_writer.add_block_count(block_count)
  2877. self.gguf_writer.add_wkv_head_size(head_size)
  2878. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2879. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2880. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2881. self.gguf_writer.add_file_type(self.ftype)
  2882. # special parameters for time_mixing in RWKV6QWEN2
  2883. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2884. self.gguf_writer.add_token_shift_count(1)
  2885. # RWKV6QWEN2 use grouped key/value like GQA
  2886. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  2887. # required by llama.cpp, unused
  2888. self.gguf_writer.add_head_count(0)
  2889. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2890. for new_name, data in super().modify_tensors(data_torch, name, bid):
  2891. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  2892. data = data.view(5, -1, data.shape[-1])
  2893. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  2894. # permute them here to avoid code changes
  2895. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  2896. if "w2" in new_name:
  2897. data = data.view(5, -1, data.shape[-1])
  2898. yield (new_name, data)
  2899. continue
  2900. yield (new_name, data)
  2901. @Model.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  2902. class Rwkv7Model(Model):
  2903. model_arch = gguf.MODEL_ARCH.RWKV7
  2904. def set_vocab(self):
  2905. self._set_vocab_rwkv_world()
  2906. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  2907. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  2908. def set_gguf_parameters(self):
  2909. block_count = self.hparams["num_hidden_layers"]
  2910. try:
  2911. head_size = self.hparams["head_size"]
  2912. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2913. except KeyError:
  2914. head_size = self.hparams["head_dim"]
  2915. layer_norm_eps = self.hparams["norm_eps"]
  2916. hidden_size = self.hparams["hidden_size"]
  2917. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  2918. # ICLR: In-Context-Learning-Rate
  2919. try:
  2920. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2921. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2922. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2923. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2924. except KeyError:
  2925. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2926. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2927. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2928. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2929. # RWKV isn't context limited
  2930. self.gguf_writer.add_context_length(1048576)
  2931. self.gguf_writer.add_embedding_length(hidden_size)
  2932. self.gguf_writer.add_block_count(block_count)
  2933. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2934. self.gguf_writer.add_wkv_head_size(head_size)
  2935. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  2936. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  2937. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  2938. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  2939. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2940. self.gguf_writer.add_file_type(self.ftype)
  2941. # required by llama.cpp, unused
  2942. self.gguf_writer.add_head_count(0)
  2943. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2944. lora_needs_transpose: bool = True
  2945. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2946. # unify tensor names here to make life easier
  2947. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  2948. name = name.replace("self_attn", "attention").replace("attn", "attention")
  2949. name = name.replace("time_mixer.", "")
  2950. # lora layer names in fla-hub's impl
  2951. if "_lora.lora" in name:
  2952. self.lora_needs_transpose = False
  2953. name = name.replace("_lora.lora.0.weight", "1.weight")
  2954. name = name.replace("_lora.lora.2.weight", "2.weight")
  2955. name = name.replace("_lora.lora.2.bias", "0.weight")
  2956. name = name.replace("feed_forward_norm", "ln2")
  2957. name = name.replace("g_norm", "ln_x")
  2958. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  2959. # some models have dummy v0/v1/v2 on first layer while others don't
  2960. # ignore them all since they are not used
  2961. return
  2962. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  2963. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  2964. if bid is not None and "attention.x_" in name:
  2965. if "attention.x_x" in name:
  2966. # already concatenated
  2967. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2968. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  2969. yield (new_name, data)
  2970. else:
  2971. try:
  2972. self.lerp_weights[bid][name] = data_torch
  2973. except KeyError:
  2974. self.lerp_weights[bid] = {name: data_torch}
  2975. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  2976. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2977. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  2978. yield (new_name, data)
  2979. return
  2980. else:
  2981. data_torch = data_torch.squeeze()
  2982. new_name = self.map_tensor_name(name)
  2983. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2984. new_name += ".weight"
  2985. if self.lora_needs_transpose and any(
  2986. new_name.endswith(t) for t in [
  2987. "time_mix_w1.weight", "time_mix_w2.weight",
  2988. "time_mix_a1.weight", "time_mix_a2.weight",
  2989. "time_mix_v1.weight", "time_mix_v2.weight",
  2990. "time_mix_g1.weight", "time_mix_g2.weight",
  2991. ]
  2992. ):
  2993. data_torch = data_torch.transpose(0, 1)
  2994. if 'r_k' in new_name:
  2995. data_torch = data_torch.flatten()
  2996. if bid == 0 and "time_mix_a" in new_name:
  2997. # dummy v0/v1/v2 on first layer
  2998. # easist way to make llama happy
  2999. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3000. yield (new_name, data_torch)
  3001. @Model.register("RwkvHybridForCausalLM")
  3002. class ARwkv7Model(Rwkv7Model):
  3003. model_arch = gguf.MODEL_ARCH.ARWKV7
  3004. def set_vocab(self):
  3005. try:
  3006. self._set_vocab_sentencepiece()
  3007. except FileNotFoundError:
  3008. self._set_vocab_gpt2()
  3009. def set_gguf_parameters(self):
  3010. block_count = self.hparams["num_hidden_layers"]
  3011. hidden_size = self.hparams["hidden_size"]
  3012. head_size = self.hparams["head_size"]
  3013. rms_norm_eps = self.hparams["rms_norm_eps"]
  3014. intermediate_size = self.hparams["intermediate_size"]
  3015. wkv_has_gate = self.hparams["wkv_has_gate"]
  3016. assert self.hparams["wkv_version"] == 7
  3017. # ICLR: In-Context-Learning-Rate
  3018. lora_rank_decay = 64
  3019. lora_rank_iclr = 64
  3020. lora_rank_value_residual_mix = 32
  3021. lora_rank_gate = 128 if wkv_has_gate else 0
  3022. # RWKV isn't context limited
  3023. self.gguf_writer.add_context_length(1048576)
  3024. self.gguf_writer.add_embedding_length(hidden_size)
  3025. self.gguf_writer.add_block_count(block_count)
  3026. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3027. self.gguf_writer.add_wkv_head_size(head_size)
  3028. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3029. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3030. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3031. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3032. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3033. self.gguf_writer.add_file_type(self.ftype)
  3034. self.gguf_writer.add_token_shift_count(1)
  3035. # required by llama.cpp, unused
  3036. self.gguf_writer.add_head_count(0)
  3037. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3038. class MambaModel(Model):
  3039. model_arch = gguf.MODEL_ARCH.MAMBA
  3040. def set_vocab(self):
  3041. vocab_size = self.hparams["vocab_size"]
  3042. # Round vocab size to next multiple of 8
  3043. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3044. # pad using ceiling division
  3045. # ref: https://stackoverflow.com/a/17511341/22827863
  3046. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3047. self.hparams["vocab_size"] = vocab_size
  3048. if (self.dir_model / "tokenizer.json").is_file():
  3049. self._set_vocab_gpt2()
  3050. elif (self.dir_model / "tokenizer.model").is_file():
  3051. self._set_vocab_sentencepiece()
  3052. else:
  3053. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3054. self._set_vocab_builtin("gpt-neox", vocab_size)
  3055. def set_gguf_parameters(self):
  3056. d_model = self.find_hparam(["hidden_size", "d_model"])
  3057. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3058. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3059. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3060. # ceiling division
  3061. # ref: https://stackoverflow.com/a/17511341/22827863
  3062. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3063. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3064. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3065. use_dt_b_c_norm = False
  3066. # For falconmamba we do apply RMS norm on B / DT and C layers
  3067. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3068. use_dt_b_c_norm = True
  3069. # Fail early for models which don't have a block expansion factor of 2
  3070. assert d_inner == 2 * d_model
  3071. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3072. self.gguf_writer.add_embedding_length(d_model)
  3073. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3074. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3075. self.gguf_writer.add_block_count(self.block_count)
  3076. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3077. self.gguf_writer.add_ssm_inner_size(d_inner)
  3078. self.gguf_writer.add_ssm_state_size(d_state)
  3079. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3080. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3081. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3082. self.gguf_writer.add_file_type(self.ftype)
  3083. _tok_embd = None
  3084. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3085. del bid # unused
  3086. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3087. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3088. new_name = self.map_tensor_name(name)
  3089. if name.endswith(".A_log"):
  3090. logger.debug("A_log --> A ==> " + new_name)
  3091. data_torch = -torch.exp(data_torch)
  3092. # assuming token_embd.weight is seen before output.weight
  3093. if self._tok_embd is not None and new_name == output_name:
  3094. if torch.equal(self._tok_embd, data_torch):
  3095. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3096. return []
  3097. elif new_name == tok_embd_name:
  3098. self._tok_embd = data_torch
  3099. return [(new_name, data_torch)]
  3100. @Model.register("CohereForCausalLM")
  3101. class CommandR2Model(Model):
  3102. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3103. def __init__(self, *args, **kwargs):
  3104. super().__init__(*args, **kwargs)
  3105. # max_position_embeddings = 8192 in config.json but model was actually
  3106. # trained on 128k context length
  3107. # aya-23 models don't have model_max_length specified
  3108. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3109. def set_gguf_parameters(self):
  3110. super().set_gguf_parameters()
  3111. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3112. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3113. @Model.register("Cohere2ForCausalLM")
  3114. class Cohere2Model(Model):
  3115. model_arch = gguf.MODEL_ARCH.COHERE2
  3116. def set_gguf_parameters(self):
  3117. super().set_gguf_parameters()
  3118. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3119. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3120. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3121. rotary_pct = self.hparams["rotary_pct"]
  3122. hidden_size = self.hparams["hidden_size"]
  3123. num_attention_heads = self.hparams["num_attention_heads"]
  3124. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3125. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3126. @Model.register("OlmoForCausalLM")
  3127. @Model.register("OLMoForCausalLM")
  3128. class OlmoModel(Model):
  3129. model_arch = gguf.MODEL_ARCH.OLMO
  3130. def set_gguf_parameters(self):
  3131. super().set_gguf_parameters()
  3132. self.gguf_writer.add_layer_norm_eps(1e-5)
  3133. clip_qkv = self.hparams.get("clip_qkv")
  3134. if clip_qkv is not None:
  3135. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3136. # Same as super class, but permuting q_proj, k_proj
  3137. # Copied from: LlamaModel
  3138. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3139. del bid # unused
  3140. n_head = self.hparams["num_attention_heads"]
  3141. n_kv_head = self.hparams.get("num_key_value_heads")
  3142. if name.endswith("q_proj.weight"):
  3143. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3144. if name.endswith("k_proj.weight"):
  3145. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3146. return [(self.map_tensor_name(name), data_torch)]
  3147. @Model.register("Olmo2ForCausalLM")
  3148. class Olmo2Model(Model):
  3149. model_arch = gguf.MODEL_ARCH.OLMO2
  3150. @Model.register("OlmoeForCausalLM")
  3151. class OlmoeModel(Model):
  3152. model_arch = gguf.MODEL_ARCH.OLMOE
  3153. def set_gguf_parameters(self):
  3154. super().set_gguf_parameters()
  3155. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3156. if (n_experts := self.hparams.get("num_experts")) is not None:
  3157. self.gguf_writer.add_expert_count(n_experts)
  3158. _experts: list[dict[str, Tensor]] | None = None
  3159. # Copied from: Qwen2MoeModel
  3160. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3161. # process the experts separately
  3162. if name.find("experts") != -1:
  3163. n_experts = self.hparams["num_experts"]
  3164. assert bid is not None
  3165. if self._experts is None:
  3166. self._experts = [{} for _ in range(self.block_count)]
  3167. self._experts[bid][name] = data_torch
  3168. if len(self._experts[bid]) >= n_experts * 3:
  3169. tensors: list[tuple[str, Tensor]] = []
  3170. # merge the experts into a single 3d tensor
  3171. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3172. datas: list[Tensor] = []
  3173. for xid in range(n_experts):
  3174. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3175. datas.append(self._experts[bid][ename])
  3176. del self._experts[bid][ename]
  3177. data_torch = torch.stack(datas, dim=0)
  3178. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3179. new_name = self.map_tensor_name(merged_name)
  3180. tensors.append((new_name, data_torch))
  3181. return tensors
  3182. else:
  3183. return []
  3184. return [(self.map_tensor_name(name), data_torch)]
  3185. # Copied from: Qwen2MoeModel
  3186. def prepare_tensors(self):
  3187. super().prepare_tensors()
  3188. if self._experts is not None:
  3189. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3190. experts = [k for d in self._experts for k in d.keys()]
  3191. if len(experts) > 0:
  3192. raise ValueError(f"Unprocessed experts: {experts}")
  3193. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  3194. class JinaBertV2Model(BertModel):
  3195. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3196. def __init__(self, *args, **kwargs):
  3197. super().__init__(*args, **kwargs)
  3198. self.intermediate_size = self.hparams["intermediate_size"]
  3199. def get_tensors(self):
  3200. for name, data in super().get_tensors():
  3201. if 'gated_layer' in name:
  3202. d1 = data[:self.intermediate_size, :]
  3203. name1 = name.replace('gated_layers', 'gated_layers_w')
  3204. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3205. d2 = data[self.intermediate_size:, :]
  3206. name2 = name.replace('gated_layers', 'gated_layers_v')
  3207. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3208. yield name1, d1
  3209. yield name2, d2
  3210. continue
  3211. yield name, data
  3212. def set_vocab(self):
  3213. tokenizer_class = 'BertTokenizer'
  3214. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3215. tokenizer_class = json.load(f)['tokenizer_class']
  3216. if tokenizer_class == 'BertTokenizer':
  3217. super().set_vocab()
  3218. elif tokenizer_class == 'RobertaTokenizer':
  3219. self._set_vocab_gpt2()
  3220. self.gguf_writer.add_token_type_count(2)
  3221. else:
  3222. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3223. self.gguf_writer.add_add_bos_token(True)
  3224. self.gguf_writer.add_add_eos_token(True)
  3225. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3226. # if name starts with "bert.", remove the prefix
  3227. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3228. if name.startswith("bert."):
  3229. name = name[5:]
  3230. return super().modify_tensors(data_torch, name, bid)
  3231. @Model.register("OpenELMForCausalLM")
  3232. class OpenELMModel(Model):
  3233. model_arch = gguf.MODEL_ARCH.OPENELM
  3234. @staticmethod
  3235. def _make_divisible(v: float | int, divisor: int) -> int:
  3236. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3237. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3238. # Make sure that round down does not go down by more than 10%.
  3239. if new_v < 0.9 * v:
  3240. new_v += divisor
  3241. return new_v
  3242. def __init__(self, *args, **kwargs):
  3243. super().__init__(*args, **kwargs)
  3244. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3245. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3246. self._n_embd: int = self.hparams["model_dim"]
  3247. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3248. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3249. self._ffn_dims: list[int] = [
  3250. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3251. for multiplier in ffn_multipliers
  3252. ]
  3253. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3254. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3255. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3256. def set_vocab(self):
  3257. try:
  3258. self._set_vocab_sentencepiece()
  3259. except FileNotFoundError:
  3260. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3261. def set_gguf_parameters(self):
  3262. n_embd = self._n_embd
  3263. head_dim = self.hparams["head_dim"]
  3264. rot_pct = 1.0
  3265. assert self.block_count == len(self._num_kv_heads)
  3266. assert self.block_count == len(self._num_query_heads)
  3267. assert self.block_count == len(self._ffn_dims)
  3268. self.gguf_writer.add_block_count(self.block_count)
  3269. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3270. self.gguf_writer.add_embedding_length(n_embd)
  3271. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3272. self.gguf_writer.add_head_count(self._num_query_heads)
  3273. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3274. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3275. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3276. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3277. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3278. self.gguf_writer.add_key_length(head_dim)
  3279. self.gguf_writer.add_value_length(head_dim)
  3280. self.gguf_writer.add_file_type(self.ftype)
  3281. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3282. if "n_layers" in keys:
  3283. return self.hparams["num_transformer_layers"]
  3284. return super().find_hparam(keys, optional)
  3285. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3286. # split ff
  3287. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3288. ff_dim = self._ffn_dims[bid]
  3289. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3290. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3291. return
  3292. yield (self.map_tensor_name(name), data_torch)
  3293. @Model.register("ArcticForCausalLM")
  3294. class ArcticModel(Model):
  3295. model_arch = gguf.MODEL_ARCH.ARCTIC
  3296. def set_vocab(self):
  3297. # The reason for using a custom implementation here is that the
  3298. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3299. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3300. from sentencepiece import SentencePieceProcessor
  3301. tokenizer_path = self.dir_model / 'tokenizer.model'
  3302. if not tokenizer_path.is_file():
  3303. logger.error(f'Error: Missing {tokenizer_path}')
  3304. sys.exit(1)
  3305. # Read the whole vocabulary from the tokenizer.model file
  3306. tokenizer = SentencePieceProcessor()
  3307. tokenizer.LoadFromFile(str(tokenizer_path))
  3308. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3309. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3310. scores: list[float] = [-10000.0] * vocab_size
  3311. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3312. for token_id in range(tokenizer.vocab_size()):
  3313. piece = tokenizer.IdToPiece(token_id)
  3314. text = piece.encode("utf-8")
  3315. score = tokenizer.GetScore(token_id)
  3316. toktype = SentencePieceTokenTypes.NORMAL
  3317. if tokenizer.IsUnknown(token_id):
  3318. toktype = SentencePieceTokenTypes.UNKNOWN
  3319. elif tokenizer.IsControl(token_id):
  3320. toktype = SentencePieceTokenTypes.CONTROL
  3321. elif tokenizer.IsUnused(token_id):
  3322. toktype = SentencePieceTokenTypes.UNUSED
  3323. elif tokenizer.IsByte(token_id):
  3324. toktype = SentencePieceTokenTypes.BYTE
  3325. tokens[token_id] = text
  3326. scores[token_id] = score
  3327. toktypes[token_id] = toktype
  3328. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3329. # of information about added/redefined tokens and modify them accordingly.
  3330. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3331. if tokenizer_config_file.is_file():
  3332. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3333. tokenizer_config_json = json.load(f)
  3334. if "added_tokens_decoder" in tokenizer_config_json:
  3335. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3336. for token_id, token_json in added_tokens_decoder.items():
  3337. token_id = int(token_id)
  3338. if token_id >= vocab_size:
  3339. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3340. continue
  3341. token_content = token_json["content"]
  3342. token_type = SentencePieceTokenTypes.USER_DEFINED
  3343. token_score = -10000.0
  3344. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3345. # Set the score to 0.0 as in the original tokenizer.model
  3346. if ("special" in token_json) and token_json["special"]:
  3347. if token_content == tokenizer_config_json["unk_token"]:
  3348. token_type = SentencePieceTokenTypes.UNKNOWN
  3349. else:
  3350. token_type = SentencePieceTokenTypes.CONTROL
  3351. token_score = 0.0
  3352. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3353. tokens[token_id] = token_content.encode("utf-8")
  3354. toktypes[token_id] = token_type
  3355. scores[token_id] = token_score
  3356. self.gguf_writer.add_tokenizer_model("llama")
  3357. self.gguf_writer.add_tokenizer_pre("default")
  3358. self.gguf_writer.add_token_list(tokens)
  3359. self.gguf_writer.add_token_scores(scores)
  3360. self.gguf_writer.add_token_types(toktypes)
  3361. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3362. special_vocab.add_to_gguf(self.gguf_writer)
  3363. def set_gguf_parameters(self):
  3364. super().set_gguf_parameters()
  3365. hparams = self.hparams
  3366. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3367. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3368. _experts: list[dict[str, Tensor]] | None = None
  3369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3370. n_head = self.hparams["num_attention_heads"]
  3371. n_kv_head = self.hparams.get("num_key_value_heads")
  3372. if name.endswith("q_proj.weight"):
  3373. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3374. if name.endswith("k_proj.weight"):
  3375. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3376. # process the experts separately
  3377. if name.find("block_sparse_moe.experts") != -1:
  3378. n_experts = self.hparams["num_local_experts"]
  3379. assert bid is not None
  3380. if self._experts is None:
  3381. self._experts = [{} for _ in range(self.block_count)]
  3382. self._experts[bid][name] = data_torch
  3383. if len(self._experts[bid]) >= n_experts * 3:
  3384. tensors: list[tuple[str, Tensor]] = []
  3385. # merge the experts into a single 3d tensor
  3386. for wid in ["w1", "w2", "w3"]:
  3387. datas: list[Tensor] = []
  3388. for xid in range(n_experts):
  3389. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3390. datas.append(self._experts[bid][ename])
  3391. del self._experts[bid][ename]
  3392. data_torch = torch.stack(datas, dim=0)
  3393. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3394. new_name = self.map_tensor_name(merged_name)
  3395. tensors.append((new_name, data_torch))
  3396. return tensors
  3397. else:
  3398. return []
  3399. return [(self.map_tensor_name(name), data_torch)]
  3400. def prepare_tensors(self):
  3401. super().prepare_tensors()
  3402. if self._experts is not None:
  3403. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3404. experts = [k for d in self._experts for k in d.keys()]
  3405. if len(experts) > 0:
  3406. raise ValueError(f"Unprocessed experts: {experts}")
  3407. @Model.register("DeepseekForCausalLM")
  3408. class DeepseekModel(Model):
  3409. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3410. def set_vocab(self):
  3411. try:
  3412. self._set_vocab_sentencepiece()
  3413. except FileNotFoundError:
  3414. self._set_vocab_gpt2()
  3415. def set_gguf_parameters(self):
  3416. super().set_gguf_parameters()
  3417. hparams = self.hparams
  3418. if "head_dim" in hparams:
  3419. rope_dim = hparams["head_dim"]
  3420. else:
  3421. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3422. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3423. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3424. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3425. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3426. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3427. self.gguf_writer.add_expert_weights_scale(1.0)
  3428. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3429. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3430. _experts: list[dict[str, Tensor]] | None = None
  3431. @staticmethod
  3432. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3433. if n_head_kv is not None and n_head != n_head_kv:
  3434. n_head = n_head_kv
  3435. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3436. .swapaxes(1, 2)
  3437. .reshape(weights.shape))
  3438. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3439. n_head = self.hparams["num_attention_heads"]
  3440. n_kv_head = self.hparams.get("num_key_value_heads")
  3441. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3442. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3443. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3444. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3445. # process the experts separately
  3446. if name.find("mlp.experts") != -1:
  3447. n_experts = self.hparams["n_routed_experts"]
  3448. assert bid is not None
  3449. if self._experts is None:
  3450. self._experts = [{} for _ in range(self.block_count)]
  3451. self._experts[bid][name] = data_torch
  3452. if len(self._experts[bid]) >= n_experts * 3:
  3453. tensors: list[tuple[str, Tensor]] = []
  3454. # merge the experts into a single 3d tensor
  3455. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3456. datas: list[Tensor] = []
  3457. for xid in range(n_experts):
  3458. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3459. datas.append(self._experts[bid][ename])
  3460. del self._experts[bid][ename]
  3461. data_torch = torch.stack(datas, dim=0)
  3462. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3463. new_name = self.map_tensor_name(merged_name)
  3464. tensors.append((new_name, data_torch))
  3465. return tensors
  3466. else:
  3467. return []
  3468. return [(self.map_tensor_name(name), data_torch)]
  3469. def prepare_tensors(self):
  3470. super().prepare_tensors()
  3471. if self._experts is not None:
  3472. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3473. experts = [k for d in self._experts for k in d.keys()]
  3474. if len(experts) > 0:
  3475. raise ValueError(f"Unprocessed experts: {experts}")
  3476. @Model.register("DeepseekV2ForCausalLM")
  3477. @Model.register("DeepseekV3ForCausalLM")
  3478. class DeepseekV2Model(Model):
  3479. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3480. def set_vocab(self):
  3481. self._set_vocab_gpt2()
  3482. def set_gguf_parameters(self):
  3483. super().set_gguf_parameters()
  3484. hparams = self.hparams
  3485. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3486. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3487. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3488. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3489. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3490. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3491. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3492. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3493. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3494. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3495. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3496. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3497. if hparams["scoring_func"] == "sigmoid":
  3498. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3499. elif hparams["scoring_func"] == "softmax":
  3500. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3501. else:
  3502. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3503. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3504. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3505. if self.hparams["rope_scaling"].get("type") == "yarn":
  3506. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3507. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3508. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3509. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3510. _experts: list[dict[str, Tensor]] | None = None
  3511. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3512. # rename e_score_correction_bias tensors
  3513. if name.endswith("e_score_correction_bias"):
  3514. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3515. # skip Multi-Token Prediction (MTP) layers
  3516. block_count = self.hparams["num_hidden_layers"]
  3517. match = re.match(r"model.layers.(\d+)", name)
  3518. if match and int(match.group(1)) >= block_count:
  3519. return []
  3520. # process the experts separately
  3521. if name.find("mlp.experts") != -1:
  3522. n_experts = self.hparams["n_routed_experts"]
  3523. assert bid is not None
  3524. if self._experts is None:
  3525. self._experts = [{} for _ in range(self.block_count)]
  3526. self._experts[bid][name] = data_torch
  3527. if len(self._experts[bid]) >= n_experts * 3:
  3528. tensors: list[tuple[str, Tensor]] = []
  3529. # merge the experts into a single 3d tensor
  3530. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3531. datas: list[Tensor] = []
  3532. for xid in range(n_experts):
  3533. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3534. datas.append(self._experts[bid][ename])
  3535. del self._experts[bid][ename]
  3536. data_torch = torch.stack(datas, dim=0)
  3537. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3538. new_name = self.map_tensor_name(merged_name)
  3539. tensors.append((new_name, data_torch))
  3540. return tensors
  3541. else:
  3542. return []
  3543. return [(self.map_tensor_name(name), data_torch)]
  3544. def prepare_tensors(self):
  3545. super().prepare_tensors()
  3546. if self._experts is not None:
  3547. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3548. experts = [k for d in self._experts for k in d.keys()]
  3549. if len(experts) > 0:
  3550. raise ValueError(f"Unprocessed experts: {experts}")
  3551. @Model.register("T5WithLMHeadModel")
  3552. @Model.register("T5ForConditionalGeneration")
  3553. @Model.register("MT5ForConditionalGeneration")
  3554. @Model.register("UMT5ForConditionalGeneration")
  3555. class T5Model(Model):
  3556. model_arch = gguf.MODEL_ARCH.T5
  3557. def __init__(self, *args, **kwargs):
  3558. super().__init__(*args, **kwargs)
  3559. self.shared_token_embeddings_found = False
  3560. def set_vocab(self):
  3561. # to avoid TypeError: Descriptors cannot be created directly
  3562. # exception when importing sentencepiece_model_pb2
  3563. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3564. from sentencepiece import SentencePieceProcessor
  3565. from sentencepiece import sentencepiece_model_pb2 as model
  3566. tokenizer_path = self.dir_model / 'tokenizer.model'
  3567. # many older models use spiece.model tokenizer model filename
  3568. if not tokenizer_path.is_file():
  3569. tokenizer_path = self.dir_model / 'spiece.model'
  3570. if not tokenizer_path.is_file():
  3571. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3572. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3573. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3574. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3575. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3576. # assure the tokenizer model file name is correct
  3577. assert tokenizer_path.name == 'tokenizer.model'
  3578. return self._set_vocab_sentencepiece()
  3579. else:
  3580. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3581. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3582. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3583. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3584. tokenizer = SentencePieceProcessor()
  3585. tokenizer.LoadFromFile(str(tokenizer_path))
  3586. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3587. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3588. scores: list[float] = [-10000.0] * vocab_size
  3589. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3590. for token_id in range(tokenizer.vocab_size()):
  3591. piece = tokenizer.IdToPiece(token_id)
  3592. text = piece.encode("utf-8")
  3593. score = tokenizer.GetScore(token_id)
  3594. toktype = SentencePieceTokenTypes.NORMAL
  3595. if tokenizer.IsUnknown(token_id):
  3596. toktype = SentencePieceTokenTypes.UNKNOWN
  3597. elif tokenizer.IsControl(token_id):
  3598. toktype = SentencePieceTokenTypes.CONTROL
  3599. elif tokenizer.IsUnused(token_id):
  3600. toktype = SentencePieceTokenTypes.UNUSED
  3601. elif tokenizer.IsByte(token_id):
  3602. toktype = SentencePieceTokenTypes.BYTE
  3603. tokens[token_id] = text
  3604. scores[token_id] = score
  3605. toktypes[token_id] = toktype
  3606. added_tokens_file = self.dir_model / 'added_tokens.json'
  3607. if added_tokens_file.is_file():
  3608. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3609. added_tokens_json = json.load(f)
  3610. for key in added_tokens_json:
  3611. token_id = added_tokens_json[key]
  3612. if token_id >= vocab_size:
  3613. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3614. continue
  3615. tokens[token_id] = key.encode("utf-8")
  3616. scores[token_id] = -1000.0
  3617. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3618. if vocab_size > len(tokens):
  3619. pad_count = vocab_size - len(tokens)
  3620. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3621. for i in range(1, pad_count + 1):
  3622. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3623. scores.append(-1000.0)
  3624. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3625. self.gguf_writer.add_tokenizer_model("t5")
  3626. self.gguf_writer.add_tokenizer_pre("default")
  3627. self.gguf_writer.add_token_list(tokens)
  3628. self.gguf_writer.add_token_scores(scores)
  3629. self.gguf_writer.add_token_types(toktypes)
  3630. self.gguf_writer.add_add_space_prefix(add_prefix)
  3631. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3632. if precompiled_charsmap:
  3633. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3634. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3635. special_vocab.add_to_gguf(self.gguf_writer)
  3636. self.gguf_writer.add_add_bos_token(False)
  3637. self.gguf_writer.add_add_eos_token(True)
  3638. def set_gguf_parameters(self):
  3639. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3640. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3641. n_ctx = 512
  3642. self.gguf_writer.add_context_length(n_ctx)
  3643. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3644. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3645. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3646. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3647. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3648. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3649. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3650. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3651. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3652. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3653. self.gguf_writer.add_file_type(self.ftype)
  3654. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3655. del bid # unused
  3656. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3657. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3658. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3659. # and decoder and ignore the remaining ones.
  3660. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3661. if not self.shared_token_embeddings_found:
  3662. name = "shared.weight"
  3663. self.shared_token_embeddings_found = True
  3664. else:
  3665. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3666. return []
  3667. return [(self.map_tensor_name(name), data_torch)]
  3668. @Model.register("T5EncoderModel")
  3669. class T5EncoderModel(Model):
  3670. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3671. def __init__(self, *args, **kwargs):
  3672. super().__init__(*args, **kwargs)
  3673. self.shared_token_embeddings_found = False
  3674. def set_vocab(self):
  3675. # to avoid TypeError: Descriptors cannot be created directly
  3676. # exception when importing sentencepiece_model_pb2
  3677. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3678. from sentencepiece import SentencePieceProcessor
  3679. from sentencepiece import sentencepiece_model_pb2 as model
  3680. tokenizer_path = self.dir_model / 'tokenizer.model'
  3681. # many older models use spiece.model tokenizer model filename
  3682. if not tokenizer_path.is_file():
  3683. tokenizer_path = self.dir_model / 'spiece.model'
  3684. if not tokenizer_path.is_file():
  3685. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3686. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3687. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3688. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3689. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3690. # assure the tokenizer model file name is correct
  3691. assert tokenizer_path.name == 'tokenizer.model'
  3692. return self._set_vocab_sentencepiece()
  3693. else:
  3694. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3695. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3696. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3697. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3698. tokenizer = SentencePieceProcessor()
  3699. tokenizer.LoadFromFile(str(tokenizer_path))
  3700. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3701. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3702. scores: list[float] = [-10000.0] * vocab_size
  3703. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3704. for token_id in range(tokenizer.vocab_size()):
  3705. piece = tokenizer.IdToPiece(token_id)
  3706. text = piece.encode("utf-8")
  3707. score = tokenizer.GetScore(token_id)
  3708. toktype = SentencePieceTokenTypes.NORMAL
  3709. if tokenizer.IsUnknown(token_id):
  3710. toktype = SentencePieceTokenTypes.UNKNOWN
  3711. elif tokenizer.IsControl(token_id):
  3712. toktype = SentencePieceTokenTypes.CONTROL
  3713. elif tokenizer.IsUnused(token_id):
  3714. toktype = SentencePieceTokenTypes.UNUSED
  3715. elif tokenizer.IsByte(token_id):
  3716. toktype = SentencePieceTokenTypes.BYTE
  3717. tokens[token_id] = text
  3718. scores[token_id] = score
  3719. toktypes[token_id] = toktype
  3720. added_tokens_file = self.dir_model / 'added_tokens.json'
  3721. if added_tokens_file.is_file():
  3722. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3723. added_tokens_json = json.load(f)
  3724. for key in added_tokens_json:
  3725. token_id = added_tokens_json[key]
  3726. if token_id >= vocab_size:
  3727. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3728. continue
  3729. tokens[token_id] = key.encode("utf-8")
  3730. scores[token_id] = -1000.0
  3731. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3732. if vocab_size > len(tokens):
  3733. pad_count = vocab_size - len(tokens)
  3734. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3735. for i in range(1, pad_count + 1):
  3736. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3737. scores.append(-1000.0)
  3738. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3739. self.gguf_writer.add_tokenizer_model("t5")
  3740. self.gguf_writer.add_tokenizer_pre("default")
  3741. self.gguf_writer.add_token_list(tokens)
  3742. self.gguf_writer.add_token_scores(scores)
  3743. self.gguf_writer.add_token_types(toktypes)
  3744. self.gguf_writer.add_add_space_prefix(add_prefix)
  3745. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3746. if precompiled_charsmap:
  3747. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3748. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3749. special_vocab.add_to_gguf(self.gguf_writer)
  3750. self.gguf_writer.add_add_bos_token(False)
  3751. self.gguf_writer.add_add_eos_token(True)
  3752. def set_gguf_parameters(self):
  3753. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3754. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3755. n_ctx = 512
  3756. self.gguf_writer.add_context_length(n_ctx)
  3757. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3758. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3759. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3760. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3761. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3762. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3763. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3764. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3765. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3766. self.gguf_writer.add_file_type(self.ftype)
  3767. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3768. del bid # unused
  3769. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3770. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3771. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3772. # and decoder and ignore the remaining ones.
  3773. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3774. if not self.shared_token_embeddings_found:
  3775. name = "shared.weight"
  3776. self.shared_token_embeddings_found = True
  3777. else:
  3778. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3779. return []
  3780. return [(self.map_tensor_name(name), data_torch)]
  3781. @Model.register("JAISLMHeadModel")
  3782. class JaisModel(Model):
  3783. model_arch = gguf.MODEL_ARCH.JAIS
  3784. def __init__(self, *args, **kwargs):
  3785. super().__init__(*args, **kwargs)
  3786. # SwigLU activation
  3787. assert self.hparams["activation_function"] == "swiglu"
  3788. # ALiBi position embedding
  3789. assert self.hparams["position_embedding_type"] == "alibi"
  3790. # Embeddings scale
  3791. self.embeddings_scale = 1.0
  3792. if 'mup_embeddings_scale' in self.hparams:
  3793. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3794. elif 'embeddings_scale' in self.hparams:
  3795. self.embeddings_scale = self.hparams['embeddings_scale']
  3796. else:
  3797. assert False
  3798. self.width_scale = 1.0
  3799. if 'mup_output_alpha' in self.hparams:
  3800. assert 'mup_width_scale' in self.hparams
  3801. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3802. elif 'width_scale' in self.hparams:
  3803. self.width_scale = self.hparams['width_scale']
  3804. else:
  3805. assert False
  3806. self.max_alibi_bias = 8.0
  3807. def set_vocab(self):
  3808. self._set_vocab_gpt2()
  3809. def set_gguf_parameters(self):
  3810. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3811. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3812. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3813. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3814. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3815. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3816. self.gguf_writer.add_file_type(self.ftype)
  3817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3818. del bid # unused
  3819. tensors: list[tuple[str, Tensor]] = []
  3820. # we don't need these
  3821. if name.endswith((".attn.bias")):
  3822. return tensors
  3823. if name.endswith(("relative_pe.slopes")):
  3824. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3825. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3826. # but Jais's PyTorch model simply precalculates the slope values and places them
  3827. # in relative_pes.slopes
  3828. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3829. first_val = float(data_torch[0].item())
  3830. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3831. return tensors
  3832. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3833. data_torch = data_torch.transpose(1, 0)
  3834. new_name = self.map_tensor_name(name)
  3835. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3836. tensors.append((new_name, data_torch * self.embeddings_scale))
  3837. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3838. tensors.append((new_name, data_torch * self.width_scale))
  3839. else:
  3840. tensors.append((new_name, data_torch))
  3841. return tensors
  3842. def prepare_tensors(self):
  3843. super().prepare_tensors()
  3844. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3845. @Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  3846. class ChatGLMModel(Model):
  3847. model_arch = gguf.MODEL_ARCH.CHATGLM
  3848. def set_vocab_chatglm3(self):
  3849. dir_model = self.dir_model
  3850. hparams = self.hparams
  3851. tokens: list[bytes] = []
  3852. toktypes: list[int] = []
  3853. scores: list[float] = []
  3854. from transformers import AutoTokenizer
  3855. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3856. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3857. assert max(tokenizer.get_vocab().values()) < vocab_size
  3858. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3859. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3860. for token_id in range(vocab_size):
  3861. piece = tokenizer._convert_id_to_token(token_id)
  3862. if token_id == 0:
  3863. piece = "<unk>"
  3864. elif token_id == 1:
  3865. piece = "<bos>"
  3866. elif token_id == 2:
  3867. piece = "<eos>"
  3868. text = piece.encode("utf-8")
  3869. score = 0.0
  3870. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3871. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3872. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3873. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3874. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3875. if piece in special_tokens:
  3876. toktype = SentencePieceTokenTypes.CONTROL
  3877. elif len(piece) == 0:
  3878. text = f"[PAD{token_id}]".encode("utf-8")
  3879. toktype = SentencePieceTokenTypes.UNUSED
  3880. else:
  3881. toktype = SentencePieceTokenTypes.USER_DEFINED
  3882. tokens.append(text)
  3883. scores.append(score)
  3884. toktypes.append(toktype)
  3885. continue
  3886. toktype = SentencePieceTokenTypes.NORMAL
  3887. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3888. toktype = SentencePieceTokenTypes.UNKNOWN
  3889. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3890. toktype = SentencePieceTokenTypes.CONTROL
  3891. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3892. toktype = SentencePieceTokenTypes.UNUSED
  3893. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3894. toktype = SentencePieceTokenTypes.BYTE
  3895. tokens.append(text)
  3896. scores.append(score)
  3897. toktypes.append(toktype)
  3898. self.gguf_writer.add_tokenizer_model("llama")
  3899. # glm3 needs prefix and suffix formatted as:
  3900. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3901. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3902. self.gguf_writer.add_token_list(tokens)
  3903. self.gguf_writer.add_token_scores(scores)
  3904. self.gguf_writer.add_token_types(toktypes)
  3905. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3906. special_vocab.add_to_gguf(self.gguf_writer)
  3907. @staticmethod
  3908. def token_bytes_to_string(b):
  3909. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3910. byte_encoder = bytes_to_unicode()
  3911. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3912. @staticmethod
  3913. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3914. parts = [bytes([b]) for b in token]
  3915. while True:
  3916. min_idx = None
  3917. min_rank = None
  3918. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3919. rank = mergeable_ranks.get(pair[0] + pair[1])
  3920. if rank is not None and (min_rank is None or rank < min_rank):
  3921. min_idx = i
  3922. min_rank = rank
  3923. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3924. break
  3925. assert min_idx is not None
  3926. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3927. return parts
  3928. def set_vocab(self):
  3929. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3930. self.set_vocab_chatglm3()
  3931. return
  3932. dir_model = self.dir_model
  3933. hparams = self.hparams
  3934. tokens: list[str] = []
  3935. toktypes: list[int] = []
  3936. from transformers import AutoTokenizer
  3937. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3938. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  3939. assert max(tokenizer.get_vocab().values()) < vocab_size
  3940. tokens, toktypes, tokpre = self.get_vocab_base()
  3941. self.gguf_writer.add_tokenizer_model("gpt2")
  3942. self.gguf_writer.add_tokenizer_pre(tokpre)
  3943. self.gguf_writer.add_token_list(tokens)
  3944. self.gguf_writer.add_token_types(toktypes)
  3945. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  3946. # only add special tokens when they were not already loaded from config.json
  3947. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3948. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3949. # this one is usually not in config.json anyway
  3950. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3951. special_vocab.add_to_gguf(self.gguf_writer)
  3952. def set_gguf_parameters(self):
  3953. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3954. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3955. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  3956. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3957. self.gguf_writer.add_embedding_length(n_embed)
  3958. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  3959. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  3960. self.gguf_writer.add_head_count(n_head)
  3961. self.gguf_writer.add_head_count_kv(n_head_kv)
  3962. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  3963. self.gguf_writer.add_file_type(self.ftype)
  3964. if "attention_dim" in self.hparams:
  3965. rope_dim = self.hparams["attention_dim"]
  3966. else:
  3967. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3968. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  3969. self.gguf_writer.add_add_bos_token(False)
  3970. rope_freq = 10000
  3971. if "rope_ratio" in self.hparams:
  3972. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3973. self.gguf_writer.add_rope_freq_base(rope_freq)
  3974. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3975. del bid # unused
  3976. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  3977. return []
  3978. name = name.removeprefix("transformer.")
  3979. return [(self.map_tensor_name(name), data_torch)]
  3980. @Model.register("NemotronForCausalLM")
  3981. class NemotronModel(Model):
  3982. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3983. def set_vocab(self):
  3984. self._set_vocab_sentencepiece()
  3985. self.gguf_writer.add_pad_token_id(0)
  3986. self.gguf_writer.add_unk_token_id(1)
  3987. def set_gguf_parameters(self):
  3988. super().set_gguf_parameters()
  3989. hparams = self.hparams
  3990. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3991. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3992. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3993. # * Partial RoPE
  3994. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3995. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3996. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3997. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3998. # * RopeScaling for Nemotron
  3999. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4000. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4001. else:
  4002. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4003. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4004. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4005. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4006. # model.layers.{l}.input_layernorm.weight
  4007. # model.layers.{l}.post_attention_layernorm.weight
  4008. # model.norm.weight
  4009. if name.endswith("norm.weight"):
  4010. data_torch = data_torch + 1
  4011. return [(self.map_tensor_name(name), data_torch)]
  4012. @Model.register("ExaoneForCausalLM")
  4013. class ExaoneModel(Model):
  4014. model_arch = gguf.MODEL_ARCH.EXAONE
  4015. def set_gguf_parameters(self):
  4016. hparams = self.hparams
  4017. assert (hparams["activation_function"] == "silu")
  4018. max_position_embeddings = hparams["max_position_embeddings"]
  4019. embed_dim = hparams["hidden_size"]
  4020. num_heads = hparams["num_attention_heads"]
  4021. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4022. layer_norm_eps = hparams["layer_norm_epsilon"]
  4023. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4024. num_layers = hparams["num_layers"]
  4025. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4026. # attention_dropout_rate = hparams["attention_dropout"]
  4027. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4028. # embed_dropout_rate = hparams["embed_dropout"]
  4029. self.gguf_writer.add_embedding_length(embed_dim)
  4030. self.gguf_writer.add_head_count(num_heads)
  4031. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4032. self.gguf_writer.add_context_length(max_position_embeddings)
  4033. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4034. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4035. self.gguf_writer.add_block_count(num_layers)
  4036. self.gguf_writer.add_file_type(self.ftype)
  4037. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4038. self.gguf_writer.add_rope_freq_base(rope_theta)
  4039. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4040. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4041. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4042. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4043. if hparams["rope_scaling"].get("type") == "linear":
  4044. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4045. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4046. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4047. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4048. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4049. base = self.hparams.get("rope_theta", 10000.0)
  4050. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4051. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4052. factor = rope_scaling.get("factor", 8.0)
  4053. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4054. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4055. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4056. low_freq_wavelen = old_context_len / low_freq_factor
  4057. high_freq_wavelen = old_context_len / high_freq_factor
  4058. assert low_freq_wavelen != high_freq_wavelen
  4059. rope_factors = []
  4060. for freq in freqs:
  4061. wavelen = 2 * math.pi / freq
  4062. if wavelen < high_freq_wavelen:
  4063. rope_factors.append(1)
  4064. elif wavelen > low_freq_wavelen:
  4065. rope_factors.append(factor)
  4066. else:
  4067. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4068. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4069. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4070. @Model.register("GraniteForCausalLM")
  4071. class GraniteModel(LlamaModel):
  4072. """Conversion for IBM's GraniteForCausalLM"""
  4073. model_arch = gguf.MODEL_ARCH.GRANITE
  4074. def set_gguf_parameters(self):
  4075. """Granite uses standard llama parameters with the following differences:
  4076. - No head_dim support
  4077. - New multiplier params:
  4078. - attention_scale
  4079. - embedding_scale
  4080. - residual_scale
  4081. - logits_scaling
  4082. """
  4083. if head_dim := self.hparams.pop("head_dim", None):
  4084. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4085. super().set_gguf_parameters()
  4086. # NOTE: Convert _multiplier params to _scale params for naming
  4087. # consistency
  4088. if attention_scale := self.hparams.get("attention_multiplier"):
  4089. self.gguf_writer.add_attention_scale(attention_scale)
  4090. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4091. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4092. self.gguf_writer.add_embedding_scale(embedding_scale)
  4093. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4094. if residual_scale := self.hparams.get("residual_multiplier"):
  4095. self.gguf_writer.add_residual_scale(residual_scale)
  4096. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4097. if logits_scale := self.hparams.get("logits_scaling"):
  4098. self.gguf_writer.add_logit_scale(logits_scale)
  4099. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4100. @Model.register("GraniteMoeForCausalLM")
  4101. class GraniteMoeModel(GraniteModel):
  4102. """Conversion for IBM's GraniteMoeForCausalLM"""
  4103. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4104. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4105. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4106. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4107. the hidden size that is then split during forward. To keep compatibility
  4108. with existing mixtral support, we pull them apart here.
  4109. """
  4110. if name.endswith("block_sparse_moe.input_linear.weight"):
  4111. ffn_dim = self.hparams["intermediate_size"]
  4112. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4113. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4114. return [
  4115. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4116. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4117. ]
  4118. return super().modify_tensors(data_torch, name, bid)
  4119. @Model.register("ChameleonForConditionalGeneration")
  4120. @Model.register("ChameleonForCausalLM") # obsolete
  4121. class ChameleonModel(Model):
  4122. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4123. def set_gguf_parameters(self):
  4124. super().set_gguf_parameters()
  4125. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4126. def set_vocab(self):
  4127. self._set_vocab_gpt2()
  4128. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4129. # ignore image tokenizer for now
  4130. # TODO: remove this once image support is implemented for Chameleon
  4131. if name.startswith("model.vqmodel"):
  4132. return []
  4133. n_head = self.hparams["num_attention_heads"]
  4134. n_kv_head = self.hparams.get("num_key_value_heads")
  4135. hidden_dim = self.hparams.get("hidden_size")
  4136. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4137. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4138. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4139. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4140. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4141. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4142. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4143. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4144. return [(self.map_tensor_name(name), data_torch)]
  4145. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4146. @staticmethod
  4147. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4148. head_dim = hidden_dim // n_heads
  4149. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4150. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4151. return data_torch
  4152. ###### CONVERSION LOGIC ######
  4153. # tree of lazy tensors
  4154. class LazyTorchTensor(gguf.LazyBase):
  4155. _tensor_type = torch.Tensor
  4156. # to keep the type-checker happy
  4157. dtype: torch.dtype
  4158. shape: torch.Size
  4159. # only used when converting a torch.Tensor to a np.ndarray
  4160. _dtype_map: dict[torch.dtype, type] = {
  4161. torch.float16: np.float16,
  4162. torch.float32: np.float32,
  4163. }
  4164. # used for safetensors slices
  4165. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4166. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4167. _dtype_str_map: dict[str, torch.dtype] = {
  4168. "F64": torch.float64,
  4169. "F32": torch.float32,
  4170. "BF16": torch.bfloat16,
  4171. "F16": torch.float16,
  4172. # "U64": torch.uint64,
  4173. "I64": torch.int64,
  4174. # "U32": torch.uint32,
  4175. "I32": torch.int32,
  4176. # "U16": torch.uint16,
  4177. "I16": torch.int16,
  4178. "U8": torch.uint8,
  4179. "I8": torch.int8,
  4180. "BOOL": torch.bool,
  4181. "F8_E4M3": torch.float8_e4m3fn,
  4182. "F8_E5M2": torch.float8_e5m2,
  4183. }
  4184. def numpy(self) -> gguf.LazyNumpyTensor:
  4185. dtype = self._dtype_map[self.dtype]
  4186. return gguf.LazyNumpyTensor(
  4187. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4188. args=(self,),
  4189. func=(lambda s: s.numpy())
  4190. )
  4191. @classmethod
  4192. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4193. return torch.empty(size=shape, dtype=dtype, device="meta")
  4194. @classmethod
  4195. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4196. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4197. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4198. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4199. return cast(torch.Tensor, lazy)
  4200. @classmethod
  4201. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4202. del types # unused
  4203. if kwargs is None:
  4204. kwargs = {}
  4205. if func is torch.Tensor.numpy:
  4206. return args[0].numpy()
  4207. return cls._wrap_fn(func)(*args, **kwargs)
  4208. def parse_args() -> argparse.Namespace:
  4209. parser = argparse.ArgumentParser(
  4210. description="Convert a huggingface model to a GGML compatible file")
  4211. parser.add_argument(
  4212. "--vocab-only", action="store_true",
  4213. help="extract only the vocab",
  4214. )
  4215. parser.add_argument(
  4216. "--outfile", type=Path,
  4217. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4218. )
  4219. parser.add_argument(
  4220. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4221. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4222. )
  4223. parser.add_argument(
  4224. "--bigendian", action="store_true",
  4225. help="model is executed on big endian machine",
  4226. )
  4227. parser.add_argument(
  4228. "model", type=Path,
  4229. help="directory containing model file",
  4230. nargs="?",
  4231. )
  4232. parser.add_argument(
  4233. "--use-temp-file", action="store_true",
  4234. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4235. )
  4236. parser.add_argument(
  4237. "--no-lazy", action="store_true",
  4238. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4239. )
  4240. parser.add_argument(
  4241. "--model-name", type=str, default=None,
  4242. help="name of the model",
  4243. )
  4244. parser.add_argument(
  4245. "--verbose", action="store_true",
  4246. help="increase output verbosity",
  4247. )
  4248. parser.add_argument(
  4249. "--split-max-tensors", type=int, default=0,
  4250. help="max tensors in each split",
  4251. )
  4252. parser.add_argument(
  4253. "--split-max-size", type=str, default="0",
  4254. help="max size per split N(M|G)",
  4255. )
  4256. parser.add_argument(
  4257. "--dry-run", action="store_true",
  4258. help="only print out a split plan and exit, without writing any new files",
  4259. )
  4260. parser.add_argument(
  4261. "--no-tensor-first-split", action="store_true",
  4262. help="do not add tensors to the first split (disabled by default)"
  4263. )
  4264. parser.add_argument(
  4265. "--metadata", type=Path,
  4266. help="Specify the path for an authorship metadata override file"
  4267. )
  4268. parser.add_argument(
  4269. "--print-supported-models", action="store_true",
  4270. help="Print the supported models"
  4271. )
  4272. args = parser.parse_args()
  4273. if not args.print_supported_models and args.model is None:
  4274. parser.error("the following arguments are required: model")
  4275. return args
  4276. def split_str_to_n_bytes(split_str: str) -> int:
  4277. if split_str.endswith("K"):
  4278. n = int(split_str[:-1]) * 1000
  4279. elif split_str.endswith("M"):
  4280. n = int(split_str[:-1]) * 1000 * 1000
  4281. elif split_str.endswith("G"):
  4282. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4283. elif split_str.isnumeric():
  4284. n = int(split_str)
  4285. else:
  4286. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4287. if n < 0:
  4288. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4289. return n
  4290. def main() -> None:
  4291. args = parse_args()
  4292. if args.print_supported_models:
  4293. logger.error("Supported models:")
  4294. Model.print_registered_models()
  4295. sys.exit(0)
  4296. if args.verbose:
  4297. logging.basicConfig(level=logging.DEBUG)
  4298. else:
  4299. logging.basicConfig(level=logging.INFO)
  4300. dir_model = args.model
  4301. if not dir_model.is_dir():
  4302. logger.error(f'Error: {args.model} is not a directory')
  4303. sys.exit(1)
  4304. ftype_map: dict[str, gguf.LlamaFileType] = {
  4305. "f32": gguf.LlamaFileType.ALL_F32,
  4306. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4307. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4308. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4309. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4310. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4311. "auto": gguf.LlamaFileType.GUESSED,
  4312. }
  4313. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4314. if args.use_temp_file and is_split:
  4315. logger.error("Error: Cannot use temp file when splitting")
  4316. sys.exit(1)
  4317. if args.outfile is not None:
  4318. fname_out = args.outfile
  4319. else:
  4320. fname_out = dir_model
  4321. logger.info(f"Loading model: {dir_model.name}")
  4322. hparams = Model.load_hparams(dir_model)
  4323. with torch.inference_mode():
  4324. output_type = ftype_map[args.outtype]
  4325. model_architecture = hparams["architectures"][0]
  4326. try:
  4327. model_class = Model.from_model_architecture(model_architecture)
  4328. except NotImplementedError:
  4329. logger.error(f"Model {model_architecture} is not supported")
  4330. sys.exit(1)
  4331. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  4332. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4333. eager=args.no_lazy,
  4334. metadata_override=args.metadata, model_name=args.model_name,
  4335. split_max_tensors=args.split_max_tensors,
  4336. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4337. small_first_shard=args.no_tensor_first_split)
  4338. if args.vocab_only:
  4339. logger.info("Exporting model vocab...")
  4340. model_instance.write_vocab()
  4341. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4342. else:
  4343. logger.info("Exporting model...")
  4344. model_instance.write()
  4345. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4346. logger.info(f"Model successfully exported to {out_path}")
  4347. if __name__ == '__main__':
  4348. main()