clip.cpp 154 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560
  1. #include "clip.h"
  2. #include "clip-impl.h"
  3. #include "clip-model.h"
  4. #include "clip-graph.h"
  5. #include "models/models.h"
  6. #include "ggml.h"
  7. #include "ggml-cpp.h"
  8. #include "ggml-alloc.h"
  9. #include "ggml-backend.h"
  10. #include "gguf.h"
  11. #include <cassert>
  12. #include <cmath>
  13. #include <cstdlib>
  14. #include <cstring>
  15. #include <fstream>
  16. #include <map>
  17. #include <stdexcept>
  18. #include <unordered_set>
  19. #include <vector>
  20. #include <cinttypes>
  21. #include <limits>
  22. #include <array>
  23. #include <functional>
  24. struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL};
  25. //#define CLIP_DEBUG_FUNCTIONS
  26. #ifdef CLIP_DEBUG_FUNCTIONS
  27. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  28. std::ofstream file(filename, std::ios::binary);
  29. if (!file.is_open()) {
  30. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  31. return;
  32. }
  33. // PPM header: P6 format, width, height, and max color value
  34. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  35. // Write pixel data
  36. for (size_t i = 0; i < img.buf.size(); i += 3) {
  37. // PPM expects binary data in RGB format, which matches our image buffer
  38. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  39. }
  40. file.close();
  41. }
  42. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  43. std::ofstream file(filename, std::ios::binary);
  44. if (!file.is_open()) {
  45. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  46. return;
  47. }
  48. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  49. int bytesPerPixel = 3;
  50. int widthInBytes = img.nx * bytesPerPixel;
  51. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  52. int stride = widthInBytes + paddingAmount;
  53. // Bitmap file header
  54. unsigned char fileHeader[14] = {
  55. 'B','M', // Signature
  56. 0,0,0,0, // Image file size in bytes
  57. 0,0,0,0, // Reserved
  58. 54,0,0,0 // Start of pixel array
  59. };
  60. // Total file size
  61. fileSize = 54 + (stride * img.ny);
  62. fileHeader[2] = (unsigned char)(fileSize);
  63. fileHeader[3] = (unsigned char)(fileSize >> 8);
  64. fileHeader[4] = (unsigned char)(fileSize >> 16);
  65. fileHeader[5] = (unsigned char)(fileSize >> 24);
  66. // Bitmap information header (BITMAPINFOHEADER)
  67. unsigned char infoHeader[40] = {
  68. 40,0,0,0, // Size of this header (40 bytes)
  69. 0,0,0,0, // Image width
  70. 0,0,0,0, // Image height
  71. 1,0, // Number of color planes
  72. 24,0, // Bits per pixel
  73. 0,0,0,0, // No compression
  74. 0,0,0,0, // Image size (can be 0 for no compression)
  75. 0,0,0,0, // X pixels per meter (not specified)
  76. 0,0,0,0, // Y pixels per meter (not specified)
  77. 0,0,0,0, // Total colors (color table not used)
  78. 0,0,0,0 // Important colors (all are important)
  79. };
  80. // Width and height in the information header
  81. infoHeader[4] = (unsigned char)(img.nx);
  82. infoHeader[5] = (unsigned char)(img.nx >> 8);
  83. infoHeader[6] = (unsigned char)(img.nx >> 16);
  84. infoHeader[7] = (unsigned char)(img.nx >> 24);
  85. infoHeader[8] = (unsigned char)(img.ny);
  86. infoHeader[9] = (unsigned char)(img.ny >> 8);
  87. infoHeader[10] = (unsigned char)(img.ny >> 16);
  88. infoHeader[11] = (unsigned char)(img.ny >> 24);
  89. // Write file headers
  90. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  91. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  92. // Pixel data
  93. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  94. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  95. for (int x = 0; x < img.nx; ++x) {
  96. // Each pixel
  97. size_t pixelIndex = (y * img.nx + x) * 3;
  98. unsigned char pixel[3] = {
  99. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  100. img.buf[pixelIndex + 1],
  101. img.buf[pixelIndex]
  102. };
  103. file.write(reinterpret_cast<char*>(pixel), 3);
  104. }
  105. // Write padding for the row
  106. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  107. }
  108. file.close();
  109. }
  110. // debug function to convert f32 to u8
  111. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  112. dst.nx = src.nx;
  113. dst.ny = src.ny;
  114. dst.buf.resize(3 * src.nx * src.ny);
  115. for (size_t i = 0; i < src.buf.size(); ++i) {
  116. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  117. }
  118. }
  119. #endif
  120. struct clip_ctx {
  121. clip_model model;
  122. gguf_context_ptr ctx_gguf;
  123. ggml_context_ptr ctx_data;
  124. std::vector<uint8_t> buf_compute_meta;
  125. std::vector<ggml_backend_t> backend_ptrs;
  126. std::vector<ggml_backend_buffer_type_t> backend_buft;
  127. ggml_backend_t backend = nullptr;
  128. ggml_backend_t backend_cpu = nullptr;
  129. ggml_backend_buffer_ptr buf;
  130. int max_nodes = 8192;
  131. ggml_backend_sched_ptr sched;
  132. clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO;
  133. bool is_allocated = false;
  134. // for debugging
  135. bool debug_graph = false;
  136. std::vector<ggml_tensor *> debug_print_tensors;
  137. clip_ctx(clip_context_params & ctx_params) {
  138. flash_attn_type = ctx_params.flash_attn_type;
  139. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  140. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  141. if (!backend_cpu) {
  142. throw std::runtime_error("failed to initialize CPU backend");
  143. }
  144. if (ctx_params.use_gpu) {
  145. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  146. if (backend_name != nullptr) {
  147. backend = ggml_backend_init_by_name(backend_name, nullptr);
  148. if (!backend) {
  149. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  150. }
  151. }
  152. if (!backend) {
  153. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  154. backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
  155. }
  156. }
  157. if (backend) {
  158. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  159. backend_ptrs.push_back(backend);
  160. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  161. } else {
  162. backend = backend_cpu;
  163. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  164. }
  165. if (ctx_params.image_min_tokens > 0) {
  166. model.hparams.custom_image_min_tokens = ctx_params.image_min_tokens;
  167. }
  168. if (ctx_params.image_max_tokens > 0) {
  169. model.hparams.custom_image_max_tokens = ctx_params.image_max_tokens;
  170. }
  171. backend_ptrs.push_back(backend_cpu);
  172. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  173. sched.reset(
  174. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  175. );
  176. }
  177. ~clip_ctx() {
  178. ggml_backend_free(backend);
  179. if (backend != backend_cpu) {
  180. ggml_backend_free(backend_cpu);
  181. }
  182. }
  183. // this function is added so that we don't change too much of the existing code
  184. projector_type proj_type() const {
  185. return model.proj_type;
  186. }
  187. };
  188. //
  189. // clip_graph
  190. //
  191. clip_graph::clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  192. model(ctx->model),
  193. hparams(model.hparams),
  194. proj_type(ctx->proj_type()),
  195. img(img),
  196. patch_size(hparams.patch_size),
  197. n_patches_x(img.nx / patch_size),
  198. n_patches_y(img.ny / patch_size),
  199. n_patches(n_patches_x * n_patches_y),
  200. n_embd(hparams.n_embd),
  201. n_head(hparams.n_head),
  202. d_head(n_embd / n_head),
  203. n_layer(hparams.n_layer),
  204. n_mmproj_embd(clip_n_mmproj_embd(ctx)),
  205. eps(hparams.eps),
  206. kq_scale(1.0f / sqrtf((float)d_head)),
  207. flash_attn_type(ctx->flash_attn_type),
  208. debug_graph(ctx->debug_graph),
  209. debug_print_tensors(ctx->debug_print_tensors) {
  210. struct ggml_init_params params = {
  211. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  212. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  213. /*.no_alloc =*/ true,
  214. };
  215. ctx0_ptr.reset(ggml_init(params));
  216. ctx0 = ctx0_ptr.get();
  217. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  218. }
  219. void clip_graph::cb(ggml_tensor * cur0, const char * name, int il) const {
  220. if (debug_graph) {
  221. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  222. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  223. ggml_set_name(cur, cur_name.c_str());
  224. ggml_set_output(cur);
  225. ggml_build_forward_expand(gf, cur);
  226. debug_print_tensors.push_back(cur);
  227. }
  228. }
  229. // siglip2 naflex
  230. ggml_tensor * clip_graph::resize_position_embeddings(uint32_t interpolation_mode) {
  231. ggml_tensor * pos_embd = model.position_embeddings;
  232. const int height = img.ny / patch_size;
  233. const int width = img.nx / patch_size;
  234. const uint32_t mode = interpolation_mode;
  235. const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
  236. GGML_ASSERT(pos_embd);
  237. if (height == n_per_side && width == n_per_side) {
  238. return pos_embd;
  239. }
  240. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
  241. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
  242. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
  243. pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
  244. pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
  245. return pos_embd;
  246. }
  247. // build vision transformer (ViT) cgraph
  248. // this function should cover most of the models
  249. // if your model has specific features, you should probably duplicate this function
  250. ggml_tensor * clip_graph::build_vit(
  251. ggml_tensor * inp,
  252. int64_t n_pos,
  253. norm_type norm_t,
  254. ffn_op_type ffn_t,
  255. ggml_tensor * learned_pos_embd,
  256. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  257. ) {
  258. if (learned_pos_embd) {
  259. inp = ggml_add(ctx0, inp, learned_pos_embd);
  260. cb(inp, "pos_embed", -1);
  261. }
  262. ggml_tensor * inpL = inp;
  263. // pre-layernorm
  264. if (model.pre_ln_w) {
  265. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  266. cb(inpL, "pre_ln", -1);
  267. }
  268. // loop over layers
  269. for (int il = 0; il < n_layer; il++) {
  270. auto & layer = model.layers[il];
  271. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  272. // layernorm1
  273. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  274. cb(cur, "layer_inp_normed", il);
  275. // self-attention
  276. {
  277. ggml_tensor * Qcur = nullptr;
  278. ggml_tensor * Kcur = nullptr;
  279. ggml_tensor * Vcur = nullptr;
  280. if (layer.qkv_w != nullptr) {
  281. // fused qkv
  282. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  283. if (layer.qkv_b != nullptr) {
  284. cur = ggml_add(ctx0, cur, layer.qkv_b);
  285. }
  286. Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  287. /* nb1 */ ggml_row_size(cur->type, d_head),
  288. /* nb2 */ cur->nb[1],
  289. /* offset */ 0);
  290. Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  291. /* nb1 */ ggml_row_size(cur->type, d_head),
  292. /* nb2 */ cur->nb[1],
  293. /* offset */ ggml_row_size(cur->type, n_embd));
  294. Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  295. /* nb1 */ ggml_row_size(cur->type, d_head),
  296. /* nb2 */ cur->nb[1],
  297. /* offset */ ggml_row_size(cur->type, 2 * n_embd));
  298. // TODO: q/k norm requires row size == n_embd, while here it's d_head
  299. // we can add support in the future if needed
  300. GGML_ASSERT(layer.q_norm == nullptr && layer.k_norm == nullptr);
  301. } else {
  302. // separate q, k, v
  303. Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  304. if (layer.q_b) {
  305. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  306. }
  307. Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  308. if (layer.k_b) {
  309. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  310. }
  311. Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  312. if (layer.v_b) {
  313. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  314. }
  315. if (layer.q_norm) {
  316. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  317. cb(Qcur, "Qcur_norm", il);
  318. }
  319. if (layer.k_norm) {
  320. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  321. cb(Kcur, "Kcur_norm", il);
  322. }
  323. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  324. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  325. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  326. }
  327. cb(Qcur, "Qcur", il);
  328. cb(Kcur, "Kcur", il);
  329. cb(Vcur, "Vcur", il);
  330. if (add_pos) {
  331. Qcur = add_pos(Qcur, layer);
  332. Kcur = add_pos(Kcur, layer);
  333. cb(Qcur, "Qcur_pos", il);
  334. cb(Kcur, "Kcur_pos", il);
  335. }
  336. cur = build_attn(layer.o_w, layer.o_b,
  337. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  338. cb(cur, "attn_out", il);
  339. }
  340. if (layer.ls_1_w) {
  341. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  342. cb(cur, "attn_out_scaled", il);
  343. }
  344. // re-add the layer input, e.g., residual
  345. cur = ggml_add(ctx0, cur, inpL);
  346. inpL = cur; // inpL = residual, cur = hidden_states
  347. cb(cur, "ffn_inp", il);
  348. // layernorm2
  349. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  350. cb(cur, "ffn_inp_normed", il);
  351. // ffn
  352. cur = build_ffn(cur,
  353. layer.ff_up_w, layer.ff_up_b,
  354. layer.ff_gate_w, layer.ff_gate_b,
  355. layer.ff_down_w, layer.ff_down_b,
  356. ffn_t, il);
  357. cb(cur, "ffn_out", il);
  358. if (layer.ls_2_w) {
  359. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  360. cb(cur, "ffn_out_scaled", il);
  361. }
  362. // residual 2
  363. cur = ggml_add(ctx0, inpL, cur);
  364. cb(cur, "layer_out", il);
  365. inpL = cur;
  366. }
  367. if (model.audio_has_avgpool()) {
  368. ggml_tensor * cur = inpL;
  369. cur = ggml_transpose(ctx0, cur);
  370. cur = ggml_cont(ctx0, cur);
  371. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  372. cur = ggml_transpose(ctx0, cur);
  373. cur = ggml_cont(ctx0, cur);
  374. inpL = cur;
  375. }
  376. // post-layernorm
  377. if (model.post_ln_w) {
  378. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  379. }
  380. return inpL;
  381. }
  382. // build the input after conv2d (inp_raw --> patches)
  383. // returns tensor with shape [n_embd, n_patches]
  384. ggml_tensor * clip_graph::build_inp() {
  385. ggml_tensor * inp_raw = build_inp_raw();
  386. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  387. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  388. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  389. if (model.patch_bias) {
  390. inp = ggml_add(ctx0, inp, model.patch_bias);
  391. cb(inp, "patch_bias", -1);
  392. }
  393. return inp;
  394. }
  395. ggml_tensor * clip_graph::build_inp_raw(int channels) {
  396. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  397. ggml_set_name(inp_raw, "inp_raw");
  398. ggml_set_input(inp_raw);
  399. return inp_raw;
  400. }
  401. ggml_tensor * clip_graph::build_norm(
  402. ggml_tensor * cur,
  403. ggml_tensor * mw,
  404. ggml_tensor * mb,
  405. norm_type type,
  406. float norm_eps,
  407. int il) const {
  408. cur = type == NORM_TYPE_RMS
  409. ? ggml_rms_norm(ctx0, cur, norm_eps)
  410. : ggml_norm(ctx0, cur, norm_eps);
  411. if (mw) {
  412. cur = ggml_mul(ctx0, cur, mw);
  413. cb(cur, "norm_w", il);
  414. }
  415. if (mb) {
  416. cur = ggml_add(ctx0, cur, mb);
  417. cb(cur, "norm_b", il);
  418. }
  419. return cur;
  420. }
  421. ggml_tensor * clip_graph::build_ffn(
  422. ggml_tensor * cur,
  423. ggml_tensor * up,
  424. ggml_tensor * up_b,
  425. ggml_tensor * gate,
  426. ggml_tensor * gate_b,
  427. ggml_tensor * down,
  428. ggml_tensor * down_b,
  429. ffn_op_type type_op,
  430. int il) const {
  431. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  432. cb(tmp, "ffn_up", il);
  433. if (up_b) {
  434. tmp = ggml_add(ctx0, tmp, up_b);
  435. cb(tmp, "ffn_up_b", il);
  436. }
  437. if (gate) {
  438. cur = ggml_mul_mat(ctx0, gate, cur);
  439. cb(cur, "ffn_gate", il);
  440. if (gate_b) {
  441. cur = ggml_add(ctx0, cur, gate_b);
  442. cb(cur, "ffn_gate_b", il);
  443. }
  444. } else {
  445. cur = tmp;
  446. }
  447. // we only support parallel ffn for now
  448. switch (type_op) {
  449. case FFN_SILU:
  450. if (gate) {
  451. cur = ggml_swiglu_split(ctx0, cur, tmp);
  452. cb(cur, "ffn_swiglu", il);
  453. } else {
  454. cur = ggml_silu(ctx0, cur);
  455. cb(cur, "ffn_silu", il);
  456. } break;
  457. case FFN_GELU:
  458. if (gate) {
  459. cur = ggml_geglu_split(ctx0, cur, tmp);
  460. cb(cur, "ffn_geglu", il);
  461. } else {
  462. cur = ggml_gelu(ctx0, cur);
  463. cb(cur, "ffn_gelu", il);
  464. } break;
  465. case FFN_GELU_ERF:
  466. if (gate) {
  467. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  468. cb(cur, "ffn_geglu_erf", il);
  469. } else {
  470. cur = ggml_gelu_erf(ctx0, cur);
  471. cb(cur, "ffn_gelu_erf", il);
  472. } break;
  473. case FFN_GELU_QUICK:
  474. if (gate) {
  475. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  476. cb(cur, "ffn_geglu_quick", il);
  477. } else {
  478. cur = ggml_gelu_quick(ctx0, cur);
  479. cb(cur, "ffn_gelu_quick", il);
  480. } break;
  481. }
  482. if (down) {
  483. cur = ggml_mul_mat(ctx0, down, cur);
  484. }
  485. if (down_b) {
  486. cb(cur, "ffn_down", il);
  487. }
  488. if (down_b) {
  489. cur = ggml_add(ctx0, cur, down_b);
  490. }
  491. return cur;
  492. }
  493. ggml_tensor * clip_graph::build_attn(
  494. ggml_tensor * wo,
  495. ggml_tensor * wo_b,
  496. ggml_tensor * q_cur,
  497. ggml_tensor * k_cur,
  498. ggml_tensor * v_cur,
  499. ggml_tensor * kq_mask,
  500. float kq_scale,
  501. int il) const {
  502. // these nodes are added to the graph together so that they are not reordered
  503. // by doing so, the number of splits in the graph is reduced
  504. ggml_build_forward_expand(gf, q_cur);
  505. ggml_build_forward_expand(gf, k_cur);
  506. ggml_build_forward_expand(gf, v_cur);
  507. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  508. //cb(q, "q", il);
  509. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  510. //cb(k, "k", il);
  511. ggml_tensor * cur;
  512. if (flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  513. ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
  514. k = ggml_cast(ctx0, k, GGML_TYPE_F16);
  515. v = ggml_cast(ctx0, v, GGML_TYPE_F16);
  516. cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f);
  517. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  518. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
  519. } else {
  520. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  521. v = ggml_cont(ctx0, v);
  522. const auto n_tokens = q->ne[1];
  523. const auto n_head = q->ne[2];
  524. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  525. // F32 may not needed for vision encoders?
  526. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  527. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  528. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  529. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  530. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  531. }
  532. cb(cur, "kqv_out", il);
  533. if (wo) {
  534. cur = ggml_mul_mat(ctx0, wo, cur);
  535. }
  536. if (wo_b) {
  537. cur = ggml_add(ctx0, cur, wo_b);
  538. }
  539. return cur;
  540. }
  541. // implementation of the 2D RoPE without adding a new op in ggml
  542. // this is not efficient (use double the memory), but works on all backends
  543. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  544. ggml_tensor * clip_graph::build_rope_2d(
  545. ggml_context * ctx0,
  546. ggml_tensor * cur,
  547. ggml_tensor * pos_a, // first half
  548. ggml_tensor * pos_b, // second half
  549. const float freq_base,
  550. const bool interleave_freq
  551. ) {
  552. const int64_t n_dim = cur->ne[0];
  553. const int64_t n_head = cur->ne[1];
  554. const int64_t n_pos = cur->ne[2];
  555. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  556. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  557. // first half of cur will use 1e-0, 1e-2 (even)
  558. // second half of cur will use 1e-1, 1e-3 (odd)
  559. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  560. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  561. // then for the second half, we use freq_scale to shift the inv_freq
  562. // ^ why? replace (2i) with (2i+1) in the above equation
  563. const float freq_scale_odd = interleave_freq
  564. ? std::pow(freq_base, (float)-2/n_dim)
  565. : 1.0;
  566. // first half
  567. ggml_tensor * first;
  568. {
  569. first = ggml_view_3d(ctx0, cur,
  570. n_dim/2, n_head, n_pos,
  571. ggml_row_size(cur->type, n_dim),
  572. ggml_row_size(cur->type, n_dim*n_head),
  573. 0);
  574. first = ggml_rope_ext(
  575. ctx0,
  576. first,
  577. pos_a, // positions
  578. nullptr, // freq factors
  579. n_dim/2, // n_dims
  580. 0, 0, freq_base,
  581. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  582. );
  583. }
  584. // second half
  585. ggml_tensor * second;
  586. {
  587. second = ggml_view_3d(ctx0, cur,
  588. n_dim/2, n_head, n_pos,
  589. ggml_row_size(cur->type, n_dim),
  590. ggml_row_size(cur->type, n_dim*n_head),
  591. n_dim/2 * ggml_element_size(cur));
  592. second = ggml_rope_ext(
  593. ctx0,
  594. second,
  595. pos_b, // positions
  596. nullptr, // freq factors
  597. n_dim/2, // n_dims
  598. 0, 0, freq_base,
  599. freq_scale_odd,
  600. 0.0f, 1.0f, 0.0f, 0.0f
  601. );
  602. }
  603. cur = ggml_concat(ctx0, first, second, 0);
  604. return cur;
  605. }
  606. // Generic function to stack frames for audio processing
  607. // Abstracts out the StackAudioFrames logic used by ultravox
  608. ggml_tensor * clip_graph::build_stack(ggml_tensor * cur, int32_t stack_factor, int32_t n_embed) {
  609. if (stack_factor <= 1) {
  610. return cur;
  611. }
  612. int64_t total_elements = ggml_nelements(cur);
  613. int64_t stride = n_embed * stack_factor;
  614. // Calculate padded length
  615. int64_t padded_len = GGML_PAD(total_elements, stride);
  616. int64_t pad = padded_len - total_elements;
  617. if (pad > 0) {
  618. // Pad the tensor to make it divisible by stride
  619. cur = ggml_view_1d(ctx0, cur, total_elements, 0);
  620. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  621. }
  622. // Reshape to [stride, padded_len / stride]
  623. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  624. ggml_row_size(cur->type, stride), 0);
  625. return cur;
  626. }
  627. // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
  628. // support dynamic resolution
  629. ggml_tensor * clip_graph::build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
  630. GGML_ASSERT(scale_factor > 1);
  631. const int n_embd = cur->ne[0];
  632. int width = img.nx / patch_size;
  633. int height = img.ny / patch_size;
  634. // pad width and height to factor
  635. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  636. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  637. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  638. if (pad_width || pad_height) {
  639. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  640. width += pad_width;
  641. height += pad_height;
  642. }
  643. // unshuffle h
  644. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  645. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  646. // unshuffle w
  647. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  648. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  649. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  650. cb(cur, "pixel_shuffle", -1);
  651. return cur;
  652. }
  653. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  654. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  655. const clip_image_f32 & img = *imgs.entries[0];
  656. std::unique_ptr<clip_graph> builder;
  657. switch (ctx->proj_type()) {
  658. case PROJECTOR_TYPE_GEMMA3:
  659. case PROJECTOR_TYPE_IDEFICS3:
  660. case PROJECTOR_TYPE_LFM2:
  661. case PROJECTOR_TYPE_JANUS_PRO:
  662. {
  663. builder = std::make_unique<clip_graph_siglip>(ctx, img);
  664. } break;
  665. case PROJECTOR_TYPE_PIXTRAL:
  666. case PROJECTOR_TYPE_LIGHTONOCR:
  667. {
  668. builder = std::make_unique<clip_graph_pixtral>(ctx, img);
  669. } break;
  670. case PROJECTOR_TYPE_QWEN2VL:
  671. case PROJECTOR_TYPE_QWEN25VL:
  672. {
  673. builder = std::make_unique<clip_graph_qwen2vl>(ctx, img);
  674. } break;
  675. case PROJECTOR_TYPE_QWEN3VL:
  676. {
  677. builder = std::make_unique<clip_graph_qwen3vl>(ctx, img);
  678. } break;
  679. case PROJECTOR_TYPE_MINICPMV:
  680. {
  681. builder = std::make_unique<clip_graph_minicpmv>(ctx, img);
  682. } break;
  683. case PROJECTOR_TYPE_INTERNVL:
  684. {
  685. builder = std::make_unique<clip_graph_internvl>(ctx, img);
  686. } break;
  687. case PROJECTOR_TYPE_LLAMA4:
  688. {
  689. builder = std::make_unique<clip_graph_llama4>(ctx, img);
  690. } break;
  691. case PROJECTOR_TYPE_ULTRAVOX:
  692. case PROJECTOR_TYPE_VOXTRAL:
  693. case PROJECTOR_TYPE_QWEN2A:
  694. case PROJECTOR_TYPE_GLMA:
  695. {
  696. builder = std::make_unique<clip_graph_whisper_enc>(ctx, img);
  697. } break;
  698. case PROJECTOR_TYPE_KIMIVL:
  699. {
  700. builder = std::make_unique<clip_graph_kimivl>(ctx, img);
  701. } break;
  702. case PROJECTOR_TYPE_COGVLM:
  703. {
  704. builder = std::make_unique<clip_graph_cogvlm>(ctx, img);
  705. } break;
  706. case PROJECTOR_TYPE_MLP:
  707. case PROJECTOR_TYPE_MLP_NORM:
  708. case PROJECTOR_TYPE_LDP:
  709. case PROJECTOR_TYPE_LDPV2:
  710. case PROJECTOR_TYPE_GLM_EDGE:
  711. {
  712. builder = std::make_unique<clip_graph_llava>(ctx, img);
  713. } break;
  714. case PROJECTOR_TYPE_GLM4V:
  715. {
  716. builder = std::make_unique<clip_graph_glm4v>(ctx, img);
  717. } break;
  718. default:
  719. GGML_ABORT("missing cgraph builder");
  720. }
  721. return builder->build();
  722. }
  723. //
  724. // clip_model_loader
  725. //
  726. struct clip_model_loader {
  727. ggml_context_ptr ctx_meta;
  728. gguf_context_ptr ctx_gguf;
  729. std::string fname;
  730. size_t model_size = 0; // in bytes
  731. bool has_vision = false;
  732. bool has_audio = false;
  733. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  734. clip_model_loader(const char * fname) : fname(fname) {
  735. struct ggml_context * meta = nullptr;
  736. struct gguf_init_params params = {
  737. /*.no_alloc = */ true,
  738. /*.ctx = */ &meta,
  739. };
  740. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  741. if (!ctx_gguf.get()) {
  742. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  743. }
  744. ctx_meta.reset(meta);
  745. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  746. // print gguf info
  747. {
  748. std::string name;
  749. get_string(KEY_NAME, name, false);
  750. std::string description;
  751. get_string(KEY_DESCRIPTION, description, false);
  752. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  753. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  754. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  755. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  756. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  757. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  758. LOG_INF("\n");
  759. }
  760. // modalities
  761. {
  762. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  763. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  764. if (has_vision) {
  765. LOG_INF("%s: has vision encoder\n", __func__);
  766. }
  767. if (has_audio) {
  768. LOG_INF("%s: has audio encoder\n", __func__);
  769. }
  770. }
  771. // tensors
  772. {
  773. for (int i = 0; i < n_tensors; ++i) {
  774. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  775. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  776. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  777. ggml_tensor * cur = ggml_get_tensor(meta, name);
  778. size_t tensor_size = ggml_nbytes(cur);
  779. model_size += tensor_size;
  780. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  781. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  782. }
  783. }
  784. }
  785. void load_hparams(clip_model & model, clip_modality modality) {
  786. auto & hparams = model.hparams;
  787. std::string log_ffn_op; // for logging
  788. // sanity check
  789. if (modality == CLIP_MODALITY_VISION) {
  790. GGML_ASSERT(has_vision);
  791. } else if (modality == CLIP_MODALITY_AUDIO) {
  792. GGML_ASSERT(has_audio);
  793. }
  794. model.modality = modality;
  795. // projector type
  796. std::string proj_type;
  797. {
  798. // default key
  799. get_string(KEY_PROJ_TYPE, proj_type, false);
  800. // for models with mixed modalities
  801. if (proj_type.empty()) {
  802. if (modality == CLIP_MODALITY_VISION) {
  803. get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
  804. } else if (modality == CLIP_MODALITY_AUDIO) {
  805. get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
  806. } else {
  807. GGML_ABORT("unknown modality");
  808. }
  809. }
  810. model.proj_type = clip_projector_type_from_string(proj_type);
  811. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  812. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  813. }
  814. // correct arch for multimodal models (legacy method)
  815. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  816. model.proj_type = modality == CLIP_MODALITY_VISION
  817. ? PROJECTOR_TYPE_QWEN25VL
  818. : PROJECTOR_TYPE_QWEN2A;
  819. }
  820. }
  821. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  822. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  823. // other hparams
  824. {
  825. const char * prefix = is_vision ? "vision" : "audio";
  826. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  827. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  828. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  829. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  830. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  831. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  832. if (is_vision) {
  833. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  834. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  835. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  836. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  837. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  838. if (hparams.minicpmv_query_num == 0) {
  839. // Fallback to hardcoded values for legacy models
  840. if (hparams.minicpmv_version == 3) {
  841. hparams.minicpmv_query_num = 64;
  842. } else if (hparams.minicpmv_version == 4) {
  843. hparams.minicpmv_query_num = 64;
  844. } else if (hparams.minicpmv_version == 5) {
  845. hparams.minicpmv_query_num = 64;
  846. } else if (hparams.minicpmv_version == 6) {
  847. hparams.minicpmv_query_num = 64;
  848. } else {
  849. hparams.minicpmv_query_num = 96;
  850. }
  851. }
  852. } else if (is_audio) {
  853. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  854. // some hparams are unused, but still need to set to avoid issues
  855. hparams.image_size = 0;
  856. hparams.patch_size = 1;
  857. } else {
  858. GGML_ASSERT(false && "unknown modality");
  859. }
  860. // for pinpoints, we need to convert it into a list of resolution candidates
  861. {
  862. std::vector<int> pinpoints;
  863. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  864. if (!pinpoints.empty()) {
  865. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  866. hparams.image_res_candidates.push_back({
  867. pinpoints[i],
  868. pinpoints[i+1],
  869. });
  870. }
  871. }
  872. }
  873. // default warmup value
  874. hparams.warmup_image_size = hparams.image_size;
  875. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  876. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  877. || model.proj_type == PROJECTOR_TYPE_LDP
  878. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  879. {
  880. bool use_gelu = false;
  881. bool use_silu = false;
  882. get_bool(KEY_USE_GELU, use_gelu, false);
  883. get_bool(KEY_USE_SILU, use_silu, false);
  884. if (use_gelu && use_silu) {
  885. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  886. }
  887. if (use_gelu) {
  888. hparams.ffn_op = FFN_GELU;
  889. log_ffn_op = "gelu";
  890. } else if (use_silu) {
  891. hparams.ffn_op = FFN_SILU;
  892. log_ffn_op = "silu";
  893. } else {
  894. hparams.ffn_op = FFN_GELU_QUICK;
  895. log_ffn_op = "gelu_quick";
  896. }
  897. }
  898. {
  899. std::string mm_patch_merge_type;
  900. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  901. if (mm_patch_merge_type == "spatial_unpad") {
  902. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  903. }
  904. }
  905. if (is_vision) {
  906. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  907. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  908. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  909. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  910. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  911. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  912. for (int i = 0; i < 3; ++i) {
  913. hparams.image_mean[i] = mean_data[i];
  914. hparams.image_std[i] = std_data[i];
  915. }
  916. }
  917. // Load the vision feature layer indices if they are explicitly provided;
  918. // if multiple vision feature layers are present, the values will be concatenated
  919. // to form the final visual features.
  920. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  921. // be non-negative, since we use -1 to mark values as unset here.
  922. std::vector<int> vision_feature_layer;
  923. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  924. // convert std::vector to std::unordered_set
  925. for (auto & layer : vision_feature_layer) {
  926. hparams.vision_feature_layer.insert(layer);
  927. }
  928. // model-specific params
  929. switch (model.proj_type) {
  930. case PROJECTOR_TYPE_MINICPMV:
  931. {
  932. if (hparams.minicpmv_version == 0) {
  933. hparams.minicpmv_version = 2; // default to 2 if not set
  934. }
  935. } break;
  936. case PROJECTOR_TYPE_INTERNVL:
  937. {
  938. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  939. } break;
  940. case PROJECTOR_TYPE_IDEFICS3:
  941. {
  942. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  943. get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false);
  944. } break;
  945. case PROJECTOR_TYPE_LFM2:
  946. {
  947. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  948. // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
  949. // config above specifies number of tokens after downsampling, while here it is before, relax lowerbound to 64
  950. hparams.set_limit_image_tokens(64, 1024);
  951. } break;
  952. case PROJECTOR_TYPE_PIXTRAL:
  953. case PROJECTOR_TYPE_LIGHTONOCR:
  954. {
  955. // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json
  956. // TODO: verify the image_min_tokens
  957. hparams.n_merge = 1; // the original pixtral does not use patch merging
  958. hparams.rope_theta = 10000.0f;
  959. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  960. hparams.set_limit_image_tokens(8, 1024);
  961. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  962. } break;
  963. case PROJECTOR_TYPE_KIMIVL:
  964. {
  965. hparams.rope_theta = 10000.0f;
  966. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  967. // TODO: check kimivl preprocessor for exact values
  968. hparams.set_limit_image_tokens(8, 1024);
  969. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  970. } break;
  971. case PROJECTOR_TYPE_GEMMA3:
  972. {
  973. // default value (used by all model sizes in gemma 3 family)
  974. // number of patches for each **side** is reduced by a factor of 4
  975. hparams.n_merge = 4;
  976. // test model (tinygemma3) has a different value, we optionally read it
  977. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  978. } break;
  979. case PROJECTOR_TYPE_QWEN2VL:
  980. case PROJECTOR_TYPE_QWEN25VL:
  981. case PROJECTOR_TYPE_QWEN3VL:
  982. {
  983. hparams.n_merge = 2; // default value for Qwen 2 and 2.5
  984. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  985. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it
  986. // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  987. hparams.set_limit_image_tokens(8, 4096);
  988. hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup
  989. const int warn_min_pixels = 1024 * hparams.n_merge * hparams.n_merge * hparams.patch_size * hparams.patch_size;
  990. if (hparams.image_min_pixels < warn_min_pixels) {
  991. LOG_WRN("%s: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks\n", __func__);
  992. LOG_WRN("%s: if you encounter problems with accuracy, try adding --image-min-tokens 1024\n", __func__);
  993. LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__);
  994. }
  995. } break;
  996. case PROJECTOR_TYPE_GLM4V:
  997. {
  998. hparams.rope_theta = 10000.0f;
  999. hparams.n_merge = 2; // default value for GLM4-V
  1000. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  1001. hparams.set_limit_image_tokens(8, 4096);
  1002. hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup
  1003. } break;
  1004. case PROJECTOR_TYPE_LLAMA4:
  1005. {
  1006. hparams.rope_theta = 10000.0f;
  1007. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  1008. set_llava_uhd_res_candidates(model, 3);
  1009. } break;
  1010. case PROJECTOR_TYPE_ULTRAVOX:
  1011. case PROJECTOR_TYPE_QWEN2A:
  1012. case PROJECTOR_TYPE_GLMA:
  1013. case PROJECTOR_TYPE_VOXTRAL:
  1014. {
  1015. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  1016. model.proj_type == PROJECTOR_TYPE_VOXTRAL ||
  1017. model.proj_type == PROJECTOR_TYPE_GLMA;
  1018. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  1019. hparams.ffn_op = FFN_GELU_ERF;
  1020. log_ffn_op = "gelu_erf"; // temporary solution for logging
  1021. // audio preprocessing params
  1022. hparams.audio_chunk_len = 30; // in seconds
  1023. hparams.audio_sample_rate = 16000;
  1024. hparams.audio_n_fft = 400;
  1025. hparams.audio_window_len = 400;
  1026. hparams.audio_hop_len = 160;
  1027. } break;
  1028. default:
  1029. break;
  1030. }
  1031. // sanity check
  1032. {
  1033. if (hparams.image_max_pixels < hparams.image_min_pixels) {
  1034. throw std::runtime_error(string_format("%s: image_max_pixels (%d) is less than image_min_pixels (%d)\n", __func__, hparams.image_max_pixels, hparams.image_min_pixels));
  1035. }
  1036. }
  1037. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  1038. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  1039. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  1040. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  1041. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  1042. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  1043. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  1044. if (is_vision) {
  1045. LOG_INF("\n--- vision hparams ---\n");
  1046. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  1047. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  1048. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  1049. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  1050. LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge);
  1051. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  1052. if (hparams.image_min_pixels > 0) {
  1053. LOG_INF("%s: image_min_pixels: %d%s\n", __func__, hparams.image_min_pixels, hparams.custom_image_min_tokens > 0 ? " (custom value)" : "");
  1054. }
  1055. if (hparams.image_max_pixels > 0) {
  1056. LOG_INF("%s: image_max_pixels: %d%s\n", __func__, hparams.image_max_pixels, hparams.custom_image_max_tokens > 0 ? " (custom value)" : "");
  1057. }
  1058. } else if (is_audio) {
  1059. LOG_INF("\n--- audio hparams ---\n");
  1060. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  1061. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  1062. LOG_INF("%s: audio_chunk_len: %d\n", __func__, hparams.audio_chunk_len);
  1063. LOG_INF("%s: audio_sample_rate: %d\n", __func__, hparams.audio_sample_rate);
  1064. LOG_INF("%s: audio_n_fft: %d\n", __func__, hparams.audio_n_fft);
  1065. LOG_INF("%s: audio_window_len: %d\n", __func__, hparams.audio_window_len);
  1066. LOG_INF("%s: audio_hop_len: %d\n", __func__, hparams.audio_hop_len);
  1067. }
  1068. LOG_INF("\n");
  1069. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  1070. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  1071. }
  1072. }
  1073. void load_tensors(clip_ctx & ctx_clip) {
  1074. auto & model = ctx_clip.model;
  1075. auto & hparams = model.hparams;
  1076. std::map<std::string, size_t> tensor_offset;
  1077. std::vector<ggml_tensor *> tensors_to_load;
  1078. // TODO @ngxson : support both audio and video in the future
  1079. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  1080. // get offsets
  1081. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  1082. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1083. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  1084. }
  1085. // create data context
  1086. struct ggml_init_params params = {
  1087. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  1088. /*.mem_buffer =*/ NULL,
  1089. /*.no_alloc =*/ true,
  1090. };
  1091. ctx_clip.ctx_data.reset(ggml_init(params));
  1092. if (!ctx_clip.ctx_data) {
  1093. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  1094. }
  1095. // helper function
  1096. auto get_tensor = [&](const std::string & name, bool required = true) {
  1097. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  1098. if (!cur && required) {
  1099. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  1100. }
  1101. if (cur) {
  1102. tensors_to_load.push_back(cur);
  1103. // add tensors to context
  1104. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  1105. ggml_set_name(data_tensor, cur->name);
  1106. cur = data_tensor;
  1107. }
  1108. return cur;
  1109. };
  1110. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  1111. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  1112. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  1113. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  1114. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  1115. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  1116. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  1117. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  1118. model.norm_embd_w = get_tensor(string_format(TN_NORM_EMBD, "weight"), false);
  1119. model.norm_embd_b = get_tensor(string_format(TN_NORM_EMBD, "bias"), false);
  1120. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  1121. // layers
  1122. model.layers.resize(hparams.n_layer);
  1123. for (int il = 0; il < hparams.n_layer; ++il) {
  1124. auto & layer = model.layers[il];
  1125. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false);
  1126. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false);
  1127. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false);
  1128. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  1129. layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false);
  1130. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  1131. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  1132. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  1133. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  1134. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  1135. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  1136. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  1137. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  1138. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  1139. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  1140. layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false);
  1141. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  1142. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  1143. // ffn
  1144. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  1145. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  1146. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  1147. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  1148. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  1149. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  1150. // qwen3vl deepstack layer
  1151. layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
  1152. layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
  1153. layer.deepstack_fc1_w = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "weight"), false);
  1154. layer.deepstack_fc1_b = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "bias"), false);
  1155. layer.deepstack_fc2_w = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "weight"), false);
  1156. layer.deepstack_fc2_b = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "bias"), false);
  1157. if (layer.has_deepstack()) {
  1158. model.n_deepstack_layers++;
  1159. }
  1160. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  1161. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  1162. bool is_ffn_swapped = (
  1163. // only old models need this fix
  1164. model.proj_type == PROJECTOR_TYPE_MLP
  1165. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  1166. || model.proj_type == PROJECTOR_TYPE_LDP
  1167. || model.proj_type == PROJECTOR_TYPE_LDPV2
  1168. || model.proj_type == PROJECTOR_TYPE_QWEN2VL
  1169. || model.proj_type == PROJECTOR_TYPE_QWEN25VL
  1170. || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
  1171. || model.proj_type == PROJECTOR_TYPE_GEMMA3
  1172. || model.proj_type == PROJECTOR_TYPE_IDEFICS3
  1173. || model.proj_type == PROJECTOR_TYPE_MINICPMV
  1174. ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
  1175. if (is_ffn_swapped) {
  1176. // swap up and down weights
  1177. ggml_tensor * tmp = layer.ff_up_w;
  1178. layer.ff_up_w = layer.ff_down_w;
  1179. layer.ff_down_w = tmp;
  1180. // swap up and down biases
  1181. tmp = layer.ff_up_b;
  1182. layer.ff_up_b = layer.ff_down_b;
  1183. layer.ff_down_b = tmp;
  1184. if (il == 0) {
  1185. LOG_WRN("%s: ffn up/down are swapped\n", __func__);
  1186. }
  1187. }
  1188. }
  1189. switch (model.proj_type) {
  1190. case PROJECTOR_TYPE_MLP:
  1191. case PROJECTOR_TYPE_MLP_NORM:
  1192. {
  1193. // LLaVA projection
  1194. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  1195. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  1196. // Yi-type llava
  1197. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  1198. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  1199. // missing in Yi-type llava
  1200. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  1201. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  1202. // Yi-type llava
  1203. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  1204. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  1205. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  1206. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  1207. if (model.mm_3_w) {
  1208. // TODO: this is a hack to support Yi-type llava
  1209. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  1210. }
  1211. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  1212. } break;
  1213. case PROJECTOR_TYPE_LDP:
  1214. {
  1215. // MobileVLM projection
  1216. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1217. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1218. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1219. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1220. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  1221. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  1222. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  1223. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  1224. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  1225. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  1226. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  1227. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  1228. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  1229. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  1230. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  1231. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  1232. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  1233. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  1234. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  1235. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  1236. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  1237. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  1238. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  1239. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  1240. } break;
  1241. case PROJECTOR_TYPE_LDPV2:
  1242. {
  1243. // MobilVLM_V2 projection
  1244. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1245. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1246. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1247. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  1248. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  1249. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  1250. } break;
  1251. case PROJECTOR_TYPE_MINICPMV:
  1252. {
  1253. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  1254. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  1255. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  1256. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  1257. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  1258. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  1259. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  1260. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  1261. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  1262. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  1263. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  1264. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  1265. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  1266. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  1267. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  1268. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  1269. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  1270. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  1271. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  1272. } break;
  1273. case PROJECTOR_TYPE_GLM_EDGE:
  1274. {
  1275. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  1276. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  1277. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  1278. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  1279. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  1280. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  1281. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  1282. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  1283. model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  1284. model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  1285. } break;
  1286. case PROJECTOR_TYPE_QWEN2VL:
  1287. case PROJECTOR_TYPE_QWEN25VL:
  1288. {
  1289. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  1290. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  1291. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1292. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  1293. } break;
  1294. case PROJECTOR_TYPE_QWEN3VL:
  1295. {
  1296. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  1297. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  1298. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1299. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  1300. } break;
  1301. case PROJECTOR_TYPE_GLM4V:
  1302. {
  1303. model.projection = get_tensor(TN_MM_PROJECTOR);
  1304. model.mm_ffn_up_w = get_tensor(string_format(TN_MM_UP, "weight"));
  1305. model.mm_ffn_up_b = get_tensor(string_format(TN_MM_UP, "bias"), false);
  1306. model.mm_ffn_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
  1307. model.mm_ffn_gate_b = get_tensor(string_format(TN_MM_GATE, "bias"), false);
  1308. model.mm_ffn_down_w = get_tensor(string_format(TN_MM_DOWN, "weight"));
  1309. model.mm_ffn_down_b = get_tensor(string_format(TN_MM_DOWN, "bias"), false);
  1310. model.mm_post_norm_w = get_tensor(string_format(TN_MM_POST_NORM, "weight"));
  1311. model.mm_post_norm_b = get_tensor(string_format(TN_MM_POST_NORM, "bias"), false);
  1312. model.mm_patch_merger_w = get_tensor(string_format(TN_MM_PATCH_MERGER, "weight"));
  1313. model.mm_patch_merger_b = get_tensor(string_format(TN_MM_PATCH_MERGER, "bias"));
  1314. } break;
  1315. case PROJECTOR_TYPE_GEMMA3:
  1316. {
  1317. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  1318. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  1319. } break;
  1320. case PROJECTOR_TYPE_IDEFICS3:
  1321. {
  1322. model.projection = get_tensor(TN_MM_PROJECTOR);
  1323. } break;
  1324. case PROJECTOR_TYPE_LFM2:
  1325. case PROJECTOR_TYPE_KIMIVL:
  1326. {
  1327. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  1328. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  1329. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  1330. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  1331. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1332. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  1333. } break;
  1334. case PROJECTOR_TYPE_PIXTRAL:
  1335. {
  1336. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  1337. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  1338. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1339. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  1340. // [IMG_BREAK] token embedding
  1341. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  1342. // for mistral small 3.1
  1343. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  1344. model.mm_patch_merger_w = get_tensor(string_format(TN_MM_PATCH_MERGER, "weight"), false);
  1345. } break;
  1346. case PROJECTOR_TYPE_LIGHTONOCR:
  1347. {
  1348. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  1349. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  1350. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1351. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  1352. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  1353. model.mm_patch_merger_w = get_tensor(string_format(TN_MM_PATCH_MERGER, "weight"), false);
  1354. } break;
  1355. case PROJECTOR_TYPE_ULTRAVOX:
  1356. {
  1357. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  1358. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  1359. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  1360. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  1361. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  1362. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  1363. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  1364. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  1365. } break;
  1366. case PROJECTOR_TYPE_QWEN2A:
  1367. {
  1368. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  1369. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  1370. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  1371. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  1372. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  1373. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  1374. } break;
  1375. case PROJECTOR_TYPE_VOXTRAL:
  1376. {
  1377. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  1378. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  1379. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  1380. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  1381. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  1382. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  1383. } break;
  1384. case PROJECTOR_TYPE_INTERNVL:
  1385. {
  1386. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1387. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1388. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1389. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1390. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1391. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1392. } break;
  1393. case PROJECTOR_TYPE_GLMA:
  1394. {
  1395. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  1396. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  1397. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  1398. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  1399. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  1400. model.mm_1_b = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "bias"));
  1401. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  1402. model.mm_2_b = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "bias"));
  1403. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  1404. model.mm_norm_pre_b = get_tensor(string_format(TN_MM_NORM_PRE, "bias"));
  1405. model.mm_boi = get_tensor(string_format(TN_TOK_BOI, "weight"));
  1406. model.mm_eoi = get_tensor(string_format(TN_TOK_EOI, "weight"));
  1407. } break;
  1408. case PROJECTOR_TYPE_LLAMA4:
  1409. {
  1410. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  1411. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1412. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1413. } break;
  1414. case PROJECTOR_TYPE_COGVLM:
  1415. {
  1416. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  1417. model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
  1418. model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
  1419. model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight"));
  1420. model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
  1421. model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight"));
  1422. model.mm_boi = get_tensor(TN_TOK_BOI);
  1423. model.mm_eoi = get_tensor(TN_TOK_EOI);
  1424. } break;
  1425. case PROJECTOR_TYPE_JANUS_PRO:
  1426. {
  1427. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  1428. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  1429. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  1430. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  1431. } break;
  1432. default:
  1433. GGML_ASSERT(false && "unknown projector type");
  1434. }
  1435. // load data
  1436. {
  1437. std::vector<uint8_t> read_buf;
  1438. auto fin = std::ifstream(fname, std::ios::binary);
  1439. if (!fin) {
  1440. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  1441. }
  1442. // alloc memory and offload data
  1443. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  1444. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  1445. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  1446. for (auto & t : tensors_to_load) {
  1447. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  1448. const size_t offset = tensor_offset[t->name];
  1449. fin.seekg(offset, std::ios::beg);
  1450. if (!fin) {
  1451. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  1452. }
  1453. size_t num_bytes = ggml_nbytes(cur);
  1454. if (ggml_backend_buft_is_host(buft)) {
  1455. // for the CPU and Metal backend, we can read directly into the tensor
  1456. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  1457. } else {
  1458. // read into a temporary buffer first, then copy to device memory
  1459. read_buf.resize(num_bytes);
  1460. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  1461. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  1462. }
  1463. }
  1464. fin.close();
  1465. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  1466. }
  1467. }
  1468. struct support_info_op {
  1469. ggml_tensor * op;
  1470. // true if the op runs on the accelerated ctx_clip.backend
  1471. bool is_accel = true;
  1472. };
  1473. struct support_info_graph {
  1474. // whether the clip_ctx.backend supports flash attention
  1475. bool fattn = true;
  1476. ggml_tensor * fattn_op = nullptr; // for debugging
  1477. std::vector<support_info_op> ops;
  1478. };
  1479. static void warmup(clip_ctx & ctx_clip) {
  1480. // create a fake batch
  1481. const auto & hparams = ctx_clip.model.hparams;
  1482. clip_image_f32_batch batch;
  1483. clip_image_f32_ptr img(clip_image_f32_init());
  1484. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  1485. img->nx = hparams.warmup_image_size;
  1486. img->ny = hparams.warmup_image_size;
  1487. LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
  1488. } else {
  1489. img->nx = hparams.warmup_audio_size;
  1490. img->ny = hparams.n_mel_bins;
  1491. LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
  1492. }
  1493. batch.entries.push_back(std::move(img));
  1494. warmup(ctx_clip, batch);
  1495. }
  1496. static void warmup(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
  1497. support_info_graph info;
  1498. if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) {
  1499. // try to enable flash attention to see if it's supported
  1500. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED;
  1501. info = alloc_compute_meta(ctx_clip, batch);
  1502. if (!info.fattn && info.fattn_op) {
  1503. auto op = info.fattn_op;
  1504. LOG_WRN("%s: *****************************************************************\n", __func__);
  1505. LOG_WRN("%s: WARNING: flash attention not supported by %s, memory usage will increase\n", __func__, ggml_backend_name(ctx_clip.backend));
  1506. LOG_WRN("%s: op params: \n", __func__);
  1507. static auto print_shape = [](const char * fn, const char * name, ggml_tensor * t) {
  1508. LOG_WRN("%s: %s: type = %s, ne = [%d %d %d %d], nb = [%d %d %d %d]\n", fn,
  1509. name, ggml_type_name(t->type),
  1510. t->ne[0], t->ne[1], t->ne[2], t->ne[3],
  1511. t->nb[0], t->nb[1], t->nb[2], t->nb[3]);
  1512. };
  1513. print_shape(__func__, " dst", op);
  1514. print_shape(__func__, "src0", op->src[0]);
  1515. print_shape(__func__, "src1", op->src[1]);
  1516. print_shape(__func__, "src2", op->src[2]);
  1517. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  1518. LOG_WRN("%s: *****************************************************************\n", __func__);
  1519. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED;
  1520. alloc_compute_meta(ctx_clip, batch);
  1521. }
  1522. } else {
  1523. info = alloc_compute_meta(ctx_clip, batch);
  1524. if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  1525. LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__);
  1526. }
  1527. }
  1528. ctx_clip.is_allocated = true; // mark buffers as allocated
  1529. LOG_INF("%s: flash attention is %s\n", __func__,
  1530. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  1531. // print ops that are not supported by the GPU backend (if there is one)
  1532. if (ctx_clip.backend && ctx_clip.backend != ctx_clip.backend_cpu) {
  1533. std::vector<support_info_op> unsupported_ops;
  1534. for (const auto & op : info.ops) {
  1535. if (!op.is_accel) {
  1536. unsupported_ops.push_back(op);
  1537. }
  1538. }
  1539. if (!unsupported_ops.empty()) {
  1540. LOG_WRN("%s: *****************************************************************\n", __func__);
  1541. LOG_WRN("%s: WARNING: the CLIP graph uses unsupported operators by the backend\n", __func__);
  1542. LOG_WRN("%s: the performance will be suboptimal \n", __func__);
  1543. LOG_WRN("%s: list of unsupported ops (backend=%s):\n", __func__, ggml_backend_name(ctx_clip.backend));
  1544. for (const auto & op : unsupported_ops) {
  1545. LOG_WRN("%s: %16s: type = %s, ne = [%d %d %d %d]\n", __func__,
  1546. ggml_op_name(op.op->op),
  1547. ggml_type_name(op.op->type),
  1548. op.op->ne[0], op.op->ne[1], op.op->ne[2], op.op->ne[3]);
  1549. }
  1550. LOG_WRN("%s: flash attention is %s\n", __func__,
  1551. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  1552. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  1553. LOG_WRN("%s: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118\n", __func__);
  1554. LOG_WRN("%s: *****************************************************************\n", __func__);
  1555. }
  1556. }
  1557. }
  1558. static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
  1559. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  1560. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  1561. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  1562. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  1563. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  1564. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  1565. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  1566. if (size > 1) {
  1567. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  1568. ggml_backend_buft_name(buft),
  1569. size / 1024.0 / 1024.0);
  1570. }
  1571. }
  1572. const int n_splits = ggml_backend_sched_get_n_splits(ctx_clip.sched.get());
  1573. const int n_nodes = ggml_graph_n_nodes(gf);
  1574. LOG_INF("%s: graph splits = %d, nodes = %d\n", __func__, n_splits, n_nodes);
  1575. support_info_graph res {
  1576. /*.fattn = */ true,
  1577. /*.fattn_op = */ nullptr,
  1578. /*.ops = */ {},
  1579. };
  1580. // check op support
  1581. for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
  1582. ggml_tensor * node = ggml_graph_node(gf, i);
  1583. res.ops.push_back({node, true});
  1584. if (!ggml_backend_supports_op(ctx_clip.backend, node)) {
  1585. res.ops.back().is_accel = false;
  1586. if (node->op == GGML_OP_FLASH_ATTN_EXT) {
  1587. res.fattn = false;
  1588. res.fattn_op = node;
  1589. }
  1590. }
  1591. }
  1592. return res;
  1593. }
  1594. void get_bool(const std::string & key, bool & output, bool required = true) const {
  1595. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1596. if (i < 0) {
  1597. if (required) {
  1598. throw std::runtime_error("Key not found: " + key);
  1599. }
  1600. return;
  1601. }
  1602. output = gguf_get_val_bool(ctx_gguf.get(), i);
  1603. }
  1604. void get_i32(const std::string & key, int & output, bool required = true) const {
  1605. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1606. if (i < 0) {
  1607. if (required) {
  1608. throw std::runtime_error("Key not found: " + key);
  1609. }
  1610. return;
  1611. }
  1612. output = gguf_get_val_i32(ctx_gguf.get(), i);
  1613. }
  1614. void get_u32(const std::string & key, int & output, bool required = true) const {
  1615. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1616. if (i < 0) {
  1617. if (required) {
  1618. throw std::runtime_error("Key not found: " + key);
  1619. }
  1620. return;
  1621. }
  1622. output = gguf_get_val_u32(ctx_gguf.get(), i);
  1623. }
  1624. void get_f32(const std::string & key, float & output, bool required = true) const {
  1625. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1626. if (i < 0) {
  1627. if (required) {
  1628. throw std::runtime_error("Key not found: " + key);
  1629. }
  1630. return;
  1631. }
  1632. output = gguf_get_val_f32(ctx_gguf.get(), i);
  1633. }
  1634. void get_string(const std::string & key, std::string & output, bool required = true) const {
  1635. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1636. if (i < 0) {
  1637. if (required) {
  1638. throw std::runtime_error("Key not found: " + key);
  1639. }
  1640. return;
  1641. }
  1642. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  1643. }
  1644. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) const {
  1645. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1646. if (i < 0) {
  1647. if (required) {
  1648. throw std::runtime_error("Key not found: " + key);
  1649. }
  1650. return;
  1651. }
  1652. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  1653. output.resize(n);
  1654. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  1655. for (int i = 0; i < n; ++i) {
  1656. output[i] = values[i];
  1657. }
  1658. }
  1659. static void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  1660. auto & hparams = model.hparams;
  1661. for (int x = 1; x <= max_patches_per_side; x++) {
  1662. for (int y = 1; y <= max_patches_per_side; y++) {
  1663. if (x == 1 && y == 1) {
  1664. continue; // skip the first point
  1665. }
  1666. hparams.image_res_candidates.push_back(clip_image_size{
  1667. x*hparams.image_size,
  1668. y*hparams.image_size,
  1669. });
  1670. }
  1671. }
  1672. }
  1673. };
  1674. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  1675. clip_ctx * ctx_vision = nullptr;
  1676. clip_ctx * ctx_audio = nullptr;
  1677. try {
  1678. clip_model_loader loader(fname);
  1679. if (loader.has_vision) {
  1680. ctx_vision = new clip_ctx(ctx_params);
  1681. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  1682. loader.load_tensors(*ctx_vision);
  1683. if (ctx_params.warmup) {
  1684. loader.warmup(*ctx_vision);
  1685. }
  1686. // clip_debug_encode(ctx_vision, 24*14, 24*14, 0.5f);
  1687. }
  1688. if (loader.has_audio) {
  1689. ctx_audio = new clip_ctx(ctx_params);
  1690. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  1691. loader.load_tensors(*ctx_audio);
  1692. if (ctx_params.warmup) {
  1693. loader.warmup(*ctx_audio);
  1694. }
  1695. }
  1696. } catch (const std::exception & e) {
  1697. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  1698. delete ctx_vision;
  1699. delete ctx_audio;
  1700. return {nullptr, nullptr};
  1701. }
  1702. return {ctx_vision, ctx_audio};
  1703. }
  1704. struct clip_image_size * clip_image_size_init() {
  1705. struct clip_image_size * load_image_size = new struct clip_image_size();
  1706. load_image_size->width = 448;
  1707. load_image_size->height = 448;
  1708. return load_image_size;
  1709. }
  1710. struct clip_image_u8 * clip_image_u8_init() {
  1711. return new clip_image_u8();
  1712. }
  1713. struct clip_image_f32 * clip_image_f32_init() {
  1714. return new clip_image_f32();
  1715. }
  1716. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  1717. return new clip_image_f32_batch();
  1718. }
  1719. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  1720. if (nx) *nx = img->nx;
  1721. if (ny) *ny = img->ny;
  1722. return img->buf.data();
  1723. }
  1724. void clip_image_size_free(struct clip_image_size * load_image_size) {
  1725. if (load_image_size == nullptr) {
  1726. return;
  1727. }
  1728. delete load_image_size;
  1729. }
  1730. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  1731. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  1732. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { delete batch; }
  1733. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { delete batch; }
  1734. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  1735. return batch->entries.size();
  1736. }
  1737. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  1738. if (idx < 0 || idx >= (int)batch->entries.size()) {
  1739. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  1740. return 0;
  1741. }
  1742. return batch->entries[idx]->nx;
  1743. }
  1744. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  1745. if (idx < 0 || idx >= (int)batch->entries.size()) {
  1746. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  1747. return 0;
  1748. }
  1749. return batch->entries[idx]->ny;
  1750. }
  1751. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  1752. if (idx < 0 || idx >= (int)batch->entries.size()) {
  1753. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  1754. return nullptr;
  1755. }
  1756. return batch->entries[idx].get();
  1757. }
  1758. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  1759. img->nx = nx;
  1760. img->ny = ny;
  1761. img->buf.resize(3 * nx * ny);
  1762. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  1763. }
  1764. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  1765. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  1766. dst.nx = src.nx;
  1767. dst.ny = src.ny;
  1768. dst.buf.resize(src.buf.size());
  1769. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  1770. for (size_t i = 0; i < src.buf.size(); ++i) {
  1771. int c = i % 3; // rgb
  1772. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  1773. }
  1774. }
  1775. // set of tools to manupulate images
  1776. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  1777. struct img_tool {
  1778. enum resize_algo {
  1779. RESIZE_ALGO_BILINEAR,
  1780. RESIZE_ALGO_BICUBIC,
  1781. // RESIZE_ALGO_LANCZOS, // TODO
  1782. };
  1783. static void resize(
  1784. const clip_image_u8 & src,
  1785. clip_image_u8 & dst,
  1786. const clip_image_size & target_resolution,
  1787. resize_algo algo,
  1788. bool add_padding = true, // TODO: define the behavior for add_padding = false
  1789. std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  1790. dst.nx = target_resolution.width;
  1791. dst.ny = target_resolution.height;
  1792. dst.buf.resize(3 * dst.nx * dst.ny);
  1793. if (dst.nx == src.nx && dst.ny == src.ny) {
  1794. // no resize needed, simple copy
  1795. dst.buf = src.buf;
  1796. return;
  1797. }
  1798. if (!add_padding) {
  1799. // direct resize
  1800. switch (algo) {
  1801. case RESIZE_ALGO_BILINEAR:
  1802. resize_bilinear(src, dst, target_resolution.width, target_resolution.height);
  1803. break;
  1804. case RESIZE_ALGO_BICUBIC:
  1805. resize_bicubic(src, dst, target_resolution.width, target_resolution.height);
  1806. break;
  1807. default:
  1808. throw std::runtime_error("Unsupported resize algorithm");
  1809. }
  1810. } else {
  1811. // resize with padding
  1812. clip_image_u8 resized_image;
  1813. float scale_w = static_cast<float>(target_resolution.width) / src.nx;
  1814. float scale_h = static_cast<float>(target_resolution.height) / src.ny;
  1815. float scale = std::min(scale_w, scale_h);
  1816. int new_width = std::min(static_cast<int>(std::ceil(src.nx * scale)), target_resolution.width);
  1817. int new_height = std::min(static_cast<int>(std::ceil(src.ny * scale)), target_resolution.height);
  1818. switch (algo) {
  1819. case RESIZE_ALGO_BILINEAR:
  1820. resize_bilinear(src, resized_image, new_width, new_height);
  1821. break;
  1822. case RESIZE_ALGO_BICUBIC:
  1823. resize_bicubic(src, resized_image, new_width, new_height);
  1824. break;
  1825. default:
  1826. throw std::runtime_error("Unsupported resize algorithm");
  1827. }
  1828. // fill dst with pad_color
  1829. fill(dst, pad_color);
  1830. int offset_x = (target_resolution.width - new_width) / 2;
  1831. int offset_y = (target_resolution.height - new_height) / 2;
  1832. composite(dst, resized_image, offset_x, offset_y);
  1833. }
  1834. }
  1835. static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  1836. dst.nx = w;
  1837. dst.ny = h;
  1838. dst.buf.resize(3 * w * h);
  1839. for (int i = 0; i < h; ++i) {
  1840. for (int j = 0; j < w; ++j) {
  1841. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  1842. int dst_idx = 3 * (i*w + j);
  1843. dst.buf[dst_idx] = image.buf[src_idx];
  1844. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  1845. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  1846. }
  1847. }
  1848. }
  1849. // calculate the size of the **resized** image, while preserving the aspect ratio
  1850. // the calculated size will be aligned to the nearest multiple of align_size
  1851. // if H or W size is larger than longest_edge, it will be resized to longest_edge
  1852. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) {
  1853. GGML_ASSERT(align_size > 0);
  1854. if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) {
  1855. return {0, 0};
  1856. }
  1857. float scale = std::min(static_cast<float>(longest_edge) / inp_size.width,
  1858. static_cast<float>(longest_edge) / inp_size.height);
  1859. float target_width_f = static_cast<float>(inp_size.width) * scale;
  1860. float target_height_f = static_cast<float>(inp_size.height) * scale;
  1861. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  1862. int aligned_width = ceil_by_factor(target_width_f);
  1863. int aligned_height = ceil_by_factor(target_height_f);
  1864. return {aligned_width, aligned_height};
  1865. }
  1866. // calculate the size of the **resized** image, while preserving the aspect ratio
  1867. // the calculated size will have min_pixels <= W*H <= max_pixels
  1868. // this is referred as "smart_resize" in transformers code
  1869. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) {
  1870. GGML_ASSERT(align_size > 0);
  1871. const int width = inp_size.width;
  1872. const int height = inp_size.height;
  1873. auto round_by_factor = [f = align_size](float x) { return static_cast<int>(std::round(x / static_cast<float>(f))) * f; };
  1874. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  1875. auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  1876. // always align up first
  1877. int h_bar = std::max(align_size, round_by_factor(height));
  1878. int w_bar = std::max(align_size, round_by_factor(width));
  1879. if (h_bar * w_bar > max_pixels) {
  1880. const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
  1881. h_bar = std::max(align_size, floor_by_factor(height / beta));
  1882. w_bar = std::max(align_size, floor_by_factor(width / beta));
  1883. } else if (h_bar * w_bar < min_pixels) {
  1884. const auto beta = std::sqrt(static_cast<float>(min_pixels) / (height * width));
  1885. h_bar = ceil_by_factor(height * beta);
  1886. w_bar = ceil_by_factor(width * beta);
  1887. }
  1888. return {w_bar, h_bar};
  1889. }
  1890. // draw src image into dst image at offset (offset_x, offset_y)
  1891. static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) {
  1892. for (int y = 0; y < src.ny; ++y) {
  1893. for (int x = 0; x < src.nx; ++x) {
  1894. int dx = x + offset_x;
  1895. int dy = y + offset_y;
  1896. // skip pixels that would be out of bounds in the destination
  1897. if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) {
  1898. continue;
  1899. }
  1900. size_t dst_idx = 3 * (static_cast<size_t>(dy) * dst.nx + static_cast<size_t>(dx));
  1901. size_t src_idx = 3 * (static_cast<size_t>(y) * src.nx + static_cast<size_t>(x));
  1902. dst.buf[dst_idx + 0] = src.buf[src_idx + 0];
  1903. dst.buf[dst_idx + 1] = src.buf[src_idx + 1];
  1904. dst.buf[dst_idx + 2] = src.buf[src_idx + 2];
  1905. }
  1906. }
  1907. }
  1908. // fill the image with a solid color
  1909. static void fill(clip_image_u8 & img, const std::array<uint8_t, 3> & color) {
  1910. for (size_t i = 0; i < img.buf.size(); i += 3) {
  1911. img.buf[i] = color[0];
  1912. img.buf[i + 1] = color[1];
  1913. img.buf[i + 2] = color[2];
  1914. }
  1915. }
  1916. private:
  1917. // Bilinear resize function
  1918. static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) {
  1919. dst.nx = target_width;
  1920. dst.ny = target_height;
  1921. dst.buf.resize(3 * target_width * target_height);
  1922. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  1923. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  1924. for (int y = 0; y < target_height; y++) {
  1925. for (int x = 0; x < target_width; x++) {
  1926. float px = x_ratio * x;
  1927. float py = y_ratio * y;
  1928. int x_floor = static_cast<int>(px);
  1929. int y_floor = static_cast<int>(py);
  1930. float x_lerp = px - x_floor;
  1931. float y_lerp = py - y_floor;
  1932. for (int c = 0; c < 3; c++) {
  1933. float top = lerp(
  1934. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  1935. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  1936. x_lerp
  1937. );
  1938. float bottom = lerp(
  1939. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  1940. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  1941. x_lerp
  1942. );
  1943. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  1944. }
  1945. }
  1946. }
  1947. }
  1948. // Bicubic resize function
  1949. // part of image will be cropped if the aspect ratio is different
  1950. static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  1951. const int nx = img.nx;
  1952. const int ny = img.ny;
  1953. dst.nx = target_width;
  1954. dst.ny = target_height;
  1955. dst.buf.resize(3 * target_width * target_height);
  1956. float Cc;
  1957. float C[5] = {};
  1958. float d0, d2, d3, a0, a1, a2, a3;
  1959. int i, j, k, jj;
  1960. int x, y;
  1961. float dx, dy;
  1962. float tx, ty;
  1963. tx = (float)nx / (float)target_width;
  1964. ty = (float)ny / (float)target_height;
  1965. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  1966. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  1967. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  1968. for (i = 0; i < target_height; i++) {
  1969. for (j = 0; j < target_width; j++) {
  1970. x = (int)(tx * j);
  1971. y = (int)(ty * i);
  1972. dx = tx * j - x;
  1973. dy = ty * i - y;
  1974. for (k = 0; k < 3; k++) {
  1975. for (jj = 0; jj <= 3; jj++) {
  1976. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1977. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1978. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1979. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1980. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1981. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1982. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1983. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  1984. d0 = C[0] - C[1];
  1985. d2 = C[2] - C[1];
  1986. d3 = C[3] - C[1];
  1987. a0 = C[1];
  1988. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1989. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1990. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1991. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  1992. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  1993. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  1994. }
  1995. }
  1996. }
  1997. }
  1998. return true;
  1999. }
  2000. static inline int clip(int x, int lower, int upper) {
  2001. return std::max(lower, std::min(x, upper));
  2002. }
  2003. // Linear interpolation between two points
  2004. static inline float lerp(float s, float e, float t) {
  2005. return s + (e - s) * t;
  2006. }
  2007. };
  2008. /**
  2009. * implementation of LLaVA-UHD:
  2010. * - https://arxiv.org/pdf/2403.11703
  2011. * - https://github.com/thunlp/LLaVA-UHD
  2012. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  2013. *
  2014. * overview:
  2015. * - an image always have a single overview (downscaled image)
  2016. * - an image can have 0 or multiple slices, depending on the image size
  2017. * - each slice can then be considered as a separate image
  2018. *
  2019. * for example:
  2020. *
  2021. * [overview] --> [slice 1] --> [slice 2]
  2022. * | |
  2023. * +--> [slice 3] --> [slice 4]
  2024. */
  2025. struct llava_uhd {
  2026. struct slice_coordinates {
  2027. int x;
  2028. int y;
  2029. clip_image_size size;
  2030. };
  2031. struct slice_instructions {
  2032. clip_image_size overview_size; // size of downscaled image
  2033. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  2034. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  2035. std::vector<slice_coordinates> slices;
  2036. img_tool::resize_algo interpolation_overview = img_tool::RESIZE_ALGO_BILINEAR;
  2037. bool padding_overview = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  2038. std::array<uint8_t, 3> pad_color_overview = {0, 0, 0};
  2039. img_tool::resize_algo interpolation_refined = img_tool::RESIZE_ALGO_BICUBIC;
  2040. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  2041. std::array<uint8_t, 3> pad_color_refined = {0, 0, 0};
  2042. };
  2043. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  2044. slice_instructions res;
  2045. const int patch_size = clip_get_patch_size(ctx);
  2046. const int slice_size = clip_get_image_size(ctx);
  2047. const int original_width = original_size.width;
  2048. const int original_height = original_size.height;
  2049. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  2050. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  2051. if (!has_slices) {
  2052. // skip slicing logic
  2053. res.overview_size = clip_image_size{slice_size, slice_size};
  2054. res.refined_size = clip_image_size{0, 0};
  2055. res.grid_size = clip_image_size{0, 0};
  2056. return res;
  2057. }
  2058. if (has_pinpoints) {
  2059. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  2060. auto refine_size = llava_uhd::select_best_resolution(
  2061. original_size,
  2062. ctx->model.hparams.image_res_candidates);
  2063. res.overview_size = clip_image_size{slice_size, slice_size};
  2064. res.refined_size = refine_size;
  2065. res.grid_size = clip_image_size{0, 0};
  2066. res.padding_refined = true;
  2067. res.interpolation_refined = img_tool::RESIZE_ALGO_BILINEAR; // preserve old behavior when padding
  2068. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  2069. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  2070. __func__, original_width, original_height,
  2071. res.overview_size.width, res.overview_size.height,
  2072. res.refined_size.width, res.refined_size.height);
  2073. for (int y = 0; y < refine_size.height; y += slice_size) {
  2074. for (int x = 0; x < refine_size.width; x += slice_size) {
  2075. slice_coordinates slice;
  2076. slice.x = x;
  2077. slice.y = y;
  2078. slice.size.width = std::min(slice_size, refine_size.width - x);
  2079. slice.size.height = std::min(slice_size, refine_size.height - y);
  2080. res.slices.push_back(slice);
  2081. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2082. __func__, (int)res.slices.size() - 1,
  2083. slice.x, slice.y, slice.size.width, slice.size.height);
  2084. }
  2085. }
  2086. res.grid_size.height = refine_size.height / slice_size;
  2087. res.grid_size.width = refine_size.width / slice_size;
  2088. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  2089. return res;
  2090. }
  2091. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  2092. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  2093. res.overview_size = best_size;
  2094. {
  2095. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  2096. const float log_ratio = log((float)original_width / original_height);
  2097. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  2098. const int multiple = fmin(ceil(ratio), max_slice_nums);
  2099. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  2100. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  2101. res.grid_size = best_grid;
  2102. res.refined_size = refine_size;
  2103. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  2104. __func__, original_width, original_height,
  2105. res.overview_size.width, res.overview_size.height,
  2106. res.refined_size.width, res.refined_size.height,
  2107. res.grid_size.width, res.grid_size.height);
  2108. int width = refine_size.width;
  2109. int height = refine_size.height;
  2110. int grid_x = int(width / best_grid.width);
  2111. int grid_y = int(height / best_grid.height);
  2112. for (int patches_y = 0, ic = 0;
  2113. patches_y < refine_size.height && ic < best_grid.height;
  2114. patches_y += grid_y, ic += 1) {
  2115. for (int patches_x = 0, jc = 0;
  2116. patches_x < refine_size.width && jc < best_grid.width;
  2117. patches_x += grid_x, jc += 1) {
  2118. slice_coordinates slice;
  2119. slice.x = patches_x;
  2120. slice.y = patches_y;
  2121. slice.size.width = grid_x;
  2122. slice.size.height = grid_y;
  2123. res.slices.push_back(slice);
  2124. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2125. __func__, (int)res.slices.size() - 1,
  2126. slice.x, slice.y, slice.size.width, slice.size.height);
  2127. }
  2128. }
  2129. }
  2130. return res;
  2131. }
  2132. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  2133. std::vector<clip_image_u8_ptr> output;
  2134. // resize to overview size
  2135. clip_image_u8_ptr resized_img(clip_image_u8_init());
  2136. img_tool::resize(*img, *resized_img, inst.overview_size, inst.interpolation_overview,
  2137. inst.padding_overview, inst.pad_color_overview);
  2138. output.push_back(std::move(resized_img));
  2139. if (inst.slices.empty()) {
  2140. // no slices, just return the resized image
  2141. return output;
  2142. }
  2143. // resize to refined size
  2144. clip_image_u8_ptr refined_img(clip_image_u8_init());
  2145. img_tool::resize(*img, *refined_img, inst.refined_size, inst.interpolation_refined,
  2146. inst.padding_refined, inst.pad_color_refined);
  2147. // create slices
  2148. for (const auto & slice : inst.slices) {
  2149. int x = slice.x;
  2150. int y = slice.y;
  2151. int w = slice.size.width;
  2152. int h = slice.size.height;
  2153. clip_image_u8_ptr img_slice(clip_image_u8_init());
  2154. img_tool::crop(*refined_img, *img_slice, x, y, w, h);
  2155. output.push_back(std::move(img_slice));
  2156. }
  2157. return output;
  2158. }
  2159. private:
  2160. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2161. int width = original_size.width;
  2162. int height = original_size.height;
  2163. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  2164. float r = static_cast<float>(width) / height;
  2165. height = static_cast<int>(scale_resolution / std::sqrt(r));
  2166. width = static_cast<int>(height * r);
  2167. }
  2168. clip_image_size res;
  2169. res.width = ensure_divide(width, patch_size);
  2170. res.height = ensure_divide(height, patch_size);
  2171. return res;
  2172. }
  2173. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  2174. float scale_width = static_cast<float>(target_max.width) / orig.width;
  2175. float scale_height = static_cast<float>(target_max.height) / orig.height;
  2176. float scale = std::min(scale_width, scale_height);
  2177. return clip_image_size{
  2178. static_cast<int>(orig.width * scale),
  2179. static_cast<int>(orig.height * scale),
  2180. };
  2181. }
  2182. /**
  2183. * Selects the best resolution from a list of possible resolutions based on the original size.
  2184. *
  2185. * For example, when given a list of resolutions:
  2186. * - 100x100
  2187. * - 200x100
  2188. * - 100x200
  2189. * - 200x200
  2190. *
  2191. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  2192. *
  2193. * @param original_size The original size of the image
  2194. * @param possible_resolutions A list of possible resolutions
  2195. * @return The best fit resolution
  2196. */
  2197. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  2198. clip_image_size best_fit;
  2199. int min_wasted_area = std::numeric_limits<int>::max();
  2200. int max_effective_resolution = 0;
  2201. for (const clip_image_size & candidate : possible_resolutions) {
  2202. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  2203. int effective_resolution = std::min(
  2204. target_size.width * target_size.height,
  2205. original_size.width * original_size.height);
  2206. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  2207. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  2208. max_effective_resolution = effective_resolution;
  2209. min_wasted_area = wasted_area;
  2210. best_fit = candidate;
  2211. }
  2212. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  2213. }
  2214. return best_fit;
  2215. }
  2216. static int ensure_divide(int length, int patch_size) {
  2217. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  2218. }
  2219. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2220. int width = original_size.width;
  2221. int height = original_size.height;
  2222. int grid_x = grid.width;
  2223. int grid_y = grid.height;
  2224. int refine_width = ensure_divide(width, grid_x);
  2225. int refine_height = ensure_divide(height, grid_y);
  2226. clip_image_size grid_size;
  2227. grid_size.width = refine_width / grid_x;
  2228. grid_size.height = refine_height / grid_y;
  2229. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  2230. int best_grid_width = best_grid_size.width;
  2231. int best_grid_height = best_grid_size.height;
  2232. clip_image_size refine_size;
  2233. refine_size.width = best_grid_width * grid_x;
  2234. refine_size.height = best_grid_height * grid_y;
  2235. return refine_size;
  2236. }
  2237. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  2238. std::vector<int> candidate_split_grids_nums;
  2239. for (int i : {multiple - 1, multiple, multiple + 1}) {
  2240. if (i == 1 || i > max_slice_nums) {
  2241. continue;
  2242. }
  2243. candidate_split_grids_nums.push_back(i);
  2244. }
  2245. std::vector<clip_image_size> candidate_grids;
  2246. for (int split_grids_nums : candidate_split_grids_nums) {
  2247. int m = 1;
  2248. while (m <= split_grids_nums) {
  2249. if (split_grids_nums % m == 0) {
  2250. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  2251. }
  2252. ++m;
  2253. }
  2254. }
  2255. clip_image_size best_grid{1, 1};
  2256. float min_error = std::numeric_limits<float>::infinity();
  2257. for (const auto& grid : candidate_grids) {
  2258. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  2259. if (error < min_error) {
  2260. best_grid = grid;
  2261. min_error = error;
  2262. }
  2263. }
  2264. return best_grid;
  2265. }
  2266. };
  2267. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  2268. // res_imgs memory is being allocated here, previous allocations will be freed if found
  2269. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  2270. clip_image_size original_size{img->nx, img->ny};
  2271. auto & params = ctx->model.hparams;
  2272. switch (ctx->proj_type()) {
  2273. case PROJECTOR_TYPE_MINICPMV:
  2274. {
  2275. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2276. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2277. for (size_t i = 0; i < imgs.size(); ++i) {
  2278. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2279. clip_image_f32_ptr res(clip_image_f32_init());
  2280. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2281. res_imgs->entries.push_back(std::move(res));
  2282. }
  2283. res_imgs->grid_x = inst.grid_size.width;
  2284. res_imgs->grid_y = inst.grid_size.height;
  2285. } break;
  2286. case PROJECTOR_TYPE_QWEN2VL:
  2287. case PROJECTOR_TYPE_QWEN25VL:
  2288. case PROJECTOR_TYPE_QWEN3VL:
  2289. case PROJECTOR_TYPE_GLM4V:
  2290. {
  2291. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  2292. clip_image_u8 resized;
  2293. const clip_image_size new_size = img_tool::calc_size_preserved_ratio(
  2294. original_size,
  2295. params.patch_size * 2,
  2296. params.image_min_pixels,
  2297. params.image_max_pixels);
  2298. img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
  2299. // clip_image_save_to_bmp(resized, "preproc.bmp");
  2300. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2301. // clip_image_f32_ptr res(clip_image_f32_init());
  2302. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  2303. // res_imgs->data[0] = *res;
  2304. res_imgs->entries.push_back(std::move(img_f32));
  2305. } break;
  2306. case PROJECTOR_TYPE_IDEFICS3:
  2307. {
  2308. // The refined size has two steps:
  2309. // 1. Resize w/ aspect-ratio preserving such that the longer side is
  2310. // the preprocessor longest size
  2311. // 2. Resize w/out preserving aspect ratio such that both sides are
  2312. // multiples of image_size (always rounding up)
  2313. //
  2314. // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
  2315. const clip_image_size refined_size = img_tool::calc_size_preserved_ratio(
  2316. original_size, params.image_size, params.image_longest_edge);
  2317. // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
  2318. // __func__, original_size.width, original_size.height,
  2319. // refined_size.width, refined_size.height);
  2320. llava_uhd::slice_instructions instructions;
  2321. instructions.overview_size = clip_image_size{params.image_size, params.image_size};
  2322. instructions.refined_size = refined_size;
  2323. instructions.grid_size = clip_image_size{
  2324. static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
  2325. static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
  2326. };
  2327. for (int y = 0; y < refined_size.height; y += params.image_size) {
  2328. for (int x = 0; x < refined_size.width; x += params.image_size) {
  2329. // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
  2330. instructions.slices.push_back(llava_uhd::slice_coordinates{
  2331. /* x */x,
  2332. /* y */y,
  2333. /* size */clip_image_size{
  2334. std::min(params.image_size, refined_size.width - x),
  2335. std::min(params.image_size, refined_size.height - y)
  2336. }
  2337. });
  2338. }
  2339. }
  2340. auto imgs = llava_uhd::slice_image(img, instructions);
  2341. // cast and normalize to f32
  2342. for (size_t i = 0; i < imgs.size(); ++i) {
  2343. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2344. clip_image_f32_ptr res(clip_image_f32_init());
  2345. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2346. res_imgs->entries.push_back(std::move(res));
  2347. }
  2348. res_imgs->grid_x = instructions.grid_size.width;
  2349. res_imgs->grid_y = instructions.grid_size.height;
  2350. } break;
  2351. case PROJECTOR_TYPE_GLM_EDGE:
  2352. case PROJECTOR_TYPE_GEMMA3:
  2353. case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
  2354. {
  2355. clip_image_u8 resized_image;
  2356. int sz = params.image_size;
  2357. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR);
  2358. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2359. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  2360. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2361. res_imgs->entries.push_back(std::move(img_f32));
  2362. } break;
  2363. case PROJECTOR_TYPE_JANUS_PRO:
  2364. {
  2365. // Janus Pro preprocessing: pad to square with gray(127), resize to 384x384
  2366. const std::array<uint8_t, 3> pad_color = {127, 127, 127};
  2367. clip_image_u8 resized_image;
  2368. int sz = params.image_size;
  2369. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  2370. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2371. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2372. res_imgs->entries.push_back(std::move(img_f32));
  2373. } break;
  2374. case PROJECTOR_TYPE_PIXTRAL:
  2375. case PROJECTOR_TYPE_LIGHTONOCR:
  2376. {
  2377. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  2378. clip_image_u8 resized_image;
  2379. // the original pixtral model doesn't have n_merge
  2380. const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge;
  2381. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  2382. original_size,
  2383. params.patch_size * cur_merge,
  2384. params.image_min_pixels,
  2385. params.image_max_pixels);
  2386. img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR);
  2387. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2388. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2389. res_imgs->entries.push_back(std::move(img_f32));
  2390. } break;
  2391. case PROJECTOR_TYPE_LLAMA4:
  2392. {
  2393. GGML_ASSERT(!params.image_res_candidates.empty());
  2394. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2395. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2396. for (size_t i = 0; i < imgs.size(); ++i) {
  2397. clip_image_f32_ptr res(clip_image_f32_init());
  2398. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2399. res_imgs->entries.push_back(std::move(res));
  2400. }
  2401. res_imgs->grid_x = inst.grid_size.width;
  2402. res_imgs->grid_y = inst.grid_size.height;
  2403. } break;
  2404. case PROJECTOR_TYPE_LFM2:
  2405. case PROJECTOR_TYPE_KIMIVL:
  2406. {
  2407. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  2408. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  2409. original_size,
  2410. params.patch_size * params.n_merge,
  2411. params.image_min_pixels,
  2412. params.image_max_pixels);
  2413. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  2414. clip_image_u8 resized_img;
  2415. const bool pad = (ctx->proj_type() != PROJECTOR_TYPE_LFM2);
  2416. img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, pad, pad_color);
  2417. clip_image_f32_ptr res(clip_image_f32_init());
  2418. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  2419. res_imgs->entries.push_back(std::move(res));
  2420. } break;
  2421. case PROJECTOR_TYPE_MLP:
  2422. case PROJECTOR_TYPE_MLP_NORM:
  2423. case PROJECTOR_TYPE_LDP:
  2424. case PROJECTOR_TYPE_LDPV2:
  2425. case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm?
  2426. {
  2427. // TODO @ngxson : refactor the code below to avoid duplicated logic
  2428. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  2429. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2430. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  2431. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  2432. if (params.image_res_candidates.empty()) { // pad_to_square
  2433. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  2434. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2435. const int longer_side = std::max(img->nx, img->ny);
  2436. temp->nx = longer_side;
  2437. temp->ny = longer_side;
  2438. temp->buf.resize(3 * longer_side * longer_side);
  2439. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  2440. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  2441. // resize the image to the target_size
  2442. img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  2443. clip_image_f32_ptr res(clip_image_f32_init());
  2444. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  2445. res_imgs->entries.push_back(std::move(res));
  2446. } else {
  2447. // "spatial_unpad" with "anyres" processing for llava-1.6
  2448. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2449. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2450. for (size_t i = 0; i < imgs.size(); ++i) {
  2451. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2452. clip_image_f32_ptr res(clip_image_f32_init());
  2453. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2454. res_imgs->entries.push_back(std::move(res));
  2455. }
  2456. }
  2457. } break;
  2458. default:
  2459. LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type());
  2460. return false;
  2461. }
  2462. return true;
  2463. }
  2464. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  2465. return ctx->model.image_newline;
  2466. }
  2467. void clip_free(clip_ctx * ctx) {
  2468. if (ctx == nullptr) {
  2469. return;
  2470. }
  2471. delete ctx;
  2472. }
  2473. // deprecated
  2474. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  2475. const int32_t nx = ctx->model.hparams.image_size;
  2476. const int32_t ny = ctx->model.hparams.image_size;
  2477. return clip_embd_nbytes_by_img(ctx, nx, ny);
  2478. }
  2479. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  2480. clip_image_f32 img;
  2481. img.nx = img_w;
  2482. img.ny = img_h;
  2483. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2484. }
  2485. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  2486. return ctx->model.hparams.image_size;
  2487. }
  2488. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  2489. return ctx->model.hparams.patch_size;
  2490. }
  2491. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  2492. return ctx->model.hparams.n_embd;
  2493. }
  2494. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  2495. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  2496. }
  2497. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2498. const auto & params = ctx->model.hparams;
  2499. const int n_total = clip_n_output_tokens(ctx, img);
  2500. const auto & proj = ctx->proj_type();
  2501. switch (proj) {
  2502. case PROJECTOR_TYPE_QWEN2VL:
  2503. case PROJECTOR_TYPE_QWEN25VL:
  2504. case PROJECTOR_TYPE_QWEN3VL:
  2505. case PROJECTOR_TYPE_GLM4V:
  2506. return (img->nx / params.patch_size) / 2;
  2507. default:
  2508. break;
  2509. }
  2510. return n_total;
  2511. }
  2512. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2513. const auto & params = ctx->model.hparams;
  2514. const auto & proj = ctx->proj_type();
  2515. switch (proj) {
  2516. case PROJECTOR_TYPE_QWEN2VL:
  2517. case PROJECTOR_TYPE_QWEN25VL:
  2518. case PROJECTOR_TYPE_QWEN3VL:
  2519. case PROJECTOR_TYPE_GLM4V:
  2520. return (img->ny / params.patch_size) / 2;
  2521. default:
  2522. break;
  2523. }
  2524. return 1;
  2525. }
  2526. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2527. const auto & params = ctx->model.hparams;
  2528. // for models with fixed size image, the input image is already pre-processed and resized to square
  2529. int patch_size = params.patch_size;
  2530. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  2531. projector_type proj = ctx->proj_type();
  2532. switch (proj) {
  2533. case PROJECTOR_TYPE_MLP:
  2534. case PROJECTOR_TYPE_MLP_NORM:
  2535. case PROJECTOR_TYPE_JANUS_PRO:
  2536. {
  2537. // do nothing
  2538. } break;
  2539. case PROJECTOR_TYPE_LDP:
  2540. case PROJECTOR_TYPE_LDPV2:
  2541. case PROJECTOR_TYPE_GLM_EDGE:
  2542. {
  2543. n_patches /= 4;
  2544. if (ctx->model.mm_boi) {
  2545. n_patches += 2; // for BOI and EOI token embeddings
  2546. }
  2547. } break;
  2548. case PROJECTOR_TYPE_MINICPMV:
  2549. {
  2550. // Use actual config value if available, otherwise fall back to hardcoded values
  2551. if (params.minicpmv_query_num > 0) {
  2552. n_patches = params.minicpmv_query_num;
  2553. } else {
  2554. // Fallback to hardcoded values for legacy models
  2555. if (params.minicpmv_version == 2) {
  2556. n_patches = 96;
  2557. } else if (params.minicpmv_version == 3) {
  2558. n_patches = 64;
  2559. } else if (params.minicpmv_version == 4) {
  2560. n_patches = 64;
  2561. } else if (params.minicpmv_version == 5) {
  2562. // MiniCPM-V 4.0
  2563. n_patches = 64;
  2564. } else if (params.minicpmv_version == 6) {
  2565. // MiniCPM-V 4.5
  2566. n_patches = 64;
  2567. } else {
  2568. GGML_ABORT("Unknown minicpmv version");
  2569. }
  2570. }
  2571. } break;
  2572. case PROJECTOR_TYPE_QWEN2VL:
  2573. case PROJECTOR_TYPE_QWEN25VL:
  2574. case PROJECTOR_TYPE_QWEN3VL:
  2575. case PROJECTOR_TYPE_GLM4V:
  2576. {
  2577. // dynamic size (2 conv, so double patch size)
  2578. int x_patch = img->nx / (params.patch_size * 2);
  2579. int y_patch = img->ny / (params.patch_size * 2);
  2580. n_patches = x_patch * y_patch;
  2581. } break;
  2582. case PROJECTOR_TYPE_GEMMA3:
  2583. case PROJECTOR_TYPE_IDEFICS3:
  2584. case PROJECTOR_TYPE_INTERNVL:
  2585. case PROJECTOR_TYPE_LLAMA4:
  2586. {
  2587. // both X and Y are downscaled by the scale factor
  2588. int scale_factor = ctx->model.hparams.n_merge;
  2589. n_patches /= (scale_factor * scale_factor);
  2590. } break;
  2591. case PROJECTOR_TYPE_LFM2:
  2592. case PROJECTOR_TYPE_KIMIVL:
  2593. {
  2594. // dynamic size
  2595. int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
  2596. int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
  2597. int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
  2598. n_patches = x_patch * y_patch;
  2599. } break;
  2600. case PROJECTOR_TYPE_PIXTRAL:
  2601. case PROJECTOR_TYPE_LIGHTONOCR:
  2602. {
  2603. // dynamic size
  2604. int n_merge = ctx->model.hparams.n_merge;
  2605. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  2606. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  2607. if (ctx->model.token_embd_img_break) {
  2608. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  2609. } else {
  2610. n_patches = n_patches_y * n_patches_x;
  2611. }
  2612. } break;
  2613. case PROJECTOR_TYPE_VOXTRAL:
  2614. case PROJECTOR_TYPE_ULTRAVOX:
  2615. case PROJECTOR_TYPE_QWEN2A:
  2616. {
  2617. n_patches = img->nx;
  2618. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  2619. if (ctx->model.audio_has_stack_frames()) {
  2620. GGML_ASSERT(proj_stack_factor > 0);
  2621. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  2622. n_patches = n_len / proj_stack_factor;
  2623. }
  2624. // whisper downscales input token by half after conv1d
  2625. n_patches /= 2;
  2626. if (ctx->model.audio_has_avgpool()) {
  2627. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  2628. n_patches /= 2;
  2629. }
  2630. } break;
  2631. case PROJECTOR_TYPE_GLMA:
  2632. {
  2633. n_patches = img->nx;
  2634. // whisper downscales input token by half after conv1d
  2635. n_patches /= 2;
  2636. // reshape by merge_factor
  2637. n_patches /= ctx->model.hparams.proj_stack_factor;
  2638. // for BOI and EOI token embeddings
  2639. n_patches += 2;
  2640. } break;
  2641. case PROJECTOR_TYPE_COGVLM:
  2642. {
  2643. n_patches += 2; // for BOI and EOI token embeddings
  2644. } break;
  2645. default:
  2646. GGML_ABORT("unsupported projector type");
  2647. }
  2648. return n_patches;
  2649. }
  2650. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  2651. clip_image_f32_batch imgs;
  2652. clip_image_f32_ptr img_copy(clip_image_f32_init());
  2653. *img_copy = *img;
  2654. imgs.entries.push_back(std::move(img_copy));
  2655. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  2656. }
  2657. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  2658. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  2659. int batch_size = imgs.entries.size();
  2660. // TODO @ngxson : implement batch size > 1 as a loop
  2661. // we don't need true batching support because the cgraph will gonna be big anyway
  2662. if (batch_size != 1) {
  2663. return false; // only support batch size of 1
  2664. }
  2665. // if buffers are not allocated, we need to do a warmup run to allocate them
  2666. if (!ctx->is_allocated) {
  2667. clip_model_loader::warmup(*ctx, *imgs_c_ptr);
  2668. }
  2669. // build the inference graph
  2670. ctx->debug_print_tensors.clear();
  2671. ggml_backend_sched_reset(ctx->sched.get());
  2672. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  2673. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  2674. // set inputs
  2675. const auto & model = ctx->model;
  2676. const auto & hparams = model.hparams;
  2677. const int image_size_width = imgs.entries[0]->nx;
  2678. const int image_size_height = imgs.entries[0]->ny;
  2679. const int patch_size = hparams.patch_size;
  2680. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  2681. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  2682. const int pos_w = image_size_width / patch_size;
  2683. const int pos_h = image_size_height / patch_size;
  2684. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  2685. auto get_inp_tensor = [&gf](const char * name) {
  2686. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  2687. if (inp == nullptr) {
  2688. GGML_ABORT("Failed to get tensor %s", name);
  2689. }
  2690. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  2691. GGML_ABORT("Tensor %s is not an input tensor", name);
  2692. }
  2693. return inp;
  2694. };
  2695. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  2696. ggml_tensor * cur = get_inp_tensor(name);
  2697. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  2698. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  2699. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  2700. };
  2701. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  2702. ggml_tensor * cur = get_inp_tensor(name);
  2703. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  2704. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  2705. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  2706. };
  2707. // set input pixel values
  2708. if (!imgs.is_audio) {
  2709. size_t nelem = 0;
  2710. for (const auto & img : imgs.entries) {
  2711. nelem += img->nx * img->ny * 3;
  2712. }
  2713. std::vector<float> inp_raw(nelem);
  2714. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  2715. //
  2716. // ┌──W──┐
  2717. // │ H │ channel = R
  2718. // ├─────┤ │
  2719. // │ H │ channel = G
  2720. // ├─────┤ │
  2721. // │ H │ channel = B
  2722. // └─────┘ │
  2723. // ──────┘ x B
  2724. for (size_t i = 0; i < imgs.entries.size(); i++) {
  2725. const int nx = imgs.entries[i]->nx;
  2726. const int ny = imgs.entries[i]->ny;
  2727. const int n = nx * ny;
  2728. for (int b = 0; b < batch_size; b++) {
  2729. float * batch_entry = inp_raw.data() + b * (3*n);
  2730. for (int y = 0; y < ny; y++) {
  2731. for (int x = 0; x < nx; x++) {
  2732. size_t base_src = 3*(y * nx + x); // idx of the first channel
  2733. size_t base_dst = y * nx + x; // idx of the first channel
  2734. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  2735. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  2736. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  2737. }
  2738. }
  2739. }
  2740. }
  2741. set_input_f32("inp_raw", inp_raw);
  2742. } else {
  2743. // audio input
  2744. GGML_ASSERT(imgs.entries.size() == 1);
  2745. const auto & mel_inp = imgs.entries[0];
  2746. const int n_step = mel_inp->nx;
  2747. const int n_mel = mel_inp->ny;
  2748. std::vector<float> inp_raw(n_step * n_mel);
  2749. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  2750. set_input_f32("inp_raw", inp_raw);
  2751. }
  2752. // set input per projector
  2753. switch (ctx->model.proj_type) {
  2754. case PROJECTOR_TYPE_MINICPMV:
  2755. {
  2756. // inspired from siglip:
  2757. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  2758. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  2759. std::vector<int32_t> positions(pos_h * pos_w);
  2760. int bucket_coords_h[1024];
  2761. int bucket_coords_w[1024];
  2762. for (int i = 0; i < pos_h; i++){
  2763. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  2764. }
  2765. for (int i = 0; i < pos_w; i++){
  2766. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  2767. }
  2768. for (int i = 0, id = 0; i < pos_h; i++){
  2769. for (int j = 0; j < pos_w; j++){
  2770. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  2771. }
  2772. }
  2773. set_input_i32("positions", positions);
  2774. // inputs for resampler projector
  2775. // set the 2D positions (using float for sinusoidal embedding)
  2776. int n_patches_per_col = image_size_width / patch_size;
  2777. std::vector<float> pos_data(n_pos);
  2778. // dimension H
  2779. for (int i = 0; i < n_pos; i++) {
  2780. pos_data[i] = static_cast<float>(i / n_patches_per_col);
  2781. }
  2782. set_input_f32("pos_h", pos_data);
  2783. // dimension W
  2784. for (int i = 0; i < n_pos; i++) {
  2785. pos_data[i] = static_cast<float>(i % n_patches_per_col);
  2786. }
  2787. set_input_f32("pos_w", pos_data);
  2788. // base frequency omega
  2789. const float base_freq = 10000.0f;
  2790. const int n_embd_proj = clip_n_mmproj_embd(ctx);
  2791. std::vector<float> omega(n_embd_proj / 4);
  2792. for (int i = 0; i < n_embd_proj / 4; ++i) {
  2793. omega[i] = 1.0f / std::pow(base_freq, static_cast<float>(i) / (n_embd_proj / 4));
  2794. }
  2795. set_input_f32("omega", omega);
  2796. } break;
  2797. case PROJECTOR_TYPE_QWEN2VL:
  2798. case PROJECTOR_TYPE_QWEN3VL:
  2799. case PROJECTOR_TYPE_GLM4V:
  2800. {
  2801. const int merge_ratio = hparams.n_merge;
  2802. const int pw = image_size_width / patch_size;
  2803. const int ph = image_size_height / patch_size;
  2804. std::vector<int> positions(n_pos * 4);
  2805. int ptr = 0;
  2806. for (int y = 0; y < ph; y += merge_ratio) {
  2807. for (int x = 0; x < pw; x += merge_ratio) {
  2808. for (int dy = 0; dy < 2; dy++) {
  2809. for (int dx = 0; dx < 2; dx++) {
  2810. positions[ ptr] = y + dy;
  2811. positions[ num_patches + ptr] = x + dx;
  2812. positions[2 * num_patches + ptr] = y + dy;
  2813. positions[3 * num_patches + ptr] = x + dx;
  2814. ptr++;
  2815. }
  2816. }
  2817. }
  2818. }
  2819. set_input_i32("positions", positions);
  2820. } break;
  2821. case PROJECTOR_TYPE_QWEN25VL:
  2822. {
  2823. // pw * ph = number of tokens output by ViT after apply patch merger
  2824. // ipw * ipw = number of vision token been processed inside ViT
  2825. const int merge_ratio = 2;
  2826. const int pw = image_size_width / patch_size / merge_ratio;
  2827. const int ph = image_size_height / patch_size / merge_ratio;
  2828. const int ipw = image_size_width / patch_size;
  2829. const int iph = image_size_height / patch_size;
  2830. std::vector<int> idx (ph * pw);
  2831. std::vector<int> inv_idx(ph * pw);
  2832. if (use_window_attn) {
  2833. const int attn_window_size = 112;
  2834. const int grid_window = attn_window_size / patch_size / merge_ratio;
  2835. int dst = 0;
  2836. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  2837. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  2838. int mask_row = 0;
  2839. for (int y = 0; y < ph; y += grid_window) {
  2840. for (int x = 0; x < pw; x += grid_window) {
  2841. const int win_h = std::min(grid_window, ph - y);
  2842. const int win_w = std::min(grid_window, pw - x);
  2843. const int dst_0 = dst;
  2844. // group all tokens belong to the same window togather (to a continue range)
  2845. for (int dy = 0; dy < win_h; dy++) {
  2846. for (int dx = 0; dx < win_w; dx++) {
  2847. const int src = (y + dy) * pw + (x + dx);
  2848. GGML_ASSERT(src < (int)idx.size());
  2849. GGML_ASSERT(dst < (int)inv_idx.size());
  2850. idx [src] = dst;
  2851. inv_idx[dst] = src;
  2852. dst++;
  2853. }
  2854. }
  2855. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  2856. int row_offset = mask_row * (ipw * iph);
  2857. std::fill(
  2858. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  2859. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  2860. 0.0);
  2861. mask_row++;
  2862. }
  2863. }
  2864. }
  2865. set_input_i32("window_idx", idx);
  2866. set_input_i32("inv_window_idx", inv_idx);
  2867. set_input_f32("window_mask", mask);
  2868. } else {
  2869. for (int i = 0; i < ph * pw; i++) {
  2870. idx[i] = i;
  2871. }
  2872. }
  2873. const int mpow = merge_ratio * merge_ratio;
  2874. std::vector<int> positions(n_pos * 4);
  2875. int ptr = 0;
  2876. for (int y = 0; y < iph; y += merge_ratio) {
  2877. for (int x = 0; x < ipw; x += merge_ratio) {
  2878. for (int dy = 0; dy < 2; dy++) {
  2879. for (int dx = 0; dx < 2; dx++) {
  2880. auto remap = idx[ptr / mpow];
  2881. remap = (remap * mpow) + (ptr % mpow);
  2882. positions[ remap] = y + dy;
  2883. positions[ num_patches + remap] = x + dx;
  2884. positions[2 * num_patches + remap] = y + dy;
  2885. positions[3 * num_patches + remap] = x + dx;
  2886. ptr++;
  2887. }
  2888. }
  2889. }
  2890. }
  2891. set_input_i32("positions", positions);
  2892. } break;
  2893. case PROJECTOR_TYPE_PIXTRAL:
  2894. case PROJECTOR_TYPE_KIMIVL:
  2895. case PROJECTOR_TYPE_LIGHTONOCR:
  2896. {
  2897. // set the 2D positions
  2898. int n_patches_per_col = image_size_width / patch_size;
  2899. std::vector<int> pos_data(n_pos);
  2900. // dimension H
  2901. for (int i = 0; i < n_pos; i++) {
  2902. pos_data[i] = i / n_patches_per_col;
  2903. }
  2904. set_input_i32("pos_h", pos_data);
  2905. // dimension W
  2906. for (int i = 0; i < n_pos; i++) {
  2907. pos_data[i] = i % n_patches_per_col;
  2908. }
  2909. set_input_i32("pos_w", pos_data);
  2910. } break;
  2911. case PROJECTOR_TYPE_GLM_EDGE:
  2912. {
  2913. // llava and other models
  2914. std::vector<int32_t> positions(n_pos);
  2915. for (int i = 0; i < n_pos; i++) {
  2916. positions[i] = i;
  2917. }
  2918. set_input_i32("positions", positions);
  2919. } break;
  2920. case PROJECTOR_TYPE_MLP:
  2921. case PROJECTOR_TYPE_MLP_NORM:
  2922. case PROJECTOR_TYPE_LDP:
  2923. case PROJECTOR_TYPE_LDPV2:
  2924. {
  2925. // llava and other models
  2926. std::vector<int32_t> positions(n_pos);
  2927. for (int i = 0; i < n_pos; i++) {
  2928. positions[i] = i;
  2929. }
  2930. set_input_i32("positions", positions);
  2931. // The patches vector is used to get rows to index into the embeds with;
  2932. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  2933. // when retrieving the rows.
  2934. int patch_offset = model.class_embedding ? 1 : 0;
  2935. std::vector<int32_t> patches(num_patches);
  2936. for (int i = 0; i < num_patches; i++) {
  2937. patches[i] = i + patch_offset;
  2938. }
  2939. set_input_i32("patches", patches);
  2940. } break;
  2941. case PROJECTOR_TYPE_GEMMA3:
  2942. case PROJECTOR_TYPE_IDEFICS3:
  2943. case PROJECTOR_TYPE_INTERNVL:
  2944. case PROJECTOR_TYPE_QWEN2A:
  2945. case PROJECTOR_TYPE_GLMA:
  2946. case PROJECTOR_TYPE_ULTRAVOX:
  2947. case PROJECTOR_TYPE_LFM2:
  2948. case PROJECTOR_TYPE_VOXTRAL:
  2949. case PROJECTOR_TYPE_JANUS_PRO:
  2950. case PROJECTOR_TYPE_COGVLM:
  2951. {
  2952. // do nothing
  2953. } break;
  2954. case PROJECTOR_TYPE_LLAMA4:
  2955. {
  2956. // set the 2D positions
  2957. int n_patches_per_col = image_size_width / patch_size;
  2958. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  2959. // last pos is always kept 0, it's for CLS
  2960. // dimension H
  2961. for (int i = 0; i < num_patches; i++) {
  2962. pos_data[i] = (i / n_patches_per_col) + 1;
  2963. }
  2964. set_input_i32("pos_h", pos_data);
  2965. // dimension W
  2966. for (int i = 0; i < num_patches; i++) {
  2967. pos_data[i] = (i % n_patches_per_col) + 1;
  2968. }
  2969. set_input_i32("pos_w", pos_data);
  2970. } break;
  2971. default:
  2972. GGML_ABORT("Unknown projector type");
  2973. }
  2974. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  2975. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  2976. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  2977. if (reg) {
  2978. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  2979. if (ggml_backend_set_n_threads_fn) {
  2980. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  2981. }
  2982. }
  2983. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  2984. if (status != GGML_STATUS_SUCCESS) {
  2985. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  2986. return false;
  2987. }
  2988. // print debug nodes
  2989. if (ctx->debug_graph) {
  2990. LOG_INF("\n\n---\n\n");
  2991. LOG_INF("\n\nDebug graph:\n\n");
  2992. for (ggml_tensor * t : ctx->debug_print_tensors) {
  2993. std::vector<uint8_t> data(ggml_nbytes(t));
  2994. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  2995. print_tensor_shape(t);
  2996. print_tensor_data(t, data.data(), 3);
  2997. }
  2998. }
  2999. // the last node is the embedding tensor
  3000. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  3001. // sanity check (only support batch size of 1 for now)
  3002. const int n_tokens_out = embeddings->ne[1];
  3003. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  3004. if (n_tokens_out != expected_n_tokens_out) {
  3005. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  3006. GGML_ABORT("Invalid number of output tokens");
  3007. }
  3008. // copy the embeddings to the location passed by the user
  3009. if (vec != nullptr) {
  3010. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  3011. }
  3012. return true;
  3013. }
  3014. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  3015. switch (ctx->model.proj_type) {
  3016. case PROJECTOR_TYPE_LDP:
  3017. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  3018. case PROJECTOR_TYPE_LDPV2:
  3019. return ctx->model.mm_model_peg_0_b->ne[0];
  3020. case PROJECTOR_TYPE_MLP:
  3021. case PROJECTOR_TYPE_PIXTRAL:
  3022. case PROJECTOR_TYPE_LIGHTONOCR:
  3023. return ctx->model.mm_2_w->ne[1];
  3024. case PROJECTOR_TYPE_MLP_NORM:
  3025. return ctx->model.mm_3_b->ne[0];
  3026. case PROJECTOR_TYPE_MINICPMV:
  3027. return ctx->model.mm_model_proj->ne[0];
  3028. case PROJECTOR_TYPE_GLM_EDGE:
  3029. return ctx->model.mm_model_mlp_3_w->ne[1];
  3030. case PROJECTOR_TYPE_QWEN2VL:
  3031. case PROJECTOR_TYPE_QWEN25VL:
  3032. case PROJECTOR_TYPE_JANUS_PRO:
  3033. return ctx->model.mm_1_b->ne[0];
  3034. case PROJECTOR_TYPE_QWEN3VL:
  3035. // main path + deepstack paths
  3036. return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
  3037. case PROJECTOR_TYPE_GEMMA3:
  3038. return ctx->model.mm_input_proj_w->ne[0];
  3039. case PROJECTOR_TYPE_IDEFICS3:
  3040. return ctx->model.projection->ne[1];
  3041. case PROJECTOR_TYPE_ULTRAVOX:
  3042. case PROJECTOR_TYPE_VOXTRAL:
  3043. return ctx->model.mm_2_w->ne[1];
  3044. case PROJECTOR_TYPE_INTERNVL:
  3045. return ctx->model.mm_3_w->ne[1];
  3046. case PROJECTOR_TYPE_LLAMA4:
  3047. return ctx->model.mm_model_proj->ne[1];
  3048. case PROJECTOR_TYPE_QWEN2A:
  3049. return ctx->model.mm_fc_w->ne[1];
  3050. case PROJECTOR_TYPE_GLMA:
  3051. return ctx->model.mm_2_w->ne[1];
  3052. case PROJECTOR_TYPE_LFM2:
  3053. case PROJECTOR_TYPE_KIMIVL:
  3054. return ctx->model.mm_2_w->ne[1];
  3055. case PROJECTOR_TYPE_COGVLM:
  3056. return ctx->model.mm_4h_to_h_w->ne[1];
  3057. case PROJECTOR_TYPE_GLM4V:
  3058. return ctx->model.mm_ffn_down_w->ne[1];
  3059. default:
  3060. GGML_ABORT("Unknown projector type");
  3061. }
  3062. }
  3063. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  3064. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  3065. return ctx->model.hparams.minicpmv_version;
  3066. }
  3067. return 0;
  3068. }
  3069. bool clip_is_glm(const struct clip_ctx * ctx) {
  3070. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  3071. }
  3072. bool clip_is_mrope(const struct clip_ctx * ctx) {
  3073. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  3074. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  3075. || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL
  3076. || ctx->proj_type() == PROJECTOR_TYPE_GLM4V;
  3077. }
  3078. bool clip_is_llava(const struct clip_ctx * ctx) {
  3079. return ctx->model.hparams.has_llava_projector;
  3080. }
  3081. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  3082. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  3083. }
  3084. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  3085. return ctx->model.modality == CLIP_MODALITY_VISION;
  3086. }
  3087. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  3088. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  3089. }
  3090. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  3091. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  3092. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  3093. || ctx->proj_type() == PROJECTOR_TYPE_GLMA
  3094. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  3095. }
  3096. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  3097. clip_image_f32 clip_img;
  3098. clip_img.buf.resize(h * w * 3);
  3099. for (int i = 0; i < h*w*3; i++)
  3100. {
  3101. clip_img.buf[i] = img[i];
  3102. }
  3103. clip_img.nx = w;
  3104. clip_img.ny = h;
  3105. clip_image_encode(ctx, n_threads, &clip_img, vec);
  3106. return true;
  3107. }
  3108. //
  3109. // API used internally with mtmd
  3110. //
  3111. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  3112. return ctx->proj_type();
  3113. }
  3114. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  3115. clip_image_f32 * audio = new clip_image_f32;
  3116. audio->nx = n_frames;
  3117. audio->ny = n_mel;
  3118. audio->buf.resize(n_frames * n_mel);
  3119. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  3120. batch->entries.push_back(clip_image_f32_ptr(audio));
  3121. batch->is_audio = true;
  3122. }
  3123. const clip_hparams * clip_get_hparams(const struct clip_ctx * ctx) {
  3124. return &ctx->model.hparams;
  3125. }
  3126. //
  3127. // API for debugging
  3128. //
  3129. void clip_debug_encode(clip_ctx * ctx, int h, int w, float fill_value) {
  3130. clip_image_f32 img;
  3131. img.nx = w;
  3132. img.ny = h;
  3133. img.buf.resize(h * w * 3);
  3134. for (int i = 0; i < h * w * 3; i++) {
  3135. img.buf[i] = static_cast<float>(fill_value);
  3136. }
  3137. bool cur_debug_graph = ctx->debug_graph;
  3138. ctx->debug_graph = true;
  3139. clip_image_encode(ctx, 1, &img, nullptr);
  3140. ctx->debug_graph = cur_debug_graph;
  3141. GGML_ASSERT(img.buf.empty() && "expected, always stop here");
  3142. }