convert_hf_to_gguf.py 270 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. VISION = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.VISION: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is VisionModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. )
  260. )
  261. or not new_name.endswith(".weight")
  262. ):
  263. data_qtype = gguf.GGMLQuantizationType.F32
  264. if data_qtype is False and any(
  265. self.match_model_tensor_name(new_name, key, bid)
  266. for key in (
  267. gguf.MODEL_TENSOR.TOKEN_EMBD,
  268. gguf.MODEL_TENSOR.OUTPUT,
  269. )
  270. ):
  271. if self.ftype in (
  272. gguf.LlamaFileType.MOSTLY_TQ1_0,
  273. gguf.LlamaFileType.MOSTLY_TQ2_0,
  274. ):
  275. # TODO: use Q4_K and Q6_K
  276. data_qtype = gguf.GGMLQuantizationType.F16
  277. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  278. if isinstance(data_qtype, bool):
  279. if self.ftype == gguf.LlamaFileType.ALL_F32:
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  282. data_qtype = gguf.GGMLQuantizationType.F16
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  284. data_qtype = gguf.GGMLQuantizationType.BF16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  286. data_qtype = gguf.GGMLQuantizationType.Q8_0
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  288. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  291. else:
  292. raise ValueError(f"Unknown file type: {self.ftype.name}")
  293. try:
  294. data = gguf.quants.quantize(data, data_qtype)
  295. except gguf.QuantError as e:
  296. logger.warning("%s, %s", e, "falling back to F16")
  297. data_qtype = gguf.GGMLQuantizationType.F16
  298. data = gguf.quants.quantize(data, data_qtype)
  299. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  300. # reverse shape to make it similar to the internal ggml dimension order
  301. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  302. # n_dims is implicit in the shape
  303. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  304. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  305. def set_type(self):
  306. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  307. def prepare_metadata(self, vocab_only: bool):
  308. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  309. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  310. # If we are using HF model id, set the metadata name to the model id
  311. if self.remote_hf_model_id:
  312. self.metadata.name = self.remote_hf_model_id
  313. # Fallback to model directory name if metadata name is still missing
  314. if self.metadata.name is None:
  315. self.metadata.name = self.dir_model.name
  316. # Generate parameter weight class (useful for leader boards) if not yet determined
  317. if self.metadata.size_label is None and total_params > 0:
  318. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  319. self.set_type()
  320. logger.info("Set meta model")
  321. self.metadata.set_gguf_meta_model(self.gguf_writer)
  322. logger.info("Set model parameters")
  323. self.set_gguf_parameters()
  324. logger.info("Set model quantization version")
  325. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  326. def write_vocab(self):
  327. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  328. def write(self):
  329. self.prepare_tensors()
  330. self.prepare_metadata(vocab_only=False)
  331. self.gguf_writer.write_header_to_file(path=self.fname_out)
  332. self.gguf_writer.write_kv_data_to_file()
  333. self.gguf_writer.write_tensors_to_file(progress=True)
  334. self.gguf_writer.close()
  335. @staticmethod
  336. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  337. part_names: list[str] = []
  338. for filename in os.listdir(dir_model):
  339. if filename.startswith(prefix) and filename.endswith(suffix):
  340. part_names.append(filename)
  341. part_names.sort()
  342. return part_names
  343. @staticmethod
  344. def load_hparams(dir_model: Path):
  345. try:
  346. return AutoConfig.from_pretrained(dir_model).to_dict()
  347. except Exception as e:
  348. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  349. logger.warning("Trying to load config.json instead")
  350. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  351. return json.load(f)
  352. @classmethod
  353. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  354. assert names
  355. def func(modelcls: AnyModel) -> AnyModel:
  356. model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
  357. for name in names:
  358. cls._model_classes[model_type][name] = modelcls
  359. return modelcls
  360. return func
  361. @classmethod
  362. def print_registered_models(cls):
  363. for model_type, model_classes in cls._model_classes.items():
  364. logger.error(f"{model_type.name} models:")
  365. for name in sorted(model_classes.keys()):
  366. logger.error(f" - {name}")
  367. @classmethod
  368. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  369. try:
  370. return cls._model_classes[model_type][arch]
  371. except KeyError:
  372. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  373. class TextModel(ModelBase):
  374. def __init__(self, *args, **kwargs):
  375. super().__init__(*args, **kwargs)
  376. if "text_config" in self.hparams:
  377. # move the text_config to the root level
  378. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  379. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  380. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  381. @classmethod
  382. def __init_subclass__(cls):
  383. # can't use an abstract property, because overriding it without type errors
  384. # would require using decorated functions instead of simply defining the property
  385. if "model_arch" not in cls.__dict__:
  386. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  387. def set_vocab(self):
  388. self._set_vocab_gpt2()
  389. def prepare_metadata(self, vocab_only: bool):
  390. super().prepare_metadata(vocab_only=vocab_only)
  391. total_params = self.gguf_writer.get_total_parameter_count()[0]
  392. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  393. output_type: str = self.ftype.name.partition("_")[2]
  394. # Filename Output
  395. if self.fname_out.is_dir():
  396. # Generate default filename based on model specification and available metadata
  397. if not vocab_only:
  398. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  399. else:
  400. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  401. # Use the default filename
  402. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  403. else:
  404. # Output path is a custom defined templated filename
  405. # Note: `not is_dir()` is used because `.is_file()` will not detect
  406. # file template strings as it doesn't actually exist as a file
  407. # Process templated file name with the output ftype, useful with the "auto" ftype
  408. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  409. logger.info("Set model tokenizer")
  410. self.set_vocab()
  411. def set_gguf_parameters(self):
  412. self.gguf_writer.add_block_count(self.block_count)
  413. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  414. self.gguf_writer.add_context_length(n_ctx)
  415. logger.info(f"gguf: context length = {n_ctx}")
  416. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  417. self.gguf_writer.add_embedding_length(n_embd)
  418. logger.info(f"gguf: embedding length = {n_embd}")
  419. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  420. self.gguf_writer.add_feed_forward_length(n_ff)
  421. logger.info(f"gguf: feed forward length = {n_ff}")
  422. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  423. self.gguf_writer.add_head_count(n_head)
  424. logger.info(f"gguf: head count = {n_head}")
  425. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  426. self.gguf_writer.add_head_count_kv(n_head_kv)
  427. logger.info(f"gguf: key-value head count = {n_head_kv}")
  428. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  429. self.gguf_writer.add_rope_freq_base(rope_theta)
  430. logger.info(f"gguf: rope theta = {rope_theta}")
  431. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  432. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  433. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  434. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  435. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  436. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  437. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  438. self.gguf_writer.add_expert_count(n_experts)
  439. logger.info(f"gguf: expert count = {n_experts}")
  440. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  441. self.gguf_writer.add_expert_used_count(n_experts_used)
  442. logger.info(f"gguf: experts used count = {n_experts_used}")
  443. if (head_dim := self.hparams.get("head_dim")) is not None:
  444. self.gguf_writer.add_key_length(head_dim)
  445. self.gguf_writer.add_value_length(head_dim)
  446. self.gguf_writer.add_file_type(self.ftype)
  447. logger.info(f"gguf: file type = {self.ftype}")
  448. def write_vocab(self):
  449. if len(self.gguf_writer.tensors) != 1:
  450. raise ValueError('Splitting the vocabulary is not supported')
  451. self.prepare_metadata(vocab_only=True)
  452. self.gguf_writer.write_header_to_file(path=self.fname_out)
  453. self.gguf_writer.write_kv_data_to_file()
  454. self.gguf_writer.close()
  455. def does_token_look_special(self, token: str | bytes) -> bool:
  456. if isinstance(token, (bytes, bytearray)):
  457. token_text = token.decode(encoding="utf-8")
  458. elif isinstance(token, memoryview):
  459. token_text = token.tobytes().decode(encoding="utf-8")
  460. else:
  461. token_text = token
  462. # Some models mark some added tokens which ought to be control tokens as not special.
  463. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  464. seems_special = token_text in (
  465. "<pad>", # deepseek-coder
  466. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  467. )
  468. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  469. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  470. # TODO: should these be marked as UNUSED instead? (maybe not)
  471. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  472. return seems_special
  473. # used for GPT-2 BPE and WordPiece vocabs
  474. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  475. tokens: list[str] = []
  476. toktypes: list[int] = []
  477. from transformers import AutoTokenizer
  478. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  479. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  480. assert max(tokenizer.vocab.values()) < vocab_size
  481. tokpre = self.get_vocab_base_pre(tokenizer)
  482. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  483. added_vocab = tokenizer.get_added_vocab()
  484. added_tokens_decoder = tokenizer.added_tokens_decoder
  485. for i in range(vocab_size):
  486. if i not in reverse_vocab:
  487. tokens.append(f"[PAD{i}]")
  488. toktypes.append(gguf.TokenType.UNUSED)
  489. else:
  490. token: str = reverse_vocab[i]
  491. if token in added_vocab:
  492. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  493. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  494. if not added_tokens_decoder[i].normalized:
  495. previous_token = token
  496. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  497. if previous_token != token:
  498. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  499. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  500. toktypes.append(gguf.TokenType.CONTROL)
  501. else:
  502. # NOTE: this was added for Gemma.
  503. # Encoding and decoding the tokens above isn't sufficient for this case.
  504. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  505. toktypes.append(gguf.TokenType.USER_DEFINED)
  506. else:
  507. toktypes.append(gguf.TokenType.NORMAL)
  508. tokens.append(token)
  509. return tokens, toktypes, tokpre
  510. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  511. # do not modify it manually!
  512. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  513. # Marker: Start get_vocab_base_pre
  514. def get_vocab_base_pre(self, tokenizer) -> str:
  515. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  516. # is specific for the BPE pre-tokenizer used by the model
  517. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  518. # use in llama.cpp to implement the same pre-tokenizer
  519. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  520. chktok = tokenizer.encode(chktxt)
  521. chkhsh = sha256(str(chktok).encode()).hexdigest()
  522. logger.debug(f"chktok: {chktok}")
  523. logger.debug(f"chkhsh: {chkhsh}")
  524. res = None
  525. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  526. # or pull the latest version of the model from Huggingface
  527. # don't edit the hashes manually!
  528. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  529. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  530. res = "llama-bpe"
  531. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  532. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  533. res = "deepseek-llm"
  534. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  535. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  536. res = "deepseek-coder"
  537. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  538. # ref: https://huggingface.co/tiiuae/falcon-7b
  539. res = "falcon"
  540. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  541. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  542. res = "falcon3"
  543. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  544. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  545. res = "bert-bge"
  546. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  547. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  548. res = "bert-bge-large"
  549. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  550. # ref: https://huggingface.co/mosaicml/mpt-7b
  551. res = "mpt"
  552. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  553. # ref: https://huggingface.co/bigcode/starcoder2-3b
  554. res = "starcoder"
  555. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  556. # ref: https://huggingface.co/openai-community/gpt2
  557. res = "gpt-2"
  558. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  559. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  560. res = "stablelm2"
  561. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  562. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  563. res = "refact"
  564. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  565. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  566. res = "command-r"
  567. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  568. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  569. res = "qwen2"
  570. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  571. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  572. res = "olmo"
  573. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  574. # ref: https://huggingface.co/databricks/dbrx-base
  575. res = "dbrx"
  576. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  577. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  578. res = "jina-v1-en"
  579. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  580. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  581. res = "jina-v2-en"
  582. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  583. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  584. res = "jina-v2-es"
  585. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  586. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  587. res = "jina-v2-de"
  588. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  589. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  590. res = "smaug-bpe"
  591. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  592. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  593. res = "poro-chat"
  594. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  595. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  596. res = "jina-v2-code"
  597. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  598. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  599. res = "chatglm-bpe"
  600. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  601. # ref: https://huggingface.co/LumiOpen/Viking-7B
  602. res = "viking"
  603. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  604. # ref: https://huggingface.co/core42/jais-13b
  605. res = "jais"
  606. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  607. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  608. res = "codeshell"
  609. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  610. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  611. res = "tekken"
  612. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  613. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  614. res = "smollm"
  615. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  616. # ref: https://huggingface.co/bigscience/bloom
  617. res = "bloom"
  618. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  619. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  620. res = "gpt3-finnish"
  621. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  622. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  623. res = "exaone"
  624. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  625. # ref: https://huggingface.co/microsoft/phi-2
  626. res = "phi-2"
  627. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  628. # ref: https://huggingface.co/facebook/chameleon-7b
  629. res = "chameleon"
  630. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  631. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  632. res = "minerva-7b"
  633. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  634. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  635. res = "roberta-bpe"
  636. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  637. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  638. res = "gigachat"
  639. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  640. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  641. res = "megrez"
  642. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  643. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  644. res = "deepseek-v3"
  645. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  646. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  647. res = "deepseek-r1-qwen"
  648. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  649. # ref: https://huggingface.co/Xenova/gpt-4o
  650. res = "gpt-4o"
  651. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  652. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  653. res = "superbpe"
  654. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  655. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  656. res = "trillion"
  657. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  658. # ref: https://huggingface.co/inclusionAI/Ling-lite
  659. res = "bailingmoe"
  660. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  661. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  662. res = "llama4"
  663. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  664. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  665. res = "glm4"
  666. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  667. # ref: https://huggingface.co/mistral-community/pixtral-12b
  668. res = "pixtral"
  669. if res is None:
  670. logger.warning("\n")
  671. logger.warning("**************************************************************************************")
  672. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  673. logger.warning("** There are 2 possible reasons for this:")
  674. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  675. logger.warning("** - the pre-tokenization config has changed upstream")
  676. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  677. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  678. logger.warning("**")
  679. logger.warning(f"** chkhsh: {chkhsh}")
  680. logger.warning("**************************************************************************************")
  681. logger.warning("\n")
  682. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  683. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  684. logger.debug(f"chkhsh: {chkhsh}")
  685. return res
  686. # Marker: End get_vocab_base_pre
  687. def _set_vocab_none(self) -> None:
  688. self.gguf_writer.add_tokenizer_model("none")
  689. def _set_vocab_gpt2(self) -> None:
  690. tokens, toktypes, tokpre = self.get_vocab_base()
  691. self.gguf_writer.add_tokenizer_model("gpt2")
  692. self.gguf_writer.add_tokenizer_pre(tokpre)
  693. self.gguf_writer.add_token_list(tokens)
  694. self.gguf_writer.add_token_types(toktypes)
  695. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  696. special_vocab.add_to_gguf(self.gguf_writer)
  697. def _set_vocab_qwen(self):
  698. dir_model = self.dir_model
  699. hparams = self.hparams
  700. tokens: list[str] = []
  701. toktypes: list[int] = []
  702. from transformers import AutoTokenizer
  703. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  704. vocab_size = hparams["vocab_size"]
  705. assert max(tokenizer.get_vocab().values()) < vocab_size
  706. tokpre = self.get_vocab_base_pre(tokenizer)
  707. merges = []
  708. vocab = {}
  709. mergeable_ranks = tokenizer.mergeable_ranks
  710. for token, rank in mergeable_ranks.items():
  711. vocab[QwenModel.token_bytes_to_string(token)] = rank
  712. if len(token) == 1:
  713. continue
  714. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  715. assert len(merged) == 2
  716. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  717. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  718. added_vocab = tokenizer.special_tokens
  719. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  720. for i in range(vocab_size):
  721. if i not in reverse_vocab:
  722. tokens.append(f"[PAD{i}]")
  723. toktypes.append(gguf.TokenType.UNUSED)
  724. elif reverse_vocab[i] in added_vocab:
  725. tokens.append(reverse_vocab[i])
  726. toktypes.append(gguf.TokenType.CONTROL)
  727. else:
  728. tokens.append(reverse_vocab[i])
  729. toktypes.append(gguf.TokenType.NORMAL)
  730. self.gguf_writer.add_tokenizer_model("gpt2")
  731. self.gguf_writer.add_tokenizer_pre(tokpre)
  732. self.gguf_writer.add_token_list(tokens)
  733. self.gguf_writer.add_token_types(toktypes)
  734. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  735. special_vocab.merges = merges
  736. # only add special tokens when they were not already loaded from config.json
  737. if len(special_vocab.special_token_ids) == 0:
  738. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  739. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  740. # this one is usually not in config.json anyway
  741. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  742. special_vocab.add_to_gguf(self.gguf_writer)
  743. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  744. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  745. self.gguf_writer.add_tokenizer_model("llama")
  746. self.gguf_writer.add_tokenizer_pre("default")
  747. self.gguf_writer.add_token_list(tokens)
  748. self.gguf_writer.add_token_scores(scores)
  749. self.gguf_writer.add_token_types(toktypes)
  750. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  751. special_vocab.add_to_gguf(self.gguf_writer)
  752. def _create_vocab_sentencepiece(self):
  753. from sentencepiece import SentencePieceProcessor
  754. tokenizer_path = self.dir_model / 'tokenizer.model'
  755. if not tokenizer_path.is_file():
  756. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  757. tokenizer = SentencePieceProcessor()
  758. tokenizer.LoadFromFile(str(tokenizer_path))
  759. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  760. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  761. scores: list[float] = [-10000.0] * vocab_size
  762. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  763. for token_id in range(tokenizer.vocab_size()):
  764. piece = tokenizer.IdToPiece(token_id)
  765. text = piece.encode("utf-8")
  766. score = tokenizer.GetScore(token_id)
  767. toktype = SentencePieceTokenTypes.NORMAL
  768. if tokenizer.IsUnknown(token_id):
  769. toktype = SentencePieceTokenTypes.UNKNOWN
  770. elif tokenizer.IsControl(token_id):
  771. toktype = SentencePieceTokenTypes.CONTROL
  772. elif tokenizer.IsUnused(token_id):
  773. toktype = SentencePieceTokenTypes.UNUSED
  774. elif tokenizer.IsByte(token_id):
  775. toktype = SentencePieceTokenTypes.BYTE
  776. tokens[token_id] = text
  777. scores[token_id] = score
  778. toktypes[token_id] = toktype
  779. added_tokens_file = self.dir_model / 'added_tokens.json'
  780. if added_tokens_file.is_file():
  781. with open(added_tokens_file, "r", encoding="utf-8") as f:
  782. added_tokens_json = json.load(f)
  783. for key in added_tokens_json:
  784. token_id = added_tokens_json[key]
  785. if token_id >= vocab_size:
  786. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  787. continue
  788. tokens[token_id] = key.encode("utf-8")
  789. scores[token_id] = -1000.0
  790. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  791. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  792. if tokenizer_config_file.is_file():
  793. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  794. tokenizer_config_json = json.load(f)
  795. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  796. for token_id, token_data in added_tokens_decoder.items():
  797. token_id = int(token_id)
  798. token: str = token_data["content"]
  799. if token_id >= vocab_size:
  800. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  801. continue
  802. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  803. if tokens[token_id] != token.encode("utf-8"):
  804. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  805. if token_data.get("special") or self.does_token_look_special(token):
  806. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  807. else:
  808. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  809. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  810. scores[token_id] = -1000.0
  811. tokens[token_id] = token.encode("utf-8")
  812. if vocab_size > len(tokens):
  813. pad_count = vocab_size - len(tokens)
  814. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  815. for i in range(1, pad_count + 1):
  816. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  817. scores.append(-1000.0)
  818. toktypes.append(SentencePieceTokenTypes.UNUSED)
  819. return tokens, scores, toktypes
  820. def _set_vocab_llama_hf(self):
  821. vocab = gguf.LlamaHfVocab(self.dir_model)
  822. tokens = []
  823. scores = []
  824. toktypes = []
  825. for text, score, toktype in vocab.all_tokens():
  826. tokens.append(text)
  827. scores.append(score)
  828. toktypes.append(toktype)
  829. assert len(tokens) == vocab.vocab_size
  830. self.gguf_writer.add_tokenizer_model("llama")
  831. self.gguf_writer.add_tokenizer_pre("default")
  832. self.gguf_writer.add_token_list(tokens)
  833. self.gguf_writer.add_token_scores(scores)
  834. self.gguf_writer.add_token_types(toktypes)
  835. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  836. special_vocab.add_to_gguf(self.gguf_writer)
  837. def _set_vocab_rwkv_world(self):
  838. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  839. vocab_size = self.hparams.get("vocab_size", 65536)
  840. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  841. toktypes: list[int] = [gguf.TokenType.CONTROL]
  842. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  843. lines = f.readlines()
  844. for line in lines:
  845. parts = line.split(' ')
  846. assert len(parts) >= 3
  847. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  848. token = token.encode("utf-8") if isinstance(token, str) else token
  849. assert isinstance(token, bytes)
  850. assert len(token) == token_len
  851. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  852. tokens.append(token_text.encode("utf-8"))
  853. toktypes.append(gguf.TokenType.NORMAL)
  854. remainder = vocab_size - len(tokens)
  855. assert remainder >= 0
  856. for i in range(len(tokens), vocab_size):
  857. tokens.append(f"[PAD{i}]".encode("utf-8"))
  858. toktypes.append(gguf.TokenType.UNUSED)
  859. self.gguf_writer.add_tokenizer_model("rwkv")
  860. self.gguf_writer.add_token_list(tokens)
  861. self.gguf_writer.add_token_types(toktypes)
  862. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  863. special_vocab.chat_template = "rwkv-world"
  864. # hack: Add '\n\n' as the EOT token to make it chat normally
  865. special_vocab._set_special_token("eot", 261)
  866. special_vocab.add_to_gguf(self.gguf_writer)
  867. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  868. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  869. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  870. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  871. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  872. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  873. assert field # tokenizer model
  874. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  875. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  876. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  877. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  878. assert field # token list
  879. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  880. if model_name == "llama-spm":
  881. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  882. assert field # token scores
  883. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  884. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  885. assert field # token types
  886. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  887. if model_name != "llama-spm":
  888. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  889. assert field # token merges
  890. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  891. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  892. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  893. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  894. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  895. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  896. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  897. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  898. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  899. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  900. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  901. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  902. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  903. class VisionModel(ModelBase):
  904. model_arch = gguf.MODEL_ARCH.CLIP_VISION
  905. n_text_embd = 0
  906. preprocessor_config: dict[str, Any]
  907. global_config: dict[str, Any]
  908. def __init__(self, *args, **kwargs):
  909. super().__init__(*args, **kwargs)
  910. if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
  911. raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
  912. # get n_embd of the text model
  913. text_config = {**self.hparams, **self.hparams["text_config"]}
  914. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  915. assert self.n_embd_text > 0, "n_embd not found in hparams"
  916. if "vision_config" not in self.hparams:
  917. raise ValueError("vision_config not found in hparams")
  918. # move vision config to the top level, while preserving the original hparams in global_config
  919. self.global_config = self.hparams
  920. self.hparams = self.hparams["vision_config"]
  921. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
  922. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, self.block_count)
  923. # load preprocessor config
  924. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  925. self.preprocessor_config = json.load(f)
  926. def set_type(self):
  927. self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
  928. def set_gguf_parameters(self):
  929. self.gguf_writer.add_file_type(self.ftype)
  930. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  931. self.gguf_writer.add_vision_has_vision_encoder(True)
  932. # vision config
  933. self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
  934. self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
  935. self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
  936. self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
  937. self.gguf_writer.add_vision_block_count(self.block_count)
  938. self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
  939. # preprocessor config
  940. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  941. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  942. def write_vocab(self):
  943. raise ValueError("VisionModel does not support vocab writing")
  944. @ModelBase.register("GPTNeoXForCausalLM")
  945. class GPTNeoXModel(TextModel):
  946. model_arch = gguf.MODEL_ARCH.GPTNEOX
  947. def set_gguf_parameters(self):
  948. block_count = self.hparams["num_hidden_layers"]
  949. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  950. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  951. self.gguf_writer.add_block_count(block_count)
  952. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  953. self.gguf_writer.add_rope_dimension_count(
  954. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  955. )
  956. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  957. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  958. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  959. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  960. del bid # unused
  961. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  962. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  963. tensors: list[tuple[str, Tensor]] = []
  964. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  965. # Map bloom-style qkv_linear to gpt-style qkv_linear
  966. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  967. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  968. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  969. data_torch = torch.cat(
  970. (
  971. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  972. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  973. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  974. ),
  975. dim=0,
  976. )
  977. logger.info("re-format attention.linear_qkv.weight")
  978. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  979. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  980. data_torch = torch.cat(
  981. (
  982. qkv_bias[:, 0, :].reshape((n_embed,)),
  983. qkv_bias[:, 1, :].reshape((n_embed,)),
  984. qkv_bias[:, 2, :].reshape((n_embed,)),
  985. ),
  986. dim=0,
  987. )
  988. logger.info("re-format attention.linear_qkv.bias")
  989. tensors.append((self.map_tensor_name(name), data_torch))
  990. return tensors
  991. @ModelBase.register("BloomForCausalLM", "BloomModel")
  992. class BloomModel(TextModel):
  993. model_arch = gguf.MODEL_ARCH.BLOOM
  994. def set_gguf_parameters(self):
  995. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  996. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  997. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  998. self.gguf_writer.add_embedding_length(n_embed)
  999. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1000. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1001. self.gguf_writer.add_head_count(n_head)
  1002. self.gguf_writer.add_head_count_kv(n_head)
  1003. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1004. self.gguf_writer.add_file_type(self.ftype)
  1005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1006. del bid # unused
  1007. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1008. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1009. name = re.sub(r'transformer\.', '', name)
  1010. tensors: list[tuple[str, Tensor]] = []
  1011. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1012. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1013. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1014. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1015. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1016. data_torch = torch.cat(
  1017. (
  1018. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1019. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1020. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1021. ),
  1022. dim=0,
  1023. )
  1024. logger.info("re-format attention.linear_qkv.weight")
  1025. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1026. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1027. data_torch = torch.cat(
  1028. (
  1029. qkv_bias[:, 0, :].reshape((n_embed,)),
  1030. qkv_bias[:, 1, :].reshape((n_embed,)),
  1031. qkv_bias[:, 2, :].reshape((n_embed,)),
  1032. ),
  1033. dim=0,
  1034. )
  1035. logger.info("re-format attention.linear_qkv.bias")
  1036. tensors.append((self.map_tensor_name(name), data_torch))
  1037. return tensors
  1038. @ModelBase.register("MPTForCausalLM")
  1039. class MPTModel(TextModel):
  1040. model_arch = gguf.MODEL_ARCH.MPT
  1041. def set_vocab(self):
  1042. try:
  1043. self._set_vocab_gpt2()
  1044. except Exception:
  1045. # Fallback for SEA-LION model
  1046. self._set_vocab_sentencepiece()
  1047. self.gguf_writer.add_add_bos_token(False)
  1048. self.gguf_writer.add_pad_token_id(3)
  1049. self.gguf_writer.add_eos_token_id(1)
  1050. self.gguf_writer.add_unk_token_id(0)
  1051. def set_gguf_parameters(self):
  1052. block_count = self.hparams["n_layers"]
  1053. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1054. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1055. self.gguf_writer.add_block_count(block_count)
  1056. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1057. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1058. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1059. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1060. self.gguf_writer.add_layer_norm_eps(1e-5)
  1061. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1062. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1063. if self.hparams["attn_config"]["alibi"]:
  1064. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1065. else:
  1066. self.gguf_writer.add_max_alibi_bias(0.0)
  1067. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1068. del bid # unused
  1069. if "scales" in name:
  1070. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1071. new_name = new_name.replace("scales", "act.scales")
  1072. else:
  1073. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1074. return [(new_name, data_torch)]
  1075. @ModelBase.register("OrionForCausalLM")
  1076. class OrionModel(TextModel):
  1077. model_arch = gguf.MODEL_ARCH.ORION
  1078. def set_vocab(self):
  1079. self._set_vocab_sentencepiece()
  1080. def set_gguf_parameters(self):
  1081. block_count = self.hparams["num_hidden_layers"]
  1082. head_count = self.hparams["num_attention_heads"]
  1083. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1084. ctx_length = 0
  1085. if "max_sequence_length" in self.hparams:
  1086. ctx_length = self.hparams["max_sequence_length"]
  1087. elif "max_position_embeddings" in self.hparams:
  1088. ctx_length = self.hparams["max_position_embeddings"]
  1089. elif "model_max_length" in self.hparams:
  1090. ctx_length = self.hparams["model_max_length"]
  1091. else:
  1092. raise ValueError("gguf: can not find ctx length parameter.")
  1093. self.gguf_writer.add_file_type(self.ftype)
  1094. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1095. self.gguf_writer.add_context_length(ctx_length)
  1096. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1097. self.gguf_writer.add_block_count(block_count)
  1098. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1099. self.gguf_writer.add_head_count(head_count)
  1100. self.gguf_writer.add_head_count_kv(head_count_kv)
  1101. # note: config provides rms norm but it is actually layer norm
  1102. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1103. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1104. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1105. class BaichuanModel(TextModel):
  1106. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1107. def set_vocab(self):
  1108. self._set_vocab_sentencepiece()
  1109. def set_gguf_parameters(self):
  1110. block_count = self.hparams["num_hidden_layers"]
  1111. head_count = self.hparams["num_attention_heads"]
  1112. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1113. ctx_length = 0
  1114. if "max_sequence_length" in self.hparams:
  1115. ctx_length = self.hparams["max_sequence_length"]
  1116. elif "max_position_embeddings" in self.hparams:
  1117. ctx_length = self.hparams["max_position_embeddings"]
  1118. elif "model_max_length" in self.hparams:
  1119. ctx_length = self.hparams["model_max_length"]
  1120. else:
  1121. raise ValueError("gguf: can not find ctx length parameter.")
  1122. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1123. self.gguf_writer.add_context_length(ctx_length)
  1124. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1125. self.gguf_writer.add_block_count(block_count)
  1126. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1127. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1128. self.gguf_writer.add_head_count(head_count)
  1129. self.gguf_writer.add_head_count_kv(head_count_kv)
  1130. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1131. self.gguf_writer.add_file_type(self.ftype)
  1132. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1133. if self.hparams["rope_scaling"].get("type") == "linear":
  1134. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1135. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1136. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1137. head_count = self.hparams["num_attention_heads"]
  1138. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1139. tensors: list[tuple[str, Tensor]] = []
  1140. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1141. logger.info(f"Unpacking and permuting layer {bid}")
  1142. tensors = [
  1143. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1144. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1145. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1146. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1147. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1148. self._reverse_hf_part(data_torch, 2)),
  1149. ]
  1150. else:
  1151. tensors = [(self.map_tensor_name(name), data_torch)]
  1152. return tensors
  1153. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1154. if n_kv_head is not None and n_head != n_kv_head:
  1155. n_head //= n_kv_head
  1156. return (
  1157. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1158. .swapaxes(1, 2)
  1159. .reshape(weights.shape)
  1160. )
  1161. def _reverse_hf_permute_part(
  1162. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1163. ) -> Tensor:
  1164. r = weights.shape[0] // 3
  1165. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1166. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1167. r = weights.shape[0] // 3
  1168. return weights[r * n_part:r * n_part + r, ...]
  1169. @ModelBase.register("XverseForCausalLM")
  1170. class XverseModel(TextModel):
  1171. model_arch = gguf.MODEL_ARCH.XVERSE
  1172. def set_vocab(self):
  1173. assert (self.dir_model / "tokenizer.json").is_file()
  1174. dir_model = self.dir_model
  1175. hparams = self.hparams
  1176. tokens: list[bytes] = []
  1177. toktypes: list[int] = []
  1178. from transformers import AutoTokenizer
  1179. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1180. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1181. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1182. # because vocab_size is the count of items, and indexes start at 0.
  1183. max_vocab_index = max(tokenizer.get_vocab().values())
  1184. if max_vocab_index >= vocab_size:
  1185. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1186. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1187. added_vocab = tokenizer.get_added_vocab()
  1188. for token_id in range(vocab_size):
  1189. token_text = reverse_vocab[token_id].encode('utf-8')
  1190. # replace "\x00" to string with length > 0
  1191. if token_text == b"\x00":
  1192. toktype = gguf.TokenType.BYTE # special
  1193. token_text = f"<{token_text}>".encode('utf-8')
  1194. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1195. toktype = gguf.TokenType.BYTE # special
  1196. elif reverse_vocab[token_id] in added_vocab:
  1197. if tokenizer.added_tokens_decoder[token_id].special:
  1198. toktype = gguf.TokenType.CONTROL
  1199. else:
  1200. toktype = gguf.TokenType.USER_DEFINED
  1201. else:
  1202. toktype = gguf.TokenType.NORMAL
  1203. tokens.append(token_text)
  1204. toktypes.append(toktype)
  1205. self.gguf_writer.add_tokenizer_model("llama")
  1206. self.gguf_writer.add_tokenizer_pre("default")
  1207. self.gguf_writer.add_token_list(tokens)
  1208. self.gguf_writer.add_token_types(toktypes)
  1209. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1210. special_vocab.add_to_gguf(self.gguf_writer)
  1211. def set_gguf_parameters(self):
  1212. block_count = self.hparams["num_hidden_layers"]
  1213. head_count = self.hparams["num_attention_heads"]
  1214. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1215. ctx_length = 0
  1216. if "max_sequence_length" in self.hparams:
  1217. ctx_length = self.hparams["max_sequence_length"]
  1218. elif "max_position_embeddings" in self.hparams:
  1219. ctx_length = self.hparams["max_position_embeddings"]
  1220. elif "model_max_length" in self.hparams:
  1221. ctx_length = self.hparams["model_max_length"]
  1222. else:
  1223. raise ValueError("gguf: can not find ctx length parameter.")
  1224. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1225. self.gguf_writer.add_context_length(ctx_length)
  1226. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1227. self.gguf_writer.add_block_count(block_count)
  1228. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1229. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1230. self.gguf_writer.add_head_count(head_count)
  1231. self.gguf_writer.add_head_count_kv(head_count_kv)
  1232. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1233. self.gguf_writer.add_file_type(self.ftype)
  1234. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1235. if self.hparams["rope_scaling"].get("type") == "linear":
  1236. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1237. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1238. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1239. del bid # unused
  1240. head_count = self.hparams["num_attention_heads"]
  1241. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1242. # HF models permute some of the tensors, so we need to undo that
  1243. if name.endswith("q_proj.weight"):
  1244. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1245. if name.endswith("k_proj.weight"):
  1246. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1247. return [(self.map_tensor_name(name), data_torch)]
  1248. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1249. if n_kv_head is not None and n_head != n_kv_head:
  1250. n_head //= n_kv_head
  1251. return (
  1252. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1253. .swapaxes(1, 2)
  1254. .reshape(weights.shape)
  1255. )
  1256. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1257. class FalconModel(TextModel):
  1258. model_arch = gguf.MODEL_ARCH.FALCON
  1259. def set_gguf_parameters(self):
  1260. block_count = self.hparams.get("num_hidden_layers")
  1261. if block_count is None:
  1262. block_count = self.hparams["n_layer"] # old name
  1263. n_head = self.hparams.get("num_attention_heads")
  1264. if n_head is None:
  1265. n_head = self.hparams["n_head"] # old name
  1266. n_head_kv = self.hparams.get("num_kv_heads")
  1267. if n_head_kv is None:
  1268. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1269. self.gguf_writer.add_context_length(2048) # not in config.json
  1270. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1271. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1272. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1273. self.gguf_writer.add_block_count(block_count)
  1274. self.gguf_writer.add_head_count(n_head)
  1275. self.gguf_writer.add_head_count_kv(n_head_kv)
  1276. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1277. self.gguf_writer.add_file_type(self.ftype)
  1278. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1279. del bid # unused
  1280. # QKV tensor transform
  1281. # The original query_key_value tensor contains n_head_kv "kv groups",
  1282. # each consisting of n_head/n_head_kv query weights followed by one key
  1283. # and one value weight (shared by all query heads in the kv group).
  1284. # This layout makes it a big pain to work with in GGML.
  1285. # So we rearrange them here,, so that we have n_head query weights
  1286. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1287. # in contiguous fashion.
  1288. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1289. if "query_key_value" in name:
  1290. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1291. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1292. head_dim = self.hparams["hidden_size"] // n_head
  1293. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1294. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1295. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1296. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1297. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1298. return [(self.map_tensor_name(name), data_torch)]
  1299. @ModelBase.register("GPTBigCodeForCausalLM")
  1300. class StarCoderModel(TextModel):
  1301. model_arch = gguf.MODEL_ARCH.STARCODER
  1302. def set_gguf_parameters(self):
  1303. block_count = self.hparams["n_layer"]
  1304. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1305. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1306. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1307. self.gguf_writer.add_block_count(block_count)
  1308. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1309. self.gguf_writer.add_head_count_kv(1)
  1310. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1311. self.gguf_writer.add_file_type(self.ftype)
  1312. @ModelBase.register("GPTRefactForCausalLM")
  1313. class RefactModel(TextModel):
  1314. model_arch = gguf.MODEL_ARCH.REFACT
  1315. def set_vocab(self):
  1316. super().set_vocab()
  1317. # TODO: how to determine special FIM tokens automatically?
  1318. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1319. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1320. special_vocab._set_special_token("prefix", 1)
  1321. special_vocab._set_special_token("suffix", 3)
  1322. special_vocab._set_special_token("middle", 2)
  1323. special_vocab.chat_template = None # do not add it twice
  1324. special_vocab.add_to_gguf(self.gguf_writer)
  1325. def set_gguf_parameters(self):
  1326. hidden_dim = self.hparams["n_embd"]
  1327. inner_dim = 4 * hidden_dim
  1328. hidden_dim = int(2 * inner_dim / 3)
  1329. multiple_of = 256
  1330. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1331. block_count = self.hparams["n_layer"]
  1332. # refact uses Alibi. So this is from config.json which might be used by training.
  1333. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1334. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1335. self.gguf_writer.add_feed_forward_length(ff_dim)
  1336. self.gguf_writer.add_block_count(block_count)
  1337. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1338. self.gguf_writer.add_head_count_kv(1)
  1339. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1340. self.gguf_writer.add_file_type(self.ftype)
  1341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1342. hidden_dim = self.hparams["n_embd"]
  1343. inner_dim = 4 * hidden_dim
  1344. hidden_dim = int(2 * inner_dim / 3)
  1345. multiple_of = 256
  1346. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1347. n_head = self.hparams["n_head"]
  1348. n_head_kv = 1
  1349. head_dim = self.hparams["n_embd"] // n_head
  1350. tensors: list[tuple[str, Tensor]] = []
  1351. if bid is not None:
  1352. if name == f"transformer.h.{bid}.attn.kv.weight":
  1353. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1354. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1355. elif name == f"transformer.h.{bid}.attn.q.weight":
  1356. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1357. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1358. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1359. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1360. if len(tensors) == 0:
  1361. tensors.append((self.map_tensor_name(name), data_torch))
  1362. return tensors
  1363. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1364. class StableLMModel(TextModel):
  1365. model_arch = gguf.MODEL_ARCH.STABLELM
  1366. def set_vocab(self):
  1367. if (self.dir_model / "tokenizer.json").is_file():
  1368. self._set_vocab_gpt2()
  1369. else:
  1370. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1371. self._set_vocab_qwen()
  1372. def set_gguf_parameters(self):
  1373. hparams = self.hparams
  1374. block_count = hparams["num_hidden_layers"]
  1375. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1376. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1377. self.gguf_writer.add_block_count(block_count)
  1378. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1379. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1380. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1381. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1382. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1383. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1384. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1385. self.gguf_writer.add_file_type(self.ftype)
  1386. _q_norms: list[dict[str, Tensor]] | None = None
  1387. _k_norms: list[dict[str, Tensor]] | None = None
  1388. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1389. n_head = self.hparams["num_attention_heads"]
  1390. n_kv_head = self.hparams["num_key_value_heads"]
  1391. if name.find("q_layernorm.norms") != -1:
  1392. assert bid is not None
  1393. if self._q_norms is None:
  1394. self._q_norms = [{} for _ in range(self.block_count)]
  1395. self._q_norms[bid][name] = data_torch
  1396. if len(self._q_norms[bid]) >= n_head:
  1397. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1398. else:
  1399. return []
  1400. if name.find("k_layernorm.norms") != -1:
  1401. assert bid is not None
  1402. if self._k_norms is None:
  1403. self._k_norms = [{} for _ in range(self.block_count)]
  1404. self._k_norms[bid][name] = data_torch
  1405. if len(self._k_norms[bid]) >= n_kv_head:
  1406. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1407. else:
  1408. return []
  1409. return [(self.map_tensor_name(name), data_torch)]
  1410. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1411. datas: list[Tensor] = []
  1412. # extract the norms in order
  1413. for xid in range(n_head):
  1414. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1415. datas.append(norms[ename])
  1416. del norms[ename]
  1417. data_torch = torch.stack(datas, dim=0)
  1418. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1419. new_name = self.map_tensor_name(merged_name)
  1420. return [(new_name, data_torch)]
  1421. def prepare_tensors(self):
  1422. super().prepare_tensors()
  1423. if self._q_norms is not None or self._k_norms is not None:
  1424. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1425. norms = (
  1426. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1427. ) + (
  1428. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1429. )
  1430. if len(norms) > 0:
  1431. raise ValueError(f"Unprocessed norms: {norms}")
  1432. @ModelBase.register(
  1433. "LLaMAForCausalLM",
  1434. "LlamaForCausalLM",
  1435. "MistralForCausalLM",
  1436. "MixtralForCausalLM",
  1437. "VLlama3ForCausalLM",
  1438. "LlavaForConditionalGeneration")
  1439. class LlamaModel(TextModel):
  1440. model_arch = gguf.MODEL_ARCH.LLAMA
  1441. undo_permute = True
  1442. def set_vocab(self):
  1443. try:
  1444. self._set_vocab_sentencepiece()
  1445. except FileNotFoundError:
  1446. try:
  1447. self._set_vocab_llama_hf()
  1448. except (FileNotFoundError, TypeError):
  1449. # Llama 3
  1450. self._set_vocab_gpt2()
  1451. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1452. if self.hparams.get("vocab_size", 32000) == 32016:
  1453. special_vocab = gguf.SpecialVocab(
  1454. self.dir_model, load_merges=False,
  1455. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1456. )
  1457. special_vocab._set_special_token("prefix", 32007)
  1458. special_vocab._set_special_token("suffix", 32008)
  1459. special_vocab._set_special_token("middle", 32009)
  1460. special_vocab._set_special_token("eot", 32010)
  1461. special_vocab.add_to_gguf(self.gguf_writer)
  1462. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1463. if tokenizer_config_file.is_file():
  1464. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1465. tokenizer_config_json = json.load(f)
  1466. if "add_prefix_space" in tokenizer_config_json:
  1467. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1468. # Apply to granite small models only
  1469. if self.hparams.get("vocab_size", 32000) == 49152:
  1470. self.gguf_writer.add_add_bos_token(False)
  1471. def set_gguf_parameters(self):
  1472. super().set_gguf_parameters()
  1473. hparams = self.hparams
  1474. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1475. if "head_dim" in hparams:
  1476. rope_dim = hparams["head_dim"]
  1477. else:
  1478. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1479. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1480. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1481. if self.hparams["rope_scaling"].get("type") == "linear":
  1482. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1483. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1484. @staticmethod
  1485. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1486. if n_head_kv is not None and n_head != n_head_kv:
  1487. n_head = n_head_kv
  1488. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1489. .swapaxes(1, 2)
  1490. .reshape(weights.shape))
  1491. _experts: list[dict[str, Tensor]] | None = None
  1492. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1493. n_head = self.hparams["num_attention_heads"]
  1494. n_kv_head = self.hparams.get("num_key_value_heads")
  1495. is_vision_tensor = "vision_tower" in name \
  1496. or "vision_model" in name \
  1497. or "model.connector" in name \
  1498. or "multi_modal_projector" in name
  1499. if is_vision_tensor:
  1500. return [] # skip vision tensors
  1501. elif name.startswith("model.text_model"):
  1502. name = name.replace("text_model.", "") # for SmolVLM
  1503. elif name.startswith("language_model."):
  1504. name = name.replace("language_model.", "") # for the rest
  1505. if self.undo_permute:
  1506. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1507. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1508. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1509. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1510. # process the experts separately
  1511. if name.find("block_sparse_moe.experts") != -1:
  1512. n_experts = self.hparams["num_local_experts"]
  1513. assert bid is not None
  1514. if self._experts is None:
  1515. self._experts = [{} for _ in range(self.block_count)]
  1516. self._experts[bid][name] = data_torch
  1517. if len(self._experts[bid]) >= n_experts * 3:
  1518. tensors: list[tuple[str, Tensor]] = []
  1519. # merge the experts into a single 3d tensor
  1520. for wid in ["w1", "w2", "w3"]:
  1521. datas: list[Tensor] = []
  1522. for xid in range(n_experts):
  1523. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1524. datas.append(self._experts[bid][ename])
  1525. del self._experts[bid][ename]
  1526. data_torch = torch.stack(datas, dim=0)
  1527. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1528. new_name = self.map_tensor_name(merged_name)
  1529. tensors.append((new_name, data_torch))
  1530. return tensors
  1531. else:
  1532. return []
  1533. return [(self.map_tensor_name(name), data_torch)]
  1534. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1535. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1536. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1537. base = self.hparams.get("rope_theta", 10000.0)
  1538. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1539. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1540. factor = rope_scaling.get("factor", 8.0)
  1541. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1542. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1543. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1544. low_freq_wavelen = old_context_len / low_freq_factor
  1545. high_freq_wavelen = old_context_len / high_freq_factor
  1546. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1547. rope_factors = []
  1548. for freq in freqs:
  1549. wavelen = 2 * math.pi / freq
  1550. if wavelen < high_freq_wavelen:
  1551. rope_factors.append(1)
  1552. elif wavelen > low_freq_wavelen:
  1553. rope_factors.append(factor)
  1554. else:
  1555. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1556. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1557. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1558. def prepare_tensors(self):
  1559. super().prepare_tensors()
  1560. if self._experts is not None:
  1561. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1562. experts = [k for d in self._experts for k in d.keys()]
  1563. if len(experts) > 0:
  1564. raise ValueError(f"Unprocessed experts: {experts}")
  1565. @ModelBase.register("LlavaForConditionalGeneration")
  1566. class LlavaVisionModel(VisionModel):
  1567. img_break_tok_id = -1
  1568. def __init__(self, *args, **kwargs):
  1569. super().__init__(*args, **kwargs)
  1570. if self.hparams["model_type"] == "pixtral":
  1571. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1572. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1573. self.img_break_tok_id = 12 # see tokenizer_config.json
  1574. else:
  1575. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1576. def set_gguf_parameters(self):
  1577. super().set_gguf_parameters()
  1578. hparams = self.hparams
  1579. if hparams["model_type"] == "pixtral":
  1580. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1581. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1582. self.gguf_writer.add_vision_use_silu(True)
  1583. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1584. del bid # unused
  1585. n_head = self.hparams["num_attention_heads"]
  1586. n_kv_head = n_head
  1587. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1588. # process vision tensors
  1589. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1590. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1591. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1592. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1593. return [(self.map_tensor_name(name), data_torch)]
  1594. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1595. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1596. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1597. img_break_embd = data_torch[self.img_break_tok_id]
  1598. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1599. return [(self.map_tensor_name(name), img_break_embd)]
  1600. return [] # skip other tensors
  1601. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1602. class SmolVLMModel(VisionModel):
  1603. def __init__(self, *args, **kwargs):
  1604. super().__init__(*args, **kwargs)
  1605. if self.hparams["model_type"] == "smolvlm_vision":
  1606. # fix for SmolVLM2, missing some keys in config.json
  1607. # default values are taken from transformers code
  1608. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1609. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1610. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1611. def set_gguf_parameters(self):
  1612. super().set_gguf_parameters()
  1613. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1614. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1615. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1616. self.gguf_writer.add_vision_use_gelu(True)
  1617. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1618. del bid, new_name, n_dims # unused
  1619. if ".embeddings." in name:
  1620. return gguf.GGMLQuantizationType.F32
  1621. return False
  1622. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1623. del bid # unused
  1624. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1625. if is_vision_tensor:
  1626. return [(self.map_tensor_name(name), data_torch)]
  1627. return [] # skip other tensors
  1628. @ModelBase.register("Llama4ForConditionalGeneration")
  1629. class Llama4Model(LlamaModel):
  1630. model_arch = gguf.MODEL_ARCH.LLAMA4
  1631. undo_permute = False
  1632. def __init__(self, *args, **kwargs):
  1633. super().__init__(*args, **kwargs)
  1634. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1635. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1636. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1637. def set_vocab(self):
  1638. self._set_vocab_gpt2()
  1639. self.gguf_writer.add_add_bos_token(True)
  1640. def set_gguf_parameters(self):
  1641. super().set_gguf_parameters()
  1642. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1643. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1644. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1645. # split the gate_up into gate and up
  1646. if "gate_up_proj" in name:
  1647. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1648. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1649. dim_half = data_torch.shape[-1] // 2
  1650. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1651. return [
  1652. (self.map_tensor_name(name_gate), gate_proj_weight),
  1653. (self.map_tensor_name(name_up), up_proj_weight)
  1654. ]
  1655. if name.endswith("down_proj"):
  1656. name += ".weight"
  1657. data_torch = data_torch.transpose(-1, -2)
  1658. if "multi_modal_projector" in name or "vision_model" in name:
  1659. return []
  1660. return super().modify_tensors(data_torch, name, bid)
  1661. @ModelBase.register("Mistral3ForConditionalGeneration")
  1662. class Mistral3Model(LlamaModel):
  1663. model_arch = gguf.MODEL_ARCH.LLAMA
  1664. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1665. name = name.replace("language_model.", "")
  1666. if "multi_modal_projector" in name or "vision_tower" in name:
  1667. return []
  1668. return super().modify_tensors(data_torch, name, bid)
  1669. @ModelBase.register("DeciLMForCausalLM")
  1670. class DeciModel(TextModel):
  1671. model_arch = gguf.MODEL_ARCH.DECI
  1672. @staticmethod
  1673. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1674. # DeciLM-specific code
  1675. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1676. return DeciModel._find_multiple(intermediate_size, 256)
  1677. @staticmethod
  1678. def _find_multiple(n: int, k: int) -> int:
  1679. # DeciLM-specific code
  1680. if n % k == 0:
  1681. return n
  1682. return n + k - (n % k)
  1683. def __init__(self, *args, **kwargs):
  1684. super().__init__(*args, **kwargs)
  1685. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1686. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1687. assert self.block_count == len(_block_configs)
  1688. self._num_kv_heads = list()
  1689. self._num_heads = list()
  1690. _ffn_multipliers = list()
  1691. # ***linear attention layer***
  1692. # if n_heads_in_group is None and replace_with_linear is True
  1693. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1694. # ***attention-free layer***
  1695. # if n_heads_in_group is None and replace_with_linear is False
  1696. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1697. # ***normal attention-layer***
  1698. # if n_heads_in_group is not None, then
  1699. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1700. # _num_heads[il] is num_attention_head
  1701. for il in range(len(_block_configs)):
  1702. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1703. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1704. self._num_kv_heads.append(0)
  1705. self._num_heads.append(self.hparams["num_attention_heads"])
  1706. else:
  1707. self._num_kv_heads.append(0)
  1708. self._num_heads.append(0)
  1709. else:
  1710. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1711. self._num_heads.append(self.hparams["num_attention_heads"])
  1712. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1713. assert self.block_count == len(self._num_kv_heads)
  1714. assert self.block_count == len(self._num_heads)
  1715. assert self.block_count == len(_ffn_multipliers)
  1716. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1717. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1718. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1719. self._ffn_dims: list[int] = [
  1720. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1721. for multiplier in _ffn_multipliers
  1722. ]
  1723. def set_vocab(self):
  1724. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1725. # eos_token from '|eot_id|' to '|end_of_text|'
  1726. if self.hparams.get("vocab_size", 128256) == 128256:
  1727. tokens, toktypes, tokpre = self.get_vocab_base()
  1728. self.gguf_writer.add_tokenizer_model("gpt2")
  1729. self.gguf_writer.add_tokenizer_pre(tokpre)
  1730. self.gguf_writer.add_token_list(tokens)
  1731. self.gguf_writer.add_token_types(toktypes)
  1732. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1733. special_vocab.add_to_gguf(self.gguf_writer)
  1734. else:
  1735. # DeciLM-7B
  1736. self._set_vocab_llama_hf()
  1737. def set_gguf_parameters(self):
  1738. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1739. assert self.block_count == len(self._num_kv_heads)
  1740. assert self.block_count == len(self._num_heads)
  1741. assert self.block_count == len(self._ffn_dims)
  1742. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1743. self.gguf_writer.add_rope_freq_base(rope_theta)
  1744. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1745. self.gguf_writer.add_head_count(self._num_heads)
  1746. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1747. self.gguf_writer.add_block_count(self.block_count)
  1748. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1749. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1750. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1751. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1752. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1753. self.gguf_writer.add_file_type(self.ftype)
  1754. else: # DeciLM-7B
  1755. super().set_gguf_parameters()
  1756. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1757. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1758. assert self.block_count == len(self._num_kv_heads)
  1759. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1760. hparams = self.hparams
  1761. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1762. if "head_dim" in hparams:
  1763. rope_dim = hparams["head_dim"]
  1764. else:
  1765. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1766. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1767. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1768. if self.hparams["rope_scaling"].get("type") == "linear":
  1769. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1770. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1771. @staticmethod
  1772. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1773. if n_head_kv is not None and n_head != n_head_kv:
  1774. n_head = n_head_kv
  1775. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1776. .swapaxes(1, 2)
  1777. .reshape(weights.shape))
  1778. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1779. n_head = self.hparams["num_attention_heads"]
  1780. if bid is not None:
  1781. if "num_key_value_heads_per_layer" in self.hparams:
  1782. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1783. elif "block_configs" in self.hparams:
  1784. n_kv_head = self._num_kv_heads[bid]
  1785. n_head = self._num_heads[bid]
  1786. else:
  1787. n_kv_head = self.hparams.get("num_key_value_heads")
  1788. else:
  1789. n_kv_head = self.hparams.get("num_key_value_heads")
  1790. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1791. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1792. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1793. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1794. return [(self.map_tensor_name(name), data_torch)]
  1795. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1796. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1797. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1798. base = self.hparams.get("rope_theta", 10000.0)
  1799. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1800. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1801. factor = rope_scaling.get("factor", 8.0)
  1802. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1803. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1804. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1805. low_freq_wavelen = old_context_len / low_freq_factor
  1806. high_freq_wavelen = old_context_len / high_freq_factor
  1807. assert low_freq_wavelen != high_freq_wavelen
  1808. rope_factors = []
  1809. for freq in freqs:
  1810. wavelen = 2 * math.pi / freq
  1811. if wavelen < high_freq_wavelen:
  1812. rope_factors.append(1)
  1813. elif wavelen > low_freq_wavelen:
  1814. rope_factors.append(factor)
  1815. else:
  1816. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1817. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1818. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1819. def prepare_tensors(self):
  1820. super().prepare_tensors()
  1821. @ModelBase.register("BitnetForCausalLM")
  1822. class BitnetModel(TextModel):
  1823. model_arch = gguf.MODEL_ARCH.BITNET
  1824. def set_vocab(self):
  1825. self._set_vocab_sentencepiece()
  1826. def set_gguf_parameters(self):
  1827. super().set_gguf_parameters()
  1828. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1829. self.gguf_writer.add_rope_scaling_factor(1.0)
  1830. def weight_quant(self, weight: Tensor) -> Tensor:
  1831. dtype = weight.dtype
  1832. weight = weight.float()
  1833. scale = weight.abs().mean().clamp(min=1e-5)
  1834. iscale = 1 / scale
  1835. # TODO: multiply by the scale directly instead of inverting it twice
  1836. # (this is also unnecessarily doubly inverted upstream)
  1837. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1838. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1839. return result.type(dtype)
  1840. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1841. new_name = self.map_tensor_name(name)
  1842. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1843. gguf.MODEL_TENSOR.ATTN_Q,
  1844. gguf.MODEL_TENSOR.ATTN_K,
  1845. gguf.MODEL_TENSOR.ATTN_V,
  1846. gguf.MODEL_TENSOR.ATTN_OUT,
  1847. gguf.MODEL_TENSOR.FFN_UP,
  1848. gguf.MODEL_TENSOR.FFN_DOWN,
  1849. gguf.MODEL_TENSOR.FFN_GATE,
  1850. ]):
  1851. # transform weight into 1/0/-1 (in fp32)
  1852. data_torch = self.weight_quant(data_torch)
  1853. yield (new_name, data_torch)
  1854. @ModelBase.register("GrokForCausalLM")
  1855. class GrokModel(TextModel):
  1856. model_arch = gguf.MODEL_ARCH.GROK
  1857. def set_vocab(self):
  1858. self._set_vocab_sentencepiece()
  1859. def __init__(self, *args, **kwargs):
  1860. super().__init__(*args, **kwargs)
  1861. def set_gguf_parameters(self):
  1862. super().set_gguf_parameters()
  1863. _experts: list[dict[str, Tensor]] | None = None
  1864. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1865. # process the experts separately
  1866. if name.find(".moe.") != -1:
  1867. n_experts = self.hparams["num_local_experts"]
  1868. assert bid is not None
  1869. if self._experts is None:
  1870. self._experts = [{} for _ in range(self.block_count)]
  1871. self._experts[bid][name] = data_torch
  1872. if len(self._experts[bid]) >= n_experts * 3:
  1873. tensors: list[tuple[str, Tensor]] = []
  1874. # merge the experts into a single 3d tensor
  1875. for wid in ["linear", "linear_1", "linear_v"]:
  1876. datas: list[Tensor] = []
  1877. for xid in range(n_experts):
  1878. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1879. datas.append(self._experts[bid][ename])
  1880. del self._experts[bid][ename]
  1881. data_torch = torch.stack(datas, dim=0)
  1882. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1883. new_name = self.map_tensor_name(merged_name)
  1884. tensors.append((new_name, data_torch))
  1885. return tensors
  1886. else:
  1887. return []
  1888. return [(self.map_tensor_name(name), data_torch)]
  1889. @ModelBase.register("DbrxForCausalLM")
  1890. class DbrxModel(TextModel):
  1891. model_arch = gguf.MODEL_ARCH.DBRX
  1892. def set_gguf_parameters(self):
  1893. ffn_config = self.hparams["ffn_config"]
  1894. attn_config = self.hparams["attn_config"]
  1895. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1896. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1897. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1898. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1899. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1900. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1901. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1902. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1903. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1904. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1905. self.gguf_writer.add_layer_norm_eps(1e-5)
  1906. self.gguf_writer.add_file_type(self.ftype)
  1907. logger.info(f"gguf: file type = {self.ftype}")
  1908. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1909. del bid # unused
  1910. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1911. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1912. n_embd = self.hparams["d_model"]
  1913. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1914. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1915. # But llama.cpp moe graph works differently
  1916. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1917. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1918. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1919. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1920. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1921. experts = False
  1922. for exp_tensor_name in exp_tensor_names.keys():
  1923. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1924. experts = True
  1925. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1926. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1927. data_torch = data_torch.permute(*permute_tensor)
  1928. break
  1929. # map tensor names
  1930. # In MoE models the ffn tensors are typically most of the model weights,
  1931. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1932. # Every other model has the weight names ending in .weight,
  1933. # let's assume that is the convention which is not the case for dbrx:
  1934. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1935. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1936. return [(new_name, data_torch)]
  1937. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1938. del name, new_name, bid # unused
  1939. return n_dims > 1
  1940. @ModelBase.register("MiniCPMForCausalLM")
  1941. class MiniCPMModel(TextModel):
  1942. model_arch = gguf.MODEL_ARCH.MINICPM
  1943. def set_gguf_parameters(self):
  1944. super().set_gguf_parameters()
  1945. embedding_scale = float(self.hparams["scale_emb"])
  1946. self.gguf_writer.add_embedding_scale(embedding_scale)
  1947. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1948. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1949. self.gguf_writer.add_residual_scale(residual_scale)
  1950. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1951. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1952. self.gguf_writer.add_logit_scale(logit_scale)
  1953. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1954. if self.hparams.get("rope_scaling") is not None:
  1955. if self.hparams["rope_scaling"].get("type") == "longrope":
  1956. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1957. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1958. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1959. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1960. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1961. if rope_scaling is not None:
  1962. long_factors = rope_scaling.get('long_factor', None)
  1963. short_factors = rope_scaling.get('short_factor', None)
  1964. if long_factors is None or short_factors is None:
  1965. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1966. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1967. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1968. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1969. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1970. def set_vocab(self):
  1971. self._set_vocab_sentencepiece()
  1972. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1973. del bid # unused
  1974. n_head = self.hparams["num_attention_heads"]
  1975. n_kv_head = self.hparams.get("num_key_value_heads")
  1976. # HF models permute some of the tensors, so we need to undo that
  1977. if name.endswith(("q_proj.weight")):
  1978. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1979. if name.endswith(("k_proj.weight")):
  1980. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1981. return [(self.map_tensor_name(name), data_torch)]
  1982. @ModelBase.register("MiniCPM3ForCausalLM")
  1983. class MiniCPM3Model(TextModel):
  1984. model_arch = gguf.MODEL_ARCH.MINICPM3
  1985. def set_gguf_parameters(self):
  1986. hparams = self.hparams
  1987. self.gguf_writer.add_file_type(self.ftype)
  1988. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1989. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1990. self.gguf_writer.add_block_count(self.block_count)
  1991. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1992. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1993. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1994. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1995. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1996. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1997. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1998. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1999. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2000. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2001. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2002. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2003. if rope_scaling is not None:
  2004. rope_dims = self.hparams["qk_rope_head_dim"]
  2005. long_factors = rope_scaling.get('long_factor', None)
  2006. short_factors = rope_scaling.get('short_factor', None)
  2007. if long_factors is None or short_factors is None:
  2008. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2009. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2010. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2011. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2012. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2013. def set_vocab(self):
  2014. self._set_vocab_sentencepiece()
  2015. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2016. if n_kv_head is not None and n_head != n_kv_head:
  2017. n_head //= n_kv_head
  2018. return (
  2019. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2020. .swapaxes(1, 2)
  2021. .reshape(weights.shape)
  2022. )
  2023. @ModelBase.register("QWenLMHeadModel")
  2024. class QwenModel(TextModel):
  2025. model_arch = gguf.MODEL_ARCH.QWEN
  2026. @staticmethod
  2027. def token_bytes_to_string(b):
  2028. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2029. byte_encoder = bytes_to_unicode()
  2030. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2031. @staticmethod
  2032. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2033. parts = [bytes([b]) for b in token]
  2034. while True:
  2035. min_idx = None
  2036. min_rank = None
  2037. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2038. rank = mergeable_ranks.get(pair[0] + pair[1])
  2039. if rank is not None and (min_rank is None or rank < min_rank):
  2040. min_idx = i
  2041. min_rank = rank
  2042. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2043. break
  2044. assert min_idx is not None
  2045. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2046. return parts
  2047. def set_vocab(self):
  2048. self._set_vocab_qwen()
  2049. def set_gguf_parameters(self):
  2050. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2051. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2052. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2053. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2054. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2055. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2056. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2057. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2058. self.gguf_writer.add_file_type(self.ftype)
  2059. @ModelBase.register("Qwen2ForCausalLM")
  2060. class Qwen2Model(TextModel):
  2061. model_arch = gguf.MODEL_ARCH.QWEN2
  2062. def set_vocab(self):
  2063. try:
  2064. self._set_vocab_sentencepiece()
  2065. except FileNotFoundError:
  2066. self._set_vocab_gpt2()
  2067. def set_gguf_parameters(self):
  2068. super().set_gguf_parameters()
  2069. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2070. if self.hparams["rope_scaling"].get("type") == "yarn":
  2071. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2072. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2073. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2074. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2075. class Qwen2VLModel(TextModel):
  2076. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2077. def set_gguf_parameters(self):
  2078. super().set_gguf_parameters()
  2079. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2080. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2081. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2082. def set_vocab(self):
  2083. try:
  2084. self._set_vocab_sentencepiece()
  2085. except FileNotFoundError:
  2086. self._set_vocab_gpt2()
  2087. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2088. del bid # unused
  2089. if name.startswith("visual."):
  2090. # skip visual tensors
  2091. return []
  2092. return [(self.map_tensor_name(name), data_torch)]
  2093. @ModelBase.register("WavTokenizerDec")
  2094. class WavTokenizerDecModel(TextModel):
  2095. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2097. del bid # unused
  2098. if \
  2099. name.endswith("codebook.cluster_size") or \
  2100. name.endswith("codebook.embed_avg") or \
  2101. name.endswith("codebook.inited"):
  2102. logger.debug(f"Skipping {name!r}")
  2103. return []
  2104. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2105. return [(self.map_tensor_name(name), data_torch)]
  2106. def set_vocab(self):
  2107. self._set_vocab_none()
  2108. def set_gguf_parameters(self):
  2109. super().set_gguf_parameters()
  2110. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2111. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2112. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2113. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2114. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2115. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2116. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2117. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2118. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2119. self.gguf_writer.add_causal_attention(False)
  2120. @ModelBase.register("Qwen2MoeForCausalLM")
  2121. class Qwen2MoeModel(TextModel):
  2122. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2123. def set_gguf_parameters(self):
  2124. super().set_gguf_parameters()
  2125. if (n_experts := self.hparams.get("num_experts")) is not None:
  2126. self.gguf_writer.add_expert_count(n_experts)
  2127. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2128. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2129. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2130. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2131. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2132. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2133. _experts: list[dict[str, Tensor]] | None = None
  2134. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2135. # process the experts separately
  2136. if name.find("experts") != -1:
  2137. n_experts = self.hparams["num_experts"]
  2138. assert bid is not None
  2139. if self._experts is None:
  2140. self._experts = [{} for _ in range(self.block_count)]
  2141. self._experts[bid][name] = data_torch
  2142. if len(self._experts[bid]) >= n_experts * 3:
  2143. tensors: list[tuple[str, Tensor]] = []
  2144. # merge the experts into a single 3d tensor
  2145. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2146. datas: list[Tensor] = []
  2147. for xid in range(n_experts):
  2148. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2149. datas.append(self._experts[bid][ename])
  2150. del self._experts[bid][ename]
  2151. data_torch = torch.stack(datas, dim=0)
  2152. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2153. new_name = self.map_tensor_name(merged_name)
  2154. tensors.append((new_name, data_torch))
  2155. return tensors
  2156. else:
  2157. return []
  2158. return [(self.map_tensor_name(name), data_torch)]
  2159. def prepare_tensors(self):
  2160. super().prepare_tensors()
  2161. if self._experts is not None:
  2162. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2163. experts = [k for d in self._experts for k in d.keys()]
  2164. if len(experts) > 0:
  2165. raise ValueError(f"Unprocessed experts: {experts}")
  2166. @ModelBase.register("Qwen3ForCausalLM")
  2167. class Qwen3Model(Qwen2Model):
  2168. model_arch = gguf.MODEL_ARCH.QWEN3
  2169. @ModelBase.register("Qwen3MoeForCausalLM")
  2170. class Qwen3MoeModel(Qwen2MoeModel):
  2171. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2172. @ModelBase.register("GPT2LMHeadModel")
  2173. class GPT2Model(TextModel):
  2174. model_arch = gguf.MODEL_ARCH.GPT2
  2175. def set_gguf_parameters(self):
  2176. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2177. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2178. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2179. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2180. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2181. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2182. self.gguf_writer.add_file_type(self.ftype)
  2183. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2184. del bid # unused
  2185. tensors: list[tuple[str, Tensor]] = []
  2186. # we don't need these
  2187. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2188. return tensors
  2189. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2190. data_torch = data_torch.transpose(1, 0)
  2191. new_name = self.map_tensor_name(name)
  2192. tensors.append((new_name, data_torch))
  2193. return tensors
  2194. @ModelBase.register("PhiForCausalLM")
  2195. class Phi2Model(TextModel):
  2196. model_arch = gguf.MODEL_ARCH.PHI2
  2197. def set_gguf_parameters(self):
  2198. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2199. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2200. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2201. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2202. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2203. self.gguf_writer.add_embedding_length(n_embd)
  2204. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2205. self.gguf_writer.add_block_count(block_count)
  2206. self.gguf_writer.add_head_count(n_head)
  2207. self.gguf_writer.add_head_count_kv(n_head)
  2208. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2209. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2210. self.gguf_writer.add_file_type(self.ftype)
  2211. self.gguf_writer.add_add_bos_token(False)
  2212. @ModelBase.register("Phi3ForCausalLM")
  2213. class Phi3MiniModel(TextModel):
  2214. model_arch = gguf.MODEL_ARCH.PHI3
  2215. def set_vocab(self):
  2216. # Phi-4 model uses GPT2Tokenizer
  2217. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2218. if tokenizer_config_file.is_file():
  2219. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2220. tokenizer_config_json = json.load(f)
  2221. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2222. if tokenizer_class == 'GPT2Tokenizer':
  2223. return self._set_vocab_gpt2()
  2224. from sentencepiece import SentencePieceProcessor
  2225. tokenizer_path = self.dir_model / 'tokenizer.model'
  2226. if not tokenizer_path.is_file():
  2227. raise ValueError(f'Error: Missing {tokenizer_path}')
  2228. tokenizer = SentencePieceProcessor()
  2229. tokenizer.LoadFromFile(str(tokenizer_path))
  2230. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2231. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2232. scores: list[float] = [-10000.0] * vocab_size
  2233. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2234. for token_id in range(tokenizer.vocab_size()):
  2235. piece = tokenizer.IdToPiece(token_id)
  2236. text = piece.encode("utf-8")
  2237. score = tokenizer.GetScore(token_id)
  2238. toktype = SentencePieceTokenTypes.NORMAL
  2239. if tokenizer.IsUnknown(token_id):
  2240. toktype = SentencePieceTokenTypes.UNKNOWN
  2241. elif tokenizer.IsControl(token_id):
  2242. toktype = SentencePieceTokenTypes.CONTROL
  2243. elif tokenizer.IsUnused(token_id):
  2244. toktype = SentencePieceTokenTypes.UNUSED
  2245. elif tokenizer.IsByte(token_id):
  2246. toktype = SentencePieceTokenTypes.BYTE
  2247. tokens[token_id] = text
  2248. scores[token_id] = score
  2249. toktypes[token_id] = toktype
  2250. added_tokens_file = self.dir_model / 'added_tokens.json'
  2251. if added_tokens_file.is_file():
  2252. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2253. added_tokens_json = json.load(f)
  2254. for key in added_tokens_json:
  2255. token_id = added_tokens_json[key]
  2256. if token_id >= vocab_size:
  2257. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2258. continue
  2259. tokens[token_id] = key.encode("utf-8")
  2260. scores[token_id] = -1000.0
  2261. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2262. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2263. if tokenizer_config_file.is_file():
  2264. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2265. tokenizer_config_json = json.load(f)
  2266. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2267. for token_id, foken_data in added_tokens_decoder.items():
  2268. token_id = int(token_id)
  2269. token = foken_data["content"].encode("utf-8")
  2270. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2271. if tokens[token_id] != token:
  2272. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2273. tokens[token_id] = token
  2274. scores[token_id] = -1000.0
  2275. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2276. if foken_data.get("special"):
  2277. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2278. tokenizer_file = self.dir_model / 'tokenizer.json'
  2279. if tokenizer_file.is_file():
  2280. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2281. tokenizer_json = json.load(f)
  2282. added_tokens = tokenizer_json.get("added_tokens", [])
  2283. for foken_data in added_tokens:
  2284. token_id = int(foken_data["id"])
  2285. token = foken_data["content"].encode("utf-8")
  2286. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2287. if tokens[token_id] != token:
  2288. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2289. tokens[token_id] = token
  2290. scores[token_id] = -1000.0
  2291. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2292. if foken_data.get("special"):
  2293. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2294. self.gguf_writer.add_tokenizer_model("llama")
  2295. self.gguf_writer.add_tokenizer_pre("default")
  2296. self.gguf_writer.add_token_list(tokens)
  2297. self.gguf_writer.add_token_scores(scores)
  2298. self.gguf_writer.add_token_types(toktypes)
  2299. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2300. special_vocab.add_to_gguf(self.gguf_writer)
  2301. def set_gguf_parameters(self):
  2302. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2303. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2304. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2305. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2306. rms_eps = self.find_hparam(["rms_norm_eps"])
  2307. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2308. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2309. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2310. rope_dims = int(rot_pct * n_embd) // n_head
  2311. self.gguf_writer.add_context_length(max_pos_embds)
  2312. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2313. self.gguf_writer.add_embedding_length(n_embd)
  2314. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2315. self.gguf_writer.add_block_count(block_count)
  2316. self.gguf_writer.add_head_count(n_head)
  2317. self.gguf_writer.add_head_count_kv(n_head_kv)
  2318. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2319. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2320. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2321. self.gguf_writer.add_file_type(self.ftype)
  2322. sliding_window = self.hparams.get("sliding_window")
  2323. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2324. if sliding_window is None:
  2325. sliding_window = 0
  2326. self.gguf_writer.add_sliding_window(sliding_window)
  2327. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2328. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2329. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2330. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2331. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2332. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2333. rope_dims = int(rot_pct * n_embd) // n_head
  2334. # write rope scaling for long context (128k) model
  2335. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2336. if rope_scaling is None:
  2337. return
  2338. scale = max_pos_embds / orig_max_pos_embds
  2339. rope_scaling_type = rope_scaling.get('type', '').lower()
  2340. if len(rope_scaling_type) == 0:
  2341. raise KeyError('Missing the required key rope_scaling.type')
  2342. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2343. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2344. elif rope_scaling_type == 'yarn':
  2345. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2346. else:
  2347. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2348. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2349. long_factors = rope_scaling.get('long_factor', None)
  2350. short_factors = rope_scaling.get('short_factor', None)
  2351. if long_factors is None or short_factors is None:
  2352. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2353. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2354. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2355. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2356. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2357. @ModelBase.register("PhiMoEForCausalLM")
  2358. class PhiMoeModel(Phi3MiniModel):
  2359. model_arch = gguf.MODEL_ARCH.PHIMOE
  2360. _experts: list[dict[str, Tensor]] | None = None
  2361. def set_gguf_parameters(self):
  2362. super().set_gguf_parameters()
  2363. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2364. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2365. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2366. # process the experts separately
  2367. if name.find("block_sparse_moe.experts") != -1:
  2368. n_experts = self.hparams["num_local_experts"]
  2369. assert bid is not None
  2370. if self._experts is None:
  2371. self._experts = [{} for _ in range(self.block_count)]
  2372. self._experts[bid][name] = data_torch
  2373. if len(self._experts[bid]) >= n_experts * 3:
  2374. tensors: list[tuple[str, Tensor]] = []
  2375. # merge the experts into a single 3d tensor
  2376. for w_name in ["w1", "w2", "w3"]:
  2377. datas: list[Tensor] = []
  2378. for xid in range(n_experts):
  2379. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2380. datas.append(self._experts[bid][ename])
  2381. del self._experts[bid][ename]
  2382. data_torch = torch.stack(datas, dim=0)
  2383. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2384. new_name = self.map_tensor_name(merged_name)
  2385. tensors.append((new_name, data_torch))
  2386. return tensors
  2387. else:
  2388. return []
  2389. return [(self.map_tensor_name(name), data_torch)]
  2390. def prepare_tensors(self):
  2391. super().prepare_tensors()
  2392. if self._experts is not None:
  2393. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2394. experts = [k for d in self._experts for k in d.keys()]
  2395. if len(experts) > 0:
  2396. raise ValueError(f"Unprocessed experts: {experts}")
  2397. @ModelBase.register("PlamoForCausalLM")
  2398. class PlamoModel(TextModel):
  2399. model_arch = gguf.MODEL_ARCH.PLAMO
  2400. def set_vocab(self):
  2401. self._set_vocab_sentencepiece()
  2402. def set_gguf_parameters(self):
  2403. hparams = self.hparams
  2404. block_count = hparams["num_hidden_layers"]
  2405. self.gguf_writer.add_context_length(4096) # not in config.json
  2406. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2407. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2408. self.gguf_writer.add_block_count(block_count)
  2409. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2410. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2411. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2412. self.gguf_writer.add_file_type(self.ftype)
  2413. def shuffle_attn_q_weight(self, data_torch):
  2414. assert data_torch.size() == (5120, 5120)
  2415. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2416. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2417. data_torch = torch.reshape(data_torch, (5120, 5120))
  2418. return data_torch
  2419. def shuffle_attn_output_weight(self, data_torch):
  2420. assert data_torch.size() == (5120, 5120)
  2421. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2422. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2423. data_torch = torch.reshape(data_torch, (5120, 5120))
  2424. return data_torch
  2425. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2426. del bid # unused
  2427. new_name = self.map_tensor_name(name)
  2428. # shuffle for broadcasting of gqa in ggml_mul_mat
  2429. if new_name.endswith("attn_q.weight"):
  2430. data_torch = self.shuffle_attn_q_weight(data_torch)
  2431. elif new_name.endswith("attn_output.weight"):
  2432. data_torch = self.shuffle_attn_output_weight(data_torch)
  2433. return [(new_name, data_torch)]
  2434. @ModelBase.register("CodeShellForCausalLM")
  2435. class CodeShellModel(TextModel):
  2436. model_arch = gguf.MODEL_ARCH.CODESHELL
  2437. def set_gguf_parameters(self):
  2438. block_count = self.hparams["n_layer"]
  2439. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2440. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2441. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2442. self.gguf_writer.add_block_count(block_count)
  2443. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2444. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2445. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2446. self.gguf_writer.add_file_type(self.ftype)
  2447. self.gguf_writer.add_rope_freq_base(10000.0)
  2448. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2449. self.gguf_writer.add_rope_scaling_factor(1.0)
  2450. _has_tok_embd = False
  2451. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2452. del bid # unused
  2453. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2454. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2455. new_name = self.map_tensor_name(name)
  2456. # assuming token_embd.weight is seen before output.weight
  2457. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2458. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2459. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2460. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2461. self.tensor_names.remove("transformer.wte.weight")
  2462. elif new_name == tok_embd_name:
  2463. self._has_tok_embd = True
  2464. return [(new_name, data_torch)]
  2465. @ModelBase.register("InternLM2ForCausalLM")
  2466. class InternLM2Model(TextModel):
  2467. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2468. def set_vocab(self):
  2469. # (TODO): Is there a better way?
  2470. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2471. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2472. # recognized as an empty string in C++.
  2473. from sentencepiece import SentencePieceProcessor
  2474. from sentencepiece import sentencepiece_model_pb2 as model
  2475. tokenizer_path = self.dir_model / 'tokenizer.model'
  2476. tokens: list[bytes] = []
  2477. scores: list[float] = []
  2478. toktypes: list[int] = []
  2479. if not tokenizer_path.is_file():
  2480. logger.error(f'Error: Missing {tokenizer_path}')
  2481. sys.exit(1)
  2482. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2483. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2484. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2485. tokenizer = SentencePieceProcessor()
  2486. tokenizer.LoadFromFile(str(tokenizer_path))
  2487. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2488. for token_id in range(vocab_size):
  2489. piece = tokenizer.IdToPiece(token_id)
  2490. text = piece.encode("utf-8")
  2491. score = tokenizer.GetScore(token_id)
  2492. if text == b"\x00":
  2493. # (TODO): fixme
  2494. # Hack here and replace the \x00 characters.
  2495. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2496. text = "🐉".encode("utf-8")
  2497. toktype = SentencePieceTokenTypes.NORMAL
  2498. if tokenizer.IsUnknown(token_id):
  2499. toktype = SentencePieceTokenTypes.UNKNOWN
  2500. elif tokenizer.IsControl(token_id):
  2501. toktype = SentencePieceTokenTypes.CONTROL
  2502. elif tokenizer.IsUnused(token_id):
  2503. toktype = SentencePieceTokenTypes.UNUSED
  2504. elif tokenizer.IsByte(token_id):
  2505. toktype = SentencePieceTokenTypes.BYTE
  2506. # take care of ununsed raw token
  2507. if piece.startswith('[UNUSED'):
  2508. toktype = SentencePieceTokenTypes.UNUSED
  2509. tokens.append(text)
  2510. scores.append(score)
  2511. toktypes.append(toktype)
  2512. added_tokens_file = self.dir_model / 'added_tokens.json'
  2513. if added_tokens_file.is_file():
  2514. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2515. added_tokens_json = json.load(f)
  2516. for key in added_tokens_json:
  2517. tokens.append(key.encode("utf-8"))
  2518. scores.append(-1000.0)
  2519. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2520. chat_eos_token = '<|im_end|>'
  2521. chat_eos_token_id = None
  2522. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2523. if tokenizer_config_file.is_file():
  2524. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2525. tokenizer_config_json = json.load(f)
  2526. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2527. for token_id, foken_data in added_tokens_decoder.items():
  2528. token_id = int(token_id)
  2529. token = foken_data["content"]
  2530. if token == chat_eos_token:
  2531. chat_eos_token_id = token_id
  2532. token = token.encode("utf-8")
  2533. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2534. if tokens[token_id] != token:
  2535. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2536. tokens[token_id] = token
  2537. scores[token_id] = -1000.0
  2538. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2539. if foken_data.get("special"):
  2540. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2541. tokenizer_file = self.dir_model / 'tokenizer.json'
  2542. if tokenizer_file.is_file():
  2543. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2544. tokenizer_json = json.load(f)
  2545. added_tokens = tokenizer_json.get("added_tokens", [])
  2546. for foken_data in added_tokens:
  2547. token_id = int(foken_data["id"])
  2548. token = foken_data["content"]
  2549. if token == chat_eos_token:
  2550. chat_eos_token_id = token_id
  2551. token = token.encode("utf-8")
  2552. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2553. if tokens[token_id] != token:
  2554. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2555. tokens[token_id] = token
  2556. scores[token_id] = -1000.0
  2557. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2558. if foken_data.get("special"):
  2559. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2560. self.gguf_writer.add_tokenizer_model("llama")
  2561. self.gguf_writer.add_tokenizer_pre("default")
  2562. self.gguf_writer.add_token_list(tokens)
  2563. self.gguf_writer.add_token_scores(scores)
  2564. self.gguf_writer.add_token_types(toktypes)
  2565. self.gguf_writer.add_add_space_prefix(add_prefix)
  2566. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2567. old_eos = special_vocab.special_token_ids["eos"]
  2568. if chat_eos_token_id is not None:
  2569. # For the chat model, we replace the eos with '<|im_end|>'.
  2570. # TODO: this is a hack, should be fixed
  2571. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2572. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2573. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2574. " in chat mode so that the conversation can end normally.")
  2575. special_vocab.add_to_gguf(self.gguf_writer)
  2576. def set_gguf_parameters(self):
  2577. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2578. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2579. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2580. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2581. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2582. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2583. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2584. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2585. self.gguf_writer.add_file_type(self.ftype)
  2586. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2587. if self.hparams["rope_scaling"].get("type") == "linear":
  2588. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2589. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2590. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2591. num_heads = self.hparams["num_attention_heads"]
  2592. num_kv_heads = self.hparams["num_key_value_heads"]
  2593. n_embd = self.hparams["hidden_size"]
  2594. q_per_kv = num_heads // num_kv_heads
  2595. head_dim = n_embd // num_heads
  2596. num_groups = num_heads // q_per_kv
  2597. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2598. qkv = data_torch
  2599. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2600. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2601. # The model weights of q and k equire additional reshape.
  2602. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2603. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2604. v = v.reshape((-1, v.shape[-1]))
  2605. return [
  2606. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2607. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2608. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2609. ]
  2610. else:
  2611. return [(self.map_tensor_name(name), data_torch)]
  2612. @ModelBase.register("InternLM3ForCausalLM")
  2613. class InternLM3Model(TextModel):
  2614. model_arch = gguf.MODEL_ARCH.LLAMA
  2615. def set_vocab(self):
  2616. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2617. self.gguf_writer.add_tokenizer_model("llama")
  2618. self.gguf_writer.add_tokenizer_pre("default")
  2619. self.gguf_writer.add_token_list(tokens)
  2620. self.gguf_writer.add_token_scores(scores)
  2621. self.gguf_writer.add_token_types(toktypes)
  2622. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2623. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2624. if tokenizer_config_file.is_file():
  2625. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2626. tokenizer_config_json = json.load(f)
  2627. if "add_prefix_space" in tokenizer_config_json:
  2628. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2629. if "added_tokens_decoder" in tokenizer_config_json:
  2630. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2631. if token_data.get("special"):
  2632. token_id = int(token_id)
  2633. token = token_data["content"]
  2634. special_vocab._set_special_token(token, token_id)
  2635. # update eos token
  2636. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2637. special_vocab.special_token_ids["eos"] = token_id
  2638. special_vocab.add_to_gguf(self.gguf_writer)
  2639. def set_gguf_parameters(self):
  2640. super().set_gguf_parameters()
  2641. hparams = self.hparams
  2642. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2643. if "head_dim" in hparams:
  2644. rope_dim = hparams["head_dim"]
  2645. else:
  2646. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2647. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2648. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2649. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2650. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2651. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2652. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2653. n_head = self.hparams["num_attention_heads"]
  2654. n_kv_head = self.hparams.get("num_key_value_heads")
  2655. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2656. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2657. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2658. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2659. return [(self.map_tensor_name(name), data_torch)]
  2660. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2661. class BertModel(TextModel):
  2662. model_arch = gguf.MODEL_ARCH.BERT
  2663. def __init__(self, *args, **kwargs):
  2664. super().__init__(*args, **kwargs)
  2665. self.vocab_size = None
  2666. def set_gguf_parameters(self):
  2667. super().set_gguf_parameters()
  2668. self.gguf_writer.add_causal_attention(False)
  2669. # get pooling path
  2670. pooling_path = None
  2671. module_path = self.dir_model / "modules.json"
  2672. if module_path.is_file():
  2673. with open(module_path, encoding="utf-8") as f:
  2674. modules = json.load(f)
  2675. for mod in modules:
  2676. if mod["type"] == "sentence_transformers.models.Pooling":
  2677. pooling_path = mod["path"]
  2678. break
  2679. # get pooling type
  2680. if pooling_path is not None:
  2681. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2682. pooling = json.load(f)
  2683. if pooling["pooling_mode_mean_tokens"]:
  2684. pooling_type = gguf.PoolingType.MEAN
  2685. elif pooling["pooling_mode_cls_token"]:
  2686. pooling_type = gguf.PoolingType.CLS
  2687. else:
  2688. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2689. self.gguf_writer.add_pooling_type(pooling_type)
  2690. def set_vocab(self):
  2691. tokens, toktypes, tokpre = self.get_vocab_base()
  2692. self.vocab_size = len(tokens)
  2693. # we need this to validate the size of the token_type embeddings
  2694. # though currently we are passing all zeros to the token_type embeddings
  2695. # "Sequence A" or "Sequence B"
  2696. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2697. # convert to phantom space vocab
  2698. def phantom(tok):
  2699. if tok.startswith("[") and tok.endswith("]"):
  2700. return tok
  2701. if tok.startswith("##"):
  2702. return tok[2:]
  2703. return "\u2581" + tok
  2704. tokens = list(map(phantom, tokens))
  2705. # add vocab to gguf
  2706. self.gguf_writer.add_tokenizer_model("bert")
  2707. self.gguf_writer.add_tokenizer_pre(tokpre)
  2708. self.gguf_writer.add_token_list(tokens)
  2709. self.gguf_writer.add_token_types(toktypes)
  2710. # handle special tokens
  2711. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2712. special_vocab.add_to_gguf(self.gguf_writer)
  2713. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2714. del bid # unused
  2715. if name.startswith("bert."):
  2716. name = name[5:]
  2717. if name.endswith(".gamma"):
  2718. name = name[:-6] + ".weight"
  2719. if name.endswith(".beta"):
  2720. name = name[:-5] + ".bias"
  2721. # we are only using BERT for embeddings so we don't need the pooling layer
  2722. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2723. return [] # we don't need these
  2724. if name.startswith("cls.predictions"):
  2725. return []
  2726. if name.startswith("cls.seq_relationship"):
  2727. return []
  2728. return [(self.map_tensor_name(name), data_torch)]
  2729. def _xlmroberta_tokenizer_init(self) -> None:
  2730. # we need the pad_token_id to know how to chop down position_embd matrix
  2731. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2732. self._position_offset = 1 + pad_token_id
  2733. if "max_position_embeddings" in self.hparams:
  2734. self.hparams["max_position_embeddings"] -= self._position_offset
  2735. else:
  2736. self._position_offset = None
  2737. def _xlmroberta_set_vocab(self) -> None:
  2738. # to avoid TypeError: Descriptors cannot be created directly
  2739. # exception when importing sentencepiece_model_pb2
  2740. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2741. from sentencepiece import SentencePieceProcessor
  2742. from sentencepiece import sentencepiece_model_pb2 as model
  2743. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2744. if not tokenizer_path.is_file():
  2745. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2746. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2747. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2748. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2749. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2750. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2751. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2752. tokenizer = SentencePieceProcessor()
  2753. tokenizer.LoadFromFile(str(tokenizer_path))
  2754. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2755. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2756. scores: list[float] = [-10000.0] * vocab_size
  2757. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2758. for token_id in range(tokenizer.vocab_size()):
  2759. piece = tokenizer.IdToPiece(token_id)
  2760. text = piece.encode("utf-8")
  2761. score = tokenizer.GetScore(token_id)
  2762. toktype = SentencePieceTokenTypes.NORMAL
  2763. if tokenizer.IsUnknown(token_id):
  2764. toktype = SentencePieceTokenTypes.UNKNOWN
  2765. elif tokenizer.IsControl(token_id):
  2766. toktype = SentencePieceTokenTypes.CONTROL
  2767. elif tokenizer.IsUnused(token_id):
  2768. toktype = SentencePieceTokenTypes.UNUSED
  2769. elif tokenizer.IsByte(token_id):
  2770. toktype = SentencePieceTokenTypes.BYTE
  2771. tokens[token_id] = text
  2772. scores[token_id] = score
  2773. toktypes[token_id] = toktype
  2774. if vocab_size > len(tokens):
  2775. pad_count = vocab_size - len(tokens)
  2776. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2777. for i in range(1, pad_count + 1):
  2778. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2779. scores.append(-1000.0)
  2780. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2781. # realign tokens (see HF tokenizer code)
  2782. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2783. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2784. toktypes = [
  2785. SentencePieceTokenTypes.CONTROL,
  2786. SentencePieceTokenTypes.CONTROL,
  2787. SentencePieceTokenTypes.CONTROL,
  2788. SentencePieceTokenTypes.UNKNOWN,
  2789. ] + toktypes[3:-1]
  2790. self.gguf_writer.add_tokenizer_model("t5")
  2791. self.gguf_writer.add_tokenizer_pre("default")
  2792. self.gguf_writer.add_token_list(tokens)
  2793. self.gguf_writer.add_token_scores(scores)
  2794. self.gguf_writer.add_token_types(toktypes)
  2795. self.gguf_writer.add_add_space_prefix(add_prefix)
  2796. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2797. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2798. if precompiled_charsmap:
  2799. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2800. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2801. special_vocab.add_to_gguf(self.gguf_writer)
  2802. self.gguf_writer.add_add_bos_token(True)
  2803. self.gguf_writer.add_add_eos_token(True)
  2804. @ModelBase.register("RobertaModel")
  2805. class RobertaModel(BertModel):
  2806. model_arch = gguf.MODEL_ARCH.BERT
  2807. def __init__(self, *args, **kwargs):
  2808. super().__init__(*args, **kwargs)
  2809. # we need the pad_token_id to know how to chop down position_embd matrix
  2810. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2811. self._position_offset = 1 + pad_token_id
  2812. if "max_position_embeddings" in self.hparams:
  2813. self.hparams["max_position_embeddings"] -= self._position_offset
  2814. else:
  2815. self._position_offset = None
  2816. def set_vocab(self):
  2817. """Support BPE tokenizers for roberta models"""
  2818. bpe_tok_path = self.dir_model / "tokenizer.json"
  2819. if bpe_tok_path.exists():
  2820. self._set_vocab_gpt2()
  2821. self.gguf_writer.add_add_bos_token(True)
  2822. self.gguf_writer.add_add_eos_token(True)
  2823. # we need this to validate the size of the token_type embeddings
  2824. # though currently we are passing all zeros to the token_type embeddings
  2825. # "Sequence A" or "Sequence B"
  2826. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2827. else:
  2828. return super().set_vocab()
  2829. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2830. # if name starts with "roberta.", remove the prefix
  2831. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2832. if name.startswith("roberta."):
  2833. name = name[8:]
  2834. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2835. if name == "embeddings.position_embeddings.weight":
  2836. if self._position_offset is not None:
  2837. data_torch = data_torch[self._position_offset:,:]
  2838. return super().modify_tensors(data_torch, name, bid)
  2839. @ModelBase.register("NomicBertModel")
  2840. class NomicBertModel(BertModel):
  2841. model_arch = gguf.MODEL_ARCH.BERT
  2842. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  2843. hparams = kwargs.pop("hparams", None)
  2844. if hparams is None:
  2845. hparams = ModelBase.load_hparams(dir_model)
  2846. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  2847. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  2848. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  2849. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  2850. if self._tokenizer_is_xlmroberta:
  2851. self._xlmroberta_tokenizer_init()
  2852. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2853. self.hparams["n_ctx"] = 2048
  2854. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  2855. # this doesn't do anything in the HF version
  2856. assert self.hparams["causal"] is False
  2857. # no bias tensors unless MoE
  2858. assert self.hparams["qkv_proj_bias"] == self.is_moe
  2859. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  2860. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  2861. # norm at end of layer
  2862. assert self.hparams["prenorm"] is False
  2863. # standard RoPE
  2864. assert self.hparams["rotary_emb_fraction"] == 1.0
  2865. assert self.hparams["rotary_emb_interleaved"] is False
  2866. assert self.hparams["rotary_emb_scale_base"] is None
  2867. def set_vocab(self) -> None:
  2868. if self._tokenizer_is_xlmroberta:
  2869. return self._xlmroberta_set_vocab()
  2870. return super().set_vocab()
  2871. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  2872. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  2873. if "mlp.experts.bias" in name:
  2874. return [] # Explicitly return an empty list.
  2875. if "mlp.experts.mlp.w1" in name:
  2876. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  2877. name += ".weight"
  2878. if "mlp.experts.mlp.w2" in name:
  2879. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  2880. data_torch = data_torch.transpose(1, 2)
  2881. name += ".weight"
  2882. return [(self.map_tensor_name(name), data_torch)]
  2883. def set_gguf_parameters(self):
  2884. super().set_gguf_parameters()
  2885. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2886. if self.is_moe:
  2887. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  2888. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  2889. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  2890. def _is_tokenizer_xlmroberta(self) -> bool:
  2891. with open(self.dir_model / "tokenizer.json") as f:
  2892. tokenizer_json = json.load(f)
  2893. toktyp = tokenizer_json["model"]["type"]
  2894. if toktyp == "Unigram":
  2895. return True
  2896. if toktyp == "WordPiece":
  2897. return False
  2898. raise ValueError(f"unknown tokenizer: {toktyp}")
  2899. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2900. class XLMRobertaModel(BertModel):
  2901. model_arch = gguf.MODEL_ARCH.BERT
  2902. def __init__(self, *args, **kwargs):
  2903. super().__init__(*args, **kwargs)
  2904. self._xlmroberta_tokenizer_init()
  2905. def set_vocab(self):
  2906. self._xlmroberta_set_vocab()
  2907. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2908. # if name starts with "roberta.", remove the prefix
  2909. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2910. if name.startswith("roberta."):
  2911. name = name[8:]
  2912. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2913. if name == "embeddings.position_embeddings.weight":
  2914. if self._position_offset is not None:
  2915. data_torch = data_torch[self._position_offset:,:]
  2916. return super().modify_tensors(data_torch, name, bid)
  2917. @ModelBase.register("GemmaForCausalLM")
  2918. class GemmaModel(TextModel):
  2919. model_arch = gguf.MODEL_ARCH.GEMMA
  2920. def set_vocab(self):
  2921. self._set_vocab_sentencepiece()
  2922. # TODO: these special tokens should be exported only for the CodeGemma family
  2923. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2924. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2925. special_vocab._set_special_token("prefix", 67)
  2926. special_vocab._set_special_token("suffix", 69)
  2927. special_vocab._set_special_token("middle", 68)
  2928. special_vocab._set_special_token("fsep", 70)
  2929. special_vocab._set_special_token("eot", 107)
  2930. special_vocab.chat_template = None # do not add it twice
  2931. special_vocab.add_to_gguf(self.gguf_writer)
  2932. self.gguf_writer.add_add_space_prefix(False)
  2933. def set_gguf_parameters(self):
  2934. hparams = self.hparams
  2935. block_count = hparams["num_hidden_layers"]
  2936. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2937. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2938. self.gguf_writer.add_block_count(block_count)
  2939. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2940. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2941. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2942. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2943. self.gguf_writer.add_key_length(hparams["head_dim"])
  2944. self.gguf_writer.add_value_length(hparams["head_dim"])
  2945. self.gguf_writer.add_file_type(self.ftype)
  2946. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2947. del bid # unused
  2948. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2949. # To prevent errors, skip loading lm_head.weight.
  2950. if name == "lm_head.weight":
  2951. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2952. return []
  2953. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2954. if name.endswith("norm.weight"):
  2955. data_torch = data_torch + 1
  2956. return [(self.map_tensor_name(name), data_torch)]
  2957. @ModelBase.register("Gemma2ForCausalLM")
  2958. class Gemma2Model(TextModel):
  2959. model_arch = gguf.MODEL_ARCH.GEMMA2
  2960. def set_vocab(self):
  2961. self._set_vocab_sentencepiece()
  2962. self.gguf_writer.add_add_space_prefix(False)
  2963. def set_gguf_parameters(self):
  2964. hparams = self.hparams
  2965. block_count = hparams["num_hidden_layers"]
  2966. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2967. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2968. self.gguf_writer.add_block_count(block_count)
  2969. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2970. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2971. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2972. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2973. self.gguf_writer.add_key_length(hparams["head_dim"])
  2974. self.gguf_writer.add_value_length(hparams["head_dim"])
  2975. self.gguf_writer.add_file_type(self.ftype)
  2976. self.gguf_writer.add_attn_logit_softcapping(
  2977. self.hparams["attn_logit_softcapping"]
  2978. )
  2979. self.gguf_writer.add_final_logit_softcapping(
  2980. self.hparams["final_logit_softcapping"]
  2981. )
  2982. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2983. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2984. del bid # unused
  2985. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2986. # To prevent errors, skip loading lm_head.weight.
  2987. if name == "lm_head.weight":
  2988. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2989. return []
  2990. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2991. if name.endswith("norm.weight"):
  2992. data_torch = data_torch + 1
  2993. return [(self.map_tensor_name(name), data_torch)]
  2994. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2995. class Gemma3Model(TextModel):
  2996. model_arch = gguf.MODEL_ARCH.GEMMA3
  2997. def set_vocab(self):
  2998. self._set_vocab_sentencepiece()
  2999. self.gguf_writer.add_add_space_prefix(False)
  3000. def set_gguf_parameters(self):
  3001. hparams = self.hparams
  3002. block_count = hparams["num_hidden_layers"]
  3003. # some default values are not specified in the hparams
  3004. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3005. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3006. self.gguf_writer.add_block_count(block_count)
  3007. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3008. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3009. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3010. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3011. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3012. self.gguf_writer.add_file_type(self.ftype)
  3013. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3014. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3015. assert hparams.get("attn_logit_softcapping") is None
  3016. assert hparams.get("final_logit_softcapping") is None
  3017. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3018. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3019. if hparams.get("rope_scaling") is not None:
  3020. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3021. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3022. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3023. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3024. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3025. del bid # unused
  3026. if name.startswith("language_model."):
  3027. name = name.replace("language_model.", "")
  3028. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3029. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3030. return [] # skip vision tensors
  3031. # remove OOV (out-of-vocabulary) rows in token_embd
  3032. if "embed_tokens.weight" in name:
  3033. vocab = self._create_vocab_sentencepiece()
  3034. tokens = vocab[0]
  3035. data_torch = data_torch[:len(tokens)]
  3036. # ref code in Gemma3RMSNorm
  3037. # output = output * (1.0 + self.weight.float())
  3038. if name.endswith("norm.weight"):
  3039. data_torch = data_torch + 1
  3040. return [(self.map_tensor_name(name), data_torch)]
  3041. @ModelBase.register("Gemma3ForConditionalGeneration")
  3042. class Gemma3VisionModel(VisionModel):
  3043. def set_gguf_parameters(self):
  3044. super().set_gguf_parameters()
  3045. hparams = self.hparams
  3046. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
  3047. # default values below are taken from HF tranformers code
  3048. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3049. self.gguf_writer.add_vision_use_gelu(True)
  3050. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3051. del bid, new_name, n_dims # unused
  3052. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3053. if "input_projection" in name:
  3054. return gguf.GGMLQuantizationType.F16
  3055. if ".embeddings." in name:
  3056. return gguf.GGMLQuantizationType.F32
  3057. return False
  3058. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3059. del bid # unused
  3060. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3061. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3062. # process vision tensors
  3063. name = name.replace("_weight", ".weight")
  3064. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3065. # the other norm values are part of SigLIP model, and they are already correct
  3066. # ref code: Gemma3RMSNorm
  3067. if "soft_emb_norm.weight" in name:
  3068. logger.info(f"Correcting norm value for '{name}'")
  3069. data_torch = data_torch + 1
  3070. return [(self.map_tensor_name(name), data_torch)]
  3071. return [] # skip other tensors
  3072. @ModelBase.register("Starcoder2ForCausalLM")
  3073. class StarCoder2Model(TextModel):
  3074. model_arch = gguf.MODEL_ARCH.STARCODER2
  3075. @ModelBase.register("Rwkv6ForCausalLM")
  3076. class Rwkv6Model(TextModel):
  3077. model_arch = gguf.MODEL_ARCH.RWKV6
  3078. def set_vocab(self):
  3079. self._set_vocab_rwkv_world()
  3080. def set_gguf_parameters(self):
  3081. block_count = self.hparams["num_hidden_layers"]
  3082. head_size = self.hparams["head_size"]
  3083. hidden_size = self.hparams["hidden_size"]
  3084. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3085. rescale_every_n_layers = self.hparams["rescale_every"]
  3086. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3087. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3088. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3089. # RWKV isn't context limited
  3090. self.gguf_writer.add_context_length(1048576)
  3091. self.gguf_writer.add_embedding_length(hidden_size)
  3092. self.gguf_writer.add_block_count(block_count)
  3093. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3094. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3095. self.gguf_writer.add_wkv_head_size(head_size)
  3096. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3097. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3098. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3099. self.gguf_writer.add_file_type(self.ftype)
  3100. # required by llama.cpp, unused
  3101. self.gguf_writer.add_head_count(0)
  3102. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3103. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3104. new_name = self.map_tensor_name(name)
  3105. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3106. new_name += ".weight"
  3107. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3108. data_torch = data_torch.transpose(0, 1)
  3109. if new_name.endswith("time_mix_w2.weight"):
  3110. data_torch = data_torch.permute(0, 2, 1)
  3111. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3112. data_torch = data_torch.squeeze()
  3113. try:
  3114. rescale_every_n_layers = self.hparams["rescale_every"]
  3115. if rescale_every_n_layers > 0:
  3116. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3117. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3118. except KeyError:
  3119. pass
  3120. # concat time_mix_lerp weights to reduce some cpu overhead
  3121. # also reduces the number of tensors in the model
  3122. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3123. try:
  3124. self.lerp_weights[bid][new_name] = data_torch
  3125. except KeyError:
  3126. self.lerp_weights[bid] = {new_name: data_torch}
  3127. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3128. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3129. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3130. yield (new_name, data)
  3131. return
  3132. yield (new_name, data_torch)
  3133. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3134. class RWKV6Qwen2Model(Rwkv6Model):
  3135. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3136. def set_vocab(self):
  3137. try:
  3138. self._set_vocab_sentencepiece()
  3139. except FileNotFoundError:
  3140. self._set_vocab_gpt2()
  3141. def set_gguf_parameters(self):
  3142. block_count = self.hparams["num_hidden_layers"]
  3143. num_attention_heads = self.hparams["num_attention_heads"]
  3144. num_key_value_heads = self.hparams["num_key_value_heads"]
  3145. hidden_size = self.hparams["hidden_size"]
  3146. head_size = hidden_size // num_attention_heads
  3147. rms_norm_eps = self.hparams["rms_norm_eps"]
  3148. intermediate_size = self.hparams["intermediate_size"]
  3149. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3150. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3151. # RWKV isn't context limited
  3152. self.gguf_writer.add_context_length(1048576)
  3153. self.gguf_writer.add_embedding_length(hidden_size)
  3154. self.gguf_writer.add_block_count(block_count)
  3155. self.gguf_writer.add_wkv_head_size(head_size)
  3156. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3157. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3158. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3159. self.gguf_writer.add_file_type(self.ftype)
  3160. # special parameters for time_mixing in RWKV6QWEN2
  3161. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3162. self.gguf_writer.add_token_shift_count(1)
  3163. # RWKV6QWEN2 use grouped key/value like GQA
  3164. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3165. # required by llama.cpp, unused
  3166. self.gguf_writer.add_head_count(0)
  3167. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3168. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3169. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3170. data = data.view(5, -1, data.shape[-1])
  3171. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3172. # permute them here to avoid code changes
  3173. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3174. if "w2" in new_name:
  3175. data = data.view(5, -1, data.shape[-1])
  3176. yield (new_name, data)
  3177. continue
  3178. yield (new_name, data)
  3179. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3180. class Rwkv7Model(TextModel):
  3181. model_arch = gguf.MODEL_ARCH.RWKV7
  3182. def set_vocab(self):
  3183. self._set_vocab_rwkv_world()
  3184. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3185. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3186. def set_gguf_parameters(self):
  3187. block_count = self.hparams["num_hidden_layers"]
  3188. try:
  3189. head_size = self.hparams["head_size"]
  3190. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3191. except KeyError:
  3192. head_size = self.hparams["head_dim"]
  3193. layer_norm_eps = self.hparams["norm_eps"]
  3194. hidden_size = self.hparams["hidden_size"]
  3195. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3196. # ICLR: In-Context-Learning-Rate
  3197. try:
  3198. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3199. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3200. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3201. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3202. except KeyError:
  3203. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3204. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3205. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3206. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3207. # RWKV isn't context limited
  3208. self.gguf_writer.add_context_length(1048576)
  3209. self.gguf_writer.add_embedding_length(hidden_size)
  3210. self.gguf_writer.add_block_count(block_count)
  3211. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3212. self.gguf_writer.add_wkv_head_size(head_size)
  3213. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3214. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3215. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3216. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3217. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3218. self.gguf_writer.add_file_type(self.ftype)
  3219. # required by llama.cpp, unused
  3220. self.gguf_writer.add_head_count(0)
  3221. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3222. lora_needs_transpose: bool = True
  3223. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3224. # unify tensor names here to make life easier
  3225. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3226. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3227. name = name.replace("time_mixer.", "")
  3228. # lora layer names in fla-hub's impl
  3229. if "_lora.lora" in name:
  3230. self.lora_needs_transpose = False
  3231. name = name.replace("_lora.lora.0.weight", "1.weight")
  3232. name = name.replace("_lora.lora.2.weight", "2.weight")
  3233. name = name.replace("_lora.lora.2.bias", "0.weight")
  3234. name = name.replace("feed_forward_norm", "ln2")
  3235. name = name.replace("g_norm", "ln_x")
  3236. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3237. # some models have dummy v0/v1/v2 on first layer while others don't
  3238. # ignore them all since they are not used
  3239. return
  3240. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3241. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3242. if bid is not None and "attention.x_" in name:
  3243. if "attention.x_x" in name:
  3244. # already concatenated
  3245. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3246. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3247. yield (new_name, data)
  3248. else:
  3249. try:
  3250. self.lerp_weights[bid][name] = data_torch
  3251. except KeyError:
  3252. self.lerp_weights[bid] = {name: data_torch}
  3253. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3254. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3255. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3256. yield (new_name, data)
  3257. return
  3258. else:
  3259. data_torch = data_torch.squeeze()
  3260. new_name = self.map_tensor_name(name)
  3261. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3262. new_name += ".weight"
  3263. if self.lora_needs_transpose and any(
  3264. new_name.endswith(t) for t in [
  3265. "time_mix_w1.weight", "time_mix_w2.weight",
  3266. "time_mix_a1.weight", "time_mix_a2.weight",
  3267. "time_mix_v1.weight", "time_mix_v2.weight",
  3268. "time_mix_g1.weight", "time_mix_g2.weight",
  3269. ]
  3270. ):
  3271. data_torch = data_torch.transpose(0, 1)
  3272. if 'r_k' in new_name:
  3273. data_torch = data_torch.flatten()
  3274. if bid == 0 and "time_mix_a" in new_name:
  3275. # dummy v0/v1/v2 on first layer
  3276. # easist way to make llama happy
  3277. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3278. yield (new_name, data_torch)
  3279. @ModelBase.register("RwkvHybridForCausalLM")
  3280. class ARwkv7Model(Rwkv7Model):
  3281. model_arch = gguf.MODEL_ARCH.ARWKV7
  3282. def set_vocab(self):
  3283. try:
  3284. self._set_vocab_sentencepiece()
  3285. except FileNotFoundError:
  3286. self._set_vocab_gpt2()
  3287. def set_gguf_parameters(self):
  3288. block_count = self.hparams["num_hidden_layers"]
  3289. hidden_size = self.hparams["hidden_size"]
  3290. head_size = self.hparams["head_size"]
  3291. rms_norm_eps = self.hparams["rms_norm_eps"]
  3292. intermediate_size = self.hparams["intermediate_size"]
  3293. wkv_has_gate = self.hparams["wkv_has_gate"]
  3294. assert self.hparams["wkv_version"] == 7
  3295. # ICLR: In-Context-Learning-Rate
  3296. lora_rank_decay = 64
  3297. lora_rank_iclr = 64
  3298. lora_rank_value_residual_mix = 32
  3299. lora_rank_gate = 128 if wkv_has_gate else 0
  3300. # RWKV isn't context limited
  3301. self.gguf_writer.add_context_length(1048576)
  3302. self.gguf_writer.add_embedding_length(hidden_size)
  3303. self.gguf_writer.add_block_count(block_count)
  3304. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3305. self.gguf_writer.add_wkv_head_size(head_size)
  3306. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3307. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3308. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3309. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3310. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3311. self.gguf_writer.add_file_type(self.ftype)
  3312. self.gguf_writer.add_token_shift_count(1)
  3313. # required by llama.cpp, unused
  3314. self.gguf_writer.add_head_count(0)
  3315. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3316. class MambaModel(TextModel):
  3317. model_arch = gguf.MODEL_ARCH.MAMBA
  3318. def set_vocab(self):
  3319. vocab_size = self.hparams["vocab_size"]
  3320. # Round vocab size to next multiple of 8
  3321. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3322. # pad using ceiling division
  3323. # ref: https://stackoverflow.com/a/17511341/22827863
  3324. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3325. self.hparams["vocab_size"] = vocab_size
  3326. if (self.dir_model / "tokenizer.json").is_file():
  3327. self._set_vocab_gpt2()
  3328. elif (self.dir_model / "tokenizer.model").is_file():
  3329. self._set_vocab_sentencepiece()
  3330. else:
  3331. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3332. self._set_vocab_builtin("gpt-neox", vocab_size)
  3333. def set_gguf_parameters(self):
  3334. d_model = self.find_hparam(["hidden_size", "d_model"])
  3335. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3336. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3337. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3338. # ceiling division
  3339. # ref: https://stackoverflow.com/a/17511341/22827863
  3340. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3341. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3342. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3343. use_dt_b_c_norm = False
  3344. # For falconmamba we do apply RMS norm on B / DT and C layers
  3345. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3346. use_dt_b_c_norm = True
  3347. # Fail early for models which don't have a block expansion factor of 2
  3348. assert d_inner == 2 * d_model
  3349. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3350. self.gguf_writer.add_embedding_length(d_model)
  3351. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3352. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3353. self.gguf_writer.add_block_count(self.block_count)
  3354. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3355. self.gguf_writer.add_ssm_inner_size(d_inner)
  3356. self.gguf_writer.add_ssm_state_size(d_state)
  3357. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3358. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3359. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3360. self.gguf_writer.add_file_type(self.ftype)
  3361. _tok_embd = None
  3362. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3363. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3364. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3365. new_name = self.map_tensor_name(name)
  3366. if name.endswith(".A_log"):
  3367. logger.debug("A_log --> A ==> " + new_name)
  3368. data_torch = -torch.exp(data_torch)
  3369. # [4 1 8192 1] -> [4 8192 1 1]
  3370. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3371. data_torch = data_torch.squeeze()
  3372. # assuming token_embd.weight is seen before output.weight
  3373. if self._tok_embd is not None and new_name == output_name:
  3374. if torch.equal(self._tok_embd, data_torch):
  3375. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3376. return []
  3377. elif new_name == tok_embd_name:
  3378. self._tok_embd = data_torch
  3379. return [(new_name, data_torch)]
  3380. @ModelBase.register("CohereForCausalLM")
  3381. class CommandR2Model(TextModel):
  3382. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3383. def __init__(self, *args, **kwargs):
  3384. super().__init__(*args, **kwargs)
  3385. # max_position_embeddings = 8192 in config.json but model was actually
  3386. # trained on 128k context length
  3387. # aya-23 models don't have model_max_length specified
  3388. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3389. def set_gguf_parameters(self):
  3390. super().set_gguf_parameters()
  3391. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3392. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3393. @ModelBase.register("Cohere2ForCausalLM")
  3394. class Cohere2Model(TextModel):
  3395. model_arch = gguf.MODEL_ARCH.COHERE2
  3396. def set_gguf_parameters(self):
  3397. super().set_gguf_parameters()
  3398. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3399. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3400. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3401. rotary_pct = self.hparams["rotary_pct"]
  3402. hidden_size = self.hparams["hidden_size"]
  3403. num_attention_heads = self.hparams["num_attention_heads"]
  3404. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3405. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3406. @ModelBase.register("OlmoForCausalLM")
  3407. @ModelBase.register("OLMoForCausalLM")
  3408. class OlmoModel(TextModel):
  3409. model_arch = gguf.MODEL_ARCH.OLMO
  3410. def set_gguf_parameters(self):
  3411. super().set_gguf_parameters()
  3412. self.gguf_writer.add_layer_norm_eps(1e-5)
  3413. clip_qkv = self.hparams.get("clip_qkv")
  3414. if clip_qkv is not None:
  3415. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3416. # Same as super class, but permuting q_proj, k_proj
  3417. # Copied from: LlamaModel
  3418. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3419. del bid # unused
  3420. n_head = self.hparams["num_attention_heads"]
  3421. n_kv_head = self.hparams.get("num_key_value_heads")
  3422. if name.endswith("q_proj.weight"):
  3423. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3424. if name.endswith("k_proj.weight"):
  3425. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3426. return [(self.map_tensor_name(name), data_torch)]
  3427. @ModelBase.register("Olmo2ForCausalLM")
  3428. class Olmo2Model(TextModel):
  3429. model_arch = gguf.MODEL_ARCH.OLMO2
  3430. @ModelBase.register("OlmoeForCausalLM")
  3431. class OlmoeModel(TextModel):
  3432. model_arch = gguf.MODEL_ARCH.OLMOE
  3433. def set_gguf_parameters(self):
  3434. super().set_gguf_parameters()
  3435. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3436. if (n_experts := self.hparams.get("num_experts")) is not None:
  3437. self.gguf_writer.add_expert_count(n_experts)
  3438. _experts: list[dict[str, Tensor]] | None = None
  3439. # Copied from: Qwen2MoeModel
  3440. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3441. # process the experts separately
  3442. if name.find("experts") != -1:
  3443. n_experts = self.hparams["num_experts"]
  3444. assert bid is not None
  3445. if self._experts is None:
  3446. self._experts = [{} for _ in range(self.block_count)]
  3447. self._experts[bid][name] = data_torch
  3448. if len(self._experts[bid]) >= n_experts * 3:
  3449. tensors: list[tuple[str, Tensor]] = []
  3450. # merge the experts into a single 3d tensor
  3451. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3452. datas: list[Tensor] = []
  3453. for xid in range(n_experts):
  3454. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3455. datas.append(self._experts[bid][ename])
  3456. del self._experts[bid][ename]
  3457. data_torch = torch.stack(datas, dim=0)
  3458. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3459. new_name = self.map_tensor_name(merged_name)
  3460. tensors.append((new_name, data_torch))
  3461. return tensors
  3462. else:
  3463. return []
  3464. return [(self.map_tensor_name(name), data_torch)]
  3465. # Copied from: Qwen2MoeModel
  3466. def prepare_tensors(self):
  3467. super().prepare_tensors()
  3468. if self._experts is not None:
  3469. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3470. experts = [k for d in self._experts for k in d.keys()]
  3471. if len(experts) > 0:
  3472. raise ValueError(f"Unprocessed experts: {experts}")
  3473. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3474. class JinaBertV2Model(BertModel):
  3475. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3476. def __init__(self, *args, **kwargs):
  3477. super().__init__(*args, **kwargs)
  3478. self.intermediate_size = self.hparams["intermediate_size"]
  3479. def get_tensors(self):
  3480. for name, data in super().get_tensors():
  3481. if 'gated_layer' in name:
  3482. d1 = data[:self.intermediate_size, :]
  3483. name1 = name.replace('gated_layers', 'gated_layers_w')
  3484. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3485. d2 = data[self.intermediate_size:, :]
  3486. name2 = name.replace('gated_layers', 'gated_layers_v')
  3487. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3488. yield name1, d1
  3489. yield name2, d2
  3490. continue
  3491. yield name, data
  3492. def set_vocab(self):
  3493. tokenizer_class = 'BertTokenizer'
  3494. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3495. tokenizer_class = json.load(f)['tokenizer_class']
  3496. if tokenizer_class == 'BertTokenizer':
  3497. super().set_vocab()
  3498. elif tokenizer_class == 'RobertaTokenizer':
  3499. self._set_vocab_gpt2()
  3500. self.gguf_writer.add_token_type_count(2)
  3501. else:
  3502. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3503. self.gguf_writer.add_add_bos_token(True)
  3504. self.gguf_writer.add_add_eos_token(True)
  3505. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3506. # if name starts with "bert.", remove the prefix
  3507. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3508. if name.startswith("bert."):
  3509. name = name[5:]
  3510. return super().modify_tensors(data_torch, name, bid)
  3511. @ModelBase.register("OpenELMForCausalLM")
  3512. class OpenELMModel(TextModel):
  3513. model_arch = gguf.MODEL_ARCH.OPENELM
  3514. @staticmethod
  3515. def _make_divisible(v: float | int, divisor: int) -> int:
  3516. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3517. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3518. # Make sure that round down does not go down by more than 10%.
  3519. if new_v < 0.9 * v:
  3520. new_v += divisor
  3521. return new_v
  3522. def __init__(self, *args, **kwargs):
  3523. super().__init__(*args, **kwargs)
  3524. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3525. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3526. self._n_embd: int = self.hparams["model_dim"]
  3527. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3528. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3529. self._ffn_dims: list[int] = [
  3530. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3531. for multiplier in ffn_multipliers
  3532. ]
  3533. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3534. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3535. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3536. def set_vocab(self):
  3537. try:
  3538. self._set_vocab_sentencepiece()
  3539. except FileNotFoundError:
  3540. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3541. def set_gguf_parameters(self):
  3542. n_embd = self._n_embd
  3543. head_dim = self.hparams["head_dim"]
  3544. rot_pct = 1.0
  3545. assert self.block_count == len(self._num_kv_heads)
  3546. assert self.block_count == len(self._num_query_heads)
  3547. assert self.block_count == len(self._ffn_dims)
  3548. self.gguf_writer.add_block_count(self.block_count)
  3549. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3550. self.gguf_writer.add_embedding_length(n_embd)
  3551. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3552. self.gguf_writer.add_head_count(self._num_query_heads)
  3553. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3554. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3555. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3556. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3557. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3558. self.gguf_writer.add_key_length(head_dim)
  3559. self.gguf_writer.add_value_length(head_dim)
  3560. self.gguf_writer.add_file_type(self.ftype)
  3561. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3562. if "n_layers" in keys:
  3563. return self.hparams["num_transformer_layers"]
  3564. return super().find_hparam(keys, optional)
  3565. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3566. # split ff
  3567. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3568. ff_dim = self._ffn_dims[bid]
  3569. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3570. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3571. return
  3572. yield (self.map_tensor_name(name), data_torch)
  3573. @ModelBase.register("ArcticForCausalLM")
  3574. class ArcticModel(TextModel):
  3575. model_arch = gguf.MODEL_ARCH.ARCTIC
  3576. def set_vocab(self):
  3577. # The reason for using a custom implementation here is that the
  3578. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3579. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3580. from sentencepiece import SentencePieceProcessor
  3581. tokenizer_path = self.dir_model / 'tokenizer.model'
  3582. if not tokenizer_path.is_file():
  3583. logger.error(f'Error: Missing {tokenizer_path}')
  3584. sys.exit(1)
  3585. # Read the whole vocabulary from the tokenizer.model file
  3586. tokenizer = SentencePieceProcessor()
  3587. tokenizer.LoadFromFile(str(tokenizer_path))
  3588. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3589. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3590. scores: list[float] = [-10000.0] * vocab_size
  3591. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3592. for token_id in range(tokenizer.vocab_size()):
  3593. piece = tokenizer.IdToPiece(token_id)
  3594. text = piece.encode("utf-8")
  3595. score = tokenizer.GetScore(token_id)
  3596. toktype = SentencePieceTokenTypes.NORMAL
  3597. if tokenizer.IsUnknown(token_id):
  3598. toktype = SentencePieceTokenTypes.UNKNOWN
  3599. elif tokenizer.IsControl(token_id):
  3600. toktype = SentencePieceTokenTypes.CONTROL
  3601. elif tokenizer.IsUnused(token_id):
  3602. toktype = SentencePieceTokenTypes.UNUSED
  3603. elif tokenizer.IsByte(token_id):
  3604. toktype = SentencePieceTokenTypes.BYTE
  3605. tokens[token_id] = text
  3606. scores[token_id] = score
  3607. toktypes[token_id] = toktype
  3608. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3609. # of information about added/redefined tokens and modify them accordingly.
  3610. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3611. if tokenizer_config_file.is_file():
  3612. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3613. tokenizer_config_json = json.load(f)
  3614. if "added_tokens_decoder" in tokenizer_config_json:
  3615. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3616. for token_id, token_json in added_tokens_decoder.items():
  3617. token_id = int(token_id)
  3618. if token_id >= vocab_size:
  3619. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3620. continue
  3621. token_content = token_json["content"]
  3622. token_type = SentencePieceTokenTypes.USER_DEFINED
  3623. token_score = -10000.0
  3624. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3625. # Set the score to 0.0 as in the original tokenizer.model
  3626. if ("special" in token_json) and token_json["special"]:
  3627. if token_content == tokenizer_config_json["unk_token"]:
  3628. token_type = SentencePieceTokenTypes.UNKNOWN
  3629. else:
  3630. token_type = SentencePieceTokenTypes.CONTROL
  3631. token_score = 0.0
  3632. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3633. tokens[token_id] = token_content.encode("utf-8")
  3634. toktypes[token_id] = token_type
  3635. scores[token_id] = token_score
  3636. self.gguf_writer.add_tokenizer_model("llama")
  3637. self.gguf_writer.add_tokenizer_pre("default")
  3638. self.gguf_writer.add_token_list(tokens)
  3639. self.gguf_writer.add_token_scores(scores)
  3640. self.gguf_writer.add_token_types(toktypes)
  3641. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3642. special_vocab.add_to_gguf(self.gguf_writer)
  3643. def set_gguf_parameters(self):
  3644. super().set_gguf_parameters()
  3645. hparams = self.hparams
  3646. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3647. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3648. _experts: list[dict[str, Tensor]] | None = None
  3649. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3650. n_head = self.hparams["num_attention_heads"]
  3651. n_kv_head = self.hparams.get("num_key_value_heads")
  3652. if name.endswith("q_proj.weight"):
  3653. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3654. if name.endswith("k_proj.weight"):
  3655. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3656. # process the experts separately
  3657. if name.find("block_sparse_moe.experts") != -1:
  3658. n_experts = self.hparams["num_local_experts"]
  3659. assert bid is not None
  3660. if self._experts is None:
  3661. self._experts = [{} for _ in range(self.block_count)]
  3662. self._experts[bid][name] = data_torch
  3663. if len(self._experts[bid]) >= n_experts * 3:
  3664. tensors: list[tuple[str, Tensor]] = []
  3665. # merge the experts into a single 3d tensor
  3666. for wid in ["w1", "w2", "w3"]:
  3667. datas: list[Tensor] = []
  3668. for xid in range(n_experts):
  3669. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3670. datas.append(self._experts[bid][ename])
  3671. del self._experts[bid][ename]
  3672. data_torch = torch.stack(datas, dim=0)
  3673. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3674. new_name = self.map_tensor_name(merged_name)
  3675. tensors.append((new_name, data_torch))
  3676. return tensors
  3677. else:
  3678. return []
  3679. return [(self.map_tensor_name(name), data_torch)]
  3680. def prepare_tensors(self):
  3681. super().prepare_tensors()
  3682. if self._experts is not None:
  3683. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3684. experts = [k for d in self._experts for k in d.keys()]
  3685. if len(experts) > 0:
  3686. raise ValueError(f"Unprocessed experts: {experts}")
  3687. @ModelBase.register("DeepseekForCausalLM")
  3688. class DeepseekModel(TextModel):
  3689. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3690. def set_vocab(self):
  3691. try:
  3692. self._set_vocab_sentencepiece()
  3693. except FileNotFoundError:
  3694. self._set_vocab_gpt2()
  3695. def set_gguf_parameters(self):
  3696. super().set_gguf_parameters()
  3697. hparams = self.hparams
  3698. if "head_dim" in hparams:
  3699. rope_dim = hparams["head_dim"]
  3700. else:
  3701. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3702. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3703. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3704. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3705. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3706. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3707. self.gguf_writer.add_expert_weights_scale(1.0)
  3708. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3709. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3710. _experts: list[dict[str, Tensor]] | None = None
  3711. @staticmethod
  3712. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3713. if n_head_kv is not None and n_head != n_head_kv:
  3714. n_head = n_head_kv
  3715. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3716. .swapaxes(1, 2)
  3717. .reshape(weights.shape))
  3718. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3719. n_head = self.hparams["num_attention_heads"]
  3720. n_kv_head = self.hparams.get("num_key_value_heads")
  3721. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3722. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3723. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3724. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3725. # process the experts separately
  3726. if name.find("mlp.experts") != -1:
  3727. n_experts = self.hparams["n_routed_experts"]
  3728. assert bid is not None
  3729. if self._experts is None:
  3730. self._experts = [{} for _ in range(self.block_count)]
  3731. self._experts[bid][name] = data_torch
  3732. if len(self._experts[bid]) >= n_experts * 3:
  3733. tensors: list[tuple[str, Tensor]] = []
  3734. # merge the experts into a single 3d tensor
  3735. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3736. datas: list[Tensor] = []
  3737. for xid in range(n_experts):
  3738. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3739. datas.append(self._experts[bid][ename])
  3740. del self._experts[bid][ename]
  3741. data_torch = torch.stack(datas, dim=0)
  3742. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3743. new_name = self.map_tensor_name(merged_name)
  3744. tensors.append((new_name, data_torch))
  3745. return tensors
  3746. else:
  3747. return []
  3748. return [(self.map_tensor_name(name), data_torch)]
  3749. def prepare_tensors(self):
  3750. super().prepare_tensors()
  3751. if self._experts is not None:
  3752. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3753. experts = [k for d in self._experts for k in d.keys()]
  3754. if len(experts) > 0:
  3755. raise ValueError(f"Unprocessed experts: {experts}")
  3756. @ModelBase.register("DeepseekV2ForCausalLM")
  3757. @ModelBase.register("DeepseekV3ForCausalLM")
  3758. class DeepseekV2Model(TextModel):
  3759. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3760. def set_vocab(self):
  3761. self._set_vocab_gpt2()
  3762. def set_gguf_parameters(self):
  3763. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  3764. self.hparams["num_key_value_heads"] = 1
  3765. super().set_gguf_parameters()
  3766. hparams = self.hparams
  3767. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3768. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3769. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3770. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3771. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3772. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  3773. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  3774. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  3775. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3776. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  3777. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3778. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3779. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3780. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3781. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3782. if hparams["scoring_func"] == "sigmoid":
  3783. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3784. elif hparams["scoring_func"] == "softmax":
  3785. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3786. else:
  3787. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3788. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3789. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3790. if self.hparams["rope_scaling"].get("type") == "yarn":
  3791. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3792. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3793. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3794. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3795. _experts: list[dict[str, Tensor]] | None = None
  3796. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3797. # rename e_score_correction_bias tensors
  3798. if name.endswith("e_score_correction_bias"):
  3799. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3800. # skip Multi-Token Prediction (MTP) layers
  3801. block_count = self.hparams["num_hidden_layers"]
  3802. match = re.match(r"model.layers.(\d+)", name)
  3803. if match and int(match.group(1)) >= block_count:
  3804. return []
  3805. # process the experts separately
  3806. if name.find("mlp.experts") != -1:
  3807. n_experts = self.hparams["n_routed_experts"]
  3808. assert bid is not None
  3809. if self._experts is None:
  3810. self._experts = [{} for _ in range(self.block_count)]
  3811. self._experts[bid][name] = data_torch
  3812. if len(self._experts[bid]) >= n_experts * 3:
  3813. tensors: list[tuple[str, Tensor]] = []
  3814. # merge the experts into a single 3d tensor
  3815. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3816. datas: list[Tensor] = []
  3817. for xid in range(n_experts):
  3818. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3819. datas.append(self._experts[bid][ename])
  3820. del self._experts[bid][ename]
  3821. data_torch = torch.stack(datas, dim=0)
  3822. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3823. new_name = self.map_tensor_name(merged_name)
  3824. tensors.append((new_name, data_torch))
  3825. return tensors
  3826. else:
  3827. return []
  3828. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  3829. if name.endswith("kv_b_proj.weight"):
  3830. name_kb = name.replace("kv_b_proj", "k_b_proj")
  3831. name_vb = name.replace("kv_b_proj", "v_b_proj")
  3832. n_head_kv = self.hparams["num_key_value_heads"]
  3833. v_head_dim = self.hparams["v_head_dim"]
  3834. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  3835. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  3836. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  3837. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  3838. k_b = k_b.transpose(1, 2)
  3839. return [
  3840. (self.map_tensor_name(name_kb), k_b),
  3841. (self.map_tensor_name(name_vb), v_b)
  3842. ]
  3843. return [(self.map_tensor_name(name), data_torch)]
  3844. def prepare_tensors(self):
  3845. super().prepare_tensors()
  3846. if self._experts is not None:
  3847. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3848. experts = [k for d in self._experts for k in d.keys()]
  3849. if len(experts) > 0:
  3850. raise ValueError(f"Unprocessed experts: {experts}")
  3851. @ModelBase.register("PLMForCausalLM")
  3852. class PLMModel(TextModel):
  3853. model_arch = gguf.MODEL_ARCH.PLM
  3854. def set_vocab(self):
  3855. self._set_vocab_gpt2()
  3856. def set_gguf_parameters(self):
  3857. super().set_gguf_parameters()
  3858. hparams = self.hparams
  3859. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3860. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3861. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3862. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3863. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3864. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3865. return [(self.map_tensor_name(name), data_torch)]
  3866. def prepare_tensors(self):
  3867. super().prepare_tensors()
  3868. @ModelBase.register("T5WithLMHeadModel")
  3869. @ModelBase.register("T5ForConditionalGeneration")
  3870. @ModelBase.register("MT5ForConditionalGeneration")
  3871. @ModelBase.register("UMT5ForConditionalGeneration")
  3872. class T5Model(TextModel):
  3873. model_arch = gguf.MODEL_ARCH.T5
  3874. def __init__(self, *args, **kwargs):
  3875. super().__init__(*args, **kwargs)
  3876. self.shared_token_embeddings_found = False
  3877. def set_vocab(self):
  3878. # to avoid TypeError: Descriptors cannot be created directly
  3879. # exception when importing sentencepiece_model_pb2
  3880. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3881. from sentencepiece import SentencePieceProcessor
  3882. from sentencepiece import sentencepiece_model_pb2 as model
  3883. tokenizer_path = self.dir_model / 'tokenizer.model'
  3884. # many older models use spiece.model tokenizer model filename
  3885. if not tokenizer_path.is_file():
  3886. tokenizer_path = self.dir_model / 'spiece.model'
  3887. if not tokenizer_path.is_file():
  3888. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3889. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3890. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3891. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3892. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3893. # assure the tokenizer model file name is correct
  3894. assert tokenizer_path.name == 'tokenizer.model'
  3895. return self._set_vocab_sentencepiece()
  3896. else:
  3897. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3898. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3899. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3900. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3901. tokenizer = SentencePieceProcessor()
  3902. tokenizer.LoadFromFile(str(tokenizer_path))
  3903. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3904. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3905. scores: list[float] = [-10000.0] * vocab_size
  3906. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3907. for token_id in range(tokenizer.vocab_size()):
  3908. piece = tokenizer.IdToPiece(token_id)
  3909. text = piece.encode("utf-8")
  3910. score = tokenizer.GetScore(token_id)
  3911. toktype = SentencePieceTokenTypes.NORMAL
  3912. if tokenizer.IsUnknown(token_id):
  3913. toktype = SentencePieceTokenTypes.UNKNOWN
  3914. elif tokenizer.IsControl(token_id):
  3915. toktype = SentencePieceTokenTypes.CONTROL
  3916. elif tokenizer.IsUnused(token_id):
  3917. toktype = SentencePieceTokenTypes.UNUSED
  3918. elif tokenizer.IsByte(token_id):
  3919. toktype = SentencePieceTokenTypes.BYTE
  3920. tokens[token_id] = text
  3921. scores[token_id] = score
  3922. toktypes[token_id] = toktype
  3923. added_tokens_file = self.dir_model / 'added_tokens.json'
  3924. if added_tokens_file.is_file():
  3925. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3926. added_tokens_json = json.load(f)
  3927. for key in added_tokens_json:
  3928. token_id = added_tokens_json[key]
  3929. if token_id >= vocab_size:
  3930. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3931. continue
  3932. tokens[token_id] = key.encode("utf-8")
  3933. scores[token_id] = -1000.0
  3934. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3935. if vocab_size > len(tokens):
  3936. pad_count = vocab_size - len(tokens)
  3937. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3938. for i in range(1, pad_count + 1):
  3939. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3940. scores.append(-1000.0)
  3941. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3942. self.gguf_writer.add_tokenizer_model("t5")
  3943. self.gguf_writer.add_tokenizer_pre("default")
  3944. self.gguf_writer.add_token_list(tokens)
  3945. self.gguf_writer.add_token_scores(scores)
  3946. self.gguf_writer.add_token_types(toktypes)
  3947. self.gguf_writer.add_add_space_prefix(add_prefix)
  3948. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3949. if precompiled_charsmap:
  3950. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3951. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3952. special_vocab.add_to_gguf(self.gguf_writer)
  3953. self.gguf_writer.add_add_bos_token(False)
  3954. self.gguf_writer.add_add_eos_token(True)
  3955. def set_gguf_parameters(self):
  3956. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3957. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3958. n_ctx = 512
  3959. self.gguf_writer.add_context_length(n_ctx)
  3960. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3961. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3962. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3963. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3964. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3965. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3966. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3967. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3968. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3969. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3970. self.gguf_writer.add_file_type(self.ftype)
  3971. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3972. del bid # unused
  3973. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3974. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3975. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3976. # and decoder and ignore the remaining ones.
  3977. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3978. if not self.shared_token_embeddings_found:
  3979. name = "shared.weight"
  3980. self.shared_token_embeddings_found = True
  3981. else:
  3982. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3983. return []
  3984. return [(self.map_tensor_name(name), data_torch)]
  3985. @ModelBase.register("T5EncoderModel")
  3986. class T5EncoderModel(TextModel):
  3987. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3988. def __init__(self, *args, **kwargs):
  3989. super().__init__(*args, **kwargs)
  3990. self.shared_token_embeddings_found = False
  3991. def set_vocab(self):
  3992. # to avoid TypeError: Descriptors cannot be created directly
  3993. # exception when importing sentencepiece_model_pb2
  3994. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3995. from sentencepiece import SentencePieceProcessor
  3996. from sentencepiece import sentencepiece_model_pb2 as model
  3997. tokenizer_path = self.dir_model / 'tokenizer.model'
  3998. # many older models use spiece.model tokenizer model filename
  3999. if not tokenizer_path.is_file():
  4000. tokenizer_path = self.dir_model / 'spiece.model'
  4001. if not tokenizer_path.is_file():
  4002. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4003. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4004. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4005. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4006. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4007. # assure the tokenizer model file name is correct
  4008. assert tokenizer_path.name == 'tokenizer.model'
  4009. return self._set_vocab_sentencepiece()
  4010. else:
  4011. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4012. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4013. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4014. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4015. tokenizer = SentencePieceProcessor()
  4016. tokenizer.LoadFromFile(str(tokenizer_path))
  4017. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4018. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4019. scores: list[float] = [-10000.0] * vocab_size
  4020. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4021. for token_id in range(tokenizer.vocab_size()):
  4022. piece = tokenizer.IdToPiece(token_id)
  4023. text = piece.encode("utf-8")
  4024. score = tokenizer.GetScore(token_id)
  4025. toktype = SentencePieceTokenTypes.NORMAL
  4026. if tokenizer.IsUnknown(token_id):
  4027. toktype = SentencePieceTokenTypes.UNKNOWN
  4028. elif tokenizer.IsControl(token_id):
  4029. toktype = SentencePieceTokenTypes.CONTROL
  4030. elif tokenizer.IsUnused(token_id):
  4031. toktype = SentencePieceTokenTypes.UNUSED
  4032. elif tokenizer.IsByte(token_id):
  4033. toktype = SentencePieceTokenTypes.BYTE
  4034. tokens[token_id] = text
  4035. scores[token_id] = score
  4036. toktypes[token_id] = toktype
  4037. added_tokens_file = self.dir_model / 'added_tokens.json'
  4038. if added_tokens_file.is_file():
  4039. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4040. added_tokens_json = json.load(f)
  4041. for key in added_tokens_json:
  4042. token_id = added_tokens_json[key]
  4043. if token_id >= vocab_size:
  4044. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4045. continue
  4046. tokens[token_id] = key.encode("utf-8")
  4047. scores[token_id] = -1000.0
  4048. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4049. if vocab_size > len(tokens):
  4050. pad_count = vocab_size - len(tokens)
  4051. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4052. for i in range(1, pad_count + 1):
  4053. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4054. scores.append(-1000.0)
  4055. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4056. self.gguf_writer.add_tokenizer_model("t5")
  4057. self.gguf_writer.add_tokenizer_pre("default")
  4058. self.gguf_writer.add_token_list(tokens)
  4059. self.gguf_writer.add_token_scores(scores)
  4060. self.gguf_writer.add_token_types(toktypes)
  4061. self.gguf_writer.add_add_space_prefix(add_prefix)
  4062. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4063. if precompiled_charsmap:
  4064. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4065. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4066. special_vocab.add_to_gguf(self.gguf_writer)
  4067. self.gguf_writer.add_add_bos_token(False)
  4068. self.gguf_writer.add_add_eos_token(True)
  4069. def set_gguf_parameters(self):
  4070. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4071. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4072. n_ctx = 512
  4073. self.gguf_writer.add_context_length(n_ctx)
  4074. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4075. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4076. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4077. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4078. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4079. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4080. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4081. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4082. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4083. self.gguf_writer.add_file_type(self.ftype)
  4084. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4085. del bid # unused
  4086. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4087. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4088. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4089. # and decoder and ignore the remaining ones.
  4090. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4091. if not self.shared_token_embeddings_found:
  4092. name = "shared.weight"
  4093. self.shared_token_embeddings_found = True
  4094. else:
  4095. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4096. return []
  4097. return [(self.map_tensor_name(name), data_torch)]
  4098. @ModelBase.register("JAISLMHeadModel")
  4099. class JaisModel(TextModel):
  4100. model_arch = gguf.MODEL_ARCH.JAIS
  4101. def __init__(self, *args, **kwargs):
  4102. super().__init__(*args, **kwargs)
  4103. # SwigLU activation
  4104. assert self.hparams["activation_function"] == "swiglu"
  4105. # ALiBi position embedding
  4106. assert self.hparams["position_embedding_type"] == "alibi"
  4107. # Embeddings scale
  4108. self.embeddings_scale = 1.0
  4109. if 'mup_embeddings_scale' in self.hparams:
  4110. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4111. elif 'embeddings_scale' in self.hparams:
  4112. self.embeddings_scale = self.hparams['embeddings_scale']
  4113. else:
  4114. assert False
  4115. self.width_scale = 1.0
  4116. if 'mup_output_alpha' in self.hparams:
  4117. assert 'mup_width_scale' in self.hparams
  4118. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4119. elif 'width_scale' in self.hparams:
  4120. self.width_scale = self.hparams['width_scale']
  4121. else:
  4122. assert False
  4123. self.max_alibi_bias = 8.0
  4124. def set_vocab(self):
  4125. self._set_vocab_gpt2()
  4126. def set_gguf_parameters(self):
  4127. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4128. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4129. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4130. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4131. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4132. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4133. self.gguf_writer.add_file_type(self.ftype)
  4134. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4135. del bid # unused
  4136. tensors: list[tuple[str, Tensor]] = []
  4137. # we don't need these
  4138. if name.endswith((".attn.bias")):
  4139. return tensors
  4140. if name.endswith(("relative_pe.slopes")):
  4141. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4142. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4143. # but Jais's PyTorch model simply precalculates the slope values and places them
  4144. # in relative_pes.slopes
  4145. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4146. first_val = float(data_torch[0].item())
  4147. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4148. return tensors
  4149. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4150. data_torch = data_torch.transpose(1, 0)
  4151. new_name = self.map_tensor_name(name)
  4152. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4153. tensors.append((new_name, data_torch * self.embeddings_scale))
  4154. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4155. tensors.append((new_name, data_torch * self.width_scale))
  4156. else:
  4157. tensors.append((new_name, data_torch))
  4158. return tensors
  4159. def prepare_tensors(self):
  4160. super().prepare_tensors()
  4161. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4162. @ModelBase.register("Glm4ForCausalLM")
  4163. class Glm4Model(TextModel):
  4164. model_arch = gguf.MODEL_ARCH.GLM4
  4165. def set_vocab(self):
  4166. from transformers import AutoTokenizer
  4167. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4168. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4169. tokens, toktypes, tokpre = self.get_vocab_base()
  4170. self.gguf_writer.add_tokenizer_model("gpt2")
  4171. self.gguf_writer.add_tokenizer_pre(tokpre)
  4172. self.gguf_writer.add_token_list(tokens)
  4173. self.gguf_writer.add_token_types(toktypes)
  4174. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4175. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4176. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4177. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4178. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4179. special_vocab.add_to_gguf(self.gguf_writer)
  4180. def set_gguf_parameters(self):
  4181. super().set_gguf_parameters()
  4182. rope_dim = self.hparams["head_dim"]
  4183. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4184. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  4185. if self.hparams["rope_scaling"].get("type") == "yarn":
  4186. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4187. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  4188. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  4189. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4190. class ChatGLMModel(TextModel):
  4191. model_arch = gguf.MODEL_ARCH.CHATGLM
  4192. def set_vocab_chatglm3(self):
  4193. dir_model = self.dir_model
  4194. hparams = self.hparams
  4195. tokens: list[bytes] = []
  4196. toktypes: list[int] = []
  4197. scores: list[float] = []
  4198. from transformers import AutoTokenizer
  4199. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4200. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4201. assert max(tokenizer.get_vocab().values()) < vocab_size
  4202. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4203. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4204. for token_id in range(vocab_size):
  4205. piece = tokenizer._convert_id_to_token(token_id)
  4206. if token_id == 0:
  4207. piece = "<unk>"
  4208. elif token_id == 1:
  4209. piece = "<bos>"
  4210. elif token_id == 2:
  4211. piece = "<eos>"
  4212. text = piece.encode("utf-8")
  4213. score = 0.0
  4214. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4215. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4216. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4217. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4218. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4219. if piece in special_tokens:
  4220. toktype = SentencePieceTokenTypes.CONTROL
  4221. elif len(piece) == 0:
  4222. text = f"[PAD{token_id}]".encode("utf-8")
  4223. toktype = SentencePieceTokenTypes.UNUSED
  4224. else:
  4225. toktype = SentencePieceTokenTypes.USER_DEFINED
  4226. tokens.append(text)
  4227. scores.append(score)
  4228. toktypes.append(toktype)
  4229. continue
  4230. toktype = SentencePieceTokenTypes.NORMAL
  4231. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4232. toktype = SentencePieceTokenTypes.UNKNOWN
  4233. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4234. toktype = SentencePieceTokenTypes.CONTROL
  4235. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4236. toktype = SentencePieceTokenTypes.UNUSED
  4237. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4238. toktype = SentencePieceTokenTypes.BYTE
  4239. tokens.append(text)
  4240. scores.append(score)
  4241. toktypes.append(toktype)
  4242. self.gguf_writer.add_tokenizer_model("llama")
  4243. # glm3 needs prefix and suffix formatted as:
  4244. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4245. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4246. self.gguf_writer.add_token_list(tokens)
  4247. self.gguf_writer.add_token_scores(scores)
  4248. self.gguf_writer.add_token_types(toktypes)
  4249. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4250. special_vocab.add_to_gguf(self.gguf_writer)
  4251. @staticmethod
  4252. def token_bytes_to_string(b):
  4253. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4254. byte_encoder = bytes_to_unicode()
  4255. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4256. @staticmethod
  4257. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4258. parts = [bytes([b]) for b in token]
  4259. while True:
  4260. min_idx = None
  4261. min_rank = None
  4262. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4263. rank = mergeable_ranks.get(pair[0] + pair[1])
  4264. if rank is not None and (min_rank is None or rank < min_rank):
  4265. min_idx = i
  4266. min_rank = rank
  4267. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4268. break
  4269. assert min_idx is not None
  4270. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4271. return parts
  4272. def set_vocab(self):
  4273. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4274. self.set_vocab_chatglm3()
  4275. return
  4276. dir_model = self.dir_model
  4277. hparams = self.hparams
  4278. tokens: list[str] = []
  4279. toktypes: list[int] = []
  4280. from transformers import AutoTokenizer
  4281. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4282. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4283. assert max(tokenizer.get_vocab().values()) < vocab_size
  4284. tokens, toktypes, tokpre = self.get_vocab_base()
  4285. self.gguf_writer.add_tokenizer_model("gpt2")
  4286. self.gguf_writer.add_tokenizer_pre(tokpre)
  4287. self.gguf_writer.add_token_list(tokens)
  4288. self.gguf_writer.add_token_types(toktypes)
  4289. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4290. # only add special tokens when they were not already loaded from config.json
  4291. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4292. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4293. # this one is usually not in config.json anyway
  4294. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4295. special_vocab.add_to_gguf(self.gguf_writer)
  4296. def set_gguf_parameters(self):
  4297. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4298. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4299. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4300. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4301. self.gguf_writer.add_embedding_length(n_embed)
  4302. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4303. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4304. self.gguf_writer.add_head_count(n_head)
  4305. self.gguf_writer.add_head_count_kv(n_head_kv)
  4306. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4307. self.gguf_writer.add_file_type(self.ftype)
  4308. if "attention_dim" in self.hparams:
  4309. rope_dim = self.hparams["attention_dim"]
  4310. else:
  4311. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4312. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4313. self.gguf_writer.add_add_bos_token(False)
  4314. rope_freq = 10000
  4315. if "rope_ratio" in self.hparams:
  4316. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4317. self.gguf_writer.add_rope_freq_base(rope_freq)
  4318. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4319. del bid # unused
  4320. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4321. return []
  4322. name = name.removeprefix("transformer.")
  4323. return [(self.map_tensor_name(name), data_torch)]
  4324. @ModelBase.register("NemotronForCausalLM")
  4325. class NemotronModel(TextModel):
  4326. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4327. def set_vocab(self):
  4328. self._set_vocab_sentencepiece()
  4329. self.gguf_writer.add_pad_token_id(0)
  4330. self.gguf_writer.add_unk_token_id(1)
  4331. def set_gguf_parameters(self):
  4332. super().set_gguf_parameters()
  4333. hparams = self.hparams
  4334. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4335. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4336. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4337. # * Partial RoPE
  4338. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4339. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4340. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4341. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4342. # * RopeScaling for Nemotron
  4343. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4344. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4345. else:
  4346. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4347. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4348. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4349. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4350. # model.layers.{l}.input_layernorm.weight
  4351. # model.layers.{l}.post_attention_layernorm.weight
  4352. # model.norm.weight
  4353. if name.endswith("norm.weight"):
  4354. data_torch = data_torch + 1
  4355. return [(self.map_tensor_name(name), data_torch)]
  4356. @ModelBase.register("ExaoneForCausalLM")
  4357. class ExaoneModel(TextModel):
  4358. model_arch = gguf.MODEL_ARCH.EXAONE
  4359. def set_gguf_parameters(self):
  4360. hparams = self.hparams
  4361. assert (hparams["activation_function"] == "silu")
  4362. max_position_embeddings = hparams["max_position_embeddings"]
  4363. embed_dim = hparams["hidden_size"]
  4364. num_heads = hparams["num_attention_heads"]
  4365. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4366. layer_norm_eps = hparams["layer_norm_epsilon"]
  4367. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4368. num_layers = hparams["num_layers"]
  4369. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4370. # attention_dropout_rate = hparams["attention_dropout"]
  4371. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4372. # embed_dropout_rate = hparams["embed_dropout"]
  4373. self.gguf_writer.add_embedding_length(embed_dim)
  4374. self.gguf_writer.add_head_count(num_heads)
  4375. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4376. self.gguf_writer.add_context_length(max_position_embeddings)
  4377. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4378. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4379. self.gguf_writer.add_block_count(num_layers)
  4380. self.gguf_writer.add_file_type(self.ftype)
  4381. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4382. self.gguf_writer.add_rope_freq_base(rope_theta)
  4383. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4384. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4385. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4386. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4387. if hparams["rope_scaling"].get("type") == "linear":
  4388. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4389. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4390. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4391. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4392. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4393. base = self.hparams.get("rope_theta", 10000.0)
  4394. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4395. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4396. factor = rope_scaling.get("factor", 8.0)
  4397. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4398. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4399. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4400. low_freq_wavelen = old_context_len / low_freq_factor
  4401. high_freq_wavelen = old_context_len / high_freq_factor
  4402. assert low_freq_wavelen != high_freq_wavelen
  4403. rope_factors = []
  4404. for freq in freqs:
  4405. wavelen = 2 * math.pi / freq
  4406. if wavelen < high_freq_wavelen:
  4407. rope_factors.append(1)
  4408. elif wavelen > low_freq_wavelen:
  4409. rope_factors.append(factor)
  4410. else:
  4411. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4412. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4413. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4414. @ModelBase.register("GraniteForCausalLM")
  4415. class GraniteModel(LlamaModel):
  4416. """Conversion for IBM's GraniteForCausalLM"""
  4417. model_arch = gguf.MODEL_ARCH.GRANITE
  4418. def set_gguf_parameters(self):
  4419. """Granite uses standard llama parameters with the following differences:
  4420. - No head_dim support
  4421. - New multiplier params:
  4422. - attention_scale
  4423. - embedding_scale
  4424. - residual_scale
  4425. - logits_scaling
  4426. """
  4427. if head_dim := self.hparams.pop("head_dim", None):
  4428. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4429. super().set_gguf_parameters()
  4430. # NOTE: Convert _multiplier params to _scale params for naming
  4431. # consistency
  4432. if attention_scale := self.hparams.get("attention_multiplier"):
  4433. self.gguf_writer.add_attention_scale(attention_scale)
  4434. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4435. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4436. self.gguf_writer.add_embedding_scale(embedding_scale)
  4437. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4438. if residual_scale := self.hparams.get("residual_multiplier"):
  4439. self.gguf_writer.add_residual_scale(residual_scale)
  4440. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4441. if logits_scale := self.hparams.get("logits_scaling"):
  4442. self.gguf_writer.add_logit_scale(logits_scale)
  4443. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4444. @ModelBase.register("GraniteMoeForCausalLM")
  4445. class GraniteMoeModel(GraniteModel):
  4446. """Conversion for IBM's GraniteMoeForCausalLM"""
  4447. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4448. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4449. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4450. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4451. the hidden size that is then split during forward. To keep compatibility
  4452. with existing mixtral support, we pull them apart here.
  4453. """
  4454. if name.endswith("block_sparse_moe.input_linear.weight"):
  4455. ffn_dim = self.hparams["intermediate_size"]
  4456. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4457. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4458. return [
  4459. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4460. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4461. ]
  4462. return super().modify_tensors(data_torch, name, bid)
  4463. @ModelBase.register("BailingMoeForCausalLM")
  4464. class BailingMoeModel(TextModel):
  4465. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4466. def set_vocab(self):
  4467. self._set_vocab_gpt2()
  4468. def set_gguf_parameters(self):
  4469. super().set_gguf_parameters()
  4470. hparams = self.hparams
  4471. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4472. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4473. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4474. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4475. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4476. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4477. self.gguf_writer.add_expert_weights_scale(1.0)
  4478. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4479. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4480. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4481. _experts: list[dict[str, Tensor]] | None = None
  4482. @staticmethod
  4483. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4484. if n_head_kv is not None and n_head != n_head_kv:
  4485. n_head = n_head_kv
  4486. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4487. .swapaxes(1, 2)
  4488. .reshape(weights.shape))
  4489. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4490. n_head = self.hparams["num_attention_heads"]
  4491. n_kv_head = self.hparams.get("num_key_value_heads")
  4492. n_embd = self.hparams["hidden_size"]
  4493. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4494. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4495. if name.endswith("attention.dense.weight"):
  4496. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4497. elif name.endswith("query_key_value.weight"):
  4498. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4499. return [
  4500. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4501. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4502. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4503. ]
  4504. elif name.find("mlp.experts") != -1:
  4505. n_experts = self.hparams["num_experts"]
  4506. assert bid is not None
  4507. tensors: list[tuple[str, Tensor]] = []
  4508. if self._experts is None:
  4509. self._experts = [{} for _ in range(self.block_count)]
  4510. self._experts[bid][name] = data_torch
  4511. if len(self._experts[bid]) >= n_experts * 3:
  4512. # merge the experts into a single 3d tensor
  4513. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4514. datas: list[Tensor] = []
  4515. for xid in range(n_experts):
  4516. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4517. datas.append(self._experts[bid][ename])
  4518. del self._experts[bid][ename]
  4519. data_torch = torch.stack(datas, dim=0)
  4520. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4521. new_name = self.map_tensor_name(merged_name)
  4522. tensors.append((new_name, data_torch))
  4523. return tensors
  4524. new_name = self.map_tensor_name(name)
  4525. if new_name == output_name and self.hparams.get("norm_head"):
  4526. data_torch = data_torch.float()
  4527. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4528. return [(new_name, data_torch)]
  4529. def prepare_tensors(self):
  4530. super().prepare_tensors()
  4531. if self._experts is not None:
  4532. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4533. experts = [k for d in self._experts for k in d.keys()]
  4534. if len(experts) > 0:
  4535. raise ValueError(f"Unprocessed experts: {experts}")
  4536. @ModelBase.register("ChameleonForConditionalGeneration")
  4537. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4538. class ChameleonModel(TextModel):
  4539. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4540. def set_gguf_parameters(self):
  4541. super().set_gguf_parameters()
  4542. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4543. def set_vocab(self):
  4544. self._set_vocab_gpt2()
  4545. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4546. # ignore image tokenizer for now
  4547. # TODO: remove this once image support is implemented for Chameleon
  4548. if name.startswith("model.vqmodel"):
  4549. return []
  4550. n_head = self.hparams["num_attention_heads"]
  4551. n_kv_head = self.hparams.get("num_key_value_heads")
  4552. hidden_dim = self.hparams.get("hidden_size")
  4553. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4554. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4555. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4556. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4557. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4558. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4559. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4560. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4561. return [(self.map_tensor_name(name), data_torch)]
  4562. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4563. @staticmethod
  4564. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4565. head_dim = hidden_dim // n_heads
  4566. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4567. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4568. return data_torch
  4569. ###### CONVERSION LOGIC ######
  4570. # tree of lazy tensors
  4571. class LazyTorchTensor(gguf.LazyBase):
  4572. _tensor_type = torch.Tensor
  4573. # to keep the type-checker happy
  4574. dtype: torch.dtype
  4575. shape: torch.Size
  4576. # only used when converting a torch.Tensor to a np.ndarray
  4577. _dtype_map: dict[torch.dtype, type] = {
  4578. torch.float16: np.float16,
  4579. torch.float32: np.float32,
  4580. }
  4581. # used for safetensors slices
  4582. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4583. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4584. _dtype_str_map: dict[str, torch.dtype] = {
  4585. "F64": torch.float64,
  4586. "F32": torch.float32,
  4587. "BF16": torch.bfloat16,
  4588. "F16": torch.float16,
  4589. # "U64": torch.uint64,
  4590. "I64": torch.int64,
  4591. # "U32": torch.uint32,
  4592. "I32": torch.int32,
  4593. # "U16": torch.uint16,
  4594. "I16": torch.int16,
  4595. "U8": torch.uint8,
  4596. "I8": torch.int8,
  4597. "BOOL": torch.bool,
  4598. "F8_E4M3": torch.float8_e4m3fn,
  4599. "F8_E5M2": torch.float8_e5m2,
  4600. }
  4601. def numpy(self) -> gguf.LazyNumpyTensor:
  4602. dtype = self._dtype_map[self.dtype]
  4603. return gguf.LazyNumpyTensor(
  4604. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4605. args=(self,),
  4606. func=(lambda s: s.numpy())
  4607. )
  4608. @classmethod
  4609. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4610. return torch.empty(size=shape, dtype=dtype, device="meta")
  4611. @classmethod
  4612. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4613. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4614. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4615. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4616. return cast(torch.Tensor, lazy)
  4617. @classmethod
  4618. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4619. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4620. shape = remote_tensor.shape
  4621. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4622. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4623. return cast(torch.Tensor, lazy)
  4624. @classmethod
  4625. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4626. del types # unused
  4627. if kwargs is None:
  4628. kwargs = {}
  4629. if func is torch.Tensor.numpy:
  4630. return args[0].numpy()
  4631. return cls._wrap_fn(func)(*args, **kwargs)
  4632. def parse_args() -> argparse.Namespace:
  4633. parser = argparse.ArgumentParser(
  4634. description="Convert a huggingface model to a GGML compatible file")
  4635. parser.add_argument(
  4636. "--vocab-only", action="store_true",
  4637. help="extract only the vocab",
  4638. )
  4639. parser.add_argument(
  4640. "--outfile", type=Path,
  4641. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4642. )
  4643. parser.add_argument(
  4644. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4645. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4646. )
  4647. parser.add_argument(
  4648. "--bigendian", action="store_true",
  4649. help="model is executed on big endian machine",
  4650. )
  4651. parser.add_argument(
  4652. "model", type=Path,
  4653. help="directory containing model file",
  4654. nargs="?",
  4655. )
  4656. parser.add_argument(
  4657. "--use-temp-file", action="store_true",
  4658. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4659. )
  4660. parser.add_argument(
  4661. "--no-lazy", action="store_true",
  4662. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4663. )
  4664. parser.add_argument(
  4665. "--model-name", type=str, default=None,
  4666. help="name of the model",
  4667. )
  4668. parser.add_argument(
  4669. "--verbose", action="store_true",
  4670. help="increase output verbosity",
  4671. )
  4672. parser.add_argument(
  4673. "--split-max-tensors", type=int, default=0,
  4674. help="max tensors in each split",
  4675. )
  4676. parser.add_argument(
  4677. "--split-max-size", type=str, default="0",
  4678. help="max size per split N(M|G)",
  4679. )
  4680. parser.add_argument(
  4681. "--dry-run", action="store_true",
  4682. help="only print out a split plan and exit, without writing any new files",
  4683. )
  4684. parser.add_argument(
  4685. "--no-tensor-first-split", action="store_true",
  4686. help="do not add tensors to the first split (disabled by default)"
  4687. )
  4688. parser.add_argument(
  4689. "--metadata", type=Path,
  4690. help="Specify the path for an authorship metadata override file"
  4691. )
  4692. parser.add_argument(
  4693. "--print-supported-models", action="store_true",
  4694. help="Print the supported models"
  4695. )
  4696. parser.add_argument(
  4697. "--remote", action="store_true",
  4698. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  4699. )
  4700. parser.add_argument(
  4701. "--mmproj", action="store_true",
  4702. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  4703. )
  4704. args = parser.parse_args()
  4705. if not args.print_supported_models and args.model is None:
  4706. parser.error("the following arguments are required: model")
  4707. return args
  4708. def split_str_to_n_bytes(split_str: str) -> int:
  4709. if split_str.endswith("K"):
  4710. n = int(split_str[:-1]) * 1000
  4711. elif split_str.endswith("M"):
  4712. n = int(split_str[:-1]) * 1000 * 1000
  4713. elif split_str.endswith("G"):
  4714. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4715. elif split_str.isnumeric():
  4716. n = int(split_str)
  4717. else:
  4718. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4719. if n < 0:
  4720. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4721. return n
  4722. def get_model_architecture(dir_model: Path, model_type: ModelType, hparams: Any = None) -> str:
  4723. hparams = ModelBase.load_hparams(dir_model) if hparams is None else hparams
  4724. text_config = hparams.get("text_config", {})
  4725. vision_config = hparams.get("vision_config", {})
  4726. arch = hparams["architectures"][0]
  4727. # if "architectures" is found in the sub-config, use that instead
  4728. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  4729. arch = text_config["architectures"][0]
  4730. elif model_type == ModelType.VISION and vision_config.get("architectures") is not None:
  4731. arch = vision_config["architectures"][0]
  4732. return arch
  4733. def main() -> None:
  4734. args = parse_args()
  4735. if args.print_supported_models:
  4736. logger.error("Supported models:")
  4737. ModelBase.print_registered_models()
  4738. sys.exit(0)
  4739. if args.verbose:
  4740. logging.basicConfig(level=logging.DEBUG)
  4741. else:
  4742. logging.basicConfig(level=logging.INFO)
  4743. dir_model = args.model
  4744. if args.remote:
  4745. from huggingface_hub import snapshot_download
  4746. local_dir = snapshot_download(
  4747. repo_id=str(dir_model),
  4748. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  4749. dir_model = Path(local_dir)
  4750. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  4751. if not dir_model.is_dir():
  4752. logger.error(f'Error: {args.model} is not a directory')
  4753. sys.exit(1)
  4754. ftype_map: dict[str, gguf.LlamaFileType] = {
  4755. "f32": gguf.LlamaFileType.ALL_F32,
  4756. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4757. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4758. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4759. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4760. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4761. "auto": gguf.LlamaFileType.GUESSED,
  4762. }
  4763. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4764. if args.use_temp_file and is_split:
  4765. logger.error("Error: Cannot use temp file when splitting")
  4766. sys.exit(1)
  4767. if args.outfile is not None:
  4768. fname_out = args.outfile
  4769. elif args.remote:
  4770. # if remote, use the model ID as the output file name
  4771. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  4772. else:
  4773. fname_out = dir_model
  4774. logger.info(f"Loading model: {dir_model.name}")
  4775. if args.mmproj:
  4776. if "mmproj" not in fname_out.name:
  4777. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  4778. with torch.inference_mode():
  4779. output_type = ftype_map[args.outtype]
  4780. model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
  4781. model_architecture = get_model_architecture(dir_model, model_type)
  4782. logger.info(f"Model architecture: {model_architecture}")
  4783. try:
  4784. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  4785. except NotImplementedError:
  4786. logger.error(f"Model {model_architecture} is not supported")
  4787. sys.exit(1)
  4788. model_instance = model_class(dir_model, output_type, fname_out,
  4789. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4790. eager=args.no_lazy,
  4791. metadata_override=args.metadata, model_name=args.model_name,
  4792. split_max_tensors=args.split_max_tensors,
  4793. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4794. small_first_shard=args.no_tensor_first_split,
  4795. remote_hf_model_id=str(args.model) if args.remote else None)
  4796. if args.vocab_only:
  4797. logger.info("Exporting model vocab...")
  4798. model_instance.write_vocab()
  4799. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4800. else:
  4801. logger.info("Exporting model...")
  4802. model_instance.write()
  4803. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4804. logger.info(f"Model successfully exported to {out_path}")
  4805. if __name__ == '__main__':
  4806. main()