glm4-moe.cpp 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. #include "models.h"
  2. llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  3. const int64_t n_embd_head = hparams.n_embd_head_v;
  4. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5. int sections[4];
  6. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  7. ggml_tensor * cur;
  8. ggml_tensor * inpL;
  9. inpL = build_inp_embd(model.tok_embd);
  10. bool use_mrope = hparams.use_mrope();
  11. if (ubatch.embd && !use_mrope) {
  12. // unfortunately, we need to forcefully stop here, to avoid users complaining about wrong results
  13. GGML_ABORT("This GGUF does not support multimodal. Please reconvert it.");
  14. }
  15. // inp_pos - contains the positions
  16. ggml_tensor * inp_pos = build_inp_pos();
  17. auto * inp_attn = build_attn_inp_kv();
  18. ggml_tensor * inp_out_ids = build_inp_out_ids();
  19. // Only process up to last layer (skip final NextN layer)
  20. // Final layer tensors are loaded but not processed in forward pass
  21. const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
  22. for (int il = 0; il < n_transformer_layers; ++il) {
  23. ggml_tensor * inpSA = inpL;
  24. // Pre-attention norm
  25. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  26. cb(cur, "attn_norm", il);
  27. // self-attention
  28. {
  29. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  30. if (model.layers[il].bq) {
  31. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  32. }
  33. cb(Qcur, "Qcur", il);
  34. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  35. if (model.layers[il].bk) {
  36. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  37. }
  38. cb(Kcur, "Kcur", il);
  39. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  40. if (model.layers[il].bv) {
  41. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  42. }
  43. cb(Vcur, "Vcur", il);
  44. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  45. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  46. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  47. // Apply Q/K norm if available (GLM-4.5 355B variant)
  48. if (model.layers[il].attn_q_norm) {
  49. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  50. cb(Qcur, "Qcur_normed", il);
  51. }
  52. if (model.layers[il].attn_k_norm) {
  53. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  54. cb(Kcur, "Kcur_normed", il);
  55. }
  56. if (use_mrope) {
  57. Qcur = ggml_rope_multi(ctx0, Qcur, inp_pos, nullptr,
  58. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  59. ext_factor, attn_factor, beta_fast, beta_slow);
  60. Kcur = ggml_rope_multi(ctx0, Kcur, inp_pos, nullptr,
  61. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  62. ext_factor, attn_factor, beta_fast, beta_slow);
  63. } else {
  64. // Normal RoPE
  65. Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot,
  66. rope_type, n_ctx_orig, freq_base, freq_scale,
  67. ext_factor, attn_factor, beta_fast, beta_slow);
  68. Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot,
  69. rope_type, n_ctx_orig, freq_base, freq_scale,
  70. ext_factor, attn_factor, beta_fast, beta_slow);
  71. }
  72. cb(Qcur, "Qcur", il);
  73. cb(Kcur, "Kcur", il);
  74. cb(Vcur, "Vcur", il);
  75. cur = build_attn(inp_attn,
  76. model.layers[il].wo, NULL,
  77. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  78. }
  79. if (il == n_transformer_layers - 1 && inp_out_ids) {
  80. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  81. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  82. }
  83. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  84. cb(ffn_inp, "ffn_inp", il);
  85. // Post-attention norm
  86. cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
  87. cb(cur, "post_attn_norm", il);
  88. // Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
  89. if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
  90. // Dense FFN layer
  91. cur = build_ffn(cur,
  92. model.layers[il].ffn_up, NULL, NULL,
  93. model.layers[il].ffn_gate, NULL, NULL,
  94. model.layers[il].ffn_down, NULL, NULL,
  95. NULL,
  96. LLM_FFN_SILU, LLM_FFN_PAR, il);
  97. cb(cur, "ffn_out", il);
  98. } else {
  99. // Process routed experts using existing MoE infrastructure
  100. ggml_tensor * routed_out = build_moe_ffn(cur,
  101. model.layers[il].ffn_gate_inp,
  102. model.layers[il].ffn_up_exps,
  103. model.layers[il].ffn_gate_exps,
  104. model.layers[il].ffn_down_exps,
  105. model.layers[il].ffn_exp_probs_b,
  106. n_expert, n_expert_used,
  107. LLM_FFN_SILU, hparams.expert_weights_norm,
  108. true, hparams.expert_weights_scale,
  109. (llama_expert_gating_func_type) hparams.expert_gating_func,
  110. il);
  111. cb(routed_out, "ffn_moe_out", il);
  112. // Process shared expert on original input
  113. ggml_tensor * shared_out = build_ffn(cur,
  114. model.layers[il].ffn_up_shexp, NULL, NULL,
  115. model.layers[il].ffn_gate_shexp, NULL, NULL,
  116. model.layers[il].ffn_down_shexp, NULL, NULL,
  117. NULL,
  118. LLM_FFN_SILU, LLM_FFN_PAR, il);
  119. cb(shared_out, "ffn_shexp_out", il);
  120. // Final output: routed_output + shared_output
  121. cur = ggml_add(ctx0, routed_out, shared_out);
  122. cb(cur, "ffn_out", il);
  123. }
  124. cur = ggml_add(ctx0, cur, ffn_inp);
  125. cur = build_cvec(cur, il);
  126. cb(cur, "l_out", il);
  127. // input for next layer
  128. inpL = cur;
  129. }
  130. cur = inpL;
  131. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  132. cb(cur, "result_norm", -1);
  133. res->t_embd = cur;
  134. // lm_head
  135. cur = build_lora_mm(model.output, cur);
  136. cb(cur, "result_output", -1);
  137. res->t_logits = cur;
  138. ggml_build_forward_expand(gf, cur);
  139. }